WO2023080104A1 - Polycarbonate resin film, multilayer film, display device, polycarbonate resin film manufacturing method, and multilayer film manufacturing method - Google Patents

Polycarbonate resin film, multilayer film, display device, polycarbonate resin film manufacturing method, and multilayer film manufacturing method Download PDF

Info

Publication number
WO2023080104A1
WO2023080104A1 PCT/JP2022/040642 JP2022040642W WO2023080104A1 WO 2023080104 A1 WO2023080104 A1 WO 2023080104A1 JP 2022040642 W JP2022040642 W JP 2022040642W WO 2023080104 A1 WO2023080104 A1 WO 2023080104A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
film
multilayer film
layer
roll
Prior art date
Application number
PCT/JP2022/040642
Other languages
French (fr)
Japanese (ja)
Inventor
健 小笠原
圭佑 木稲
浩輝 小高
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023080104A1 publication Critical patent/WO2023080104A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters

Definitions

  • the present invention relates to a polycarbonate resin film, a multilayer film, a display device, a method for producing a polycarbonate resin film, and a method for producing a multilayer film.
  • PC-A polycarbonate resin obtained by reacting 2,2-bis(4-hydroxyphenyl)propane (hereinafter sometimes referred to as “bisphenol A”) with a carbonate precursor )
  • bisphenol A 2,2-bis(4-hydroxyphenyl)propane
  • carbonate precursor a carbonate precursor
  • PC-A polycarbonate resin
  • polycarbonate resin especially PC-A
  • the present invention is intended to solve such problems, and is a polycarbonate resin film using PC-A as a raw material, which has a low retardation and a uniform main axis orientation.
  • An object of the present invention is to provide a film, a multilayer film and a display device using the polycarbonate resin film, a method for manufacturing the polycarbonate resin film, and a method for manufacturing the multilayer film.
  • Condition 1 Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1);
  • Condition 2 the deviation from the average value of the main axis azimuth angle of the film is within ⁇ 11°;
  • Condition 3 The film has a retardation of 5 to 50 nm.
  • formula (1) ⁇ 2> The polycarbonate resin film according to ⁇ 1>, wherein the polycarbonate resin film has a thickness of 50 to 1500 ⁇ m.
  • ⁇ 3> having a polycarbonate resin film and at least one other layer, A multilayer film that satisfies the following conditions A to C;
  • Condition C The retardation of the multilayer film is 5-50 nm.
  • formula (1) ⁇ 4> The multilayer film according to ⁇ 3>, wherein the pencil hardness measured from the other layer side of the multilayer film is HB or more.
  • ⁇ 5> The multilayer film according to ⁇ 3> or ⁇ 4>, wherein the polycarbonate resin film and the other layer have a total thickness of 50 to 1500 ⁇ m.
  • ⁇ 6> The multilayer film according to any one of ⁇ 3> to ⁇ 5>, wherein the thickness ratio between the polycarbonate resin film and the other layer is 2/1 to 10/1.
  • ⁇ 7> The multilayer film according to ⁇ 5> or ⁇ 6>, wherein the other layer has a thickness of 20 to 100 ⁇ m.
  • ⁇ 8> The multilayer film according to any one of ⁇ 3> to ⁇ 7>, wherein the other layer is a layer containing a (meth)acrylic resin.
  • the polycarbonate resin film according to ⁇ 1> or ⁇ 2> or the multilayer film according to any one of ⁇ 3> to ⁇ 8> has a hard coat layer on one side or both sides thereof. , multilayer film.
  • the polycarbonate resin film according to ⁇ 1> or ⁇ 2>, or the multilayer film according to any one of ⁇ 3> to ⁇ 9> has a masking film on one side or both sides, multilayer film.
  • a display device comprising the polycarbonate resin film according to ⁇ 1> or ⁇ 2> and/or the multilayer film according to any one of ⁇ 3> to ⁇ 10>.
  • ⁇ 12> The method for producing a polycarbonate resin film according to ⁇ 1> or ⁇ 2>, wherein the roll contact between the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls
  • ⁇ 13> The method for producing a polycarbonate resin film according to ⁇ 12>, wherein the peripheral speed ratio between the first cooling roll and the take-up roll is 1:0.995 to 1:0.975.
  • ⁇ 14> The method for producing a polycarbonate resin film according to ⁇ 12> or ⁇ 13>, comprising extruding the resin composition for forming a polycarbonate resin film through a T-die, wherein the T-die has a width of 600 mm or more.
  • the length of contact between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm, ⁇ 12> to ⁇ 14> A method for producing a polycarbonate resin film according to any one of.
  • ⁇ 16> The method for producing a multilayer film according to any one of ⁇ 3> to ⁇ 8>, wherein the first cooling roll and the second cooling roll are perpendicular to the rotation axis direction of the rolls.
  • ⁇ 17> The method for producing a multilayer film according to ⁇ 16>, wherein the peripheral speed ratio between the first cooling roll and the take-up roll is 1:0.995 to 1:0.975.
  • ⁇ 18> ⁇ 16> or ⁇ 17> including extruding a resin composition for forming a polycarbonate resin film and a resin composition for forming another layer from a T-die, wherein the T-die has a width of 600 mm or more.
  • a method for producing a multilayer film according to any one of the above. ⁇ 20> The method for producing a multilayer film according to any one of ⁇ 16> to ⁇ 19>, wherein the other layer is a layer containing a (meth)acrylic resin.
  • a polycarbonate resin film using PC-A as a raw material which has a low retardation property and uniform main axis orientation, as well as a multilayer film, a display device, and a polycarbonate resin film are manufactured.
  • Methods and methods of making multilayer films are now available.
  • FIG. 3 is a partially enlarged view of FIG. 2;
  • FIG. 2 is a schematic diagram mainly for explaining the distance between roll-to-roll points of a semi-molten polycarbonate resin film.
  • FIG. 3 is a partially enlarged view of FIG. 2;
  • FIG. 4 is a schematic diagram mainly for explaining the contact length between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the rolls.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the notations that do not describe substituted and unsubstituted are preferably unsubstituted.
  • (meth)acryl represents both or either acryl and methacryl.
  • weight average molecular weight and number average molecular weight are polystyrene equivalent values measured by GPC (gel permeation chromatography) unless otherwise specified.
  • film refers to a generally flat formed body having a thin thickness relative to its length and width, respectively, and is intended to include a "sheet.”
  • the "film” in this specification may be a single layer or multiple layers, but a single layer is preferred. If the standards shown in this specification differ from year to year in terms of measurement methods, etc., the standards as of January 1, 2021 shall be used unless otherwise specified.
  • the polycarbonate resin film of the present embodiment is a polycarbonate resin film containing a polycarbonate resin and satisfying conditions 1 to 3 below.
  • Condition 1 Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1).
  • Condition 2 The deviation from the average value of the principal axis azimuth angle of the film is within ⁇ 11°.
  • Condition 3 The film has a retardation of 5 to 50 nm.
  • a polycarbonate resin film having low retardation and uniform principal axis orientation while using a polycarbonate resin made from PC-A as a raw material.
  • a high-hardness resin layer such as a (meth)acrylic resin layer on the surface (preferably the surface) of the polycarbonate resin film of the present embodiment, a high-hardness film (multilayer film) can be obtained.
  • the main structural unit of the polycarbonate resin used in the polycarbonate resin film of the present embodiment is a structural unit represented by the following formula (1).
  • the “structural unit whose main structural unit is represented by formula (1)” is usually a structural unit represented by formula (1) in 85% by mass or more of the polycarbonate resin contained in the polycarbonate resin film. That is, 90% by mass or more is preferably a structural unit represented by formula (1), more preferably 95% by mass or more is a structural unit represented by formula (1), and the terminal structure is It is more preferable that 99% by mass or more of the excluding the structural unit is the structural unit represented by the formula (1).
  • a representative example of such a polycarbonate resin is PC-A.
  • the polycarbonate resin used in the present embodiment may be a polycarbonate resin obtained by adding a monohydric phenol represented by the following formula (2) as a terminal terminator for the purpose of controlling the glass transition temperature. good. Specifically, a polycarbonate resin containing a structural unit represented by the above formula (1) and produced using a monohydric phenol represented by the formula (2) as a terminal terminator is exemplified.
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms
  • R 2 to R 5 each independently represent a hydrogen atom, a halogen atom, a substituted represents an alkyl group having 1 to 20 carbon atoms which may have a group, or an aryl group having 6 to 12 carbon atoms which may have a substituent, wherein the substituent is a halogen atom, 1 to 20 alkyl group, or an aryl group with 6 to 12 carbon atoms.
  • the monohydric phenol represented by Formula (2) is preferably a monohydric phenol represented by Formula (3).
  • R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.
  • the number of carbon atoms in R 1 in formula (2) or formula (3) is more preferably within a specific numerical range.
  • the upper limit of the carbon number of R 1 is preferably 30 or less, more preferably 22 or less, and particularly preferably 18 or less.
  • the lower limit of the number of carbon atoms in R 1 is preferably 10 or more, more preferably 12 or more.
  • either or both of parahydroxybenzoic acid hexadecyl ester and parahydroxybenzoic acid 2-hexyldecyl ester can be used as a terminal terminator.
  • a terminal terminator when a monohydric phenol in which R 1 is an alkyl group having 16 carbon atoms in the formula (3) is used as a terminal terminator, a polycarbonate excellent in glass transition temperature, melt fluidity, moldability, drawdown resistance, etc. It is particularly preferred because a resin can be obtained.
  • Polycarbonate resins using such a monohydric phenol as a terminal terminator include, for example, Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Co., Ltd.).
  • the weight average molecular weight (Mw) of the polycarbonate resin used in this embodiment is preferably 15,000 or more, more preferably 20,000 or more, from the viewpoint of impact resistance and thermal stability. Also, the weight average molecular weight (Mw) of the polycarbonate resin is preferably 75,000 or less, more preferably 65,000 or less. Specific examples of the polycarbonate resin that can be used in the present embodiment preferably include Iupilon S-2000, Iupilon S-1000, and Iupilon E-2000 manufactured by Mitsubishi Engineering-Plastics.
  • the content of the polycarbonate resin in the polycarbonate resin film of the present embodiment is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. It is more preferably 95% by mass or more, and even more preferably 98% by mass or more.
  • the upper limit of the content of the polycarbonate resin in the polycarbonate resin film may be 100% by mass.
  • the polycarbonate resin film of the present embodiment may contain only one type of polycarbonate resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the polycarbonate resin film of the present embodiment may be formed from polycarbonate resin alone, or may be formed from a resin composition containing polycarbonate resin and additives.
  • additives those commonly used in resin sheets can be used, specifically, antioxidants, anti-coloring agents, anti-static agents, release agents, lubricants, dyes, pigments, plasticizers. , flame retardants, resin modifiers, compatibilizers, and reinforcing agents such as organic and inorganic fillers. Only one of these additives may be used, or two or more thereof may be used.
  • the method of mixing the additive and the polycarbonate resin is not particularly limited, and a method of compounding the entire amount, a method of dry blending a masterbatch, a method of dry blending the entire amount, and the like can be used.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, based on the total mass of the polycarbonate resin film (that is, the resin composition for forming the polycarbonate resin composition). It is preferably 0 to 5% by mass, and particularly preferably 0 to 5% by mass.
  • the polycarbonate resin film of the present embodiment satisfies Condition 1 above. That is, in the polycarbonate resin film of the present embodiment, the deviation from the average value of the main axis azimuth angles is within ⁇ 11°. Although the polycarbonate resin film of the present embodiment has some retardation, it is preferable in that the main axis azimuth angle can be made close to 90°.
  • the deviation from the average value of the principal axis azimuth angles is more preferably ⁇ 10° or less, still more preferably ⁇ 9° or less, even more preferably ⁇ 8° or less, and ⁇ 6° or less. is even more preferable, ⁇ 4° or less is particularly preferable, and ⁇ 3° or less is even more preferable.
  • the lower limit of the deviation from the average value of the main axis azimuth angle is 0°, but even if it is ⁇ 0.1° or more, the required performance is satisfied, and ⁇ 1° or more is practical.
  • the deviation from the average value of the principal axis azimuth angle is achieved by producing a polycarbonate resin film by a predetermined method described later.
  • the average principal axis azimuth angle in the polycarbonate resin film of the present embodiment is preferably 88° or more, more preferably 89° or more, further preferably 90° or more, and 95° or less. preferably 93° or less, and even more preferably 92° or less.
  • the thickness deviation of the polycarbonate resin film of the present embodiment is preferably within the average value ⁇ 15%, more preferably within the average value ⁇ 10%, and further within the average value ⁇ 5%. preferable.
  • the polycarbonate resin film of this embodiment has a low retardation (maximum retardation). Specifically, the retardation of the film is 50 nm or less, preferably 48 nm or less, more preferably 40 nm or less, and even more preferably 38 nm or less. Moreover, the lower limit of the retardation of the film is 5 nm or more.
  • a polycarbonate resin film, particularly PC-A tends to exhibit a retardation as compared with an acrylic resin film or the like. can be effectively suppressed.
  • the thickness of the polycarbonate resin film of the present embodiment can be appropriately determined according to its use, etc., but is preferably 50 ⁇ m or more, preferably 70 ⁇ m or more, more preferably 100 ⁇ m or more, and more preferably 150 ⁇ m. or more, or 200 ⁇ m or more.
  • the thickness is equal to or higher than the above lower limit, the rigidity of the film is increased, and when the film is used as a resin cover, the deflection of the film is reduced, which tends to make it easier to use as a large-sized resin cover.
  • the upper limit of the thickness of the polycarbonate resin film is preferably 1500 ⁇ m or less, more preferably 1000 ⁇ m or less, even more preferably 500 ⁇ m or less, even more preferably 490 ⁇ m or less, and 450 ⁇ m or less. is more preferably 400 ⁇ m or less.
  • the width of the polycarbonate resin film of the present embodiment is preferably 800 mm or more, more preferably 1000 mm or more, and even more preferably 1200 mm or more. By making it more than the said lower limit, when constructing a hard coat etc. in a post process, it becomes possible to construct efficiently.
  • the upper limit of the width of the polycarbonate resin film of the present embodiment is preferably 5000 mm or less, more preferably 3000 mm or less, further preferably 2500 mm or less, and even more preferably 2200 mm or less. 2000 mm or less is even more preferable.
  • the polycarbonate resin film of the present embodiment may be used as a single-layer or multilayer film consisting only of the polycarbonate resin film, but may be a multilayer film with other layers other than the polycarbonate resin film of the present embodiment. That is, the multilayer film of this embodiment is a multilayer film having a polycarbonate resin film and at least one other layer.
  • Another embodiment of the multilayer film of the present embodiment is a multilayer film having a polycarbonate resin film and at least one other layer and satisfying conditions A to C below.
  • Condition A Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1); Condition B: the deviation from the average value of the main axis azimuth angle of the film is within ⁇ 11°; Condition C: The film has a retardation of 5 to 50 nm. formula (1)
  • the main structural unit of the polycarbonate resin used in the multilayer film of the present embodiment is a structural unit represented by the following formula (1). These details are synonymous with Condition 1 described in the polycarbonate resin film of the present embodiment, and the preferred range is also synonymous.
  • the preferred range of the polycarbonate resin film is also synonymous with the preferred range of the polycarbonate resin film of the present embodiment.
  • FIG. 1 shows an example of the multilayer film of this embodiment, where 1 indicates a polycarbonate resin film and 2 indicates other layers.
  • the polycarbonate resin film may consist of only one layer or two or more layers, usually one or two layers.
  • the multilayer film of this embodiment satisfies condition B. That is, in the multilayer film of the present embodiment, the deviation from the average value of the principal axis azimuth angles is within ⁇ 11°.
  • the deviation from the average value of the principal axis azimuth angles is preferably ⁇ 10° or less, more preferably ⁇ 9° or less, even more preferably ⁇ 8° or less, and ⁇ 7° or less. ⁇ 6° or less is particularly preferable, and ⁇ 5° or less is even more preferable.
  • the lower limit of the deviation from the average value of the main axis azimuth angle is 0°, but even if it is ⁇ 0.1° or more, the required performance is satisfied, and ⁇ 1° or more is practical.
  • the azimuth angle of the main axis of the multilayer film preferably satisfies the above range when measured from the other layer side, not from the polycarbonate resin film side.
  • the multilayer film of this embodiment satisfies condition C. That is, the multilayer film of the present embodiment preferably has a low retardation (maximum retardation). Specifically, the retardation of the film is 50 nm or less, preferably 45 nm or less, more preferably 40 nm or less, even more preferably 35 nm or less, and more preferably 30 nm or less. More preferably, it is still more preferably 25 nm or less. Moreover, the lower limit of the retardation of the multilayer film is 5 nm or more. As for the retardation of the multilayer film, the value measured from the other layer side preferably satisfies the above range.
  • the average principal axis azimuth angle in the multilayer film of the present embodiment is preferably 88° or more, more preferably 89° or more, further preferably 90° or more, and 93° or less. , more preferably 92° or less, and even more preferably 91° or less.
  • the average principal axis azimuth angle in the multilayer film refers to the average principal axis azimuth angle in the original film, and when incorporated into an actual display, etc., the average principal axis azimuth angle may deviate depending on the cut direction. be.
  • the thickness deviation of the multilayer film of the present embodiment is preferably within ⁇ 15% of the average value, more preferably within ⁇ 10% of the average value, and further preferably within ⁇ 5% of the average value. .
  • the total thickness of the polycarbonate resin film and the other layer is preferably 50 to 1500 ⁇ m.
  • the lower limit of the total thickness is preferably 100 ⁇ m or more, more preferably 125 ⁇ m or more, still more preferably 130 ⁇ m or more, even more preferably 140 ⁇ m or more, and may be 180 ⁇ m or more.
  • the upper limit of the total thickness is preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less, even more preferably 550 ⁇ m or less, even more preferably 500 ⁇ m or less, and even more preferably 450 ⁇ m or less. It may be 400 ⁇ m or less.
  • the total thickness (total thickness) of the multilayer film is preferably 100-3000 ⁇ m.
  • the width of the multilayer film of the present embodiment is preferably 800 mm or more, more preferably 1000 mm or more, and even more preferably 1200 mm or more.
  • the upper limit of the width of the multilayer film of the present embodiment is preferably 5000 mm or less, more preferably 3000 mm or less, even more preferably 2500 mm or less, and even more preferably 2200 mm or less. The following are even more preferable.
  • the multilayer film of the present embodiment preferably has a pencil hardness of HB or higher, more preferably H or higher, measured from the other layer side (eg, layer 2 in FIG. 1). Although the upper limit of the pencil hardness is not particularly defined, 3H or less is practical. The pencil hardness is measured by the method described in Examples below (the same applies to the pencil hardness below). Moreover, in the multilayer film of the present embodiment, it is preferable that the side having a higher pencil hardness satisfies the above pencil hardness.
  • the haze of the multilayer film of the present embodiment is preferably 2% or less, more preferably 1% or less, and even more preferably 0.5% or less.
  • Haze (unit: %) can be measured using a haze meter under the condition of D65 light source 10° field of view.
  • the other layers included in the multilayer film of the present embodiment are not particularly limited in terms of their types, but are exemplified by a layer containing a high-hardness resin, a masking film, and a hard coat layer. Furthermore, the number of other layers may be 1 layer or 2 or more layers, usually 1 to 7 layers, preferably 1 to 5 layers, more preferably 1 to 3 layers. In this specification, a layer containing a high-hardness resin may be referred to as a high-hardness resin layer.
  • the other layer is preferably a film having low retardation and uniform principal axis orientation.
  • these layers are also preferably films having a low retardation property and uniform principal axis orientation.
  • the other layer preferably the (meth)acrylic resin layer and/or the hard coat layer, more preferably the (meth)acrylic resin layer
  • the retardation of the other layer is preferably 45 nm or less, more preferably 40 nm or less, even more preferably 35 nm or less, even more preferably 30 nm or less, and 25 nm or less. Even more preferable. Also, the lower limit of the retardation of the other layer is 5 nm or more. Further, the deviation from the average value of the main axis azimuth angles in the other layers is preferably ⁇ 11° or less, preferably ⁇ 10° or less, more preferably ⁇ 9° or less, and ⁇ It is more preferably 8° or less, even more preferably ⁇ 7° or less, particularly more preferably ⁇ 6° or less, and even more preferably ⁇ 5° or less.
  • the lower limit of the deviation from the average value of the main axis azimuth angle is 0°, but even if it is ⁇ 0.1° or more, the required performance is satisfied, and ⁇ 1° or more is practical.
  • the other layer is a film that can be peeled off during use, such as when the other layer is a masking film, the other layer is not necessarily a film having a low retardation property and a uniform principal axis orientation.
  • the thickness of each of the other layers is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 20 ⁇ m or more, even more preferably 25 ⁇ m or more, and 30 ⁇ m or more. It is even more preferable to have By making it more than the said lower limit, there exists a tendency for pencil hardness to become high.
  • the thickness of the other layer is preferably 100 ⁇ m or less, more preferably 85 ⁇ m or less, even more preferably 70 ⁇ m or less, even more preferably 50 ⁇ m or less, and 40 ⁇ m or less. is even more preferred.
  • the thickness of the other layer is preferably 20 to 100 ⁇ m.
  • the ratio of the polycarbonate resin film to the thickness of one other layer is preferably 2/1 to 10/1. It is more preferably 1 to 8/1, and may be 2/1 to 7/1.
  • a first example of the multilayer film of the present embodiment is a multilayer film having a polycarbonate resin film and at least one other layer, wherein the at least one other layer is a resin layer containing a high hardness resin ( A high-hardness resin layer), preferably a multilayer film that is a resin layer containing a high-hardness resin as a main component.
  • the main component means that 50% by mass or more of the constituent components of the other layer is a high hardness resin, preferably 70% by mass or more is a high hardness resin, and 80% by mass or more is a high hardness resin. It is more preferably a resin, more preferably 90% by mass or more of a high hardness resin, and even more preferably 99% by mass or more of a high hardness resin.
  • a (meth)acrylic resin is exemplified as the high-hardness resin. That is, the other layer is preferably a layer containing (meth)acrylic resin ((meth)acrylic resin layer).
  • the high-hardness resin is preferably a resin having a pencil hardness of HB or higher, and more preferably a resin having a pencil hardness of H or higher.
  • the high hardness resin contained in the high hardness resin layer may be one kind or two or more kinds. Although the upper limit of the pencil hardness of the high-hardness resin is not particularly defined, for example, 3H or less is practical.
  • the high-hardness resin includes (meth)acrylic resin, but is not limited thereto, and a wide range of known high-hardness resins can be used.
  • Hard resins are typically thermoplastic resins.
  • As the (meth)acrylic resin a polymer of (meth)acrylic compound monomers can be used. Examples of (meth)acrylic compound monomers include acrylonitrile, methacrylonitrile acrylic acid, methacrylic acid and (meth)acrylic acid esters.
  • Examples of (meth)acrylic acid esters include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and 2-ethylhexyl methacrylate. is mentioned. Among them, methyl methacrylate (MMA) is preferred. Two or more of these (meth)acrylic compound monomers may be mixed. Also, other monomers such as vinyl compounds (eg, styrene) may be copolymerized within the scope of the present invention. In the (meth)acrylic resin used in the present embodiment, the proportion of (meth)acrylic compound monomer units is preferably 80% by mass or more, more preferably 90% by mass or more.
