WO2023080650A1 - 전력저장원 관리장치 및 그 제어 방법 - Google Patents

전력저장원 관리장치 및 그 제어 방법 Download PDF

Info

Publication number
WO2023080650A1
WO2023080650A1 PCT/KR2022/017072 KR2022017072W WO2023080650A1 WO 2023080650 A1 WO2023080650 A1 WO 2023080650A1 KR 2022017072 W KR2022017072 W KR 2022017072W WO 2023080650 A1 WO2023080650 A1 WO 2023080650A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage source
power storage
operating
discharging
Prior art date
Application number
PCT/KR2022/017072
Other languages
English (en)
French (fr)
Inventor
신채빈
김동주
김승현
김안수
이현철
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023555645A priority Critical patent/JP2024510602A/ja
Priority to CN202280019483.2A priority patent/CN116964894A/zh
Priority to EP22890381.1A priority patent/EP4304044A1/en
Publication of WO2023080650A1 publication Critical patent/WO2023080650A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to an apparatus for managing a power storage source and a method for controlling the same, and more particularly, in the process of charging or discharging the power storage source, it is possible to prevent a phenomenon in which charging and discharging of the power storage source is stopped in the latter half of charging or discharging. It relates to a power storage source management device and a control method thereof.
  • ESS Energy Storage System
  • ESS is a system that increases the efficiency of power use by storing power generated through renewable energy or idle power of the power grid in a power storage source and then supplying the stored power to the power system when power is needed.
  • the ESS includes a power storage source including a plurality of batteries, a power conversion system (PCS), and an energy management system (EMS).
  • PCS power conversion system
  • EMS energy management system
  • the PCS converts the characteristics of current to output the stored power in the power storage source to the grid, and performs functions such as monitoring-controlling, independent operation, and grid-linked protection.
  • the EMS manages the ESS as a whole, and in particular, it plays a role in adjusting the charging and discharging conditions of the power storage source so that the ESS can be operated more efficiently.
  • the PCS charges the power storage source using power supplied from the power grid or renewable energy power plant according to the operation policy set by the EMS.
  • the PCS also provides power to the power system by discharging the power storage source according to the operation policy set by the EMS.
  • PCS has a controllable power specification. For example, when the power specification of the PCS is 5000 kW, the PCS may supply charging power of up to 5000 kW to the power storage source or receive discharging power of up to 5000 kw from the power storage source.
  • the PCS monitors the voltage and current of the power line so that the charging and discharging power of the power storage source does not exceed the controllable power specification.
  • the voltage measurement sensor and the current measurement sensor included in the PCS have a measurement error. If the voltage measuring sensor and the current measuring sensor have an error of less than 1%, the accuracy of power control of the PCS may deteriorate when the charging power and the discharging power are low. In the above example, the power corresponding to an error of 1% is 50 kW. Therefore, when the charging power and the discharging power are 50 kW or less, the power control accuracy of the PCS may decrease.
  • a power specification range in which power control accuracy of the PCS is low is defined as an unstable power range.
  • the power storage source has a management device.
  • the management device determines an allowable operating power limit of the power storage source according to the state of charge and temperature of the power storage source.
  • the operating power limit is the maximum value of charging power or discharging power that can be accommodated by the power storage source. If the charging power input to the power storage source or the discharging power output from the power storage source exceeds the operating power limit by a predetermined percentage, the power storage management device stops charging and discharging of the power storage source in consideration of safety. For example, if exceeding the operating power limit by 10 to 20% is set as a charging/discharging stopping condition, the management device starts charging and discharging the power storage source when the charging or discharging power of the power storage source exceeds the operating power limit by 10 to 20%. immediately stop
  • the power section in which the power control accuracy of the PCS is low is when the state of charge of the power storage source is close to full charge or close to full discharge. This is because the charging power or discharging power decreases as it approaches full charge or full discharge, and eventually lowers to below the unstable power range of the PCS.
  • the power control accuracy of the PCS is reduced in the unstable power range. That is, it becomes difficult to accurately control the charging power and the discharging power to a level required by the power storage source management device. Accordingly, an event corresponding to a charge/discharge stop condition frequently occurs in an unstable power section. That is, it frequently occurs that charging power supplied to the power storage source or discharging power output from the power storage source exceeds the operating power limit by a predetermined percentage. For this reason, a phenomenon in which the power storage source suddenly stops operating without being fully charged or fully discharged occurs.
  • An object of the present invention is to provide an improved power storage source management device and a control method thereof.
  • An apparatus for managing a power storage source for achieving the above technical problem includes a sensor unit for measuring operation characteristics of a power storage source; and a control unit operably coupled to the sensor unit.
  • the control unit obtains operating characteristic information of the power storage source from the sensor unit to determine an operating power limit of the power storage source, and (ii) transmits the operating characteristic information while the power storage source is operating.
  • control unit receives operation characteristic information including charge/discharge current, voltage, and temperature of the power storage source from the sensor unit, and integrates the charge/discharge current to determine the state of charge of the power storage source. And determine the operating power limit of the power storage source corresponding to the determined state of charge and the input temperature with reference to lookup information defining a correlation between the state of charge and temperature and the operating power limit.
  • control unit may receive information about a preset unstable power section of the PCS from the PCS.
  • the first threshold value may be 10% to 30% of the operating power limit.
  • the power storage source management device characterized in that the second threshold value is 30% to 60% of the operating power limit.
  • the second threshold value may increase as the charging power or discharging power of the power storage source decreases.
  • the power storage source may include first to n-th battery racks.
  • the first to n-th slave control unit mounted on each of the first to n-th battery rack; and a master control unit communicatively coupled to the first to n-th slave control units.
  • each of the first to n-th slave control units obtains operating characteristic information of a battery rack in which they are mounted from a sensor unit, and determines an operating power limit and charging or discharging power of the battery rack using the operating characteristic information. It may be configured to provide to the master control unit.
  • the master controller determines a total operating power limit and a total charging power or total discharging power by summing the operating power limit transmitted from the first to n-th slave controllers and charging power or discharging power, and determines the total charging power or discharging power. If a first operation interruption condition is established in which the power or the total discharge power is greater than the preset unstable power period of the PCS and the total charge power or the total discharge power is greater than the first threshold value than the total operating power limit, an operation stop message is generated.
  • an operation stop message may be provided to the first to n-th slave controllers.
  • a control method of a power storage source management apparatus for achieving the above technical problem includes acquiring operating characteristic information of a power storage source from a sensor unit measuring operating characteristics of the power storage source; determining an operating power limit of the power storage source using the operating characteristic information; determining charging power supplied from a power conversion system (PCS) or discharging power supplied to a PCS side by using the operating characteristic information while the power storage source is operating; The power storage source when the charging power or the discharging power is greater than a preset unstable power period of the PCS and a first operation interruption condition in which the charging power or the discharging power is greater than or equal to a first threshold value than the operating power limit is satisfied.
  • PCS power conversion system
  • the first to n-th slave controllers and the first to n-th slave control units mounted on the first to n-th battery racks, respectively, and the first to nth battery racks.
  • a control method of a power storage management device including a master control unit communicatively coupled with an n-slave control unit, wherein each of the first to n-th slave control units from a sensor unit measuring operating characteristics of a battery rack in which it is mounted Obtaining operating characteristic information to determine the operating power limit and charging power or discharging power of the battery rack and providing the master controller; determining, by the master controller, a total operating power limit and a total charging power or total discharging power by summing the operating power limit transmitted from the first to nth slave controllers and the charging power or discharging power; The master control unit stops a first operation when the total charging power or the total discharging power is greater than a preset unstable power period of the PCS, and the total charging power or the total discharging power is greater than a first threshold value than the total operating power limit providing an operation stop message to the first to n-th slave controllers when a condition is satisfied; The master control unit determines that the total charging power or the total discharging power is within
  • the charge/discharge interruption condition is alleviated. Therefore, it is possible to charge the power storage source to a fully charged state and discharge it to a fully discharged state by preventing a phenomenon in which the operation of the power storage source is stopped in the second half of charging or the second half of discharging. Through this, the capacity of the power storage source can be maximally utilized.
  • FIG. 1 is a schematic configuration diagram of a power storage source management device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a power storage source management device according to a second embodiment of the present invention.
  • FIG. 3 is a flowchart of a control method of the power storage source management device according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart of a control method of a power storage source management device according to a second embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a power storage source management device 10 according to a first embodiment of the present invention.
  • the power storage source management device 10 is coupled to the power storage source 11 .
  • the power storage source 11 is connected to the PCS 13 through a switch 12.
  • the PCS 13 is included in the ESS, and converts the characteristics of current to output the power stored in the power storage source 11 to the grid or supply the power of the system to the power storage source 11, monitor-control, It performs independent operation and grid-linked protection functions.
  • the power storage source 11 includes a plurality of batteries 14 .
  • a plurality of batteries 14 may be connected in series and/or parallel.
  • a plurality of batteries may be mounted in a battery rack.
  • the battery rack is widely used in ESS and includes a shelf structure in which a plurality of batteries 14 can be loaded.
  • the battery rack may be a component included in the ESS.
  • the plurality of batteries 14 may be lithium ion batteries, but the present invention is not limited by the type of battery 14 .
  • the switch 12 is a component that connects or disconnects the PCS 13 and the power storage source 11.
  • the switch 12 may be a relay switch or a power semiconductor switch. However, the present invention is not limited by the type of switch 12.
  • the power storage source management device 10 includes a sensor unit 15 that measures operating characteristics of the power storage source 11 .
  • the sensor unit 15 includes a voltage measuring unit 15a, a current measuring unit 15b and a temperature measuring unit 15c.
  • the voltage measurement unit 15a measures the voltage of each battery cell at regular time intervals while the plurality of battery cells 14 are being charged or discharged, and outputs the measured voltage value to the control unit 16 .
  • the voltage measuring unit 15a may be a voltage measuring circuit known in the art. Since the voltage measuring circuit is widely known, a detailed description thereof will be omitted.
  • the current measurement unit 15b measures the charge/discharge current flowing through the plurality of battery cells 14 at regular time intervals and outputs the measured current value to the control unit 16 .
  • the current measuring unit 15b may be a current measuring circuit known in the art.
  • the current measuring unit 15b may be a Hall sensor or a sense resistor that outputs a voltage value corresponding to the magnitude of the current.
  • a voltage value can be converted into a current value according to Ohm's law.
  • the temperature measurement unit 15c measures the temperature of each battery cell 14 at regular time intervals while the plurality of battery cells 14 are being charged or discharged, and outputs the measured temperature value to the controller 16 .
  • the temperature measuring unit 15c may be a temperature measuring circuit known in the art.
  • the temperature measuring unit 15c may be a thermocouple or a temperature measuring device that outputs a voltage value corresponding to the temperature.
  • a voltage value can be converted into a temperature value using a voltage-temperature conversion lookup table (function).
  • the power storage source management device 10 includes a control unit 16 .
  • the control unit 16 obtains operation characteristic information of the power storage source 11 from the sensor unit 15 and determines an operating power limit of the power storage source 11 .
  • the operating characteristic information relates to voltage, charge/discharge current, and temperature of the plurality of battery cells 14 included in the power storage source 11 .
  • the operating power limit is the maximum value of charging power that can be applied to the power storage source 11 or the maximum value of discharging power that can be output from the power storage source 11 to the system.
  • the control unit 16 determines the state of charge of each battery cell by integrating the charging/discharging current for each of the plurality of battery cells 14, and sums the state of charge of the battery cells to determine the state of charge of the power storage source 11 ( State Of Charge (SOC) can be determined.
  • SOC State Of Charge
  • the initial value of the state of charge when integrating the charge/discharge current may be determined using a stabilization voltage measured after the plurality of battery cells 14 maintain a no-load state for a predetermined time. That is, a state of charge corresponding to the stabilization voltage may be looked up with reference to lookup information predefined for a correlation between the stabilization voltage and the state of charge, and the looked up state of charge may be set as an initial value of the state of charge.
  • control unit 16 determines the state of charge of each battery cell by inputting information on the voltage, charge/discharge current, and temperature of each of the plurality of battery cells 14 to an extended Kalman filter, and determines the charging state of the battery cells.
  • the state of charge of the power storage source 11 may be determined by summing the states.
  • An extended Kalman filter capable of determining a state of charge from voltage, charge/discharge current, and temperature of a battery cell is known in the art.
  • control unit 16 refers to lookup information defining a correlation between the state of charge and temperature of the power storage source 11 and the operating power limit, and the operation corresponding to the current state of charge and the current temperature of the power storage source 11 A power limit can be determined.
  • the temperature of the power storage source 11 is maintained uniformly by a heating, ventilation, & air conditioning (HVAC) device. Accordingly, the temperature of the power storage source 11 may be the average temperature of the battery cells. Alternatively, the temperature of the power storage source 11 may be the highest temperature of the battery cells.
  • HVAC heating, ventilation, & air conditioning
  • the operating power limit may be determined by other well-known methods other than the method of referring to the lookup information, the present invention is not limited by a specific method of determining the operating power limit.
  • the control unit 16 also controls the charging power supplied from the PCS 13 to the power storage source 11 or the discharge provided from the power storage source 11 to the PCS 13 while the power storage source 11 is being charged or discharged. power can be determined.
  • the controller 16 may determine charging power or discharging power by multiplying the total voltage of the plurality of battery cells 11 and the charging/discharging current.
  • the total voltage can be determined by summing the voltages of each battery cell.
  • the voltage and charge/discharge current of each battery cell may be obtained by referring to operating characteristic information obtained through the sensor unit 15 .
  • the control unit 16 directly measures the current and voltage of the power line to which the PCS 13 and the power storage source 11 are connected to charge power supplied from the PCS 13 to the power storage source 11 or the power storage source ( 11), the discharge power provided to the PCS (13) side can be determined.
  • the power storage source management device 11 may separately include a current measuring unit (not shown) and a voltage measuring unit (not shown) for monitoring the current and voltage of the power line.
  • the control unit 16 determines whether the charging power or discharging power of the power storage source 11 belongs to the preset unstable power range of the PCS 13, and whether the charging power or discharging power is greater than the operating power limit by a threshold value or more Thus, the operation of the power storage source 11 may be maintained or stopped.
  • the controller 16 determines that the charging power or discharging power of the power storage source 11 is greater than the preset unstable power section of the PCS 13, and the charging power or discharging power is the operation of the power storage source 11 It may be determined whether a condition (first operation interruption condition) greater than the first threshold value is satisfied. If the first operation interruption condition is satisfied, the control unit 16 may turn off the switch 12 to stop charging or discharging of the power storage source 11 . Conversely, if the first operation interruption condition is not satisfied, the control unit 16 may keep the switch 12 turned on to keep the power storage source 11 charged or discharged.
  • the controller 16 determines that the charging power or discharging power of the power storage source 11 is within a preset unstable power range of the PCS 13, and the charging power or discharging power determines the operation of the power storage source 11. It may be determined whether a condition (second operation interruption condition) equal to or greater than the second threshold value (greater than the first threshold value) than the power limit is satisfied. If the second operation interruption condition is satisfied, the control unit 16 may turn off the switch 12 to stop charging or discharging of the power storage source 11 . Conversely, if the second operation interruption condition is not satisfied, the control unit 16 may keep the switch 12 turned on to keep the power storage source 11 charged or discharged.
  • a condition second operation interruption condition
  • the control unit 16 may keep the switch 12 turned on to keep the power storage source 11 charged or discharged.
  • the first threshold value may be set to 10% to 30% based on the operating power limit.
  • the control unit 16 determines that the charging power or discharging power of the power storage source 11 is greater than the preset unstable power range of the PCS 13, and the charging power or discharging power is the operating power limit of the power storage source 11. When a condition of 10% to 30% or more is satisfied, the operation of the power storage source 11 may be stopped.
  • the second threshold value may be set to 30% to 60% based on the operating power limit.
  • the control unit 16 determines that the charging power or discharging power of the power storage source 11 is within a preset unstable power range of the PCS 13, and the charging power or discharging power is within the operating power limit of the power storage source 11. When a condition of 30% to 60% or more is satisfied, the operation of the power storage source 11 may be stopped.