  • the high-hardness resin layer may be formed only from a high-hardness resin (preferably (meth)acrylic resin), or formed from a resin composition containing a high-hardness resin (preferably (meth)acrylic resin) and an additive.
  • a high-hardness resin preferably (meth)acrylic resin
  • an additive preferably (meth)acrylic resin
  • those commonly used in resin sheets can be used, and examples of such additives include antioxidants, anti-colorants, antistatic agents, release agents, lubricants, dyes, , pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, reinforcing agents such as organic fillers and inorganic fillers.
  • the method of mixing the additive and the resin is not particularly limited, and a method of compounding the total amount, a method of dry-blending a masterbatch, a method of dry-blending the total amount, or the like can be used.
  • the amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, based on the total mass of the high-hardness resin layer (that is, the resin composition for forming another layer). More preferably, 0 to 5% by mass is particularly preferable.
  • the thickness of the high-hardness resin layer (preferably (meth)acrylic resin layer) is preferably 20 ⁇ m or more, more preferably 25 ⁇ m or more, and even more preferably 30 ⁇ m or more. By making it more than the said lower limit, there exists a tendency for pencil hardness to become high.
  • the thickness of the high-hardness resin layer is preferably 100 ⁇ m or less, more preferably 85 ⁇ m or less, still more preferably 70 ⁇ m or less, even more preferably 50 ⁇ m or less, and 40 ⁇ m or less. is even more preferable.
  • the toughness of the film is increased, and problems such as cracking due to handling tend to be less likely to occur.
  • the thickness ratio between the polycarbonate resin film and the high-hardness resin layer is preferably 2/1 to 10/1. It is more preferably 1 to 8/1, and may be 2/1 to 7/1.
  • the multilayer film of the first example has at least one polycarbonate resin film and one or more high-hardness resin layers (preferably (meth)acrylic resin layers) each (preferably one layer each),
  • the total thickness of the polycarbonate resin film and the high-hardness resin layer is 50 to 1500 ⁇ m.
  • the lower limit of the total thickness is preferably 100 ⁇ m or more, more preferably 130 ⁇ m or more, even more preferably 140 ⁇ m or more, and may be 180 ⁇ m or more.
  • the upper limit of the total thickness is preferably 1000 ⁇ m or less, more preferably 800 ⁇ m or less, even more preferably 550 ⁇ m or less, even more preferably 500 ⁇ m or less, and 450 ⁇ m or less. It may be 400 ⁇ m or less.
  • the multilayer film of the first example preferably has a pencil hardness of HB or higher, more preferably H or higher, measured from the high-hardness resin layer side.
  • the upper limit of the pencil hardness is not particularly defined, 3H or less is practical.
  • a second example of the multilayer film of the present embodiment is the polycarbonate resin film of the present embodiment, or the multilayer film of the present embodiment (in particular, the multilayer film of the first example above and the multilayer film of the third example described later). ) with a masking film on one or both sides.
  • the masking film may be provided on the surface of the polycarbonate resin film, may be provided on the surface of the high-hardness resin layer, may be provided on the surface of the hard coat layer, or may be provided on the surface of any other layer. good too.
  • the masking film preferably has an adhesive surface that has an appropriate amount of adhesive strength with adjacent layers.
  • the masking film may be a single layer consisting of only an adhesive layer, but preferably has a two-layer structure consisting of a substrate and an adhesive layer.
  • the masking film may have a multilayer structure further including layers other than the base material and the adhesive layer described above.
  • the base material of the masking film is preferably a thermoplastic resin film, more preferably a polyolefin resin film.
  • the polyolefin resin for example, polyethylene, polypropylene, or the like can be used, and it may be a homopolymer or a copolymer.
  • polyolefin resins polyethylene is preferred.
  • polyethylene low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE) and the like can be used. Low density polyethylene is preferred.
  • polystyrene resin a copolymer of ethylene and/or propylene and a monomer copolymerizable therewith can be used.
  • monomers that can be copolymerized with ethylene and/or propylene include ⁇ -olefins, styrenes, dienes, cyclic compounds, oxygen atom-containing compounds, and the like.
  • the polyolefin resin may contain a modified polyolefin resin modified with a small amount of carboxyl group-containing monomers such as acrylic acid, maleic acid, methacrylic acid, maleic anhydride, fumaric acid and itaconic acid. Modification is usually possible by copolymerization or graft modification.
  • the polyolefin resin film that is the substrate of the masking film preferably contains 80% by mass or more of the polyolefin resin, more preferably 90% by mass or more of the polyolefin resin, based on the total mass of the substrate, and more preferably 95% by mass. % or more polyolefin resin.
  • the adhesive layer of the masking film is preferably molded from thermoplastic resin containing elastomer.
  • thermoplastic resins contained in the adhesive layer include polyolefin resins such as polypropylene and modified polyolefin.
  • polyolefin resins such as polypropylene and modified polyolefin.
  • polyethylene, polypropylene, or the like can be used, and it may be a homopolymer or a copolymer.
  • polyethylene is preferred.
  • the adhesive layer of the masking film preferably contains 80% by mass or more of thermoplastic resin, more preferably 90% by mass or more of thermoplastic resin, based on the total mass of the adhesive layer, and more preferably 95% by mass or more. More preferably, it contains a thermoplastic resin.
  • the value of adhesive force on the adhesive surface of the masking film is preferably 5 (mN/25 mm) or more and 5000 (mN/25 mm) or less, more preferably, against the surface of PMMA (polymethyl methacrylate resin layer). It is 9 (mN/25mm) or more and 3000 (mN/25mm) or less.
  • the thickness of the masking film is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the thickness of the masking film is preferably 100 ⁇ m or less, more preferably 90 ⁇ m or less, and even more preferably 80 ⁇ m or less.
  • a third example of the multilayer film of the present embodiment is either the polycarbonate resin film of the present embodiment or the multilayer film of the present embodiment (in particular, the multilayer film of the first example and the multilayer film of the second example). It is a multilayer film having a hard coat layer on one or both sides of the film.
  • the hard coat layer may be provided on the surface of the polycarbonate resin film, may be provided on the surface of the high-hardness resin layer, or may be provided on the surface of any other layer.
  • the hard coat layer (meth)acrylic, silicon, melamine, urethane, epoxy, and other known compounds that form a crosslinked film can be used. ) acrylic and (meth)urethane acrylate are preferred.
  • the curing method known methods such as ultraviolet curing, heat curing, and electron beam curing can be used.
  • the surface to be the front side preferably has a pencil hardness of HB or more, more preferably H or more. A practical expression of the pencil hardness is 3H or less.
  • a method for applying the hard coat liquid is not particularly limited, and a known method can be used.
  • Examples thereof include a spin coating method, a dipping method, a spray method, a slide coating method, a bar coating method, a roll coating method, a gravure coating method, a meniscus coating method, a flexographic printing method, a screen printing method, a beat coating method, and a picking method.
  • the hardcoat layer may be further modified.
  • one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment, infrared cut treatment, and antiglare treatment can be applied. These treatment methods are not particularly limited, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of vapor-depositing a dielectric thin film, a method of applying an antistatic paint, etc.
  • the film thickness is 40 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • Sufficient hardness can be obtained by setting the thickness to 1 ⁇ m or more.
  • the film thickness is 40 ⁇ m or less, the occurrence of cracks during bending can be suppressed.
  • the layer structure of the multilayer film of this embodiment examples include the following. Needless to say, the multilayer film of the present embodiment is not limited to these. (1) (meth) acrylic resin layer / polycarbonate resin layer (2) masking film / (meth) acrylic resin layer / polycarbonate resin layer / masking film (3) hard coat layer / (meth) acrylic resin layer / polycarbonate resin layer ( 4) Masking film/hard coat layer/(meth)acrylic resin layer/polycarbonate resin layer/masking film (5) Hard coat layer/(meth)acrylic resin layer/polycarbonate resin layer/hard coat layer (6) Masking film/hard Coat layer/(meth)acrylic resin layer/polycarbonate resin layer/hard coat layer/masking film (7) (meth)acrylic resin layer/polycarbonate resin layer/hard coat layer (8) Masking film/(meth)acrylic resin layer/ Polycarbonate resin layer/hard coat layer/masking film (9) (meth)acrylic resin layer/polycarbonate resin layer/(meth
  • the use of the polycarbonate resin film and/or multilayer film of the present embodiment is not particularly specified, and it can be used for various applications such as electronic and electrical equipment, and is preferably used for display devices, such as liquid crystal display devices and organic EL. It is more preferable to use it for a display device or a head-up display device.
  • the polycarbonate resin film of the present embodiment is not particularly defined as long as it can be manufactured so as to satisfy the above conditions 1 to 3, and for example, extrusion molding and cast molding are preferable.
  • extrusion molding there is a method in which the resulting semi-molten polycarbonate resin film is passed through rolls and cooled and solidified to form a product. More specifically, a resin composition for forming a polycarbonate resin film consisting of only a polycarbonate resin, or a resin composition for forming a polycarbonate resin film containing a polycarbonate resin and an additive is extruded from a T-die or the like to obtain a semi-melt.
  • a polycarbonate resin film having a shape is cooled and solidified while being passed through a roll to form a product.
  • the resin composition for forming a polycarbonate resin film is extruded from a T-die or the like after melting and kneading pellets, flakes or powder in an extruder.
  • the extruder may be single-screw or twin-screw, and may be vented or non-vented.
  • the temperature of the resin substrate is preferably 200° C. or higher, more preferably 240° C. or higher, further preferably 260° C. or lower, and preferably 320° C. or lower. , 300° C. or lower, and more preferably 280° C. or lower.
  • the inter-roll point distance between the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls is 160. including being ⁇ 450 mm.
  • the direction perpendicular to the rotation axis direction is usually the direction in which the roll rotates and the film is conveyed.
  • FIG. 2 shows a schematic diagram of the production of the polycarbonate resin film of the present embodiment using rolls, where 21 is a T die, 22 is a touch roll, and 23 is a first cooling roll.
  • the polycarbonate resin film 24 during the manufacturing process is meant to include, for example, a molten polycarbonate resin film before being completely cooled after being extruded from a T-die.
  • a resin composition for forming a semi-molten polycarbonate resin film is extruded from a T-die 21 into a film, passes through a touch roll 22 and a first cooling roll 23, and then passes through a second cooling roll 25. pass through.
  • the inter-roll point distance between the first cooling roll 23 and the second cooling roll 25 in the direction perpendicular to the rotation axis direction of the rolls is set to 160 to 450 mm.
  • the time for applying tension to the film 24 can be precisely adjusted, the tension can be uniformly applied to the film 24 by the second cooling roll 25, and the principal axis of the film can be easily straightened. be able to.
  • the inter-roll contact distance between the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls will be described with reference to FIG.
  • FIG. 3 is a partial enlarged view of FIG. 2, and the reference numerals are the same as in FIG.
  • the rotation axis direction of the roll is the direction perpendicular to the direction in which the roll rotates, that is, the direction perpendicular to the direction in which the film (usually a semi-molten polycarbonate resin film) is conveyed. Therefore, in relation to the first cooling roll 23, the direction perpendicular to the rotation axis direction of the rolls means the center (23a) of the rotation axis of the first cooling roll 23 and the first cooling roll 23 and the direction of the line connected by the point (23b) where the film 24 is in contact. A point ( 23 b ) where the first cooling roll 23 and the film 24 are in contact is a point of contact with the first cooling roll 23 .
  • the direction perpendicular to the rotation axis direction of the rolls is the center (25a) of the rotation axis of the second cooling roll 25 and the second cooling roll. It refers to the direction of the line connected by the point (25b) where 25 and film 24 are in contact.
  • a point ( 25 b ) where the second cooling roll 25 and the film 24 are in contact is a point of contact with the second cooling roll 25 .
  • the distance between the contact point 23b between the first cooling roll 23 and the film 24 and the contact point 25b between the second cooling roll 25 and the film 24 is 160 to 450 mm. becomes.
  • the contact point 23b between the first cooling roll 23 and the film 24 may not be fixed at one point in a geometrical sense like a contact point.
  • the point at which the film 24 is finally peeled off from the first cooling roll 23 is defined as a contact point 23b between the first roll 23 and the film 24 .
  • the point where the film 24 and the second cooling roll 25 first come into contact with each other is defined as a point of contact 25b between the film 24 and the second cooling roll 25 .
  • the lower limit of the distance between the points between the rolls is preferably 200 mm or more, more preferably 225 mm or more, still more preferably 250 mm or more, even more preferably 280 mm or more, and 300 mm or more. is even more preferable.
  • the upper limit of the distance between the points between the rolls is preferably 420 mm or less, more preferably 400 mm or less, even more preferably 350 mm or less, even more preferably 330 mm or less, and 315 mm or less. It is even more preferable to have By making it equal to or less than the above upper limit, there is a tendency that the uniformity of the main axis azimuth angle becomes high.
  • the diameter of the first cooling roll is preferably 100 mm or more, more preferably 150 mm or more, still more preferably 200 mm or more, still more preferably 250 mm or more, and 280 mm or more. is even more preferred. By making it equal to or higher than the lower limit, the time that the film contacts the roll at a constant molding speed becomes longer, so that the film temperature over the entire width of the film when the resin is peeled from the roll tends to be constant. The main axis azimuth tends to be uniform.
  • the diameter of the first cooling roll is preferably 1000 mm or less, more preferably 900 mm or less, still more preferably 800 mm or less, even more preferably 700 mm or less, and 650 mm or less.
  • the diameter of the second cooling roll is preferably 100 mm or more, more preferably 150 mm or more, still more preferably 200 mm or more, even more preferably 250 mm or more, and 280 mm or more. is even more preferred.
  • the contact length between the first cooling roll 23 and the film 24 can be easily changed arbitrarily by changing the position of the second cooling roll 25 or the position of the guide roll, and the main axis azimuth angle tend to be easier to equalize.
  • the diameter of the first cooling roll is preferably 1000 mm or less, more preferably 900 mm or less, still more preferably 800 mm or less, even more preferably 700 mm or less, and 650 mm or less. It is even more preferable to have When the thickness is equal to or less than the upper limit, the mass of the roll can be reduced, and the position of the second cooling roll 25 tends to be easily changed.
  • the surface temperature of the first cooling roll is preferably 80° C. or higher, more preferably 90° C. or higher, and even more preferably 95° C. or higher. When the content is equal to or higher than the above lower limit, it tends to be easy to improve appearance defects such as film transfer defects and die lines.
  • the surface temperature of the first cooling roll is preferably 140°C or lower, more preferably 120°C or lower, even more preferably 110°C or lower, and even more preferably 105°C or lower. . When the thickness is equal to or less than the upper limit, the film 24 tends to be easily peeled off from the first cooling roll 23 .
  • the surface temperature of the second cooling roll is preferably 110° C. or higher, more preferably 120° C.
  • the thickness is equal to or higher than the lower limit, the adhesiveness between the second cooling roll 25 and the film 24 is improved, and the separation between the first cooling roll 23 and the film 24 tends to be stabilized.
  • the surface temperature of the first cooling roll is preferably 160° C. or lower, more preferably 150° C. or lower, and even more preferably 145° C. or lower.
  • the difference in surface temperature between the second chill roll and the first chill roll is preferably 10° C. or higher, more preferably 20° C. or higher, and even more preferably 30° C. or higher.
  • the difference in surface temperature between the second chill roll and the first chill roll is preferably 60°C or less, more preferably 50°C or less, and even more preferably 45°C or less.
  • the surface temperature of the touch roll is preferably 80°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher. When the content is equal to or higher than the above lower limit, it tends to be easy to improve appearance defects such as film transfer defects and die lines. Also, the surface temperature of the touch roll is preferably 140° C. or lower, more preferably 110° C. or lower, and even more preferably 105° C. or lower. When the thickness is equal to or less than the above upper limit, it tends to be possible to effectively prevent the film from sticking to the touch roll and resulting in poor appearance.
  • the materials of the surfaces of the touch roll 22, the first cooling roll 23, and the second cooling roll 25 are not particularly specified, but are preferably metal, and may be mirror-finished. preferable. By using a roll made of such a material, a polycarbonate resin film whose main axis orientation is less likely to vary can be obtained.
  • the number of cooling rolls does not need to be two, and may be three or more.
  • the first and second cooling rolls through which the polycarbonate resin extruded from the T-die passes are the first cooling roll and the second cooling roll, respectively.
  • the peripheral speed ratio between the first cooling roll and the take-up roll is preferably 1:0.995 to 1:0.975.
  • the tension between the second cooling roll 25 and the take-up roll is set to an appropriate value, and the azimuth angle of the main axis tends to be more uniform.
  • the circumferential velocity ratio is set to 0.995 or less, there is a tendency that the phase difference can be easily adjusted within a range of 5 to 50 nm.
  • the take-up roll corresponds to, for example, the third roll 26 in FIG. That is, the rolls acting to take up the film.
  • the peripheral speed ratio between the first cooling roll and the take-up roll is 0.980 or more with respect to the peripheral speed 1 of the first cooling roll. Further, the peripheral speed ratio between the first cooling roll and the take-up roll is more preferably 0.993 or less, more preferably 0.990 or less with respect to the peripheral speed 1 of the first cooling roll, It is more preferably 0.987 or less.
  • a resin composition for forming a polycarbonate resin film is usually extruded from a T-die 21 as shown in FIG.
  • the width of the T-die is preferably 600 mm or more. When the content is at least the above lower limit, the resulting polycarbonate resin film tends to be more improved in moldability and handleability.
  • the width of the T-die is preferably 800 mm or more, more preferably 1000 mm or more, and even more preferably 1200 mm or more.
  • the upper limit of the width of the T-die is preferably 5000 mm or less, more preferably 3000 mm or less, even more preferably 2500 mm or less, even more preferably 2200 mm or less, and 2000 mm or less. is even more preferable.
  • the contact length between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm.
  • the uniformity of the principal axis orientation tends to be further improved.
  • the main axis azimuth angle uniformed between the first cooling roll and the second cooling roll is relaxed on the second cooling roll, and as a result, it is possible to prevent the dispersion of the main axis azimuth from becoming large. It is possible to make it difficult for the main axis orientation to fluctuate.
  • the contact length in the vertical direction is the arc length of the contact between the second cooling roll and the film.
  • the reference numerals in FIG. 4 are the same as those in FIG. 2
  • it refers to the length 30 where the polycarbonate resin film 24 in the process of production is in contact with the second chill roll 25 .
  • the length here refers to the length of contact with the second cooling roll 25 in the direction perpendicular to the rotation axis of the second cooling roll 25, that is, the transport direction of the polycarbonate resin film. Since the polycarbonate resin film 24 in contact with the second cooling roll 25 is a film in a molten state, it is in contact with the second cooling roll at a constant distance.
  • the contact length is more preferably 10 mm or longer, more preferably 15 mm or longer, still more preferably 20 mm or longer, still more preferably 30 mm or longer, and further preferably 35 mm or longer. More preferred.
  • the contact length is also preferably 350 mm or less, further preferably 300 mm or less, even more preferably 200 mm or less, even more preferably 150 mm or less, and 100 mm or less. is still more preferable, and may be 80 mm or less. By making it equal to or less than the above upper limit, there is a tendency that the uniformity of the principal axis orientation is further improved.
  • the multilayer film of the present embodiment is not particularly limited as long as it satisfies the above conditions A to C and can be manufactured by a polycarbonate resin film and other layers, and known methods can be employed.
  • the distance between the roll-to-roll points of the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls is 160 to 160. Including being 450mm.
  • the peripheral speed ratio between the first cooling roll and the take-up roll is preferably 1:0.995 to 1:0.975.
  • the resin composition for forming the polycarbonate resin film and the resin composition for forming other layers are extruded from a T-die, and the width of the T-die is 600 mm. It is preferable that it is above.
  • the contact length between the second cooling roll and the semi-molten multilayer film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm.
  • the second cooling roll may be in contact with the polycarbonate resin film or may be in contact with other layers.
  • the other layer is preferably a (meth)acrylic resin layer.
  • a hard coat layer and/or a masking film may be provided thereon.
  • the details of the first example of the method for producing a multilayer film of the present embodiment are as described above, except that the multilayer film is produced by laminating at least one other layer in addition to the polycarbonate resin film. is the same as the method for producing a polycarbonate resin film, and the preferred range is also the same.
  • the obtained multilayer film is the same as the multilayer film of the present embodiment described above, and the preferred range is also the same.
  • a second example of the method for producing a multilayer film of the present embodiment is a method of forming another layer after molding a polycarbonate resin film. Specifically, bonding a polycarbonate resin and a high-hardness resin layer together can be mentioned. Further, a hard coat layer and/or a masking film may be provided on the polycarbonate resin film or on the multilayer film of the polycarbonate resin and the high-hardness resin layer.
  • JP-A-2018-103518 and JP-A-2016-060786 can be referred to within the scope of the present invention for the production of multilayer films, and the contents of these are incorporated herein.
  • ⁇ Pencil hardness> The pencil hardness of the film was measured with a load of 500 g ⁇ 10 g, and the measuring method other than the load was based on JIS K5600-5-4.
  • the hardness was measured from the higher hardness side. In the multilayer film shown in this example, the measurement was performed from the high-hardness resin layer ((meth)acrylic resin layer) side.
  • the azimuth angle of the main axis of the polycarbonate resin film and multilayer film was the azimuth angle of the slow axis representing the direction of the maximum refractive index. Also, since the value of the azimuth angle of the main axis changes depending on the measurement point, the average value of the azimuth angle of the main axis is measured in this embodiment.
  • PA-300 manufactured by Photonic Lattice was used to measure the principal axis azimuth angle. The film was placed so that the direction perpendicular to the longitudinal direction was directed from the front to the back of the device.
  • the center point connecting the diagonals of the film was used as the center point, and the main axis azimuth angles were measured at intervals of 50 mm toward both ends in the longitudinal direction.
  • the film was cut to 1300 mm and 300 mm in the width direction and the film flow direction, respectively, and the center point of the 300 x 200 mm area was used as the measurement point.
  • Deviation (°) from the average value of the main axis azimuth angle is calculated by subtracting the main axis azimuth angle at each measurement point from the average value of the measured main axis azimuth angle, and the value with the largest absolute value is the deviation from the average value of the main axis azimuth angle.
  • the main axis azimuth angle was measured from the high hardness resin layer ((meth)acrylic resin layer) side.
  • Phase difference> For the retardation of the polycarbonate resin film and multilayer film, the maximum in-plane retardation at a measurement wavelength of 520 nm was measured. The unit is nm. PA-300 manufactured by Photonic Lattice was used to measure the phase difference. The film was placed so that the direction perpendicular to the longitudinal direction was directed from the front to the back of the device. As for the measurement points of the apparatus, the center point connecting the diagonals of the film was used as the center point, and the retardation was measured at intervals of 50 mm toward both ends in the longitudinal direction. Among these, the highest phase difference was taken as the phase difference in the present invention. For the multilayer film, the retardation was measured from the high hardness resin layer ((meth)acrylic resin layer) side.
  • the thickness of the multilayer film was measured by a method based on JIS K 7130 A method.
  • Example 1 A multi-layer extruder having a single-screw extruder with a shaft diameter of 50 mm, a single-screw extruder with a shaft diameter of 100 mm, a feed block connected to all the extruders, and a T-die with a width of 1500 mm connected to the feed block.