  • the second operation stop condition is applied when the charging power or discharging power of the power storage source 11 is within a preset unstable power range of the PCS 13.
  • the unstable power section is caused by the voltage and current measurement errors of the PCS.
  • the unstable power interval is a power interval corresponding to the output specification*measurement error of the PCS. If the output specification of the PCS is 5000 kW, the unstable power range is a range between 0 and 50 kW.
  • the point at which the charging power or discharging power of the power storage source 11 enters the unstable power section is when the power storage source 11 approaches a fully charged state or a fully discharged state. In this case, since the charging power or the discharging power is very low, even if the second threshold value is increased from the first threshold value, no issue regarding safety is issued. Since the power storage source 11 includes a plurality of battery cells 14, even if the second threshold is greater than the first threshold, the degree of exceeding the operating power limit is not a level of concern from the point of view of each battery cell.
  • the charging/discharging stop condition of the power storage source 11 is increased from the first threshold value to the second threshold value when the charging power or discharging power of the PCS 13 enters the unstable power section, the safety of the battery cell It is possible to solve a problem in which the operation of the power storage source 11 suddenly stops in the second half of charging or the second half of discharging without causing an issue, and the power storage source 11 can be utilized from a fully charged state to a fully discharged state. Through this, it is possible to improve energy use efficiency.
  • the second threshold value may be adaptively changed according to the level of charging power or discharging power of the power storage source 11 .
  • the second threshold value may be gradually increased as the charging power or discharging power of the power storage source 11 belongs to the preset unstable power section of the PCS 13 and the value is smaller. This is because the possibility of a safety issue of the battery cell occurring is low as the charging power or discharging power is lowered.
  • the power storage source management device 10 may further include a storage medium 17 and a communication interface 18 .
  • the type of the storage medium 17 is not particularly limited as long as it can record and erase data and/or information.
  • the storage medium 17 may be a RAM, ROM, register, flash memory, hard disk, or magnetic recording medium.
  • the storage medium 17 may be electrically connected to the control unit 16 through, for example, a data bus to enable access by the control unit 16 .
  • the storage medium 17 stores a program including various control logics executed by the control unit 16, and/or data generated when the control logic is executed, and/or preset data or lookup information/tables, etc. update and/or erase and/or transmit.
  • the control unit 16 transmits and receives information and/or data to and from the PCS 13 through the communication interface 18 .
  • the control unit 16 may receive information about the unstable power period of the PCS 13 through the communication interface 18 and record it in the storage medium 17 .
  • the information about the unstable power section stored in the storage medium 17 may be referred to when determining whether the first operation stop condition and the second operation stop condition are satisfied.
  • the control unit 16 may also transmit the operating power limit to the PCS 13 side via the communication interface 18 . Then, the PCS 13 supplies charging power to the power storage source 11 so as not to exceed the operating power limit. At this time, the PCS 13 converts the AC power of the power grid into DC power corresponding to the charging power and provides it to the power storage source 11 . In addition, the PCS 13 may receive discharge power in the form of direct current from the power storage source 11 within a range not exceeding an operating power limit, convert the direct current into alternating current, and supply it to the power grid.
  • the communication interface 18 may be a known wired or wireless communication interface supporting short-range or long-distance communication.
  • the communication interface 18 includes a CAN communication interface, a daisy-chain interface, an Ethernet communication interface, and WI-FI; Bluetooth; Alternatively, it may be a short-distance wireless communication interface such as Zigbee, but the present invention is not limited thereto.
  • FIG. 2 is a schematic configuration diagram of a power storage source management device 20 according to a second embodiment of the present invention.
  • the power storage source 11 includes first to n-th battery racks 11-1 to 11-n.
  • Each battery rack includes a plurality of battery cells connected in series and / or parallel, like the power storage source 11 of the first embodiment.
  • the power storage source management device 20 includes first to n-th slave controllers 16-1 to 16-n respectively coupled to the first to n-th battery racks 11-1 to 11-n.
  • the first to n-th slave control units 16-1 to 16-n are first to n-th sensor units 15-1 to 15 respectively coupled to the first to n-th battery racks 11-1 to 11-n. -n).
  • Each of the first to nth sensor units 15-1 to 15-n includes a voltage measurement unit 15a, a current measurement unit 15b, and a temperature measurement unit 15c, similarly to the first embodiment.
  • the power storage source management device 20 also includes the first to n-th storage media 17-1 to 17-n coupled to the first to n-th slave controllers 16-1 to 16-n, respectively.
  • the power storage source management device 20 includes first to n-th communication interfaces 18-1 to 18-n coupled to the first to n-th slave control units 16-1 to 16-n, respectively. . Configurations of the first to n-th storage media 17-1 to 17-n and the first to n-th communication interfaces 18-1 to 18-n are substantially the same as those of the first embodiment.
  • the power storage source management device 20 also includes a master controller 21 .
  • the master controller 21 may be operatively coupled with the storage medium 22 and the communication interface 23 . Configurations of the storage medium 22 and the communication interface 23 are substantially the same as those of the storage medium 17 and the communication interface 18 of the first embodiment.
  • the master controller 21 may transmit/receive data and/or information with the first to n-th slave controllers 16-1 to 16-n through the communication interface 23.
  • the first to n-th slave controllers 16-1 to 16-n perform substantially the same operation.
  • the first slave control unit 16-1 acquires operation characteristic information from the sensor unit 15-1 that measures the operation characteristics of the first battery rack 11-1 to which it is mounted, and obtains operation characteristic information from the first battery rack 11-1.
  • the operating power limit of (11-1) is determined and transmitted to the master controller 21 side through communication.
  • the second slave control unit 16-2 to the n-th slave control unit 16-n also determine the operating power limits of the second to n-th battery racks 11-2 to 11-n in which they are mounted, respectively, to perform communication. transmitted to the master controller 21 through
  • the method of determining the operating power limit is substantially the same as that of the first embodiment.
  • the first slave control unit 16-1 also determines charging power or discharging power while the first battery rack 11-1 is being charged or discharged, and provides the charging power or discharging power to the master control unit 21 through communication. do.
  • the second slave control unit 16-2 to the n-th slave control unit 16-n also determine the charging power or discharging power of the second to n-th battery racks 11-2 to 11-n to which they are mounted and communicate with each other. It is transmitted to the master control unit 21 through.
  • the method of determining the charging power or the discharging power is substantially the same as that of the first embodiment.
  • the master control unit 21 When the operating power limit is transmitted from the first to n-th slave control units 16-1 to 16-n, the master control unit 21 sums up all the values, and the first to n-th battery racks 11-1 to 11-n ) can determine the overall operating power limit.
  • the master control unit 21 also sums up each value when charging power or discharging power is transmitted from the first to n-th slave control units 16-1 to 16-n, and the first to n-th battery racks 11-1 to 16-n. 11-n) can determine the total charging power or total discharging power.
  • the master control unit 21 also determines that the total charging power or total discharging power is greater than the preset unstable power range of the PCS 13, and the total charging power or total discharging power is less than the total operating power limit of the first threshold value. It is determined whether an ideal condition (first operation interruption condition) is satisfied.
  • the first threshold value may be set to 10% to 30% of the total operating power limit as in the first embodiment, but the present invention is not limited thereto.
  • the master controller 21 transmits an operation stop message to the first to n-th slave controllers 16-1 to 16-n through communication. On the other hand, if the first operation interruption condition is not established, the master controller 21 transmits an operation maintenance message to the first to n-th slave controllers 16-1 to 16-n through communication.
  • the master controller 21 determines that the total charging power or total discharging power is within a preset unstable power range of the PCS 13, and the total charging power or total discharging power is greater than the total operating power limit by the second threshold value ( greater than the first threshold value) or greater than the condition (second operation stop condition) is satisfied.
  • the second threshold value may be set to 30% to 60% of the total operating power limit as in the first embodiment, but the present invention is not limited thereto.
  • the master controller 21 transmits an operation stop message to the first to n-th slave controllers 16-1 to 16-n through communication.
  • the master controller 21 transmits an operation maintenance message to the first to n-th slave controllers 16-1 to 16-n through communication.
  • the first slave control unit 16-1 When the first slave control unit 16-1 receives an operation stop message from the master control unit 21 through communication, it turns off the switch 12-1 installed in the first battery rack 11-1 to which it is mounted. To stop the charging or discharging of the first battery rack (11-1). On the other hand, when the first slave control unit 16-1 receives an operation maintenance message from the master control unit 21 through communication, the switch 12-1 installed in the first battery rack 11-1 to which it is mounted By maintaining the turn-on state continues to charge or discharge the first battery rack (11-1).
  • the second to n-th slave control units 16-2 to 16-n also stop the operation of the battery rack in which they are mounted when receiving an operation stop message through communication, like the first slave control unit 16-1, and vice versa. When an operation maintenance message is received through communication, the operation of the battery rack in which it is installed continues to be maintained.
  • FIG. 3 is a flowchart of a control method of the power storage source management device according to the first embodiment of the present invention.
  • the method disclosed in FIG. 3 is a control method of the power storage source management device 10 according to the first embodiment, and the controller 16 of the first embodiment performs the steps of FIG. 3 unless otherwise specified. Also, the steps of FIG. 3 may be periodically repeated at regular time intervals.
  • step S10 the control unit 16 acquires operation characteristic information of the power storage source 11 from the sensor unit 15 .
  • step S20 the control unit 16 determines an operating power limit of the power storage source 11 using the operating characteristic information.
  • step S30 the control unit 16 determines charging power supplied from the PCS 13 to the power storage source 11 or discharging power supplied from the power storage source 11 to the PCS 13 side.
  • step S40 the control unit 16 determines whether the charging power or discharging power of the power storage source 11 is greater than the preset unstable power range of the PCS 13.
  • step S40 determines that the charging power or discharging power of the power storage source 11 in step S50 is less than the operating power limit corresponding to the state of charge and temperature of the power storage source 11. Determines whether the value is greater than or equal to.
  • step S50 determines whether the control unit 16 is YES or not. If the determination in step S50 is YES, the control unit 16 turns off the switch 12 installed in the power line in step S70 to stop the operation of the power storage source 11. On the other hand, if the determination in step S50 is NO, the control unit 16 maintains the operation of the power storage source 11 by maintaining the turned-on state of the switch 12 installed in the power line in step S80.
  • step S40 determines that the charging power or discharging power of the power storage source 11 is higher than the operating power limit corresponding to the state of charge and temperature of the power storage source 11 in step S60. It is determined whether it is equal to or greater than the second threshold value (greater than the first threshold value).
  • step S60 determines whether the control unit 16 is YES or not. If the determination in step S60 is YES, the control unit 16 turns off the switch 12 installed in the power line in step S90 to stop the operation of the power storage source 11. On the other hand, if the determination in step S60 is NO, the control unit 16 maintains the operation of the power storage source 11 by maintaining the turned-on state of the switch 12 installed in the power line in step S100.
  • the charging power or discharging power of the power storage source 11 belongs to the preset unstable power section of the PCS 13
  • the charge/discharge interruption condition of the power storage source 11 is increased and alleviated, thereby reducing the charge in the second half of the charge.
  • FIG. 4 is a flowchart of a control method of the power storage source management device 20 according to the second embodiment of the present invention.
  • the method disclosed in FIG. 4 is a control method of the power storage source management device 20 according to the second embodiment, and the subject performing the steps of FIG. 4 is the first to nth slave unit controllers 16- 1 to 16-n) or the master control unit 21. Also, the steps of FIG. 4 may be periodically repeated at regular time intervals.
  • step S200 the first slave control unit 16-1 from the sensor unit 15-1 for measuring the operating characteristics of the first battery rack 11-1 to which it is mounted Obtaining operation characteristic information to determine the operation output limit of the first battery rack (11-1) is provided to the master control unit (21).
  • the second to n-th slave control units 16-2 to 16-n also determine the operation output limit of the second to n-th battery racks 11-2 to 11-n like the first slave control unit 16-1. and provided to the master controller 21.
  • step S210 the master control unit 21 sums all the operation output limits transmitted from the first to nth slave control units 16-1 to 16-n to determine the total operation output limit.
  • step S220 the master controller 21 is supplied to the total charging power supplied from the PCS 13 or the PCS 13 while the first to second battery racks 11-1 to 11-n operate. Determine the total discharge power.
  • the first to nth slave control units 16-1 to 16-n determine the charging power or discharging power of the battery rack in which they are installed and communicate with the master control unit ( 21) can be sent. Then, the master control unit 21 may determine the total charging power or total discharging power by adding all the charging power or discharging power of each battery rack. Alternatively, the master controller 21 measures the voltage and current of the power line using a voltage measuring unit (not shown) and a current measuring unit (not shown) installed in the power line, and performs a multiplication operation of the voltage and current. Through this, the total charging power or the total discharging power can be determined. A method of determining the charging power or discharging power of each battery rack is the same as described above.
  • Step S230 proceeds after step S220.
  • step S230 the master control unit 21 determines whether the total charging power or total discharging power is greater than the preset unstable power range of the PCS 13.
  • step S230 determines whether the total charging power or total discharging power is greater than the first threshold value of the total operation output limit.
  • step S240 If the determination in step S240 is YES, the master controller 21 transmits an operation stop message to the first to n-th slave controllers 16-1 to 16-n through communication in step S250. Then, the first to nth slave controllers 16-1 to 16-n turn off the switch of the battery rack to which they are mounted in step S260 to stop the operation of the battery rack.
  • step S240 If the determination in step S240 is NO, the master controller 21 transmits the operation maintenance message to the first to n-th slave controllers 16-1 to 16-n through communication in step S270. Then, the first to nth slave controllers 16-1 to 16-n maintain the turn-on state of the switch of the battery rack to which they are mounted in step S280 to maintain the operation of the battery rack.
  • step S230 determines whether the total charging power or total discharging power is greater than the second threshold value (greater than the first threshold value) than the total operation output limit in step S255. .
  • step S255 If the determination in step S255 is YES, the master controller 21 transmits an operation stop message to the first to n-th slave controllers 16-1 to 16-n through communication in step S290. Then, the first to nth slave controllers 16-1 to 16-n turn off the switch of the battery rack to which they are mounted in step S300 to stop the operation of the battery rack.
  • step S255 the master controller 21 transmits the operation maintenance message to the first to n-th slave controllers 16-1 to 16-n through communication in step S310. Then, the first to nth slave controllers 16-1 to 16-n maintain the turn-on state of the switch of the battery rack to which they are mounted in step S320 to maintain the operation of the battery rack.
  • the first to nth battery racks (11-1 to 11-n) when the total charging power or total discharging power of the PCS (13) belongs to the preset unstable power section of the first to nth battery racks (11-1 ⁇ 11-n) by increasing and mitigating the charging and discharging interruption conditions to prevent the phenomenon in which the operation of the first to nth battery racks (11-1 ⁇ 11-n) is stopped in the second half of charging or discharging.
  • the first to nth battery racks (11-1 to 11-n) are charged to a full charge state and discharged to a full discharge state to increase the capacity of the first to nth battery racks (11-1 to 11-n). You can make the most of it.
  • control unit 16, 16-1 to 16-n, 21 may be a control circuit.
  • the controllers 16, 16-1 to 16-n, and 21 may include processors known in the art, application-specific integrated circuits (ASICs), other chipsets, logic circuits, registers, communication modems, A data processing device or the like may optionally be included.
  • ASICs application-specific integrated circuits
  • the controllers 16, 16-1 to 16-n, and 21 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the processor.
  • the memory may be internal or external to the processor, and may be connected to the processor by various well-known computer components.
  • the memory may be included in the storage media 17 and 17-1 to 17-n of the present invention.
  • the memory generically refers to devices that store information regardless of the type of device, and does not refer to a specific memory device.
  • At least one or more of the various control logics of the controllers 16, 16-1 to 16-n, and 21 are combined, and the combined control logics are written in a computer-readable code system and recorded on a computer-readable recording medium. It can be.
  • the type of the recording medium is not particularly limited as long as it can be accessed by a processor included in a computer.
  • the recording medium includes at least one selected from the group including ROM, RAM, register, CD-ROM, magnetic tape, hard disk, floppy disk, and optical data recording device.
  • the code system may be distributed and stored and executed on computers connected through a network.
  • functional programs, codes and code segments for implementing the combined control logics can be easily inferred by programmers skilled in the art to which the present invention belongs.
  • each component may be selectively integrated with other components or each component may be divided into sub-components for efficient execution of the control logic(s).
  • control logic control logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Protection Of Static Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명은 전력저장원 관리장치 및 그 제어방법을 개시한다. 본 발명에 따른 관리장치에 있어서, 제어부는 센서부로부터 전력저장원의 동작 특성 정보를 취득하여 전력저장원의 동작 전력 리미트를 결정하고, 전력저장원이 동작하는 동안 상기 동작 특성 정보를 이용하여 전력저장원의 충전전력 또는 방전전력을 결정하고, 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고 상기 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키고, 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고 상기 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키도록 구성된다.