  • a multilayer film was formed by A (meth)acrylic resin (manufactured by Arkema Co., Ltd., trade name Altuglas V020, composition: polymethyl methacrylate) was continuously introduced as a high-hardness resin into a single-screw extruder with a shaft diameter of 50 mm, and extruded at a cylinder temperature of 240°C.
  • a (meth)acrylic resin manufactured by Arkema Co., Ltd., trade name Altuglas V020, composition: polymethyl methacrylate
  • a polycarbonate resin manufactured by Mitsubishi Engineering-Plastics, trade name: Iupilon S-1000, bisphenol A type polycarbonate resin, weight average molecular weight: 59000
  • a polycarbonate resin manufactured by Mitsubishi Engineering-Plastics, trade name: Iupilon S-1000, bisphenol A type polycarbonate resin, weight average molecular weight: 59000
  • the cylinder temperature was Extruded at 280°C.
  • a single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm were set so that the discharge amount ratio was 35/90.
  • a feed block connected to the entire extruder was equipped with a two-kind and two-layer distribution pin, and the temperature was set to 270° C.
  • the contact distance between the first cooling roll 23 and the second cooling roll 25 was 305 mm
  • the contact length between the multilayer film and the second cooling roll 25 was 40 mm
  • a multilayer film was obtained.
  • the thickness of the (meth)acrylic resin layer of the obtained multilayer film was 35 ⁇ m near the center.
  • the polycarbonate resin layer side is in contact with the second cooling roll.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 2 A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 40/140, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 180 ⁇ m. The thickness of the (meth)acrylic resin layer was 40 ⁇ m near the center. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 3 A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 55/199, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 254 ⁇ m. The thickness of the (meth)acrylic resin layer was 55 ⁇ m near the center. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 4 A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 55/320, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 375 ⁇ m. The thickness of the (meth)acrylic resin layer was 55 ⁇ m near the center. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 5 Same as Example 4, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was set to 320 mm, and the contact length between the multilayer film and the second cooling roll was set to 310 mm. to obtain a multilayer film. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 6 The distance between the contacts between the first cooling roll 23 and the second cooling roll 25 was set to 205 mm, and the contact length between the multilayer film and the second cooling roll 25 was set to 60 mm.
  • a multilayer film was obtained in the same manner as in Example 4. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 7 A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 55/445, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 500 ⁇ m. The thickness of the (meth)acrylic resin layer was 55 ⁇ m near the center. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 8 On the surface of the (meth)acrylic resin layer of the multilayer film (total thickness: 180 ⁇ m, (meth)acrylic resin layer: 40 ⁇ m) produced in Example 2, a UV-curable urethane acrylate hard coat was applied using a roll coating method. (UV curable urethane acrylate manufactured by Mitsubishi Chemical, trade name UV-7650B) was coated to a thickness of 5 ⁇ m to obtain a multilayer film. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 9 On the surface of the (meth)acrylic resin layer of the multilayer film produced in Example 4 (total thickness: 375 ⁇ m, (meth)acrylic resin layer thickness: 55 ⁇ m), a UV-curable urethane acrylate hard coat was applied using a roll coating method. (UV curable urethane acrylate manufactured by Mitsubishi Chemical, trade name UV-7650B) was coated to a thickness of 5 ⁇ m to obtain a multilayer film. With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Comparative example 1 Same as Example 1 except that the distance between the contacts between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the distance between the contacts of the second cooling roll 25 was 190 mm. to obtain a multilayer film.
  • the total thickness of the multilayer film was 125 ⁇ m, and the thickness of the (meth)acrylic resin layer was 35 ⁇ m near the center.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • the multilayer film was formed in the same manner as in Example 3, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the second cooling roll 25 was 190 mm. got the film.
  • the total thickness of the multilayer film was 254 ⁇ m, and the thickness of the (meth)acrylic resin layer was 55 ⁇ m near the center.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • the multilayer film was formed in the same manner as in Example 4 except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the second cooling roll 25 was 190 mm. got the film.
  • the total thickness of the multilayer film was 375 ⁇ m, and the thickness of the (meth)acrylic resin layer was 55 ⁇ m near the center.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Comparative example 4 The multilayer film was formed in the same manner as in Example 7, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the second cooling roll 25 was 190 mm. got the film.
  • the total thickness of the multilayer film was 500 ⁇ m, and the thickness of the (meth)acrylic resin layer was 55 ⁇ m near the center.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 10 A polycarbonate resin film was molded using an extruder having a single-screw extruder with a shaft diameter of 100 mm and a T-die with a width of 1500 mm connected to the extruder.
  • Polycarbonate resin manufactured by Mitsubishi Engineering-Plastics, trade name: Iupilon S-1000, bisphenol A type polycarbonate resin, weight average molecular weight: 59000
  • thermoplastic resin A was continuously introduced as thermoplastic resin A into a single-screw extruder having a shaft diameter of 100 mm. , extruded at a cylinder temperature of 280°C.
  • a single-screw extruder with a shaft diameter of 100 mm was set to have a discharge rate of 200 kg/h, and a T-die at a temperature of 270° C. was used to extrude onto a film.
  • the roll temperature of the touch roll 22 is 100°C
  • the roll temperature of the first cooling roll 23 is 100°C
  • the roll temperature of the second cooling roll 25 is 140°C. bottom.
  • the contact distance between the first cooling roll 23 and the second cooling roll 25 was 305 mm
  • the contact length between the polycarbonate resin film and the second cooling roll 25 was 40 mm
  • the first cooling roll 23 A polycarbonate resin film was obtained by setting the peripheral speed ratio of the take-up roll 26 to 0.985 and setting the line speed so that the thickness of the polycarbonate resin film was 100 ⁇ m.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 11 A polycarbonate resin film was obtained in the same manner as in Example 10, except that the discharge rate of the single screw extruder with a shaft diameter of 100 mm was 300 kg/h, and the line speed was set so that the thickness of the polycarbonate resin film was 254 ⁇ m.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 12 A polycarbonate resin film was obtained in the same manner as in Example 10, except that the discharge rate of the single screw extruder with a shaft diameter of 100 mm was 300 kg/h, and the line speed was set so that the thickness of the polycarbonate resin film was 375 ⁇ m.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Example 13 A polycarbonate resin film was obtained in the same manner as in Example 10, except that the discharge rate of the single screw extruder with a shaft diameter of 100 mm was 300 kg/h, and the line speed was set so that the thickness of the polycarbonate resin film was 500 ⁇ m.
  • the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Comparative example 5 The procedure of Example 10 was repeated except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained. For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Comparative example 6 The procedure of Example 11 was repeated except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained. For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Comparative example 7 In the same manner as in Example 12, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained. For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
  • Comparative example 8 In the same manner as in Example 13, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained.
  • the multilayer film of the present invention had a low retardation property and a uniform principal axis orientation despite having a polycarbonate resin film using PC-A as a raw material.
  • the polycarbonate resin film of the present invention had a low retardation property and a uniform principal axis orientation although PC-A was used as a raw material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is a polycarbonate resin film comprising a constituent unit represented by formula (1), said polycarbonate resin film having uniformity of the principal axis orientation and low phase difference properties. Also provided are a multilayer film, a display device, a polycarbonate resin film manufacturing method, and a multilayer film manufacturing method. The polycarbonate resin film contains a polycarbonate resin and satisfies conditions 1-3. Condition 1: the principal constituent unit of the polycarbonate resin is the constituent unit represented by formula 1. Condition 2: deviation from the average value of the principal axis orientation angle of the film is within ±11°. Condition 3: the phase difference in the film is 5-50 nm.

Description

ポリカーボネート樹脂フィルム、多層フィルム、表示装置、ポリカーボネート樹脂フィルムの製造方法、および、多層フィルムの製造方法Polycarbonate resin film, multilayer film, display device, method for producing polycarbonate resin film, and method for producing multilayer film
 本発明は、ポリカーボネート樹脂フィルム、多層フィルム、表示装置、ポリカーボネート樹脂フィルムの製造方法、および、多層フィルムの製造方法に関する。 The present invention relates to a polycarbonate resin film, a multilayer film, a display device, a method for producing a polycarbonate resin film, and a method for producing a multilayer film.
 従来、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」ということがある)にカーボネート前駆物質を反応させて得られるポリカーボネート樹脂(以下、「PC-A」ということがある)は透明性、耐熱性、機械的特性、寸法安定性が優れているがゆえにエンジニアリングプラスチックとして多くの分野に広く使用されてきた。さらに、近年、その透明性を生かして、光ディスク、フィルム、レンズ等の分野への光学用材料としての利用が展開されている。
 しかしながら、ポリカーボネート樹脂(特に、PC-A)は、アクリル樹脂や環状オレフィン樹脂などに比べると光弾性係数が高く、また、応力によって位相差が発現しやすい材料であるため、透明導電性フィルム用基板やディスプレイ前面板などに使用する場合、偏光サングラスでみた時に虹ムラが見えてしまう問題があった。また、近年の自動車に搭載され始めているヘッドアップディスプレイ装置は、装置本体からガラス等の投影部に画像を投影する投斜口から埃やゴミが入り込まないようにするための防塵カバーが必要とされている。ポリカーボネート樹脂製のカバーを用いる場合、カバー自体の位相差が高いことや、主軸方位のばらつきが大きいと、投影された画像にゆがみが生じたりする場合があるため、低位相差化、かつ、主軸方位の均一化が必要であった。また、カバー自体の表面硬度が低いと角が尖ったものなどと接触すると表面が傷ついてしまうという課題があった。
 そして、これまでは、PC-Aを用いたポリカーボネート樹脂フィルムについて、低位相差化かつ主軸方位の均一化は難しいとされて、特許文献1、特許文献2、および、特許文献3のようにポリマーの主骨格を位相差が発生しづらいような構造に変更することで上記課題に対応していた。
Conventionally, polycarbonate resin (hereinafter sometimes referred to as "PC-A") obtained by reacting 2,2-bis(4-hydroxyphenyl)propane (hereinafter sometimes referred to as "bisphenol A") with a carbonate precursor ) has been widely used as an engineering plastic in many fields because of its excellent transparency, heat resistance, mechanical properties and dimensional stability. Furthermore, in recent years, by taking advantage of its transparency, it is being used as an optical material in the fields of optical discs, films, lenses, and the like.
However, polycarbonate resin (especially PC-A) has a higher photoelastic coefficient than acrylic resin, cyclic olefin resin, etc., and is a material that easily develops retardation due to stress. When used for display front panels, etc., there was a problem that rainbow unevenness was visible when viewed with polarized sunglasses. In addition, head-up display devices, which are beginning to be installed in automobiles in recent years, require a dustproof cover to prevent dust and dirt from entering from the projection port for projecting an image from the main body of the device onto a projection part such as glass. ing. When using a cover made of polycarbonate resin, if the phase difference of the cover itself is high or the main axis orientation varies greatly, the projected image may be distorted. It was necessary to equalize the In addition, if the surface hardness of the cover itself is low, there is a problem that the surface is damaged when it comes into contact with an object with sharp edges.
Until now, it has been difficult to reduce the phase difference and make the main axis orientation uniform for polycarbonate resin films using PC-A. The above problem was solved by changing the structure of the main skeleton to make it difficult for the phase difference to occur.
特開2004-331688号公報Japanese Patent Application Laid-Open No. 2004-331688 特開平08-134199号公報JP-A-08-134199 国際公開第2020/166408号WO2020/166408
 しかしながら、ポリマー骨格の変更による位相差の低減は、開発コストが高いという問題がある。すなわち、従来から一般的に用いられているPC-Aで、位相差が低いフィルムが得られれば非常に有益である。さらに、このような位相差の低減が難しいPC-Aにおいて、主軸方位も均一に出来ればより有益である。
 本発明は、かかる課題を解決することを目的とするものであって、PC-Aを原料として用いたポリカーボネート樹脂フィルムであって、低位相差性と主軸方位の均一性を有しているポリカーボネート樹脂フィルム、ならびに、前記ポリカーボネート樹脂フィルムを用いた多層フィルム、表示装置、ポリカーボネート樹脂フィルムの製造方法、および、多層フィルムの製造方法を提供することを目的とする。
However, reducing the retardation by changing the polymer skeleton has the problem of high development costs. That is, it would be very beneficial if a film with a low retardation could be obtained with PC-A, which has been generally used. Furthermore, in a PC-A in which it is difficult to reduce the phase difference, it would be more beneficial if the main axis orientation could be made uniform.
The present invention is intended to solve such problems, and is a polycarbonate resin film using PC-A as a raw material, which has a low retardation and a uniform main axis orientation. An object of the present invention is to provide a film, a multilayer film and a display device using the polycarbonate resin film, a method for manufacturing the polycarbonate resin film, and a method for manufacturing the multilayer film.
 上記課題のもと、本発明者が検討を行った結果、ポリカーボネート樹脂フィルムの製造方法を調整することにより、PC-Aを原料として用いながら、ポリカーボネート樹脂フィルムの低位相差性と主軸方位の均一性を達成することに成功した。
 具体的には、下記手段により、上記課題は解決された。
<1>ポリカーボネート樹脂を含み、下記条件1~3を満たすポリカーボネート樹脂フィルム;
条件1:ポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である;
条件2:前記フィルムの主軸方位角の平均値からの偏差が±11°以内である;
条件3:前記フィルムの位相差が、5~50nmである。
式(1)
Figure JPOXMLDOC01-appb-C000003
<2>前記ポリカーボネート樹脂フィルムの厚みが、50~1500μmである、<1>に記載のポリカーボネート樹脂フィルム。
<3>ポリカーボネート樹脂フィルムと、少なくとも1層の他の層とを有し、
下記条件A~Cを満たす多層フィルム;
条件A:ポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である;
条件B:前記多層フィルムの主軸方位角の平均値からの偏差が±11°以内である;
条件C:前記多層フィルムの位相差が、5~50nmである。
式(1)
Figure JPOXMLDOC01-appb-C000004
<4>前記多層フィルムの前記他の層側から測定した鉛筆硬度がHB以上である、<3>に記載の多層フィルム。
<5>前記ポリカーボネート樹脂フィルムと、前記他の層1層の合計厚みが50~1500μmである、<3>または<4>に記載の多層フィルム。
<6>前記ポリカーボネート樹脂フィルムと、前記他の層の厚みの比率が、2/1~10/1である、<3>~<5>のいずれか1つに記載の多層フィルム。
<7>前記他の層の厚みが20~100μmである、<5>または<6>に記載の多層フィルム。
<8>前記他の層が、(メタ)アクリル樹脂を含む層である、<3>~<7>のいずれか1つに記載の多層フィルム。
<9><1>または<2>に記載のポリカーボネート樹脂フィルム、または、<3>~<8>のいずれか1つに記載の多層フィルムの一方の面上または両面上にハードコート層を有する、多層フィルム。
<10><1>または<2>に記載のポリカーボネート樹脂フィルム、または、<3>~<9>のいずれか1つに記載の多層フィルムの一方の面上または両面上にマスキングフィルムを有する、多層フィルム。
<11><1>または<2>に記載のポリカーボネート樹脂フィルム、および/または、<3>~<10>のいずれか1つに記載の多層フィルムを含む、表示装置。
<12><1>または<2>に記載のポリカーボネート樹脂フィルムの製造方法であって、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離が、160~450mmである、ポリカーボネート樹脂フィルムの製造方法。
<13>前記第一の冷却ロールと引き取りロールの周速度比が、1:0.995~1:0.975である、<12>に記載のポリカーボネート樹脂フィルムの製造方法。
<14>ポリカーボネート樹脂フィルム形成用の樹脂組成物をTダイから押し出すことを含み、前記Tダイの幅が600mm以上である、<12>または<13>に記載のポリカーボネート樹脂フィルムの製造方法。
<15>前記第二の冷却ロールと半溶融状のポリカーボネート樹脂フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さが、2~400mmである、<12>~<14>のいずれか1つに記載のポリカーボネート樹脂フィルムの製造方法。
<16><3>~<8>のいずれか1つに記載の多層フィルムの製造方法であって、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離が、160~450mmである、多層フィルムの製造方法。
<17>前記第一の冷却ロールと引き取りロールの周速度比が、1:0.995~1:0.975である、<16>に記載の多層フィルムの製造方法。
<18>ポリカーボネート樹脂フィルム形成用の樹脂組成物と他の層を形成用の樹脂組成物をTダイから押し出すことを含み、前記Tダイの幅が600mm以上である、<16>または<17>に記載の多層フィルムの製造方法。
<19>前記第二の冷却ロールと半溶融状の多層フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さが、2~400mmである、<16>~<18>のいずれか1つに記載の多層フィルムの製造方法。
<20>前記他の層が、(メタ)アクリル樹脂を含む層である、<16>~<19>のいずれか1つに記載の多層フィルムの製造方法。
Based on the above problems, the present inventors have studied and found that by adjusting the method for producing a polycarbonate resin film, while using PC-A as a raw material, the polycarbonate resin film has low retardation and uniformity of the main axis orientation. succeeded in achieving
Specifically, the above problems have been solved by the following means.
<1> A polycarbonate resin film containing a polycarbonate resin and satisfying the following conditions 1 to 3;
Condition 1: Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1);
Condition 2: the deviation from the average value of the main axis azimuth angle of the film is within ±11°;
Condition 3: The film has a retardation of 5 to 50 nm.
formula (1)
Figure JPOXMLDOC01-appb-C000003
<2> The polycarbonate resin film according to <1>, wherein the polycarbonate resin film has a thickness of 50 to 1500 μm.
<3> having a polycarbonate resin film and at least one other layer,
A multilayer film that satisfies the following conditions A to C;
Condition A: Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1);
Condition B: the deviation from the average value of the principal axis azimuth angle of the multilayer film is within ±11°;
Condition C: The retardation of the multilayer film is 5-50 nm.
formula (1)
Figure JPOXMLDOC01-appb-C000004
<4> The multilayer film according to <3>, wherein the pencil hardness measured from the other layer side of the multilayer film is HB or more.
<5> The multilayer film according to <3> or <4>, wherein the polycarbonate resin film and the other layer have a total thickness of 50 to 1500 μm.
<6> The multilayer film according to any one of <3> to <5>, wherein the thickness ratio between the polycarbonate resin film and the other layer is 2/1 to 10/1.
<7> The multilayer film according to <5> or <6>, wherein the other layer has a thickness of 20 to 100 μm.
<8> The multilayer film according to any one of <3> to <7>, wherein the other layer is a layer containing a (meth)acrylic resin.
<9> The polycarbonate resin film according to <1> or <2> or the multilayer film according to any one of <3> to <8> has a hard coat layer on one side or both sides thereof. , multilayer film.
<10> The polycarbonate resin film according to <1> or <2>, or the multilayer film according to any one of <3> to <9> has a masking film on one side or both sides, multilayer film.
<11> A display device comprising the polycarbonate resin film according to <1> or <2> and/or the multilayer film according to any one of <3> to <10>.
<12> The method for producing a polycarbonate resin film according to <1> or <2>, wherein the roll contact between the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls A method for producing a polycarbonate resin film, wherein the point-to-point distance is 160 to 450 mm.
<13> The method for producing a polycarbonate resin film according to <12>, wherein the peripheral speed ratio between the first cooling roll and the take-up roll is 1:0.995 to 1:0.975.
<14> The method for producing a polycarbonate resin film according to <12> or <13>, comprising extruding the resin composition for forming a polycarbonate resin film through a T-die, wherein the T-die has a width of 600 mm or more.
<15> The length of contact between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm, <12> to <14> A method for producing a polycarbonate resin film according to any one of.
<16> The method for producing a multilayer film according to any one of <3> to <8>, wherein the first cooling roll and the second cooling roll are perpendicular to the rotation axis direction of the rolls. A method for producing a multilayer film, wherein the inter-roll point-to-point distance in the direction is 160-450 mm.
<17> The method for producing a multilayer film according to <16>, wherein the peripheral speed ratio between the first cooling roll and the take-up roll is 1:0.995 to 1:0.975.
<18><16> or <17>, including extruding a resin composition for forming a polycarbonate resin film and a resin composition for forming another layer from a T-die, wherein the T-die has a width of 600 mm or more. A method for producing a multilayer film according to 1.
<19><16> to <18>, wherein the contact length between the second cooling roll and the semi-molten multilayer film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm. A method for producing a multilayer film according to any one of the above.
<20> The method for producing a multilayer film according to any one of <16> to <19>, wherein the other layer is a layer containing a (meth)acrylic resin.
 本発明により、PC-Aを原料として用いたポリカーボネート樹脂フィルムであって、低位相差性と主軸方位の均一性を有しているポリカーボネート樹脂フィルム、ならびに、多層フィルム、表示装置、ポリカーボネート樹脂フィルムの製造方法、および、多層フィルムの製造方法を提供可能になった。 INDUSTRIAL APPLICABILITY According to the present invention, a polycarbonate resin film using PC-A as a raw material, which has a low retardation property and uniform main axis orientation, as well as a multilayer film, a display device, and a polycarbonate resin film are manufactured. Methods and methods of making multilayer films are now available.
本実施形態の多層フィルムの一例を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows an example of the multilayer film of this embodiment. 本実施形態のポリカーボネート樹脂フィルムを、ロールを用いてで製造する方法を示す模式図である。It is a schematic diagram which shows the method of manufacturing the polycarbonate resin film of this embodiment using a roll. 図2の部分拡大図である。主に、半溶融状のポリカーボネート樹脂フィルムのロール間接点間距離を説明するための概略図である。FIG. 3 is a partially enlarged view of FIG. 2; FIG. 2 is a schematic diagram mainly for explaining the distance between roll-to-roll points of a semi-molten polycarbonate resin film. 図2の部分拡大図である。主に、第二の冷却ロールと半溶融状のポリカーボネート樹脂フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さを説明するための概略図である。FIG. 3 is a partially enlarged view of FIG. 2; FIG. 4 is a schematic diagram mainly for explaining the contact length between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the rolls.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さない基(原子団)と共に置換基を有する基(原子団)をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。本明細書では、置換および無置換を記していない表記は、無置換の方が好ましい。
 本明細書において、「(メタ)アクリル」は、アクリルおよびメタクリルの双方、または、いずれかを表す。
 本明細書において、重量平均分子量および数平均分子量は、特に述べない限り、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 本明細書における「フィルム」は、それぞれ、長さと幅に対して、厚さが薄く、概ね、平らな成形体をいい、「シート」を含む趣旨である。また、本明細書における「フィルム」は、単層であっても多層であってもよいが、単層が好ましい。
 本明細書で示す規格が年度によって、測定方法等が異なる場合、特に述べない限り、2021年1月1日時点における規格に基づくものとする。
EMBODIMENT OF THE INVENTION Hereinafter, the form (only henceforth "this embodiment") for implementing this invention is demonstrated in detail. In addition, the following embodiment is an example for explaining the present invention, and the present invention is not limited only to this embodiment.
In this specification, the term "~" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
In this specification, various physical property values and characteristic values are at 23° C. unless otherwise specified.
In the description of a group (atomic group) in the present specification, a description that does not describe substitution or unsubstituted includes a group (atomic group) having no substituent as well as a group (atomic group) having a substituent. For example, an "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). In this specification, the notations that do not describe substituted and unsubstituted are preferably unsubstituted.
As used herein, "(meth)acryl" represents both or either acryl and methacryl.
In the present specification, weight average molecular weight and number average molecular weight are polystyrene equivalent values measured by GPC (gel permeation chromatography) unless otherwise specified.
As used herein, the term "film" refers to a generally flat formed body having a thin thickness relative to its length and width, respectively, and is intended to include a "sheet." In addition, the "film" in this specification may be a single layer or multiple layers, but a single layer is preferred.
If the standards shown in this specification differ from year to year in terms of measurement methods, etc., the standards as of January 1, 2021 shall be used unless otherwise specified.
<ポリカーボネート樹脂フィルム>
 本実施形態のポリカーボネート樹脂フィルムは、ポリカーボネート樹脂を含み、下記条件1~3を満たすポリカーボネート樹脂フィルムである。
条件1:ポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である。
条件2:前記フィルムの主軸方位角の平均値からの偏差が±11°以内である。
条件3:前記フィルムの位相差が、5~50nmである。
式(1)
Figure JPOXMLDOC01-appb-C000005
<Polycarbonate resin film>
The polycarbonate resin film of the present embodiment is a polycarbonate resin film containing a polycarbonate resin and satisfying conditions 1 to 3 below.
Condition 1: Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1).
Condition 2: The deviation from the average value of the principal axis azimuth angle of the film is within ±11°.
Condition 3: The film has a retardation of 5 to 50 nm.
formula (1)
Figure JPOXMLDOC01-appb-C000005
 本実施形態では、製造方法を調整することにより、PC-Aを原料としたポリカーボネート樹脂を原料として使用しつつ、低位相差性と主軸方位の均一性を有したポリカーボネート樹脂フィルムを提供可能になる。さらに、本実施形態のポリカーボネート樹脂フィルムの面上(好ましくは表面)に、他の層、例えば、(メタ)アクリル樹脂層等の高硬度樹脂層を設けることにより、高硬度のフィルム(多層フィルム)を得ることが可能になる。 In this embodiment, by adjusting the manufacturing method, it is possible to provide a polycarbonate resin film having low retardation and uniform principal axis orientation while using a polycarbonate resin made from PC-A as a raw material. Furthermore, by providing another layer, for example, a high-hardness resin layer such as a (meth)acrylic resin layer on the surface (preferably the surface) of the polycarbonate resin film of the present embodiment, a high-hardness film (multilayer film) can be obtained.
 本実施形態のポリカーボネート樹脂フィルムで用いるポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である。
式(1)
Figure JPOXMLDOC01-appb-C000006
The main structural unit of the polycarbonate resin used in the polycarbonate resin film of the present embodiment is a structural unit represented by the following formula (1).
formula (1)
Figure JPOXMLDOC01-appb-C000006
 ここで、「主たる構成単位が式(1)で表される構成単位」とは、通常、ポリカーボネート樹脂フィルムに含まれるポリカーボネート樹脂の85質量%以上が式(1)で表される構成単位であることをいい、90質量%以上が式(1)で表される構成単位であることが好ましく、95質量%以上が式(1)で表される構成単位であることがより好ましく、末端構造を除く99質量%以上が式(1)で表される構成単位であることがさらに好ましい。このようなポリカーボネート樹脂の代表例が、PC-Aである。 Here, the “structural unit whose main structural unit is represented by formula (1)” is usually a structural unit represented by formula (1) in 85% by mass or more of the polycarbonate resin contained in the polycarbonate resin film. That is, 90% by mass or more is preferably a structural unit represented by formula (1), more preferably 95% by mass or more is a structural unit represented by formula (1), and the terminal structure is It is more preferable that 99% by mass or more of the excluding the structural unit is the structural unit represented by the formula (1). A representative example of such a polycarbonate resin is PC-A.
 本実施形態で用いるポリカーボネート樹脂は、また、ガラス転移温度を制御する目的で、下記式(2)で表されるような1価フェノールを末端停止剤として付加して得られるポリカーボネート樹脂であってもよい。具体的には、上記式(1)で表される構成単位を含み、末端停止剤として、式(2)で表される1価フェノールを使用して製造されたポリカーボネート樹脂が例示される。 The polycarbonate resin used in the present embodiment may be a polycarbonate resin obtained by adding a monohydric phenol represented by the following formula (2) as a terminal terminator for the purpose of controlling the glass transition temperature. good. Specifically, a polycarbonate resin containing a structural unit represented by the above formula (1) and produced using a monohydric phenol represented by the formula (2) as a terminal terminator is exemplified.
Figure JPOXMLDOC01-appb-C000007
(式(2)中、Rは、炭素数8~36のアルキル基または炭素数8~36のアルケニル基を表し;R~Rは、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~20のアルキル基、または、置換基を有していてもよい炭素数6~12のアリール基を表し、置換基は、ハロゲン原子、炭素数1~20のアルキル基、または、炭素数6~12のアリール基である。)
 式(2)で表される1価フェノールは、好ましくは、式(3)で表される1価フェノールである。
Figure JPOXMLDOC01-appb-C000008
(式(3)中、Rは、炭素数8~36のアルキル基または炭素数8~36のアルケニル基を表す。)
Figure JPOXMLDOC01-appb-C000007
(In formula (2), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms; R 2 to R 5 each independently represent a hydrogen atom, a halogen atom, a substituted represents an alkyl group having 1 to 20 carbon atoms which may have a group, or an aryl group having 6 to 12 carbon atoms which may have a substituent, wherein the substituent is a halogen atom, 1 to 20 alkyl group, or an aryl group with 6 to 12 carbon atoms.)
The monohydric phenol represented by Formula (2) is preferably a monohydric phenol represented by Formula (3).
Figure JPOXMLDOC01-appb-C000008
(In formula (3), R 1 represents an alkyl group having 8 to 36 carbon atoms or an alkenyl group having 8 to 36 carbon atoms.)
 式(2)または式(3)におけるRの炭素数は、特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として30以下が好ましく、22以下がより好ましく、18以下が特に好ましい。また、Rの炭素数の下限値として、10以上が好ましく、12以上がより好ましい。式(2)または式(3)におけるRの炭素数が上記範囲であると、生産性(経済性)に優れ、ポリカーボネート樹脂のガラス転移温度の上昇が抑制され、熱成形性に優れる。式(2)または式(3)で表される1価フェノールの中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。
 例えば、式(3)においてRが炭素数16のアルキル基である1価フェノールを末端停止剤として使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性等に優れたポリカーボネート樹脂を得ることができるため、特に好ましい。
 このような1価フェノールを末端停止剤として使用したポリカーボネート樹脂としては、例えば、ユピゼータT-1380(三菱ガス化学製)等が挙げられる。
The number of carbon atoms in R 1 in formula (2) or formula (3) is more preferably within a specific numerical range. Specifically, the upper limit of the carbon number of R 1 is preferably 30 or less, more preferably 22 or less, and particularly preferably 18 or less. Also, the lower limit of the number of carbon atoms in R 1 is preferably 10 or more, more preferably 12 or more. When the carbon number of R 1 in formula (2) or formula (3) is within the above range, the productivity (economic efficiency) is excellent, the rise in the glass transition temperature of the polycarbonate resin is suppressed, and the thermoformability is excellent. Among the monohydric phenols represented by formula (2) or formula (3), either or both of parahydroxybenzoic acid hexadecyl ester and parahydroxybenzoic acid 2-hexyldecyl ester can be used as a terminal terminator. Especially preferred.
For example, when a monohydric phenol in which R 1 is an alkyl group having 16 carbon atoms in the formula (3) is used as a terminal terminator, a polycarbonate excellent in glass transition temperature, melt fluidity, moldability, drawdown resistance, etc. It is particularly preferred because a resin can be obtained.
Polycarbonate resins using such a monohydric phenol as a terminal terminator include, for example, Iupizeta T-1380 (manufactured by Mitsubishi Gas Chemical Co., Ltd.).
 本実施形態で用いるポリカーボネート樹脂の重量平均分子量(Mw)は耐衝撃性および熱安定性の観点から、15000以上であることが好ましく、20000以上であることがより好ましい。また、前記ポリカーボネート樹脂の重量平均分子量(Mw)は、75000以下であることが好ましく、65000以下であることがより好ましい。
 本実施形態で用いることができるポリカーボネート樹脂の具体例としては、三菱エンジニアリングプラスチックス社製のユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000等が好ましく挙げられる。
The weight average molecular weight (Mw) of the polycarbonate resin used in this embodiment is preferably 15,000 or more, more preferably 20,000 or more, from the viewpoint of impact resistance and thermal stability. Also, the weight average molecular weight (Mw) of the polycarbonate resin is preferably 75,000 or less, more preferably 65,000 or less.
Specific examples of the polycarbonate resin that can be used in the present embodiment preferably include Iupilon S-2000, Iupilon S-1000, and Iupilon E-2000 manufactured by Mitsubishi Engineering-Plastics.
 本実施形態のポリカーボネート樹脂フィルムにおけるポリカーボネート樹脂の含有量は、通常、50質量%以上であり、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが一層好ましく、98質量%以上であることがより一層好ましい。前記ポリカーボネート樹脂フィルムにおけるポリカーボネート樹脂の含有量の上限は100質量%であってもよい。
 本実施形態のポリカーボネート樹脂フィルムは、ポリカーボネート樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
The content of the polycarbonate resin in the polycarbonate resin film of the present embodiment is usually 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. It is more preferably 95% by mass or more, and even more preferably 98% by mass or more. The upper limit of the content of the polycarbonate resin in the polycarbonate resin film may be 100% by mass.
The polycarbonate resin film of the present embodiment may contain only one type of polycarbonate resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
 本実施形態のポリカーボネート樹脂フィルムは、ポリカーボネート樹脂のみから形成されていてもよいし、ポリカーボネート樹脂と添加剤を含む樹脂組成物から形成されていてもよい。前記添加剤としては、樹脂シートにおいて通常使用されるものを使用することができ、具体的には、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーのような強化材などが挙げられる。これらの添加剤は1種のみ用いてもよいし、2種以上用いてもよい。添加剤とポリカーボネート樹脂とを混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。添加剤の量は、ポリカーボネート樹脂フィルム(すなわち、ポリカーボネート樹脂組成物形成用の樹脂組成物)の全質量に対して0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The polycarbonate resin film of the present embodiment may be formed from polycarbonate resin alone, or may be formed from a resin composition containing polycarbonate resin and additives. As the additives, those commonly used in resin sheets can be used, specifically, antioxidants, anti-coloring agents, anti-static agents, release agents, lubricants, dyes, pigments, plasticizers. , flame retardants, resin modifiers, compatibilizers, and reinforcing agents such as organic and inorganic fillers. Only one of these additives may be used, or two or more thereof may be used. The method of mixing the additive and the polycarbonate resin is not particularly limited, and a method of compounding the entire amount, a method of dry blending a masterbatch, a method of dry blending the entire amount, and the like can be used. The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, based on the total mass of the polycarbonate resin film (that is, the resin composition for forming the polycarbonate resin composition). It is preferably 0 to 5% by mass, and particularly preferably 0 to 5% by mass.
 本実施形態のポリカーボネート樹脂フィルムは、上記条件1を満たす。すなわち、本実施形態のポリカーボネート樹脂フィルムは、主軸方位角の平均値からの偏差が±11°以内である。本実施形態のポリカーボネート樹脂フィルムは、多少の位相差があるものの、主軸方位角が90°に近くなるようにできる点で好ましい。
 前記主軸方位角の平均値からの偏差は、±10°以下であることがさらに好ましく、±9°以下であることが一層好ましく、±8°以下であることがより一層好ましく、±6°以下であることがさらに一層好ましく、±4°以下であることが特に一層好ましく、±3°以下であることがより特に一層好ましい。前記主軸方位角の平均値からの偏差の下限は、0°が理想であるが、±0.1°以上であっても要求性能を満たすものであり、±1°以上が実際的である。本実施形態において、前記主軸方位角の平均値からの偏差は、後述する所定の方法でポリカーボネート樹脂フィルムを製造することによって達成される。
The polycarbonate resin film of the present embodiment satisfies Condition 1 above. That is, in the polycarbonate resin film of the present embodiment, the deviation from the average value of the main axis azimuth angles is within ±11°. Although the polycarbonate resin film of the present embodiment has some retardation, it is preferable in that the main axis azimuth angle can be made close to 90°.
The deviation from the average value of the principal axis azimuth angles is more preferably ±10° or less, still more preferably ±9° or less, even more preferably ±8° or less, and ±6° or less. is even more preferable, ±4° or less is particularly preferable, and ±3° or less is even more preferable. Ideally, the lower limit of the deviation from the average value of the main axis azimuth angle is 0°, but even if it is ±0.1° or more, the required performance is satisfied, and ±1° or more is practical. In this embodiment, the deviation from the average value of the principal axis azimuth angle is achieved by producing a polycarbonate resin film by a predetermined method described later.
 本実施形態のポリカーボネート樹脂フィルムにおける主軸方位角平均値は、88°以上であることが好ましく、89°以上であることがより好ましく、90°以上であることがさらに好ましく、また、95°以下であることが好ましく、93°以下であることがより好ましく、92°以下であることがさらに好ましい。
 本実施形態のポリカーボネート樹脂フィルムの厚み偏差は主軸方位角や位相差を安定させる観点から、平均値±15%以内が好ましく、平均値±10%以内がより好ましく、平均値±5%以内がさらに好ましい。このような範囲とすることにより、タッチロールと第一の冷却ロール間でTダイから流出した溶融樹脂を圧着し、タッチロールと第一の冷却ロール鏡面を転写させる際に、厚み偏差由来で鏡面転写が実施されず、外観不良となってしまうこと)を効果的に抑制できる。
The average principal axis azimuth angle in the polycarbonate resin film of the present embodiment is preferably 88° or more, more preferably 89° or more, further preferably 90° or more, and 95° or less. preferably 93° or less, and even more preferably 92° or less.
From the viewpoint of stabilizing the main axis azimuth and phase difference, the thickness deviation of the polycarbonate resin film of the present embodiment is preferably within the average value ± 15%, more preferably within the average value ± 10%, and further within the average value ± 5%. preferable. By setting such a range, when the molten resin flowing out of the T-die is crimped between the touch roll and the first cooling roll, and the mirror surface of the touch roll and the first cooling roll is transferred, the mirror surface due to the thickness deviation It is possible to effectively suppress the fact that the transfer is not performed and the appearance becomes poor).
 本実施形態のポリカーボネート樹脂フィルムは、フィルムの位相差(最大位相差)が低い。具体的には、前記フィルムの位相差は、50nm以下であり、48nm以下であることが好ましく、40nm以下であることがより好ましく、38nm以下であることがさらに好ましい。また、前記フィルムの位相差の下限値は、5nm以上である。ポリカーボネート樹脂フィルム、特に、PC-Aは、アクリル樹脂フィルムなどと比べて位相差が発現しやすいが、本実施形態では、このように多少の位相差を発現するポリカーボネート樹脂フィルムにおいて、主軸方位のずれを効果的に抑制できる。 The polycarbonate resin film of this embodiment has a low retardation (maximum retardation). Specifically, the retardation of the film is 50 nm or less, preferably 48 nm or less, more preferably 40 nm or less, and even more preferably 38 nm or less. Moreover, the lower limit of the retardation of the film is 5 nm or more. A polycarbonate resin film, particularly PC-A, tends to exhibit a retardation as compared with an acrylic resin film or the like. can be effectively suppressed.
 本実施形態のポリカーボネート樹脂フィルムの厚みは、その用途等に応じて適宜定めることができるが、50μm以上であることが好ましく、70μm以上であることが好ましく、100μm以上であることがより好ましく、150μm以上であってもよく、200μm以上であってもよい。前記下限値以上とすることにより、フィルム剛性が高くなり、樹脂カバーとして使用する際に、フィルムのたわみが少なくなることによって大型の樹脂カバーとして使いやすくなる傾向にある。また、前記ポリカーボネート樹脂フィルムの厚みの上限値は、1500μm以下であることが好ましく、1000μm以下であることがより好ましく、500μm以下であることがさらに好ましく、490μm以下であることが一層好ましく、450μm以下であることがより一層好ましく、400μm以下であることがさらに一層好ましい。前記上限値以下とすることにより、主軸方位角の偏差を小さくしやすくなり、ヘッドアップディスプレイの樹脂カバーとして使用する際に、像のゆがみが小さくなる傾向にある。 The thickness of the polycarbonate resin film of the present embodiment can be appropriately determined according to its use, etc., but is preferably 50 μm or more, preferably 70 μm or more, more preferably 100 μm or more, and more preferably 150 μm. or more, or 200 μm or more. When the thickness is equal to or higher than the above lower limit, the rigidity of the film is increased, and when the film is used as a resin cover, the deflection of the film is reduced, which tends to make it easier to use as a large-sized resin cover. The upper limit of the thickness of the polycarbonate resin film is preferably 1500 μm or less, more preferably 1000 μm or less, even more preferably 500 μm or less, even more preferably 490 μm or less, and 450 μm or less. is more preferably 400 μm or less. By making it equal to or less than the above upper limit value, it becomes easy to reduce the deviation of the main axis azimuth angle, and when it is used as a resin cover for a head-up display, there is a tendency that image distortion is reduced.
 本実施形態のポリカーボネート樹脂フィルムの幅は、800mm以上であることが好ましく、1000mm以上であることがより好ましく、1200mm以上であることがさらに好ましい。上記下限値以上とすることにより、後工程でのハードコートなどを施工する際に効率よく施工することが可能となる。また、本実施形態のポリカーボネート樹脂フィルムの幅の上限は、5000mm以下であることが好ましく、3000mm以下であることがより好ましく、2500mm以下であることがさらに好ましく、2200mm以下であることが一層好ましく、2000mm以下であることがより一層好ましい。 The width of the polycarbonate resin film of the present embodiment is preferably 800 mm or more, more preferably 1000 mm or more, and even more preferably 1200 mm or more. By making it more than the said lower limit, when constructing a hard coat etc. in a post process, it becomes possible to construct efficiently. In addition, the upper limit of the width of the polycarbonate resin film of the present embodiment is preferably 5000 mm or less, more preferably 3000 mm or less, further preferably 2500 mm or less, and even more preferably 2200 mm or less. 2000 mm or less is even more preferable.
<多層フィルム>
 本実施形態のポリカーボネート樹脂フィルムは、ポリカーボネート樹脂フィルムのみからなる単層または多層フィルムとして用いてもよいが、本実施形態のポリカーボネート樹脂フィルム以外の他の層との多層フィルムとしてもよい。すなわち、本実施形態の多層フィルムはポリカーボネート樹脂フィルムと、少なくとも1層の他の層とを有する多層フィルムである。
 また、本実施形態の多層フィルムの他の実施形態は、ポリカーボネート樹脂フィルムと、少なくとも1層の他の層とを有し、下記条件A~Cを満たす多層フィルムである。
条件A:ポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である;
条件B:前記フィルムの主軸方位角の平均値からの偏差が±11°以内である;
条件C:前記フィルムの位相差が、5~50nmである。
式(1)
Figure JPOXMLDOC01-appb-C000009
<Multilayer film>
The polycarbonate resin film of the present embodiment may be used as a single-layer or multilayer film consisting only of the polycarbonate resin film, but may be a multilayer film with other layers other than the polycarbonate resin film of the present embodiment. That is, the multilayer film of this embodiment is a multilayer film having a polycarbonate resin film and at least one other layer.
Another embodiment of the multilayer film of the present embodiment is a multilayer film having a polycarbonate resin film and at least one other layer and satisfying conditions A to C below.
Condition A: Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1);
Condition B: the deviation from the average value of the main axis azimuth angle of the film is within ±11°;
Condition C: The film has a retardation of 5 to 50 nm.
formula (1)
Figure JPOXMLDOC01-appb-C000009
 本実施形態の多層フィルムで用いるポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である。これらの詳細は、本実施形態のポリカーボネート樹脂フィルムで述べた条件1と同義であり、好ましい範囲も同義である。
 また、ポリカーボネート樹脂フィルムの好ましい範囲も、上記本実施形態のポリカーボネート樹脂フィルムの好ましい範囲と同義である。
The main structural unit of the polycarbonate resin used in the multilayer film of the present embodiment is a structural unit represented by the following formula (1). These details are synonymous with Condition 1 described in the polycarbonate resin film of the present embodiment, and the preferred range is also synonymous.
The preferred range of the polycarbonate resin film is also synonymous with the preferred range of the polycarbonate resin film of the present embodiment.
 図1は、本実施形態の多層フィルムの一例を示すものであって、1はポリカーボネート樹脂フィルムを、2は他の層を示している。
 本実施形態の多層フィルムにおいて、ポリカーボネート樹脂フィルムは1層のみであってもよいし、2層以上であってもよく、通常は1層または2層である。
FIG. 1 shows an example of the multilayer film of this embodiment, where 1 indicates a polycarbonate resin film and 2 indicates other layers.
In the multilayer film of the present embodiment, the polycarbonate resin film may consist of only one layer or two or more layers, usually one or two layers.
 本実施形態の多層フィルムは、条件Bを満たす。すなわち、本実施形態の多層フィルムは、主軸方位角の平均値からの偏差が±11°以内である。
 前記主軸方位角の平均値からの偏差は、±10°以下であることが好ましく、±9°以下であることが一層好ましく、±8°以下であることがより一層好ましく、±7°以下であることがさらに一層好ましく、±6°以下であることが特に一層好ましく、±5°以下であることがより特に一層好ましい。前記主軸方位角の平均値からの偏差の下限は、0°が理想であるが、±0.1°以上であっても要求性能を満たすものであり、±1°以上が実際的である。
 多層フィルムの主軸方位角は、ポリカーボネート樹脂フィルム側ではなく、他の層側から測定した値が上記範囲を満たすことが好ましい。
The multilayer film of this embodiment satisfies condition B. That is, in the multilayer film of the present embodiment, the deviation from the average value of the principal axis azimuth angles is within ±11°.
The deviation from the average value of the principal axis azimuth angles is preferably ±10° or less, more preferably ±9° or less, even more preferably ±8° or less, and ±7° or less. ±6° or less is particularly preferable, and ±5° or less is even more preferable. Ideally, the lower limit of the deviation from the average value of the main axis azimuth angle is 0°, but even if it is ±0.1° or more, the required performance is satisfied, and ±1° or more is practical.
The azimuth angle of the main axis of the multilayer film preferably satisfies the above range when measured from the other layer side, not from the polycarbonate resin film side.
 本実施形態の多層フィルムは、条件Cを満たす。すなわち、本実施形態の多層フィルムは、フィルムの位相差(最大位相差)が低いことが好ましい。具体的には、前記フィルムの位相差は、50nm以下であり、45nm以下であることが好ましく、40nm以下であることがさらに好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることがさらに一層好ましい。また、前記多層フィルムの位相差の下限値は、5nm以上である。
 多層フィルムの位相差は、他の層側から測定した値が上記範囲を満たすことが好ましい。
The multilayer film of this embodiment satisfies condition C. That is, the multilayer film of the present embodiment preferably has a low retardation (maximum retardation). Specifically, the retardation of the film is 50 nm or less, preferably 45 nm or less, more preferably 40 nm or less, even more preferably 35 nm or less, and more preferably 30 nm or less. More preferably, it is still more preferably 25 nm or less. Moreover, the lower limit of the retardation of the multilayer film is 5 nm or more.