Description

전력저장원 관리장치 및 그 제어 방법
본 발명은 전력저장원 관리장치 및 그 제어 방법에 관한 것으로서, 보다상세하게는 전력저장원을 충전 또는 방전시키는 과정에서 충전 또는 방전 후반부에 전력저장원의 충방전이 중단되는 현상을 방지할 수 있는 전력저장원 관리장치 및 그 제어 방법에 관한 것이다.
본 출원은 대한민국에 2021년 11월 02일에 출원된 특허출원 제10-2021-0149215호에 대해 우선권을 주장하며, 우선권 주장의 기초가 된 출원의 내용은 본 명세서의 일부로서 합체될 수 있다.
최근 전세계적으로 자원 고갈과 심각한 기후 변화로 에너지에 대한 관심이 증폭되면서 스마트 그리드와 신재생 에너지 기술이 각광을 받고 있다. 신재생 에너지는 에너지 공급이 일정하지 않다는 단점이 있으므로 이를 보완해 줄 수 있는 기술이 필요하다.
에너지저장시스템(Energy Storage System: ESS)은 신재생 에너지의 단점을 보완하고 스마트 그리드를 보다 효율적으로 구축하기 위해 사용된다.
ESS는 신재생 에너지를 통해 생산한 전력이나 전력 그리드의 유휴 전력을 전력저장원에 저장했다가 전력이 필요한 시기에 저장했던 전력을 전력 계통에 공급하여 전력 사용 효율을 높이는 시스템이다.
ESS는 다수의 배터리를 포함하는 전력저장원, 전력변환시스템(Power Conversion System: PCS), 전력관리 시스템(Energy Management System: EMS) 등을 포함한다.
PCS는 전력저장원에 저장된 전력을 계통으로 출력하기 위하여 전류의 특성을 변환하고, 감시-제어, 독립 운전, 계통 연계 보호 기능 등을 수행한다. EMS는 ESS를 전체적으로 관리하며, 특히 ESS를 보다 효율적으로 운용할 수 있도록 전력저장원의 충전 조건과 방전 조건을 조절하는 역할을 한다.
PCS는 EMS가 설정한 운용 정책에 따라 전력 그리드나 신재생 에너지 발전소로부터 공급되는 전력을 이용하여 전력저장원을 충전시킨다. PCS는 또한 EMS가 설정한 운용 정책에 따라 전력저장원을 방전시켜 전력 계통에 전력을 제공한다.
PCS는 제어 가능한 전력사양을 가진다. 예를 들어, PCS의 전력사양이 5000kW인 경우, PCS는 최대 5000kW의 충전 전력을 전력저장원에 공급하거나, 최대 5000kw의 방전 전력을 전력저장원으로부터 제공 받을 수 있다.
PCS는 전력저장원의 충전전력과 방전전력이 제어 가능한 전력사양을 초과하지 않도록 전력 선로의 전압과 전류를 모니터링 한다. PCS에 포함된 전압측정센서와 전류측정센서는 측정 오차를 가진다. 만약, 전압측정센서와 전류측정센서가 1% 이내의 오차를 가진다면, 충전전력과 방전전력이 낮은 경우 PCS의 전력제어의 정확도가 저하될 수 있다. 상기의 예에서, 1%의 오차에 대응되는 전력은 50kW이다. 따라서, 충전전력과 방전전력이 50kW 이하인 경우 PCS의 전력제어 정확도가 떨어질 수 있다. 이하, PCS의 전력제어 정확도가 떨어지는 전력사양 구간을 불안정 전력 구간(Unstable Power Range)이라고 정의한다.
전력저장원은 관리장치를 가진다. 관리장치는 전력저장원의 충전상태와 온도에 따라 전력저장원의 허용 가능한 동작 전력 리미트를 결정한다. 동작 전력 리미트는 전력저장원이 수용할 수 있는 충전전력 또는 방전전력의 최대치이다. 만약, 전력저장원에 입력되는 충전전력 또는 전력저장원으로부터 출력되는 방전전력이 동작 전력 리미트를 소정 % 초과할 경우 전력저장원 관리장치는 안전성을 고려하여 전력저장원의 충방전을 중단시킨다. 예를 들어 동작 전력 리미트를 10~20% 초과하는 것이 충방전 중단 조건으로 설정된 경우 관리장치는 전력저장원의 충전전력 또는 방전전력이 동작 전력 리미트를 10~20% 초과하면 전력저장원의 충방전을 즉각 중단시킨다.
PCS의 전력제어 정확도가 떨어지는 전력구간은 전력저장원의 충전상태가 만충전에 가까워지거나 만방전에 가까워질 때이다. 만충전 또는 만방전에 가까워질수록 충전전력 또는 방전전력이 낮아지다가 결국에는 PCS의 불안정 전력 구간 이하까지 낮아지기 때문이다.
앞서 언급 했듯이, 불안정 전력 구간에서는 PCS의 전력제어 정확도가 떨어진다. 즉, 전력저장원 관리장치가 요구하는 수준으로 충전전력과 방전전력을 정확하게 제어하는 것이 어려워진다. 따라서, 불안정 전력 구간에서는 충방전 중단 조건에 해당하는 이벤트가 자주 발생하게 된다. 즉, 전력저장원에 공급되는 충전전력 또는 전력저장원으로부터 출력되는 방전전력이 동작 전력 리미트를 소정 % 초과하는 경우가 자주 발생한다. 이러한 이유로, 전력저장원이 만충전되지 못하거나 만방전되지 못하고 갑자기 동작을 멈추는 현상이 발생한다.
본 발명은 위와 같은 종래 기술의 배경하에 창안된 것으로서, 전력저장원의 충전전력 또는 방전전력이 PSC의 불안정 전력 구간 이하로 낮아지더라도 전력저장원의 동작이 갑자기 멈추는 현상을 개선할 수 있도록 제어 로직이 개선된 전력저장원 관리장치 및 그 제어 방법을 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 일 측면에 따른 전력저장원관리장치는, 전력저장원의 동작 특성을 측정하는 센서부; 및 상기 센서부와 동작 가능하게 결합된 제어부를 포함한다.
바람직하게, 상기 제어부는, (i) 상기 센서부로부터 전력저장원의 동작 특성 정보를 취득하여 전력저장원의 동작 전력 리미트를 결정하고, (ii) 전력저장원이 동작하는 동안 상기 동작 특성 정보를 이용하여 PCS(Power Conversion System)로부터 공급되는 충전전력 또는 PCS 측으로 제공되는 방전전력을 결정하고, (iii) 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키고, (iv) 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키도록 구성될 수 있다.
일 측면에 따르면, 상기 제어부는, 상기 센서부로부터 전력저장원의 충/방전 전류, 전압 및 온도를 포함하는 동작 특성 정보를 입력 받고, 상기 충/방전 전류를 적산하여 상기 전력저장원의 충전상태를 결정하고, 충전상태 및 온도와 동작 전력 리미트 사이의 상관 관계를 정의한 룩업 정보를 참조하여 상기 결정된 충전상태와 상기 입력된 온도에 대응되는 전력저장원의 동작 전력 리미트를 결정하도록 구성될 수 있다.
다른 측면에 따르면, 상기 제어부는, 상기 PCS의 미리 설정된 불안정 전력 구간에 관한 정보를 상기 PCS로부터 제공 받을 수 있다.
바람직하게, 상기 제1임계값은 상기 동작 전력 리미트의 10% 내지 30%일 수 있다. 또한, 상기 제2임계값은 상기 동작 전력 리미트의 30% 내지 60%임을 특징으로 하는 전력저장원 관리장치.
선택적으로, 상기 제2임계값은 상기 전력저장원의 충전전력 또는 방전전력이 낮아질수록 증가할 수 있다.
또 다른 측면에 따르면, 상기 전력저장원은 제1 내지 제n배터리 랙을 포함할 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 다른 측면에 따른 전력저장원 관리장치는, 제1 내지 제n배터리 랙의 각각에 장착된 제1 내지 제n슬레이브 제어부; 및 상기 제1 내지 제n슬레이브 제어부와 통신이 가능하게 결합된 마스터 제어부를 포함할 수 있다.
바람직하게, 상기 제1 내지 제n슬레이브 제어부 각각은 자신이 장착된 배터리 랙의 동작 특성 정보를 센서부로부터 취득하고 상기 동작 특성 정보를 이용하여 배터리 랙의 동작 전력 리미트와 충전전력 또는 방전전력을 결정하여 상기 마스터 제어부로 제공하도록 구성될 수 있다.
바람직하게, 상기 마스터 제어부는, 상기 제1 내지 제n슬레이브 제어부로부터 전송된 동작 전력 리미트와 충전전력 또는 방전전력을 합산하여 전체 동작 전력 리미트와 전체 충전전력 또는 전체 방전전력을 결정하고, 상기 전체 충전전력 또는 상기 전체 방전전력이 PCS의 미리 설정된 불안정 전력 구간보다 크고 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 성립되면 동작 중단 메시지를 제1 내지 제n슬레이브 제어부로 제공하도록 구성되고, 상기 전체 충전전력 또는 상기 전체 방전전력이 PCS의 미리 설정된 불안정 전력 구간 이내이고 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 성립되면 동작 중단 메시지를 제1 내지 제n슬레이브 제어부로 제공하도록 구성될 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 또 다른 측면에 따른 전력저장원 관리장치의 제어방법은, 전력저장원의 동작 특성을 측정하는 센서부로부터 전력저장원의 동작 특성 정보를 취득하는 단계; 상기 동작 특성 정보를 이용하여 상기 전력저장원의 동작 전력 리미트를 결정하는 단계; 전력저장원이 동작하는 동안 상기 동작 특성 정보를 이용하여 PCS(Power Conversion System)로부터 공급되는 충전전력 또는 PCS 측으로 제공되는 방전전력을 결정하는 단계; 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키는 단계; 및 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키는 단계;를 포함할 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 또 다른 측면에 따른 전력저장원 관리장치의 제어 방법은, 제1 내지 제n배터리 랙에 각각에 장착된 제1 내지 제n슬레이브 제어부와 상기 제1 내지 제n슬레이브 제어부와 통신이 가능하게 결합된 마스터 제어부를 포함하는 전력저장원 관리장치의 제어 방법으로서, 상기 제1 내지 제n슬레이브 제어부 각각이 자신이 장착된 배터리 랙의 동작 특성을 측정하는 센서부로부터 동작 특성 정보를 취득하여 배터리 랙의 동작 전력 리미트와 충전전력 또는 방전전력을 결정하여 상기 마스터 제어부로 제공하는 단계; 상기 마스터 제어부가 제1 내지 제n슬레이브 제어부로부터 전송된 동작 전력 리미트와 충전전력 또는 방전전력을 합산하여 전체 동작 전력 리미트와 전체 충전전력 또는 전체 방전전력을 결정하는 단계; 상기 마스터 제어부가 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고, 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 제1 내지 제n슬레이브 제어부 측으로 동작 중단 메시지를 제공하는 단계; 상기 마스터 제어부가 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고, 상기 전체의 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 제1 내지 제n슬레이브 제어부 측으로 동작 중단 메시지를 제공하는 단계; 및 상기 제1 내지 제n슬레이브 제어부가 상기 동작 중단 메시지의 수신에 응하여 자신이 장착된 배터리 랙의 동작을 중단시키는 단계;를 포함할 수 있다.