As for the retardation of the multilayer film, the value measured from the other layer side preferably satisfies the above range.
 本実施形態の多層フィルムにおける主軸方位角平均値は、88°以上であることが好ましく、89°以上であることがより好ましく、90°以上であることがさらに好ましく、また、93°以下であることが好ましく、92°以下であることがより好ましく、91°以下であることがさらに好ましい。なお、多層フィルムにおける主軸方位角平均値は、フィルム原反における主軸方位角平均値をいい、実際のディスプレイ等に組み込まれた場合には、そのカット方向により、主軸方位角平均値がずれる場合もあろう。
 本実施形態の多層フィルムの厚み偏差は主軸方位角や位相差を安定させる観点から、平均値±15%以内が好ましく、平均値±10%以内がより好ましく、平均値±5%以内がさらに好ましい。このような範囲とすることにより、タッチロールと第一の冷却ロール間でTダイから流出した溶融樹脂を圧着し、タッチロールと第一の冷却ロール鏡面を転写させる際に、厚み偏差由来で鏡面転写が実施されず、外観不良となってしまうことを効果的に抑制できる。
The average principal axis azimuth angle in the multilayer film of the present embodiment is preferably 88° or more, more preferably 89° or more, further preferably 90° or more, and 93° or less. , more preferably 92° or less, and even more preferably 91° or less. The average principal axis azimuth angle in the multilayer film refers to the average principal axis azimuth angle in the original film, and when incorporated into an actual display, etc., the average principal axis azimuth angle may deviate depending on the cut direction. be.
From the viewpoint of stabilizing the principal axis azimuth angle and retardation, the thickness deviation of the multilayer film of the present embodiment is preferably within ±15% of the average value, more preferably within ±10% of the average value, and further preferably within ±5% of the average value. . By setting such a range, when the molten resin flowing out of the T-die is crimped between the touch roll and the first cooling roll, and the mirror surface of the touch roll and the first cooling roll is transferred, the mirror surface due to the thickness deviation It is possible to effectively prevent the transfer from being performed, resulting in poor appearance.
 本実施形態の多層フィルムにおいては、前記ポリカーボネート樹脂フィルムと、前記他の層1層(好ましくは(メタ)アクリル樹脂層)の合計厚みが、50~1500μmであることが好ましい。前記合計厚みの下限値は、100μm以上であることが好ましく、125μm以上であることがより好ましく、130μm以上であることがさらに好ましく、140μm以上であることが一層好ましく、180μm以上であってもよい。また、前記合計厚みの上限値は、800μm以下であることが好ましく、600μm以下であることがより好ましく、550μm以下であることがさらに好ましく、500μm以下であることが一層好ましく、450μm以下であってもよく、さらには400μm以下であってもよい。
 本実施形態の多層フィルムにおいては、多層フィルムの合計厚み(総厚み)が、100~3000μmであることが好ましい。
In the multilayer film of the present embodiment, the total thickness of the polycarbonate resin film and the other layer (preferably (meth)acrylic resin layer) is preferably 50 to 1500 μm. The lower limit of the total thickness is preferably 100 μm or more, more preferably 125 μm or more, still more preferably 130 μm or more, even more preferably 140 μm or more, and may be 180 μm or more. . The upper limit of the total thickness is preferably 800 µm or less, more preferably 600 µm or less, even more preferably 550 µm or less, even more preferably 500 µm or less, and even more preferably 450 µm or less. It may be 400 μm or less.
In the multilayer film of the present embodiment, the total thickness (total thickness) of the multilayer film is preferably 100-3000 μm.
 本実施形態の多層フィルムの幅は、800mm以上であることが好ましく、1000mm以上であることがより好ましく、1200mm以上であることがさらに好ましい。また、本実施形態の多層フィルムの幅の上限は、5000mm以下であることが好ましく、3000mm以下であることがより好ましく、2500mm以下であることがさらに好ましく、2200mm以下であることが一層好ましく、2000mm以下であることがより一層好ましい。 The width of the multilayer film of the present embodiment is preferably 800 mm or more, more preferably 1000 mm or more, and even more preferably 1200 mm or more. The upper limit of the width of the multilayer film of the present embodiment is preferably 5000 mm or less, more preferably 3000 mm or less, even more preferably 2500 mm or less, and even more preferably 2200 mm or less. The following are even more preferable.
 本実施形態の多層フィルムは、他の層側(例えば、図1の2の層側)から測定した鉛筆硬度がHB以上であることが好ましく、H以上であることがより好ましい。鉛筆硬度の上限は特に定めるものでは無いが、3H以下が実際的である。鉛筆硬度は後述する実施例に記載の方法で測定される(以下、鉛筆硬度について同じ)。また、本実施形態の多層フィルムは、鉛筆硬度が高い側が上記鉛筆硬度を満たすことが好ましい。 The multilayer film of the present embodiment preferably has a pencil hardness of HB or higher, more preferably H or higher, measured from the other layer side (eg, layer 2 in FIG. 1). Although the upper limit of the pencil hardness is not particularly defined, 3H or less is practical. The pencil hardness is measured by the method described in Examples below (the same applies to the pencil hardness below). Moreover, in the multilayer film of the present embodiment, it is preferable that the side having a higher pencil hardness satisfies the above pencil hardness.
 本実施形態の多層フィルムのヘイズは、透明性の観点から2%以下が好ましく、1%以下がより好ましく、0.5%以下がさらに好ましい。ヘイズはヘイズメーターを用いて、D65光源10°視野の条件にて、ヘイズ(単位:%)を測定することができる。 From the viewpoint of transparency, the haze of the multilayer film of the present embodiment is preferably 2% or less, more preferably 1% or less, and even more preferably 0.5% or less. Haze (unit: %) can be measured using a haze meter under the condition of D65 light source 10° field of view.
 本実施形態の多層フィルムが有する前記他の層は、その種類等特に定めるものでは無いが、高硬度樹脂を含む層、マスキングフィルム、および、ハードコート層が例示される。さらに、他の層の数は、1層であってもよく、2層以上であってもよく、通常は1~7層であり、1~5層が好ましく、1~3層がより好ましい。
 なお、本明細書においては、高硬度樹脂を含む層を高硬度樹脂層ということがある。
The other layers included in the multilayer film of the present embodiment are not particularly limited in terms of their types, but are exemplified by a layer containing a high-hardness resin, a masking film, and a hard coat layer. Furthermore, the number of other layers may be 1 layer or 2 or more layers, usually 1 to 7 layers, preferably 1 to 5 layers, more preferably 1 to 3 layers.
In this specification, a layer containing a high-hardness resin may be referred to as a high-hardness resin layer.
 前記他の層は、低位相差性と主軸方位の均一性を有しているフィルムであることが好ましい。特に、前記他の層が(メタ)アクリル樹脂層および/またはハードコート層である場合、これらの層も、低位相差性と主軸方位の均一性を有しているフィルムであることが好ましい。
 具体的には、前記他の層(好ましくは(メタ)アクリル樹脂層および/またはハードコート層、より好ましくは(メタ)アクリル樹脂層)は、フィルムの主軸方位角の平均値からの偏差が±11°以内であり、かつ、フィルムの位相差が、5~50nmであることが好ましい。このようなフィルムをポリカーボネート樹脂フィルムとの多層体とすることにより、低位相差性と主軸方位の均一性を有している多層フィルムが得られる。
 前記他の層の位相差は、45nm以下であることが好ましく、40nm以下であることがより好ましく、35nm以下であることがさらに好ましく、30nm以下であることが一層好ましく、25nm以下であることがより一層好ましい。また、前記他の層の位相差の下限値は、5nm以上である。
 また、前記他の層における主軸方位角の平均値からの偏差は、±11°以下であることが好ましく、±10°以下であることが好ましく、±9°以下であることが一層好ましく、±8°以下であることがより一層好ましく、±7°以下であることがさらに一層好ましく、±6°以下であることが特に一層好ましく、±5°以下であることがより特に一層好ましい。前記主軸方位角の平均値からの偏差の下限は、0°が理想であるが、±0.1°以上であっても要求性能を満たすものであり、±1°以上が実際的である。
 一方、前記他の層がマスキングフィルムである場合等、使用時には剥がされるフィルムである場合、前記他の層が、必ずしも、低位相差性と主軸方位の均一性を有しているフィルムではない。
The other layer is preferably a film having low retardation and uniform principal axis orientation. In particular, when the other layer is a (meth)acrylic resin layer and/or a hard coat layer, these layers are also preferably films having a low retardation property and uniform principal axis orientation.
Specifically, the other layer (preferably the (meth)acrylic resin layer and/or the hard coat layer, more preferably the (meth)acrylic resin layer) has a deviation of ± It is preferable that the angle is within 11° and the retardation of the film is 5 to 50 nm. By combining such a film with a polycarbonate resin film to form a multi-layer body, a multi-layer film having low retardation and uniform main axis orientation can be obtained.
The retardation of the other layer is preferably 45 nm or less, more preferably 40 nm or less, even more preferably 35 nm or less, even more preferably 30 nm or less, and 25 nm or less. Even more preferable. Also, the lower limit of the retardation of the other layer is 5 nm or more.
Further, the deviation from the average value of the main axis azimuth angles in the other layers is preferably ±11° or less, preferably ±10° or less, more preferably ±9° or less, and ± It is more preferably 8° or less, even more preferably ±7° or less, particularly more preferably ±6° or less, and even more preferably ±5° or less. Ideally, the lower limit of the deviation from the average value of the main axis azimuth angle is 0°, but even if it is ±0.1° or more, the required performance is satisfied, and ±1° or more is practical.
On the other hand, when the other layer is a film that can be peeled off during use, such as when the other layer is a masking film, the other layer is not necessarily a film having a low retardation property and a uniform principal axis orientation.
 前記他の層の厚みは、1層につき、1μm以上であることが好ましく、3μm以上であることがより好ましく、20μm以上であることがさらに好ましく、25μm以上であることが一層好ましく、30μm以上であることがより一層好ましい。前記下限値以上とすることにより、鉛筆硬度が高くなる傾向にある。また、前記他の層の厚みは、100μm以下であることが好ましく、85μm以下であることがより好ましく、70μm以下であることがさらに好ましく、50μm以下であることが一層好ましく、40μm以下であることがより一層好ましい。前記上限値以下とすることにより、フィルムの靭性が高くなり、取り扱いによって割れるなどの不具合が発生しにくくなる傾向にある。特に、前記他の層が(メタ)アクリル樹脂層であるとき、前記他の層の厚みが20~100μmであることが好ましい。 The thickness of each of the other layers is preferably 1 μm or more, more preferably 3 μm or more, still more preferably 20 μm or more, even more preferably 25 μm or more, and 30 μm or more. It is even more preferable to have By making it more than the said lower limit, there exists a tendency for pencil hardness to become high. The thickness of the other layer is preferably 100 μm or less, more preferably 85 μm or less, even more preferably 70 μm or less, even more preferably 50 μm or less, and 40 μm or less. is even more preferred. When the content is equal to or less than the above upper limit, the toughness of the film is increased, and problems such as cracking due to handling tend to be less likely to occur. In particular, when the other layer is a (meth)acrylic resin layer, the thickness of the other layer is preferably 20 to 100 μm.
 本実施形態の多層フィルムにおいては、ポリカーボネート樹脂フィルムと、他の層の厚み1層(好ましくは(メタ)アクリル樹脂層)の比率が、2/1~10/1であることが好ましく、2/1~8/1であることがより好ましく、2/1~7/1であってもよい。 In the multilayer film of the present embodiment, the ratio of the polycarbonate resin film to the thickness of one other layer (preferably (meth)acrylic resin layer) is preferably 2/1 to 10/1. It is more preferably 1 to 8/1, and may be 2/1 to 7/1.
<<多層フィルムの第一の例>>
 本実施形態の多層フィルムの第一の例は、ポリカーボネート樹脂フィルムと、少なくとも1層の他の層とを有する多層フィルムであって、少なくとも1層の他の層が高硬度樹脂を含む樹脂層(高硬度樹脂層)であり、好ましくは高硬度樹脂を主成分として含む樹脂層である多層フィルムである。ここで、主成分とは、他の層の構成成分の50質量%以上が高硬度樹脂であることをいい、70質量%以上が高硬度樹脂であることが好ましく、80質量%以上が高硬度樹脂であることがより好ましく、90質量%以上が高硬度樹脂であることがさらに好ましく、99質量%以上が高硬度樹脂であることが一層好ましい。
<<First example of multilayer film>>
A first example of the multilayer film of the present embodiment is a multilayer film having a polycarbonate resin film and at least one other layer, wherein the at least one other layer is a resin layer containing a high hardness resin ( A high-hardness resin layer), preferably a multilayer film that is a resin layer containing a high-hardness resin as a main component. Here, the main component means that 50% by mass or more of the constituent components of the other layer is a high hardness resin, preferably 70% by mass or more is a high hardness resin, and 80% by mass or more is a high hardness resin. It is more preferably a resin, more preferably 90% by mass or more of a high hardness resin, and even more preferably 99% by mass or more of a high hardness resin.
 高硬度樹脂としては、(メタ)アクリル樹脂が例示される。すなわち、他の層が、(メタ)アクリル樹脂を含む層((メタ)アクリル樹脂層)であることが好ましい。
 本実施形態において、高硬度樹脂は、鉛筆硬度HB以上の樹脂であることが好ましく、H以上の樹脂であることがより好ましい。高硬度樹脂層に含まれる高硬度樹脂は、1種であっても2種以上であってもよい。前記高硬度樹脂の鉛筆硬度の上限は特に定めるものでは無いが、例えば、3H以下が実際的である。
A (meth)acrylic resin is exemplified as the high-hardness resin. That is, the other layer is preferably a layer containing (meth)acrylic resin ((meth)acrylic resin layer).
In the present embodiment, the high-hardness resin is preferably a resin having a pencil hardness of HB or higher, and more preferably a resin having a pencil hardness of H or higher. The high hardness resin contained in the high hardness resin layer may be one kind or two or more kinds. Although the upper limit of the pencil hardness of the high-hardness resin is not particularly defined, for example, 3H or less is practical.
 高硬度樹脂は、上述の通り、(メタ)アクリル樹脂が挙げられるが、これに限定されるものではなく、公知の高硬度樹脂を広く用いることができる。高硬度樹脂は、通常、熱可塑性樹脂である。
 (メタ)アクリル樹脂としては、(メタ)アクリル化合物単量体の重合体を用いることができる。(メタ)アクリル化合物単量体としては、アクリロニトリル、メタアクリロニトリルアクリル酸、メタクリル酸および(メタ)アクリル酸エステルを例示することができる。(メタ)アクリル酸エステルとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチルおよびメタクリル酸2-エチルヘキシル等が挙げられる。その中でも、メタクリル酸メチル(MMA)が好ましい。これらの(メタ)アクリル化合物単量体は2種以上を混合してもよい。また、本発明の趣旨を逸脱しない範囲で、ビニル化合物(例えば、スチレン)等の他の単量体を共重合してもよい。本実施形態で用いる(メタ)アクリル樹脂は、(メタ)アクリル化合物単量体単位の割合が全体の80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
As described above, the high-hardness resin includes (meth)acrylic resin, but is not limited thereto, and a wide range of known high-hardness resins can be used. Hard resins are typically thermoplastic resins.
As the (meth)acrylic resin, a polymer of (meth)acrylic compound monomers can be used. Examples of (meth)acrylic compound monomers include acrylonitrile, methacrylonitrile acrylic acid, methacrylic acid and (meth)acrylic acid esters. Examples of (meth)acrylic acid esters include methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate and 2-ethylhexyl methacrylate. is mentioned. Among them, methyl methacrylate (MMA) is preferred. Two or more of these (meth)acrylic compound monomers may be mixed. Also, other monomers such as vinyl compounds (eg, styrene) may be copolymerized within the scope of the present invention. In the (meth)acrylic resin used in the present embodiment, the proportion of (meth)acrylic compound monomer units is preferably 80% by mass or more, more preferably 90% by mass or more.
 高硬度樹脂層は、高硬度樹脂(好ましくは(メタ)アクリル樹脂)のみから形成されていてもよいし、高硬度樹脂(好ましくは(メタ)アクリル樹脂)と添加剤を含む樹脂組成物から形成されていてもよい。前記添加剤としては、樹脂シートにおいて通常使用されるものを使用することができ、そのような添加剤としては、例えば、抗酸化剤、抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーのような強化材などが挙げられる。添加剤と樹脂とを混合する方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。添加剤の量は、高硬度樹脂層(すなわち、他の層を形成用の樹脂組成物)の全質量に対して0~10質量%であることが好ましく、0~7質量%であることがより好ましく、0~5質量%であることが特に好ましい。 The high-hardness resin layer may be formed only from a high-hardness resin (preferably (meth)acrylic resin), or formed from a resin composition containing a high-hardness resin (preferably (meth)acrylic resin) and an additive. may have been As the additives, those commonly used in resin sheets can be used, and examples of such additives include antioxidants, anti-colorants, antistatic agents, release agents, lubricants, dyes, , pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, reinforcing agents such as organic fillers and inorganic fillers. The method of mixing the additive and the resin is not particularly limited, and a method of compounding the total amount, a method of dry-blending a masterbatch, a method of dry-blending the total amount, or the like can be used. The amount of the additive is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, based on the total mass of the high-hardness resin layer (that is, the resin composition for forming another layer). More preferably, 0 to 5% by mass is particularly preferable.
 前記高硬度樹脂層(好ましくは(メタ)アクリル樹脂層)の厚みは、20μm以上であることが好ましく、25μm以上であることがより好ましく、30μm以上であることがさらに好ましい。前記下限値以上とすることにより、鉛筆硬度が高くなる傾向にある。また、前記高硬度樹脂層の厚みは、100μm以下であることが好ましく、85μm以下であることがより好ましく、70μm以下であることがさらに好ましく、50μm以下であることが一層好ましく、40μm以下であることがより一層好ましい。前記上限値以下とすることにより、フィルムの靭性が高くなり、取り扱いによって割れるなどの不具合が発生しにくくなる傾向にある。 The thickness of the high-hardness resin layer (preferably (meth)acrylic resin layer) is preferably 20 μm or more, more preferably 25 μm or more, and even more preferably 30 μm or more. By making it more than the said lower limit, there exists a tendency for pencil hardness to become high. The thickness of the high-hardness resin layer is preferably 100 μm or less, more preferably 85 μm or less, still more preferably 70 μm or less, even more preferably 50 μm or less, and 40 μm or less. is even more preferable. When the content is equal to or less than the above upper limit, the toughness of the film is increased, and problems such as cracking due to handling tend to be less likely to occur.
 第一の例の多層フィルムにおいては、ポリカーボネート樹脂フィルムと、高硬度樹脂層(好ましくは(メタ)アクリル樹脂層)の厚みの比率が、2/1~10/1であることが好ましく、2/1~8/1であることがより好ましく、2/1~7/1であってもよい。 In the multilayer film of the first example, the thickness ratio between the polycarbonate resin film and the high-hardness resin layer (preferably (meth)acrylic resin layer) is preferably 2/1 to 10/1. It is more preferably 1 to 8/1, and may be 2/1 to 7/1.
 第一の例の多層フィルムにおいては、ポリカーボネート樹脂フィルムと、高硬度樹脂層(好ましくは(メタ)アクリル樹脂層)とを、それぞれ1層以上ずつ有し(好ましくはそれぞれ1層ずつ有し)、ポリカーボネート樹脂フィルムと、高硬度樹脂層の合計厚みが、50~1500μmであることが好ましい一形態として例示される。前記合計厚みの下限値は、100μm以上であることが好ましく、130μm以上であることがより好ましく、140μm以上であることがさらに好ましく、180μm以上であってもよい。また、前記合計厚みの上限値は、1000μm以下であることが好ましく、800μm以下であることがより好ましく、550μm以下であることがさらに好ましく、500μm以下であることが一層好ましく、450μm以下であってもよく、さらには400μm以下であってもよい。 The multilayer film of the first example has at least one polycarbonate resin film and one or more high-hardness resin layers (preferably (meth)acrylic resin layers) each (preferably one layer each), As a preferred embodiment, the total thickness of the polycarbonate resin film and the high-hardness resin layer is 50 to 1500 μm. The lower limit of the total thickness is preferably 100 μm or more, more preferably 130 μm or more, even more preferably 140 μm or more, and may be 180 μm or more. The upper limit of the total thickness is preferably 1000 μm or less, more preferably 800 μm or less, even more preferably 550 μm or less, even more preferably 500 μm or less, and 450 μm or less. It may be 400 μm or less.
 第一の例の多層フィルムは、高硬度樹脂層側から測定した鉛筆硬度がHB以上であることが好ましく、H以上であることがより好ましい。鉛筆硬度の上限は特に定めるものでは無いが、3H以下が実際的である。 The multilayer film of the first example preferably has a pencil hardness of HB or higher, more preferably H or higher, measured from the high-hardness resin layer side. Although the upper limit of the pencil hardness is not particularly defined, 3H or less is practical.
<<多層フィルムの第二の例>>
 本実施形態の多層フィルムの第二の例は、本実施形態のポリカーボネート樹脂フィルム、または、本実施形態の多層フィルム(特に、上記第一の例の多層フィルムおよび後述する第三の例の多層フィルム)の一方の面上または両面上にマスキングフィルムを有する、多層フィルムである。
 マスキングフィルムは、ポリカーボネート樹脂フィルムの表面に設けてもよいし、高硬度樹脂層の表面に設けてもよいし、ハードコート層の表面に設けてもよいし、それ以外の層の表面に設けてもよい。
<<Second example of multilayer film>>
A second example of the multilayer film of the present embodiment is the polycarbonate resin film of the present embodiment, or the multilayer film of the present embodiment (in particular, the multilayer film of the first example above and the multilayer film of the third example described later). ) with a masking film on one or both sides.
The masking film may be provided on the surface of the polycarbonate resin film, may be provided on the surface of the high-hardness resin layer, may be provided on the surface of the hard coat layer, or may be provided on the surface of any other layer. good too.
 マスキングフィルムにおいては、隣接する層との適度な粘着力を有する粘着面を有するものであることが好ましい。また、マスキングフィルムにおいては、粘着層のみの単層でもよいが、基材と粘着層との2層構造を有することが好ましい。また、マスキングフィルムは、上述の基材と粘着層以外の層をさらに含む多層構造であってもよい。 The masking film preferably has an adhesive surface that has an appropriate amount of adhesive strength with adjacent layers. The masking film may be a single layer consisting of only an adhesive layer, but preferably has a two-layer structure consisting of a substrate and an adhesive layer. Moreover, the masking film may have a multilayer structure further including layers other than the base material and the adhesive layer described above.