본 발명에 의하면, 전력저장원의 충전전력 또는 방전전력이 PCS의 불안정 전력 구간 이하로 낮아질 경우 충방전 중단 조건이 완화된다. 따라서, 충전 후반부 또는 방전 후반부에 전력저장원의 동작이 중단되는 현상을 방지하여 전력저장원을 만충전 상태까지 충전하고 만방전 상태까지 방전할 수 있다. 이를 통해 전력저장원의 용량을 최대한 활용할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 제1실시예에 따른 전력저장원 관리장치에 관한 개략적인 구성도이다.
도 2는 본 발명의 제2실시예에 따른 전력저장원 관리장치에 관한 개략적인 구성도이다.
도 3은 본 발명의 제1실시예에 따른 전력저장원 관리장치의 제어방법에 관한 순서도이다.
도 4는 본 발명의 제2실시예에 따른 전력저장원 관리장치의 제어방법에 관한 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 출원을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 발명시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 제1실시예에 따른 전력저장원 관리장치(10)에 관한 개략적인 구성도이다.
도 1을 참조하면, 제1실시예에 따른 전력저장원 관리장치(10)는 전력저장원(11)에 결합된다. 전력저장원(11)은 스위치(12)를 통해 PCS(13)에 연결된다. PCS(13)는 ESS에 포함되는 것으로서, 전력저장원(11)에 저장된 전력을 계통으로 출력하거나 계통의 전력을 전력저장원(11)으로 공급하기 위하여 전류의 특성을 변환하고, 감시-제어, 독립 운전, 계통 연계 보호 기능 등을 수행한다.
전력저장원(11)은 복수의 배터리(14)를 포함한다. 복수의 배터리(14)는 직렬 및/또는 병렬로 연결될 수 있다. 일 예에서, 복수의 배터리는 배터리 랙(Rack)에 탑재될 수 있다. 배터리 랙은 ESS에 널리 사용되는 것으로서, 복수의 배터리(14)가 적재될 수 있는 선반 구조물을 포함한다. 바람직하게, 배터리 랙은 ESS에 포함된 구성요소일 수 있다.
복수의 배터리(14)는 리튬 이온 전지일 수 있는데, 본 발명이 배터리(14)의 종류에 의해 한정되는 것은 아니다.
스위치(12)는 PCS(13)와 전력저장원(11)을 연결하거나 연결을 해제하는 부품이다. 스위치(12)는 릴레이 스위치 또는 전력 반도체 스위치일 수 있다. 하지만, 본 발명이 스위치(12)의 종류에 의해 한정되는 것은 아니다.
전력저장원 관리장치(10)는 전력저장원(11)의 동작 특성을 측정하는 센서부(15)를 포함한다. 바람직하게, 센서부(15)는 전압 측정부(15a), 전류 측정부(15b) 및 온도 측정부(15c)를 포함한다.
전압 측정부(15a)는 복수의 배터리 셀(14)이 충전 또는 방전되는 동안 각 배터리 셀의 전압을 일정한 시간 간격을 두고 측정하고, 전압 측정값을 제어부(16)로 출력한다.
전압 측정부(15a)는 당업계에 알려진 전압측정회로일 수 있다. 전압측정회로는 널리 알려져 있으므로 자세한 설명은 생략한다.
전류 측정부(15b)는 복수의 배터리 셀(14)을 통해 흐르는 충/방전 전류를 일정한 시간 간격을 두고 측정하고, 전류 측정값을 제어부(16)로 출력한다.
전류 측정부(15b)는 당업계에 알려진 전류측정회로일 수 있다. 전류 측정부(15b)는 전류의 크기에 대응되는 전압값을 출력하는 홀센서나 센스 저항일 수 있다. 전압값은 오옴의 법칙에 의해 전류값으로 변환이 가능하다.
온도 측정부(15c)는 복수의 배터리 셀(14)이 충전 또는 방전되는 동안 각 배터리 셀(14)의 온도를 일정한 시간 간격을 두고 측정하고 온도 측정값을 제어부(16)로 출력한다.
온도 측정부(15c)는 당업계에 알려진 온도측정회로일 수 있다. 온도 측정부(15c)는 온도에 대응되는 전압값을 출력하는 열전대 또는 온도측정소자일 수 있다. 전압값은 전압-온도 변환 룩업 테이블(함수)을 이용하여 온도값으로 변환이 가능하다.
전력저장원 관리장치(10)는 제어부(16)을 포함한다. 제어부(16)는 센서부(15)로부터 전력저장원(11)의 동작 특성 정보를 취득하여 전력저장원(11)의 동작 전력 리미트를 결정한다. 동작 특성 정보는 전력저장원(11)에 포함된 복수의 배터리 셀(14)에 대한 전압, 충/방전 전류 및 온도에 관한 것이다. 또한, 동작 전력 리미트는 전력저장원(11)에 인가될 수 있는 충전전력의 최대치 또는 전력저장원(11)으로부터 계통에 출력될 수 있는 방전전력의 최대치이다.
제어부(16)는 복수의 배터리 셀(14) 각각에 대해 충/방전 전류를 적산하여 각 배터리 셀의 충전상태를 결정하고, 배터리 셀들의 충전상태를 합산하여 전력저장원(11)의 충전상태(State Of Charge: SOC)를 결정할 수 있다.
충/방전 전류의 적산은 본 발명이 속한 기술분야에 알려진 쿠울롱 카운팅법을 이용한다. 충/방전 전류의 적산 시 충전상태의 초기값은 복수의 배터리 셀(14)이 무부하 상태를 소정 시간 동안 유지한 이후에 측정한 안정화 전압을 이용하여 결정할 수 있다. 즉, 안정화 전압과 충전상태 간의 상관 관계를 미리 정의한 룩업 정보를 참조하여 안정화 전압에 대응되는 충전상태를 룩업하고 룩업된 충전상태를 충전상태의 초기값으로 설정할 수 있다.
제어부(16)는 다른 예에서 복수의 배터리 셀(14) 각각에 대한 전압, 충/방전 전류 및 온도에 관한 정보를 확장칼만필터에 입력하여 각 배터리 셀의 충전상태를 결정하고, 배터리 셀들의 충전상태를 합산하여 전력저장원(11)의 충전상태를 결정할 수 있다. 배터리 셀의 전압, 충/방전 전류 및 온도로부터 충전상태를 결정할 수 있는 확장칼만필터는 당업계에 공지되어 있다.
확장칼만필터를 이용한 충전 상태의 추정은, 일 예로서 그레고리 엘 플레트(Gregory L. Plett)씨의 논문 “Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Parts 1, 2 and 3”(Journal of Power Source 134, 2004, 252-261)를 참조 가능하고, 본 명세서의 일부로서 위 논문이 합체될 수 있다.
바람직하게, 제어부(16)는 전력저장원(11)의 충전상태 및 온도와 동작 전력 리미트 간의 상관 관계를 정의한 룩업 정보를 참조하여 전력저장원(11)의 현재 충전상태와 현재 온도에 대응되는 동작 전력 리미트를 결정할 수 있다.
전력저장원(11)은 HVAC(Heating, Ventilation, & Air conditioning) 장치에 의해 온도가 균일하게 유지된다. 따라서, 전력저장원(11)의 온도는 배터리 셀들의 평균 온도일 수 있다. 대안적으로, 전력저장원(11)의 온도는 배터리 셀들의 최고 온도일 수 있다.
동작 전력 리미트는 룩업 정보를 참조하는 방식 이외에 다른 공지의 방식으로도 결정할 수 있으므로 본 발명이 동작 전력 리미트를 결정하는 구체적인 방식에 의해 한정되는 것은 아니다.
제어부(16)는 또한 전력저장원(11)이 충전 또는 방전되는 동안 PCS(13)로부터 전력저장원(11)으로 공급되는 충전전력 또는 전력저장원(11)으로부터 PCS(13) 측으로 제공되는 방전전력을 결정할 수 있다.
이를 위해, 제어부(16)는 복수의 배터리 셀(11)의 총 전압과 충/방전 전류를 곱셈 연산하여 충전전력 또는 방전전력을 결정할 수 있다. 총 전압은 각 배터리 셀의 전압을 합산하는 것에 의해 결정할 수 있다. 각 배터리 셀의 전압과 충/방전 전류는 센서부(15)를 통해 얻은 동작 특성 정보를 참조하여 얻을 수 있다.
제어부(16)는 PCS(13)와 전력저장원(11)이 연결된 전력 라인의 전류와 전압을 직접적으로 측정하여 PCS(13)로부터 전력저장원(11)으로 공급되는 충전전력 또는 전력저장원(11)으로부터 PCS(13) 측으로 제공되는 방전전력을 결정할 수 있다. 이 경우, 전력저장원 관리장치(11)는 전력 라인의 전류와 전압을 모니터하기 위한 전류 측정부(미도시)와 전압 측정부(미도시)를 별도로 포함할 수 있다.
제어부(16)는 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간에 속하는지 여부, 그리고 충전전력 또는 방전전력이 동작 전력 리미트보다 임계치 이상 큰지 여부를 판단하여 전력저장원(11)의 동작을 유지하거나 중단할 수 있다.
일 측면에 따르면, 제어부(16)는 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간보다 크고, 충전전력 또는 방전전력이 전력저장원(11)의 동작 전력 리미트보다 제1임계값 이상인 조건(제1동작 중단조건)이 충족되는지 판단할 수 있다. 만약, 제1동작 중단조건이 충족되면, 제어부(16)는 스위치(12)를 턴오프시켜 전력저장원(11)의 충전 또는 방전을 중단할 수 있다. 반대로, 제1동작 중단조건이 충족되지 않으면, 제어부(16)는 스위치(12)의 턴온 상태를 유지하여 전력저장원(11)의 충전 또는 방전을 유지할 수 있다.
다른 측면에 따르면, 제어부(16)는 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간 이내이고, 충전전력 또는 방전전력이 전력저장원(11)의 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 조건(제2동작 중단조건)이 충족되는지 판단할 수 있다. 만약, 제2동작 중단조건이 충족되면, 제어부(16)는 스위치(12)를 턴오프시켜 전력저장원(11)의 충전 또는 방전을 중단할 수 있다. 반대로, 제2동작 중단조건이 충족되지 않으면, 제어부(16)는 스위치(12)의 턴온 상태를 유지하여 전력저장원(11)의 충전 또는 방전을 유지할 수 있다.
제1임계값은 동작 전력 리미트를 기준으로 10% 내지 30%로 설정할 수 있다. 이 경우, 제어부(16)는 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간보다 크고, 충전전력 또는 방전전력이 전력저장원(11)의 동작 전력 리미트보다 10% 내지 30% 이상인 조건이 충족될 때 전력저장원(11)의 동작을 중단시킬 수 있다.
제2임계값은 동작 전력 리미트를 기준으로 30% 내지 60%로 설정할 수 있다. 이 경우, 제어부(16)는 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간 이내이고, 충전전력 또는 방전전력이 전력저장원(11)의 동작 전력 리미트보다 30% 내지 60% 이상인 조건이 충족될 때 전력저장원(11)의 동작을 중단시킬 수 있다.
본 발명에 의하면, 제2동작 중단조건은 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간 이내일 때 적용된다. 불안정 전력 구간은 PCS의 전압 및 전류 측정오차에서 비롯된 것이다. 일 예에서, 전압 및 전류 측정오차가 1%라면, 불안정 전력 구간은 PCS의 출력 사양*측정오차에 해당하는 전력 구간이다. 만약, PCS의 출력 사양이 5000kW라면, 불안정 전력 구간은 0 내지 50kW 사이의 구간이다.
전력저장원(11)의 충전전력 또는 방전전력이 불안정 전력 구간으로 진입하는 시점은 전력저장원(11)이 만충전 상태 또는 만방전 상태에 근접한 때이다. 이 때는 충전전력 또는 방전전력이 매우 낮아지기 때문에 제2임계값을 제1임계값보다 증가시키더라도 안전성에 대한 이슈는 발행하지 않는다. 전력저장원(11)이 복수의 배터리 셀(14)을 포함하고 있으므로 제2임계값이 제1임계값보다 크더라도 각 배터리 셀의 관점에서는 동작 전력 리미트를 초과하는 정도가 우려할만한 수준은 아니다.
위와 같이, PCS(13)의 충전전력 또는 방전전력이 불안정 전력 구간으로 진입하였을 때 전력저장원(11)의 충방전 중단 조건을 제1임계값에서 제2임계값으로 증가시키면, 배터리 셀의 안전성 이슈를 일으키지 않으면서 충전후반부 또는 방전후반부에 전력저장원(11)의 동작이 갑자기 중단되는 문제를 해결할 수 있고, 전력저장원(11)을 만충전 상태부터 만방전 상태까지 활용할 수 있다. 이를 통해, 에너지 사용 효율을 개선할 수 있다.
한편, 제2임계값은 전력저장원(11)의 충전전력 또는 방전전력의 수준에 따라 적응적으로 변경할 수 있다. 일 예에서, 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간에 속하고 그 값이 작을수록 제2임계값을 단계적으로 더 증가시킬 수 있다. 충전전력 또는 방전전력이 낮아질수록 배터리 셀의 안전성 이슈가 일어날 가능성이 낮기 때문이다.
전력저장원 관리장치(10)는 저장매체(17)와 통신 인터페이스(18)를 더 포함할 수 있다.
저장매체(17)는 데이터 및/또는 정보를 기록하고 소거할 수 있는 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 저장매체(17)는 RAM, ROM, 레지스터, 플래쉬 메모리, 하드디스크, 또는 자기기록 매체일 수 있다.
저장매체(17)는 제어부(16)에 의해 접근이 가능하도록 예컨대 데이터 버스 등을 통해 제어부(16)와 전기적으로 연결될 수 있다.
저장매체(17)는 제어부(16)가 수행하는 각종 제어 로직을 포함하는 프로그램, 및/또는 제어 로직이 실행될 때 발생되는 데이터, 및/또는 미리 설정된 데이터나 룩업 정보/테이블 등을 저장 및/또는 갱신 및/또는 소거 및/또는 전송한다.
제어부(16)는 통신 인터페이스(18)를 통해 PCS(13)와 정보 및/또는 데이터를 송수신한다. 바람직하게, 제어부(16)는 통신 인터페이스(18)를 통해 PCS(13)의 불안정 전력 구간에 관한 정보를 수신하여 저장매체(17)에 기록할 수 있다. 저장매체(17)에 저장된 불안정 전력 구간에 관한 정보는 제1동작 중단조건과 제2동작 중단조건의 충족 여부를 결정할 때 참조될 수 있다.
제어부(16)는 또한 통신 인터페이스(18)를 통해 PCS(13) 측으로 동작 전력 리미트를 전송할 수 있다. 그러면, PCS(13)는 동작 전력 리미트를 초과하지 않도록 충전전력을 전력저장원(11)에 공급한다. 이 때, PCS(13)는 전력 그리드의 교류 전력을 충전 전력에 상응하는 직류 전력으로 변환하여 전력저장원(11)에 제공한다. 또한, PCS(13)는 동작 전력 리미트를 초과하지 않는 범위 내에서 전력저장원(11)으로부터 직류 형태의 방전 전력을 제공 받고 직류를 교류로 변환하여 전력 그리드에 공급할 수 있다.
통신 인터페이스(18)는 근거리 또는 원거리 통신을 지원하는 공지의 유선 또는 무선 통신 인터페이스일 수 있다. 일 예로, 통신 인터페이스(18)는 CAN 통신 인터페이스, 데이지체인(daisy-chain) 인터페이스, 이더넷(Ethernet) 통신 인터페이스, WI-FI; 블루투스(Blue tooth); 또는 지그비(Zigbee)와 같은 근거리 무선 통신 인터페이스일 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
도 2는 본 발명의 제2실시예에 따른 전력저장원 관리장치(20)에 관한 개략적인 구성도이다.
도 2를 참조하면, 제2실시예 있어서 전력저장원(11)은 제1 내지 제n배터리 랙(11-1~11-n)을 포함한다. 각 배터리 랙은 제1실시예의 전력저장원(11)과 마찬가지로 직렬 및/또는 병렬 연결된 복수의 배터리 셀을 포함한다.
전력저장원 관리장치(20)는 제1 내지 제n배터리 랙(11-1~11-n)에 각각 결합되어 있는 제1 내지 제n슬레이브 제어부(16-1~16-n)를 포함한다. 제1 내지 제n슬레이브 제어부(16-1~16-n)는 제1 내지 제n배터리 랙(11-1~11-n)에 각각 결합된 제1 내지 제n센서부(15-1~15-n)을 포함한다. 제1 내지 제n센서부(15-1~15-n) 각각은 제1실시예와 마찬가지로 전압 측정부(15a), 전류 측정부(15b) 및 온도 측정부(15c)를 포함한다.
전력저장원 관리장치(20)는 또한 제1 내지 제n슬레이브 제어부(16-1~16-n)와 각각 결합된 제1 내지 제n저장매체(17-1~17-n)를 포함한다. 또한, 전력저장원 관리장치(20)는 제1 내지 제n슬레이브 제어부(16-1~16-n)와 각각 결합된 제1 내지 제n통신 인터페이스(18-1~18-n)를 포함한다. 제1 내지 제n저장매체(17-1~17-n)와 제1 내지 제n통신 인터페이스(18-1~18-n)에 관한 구성은 제1실시예와 실질적으로 동일하다.
전력저장원 관리장치(20)는 또한 마스터 제어부(21)를 포함한다. 마스터 제어부(21)는 저장매체(22) 및 통신 인터페이스(23)와 동작 가능하게 결합될 수 있다. 저장매체(22) 및 통신 인터페이스(23)에 관한 구성은 제1실시예의 저장매체(17) 및 통신 인터페이스(18)와 실질적으로 동일하다.
마스터 제어부(21)는 통신 인터페이스(23)를 통해서 제1 내지 제n슬레이브 제어부(16-1~16-n)와 데이터 및/또는 정보를 송수신할 수 있다.
이하의 설명에서, 마스터 제어부(21)와 제1 내지 제n슬레이브 제어부(16-1~16-n)가 데이터 및/또는 정보를 송수신할 경우 통신 인터페이스들(16-1~16-n, 23)이 사용될 것임은 자명하다. 따라서 제어부들 상호간의 데이터 및/또는 정보의 송수신을 설명할 때 통신 인터페이스들에 대한 언급은 생략하기로 한다.
바람직하게, 제1 내지 제n슬레이브 제어부(16-1 ~ 16-n)는 실질적으로 동일한 동작을 수행한다.
구체적으로, 제1슬레이브 제어부(16-1)는 자신이 장착된 제1배터리 랙(11-1)의 동작 특성을 측정하는 센서부(15-1)로부터 동작 특성 정보를 취득하여 제1배터리 랙(11-1)의 동작 전력 리미트를 결정하여 통신을 통해 마스터 제어부(21) 측으로 전송한다. 제2슬레이브 제어부(16-2) 내지 제n슬레이브 제어부(16-n)도 자신이 장착된 제2 내지 제n배터리 랙(11-2~11-n)의 동작 전력 리미트를 각각 결정하여 통신을 통해 마스터 제어부(21)로 전송한다. 동작 전력 리미트의 결정 방법은 제1실시예와 실질적으로 동일하다.
제1슬레이브 제어부(16-1)는 또한 제1배터리 랙(11-1)이 충전 또는 방전되는 동안 충전전력 또는 방전전력을 결정하여 통신을 통해 충전전력 또는 방전전력을 마스터 제어부(21)로 제공한다. 제2슬레이브 제어부(16-2) 내지 제n슬레이브 제어부(16-n)도 자신이 장착된 제2 내지 제n배터리 랙(11-2~11-n)의 충전전력 또는 방전전력을 결정하여 통신을 통해 마스터 제어부(21)로 전송한다. 충전전력 또는 방전전력의 결정 방법은 제1실시예와 실질적으로 동일하다.
마스터 제어부(21)는 제1 내지 제n슬레이브 제어부(16-1~16-n)로부터 동작 전력 리미트가 전송되면 각 값을 모두 합산하여 제1 내지 제n배터리 랙(11-1~11-n)의 전체 동작 전력 리미트를 결정할 수 있다.
마스터 제어부(21)는 또한 제1 내지 제n슬레이브 제어부(16-1~16-n)로부터 충전전력 또는 방전전력이 전송되면 각 값을 모두 합산하여 제1 내지 제n배터리 랙(11-1~11-n)의 전체 충전전력 또는 전체 방전전력을 결정할 수 있다.
일 측면에 따르면, 마스터 제어부(21)는 또한 전체 충전전력 또는 전체 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간보다 크고, 전체 충전전력 또는 전체 방전전력이 전체 동작 전력 리미트보다 제1임계값 이상인 조건(제1동작 중단조건)이 충족되는지 여부를 판단한다. 바람직하게, 제1임계값은 제1실시예와 마찬가지로 전체 동작 전력 리미트의 10% 내지 30%로 설정될 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
만약, 제1동작 중단조건이 성립되면, 마스터 제어부(21)는 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 동작 중단 메시지를 전송한다. 반면, 제1동작 중단조건이 성립되지 않으면, 마스터 제어부(21)는 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 동작 유지 메시지를 전송한다.
다른 측면에 따르면, 마스터 제어부(21)는 전체 충전전력 또는 전체 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간 이내이고, 전체 충전전력 또는 전체 방전전력이 전체 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 조건(제2동작 중단조건)이 충족되는지 여부를 판단한다. 바람직하게, 제2임계값은 제1실시예와 마찬가지로 전체 동작 전력 리미트의 30% 내지 60%로 설정될 수 있는데, 본 발명이 이에 한정되는 것은 아니다.
만약, 제2동작 중단조건이 성립되면, 마스터 제어부(21)는 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 동작 중단 메시지를 전송한다. 반면, 제2동작 중단조건이 성립되지 않으면, 마스터 제어부(21)는 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 동작 유지 메시지를 전송한다.
제1슬레이브 제어부(16-1)은 통신을 통해 마스터 제어부(21)로부터 동작 중단 메시지를 수신하면, 자신이 장착된 제1배터리 랙(11-1)에 설치된 스위치(12-1)를 턴오프시켜 제1배터리 랙(11-1)의 충전 또는 방전을 중단시킨다. 반면, 제1슬레이브 제어부(16-1)가 통신을 통해 마스터 제어부(21)로부터 동작 유지 메시지를 수신하면, 자신이 장착된 제1배터리 랙(11-1)에 설치된 스위치(12-1)의 턴온 상태를 유지시켜 제1배터리 랙(11-1)의 충전 또는 방전을 계속해서 유지한다.