 マスキングフィルムの基材は、熱可塑性樹脂フィルムであることが好ましく、ポリオレフィン樹脂フィルムであることがより好ましい。前記ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン等を用いることができ、単独重合体であっても共重合体であってもよい。ポリオレフィン樹脂の中でもポリエチレンが好ましい。ポリエチレンとしては、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等を用いることができるが、低密度ポリエチレンが好ましい。
 また、ポリオレフィン共重合体としては、エチレンおよび/またはプロピレンと、これらと共重合可能な単量体との共重合体を用いることができる。エチレンおよび/またはプロピレンと共重合することができる単量体として、例えば、α-オレフィン、スチレン類、ジエン類、環状化合物、酸素原子含有化合物等が挙げられる。
 前記ポリオレフィン樹脂には、少量のアクリル酸、マレイン酸、メタクリル酸、無水マレイン酸、フマル酸、イタコン酸等のカルボキシル基含有単量体によって変性された変性ポリオレフィン樹脂が含まれていてもよい。変性は、通常、共重合またはグラフト変性により可能である。
The base material of the masking film is preferably a thermoplastic resin film, more preferably a polyolefin resin film. As the polyolefin resin, for example, polyethylene, polypropylene, or the like can be used, and it may be a homopolymer or a copolymer. Among polyolefin resins, polyethylene is preferred. As polyethylene, low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE) and the like can be used. Low density polyethylene is preferred.
As the polyolefin copolymer, a copolymer of ethylene and/or propylene and a monomer copolymerizable therewith can be used. Examples of monomers that can be copolymerized with ethylene and/or propylene include α-olefins, styrenes, dienes, cyclic compounds, oxygen atom-containing compounds, and the like.
The polyolefin resin may contain a modified polyolefin resin modified with a small amount of carboxyl group-containing monomers such as acrylic acid, maleic acid, methacrylic acid, maleic anhydride, fumaric acid and itaconic acid. Modification is usually possible by copolymerization or graft modification.
 マスキングフィルムの基材であるポリオレフィン樹脂フィルムは、基材の全質量を基準として、80質量%以上のポリオレフィン樹脂を含むことが好ましく、90質量%以上のポリオレフィン樹脂を含むことがより好ましく、95質量%以上のポリオレフィン樹脂を含むことがさらに好ましい。 The polyolefin resin film that is the substrate of the masking film preferably contains 80% by mass or more of the polyolefin resin, more preferably 90% by mass or more of the polyolefin resin, based on the total mass of the substrate, and more preferably 95% by mass. % or more polyolefin resin.
 マスキングフィルムの粘着層は、エラストマーを含む熱可塑性樹脂により成形されることが好ましい。粘着層に含まれる熱可塑性樹脂としては、ポリプロピレン、変性ポリオレフィン等のポリオレフィン樹脂が挙げられる。マスキングフィルムに含まれるポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン等を用いることができ、単独重合体であっても共重合体であってもよい。ポリオレフィン樹脂の中でもポリエチレンが好ましい。 The adhesive layer of the masking film is preferably molded from thermoplastic resin containing elastomer. Examples of thermoplastic resins contained in the adhesive layer include polyolefin resins such as polypropylene and modified polyolefin. As the polyolefin resin contained in the masking film, for example, polyethylene, polypropylene, or the like can be used, and it may be a homopolymer or a copolymer. Among polyolefin resins, polyethylene is preferred.
 マスキングフィルムの粘着層は、粘着層の全質量を基準として、80質量%以上の熱可塑性樹脂を含むことが好ましく、90質量%以上の熱可塑性樹脂を含むことがより好ましく、95質量%以上の熱可塑性樹脂を含むことがさらに好ましい。 The adhesive layer of the masking film preferably contains 80% by mass or more of thermoplastic resin, more preferably 90% by mass or more of thermoplastic resin, based on the total mass of the adhesive layer, and more preferably 95% by mass or more. More preferably, it contains a thermoplastic resin.
 マスキングフィルムの粘着面における粘着力の値は、PMMA(ポリメタクリル酸メチル樹脂層)の表面に対し、5(mN/25mm)以上かつ5000(mN/25mm)以下であることが好ましく、より好ましくは9(mN/25mm)以上かつ3000(mN/25mm)以下である。 The value of adhesive force on the adhesive surface of the masking film is preferably 5 (mN/25 mm) or more and 5000 (mN/25 mm) or less, more preferably, against the surface of PMMA (polymethyl methacrylate resin layer). It is 9 (mN/25mm) or more and 3000 (mN/25mm) or less.
 前記マスキングフィルムの厚みは、10μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることがさらに好ましい。また、前記マスキングフィルムの厚みは、100μm以下であることが好ましく、90μm以下であることがより好ましく、80μm以下であることがさらに好ましい。 The thickness of the masking film is preferably 10 µm or more, more preferably 15 µm or more, and even more preferably 20 µm or more. The thickness of the masking film is preferably 100 μm or less, more preferably 90 μm or less, and even more preferably 80 μm or less.
 上記の他、マスキングフィルムの詳細は、特開2021-123079号公報、国際公開第2020/031968号の段落0013~0025の記載、特開2017-185772号公報の段落0089~0094の記載を参酌でき、これらの内容は本明細書に組み込まれる。 In addition to the above, details of the masking film can be referred to JP 2021-123079, paragraphs 0013 to 0025 of WO 2020/031968, and paragraphs 0089 to 0094 of JP 2017-185772. , the contents of which are incorporated herein.
<<多層フィルムの第三の例>>
 本実施形態の多層フィルムの第三例は、本実施形態のポリカーボネート樹脂フィルム、または、本実施形態の多層フィルム(特に、上記第一の例の多層フィルムおよび第二の例の多層フィルム)の一方の面上または両面上にハードコート層を有する、多層フィルムである。
 ハードコート層は、ポリカーボネート樹脂フィルムの表面に設けてもよいし、高硬度樹脂層の表面に設けてもよいし、それ以外の層の表面に設けてもよい。
<<Third Example of Multilayer Film>>
A third example of the multilayer film of the present embodiment is either the polycarbonate resin film of the present embodiment or the multilayer film of the present embodiment (in particular, the multilayer film of the first example and the multilayer film of the second example). It is a multilayer film having a hard coat layer on one or both sides of the film.
The hard coat layer may be provided on the surface of the polycarbonate resin film, may be provided on the surface of the high-hardness resin layer, or may be provided on the surface of any other layer.
 ハードコート層としては、(メタ)アクリル系、シリコン系、メラミン系、ウレタン系、エポキシ系等公知の架橋皮膜を形成する化合物を使用することができ、熱賦形性とのバランスから、(メタ)アクリル系、(メタ)ウレタンアクリレート系が好ましい。また、硬化方法も紫外線硬化、熱硬化、電子線硬化等公知の方法を用いることができる。これらの中で、表面側とする面には、鉛筆硬度HB以上となるものが好ましく、H以上となるものがより好ましい。前記鉛筆硬度の表現は、3H以下が実際的である。
 ハードコート液を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。
 ハードコート層は、さらに修飾されてもよい。例えば、反射防止処理、防汚処理、帯電防止処理、耐候性処理、赤外線カット処理、および防眩処理のいずれか一つ以上を施すことができる。これらの処理方法は特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる
 ハードコート層の厚みとしては、1μm以上であることが好ましく、2μm以上であることがより好ましく、また、40μm以下であることが好ましく、10μm以下であることがより好ましい。厚みが1μm以上であることにより十分な硬度を得ることができる。また、膜厚が40μm以下であると、曲げ加工時のクラックの発生を抑制することができる。
As the hard coat layer, (meth)acrylic, silicon, melamine, urethane, epoxy, and other known compounds that form a crosslinked film can be used. ) acrylic and (meth)urethane acrylate are preferred. As for the curing method, known methods such as ultraviolet curing, heat curing, and electron beam curing can be used. Among these, the surface to be the front side preferably has a pencil hardness of HB or more, more preferably H or more. A practical expression of the pencil hardness is 3H or less.
A method for applying the hard coat liquid is not particularly limited, and a known method can be used. Examples thereof include a spin coating method, a dipping method, a spray method, a slide coating method, a bar coating method, a roll coating method, a gravure coating method, a meniscus coating method, a flexographic printing method, a screen printing method, a beat coating method, and a picking method.
The hardcoat layer may be further modified. For example, one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment, infrared cut treatment, and antiglare treatment can be applied. These treatment methods are not particularly limited, and known methods can be used. For example, a method of applying a reflection-reducing paint, a method of vapor-depositing a dielectric thin film, a method of applying an antistatic paint, etc. can be mentioned. is more preferably 40 μm or less, and more preferably 10 μm or less. Sufficient hardness can be obtained by setting the thickness to 1 μm or more. Moreover, when the film thickness is 40 μm or less, the occurrence of cracks during bending can be suppressed.
 ハードコート層としては、上記の他、特開2013-020130号公報の段落0045~0055の記載、特開2018-103518号公報の段落0073~0076の記載、特開2017-213771号公報の段落0062~0082の記載を参酌でき、これらの内容は本明細書に組み込まれる。 As the hard coat layer, in addition to the above, paragraphs 0045 to 0055 of JP 2013-020130, paragraphs 0073 to 0076 of JP 2018-103518, paragraph 0062 of JP 2017-213771 0082 can be referred to, and the contents thereof are incorporated herein.
 本実施形態の多層フィルムの層構成としては、以下のものが挙げられる。本実施形態の多層フィルムがこれらに限定されるものでは無いことは言うまでもない。
(1)(メタ)アクリル樹脂層/ポリカーボネート樹脂層
(2)マスキングフィルム/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/マスキングフィルム
(3)ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層
(4)マスキングフィルム/ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/マスキングフィルム
(5)ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/ハードコート層
(6)マスキングフィルム/ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/ハードコート層/マスキングフィルム
(7)(メタ)アクリル樹脂層/ポリカーボネート樹脂層/ハードコート層
(8)マスキングフィルム/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/ハードコート層/マスキングフィルム
(9)(メタ)アクリル樹脂層/ポリカーボネート樹脂層/(メタ)アクリル樹脂層
(10)マスキングフィルム/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/(メタ)アクリル樹脂層/マスキングフィルム
(11)ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/(メタ)アクリル樹脂層
(12)マスキングフィルム/ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/(メタ)アクリル樹脂層/マスキングフィルム
(13)ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/(メタ)アクリル樹脂層/ハードコート層
(14)マスキングフィルム/ハードコート層/(メタ)アクリル樹脂層/ポリカーボネート樹脂層/(メタ)アクリル樹脂層/ハードコート層/マスキングフィルム
Examples of the layer structure of the multilayer film of this embodiment include the following. Needless to say, the multilayer film of the present embodiment is not limited to these.
(1) (meth) acrylic resin layer / polycarbonate resin layer (2) masking film / (meth) acrylic resin layer / polycarbonate resin layer / masking film (3) hard coat layer / (meth) acrylic resin layer / polycarbonate resin layer ( 4) Masking film/hard coat layer/(meth)acrylic resin layer/polycarbonate resin layer/masking film (5) Hard coat layer/(meth)acrylic resin layer/polycarbonate resin layer/hard coat layer (6) Masking film/hard Coat layer/(meth)acrylic resin layer/polycarbonate resin layer/hard coat layer/masking film (7) (meth)acrylic resin layer/polycarbonate resin layer/hard coat layer (8) Masking film/(meth)acrylic resin layer/ Polycarbonate resin layer/hard coat layer/masking film (9) (meth)acrylic resin layer/polycarbonate resin layer/(meth)acrylic resin layer (10) Masking film/(meth)acrylic resin layer/polycarbonate resin layer/(meth) Acrylic resin layer/masking film (11) Hard coat layer/(meth)acrylic resin layer/polycarbonate resin layer/(meth)acrylic resin layer (12) Masking film/hard coat layer/(meth)acrylic resin layer/polycarbonate resin layer / (Meth) acrylic resin layer / masking film (13) hard coat layer / (meth) acrylic resin layer / polycarbonate resin layer / (meth) acrylic resin layer / hard coat layer (14) masking film / hard coat layer / (meta ) acrylic resin layer / polycarbonate resin layer / (meth)acrylic resin layer / hard coat layer / masking film
<用途>
 本実施形態のポリカーボネート樹脂フィルム、および/または、多層フィルムの用途は特に定めるものではなく、電子・電気機器等各種用途に用いることができ、表示装置に用いることが好ましく、液晶表示装置、有機EL表示装置またはヘッドアップディスプレイ装置に用いることがより好ましい。
<Application>
The use of the polycarbonate resin film and/or multilayer film of the present embodiment is not particularly specified, and it can be used for various applications such as electronic and electrical equipment, and is preferably used for display devices, such as liquid crystal display devices and organic EL. It is more preferable to use it for a display device or a head-up display device.
<ポリカーボネート樹脂フィルムの製造方法>
 本実施形態のポリカーボネート樹脂フィルムは、上記条件1~3を満たすように製造できる限り、特に定めるものでは無く、例えば、押出成形、キャスト成形が好ましい。押出成形の例としては、得られる半溶融状のポリカーボネート樹脂フィルムを、ロールを通過させながら、冷却、固化して製品とする方法が挙げられる。より具体的には、ポリカーボネート樹脂のみからなるポリカーボネート樹脂フィルム形成用の樹脂組成物、あるいは、ポリカーボネート樹脂と添加剤を含むポリカーボネート樹脂フィルム形成用の樹脂組成物をTダイ等から押出し、得られる半溶融状のポリカーボネート樹脂フィルムを、ロールを通過させながら、冷却、固化して製品とする方法が挙げられる。ここで、ポリカーボネート樹脂フィルム形成用の樹脂組成物は、ペレット、フレークあるいは粉末を押出機で溶融、混練後、Tダイ等から押出される。押出機は1軸でも2軸でもよく、またベント付き、ノンベントのいずれも使用できる。
 ポリカーボネート樹脂フィルム形成用の樹脂組成物をTダイから押し出す際の樹脂ソシエ物の温度は、200℃以上が好ましく、240℃以上がより好ましく、260℃以下がさらに好ましく、また、320℃以下が好ましく、300℃以下がより好ましく、280℃以下がさらに好ましい。
<Method for producing polycarbonate resin film>
The polycarbonate resin film of the present embodiment is not particularly defined as long as it can be manufactured so as to satisfy the above conditions 1 to 3, and for example, extrusion molding and cast molding are preferable. As an example of extrusion molding, there is a method in which the resulting semi-molten polycarbonate resin film is passed through rolls and cooled and solidified to form a product. More specifically, a resin composition for forming a polycarbonate resin film consisting of only a polycarbonate resin, or a resin composition for forming a polycarbonate resin film containing a polycarbonate resin and an additive is extruded from a T-die or the like to obtain a semi-melt. A polycarbonate resin film having a shape is cooled and solidified while being passed through a roll to form a product. Here, the resin composition for forming a polycarbonate resin film is extruded from a T-die or the like after melting and kneading pellets, flakes or powder in an extruder. The extruder may be single-screw or twin-screw, and may be vented or non-vented.
When the resin composition for forming a polycarbonate resin film is extruded from the T-die, the temperature of the resin substrate is preferably 200° C. or higher, more preferably 240° C. or higher, further preferably 260° C. or lower, and preferably 320° C. or lower. , 300° C. or lower, and more preferably 280° C. or lower.
 本実施形態のポリカーボネート樹脂フィルムは、半溶融状のポリカーボネート樹脂フィルムを搬送させながら、第一の冷却ロールと第二の冷却ロールの距離を精密に設定することが好ましい。
 具体的には、本実施形態のポリカーボネート樹脂フィルムの製造方法は、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離が、160~450mmであることを含む。回転軸方向に対して垂直な方向とは、通常、ロールが回転してフィルムが搬送される方向である。
 図2は、本実施形態のポリカーボネート樹脂フィルムを、ロールを用いて製造する際の模式図を示したものであり、21はTダイを、22はタッチロールを、23は第一の冷却ロールを、24は製造途中のポリカーボネート樹脂フィルム(半溶融状のポリカーボネート樹脂フィルム)を、25は第二の冷却ロールを、26は第三のロール(引き取りロール)をそれぞれ示している。ここで、製造工程中のポリカーボネート樹脂フィルム24は、例えば、Tダイから押し出した後、完全に冷却される前の溶融状態のポリカーボネート樹脂フィルムを含む趣旨である。
 図2においては、半溶融状のポリカーボネート樹脂フィルム形成用の樹脂組成物がTダイ21からフィルム状に押し出され、タッチロール22および第一の冷却ロール23を通過した後、第二の冷却ロール25を通過する。本実施形態では、第一の冷却ロール23と第二の冷却ロール25の間のロールの回転軸方向に対して垂直な方向におけるロール間接点間距離を160~450mmに設定している。このような構成とすることにより、フィルム24にテンションがかかる時間を精密に調整でき、第二の冷却ロール25によるテンションをフィルム24に均一に付与することができ、フィルムの主軸を真っ直ぐにしやすくすることができる。
 ここで、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離について、図3を用いて説明する。図3は、図2の部分拡大図で、符号は図1と共通である。まず、ロールの回転軸方向とは、ロールが回転する方向に垂直な方向であり、すなわち、フィルム(通常は、半溶融状のポリカーボネート樹脂フィルム)が搬送される方向に垂直な方向である。従って、ロールの回転軸方向に対して垂直な方向とは、第一の冷却ロール23との関係でいうと、第一の冷却ロール23の回転軸の中心(23a)と第一の冷却ロール23とフィルム24が接している点(23b)によって結ばれる線の方向をいう。前記第一の冷却ロール23とフィルム24が接している点(23b)は、第一の冷却ロール23に対する接点となる。同様に、第二の冷却ロール25との関係でいうと、ロールの回転軸方向に対して垂直な方向とは、第二の冷却ロール25の回転軸の中心(25a)と第二の冷却ロール25とフィルム24が接している点(25b)によって結ばれる線の方向をいう。前記第二の冷却ロール25とフィルム24が接している点(25b)は、第二の冷却ロール25に対する接点となる。そして、本実施形態においては、第一の冷却ロール23とフィルム24との接点23bと、第二の冷却ロール25とフィルム24との接点25bの距離(ロール間接点間距離)が、160~450mmとなる。
 尚、第一の冷却ロール23とフィルム24の接点23bは、幾何学的な意味で接点の様に一点に定まらない場合もある。この場合、第一の冷却ロール23からフィルム24が最後に剥離した点を第一のロール23とフィルム24の接点23bとする。同様に、フィルム24と第二の冷却ロール25が最初に接触した点をフィルム24と第二の冷却ロール25の接点25bとする。
 前記ロール間接点間距離の下限値は、200mm以上であることが好ましく、225mm以上であることがより好ましく、250mm以上であることがさらに好ましく、280mm以上であることが一層好ましく、300mm以上であることがより一層好ましい。前記下限値以上とすることにより、主軸方位角の均一性が高くなる傾向にある。また、前記ロール間接点間距離の上限値は420mm以下であることが好ましく、400mm以下であることがより好ましく、350mm以下であることがさらに好ましく、330mm以下であることが一層好ましく、315mm以下であることがより一層好ましい。前記上限値以下とすることにより、主軸方位角の均一性が高くなる傾向にある。
For the polycarbonate resin film of the present embodiment, it is preferable to precisely set the distance between the first cooling roll and the second cooling roll while conveying the semi-molten polycarbonate resin film.
Specifically, in the method for producing a polycarbonate resin film of the present embodiment, the inter-roll point distance between the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls is 160. including being ~450 mm. The direction perpendicular to the rotation axis direction is usually the direction in which the roll rotates and the film is conveyed.
FIG. 2 shows a schematic diagram of the production of the polycarbonate resin film of the present embodiment using rolls, where 21 is a T die, 22 is a touch roll, and 23 is a first cooling roll. , 24 indicates a polycarbonate resin film (semi-melted polycarbonate resin film) in the process of production, 25 indicates a second cooling roll, and 26 indicates a third roll (take-up roll). Here, the polycarbonate resin film 24 during the manufacturing process is meant to include, for example, a molten polycarbonate resin film before being completely cooled after being extruded from a T-die.
In FIG. 2, a resin composition for forming a semi-molten polycarbonate resin film is extruded from a T-die 21 into a film, passes through a touch roll 22 and a first cooling roll 23, and then passes through a second cooling roll 25. pass through. In this embodiment, the inter-roll point distance between the first cooling roll 23 and the second cooling roll 25 in the direction perpendicular to the rotation axis direction of the rolls is set to 160 to 450 mm. With such a structure, the time for applying tension to the film 24 can be precisely adjusted, the tension can be uniformly applied to the film 24 by the second cooling roll 25, and the principal axis of the film can be easily straightened. be able to.
Here, the inter-roll contact distance between the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls will be described with reference to FIG. FIG. 3 is a partial enlarged view of FIG. 2, and the reference numerals are the same as in FIG. First, the rotation axis direction of the roll is the direction perpendicular to the direction in which the roll rotates, that is, the direction perpendicular to the direction in which the film (usually a semi-molten polycarbonate resin film) is conveyed. Therefore, in relation to the first cooling roll 23, the direction perpendicular to the rotation axis direction of the rolls means the center (23a) of the rotation axis of the first cooling roll 23 and the first cooling roll 23 and the direction of the line connected by the point (23b) where the film 24 is in contact. A point ( 23 b ) where the first cooling roll 23 and the film 24 are in contact is a point of contact with the first cooling roll 23 . Similarly, in terms of the relationship with the second cooling roll 25, the direction perpendicular to the rotation axis direction of the rolls is the center (25a) of the rotation axis of the second cooling roll 25 and the second cooling roll. It refers to the direction of the line connected by the point (25b) where 25 and film 24 are in contact. A point ( 25 b ) where the second cooling roll 25 and the film 24 are in contact is a point of contact with the second cooling roll 25 . In this embodiment, the distance between the contact point 23b between the first cooling roll 23 and the film 24 and the contact point 25b between the second cooling roll 25 and the film 24 (distance between roll contact points) is 160 to 450 mm. becomes.
Note that the contact point 23b between the first cooling roll 23 and the film 24 may not be fixed at one point in a geometrical sense like a contact point. In this case, the point at which the film 24 is finally peeled off from the first cooling roll 23 is defined as a contact point 23b between the first roll 23 and the film 24 . Similarly, the point where the film 24 and the second cooling roll 25 first come into contact with each other is defined as a point of contact 25b between the film 24 and the second cooling roll 25 .
The lower limit of the distance between the points between the rolls is preferably 200 mm or more, more preferably 225 mm or more, still more preferably 250 mm or more, even more preferably 280 mm or more, and 300 mm or more. is even more preferable. By making it equal to or greater than the lower limit, there is a tendency for the uniformity of the main axis azimuth angle to be enhanced. In addition, the upper limit of the distance between the points between the rolls is preferably 420 mm or less, more preferably 400 mm or less, even more preferably 350 mm or less, even more preferably 330 mm or less, and 315 mm or less. It is even more preferable to have By making it equal to or less than the above upper limit, there is a tendency that the uniformity of the main axis azimuth angle becomes high.