제2 내지 제n슬레이브 제어부(16-2~16-n)도 제1슬레이브 제어부(16-1)와마찬가지로 통신을 통해 동작 중단 메시지를 수신하면 자신이 장착된 배터리 랙의 동작을 중단시키며, 반대로 통신을 통해 동작 유지 메시지를 수신할 경우 자신이 장착된 배터리 랙의 동작을 계속해서 유지시킨다.
도 3은 본 발명의 제1실시예에 따른 전력저장원 관리장치의 제어 방법에 관한 순서도이다.
도 3에 개시된 방법은 제1실시예에 따른 전력저장원 관리장치(10)의 제어방법이며, 특별한 언급이 없는 한 도 3의 단계들에 대한 수행주체는 제1실시예의 제어부(16)이다. 또한, 도 3의 단계들은 일정한 시간 간격으로 주기적으로 반복될 수 있다.
도 1 및 도 3을 참조하면, 단계 S10에서, 제어부(16)는 센서부(15)로부터 전력저장원(11)의 동작 특성 정보를 취득한다.
이어서, 단계 S20에서, 제어부(16)는 동작 특성 정보를 이용하여 전력저장원(11)의 동작 전력 리미트를 결정한다.
이어서, 단계 S30에서, 제어부(16)는 PCS(13)로부터 전력저장원(11)으로 공급되는 충전전력 또는 전력저장원(11)으로부터 PCS(13) 측으로 공급되는 방전전력을 결정한다.
이어서, 단계 S40에서, 제어부(16)는 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간보다 큰 지 여부를 판단한다.
단계 S40의 판단이 YES이면, 제어부(16)는 단계 S50에서 전력저장원(11)의 충전전력 또는 방전전력이 전력저장원(11)의 충전상태 및 온도에 대응되는 동작 전력 리미트보다 제1임계값 이상인지 여부를 결정한다.
만약, 단계 S50의 판단이 YES이면, 제어부(16)는 단계 S70에서 전력 라인에 설치된 스위치(12)를 턴오프시켜 전력저장원(11)의 동작을 중단시킨다. 반면, 단계 S50의 판단이 NO이면, 제어부(16)는 단계 S80에서 전력 라인에 설치된 스위치(12)의 턴온 상태를 유지시켜 전력저장원(11)의 동작을 유지시킨다.
한편, 단계 S40의 판단이 NO인 경우, 제어부(16)는 단계 S60에서 전력저장원(11)의 충전전력 또는 방전전력이 전력저장원(11)의 충전상태 및 온도에 대응되는 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인지 여부를 결정한다.
만약, 단계 S60의 판단이 YES이면, 제어부(16)는 단계 S90에서 전력 라인에 설치된 스위치(12)를 턴오프시켜 전력저장원(11)의 동작을 중단시킨다. 반면, 단계 S60의 판단이 NO이면, 제어부(16)는 단계 S100에서 전력 라인에 설치된 스위치(12)의 턴온 상태를 유지시켜 전력저장원(11)의 동작을 유지시킨다.
본 발명에 의하면, 전력저장원(11)의 충전전력 또는 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간에 속할 경우 전력저장원(11)의 충/방전 중단 조건을 증가시켜 완화시킴으로써 충전 후반부 또는 방전 후반부에서 전력저장원(11)의 동작이 중단되는 현상을 방지할 수 있다. 이로써, 전력저장원(11)을 만충전 상태까지 충전하고 만방전 상태까지 방전하여 전력저장원(11)의 용량을 최대한 활용할 수 있다.
도 4는 본 발명의 제2실시예에 따른 전력저장원 관리장치(20)의 제어 방법에 관한 순서도이다.
도 4에 개시된 방법은 제2실시예에 따른 전력저장원 관리장치(20)의 제어방법이며, 도 4의 단계들에 대한 수행주체는 제2실시예의 제1 내지 제n슬레이부 제어부(16-1~16-n) 또는 마스터 제어부(21)이다. 또한, 도 4의 단계들은 일정한 시간 간격으로 주기적으로 반복될 수 있다.
도 2 및 도 4를 참조하면, 단계 S200에서, 제1슬레이브 제어부(16-1)는 자신이 장착된 제1배터리 랙(11-1)의 동작 특성을 측정하는 센서부(15-1)로부터 동작 특성 정보를 취득하여 제1배터리 랙(11-1)의 동작 출력 리미트를 결정하여 마스터 제어부(21)로 제공한다. 제2 내지 제n슬레이브 제어부(16-2~16-n)도 제1슬레이브 제어부(16-1)과 마찬가지로 제2 내지 제n배터리 랙(11-2~11-n)의 동작 출력 리미트를 결정하여 마스터 제어부(21)로 제공한다.
이어서, 단계 S210에서, 마스터 제어부(21)는 제1 내지 제n슬레이브 제어부(16-1~16-n)로부터 전송된 동작 출력 리미트를 모두 합산하여 전체 동작 출력 리미트를 결정한다.
이어서, 단계 S220에서, 마스터 제어부(21)는 제1 내지 제2배터리 랙(11-1~11-n)이 동작하는 동안 PCS(13)로부터 공급되는 전체 충전전력 또는 PCS(13)측으로 공급되는 전체 방전전력을 결정한다.
전체 충전전력 또는 전체 방전전력의 결정을 위해, 제1 내지 제n슬레이브 제어부(16-1~16-n)는 자신이 장착된 배터리 랙의 충전전력 또는 방전전력을 결정하여 통신을 통해 마스터 제어부(21)로 전송할 수 있다. 그러면, 마스터 제어부(21)는 각 배터리 랙의 충전전력 또는 방전전력을 모두 합산하여 전체 충전전력 또는 전체 방전전력을 결정할 수 있다. 대안적으로, 마스터 제어부(21)는 전력 라인에 설치된 전압 측정부(미도시)와 전류 측정부(미도시)를 이용하여 전력 라인의 전압과 전류를 각각 측정하고, 전압과 전류의 곱셈 연산을 통해 전체 충전전력 또는 전체 방전전력을 결정할 수 있다. 각 배터리 랙의 충전전력 또는 방전전력을 결정하는 방법은 이미 설명한 바와 동일하다.
단계 S220 이후에 단계 S230이 진행된다.
단계 S230에서, 마스터 제어부(21)는 전체 충전전력 또는 전체 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간보다 큰지 결정한다.
단계 S230의 판단이 YES이면, 마스터 제어부(21)는 단계 S240에서 전체 충전전력 또는 전체 방전전력이 전체 동작 출력 리미트보다 제1임계값 이상인지 여부를 결정한다.
단계 S240의 판단이 YES이면, 마스터 제어부(21)는 단계 S250에서 동작 중단 메시지를 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 전송한다. 그러면, 제1 내지 제n슬레이브 제어부(16-1~16-n)는 단계 S260에서 자신이 장착된 배터리 랙의 스위치를 턴오프시켜 배터리 랙의 동작을 중단시킨다.
단계 S240의 판단이 NO이면, 마스터 제어부(21)는 단계 S270에서 동작 유지 메시지를 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 전송한다. 그러면, 제1 내지 제n슬레이브 제어부(16-1~16-n)는 단계 S280에서 자신이 장착된 배터리 랙의 스위치의 턴온 상태를 유지하여 배터리 랙의 동작을 유지시킨다.
한편, 단계 S230의 판단이 NO이면, 마스터 제어부(21)는 단계 S255에서 전체 충전전력 또는 전체 방전전력이 전체 동작 출력 리미트보다 제2임계값(제1임계값보다 큼) 이상인지 여부를 결정한다.
단계 S255의 판단이 YES이면, 마스터 제어부(21)는 단계 S290에서 동작 중단 메시지를 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 전송한다. 그러면, 제1 내지 제n슬레이브 제어부(16-1~16-n)는 단계 S300에서 자신이 장착된 배터리 랙의 스위치를 턴오프시켜 배터리 랙의 동작을 중단시킨다.
단계 S255의 판단이 NO이면, 마스터 제어부(21)는 단계 S310에서 동작 유지 메시지를 통신을 통해 제1 내지 제n슬레이브 제어부(16-1~16-n) 측으로 전송한다. 그러면, 제1 내지 제n슬레이브 제어부(16-1~16-n)는 단계 S320에서 자신이 장착된 배터리 랙의 스위치의 턴온 상태를 유지하여 배터리 랙의 동작을 유지시킨다.
본 발명에 의하면, 제1 내지 제n배터리 랙(11-1~11-n)의 전체 충전전력 또는 전체 방전전력이 PCS(13)의 미리 설정된 불안정 전력 구간에 속할 경우 제1 내지 제n배터리 랙(11-1~11-n)의 충방전 중단 조건을 증가시켜 완화시킴으로써 충전 후반부 또는 방전 후반부에서 제1 내지 제n배터리 랙(11-1~11-n)의 동작이 중단되는 현상을 방지할 수 있다. 이로써, 제1 내지 제n배터리 랙(11-1~11-n)을 만충전 상태까지 충전하고 만방전 상태까지 방전하여 제1 내지 제n배터리 랙(11-1~11-n)의 용량을 최대한 활용할 수 있다.
본 발명에 있어서, 제어부(16, 16-1~16-n, 21)는 제어회로일 수 있다. 제어부(16, 16-1~16-n, 21)는 상술한 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 제어부(16, 16-1~16-n, 21)는 프로그램 모듈의 집합으로 구현될 수 있다. 이 때, 프로그램 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 상기 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 컴퓨터 부품으로 프로세서와 연결될 수 있다. 또한, 상기 메모리는 본 발명의 저장매체(17, 17-1~17-n)에 포함될 수 있다. 또한, 상기 메모리는 디바이스의 종류에 상관 없이 정보가 저장되는 디바이스를 총칭하는 것으로서 특정 메모리 디바이스를 지칭하는 것은 아니다.
제어부(16, 16-1~16-n, 21)의 다양한 제어 로직들은 적어도 하나 이상이 조합되고, 조합된 제어 로직들은 컴퓨터가 읽을 수 있는 코드 체계로 작성되어 컴퓨터가 읽을 수 있는 기록매체에 수록될 수 있다. 상기 기록매체는 컴퓨터에 포함된 프로세서에 의해 접근이 가능한 것이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 상기 기록매체는 ROM, RAM, 레지스터, CD-ROM, 자기 테이프, 하드 디스크, 플로피디스크 및 광 데이터 기록장치를 포함하는 군에서 선택된 적어도 하나 이상을 포함한다. 또한, 상기 코드 체계는 네트워크로 연결된 컴퓨터에 분산되어 저장되고 실행될 수 있다. 또한, 상기 조합된 제어 로직들을 구현하기 위한 기능적인 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명의 다양한 실시 양태를 설명함에 있어서, '~부'라고 명명된 구성 요소들은 물리적으로 구분되는 요소들이라고 하기 보다 기능적으로 구분되는 요소들로 이해되어야 한다. 따라서 각각의 구성요소는 다른 구성요소와 선택적으로 통합되거나 각각의 구성요소가 제어 로직(들)의 효율적인 실행을 위해 서브 구성요소들로 분할될 수 있다. 하지만 구성요소들이 통합 또는 분할되더라도 기능의 동일성이 인정될 수 있다면 통합 또는 분할된 구성요소들도 본 발명의 범위 내에 있다고 해석되어야 함은 당업자에게 자명하다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (15)

  1. 전력저장원의 동작 특성을 측정하는 센서부; 및 상기 센서부와 동작 가능하게 결합된 제어부를 포함하고,
    상기 제어부는, (i) 상기 센서부로부터 전력저장원의 동작 특성 정보를 취득하여 전력저장원의 동작 전력 리미트를 결정하고, (ii) 전력저장원이 동작하는 동안 상기 동작 특성 정보를 이용하여 PCS(Power Conversion System)로부터 공급되는 충전전력 또는 PCS 측으로 제공되는 방전전력을 결정하고, (iii) 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키고, (iv) 상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키도록 구성된, 전력저장원 관리장치.
  2. 제1항에 있어서,
    상기 제어부는, 상기 센서부로부터 전력저장원의 충/방전 전류, 전압 및 온도를 포함하는 동작 특성 정보를 입력 받고, 상기 충/방전 전류를 적산하여 상기 전력저장원의 충전상태를 결정하고, 충전상태 및 온도와 동작 전력 리미트 사이의 상관 관계를 정의한 룩업 정보를 참조하여 상기 결정된 충전상태와 상기 입력된 온도에 대응되는 전력저장원의 동작 전력 리미트를 결정하도록 구성된, 전력저장원 관리장치.
  3. 제1항에 있어서,
    상기 제어부는, 상기 PCS의 미리 설정된 불안정 전력 구간에 관한 정보를 상기 PCS로부터 제공 받는, 전력저장원 관리장치.
  4. 제1항에 있어서,
    상기 제1임계값은 상기 동작 전력 리미트의 10% 내지 30%인, 전력저장원 관리장치.
  5. 제1항에 있어서,
    상기 제2임계값은 상기 동작 전력 리미트의 30% 내지 60%인, 전력저장원 관리장치.
  6. 제5항에 있어서,
    상기 제2임계값은 상기 전력저장원의 충전전력 또는 방전전력이 낮아질수록 증가하는, 전력저장원 관리장치.
  7. 제1항에 있어서,
    상기 전력저장원은 제1 내지 제n배터리 랙을 포함하는, 전력저장원 관리장치.
  8. 제1 내지 제n배터리 랙의 각각에 장착된 제1 내지 제n슬레이브 제어부; 및 상기 제1 내지 제n슬레이브 제어부와 통신이 가능하게 결합된 마스터 제어부를 포함하고,
    상기 제1 내지 제n슬레이브 제어부 각각은 자신이 장착된 배터리 랙의 동작 특성 정보를 센서부로부터 취득하고 상기 동작 특성 정보를 이용하여 배터리 랙의 동작 전력 리미트와 충전전력 또는 방전전력을 결정하여 상기 마스터 제어부로 제공하도록 구성되고,
    상기 마스터 제어부는,
    상기 제1 내지 제n슬레이브 제어부로부터 전송된 동작 전력 리미트와 충전전력 또는 방전전력을 합산하여 전체 동작 전력 리미트와 전체 충전전력 또는 전체 방전전력을 결정하고,
    상기 전체 충전전력 또는 상기 전체 방전전력이 PCS의 미리 설정된 불안정 전력 구간보다 크고 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 성립되면 동작 중단 메시지를 제1 내지 제n슬레이브 제어부로 제공하도록 구성되고,
    상기 전체 충전전력 또는 상기 전체 방전전력이 PCS의 미리 설정된 불안정 전력 구간 이내이고 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 성립되면 동작 중단 메시지를 제1 내지 제n슬레이브 제어부로 제공하도록 구성된, 전력저장원 관리장치.
  9. 전력저장원의 동작 특성을 측정하는 센서부로부터 전력저장원의 동작 특성 정보를 취득하는 단계;
    상기 동작 특성 정보를 이용하여 상기 전력저장원의 동작 전력 리미트를 결정하는 단계;
    전력저장원이 동작하는 동안 상기 동작 특성 정보를 이용하여 PCS(Power Conversion System)로부터 공급되는 충전전력 또는 PCS 측으로 제공되는 방전전력을 결정하는 단계;
    상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키는 단계; 및
    상기 충전전력 또는 상기 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고, 상기 충전전력 또는 상기 방전전력이 상기 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 전력저장원의 동작을 중단시키는 단계;를 포함하는, 전력저장원 관리장치의 제어 방법.
  10. 제9항에 있어서,
    상기 센서부로부터 전력저장원의 충/방전 전류, 전압 및 온도를 포함하는동작 특성 정보를 입력 받는 단계;
    상기 충/방전 전류를 적산하여 상기 전력저장원의 충전상태를 결정하는 단계; 및
    충전상태 및 온도와 동작 전력 리미트 사이의 상관 관계를 정의한 룩업 정보를 참조하여 상기 결정된 충전상태와 상기 입력된 온도에 대응되는 전력저장원의 동작 전력 리미트를 결정하는 단계;를 포함하는, 전력저장원 관리장치의 제어 방법.
  11. 제9항에 있어서,
    상기 PCS의 미리 설정된 불안정 전력 구간에 관한 정보를 상기 PCS로부터 제공 받는 단계;를 더 포함하는, 전력저장원 관리장치의 제어 방법.
  12. 제9항에 있어서,
    상기 제1임계값은 상기 동작 전력 리미트의 10% 내지 30%인, 전력저장원 관리장치의 제어 방법.
  13. 제9항에 있어서,
    상기 제2임계값은 상기 동작 전력 리미트의 30% 내지 60%인, 전력저장원 관리장치의 제어 방법.
  14. 제13항에 있어서,
    상기 제2임계값은 상기 전력저장원의 충전전력 또는 방전전력이 낮아질수록 증가하는, 전력저장원 관리장치의 제어 방법.
  15. 제1 내지 제n배터리 랙에 각각에 장착된 제1 내지 제n슬레이브 제어부와 상기 제1 내지 제n슬레이브 제어부와 통신이 가능하게 결합된 마스터 제어부를 포함하는 전력저장원 관리장치의 제어 방법에 있어서,
    상기 제1 내지 제n슬레이브 제어부 각각이 자신이 장착된 배터리 랙의 동작 특성을 측정하는 센서부로부터 동작 특성 정보를 취득하여 배터리 랙의 동작 전력 리미트와 충전전력 또는 방전전력을 결정하여 상기 마스터 제어부로 제공하는 단계;
    상기 마스터 제어부가 제1 내지 제n슬레이브 제어부로부터 전송된 동작 전력 리미트와 충전전력 또는 방전전력을 합산하여 전체 동작 전력 리미트와 전체 충전전력 또는 전체 방전전력을 결정하는 단계;
    상기 마스터 제어부가 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간보다 크고, 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제1임계값 이상인 제1동작 중단조건이 충족될 경우 상기 제1 내지 제n슬레이브 제어부 측으로 동작 중단 메시지를 제공하는 단계;
    상기 마스터 제어부가 상기 전체 충전전력 또는 상기 전체 방전전력이 상기 PCS의 미리 설정된 불안정 전력 구간 이내이고, 상기 전체의 충전전력 또는 상기 전체 방전전력이 상기 전체 동작 전력 리미트보다 제2임계값(제1임계값보다 큼) 이상인 제2동작 중단조건이 충족될 경우 상기 제1 내지 제n슬레이브 제어부 측으로 동작 중단 메시지를 제공하는 단계; 및
    상기 제1 내지 제n슬레이브 제어부가 상기 동작 중단 메시지의 수신에 응하여 자신이 장착된 배터리 랙의 동작을 중단시키는 단계;를 포함하는, 전력저장원 관리장치의 제어 방법.
PCT/KR2022/017072 2021-11-02 2022-11-02 전력저장원 관리장치 및 그 제어 방법 WO2023080650A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023555645A JP2024510602A (ja) 2021-11-02 2022-11-02 電力貯蔵源の管理装置及びその制御方法
CN202280019483.2A CN116964894A (zh) 2021-11-02 2022-11-02 蓄电源管理装置及控制其的方法
EP22890381.1A EP4304044A1 (en) 2021-11-02 2022-11-02 Power storage source management apparatus and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210149215 2021-11-02
KR10-2021-0149215 2021-11-02