 前記第一の冷却ロールの直径は、100mm以上であることが好ましく、150mm以上であることがより好ましく、200mm以上であることがさらに好ましく、250mm以上であることが一層好ましく、280mm以上であることがより一層好ましい。前記下限値以上とすることにより、一定成形速度下でフィルムがロールに接触する時間が長くなることで、ロールから樹脂が剥離する際のフィルム全幅でのフィルム温度が一定になりやすくなり、結果、主軸方位角が均一になりやすくなる傾向にある。また、前記第一の冷却ロールの直径は、1000mm以下であることが好ましく、900mm以下であることがより好ましく、800mm以下であることがさらに好ましく、700mm以下であることが一層好ましく、650mm以下であることがより一層好ましい。前記上限値以下とすることにより、タッチロール22と第一の冷却ロール23で半溶融樹脂を圧着する際に、Tダイリップ部を圧着点により近くすることが可能となり、フィルムの転写不良やダイラインなどの外観不良を改善しやすくなる傾向にある。
 前記第二の冷却ロールの直径は、100mm以上であることが好ましく、150mm以上であることがより好ましく、200mm以上であることがさらに好ましく、250mm以上であることが一層好ましく、280mm以上であることがより一層好ましい。前記下限値以上とすることにより、第一の冷却ロール23とフィルム24の接触長さを、第二の冷却ロール25の位置もしくはガイドロール位置の変更により、任意に変更しやすくなり、主軸方位角を均一化させやすくなる傾向にある。また、前記第一の冷却ロールの直径は、1000mm以下であることが好ましく、900mm以下であることがより好ましく、800mm以下であることがさらに好ましく、700mm以下であることが一層好ましく、650mm以下であることがより一層好ましい。前記上限値以下とすることにより、ロールの質量を軽くでき、第二の冷却ロール25の位置変更がしやすくなる傾向にある。
The diameter of the first cooling roll is preferably 100 mm or more, more preferably 150 mm or more, still more preferably 200 mm or more, still more preferably 250 mm or more, and 280 mm or more. is even more preferred. By making it equal to or higher than the lower limit, the time that the film contacts the roll at a constant molding speed becomes longer, so that the film temperature over the entire width of the film when the resin is peeled from the roll tends to be constant. The main axis azimuth tends to be uniform. The diameter of the first cooling roll is preferably 1000 mm or less, more preferably 900 mm or less, still more preferably 800 mm or less, even more preferably 700 mm or less, and 650 mm or less. It is even more preferable to have By making it equal to or less than the upper limit, when the semi-molten resin is crimped by the touch roll 22 and the first cooling roll 23, it is possible to bring the T-die lip portion closer to the crimping point, resulting in poor film transfer, die lines, etc. It tends to be easier to improve the poor appearance of
The diameter of the second cooling roll is preferably 100 mm or more, more preferably 150 mm or more, still more preferably 200 mm or more, even more preferably 250 mm or more, and 280 mm or more. is even more preferred. By making it equal to or greater than the lower limit value, the contact length between the first cooling roll 23 and the film 24 can be easily changed arbitrarily by changing the position of the second cooling roll 25 or the position of the guide roll, and the main axis azimuth angle tend to be easier to equalize. The diameter of the first cooling roll is preferably 1000 mm or less, more preferably 900 mm or less, still more preferably 800 mm or less, even more preferably 700 mm or less, and 650 mm or less. It is even more preferable to have When the thickness is equal to or less than the upper limit, the mass of the roll can be reduced, and the position of the second cooling roll 25 tends to be easily changed.
 第一の冷却ロールの表面温度は、80℃以上であることが好ましく、90℃以上であることがより好ましく、95℃以上であることがさらに好ましい。前記下限値以上とすることにより、フィルムの転写不良やダイラインなどの外観不良を改善しやすくなる傾向にある。また、第一の冷却ロールの表面温度は、140℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることがさらに好ましく、105℃以下であることが一層好ましい。前記上限値以下とすることにより、第一の冷却ロール23からフィルム24が剥離しやすくなる傾向にある。
 第二の冷却ロールの表面温度は、110℃以上であることが好ましく、120℃以上であることがより好ましく130℃以上であることがさらに好ましい。前記下限値以上とすることにより、第二の冷却ロール25とフィルム24の密着性が向上することにより、第一の冷却ロール23とフィルム24の剥離が安定化する傾向にある。また、第一の冷却ロールの表面温度は、160℃以下であることが好ましく、150℃以下であることがより好ましく、145℃以下であることがさらに好ましい。前記上限値以下とすることにより、第二の冷却ロール25とフィルムとの密着性が上がりすぎて、第二の冷却ロール25とフィルム24が密着し、外観不良となってしまうことを効果的に抑制できる傾向にある。
 前記第二の冷却ロールと第一の冷却ロールの表面温度の差は、10℃以上であることが好ましく、20℃以上であることがより好ましく、30℃以上であることがさらに好ましい。前記下限値以上とすることにより、第一冷却ロールで発生したフィルムの反りを第二冷却ロールで緩和することにより、フィルムの反りを少なくするできる傾向にある。また、前記第二の冷却ロールと第一の冷却ロールの表面温度の差は、60℃以下であることが好ましく、50℃以下であることがより好ましく、45℃以下であることがさらに好ましい。前記上限値以下とすることにより、第二の冷却ロールでの反りが大きくなりすぎるのを効果的に防ぐことができる。
The surface temperature of the first cooling roll is preferably 80° C. or higher, more preferably 90° C. or higher, and even more preferably 95° C. or higher. When the content is equal to or higher than the above lower limit, it tends to be easy to improve appearance defects such as film transfer defects and die lines. The surface temperature of the first cooling roll is preferably 140°C or lower, more preferably 120°C or lower, even more preferably 110°C or lower, and even more preferably 105°C or lower. . When the thickness is equal to or less than the upper limit, the film 24 tends to be easily peeled off from the first cooling roll 23 .
The surface temperature of the second cooling roll is preferably 110° C. or higher, more preferably 120° C. or higher, and even more preferably 130° C. or higher. When the thickness is equal to or higher than the lower limit, the adhesiveness between the second cooling roll 25 and the film 24 is improved, and the separation between the first cooling roll 23 and the film 24 tends to be stabilized. Also, the surface temperature of the first cooling roll is preferably 160° C. or lower, more preferably 150° C. or lower, and even more preferably 145° C. or lower. By making it equal to or less than the above upper limit, it is possible to effectively prevent the adhesion between the second cooling roll 25 and the film 24 to be too high, resulting in poor appearance due to the close contact between the second cooling roll 25 and the film 24. tend to be suppressed.
The difference in surface temperature between the second chill roll and the first chill roll is preferably 10° C. or higher, more preferably 20° C. or higher, and even more preferably 30° C. or higher. When the thickness is equal to or higher than the above lower limit, warping of the film caused by the first cooling roll is alleviated by the second cooling roll, thereby tending to reduce the warping of the film. The difference in surface temperature between the second chill roll and the first chill roll is preferably 60°C or less, more preferably 50°C or less, and even more preferably 45°C or less. By making the thickness equal to or less than the upper limit, it is possible to effectively prevent the warpage of the second cooling roll from becoming too large.
 タッチロールの表面温度は、80℃以上であることが好ましく、90℃以上であることがより好ましく、95℃以上であることがさらに好ましい。前記下限値以上とすることにより、フィルムの転写不良やダイラインなどの外観不良を改善しやすくなる傾向にある。また、タッチロールの表面温度は、140℃以下であることが好ましく、110℃以下であることがより好ましく、105℃以下であることがさらに好ましい。前記上限値以下とすることにより、タッチロールにフィルムが粘着して、外観不良になってしまうことを効果的に抑制できる傾向にある。 The surface temperature of the touch roll is preferably 80°C or higher, more preferably 90°C or higher, and even more preferably 95°C or higher. When the content is equal to or higher than the above lower limit, it tends to be easy to improve appearance defects such as film transfer defects and die lines. Also, the surface temperature of the touch roll is preferably 140° C. or lower, more preferably 110° C. or lower, and even more preferably 105° C. or lower. When the thickness is equal to or less than the above upper limit, it tends to be possible to effectively prevent the film from sticking to the touch roll and resulting in poor appearance.
 一方、タッチロール22、第一の冷却ロール23、および、第二の冷却ロール25の表面の素材は、特に定めるものでは無いが、金属であることが好ましく、また、鏡面仕上げされていることが好ましい。このような素材のロールを用いることにより、より主軸方位がばらつきにくいポリカーボネート樹脂フィルムが得られる。 On the other hand, the materials of the surfaces of the touch roll 22, the first cooling roll 23, and the second cooling roll 25 are not particularly specified, but are preferably metal, and may be mirror-finished. preferable. By using a roll made of such a material, a polycarbonate resin film whose main axis orientation is less likely to vary can be obtained.
 なお、ポリカーボネート樹脂フィルムの製造方法において、冷却ロールの数は2つである必要はなく、3つ以上あってもよい。本実施形態においては、Tダイから押し出されたポリカーボネート樹脂が一番目と二番目に通過する冷却ロールが、それぞれ、第一の冷却ロールと第二の冷却ロールであることが好ましい。 In addition, in the method for producing a polycarbonate resin film, the number of cooling rolls does not need to be two, and may be three or more. In this embodiment, it is preferable that the first and second cooling rolls through which the polycarbonate resin extruded from the T-die passes are the first cooling roll and the second cooling roll, respectively.
 本実施形態では、第一の冷却ロールと引き取りロールの周速度比が、1:0.995~1:0.975であることが好ましい。前記周速度比を0.975以上とすることにより、第二の冷却ロール25から引き取りロール間の張力を適切な値にし、主軸方位角がより均一化する傾向にある。また、前記周速度比を0.995以下とすることにより、位相差を5~50nmの範囲により調整しやすくなる傾向にある。
 ここで、引き取りロールとは、例えば、図2における第三のロール26がこれに該当する。すなわち、フィルムを引き取るために作用しているロールである。前記第一の冷却ロールと引き取りロールの周速度比は、第一の冷却ロールの周速度1に対し、0.980以上であることがより好ましい。また、前記第一の冷却ロールと引き取りロールの周速度比は、第一の冷却ロールの周速度1に対し0.993以下であることがより好ましく、0.990以下であることがさらに好ましく、0.987以下であることが一層好ましい。
In this embodiment, the peripheral speed ratio between the first cooling roll and the take-up roll is preferably 1:0.995 to 1:0.975. By setting the peripheral speed ratio to 0.975 or more, the tension between the second cooling roll 25 and the take-up roll is set to an appropriate value, and the azimuth angle of the main axis tends to be more uniform. Further, by setting the circumferential velocity ratio to 0.995 or less, there is a tendency that the phase difference can be easily adjusted within a range of 5 to 50 nm.
Here, the take-up roll corresponds to, for example, the third roll 26 in FIG. That is, the rolls acting to take up the film. It is more preferable that the peripheral speed ratio between the first cooling roll and the take-up roll is 0.980 or more with respect to the peripheral speed 1 of the first cooling roll. Further, the peripheral speed ratio between the first cooling roll and the take-up roll is more preferably 0.993 or less, more preferably 0.990 or less with respect to the peripheral speed 1 of the first cooling roll, It is more preferably 0.987 or less.
 本実施形態のポリカーボネート樹脂フィルム製造方法においては、通常、図2に示す通り、ポリカーボネート樹脂フィルム形成用の樹脂組成物をTダイ21から押し出す。Tダイの幅は600mm以上であることが好ましい。前記下限値以上とすることにより、得られるポリカーボネート樹脂フィルムの成形加工性、取り扱い性がより向上する傾向にある。前記Tダイの幅は、800mm以上であることが好ましく、1000mm以上であることがより好ましく、1200mm以上であることがさらに好ましい。また、前記Tダイの幅の上限は、5000mm以下であることが好ましく、3000mm以下であることがより好ましく、2500mm以下であることがさらに好ましく、2200mm以下であることが一層好ましく、2000mm以下であることがより一層好ましい。 In the polycarbonate resin film manufacturing method of the present embodiment, a resin composition for forming a polycarbonate resin film is usually extruded from a T-die 21 as shown in FIG. The width of the T-die is preferably 600 mm or more. When the content is at least the above lower limit, the resulting polycarbonate resin film tends to be more improved in moldability and handleability. The width of the T-die is preferably 800 mm or more, more preferably 1000 mm or more, and even more preferably 1200 mm or more. The upper limit of the width of the T-die is preferably 5000 mm or less, more preferably 3000 mm or less, even more preferably 2500 mm or less, even more preferably 2200 mm or less, and 2000 mm or less. is even more preferable.
 本実施形態のポリカーボネート樹脂フィルムの製造方法は、前記第二の冷却ロールと半溶融状のポリカーボネート樹脂フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さが、2~400mmであることが好ましい。前記下限値以上とすることにより、主軸方位の均一性がより向上する傾向にある。また、前記上限値以下とすることにより、第一冷却ロールと第二冷却ロール間で均一にした主軸方位角が第二冷却ロール上で緩和し、結果として主軸方位のばらつきが大きくなることを防ぐことができ、主軸方位をばらつきにくくすることができる。
 ここで、垂直な方向における接触長さとは、第二冷却ロールとフィルムが接触している円弧の長さとする。例えば、図4に示すように(図4中の符号は図2と共通である)、製造途中のポリカーボネート樹脂フィルム24が第二の冷却ロール25と接している長さ30をいう。ここでの長さは、第二の冷却ロール25の回転軸に対して垂直な方向、すなわち、ポリカーボネート樹脂フィルムの搬送方向で、第二の冷却ロール25と接している長さをいう。第二の冷却ロール25と接するポリカーボネート樹脂フィルム24は、溶融状態にあるフィルムであるため、このように一定の距離で第二の冷却ロールと接している。
 前記接触長さは、10mm以上であることがより好ましく、15mm以上であることがさらに好ましく、20mm以上であることが一層好ましく、30mm以上であることがより一層好ましく、35mm以上であることがさらに一層好ましい。前記接触長さは、また、350mm以下であることがより好ましく、300mm以下であることがさらに好ましく、200mm以下であることが一層好ましく、150mm以下であることがより一層好ましく、100mm以下であることがさらに一層好ましく、80mm以下であってもよい。前記上限値以下とすることにより、主軸方位の均一性がより向上する傾向にある。
In the method for producing a polycarbonate resin film of the present embodiment, the contact length between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm. Preferably. By making it equal to or higher than the lower limit, the uniformity of the principal axis orientation tends to be further improved. In addition, by making it equal to or less than the upper limit, the main axis azimuth angle uniformed between the first cooling roll and the second cooling roll is relaxed on the second cooling roll, and as a result, it is possible to prevent the dispersion of the main axis azimuth from becoming large. It is possible to make it difficult for the main axis orientation to fluctuate.
Here, the contact length in the vertical direction is the arc length of the contact between the second cooling roll and the film. For example, as shown in FIG. 4 (the reference numerals in FIG. 4 are the same as those in FIG. 2), it refers to the length 30 where the polycarbonate resin film 24 in the process of production is in contact with the second chill roll 25 . The length here refers to the length of contact with the second cooling roll 25 in the direction perpendicular to the rotation axis of the second cooling roll 25, that is, the transport direction of the polycarbonate resin film. Since the polycarbonate resin film 24 in contact with the second cooling roll 25 is a film in a molten state, it is in contact with the second cooling roll at a constant distance.
The contact length is more preferably 10 mm or longer, more preferably 15 mm or longer, still more preferably 20 mm or longer, still more preferably 30 mm or longer, and further preferably 35 mm or longer. More preferred. The contact length is also preferably 350 mm or less, further preferably 300 mm or less, even more preferably 200 mm or less, even more preferably 150 mm or less, and 100 mm or less. is still more preferable, and may be 80 mm or less. By making it equal to or less than the above upper limit, there is a tendency that the uniformity of the principal axis orientation is further improved.
<多層フィルムの製造方法>
 本実施形態の多層フィルムは、上記条件A~Cを満たし、かつ、ポリカーボネート樹脂フィルムと他の層を有する多層フィルムを製造できる限り、特に定めるものでは無く、公知の方法を採用できる。
<Method for producing multilayer film>
The multilayer film of the present embodiment is not particularly limited as long as it satisfies the above conditions A to C and can be manufactured by a polycarbonate resin film and other layers, and known methods can be employed.
 本実施形態の多層フィルムの製造方法の第一の例は、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離が、160~450mmであることを含む。
 また、本実施形態の多層フィルムの製造方法においては、前記第一の冷却ロールと引き取りロールの周速度比が、1:0.995~1:0.975であることが好ましい。
 さらに、本実施形態の多層フィルムの製造方法においては、ポリカーボネート樹脂フィルム形成用の樹脂組成物と他の層を形成用の樹脂組成物をTダイから押し出すことを含み、前記Tダイの幅が600mm以上であることが好ましい。すなわち、通常は、ポリカーボネート樹脂フィルムと他の層が共押出され、上述のポリカーボネート樹脂フィルムの製造方法と同様にロールを用いて製造される。
 さらに、本実施形態の多層フィルムの製造方法においては、前記第二の冷却ロールと半溶融状の多層フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さが、2~400mmであることが好ましい。本実施形態の多層フィルムの製造方法においては、第二の冷却ロールは、ポリカーボネート樹脂フィルムと接していてもよいし、他の層と接していてもよい。
 多層フィルムの第一の例において、前記他の層は、(メタ)アクリル樹脂層であることが好ましい。
 また、第一の例に記載の方法で多層フィルムを製造した後、その上に、ハードコート層および/またはマスキングフィルムを設けてもよい。
 上記の他、本実施形態の多層フィルムの製造方法の第一の例の詳細について、ポリカーボネート樹脂フィルムに加え、少なくとも1層の他の層を積層して、多層フィルムを製造することを除き、上述のポリカーボネート樹脂フィルムの製造方法と同様であり、好ましい範囲も同様である。また、得られる多層フィルムは、上述の本実施形態の多層フィルムと同様であり、好ましい範囲も同様である。
In a first example of the method for producing a multilayer film of the present embodiment, the distance between the roll-to-roll points of the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls is 160 to 160. Including being 450mm.
Further, in the method for producing a multilayer film of the present embodiment, the peripheral speed ratio between the first cooling roll and the take-up roll is preferably 1:0.995 to 1:0.975.
Furthermore, in the method for producing a multilayer film of the present embodiment, the resin composition for forming the polycarbonate resin film and the resin composition for forming other layers are extruded from a T-die, and the width of the T-die is 600 mm. It is preferable that it is above. That is, usually, a polycarbonate resin film and other layers are co-extruded and produced using rolls in the same manner as in the above-described method for producing a polycarbonate resin film.
Furthermore, in the method for producing a multilayer film of the present embodiment, the contact length between the second cooling roll and the semi-molten multilayer film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm. is preferably In the method for producing a multilayer film of the present embodiment, the second cooling roll may be in contact with the polycarbonate resin film or may be in contact with other layers.
In the first example of the multilayer film, the other layer is preferably a (meth)acrylic resin layer.
Moreover, after manufacturing a multilayer film by the method described in the first example, a hard coat layer and/or a masking film may be provided thereon.
In addition to the above, the details of the first example of the method for producing a multilayer film of the present embodiment are as described above, except that the multilayer film is produced by laminating at least one other layer in addition to the polycarbonate resin film. is the same as the method for producing a polycarbonate resin film, and the preferred range is also the same. Moreover, the obtained multilayer film is the same as the multilayer film of the present embodiment described above, and the preferred range is also the same.
 本実施形態の多層フィルムの製造方法の第二の例は、ポリカーボネート樹脂フィルムを成形した後、他の層を設ける方法である。具体的には、ポリカーボネート樹脂と高硬度樹脂層を貼り合わせることが挙げられる。また、ポリカーボネート樹脂フィルムの上に、あるいは、ポリカーボネート樹脂と高硬度樹脂層との多層フィルムの上に、ハードコート層および/またはマスキングフィルムを設けることが挙げられる。 A second example of the method for producing a multilayer film of the present embodiment is a method of forming another layer after molding a polycarbonate resin film. Specifically, bonding a polycarbonate resin and a high-hardness resin layer together can be mentioned. Further, a hard coat layer and/or a masking film may be provided on the polycarbonate resin film or on the multilayer film of the polycarbonate resin and the high-hardness resin layer.
 上記の他、多層フィルムの製造について、本発明の趣旨を逸脱しない範囲で、特開2018-103518号公報および特開2016-060786号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。 In addition to the above, the descriptions of JP-A-2018-103518 and JP-A-2016-060786 can be referred to within the scope of the present invention for the production of multilayer films, and the contents of these are incorporated herein. be
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
EXAMPLES The present invention will be described more specifically with reference to examples below. The materials, usage amounts, ratios, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Accordingly, the scope of the present invention is not limited to the specific examples shown below.
If the measuring instruments and the like used in the examples are discontinued and difficult to obtain, other instruments having equivalent performance can be used for measurement.
 各種物性値は、以下の方法に従って測定した。 Various physical property values were measured according to the following methods.
<鉛筆硬度>
 フィルムの鉛筆硬度は、荷重を500g±10gとし、荷重以外の測定方法をJIS K5600-5-4に準拠した方法で測定した。
 多層フィルムについては、硬度がより高くなる側から測定することとした。本実施例で示す多層フィルムにおいては、高硬度樹脂層((メタ)アクリル樹脂層)側から測定した。
<Pencil hardness>
The pencil hardness of the film was measured with a load of 500 g±10 g, and the measuring method other than the load was based on JIS K5600-5-4.
For the multilayer film, the hardness was measured from the higher hardness side. In the multilayer film shown in this example, the measurement was performed from the high-hardness resin layer ((meth)acrylic resin layer) side.
<主軸方位角>
 ポリカーボネート樹脂フィルムおよび多層フィルムの主軸方位角は屈折率が最大の方位を表す遅相軸の方位角とした。また、主軸方位角は測定箇所によって値が変わるため、本実施例では、主軸方位角の平均値を測定することとした。
 前記主軸方位角の測定には、フォトニックラティス社製、PA-300を使用した。フィルムは長手方向に垂直な方向を装置手前から奥方向に向けて設置した。装置測定箇所としては、フィルムの対角を結んだ中心を中心点とし、長手方向の両端部に向けて50mm間隔にて主軸方位角を測定した。測定に際し、フィルムを幅方向とフィルム流れ方向が順に、1300mm、300mmとなるようにカットし、そのうち、300×200mmの領域の中心点を測定点として測定した。
 主軸方位角の平均値からの偏差(°)は、測定した主軸方位角の平均値から各測定箇所の主軸方位角を引き、絶対値が最も大きかった値を主軸方位角の平均値からの偏差として算出した。
 多層フィルムについては、主軸方位角を高硬度樹脂層((メタ)アクリル樹脂層)側から測定した。
<Main axis azimuth>
The azimuth angle of the main axis of the polycarbonate resin film and multilayer film was the azimuth angle of the slow axis representing the direction of the maximum refractive index. Also, since the value of the azimuth angle of the main axis changes depending on the measurement point, the average value of the azimuth angle of the main axis is measured in this embodiment.
PA-300 manufactured by Photonic Lattice was used to measure the principal axis azimuth angle. The film was placed so that the direction perpendicular to the longitudinal direction was directed from the front to the back of the device. As the measurement points of the apparatus, the center point connecting the diagonals of the film was used as the center point, and the main axis azimuth angles were measured at intervals of 50 mm toward both ends in the longitudinal direction. In the measurement, the film was cut to 1300 mm and 300 mm in the width direction and the film flow direction, respectively, and the center point of the 300 x 200 mm area was used as the measurement point.
Deviation (°) from the average value of the main axis azimuth angle is calculated by subtracting the main axis azimuth angle at each measurement point from the average value of the measured main axis azimuth angle, and the value with the largest absolute value is the deviation from the average value of the main axis azimuth angle. calculated as
As for the multilayer film, the main axis azimuth angle was measured from the high hardness resin layer ((meth)acrylic resin layer) side.