Publications (1)

Publication Number Publication Date
WO2023080650A1 true WO2023080650A1 (ko) 2023-05-11

Family

ID=86241864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017072 WO2023080650A1 (ko) 2021-11-02 2022-11-02 전력저장원 관리장치 및 그 제어 방법

Country Status (5)

Country Link
EP (1) EP4304044A1 (ko)
JP (1) JP2024510602A (ko)
KR (1) KR20230063881A (ko)
CN (1) CN116964894A (ko)
WO (1) WO2023080650A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174535A (ja) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd 二次電池の充放電制御装置
KR20130031203A (ko) * 2011-09-20 2013-03-28 삼성에스디아이 주식회사 전력 저장 시스템 및 배터리 시스템
KR102063692B1 (ko) * 2019-08-20 2020-01-09 (주)피앤이이노텍 발전 시스템과 연계하여 배터리 랙들을 충방전하기 위한 장치 및 이를 포함하는 에너지 저장 시스템
KR102084676B1 (ko) * 2019-08-20 2020-03-04 주식회사 케이디티 Ess 운영 시스템 및 그 운영방법
WO2020160369A1 (en) * 2019-01-31 2020-08-06 General Electric Company Battery charge and discharge power control in a power grid
KR20210149215A (ko) 2011-04-27 2021-12-08 마나테크, 인코포레이티드 사람 개체의 인지 수행 및 기분에 대한 유익한 효과를 갖는 식물 폴리사카라이드를 포함하는 식이 보충제

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174535A (ja) * 2004-12-13 2006-06-29 Nissan Motor Co Ltd 二次電池の充放電制御装置
KR20210149215A (ko) 2011-04-27 2021-12-08 마나테크, 인코포레이티드 사람 개체의 인지 수행 및 기분에 대한 유익한 효과를 갖는 식물 폴리사카라이드를 포함하는 식이 보충제
KR20130031203A (ko) * 2011-09-20 2013-03-28 삼성에스디아이 주식회사 전력 저장 시스템 및 배터리 시스템
WO2020160369A1 (en) * 2019-01-31 2020-08-06 General Electric Company Battery charge and discharge power control in a power grid
KR102063692B1 (ko) * 2019-08-20 2020-01-09 (주)피앤이이노텍 발전 시스템과 연계하여 배터리 랙들을 충방전하기 위한 장치 및 이를 포함하는 에너지 저장 시스템
KR102084676B1 (ko) * 2019-08-20 2020-03-04 주식회사 케이디티 Ess 운영 시스템 및 그 운영방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREGORY L. PLETT: "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Parts 1, 2 and 3", JOURNAL OF POWER SOURCE, vol. 134, 2004, pages 252 - 261

Also Published As

Publication number Publication date
CN116964894A (zh) 2023-10-27
EP4304044A1 (en) 2024-01-10
JP2024510602A (ja) 2024-03-08
KR20230063881A (ko) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2018139742A1 (ko) 배터리 팩, 배터리 팩의 충전 제어 방법, 및 배터리 팩을 포함하는 차량
WO2018124511A1 (ko) 배터리의 충전 상태를 캘리브레이션하기 위한 배터리 관리 장치 및 방법
WO2018030704A1 (ko) 배터리 팩을 위한 온도 모니터링 장치 및 방법
WO2019022378A1 (ko) 배터리 관리 유닛 및 이를 포함하는 배터리팩
WO2018139740A1 (ko) 배터리 팩, 배터리 팩의 관리 방법, 및 배터리 팩을 포함하는 차량
WO2013035953A1 (en) Communication method, communication system, and energy storage system including the same
WO2018124514A1 (ko) 배터리 관리 장치 및 이를 이용한 리튬인산철 셀의 과전압 보호 방법
WO2019017596A1 (ko) 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩
WO2018101564A1 (ko) 선박 및 해양플랜트의 배터리 연계형 고효율 전력관리시스템 및 방법
WO2012005464A2 (ko) 배터리 전원 공급 장치 및 그 전력 제어 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
WO2018074809A1 (ko) 셀 밸런싱 시스템 및 제어방법
WO2021085866A1 (ko) 에너지저장시스템(ess)에 포함된 배터리 모듈의 냉각 시스템 및 그 방법
WO2020071682A1 (ko) Bms 간 통신 시스템 및 방법
WO2022149958A1 (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법
WO2017039164A1 (ko) Ups 배터리 충전용량 제어 방법
WO2019093625A1 (ko) 충전 제어 장치 및 방법
WO2021049752A1 (ko) 절전형 배터리 관리 장치 및 방법
WO2023080650A1 (ko) 전력저장원 관리장치 및 그 제어 방법
WO2020166877A1 (ko) 복수의 셀이 직렬 연결된 배터리에 사용가능한 전력관리장치
WO2023177137A1 (ko) 배터리 팩, 그 관리 장치 및 방법
WO2021118312A1 (ko) 배터리 관리 시스템, 배터리 팩, 전기 차량 및 배터리 관리 방법
WO2021149949A1 (ko) 종단 저항 설정 회로 및 이를 포함하는 배터리 관리 시스템
WO2024034879A1 (ko) 배터리 화재 예측 방법 및 그 방법을 제공하는 배터리 시스템
WO2020130576A1 (ko) Bms 인식 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22890381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019483.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023555645

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022890381

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022890381

Country of ref document: EP

Effective date: 20231002