<位相差>
 ポリカーボネート樹脂フィルムおよび多層フィルムの位相差は、測定波長520nmにおける面内位相差のうち、最大の値を測定した。単位は、nmで示した。
 前記位相差の測定には、フォトニックラティス社製、PA-300を使用した。フィルムは長手方向に垂直な方向を装置手前から奥方向に向けて設置した。装置測定箇所としては、フィルムの対角を結んだ中心を中心点とし、長手方向の両端部に向けて50mm間隔にて位相差を測定した。これらの内、最も高い位相差を本発明における位相差とした。
 多層フィルムについては、位相差を高硬度樹脂層((メタ)アクリル樹脂層)側から測定した。
<Phase difference>
For the retardation of the polycarbonate resin film and multilayer film, the maximum in-plane retardation at a measurement wavelength of 520 nm was measured. The unit is nm.
PA-300 manufactured by Photonic Lattice was used to measure the phase difference. The film was placed so that the direction perpendicular to the longitudinal direction was directed from the front to the back of the device. As for the measurement points of the apparatus, the center point connecting the diagonals of the film was used as the center point, and the retardation was measured at intervals of 50 mm toward both ends in the longitudinal direction. Among these, the highest phase difference was taken as the phase difference in the present invention.
For the multilayer film, the retardation was measured from the high hardness resin layer ((meth)acrylic resin layer) side.
<多層フィルムの厚み>
 多層フィルムの厚みはJIS K 7130のA法に準拠した方法で測定した。
<Thickness of multilayer film>
The thickness of the multilayer film was measured by a method based on JIS K 7130 A method.
実施例1
 軸径50mmの単軸押出機と、軸径100mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結された幅1500mmのTダイとを有する多層押出装置を用いて多層フィルムを成形した。軸径50mmの単軸押出機に高硬度樹脂として(メタ)アクリル樹脂(アルケマ株式会社製、商品名Altuglas V020、組成:ポリメチルメタクリレート)を連続的に導入し、シリンダ温度240℃で押し出した。また、軸径100mmの単軸押出機にポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000、ビスフェノールA型ポリカーボネート樹脂、重量平均分子量:59000)を連続的に導入し、シリンダ温度280℃で押し出した。軸径50mmの単軸押出機と軸径100mmの単軸押出機は吐出量比が35/90となるように設定した。全押出機に連結されたフィードブロックは二種二層の分配ピンを備え、温度270℃として高硬度樹脂とポリカーボネート樹脂とを導入し積層した。その先に連結された温度270℃のTダイでフィルム上に押し出した。図2に示すようなロールを用いたフィルム製造装置において、タッチロール22の表面温度100℃、第一の冷却ロール23の表面温度100℃、第二の冷却ロール25の表面温度140℃とし、3本の鏡面仕上げロールで鏡面を転写しながら冷却した。その際、第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を305mmとし、多層フィルムと第二の冷却ロール25の接触長さを40mm、第一の冷却ロールに対しての引き取りロール(第三のロール)26の周速度比を0.991、ポリカーボネート樹脂と(メタ)アクリル樹脂層の合計厚み(以下、総厚みという)が125μmになるようにラインスピードを設定し、多層フィルムを得た。得られた多層フィルムの(メタ)アクリル樹脂層の厚みは中央付近で35μmであった。なお、第二の冷却ロールには、ポリカーボネート樹脂層側が接している。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 1
A multi-layer extruder having a single-screw extruder with a shaft diameter of 50 mm, a single-screw extruder with a shaft diameter of 100 mm, a feed block connected to all the extruders, and a T-die with a width of 1500 mm connected to the feed block. A multilayer film was formed by A (meth)acrylic resin (manufactured by Arkema Co., Ltd., trade name Altuglas V020, composition: polymethyl methacrylate) was continuously introduced as a high-hardness resin into a single-screw extruder with a shaft diameter of 50 mm, and extruded at a cylinder temperature of 240°C. Further, a polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics, trade name: Iupilon S-1000, bisphenol A type polycarbonate resin, weight average molecular weight: 59000) was continuously introduced into a single screw extruder with a shaft diameter of 100 mm, and the cylinder temperature was Extruded at 280°C. A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm were set so that the discharge amount ratio was 35/90. A feed block connected to the entire extruder was equipped with a two-kind and two-layer distribution pin, and the temperature was set to 270° C. to introduce and laminate the high hardness resin and the polycarbonate resin. It was extruded onto a film with a T-die connected to the end thereof and having a temperature of 270°C. In the film manufacturing apparatus using rolls as shown in FIG. It was cooled while transferring the mirror surface with a book mirror-finishing roll. At that time, the contact distance between the first cooling roll 23 and the second cooling roll 25 was 305 mm, the contact length between the multilayer film and the second cooling roll 25 was 40 mm, and the first cooling roll Set the line speed so that the peripheral speed ratio of the take-up roll (third roll) 26 is 0.991, and the total thickness (hereinafter referred to as the total thickness) of the polycarbonate resin and (meth)acrylic resin layer is 125 μm, A multilayer film was obtained. The thickness of the (meth)acrylic resin layer of the obtained multilayer film was 35 μm near the center. The polycarbonate resin layer side is in contact with the second cooling roll.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例2
 軸径50mmの単軸押出機と軸径100mmの単軸押出機の吐出量比が40/140、第一の冷却ロール23に対しての引き取りロール26の周速度比を0.985、多層フィルムの総厚みが180μmになるように設定した以外は実施例1と同様にして多層フィルムを得た。(メタ)アクリル樹脂層の厚みは中央付近で40μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 2
A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 40/140, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 180 μm. The thickness of the (meth)acrylic resin layer was 40 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例3
 軸径50mmの単軸押出機と軸径100mmの単軸押出機の吐出量比が55/199、第一の冷却ロール23に対しての引き取りロール26の周速度比を0.985、多層フィルムの総厚みが254μmになるように設定した以外は実施例1と同様にして多層フィルムを得た。(メタ)アクリル樹脂層の厚みは中央付近で55μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 3
A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 55/199, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 254 μm. The thickness of the (meth)acrylic resin layer was 55 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例4
 軸径50mmの単軸押出機と軸径100mmの単軸押出機の吐出量比が55/320、第一の冷却ロール23に対しての引き取りロール26の周速度比を0.985、多層フィルムの総厚みが375μmになるように設定した以外は実施例1と同様にして多層フィルムを得た。(メタ)アクリル樹脂層の厚みは中央付近で55μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 4
A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 55/320, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 375 μm. The thickness of the (meth)acrylic resin layer was 55 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例5
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を320mmとし、多層フィルムと第二の冷却ロールの接触長さを310mmになるように設定した以外は実施例4と同様にして多層フィルムを得た。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 5
Same as Example 4, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was set to 320 mm, and the contact length between the multilayer film and the second cooling roll was set to 310 mm. to obtain a multilayer film.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例6
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を205mmとし、多層フィルムと第二の冷却ロール25接点間距離の接触長さを60mmになるように設定した以外は実施例4と同様にして多層フィルムを得た。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 6
The distance between the contacts between the first cooling roll 23 and the second cooling roll 25 was set to 205 mm, and the contact length between the multilayer film and the second cooling roll 25 was set to 60 mm. A multilayer film was obtained in the same manner as in Example 4.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例7
 軸径50mmの単軸押出機と軸径100mmの単軸押出機の吐出量比が55/445、第一の冷却ロール23に対しての引き取りロール26の周速度比を0.985、多層フィルムの総厚みが500μmになるように設定した以外は実施例1と同様にして多層フィルムを得た。(メタ)アクリル樹脂層の厚みは中央付近で55μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 7
A single-screw extruder with a shaft diameter of 50 mm and a single-screw extruder with a shaft diameter of 100 mm have a discharge rate ratio of 55/445, a peripheral speed ratio of the take-up roll 26 to the first cooling roll 23 is 0.985, and a multilayer film A multilayer film was obtained in the same manner as in Example 1, except that the total thickness of was set to 500 μm. The thickness of the (meth)acrylic resin layer was 55 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例8
 実施例2で製造した多層フィルム(総厚み180μm、(メタ)アクリル樹脂層の厚み40μm)の(メタ)アクリル樹脂層の表面に、ロールコート法を用いてUV硬化型のウレタンアクリレート系のハードコート(三菱ケミカル製UV硬化型ウレタンアクリレート、商品名UV-7650B)を5μm塗布した多層フィルムを得た。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 8
On the surface of the (meth)acrylic resin layer of the multilayer film (total thickness: 180 μm, (meth)acrylic resin layer: 40 μm) produced in Example 2, a UV-curable urethane acrylate hard coat was applied using a roll coating method. (UV curable urethane acrylate manufactured by Mitsubishi Chemical, trade name UV-7650B) was coated to a thickness of 5 μm to obtain a multilayer film.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例9
 実施例4で製造した多層フィルム(総厚み375μm、(メタ)アクリル樹脂層の厚み55μm)の(メタ)アクリル樹脂層の表面に、ロールコート法を用いてUV硬化型のウレタンアクリレート系のハードコート(三菱ケミカル製UV硬化型ウレタンアクリレート、商品名UV-7650B)を5μm塗布した多層フィルムを得た。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 9
On the surface of the (meth)acrylic resin layer of the multilayer film produced in Example 4 (total thickness: 375 μm, (meth)acrylic resin layer thickness: 55 μm), a UV-curable urethane acrylate hard coat was applied using a roll coating method. (UV curable urethane acrylate manufactured by Mitsubishi Chemical, trade name UV-7650B) was coated to a thickness of 5 μm to obtain a multilayer film.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例1
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、多層フィルムと第二の冷却ロール25接点間距離の接触長さを190mmとした以外は実施例1と同様にして多層フィルムを得た。多層フィルムの総厚みは125μm、(メタ)アクリル樹脂層の厚みは中央付近で35μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 1
Same as Example 1 except that the distance between the contacts between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the distance between the contacts of the second cooling roll 25 was 190 mm. to obtain a multilayer film. The total thickness of the multilayer film was 125 μm, and the thickness of the (meth)acrylic resin layer was 35 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例2
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、多層フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例3と同様にして多層フィルムを得た。多層フィルムの総厚みは254μm、(メタ)アクリル樹脂層の厚みは中央付近で55μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 2
The multilayer film was formed in the same manner as in Example 3, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the second cooling roll 25 was 190 mm. got the film. The total thickness of the multilayer film was 254 μm, and the thickness of the (meth)acrylic resin layer was 55 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例3
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、多層フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例4と同様にして多層フィルムを得た。多層フィルムの総厚みは375μm、(メタ)アクリル樹脂層の厚みは中央付近で55μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 3
The multilayer film was formed in the same manner as in Example 4 except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the second cooling roll 25 was 190 mm. got the film. The total thickness of the multilayer film was 375 µm, and the thickness of the (meth)acrylic resin layer was 55 µm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例4
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、多層フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例7と同様にして多層フィルムを得た。多層フィルムの総厚みは500μm、(メタ)アクリル樹脂層の厚みは中央付近で55μmであった。
 得られた多層フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 4
The multilayer film was formed in the same manner as in Example 7, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the multilayer film and the second cooling roll 25 was 190 mm. got the film. The total thickness of the multilayer film was 500 μm, and the thickness of the (meth)acrylic resin layer was 55 μm near the center.
With respect to the obtained multilayer film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例10
 軸径100mmの単軸押出機と、押出機に連結された幅1500mmのTダイとを有する押出装置を用いてポリカーボネート樹脂フィルムを成形した。軸径100mmの単軸押出機に熱可塑性樹脂Aとしてポリカーボネート樹脂(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000、ビスフェノールA型ポリカーボネート樹脂、重量平均分子量:59000)を連続的に導入し、シリンダ温度280℃で押し出した。軸径100mmの単軸押出機は吐出量が200kg/hとなるように設定し、温度270℃のTダイでフィルム上に押し出した。タッチロール22のロール温度を100℃、第一の冷却ロール23のロール温度を100℃、第二の冷却ロール25のロール温度を140℃とし、3本の鏡面仕上げロールで鏡面を転写しながら冷却した。その際、第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を305mmとし、ポリカーボネート樹脂フィルムと第二の冷却ロール25の接触長さを40mm、第一の冷却ロール23に対しての引き取りロール26の周速度比を0.985、ポリカーボネート樹脂フィルム厚みが100μmになるようにラインスピードを設定し、ポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 10
A polycarbonate resin film was molded using an extruder having a single-screw extruder with a shaft diameter of 100 mm and a T-die with a width of 1500 mm connected to the extruder. Polycarbonate resin (manufactured by Mitsubishi Engineering-Plastics, trade name: Iupilon S-1000, bisphenol A type polycarbonate resin, weight average molecular weight: 59000) was continuously introduced as thermoplastic resin A into a single-screw extruder having a shaft diameter of 100 mm. , extruded at a cylinder temperature of 280°C. A single-screw extruder with a shaft diameter of 100 mm was set to have a discharge rate of 200 kg/h, and a T-die at a temperature of 270° C. was used to extrude onto a film. The roll temperature of the touch roll 22 is 100°C, the roll temperature of the first cooling roll 23 is 100°C, and the roll temperature of the second cooling roll 25 is 140°C. bottom. At that time, the contact distance between the first cooling roll 23 and the second cooling roll 25 was 305 mm, the contact length between the polycarbonate resin film and the second cooling roll 25 was 40 mm, and the first cooling roll 23 A polycarbonate resin film was obtained by setting the peripheral speed ratio of the take-up roll 26 to 0.985 and setting the line speed so that the thickness of the polycarbonate resin film was 100 μm.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例11
 軸径100mmの単軸押出機の吐出量が300kg/h、ポリカーボネート樹脂フィルム厚みが254μmになるようにラインスピードを設定した以外は実施例10と同様にしてポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 11
A polycarbonate resin film was obtained in the same manner as in Example 10, except that the discharge rate of the single screw extruder with a shaft diameter of 100 mm was 300 kg/h, and the line speed was set so that the thickness of the polycarbonate resin film was 254 μm.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例12
 軸径100mmの単軸押出機の吐出量が300kg/h、ポリカーボネート樹脂フィルム厚みが375μmになるようにラインスピードを設定した以外は実施例10と同様にしてポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 12
A polycarbonate resin film was obtained in the same manner as in Example 10, except that the discharge rate of the single screw extruder with a shaft diameter of 100 mm was 300 kg/h, and the line speed was set so that the thickness of the polycarbonate resin film was 375 μm.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
実施例13
 軸径100mmの単軸押出機の吐出量が300kg/h、ポリカーボネート樹脂フィルム厚みが500μmになるようにラインスピードを設定した以外は実施例10と同様にしてポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Example 13
A polycarbonate resin film was obtained in the same manner as in Example 10, except that the discharge rate of the single screw extruder with a shaft diameter of 100 mm was 300 kg/h, and the line speed was set so that the thickness of the polycarbonate resin film was 500 μm.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例5
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、ポリカーボネート樹脂フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例10と同様にしてポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 5
The procedure of Example 10 was repeated except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例6
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、ポリカーボネート樹脂フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例11と同様にしてポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 6
The procedure of Example 11 was repeated except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例7
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、ポリカーボネート樹脂フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例12と同様にしてポリカーボネート樹脂フィルムを得た。
 得られたポリカーボネート樹脂フィルムについて、鉛筆硬度、主軸方位角平均値、主軸方位角の平均値からの偏差、位相差を測定・算出した。
Comparative example 7
In the same manner as in Example 12, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained.
For the obtained polycarbonate resin film, the pencil hardness, the average principal axis azimuth angle, the deviation from the average principal axis azimuth angle, and the phase difference were measured and calculated.
比較例8
 第一の冷却ロール23と第二の冷却ロール25の間の接点間距離を41mmとし、ポリカーボネート樹脂フィルムと第二の冷却ロール25の接触長さを190mmとした以外は実施例13と同様にしてポリカーボネート樹脂フィルムを得た。
Comparative example 8
In the same manner as in Example 13, except that the contact distance between the first cooling roll 23 and the second cooling roll 25 was 41 mm, and the contact length between the polycarbonate resin film and the second cooling roll 25 was 190 mm. A polycarbonate resin film was obtained.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 上記結果から明らかなとおり、本発明の多層フィルムは、PC-Aを原料として用いたポリカーボネート樹脂フィルムを有しているにもかかわらず、低位相差性と主軸方位の均一性を有していた。また、本発明のポリカーボネート樹脂フィルムは、PC-Aを原料として用いているにもかかわらず、低位相差性と主軸方位の均一性を有していた。 As is clear from the above results, the multilayer film of the present invention had a low retardation property and a uniform principal axis orientation despite having a polycarbonate resin film using PC-A as a raw material. In addition, the polycarbonate resin film of the present invention had a low retardation property and a uniform principal axis orientation although PC-A was used as a raw material.
1  ポリカーボネート樹脂フィルム
2  他の層
21 Tダイ
22 タッチロール
23 第一の冷却ロール
24 製造途中のポリカーボネート樹脂フィルム
25 第二の冷却ロール
26 第三のロール
30 接触長さ
1 polycarbonate resin film 2 other layer 21 T-die 22 touch roll 23 first cooling roll 24 polycarbonate resin film in the process of production 25 second cooling roll 26 third roll 30 contact length

Claims (20)

  1. ポリカーボネート樹脂を含み、下記条件1~3を満たすポリカーボネート樹脂フィルム;
    条件1:ポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である;
    条件2:前記フィルムの主軸方位角の平均値からの偏差が±11°以内である;
    条件3:前記フィルムの位相差が、5~50nmである。
    式(1)
    Figure JPOXMLDOC01-appb-C000001
    A polycarbonate resin film containing a polycarbonate resin and satisfying the following conditions 1 to 3;
    Condition 1: Polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1);
    Condition 2: the deviation from the average value of the main axis azimuth angle of the film is within ±11°;
    Condition 3: The film has a retardation of 5 to 50 nm.
    formula (1)
    Figure JPOXMLDOC01-appb-C000001
  2. 前記ポリカーボネート樹脂フィルムの厚みが、50~1500μmである、請求項1に記載のポリカーボネート樹脂フィルム。 2. The polycarbonate resin film according to claim 1, wherein the polycarbonate resin film has a thickness of 50 to 1500 μm.
  3. ポリカーボネート樹脂フィルムと、少なくとも1層の他の層とを有し、
    下記条件A~Cを満たす多層フィルム;
    条件Aポリカーボネート樹脂は、主たる構成単位が下記式(1)で表される構成単位である;
    条件B:前記フィルムの主軸方位角の平均値からの偏差が±11°以内である;
    条件C:前記フィルムの位相差が、5~50nmである。
    式(1)
    Figure JPOXMLDOC01-appb-C000002
    Having a polycarbonate resin film and at least one other layer,
    A multilayer film that satisfies the following conditions A to C;
    Condition A polycarbonate resin is a structural unit whose main structural unit is represented by the following formula (1);
    Condition B: the deviation from the average value of the main axis azimuth angle of the film is within ±11°;
    Condition C: The film has a retardation of 5 to 50 nm.
    formula (1)
    Figure JPOXMLDOC01-appb-C000002
  4. 前記多層フィルムの前記他の層側から測定した鉛筆硬度がHB以上である、請求項3に記載の多層フィルム。 4. The multilayer film according to claim 3, wherein the pencil hardness measured from the other layer side of the multilayer film is HB or higher.
  5. 前記ポリカーボネート樹脂フィルムと、前記他の層1層の合計厚みが50~1500μmである、請求項3または4に記載の多層フィルム。 5. The multilayer film according to claim 3, wherein the polycarbonate resin film and the other layer have a total thickness of 50 to 1500 μm.
  6. 前記ポリカーボネート樹脂フィルムと、前記他の層の厚みの比率が、2/1~10/1である、請求項3~5のいずれか1項に記載の多層フィルム。 The multilayer film according to any one of claims 3 to 5, wherein the polycarbonate resin film and the other layer have a thickness ratio of 2/1 to 10/1.
  7. 前記他の層の厚みが20~100μmである、請求項5または6に記載の多層フィルム。 7. The multilayer film according to claim 5, wherein the other layer has a thickness of 20-100 μm.
  8. 前記他の層が、(メタ)アクリル樹脂を含む層である、請求項3~7のいずれか1項に記載の多層フィルム。 The multilayer film according to any one of Claims 3 to 7, wherein the other layer is a layer containing a (meth)acrylic resin.
  9. 請求項1または2に記載のポリカーボネート樹脂フィルム、または、請求項3~8のいずれか1項に記載の多層フィルムの一方の面上または両面上にハードコート層を有する、多層フィルム。 A multilayer film comprising a hard coat layer on one side or both sides of the polycarbonate resin film according to claim 1 or 2 or the multilayer film according to any one of claims 3 to 8.
  10. 請求項1または2に記載のポリカーボネート樹脂フィルム、または、請求項3~9のいずれか1項に記載の多層フィルムの一方の面上または両面上にマスキングフィルムを有する、多層フィルム。 A multilayer film having a masking film on one side or both sides of the polycarbonate resin film of claim 1 or 2 or the multilayer film of any one of claims 3-9.
  11. 請求項1または2に記載のポリカーボネート樹脂フィルム、および/または、請求項3~10のいずれか1項に記載の多層フィルムを含む、表示装置。 A display device comprising the polycarbonate resin film according to claim 1 or 2 and/or the multilayer film according to any one of claims 3 to 10.
  12. 請求項1または2に記載のポリカーボネート樹脂フィルムの製造方法であって、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離が、160~450mmである、ポリカーボネート樹脂フィルムの製造方法。 3. The method for producing a polycarbonate resin film according to claim 1 or 2, wherein the distance between the roll-to-roll points of the first cooling roll and the second cooling roll in the direction perpendicular to the rotation axis direction of the rolls is A method for producing a polycarbonate resin film having a thickness of 160 to 450 mm.
  13. 前記第一の冷却ロールと引き取りロールの周速度比が、1:0.995~1:0.975である、請求項12に記載のポリカーボネート樹脂フィルムの製造方法。 13. The method for producing a polycarbonate resin film according to claim 12, wherein the peripheral speed ratio between the first cooling roll and the take-up roll is 1:0.995 to 1:0.975.
  14. ポリカーボネート樹脂フィルム形成用の樹脂組成物をTダイから押し出すことを含み、前記Tダイの幅が600mm以上である、請求項12または13に記載のポリカーボネート樹脂フィルムの製造方法。 14. The method for producing a polycarbonate resin film according to claim 12 or 13, comprising extruding the resin composition for forming a polycarbonate resin film through a T-die, wherein the T-die has a width of 600 mm or more.
  15. 前記第二の冷却ロールと半溶融状のポリカーボネート樹脂フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さが、2~400mmである、請求項12~14のいずれか1項に記載のポリカーボネート樹脂フィルムの製造方法。 15. The length of contact between the second cooling roll and the semi-molten polycarbonate resin film in the direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm, according to any one of claims 12 to 14. The method for producing a polycarbonate resin film according to 1.
  16. 請求項3~8のいずれか1項に記載の多層フィルムの製造方法であって、第一の冷却ロールと第二の冷却ロールの、ロールの回転軸方向に対して垂直な方向におけるロール間接点間距離が、160~450mmである、多層フィルムの製造方法。 The method for producing a multilayer film according to any one of claims 3 to 8, wherein the inter-roll contact between the first chill roll and the second chill roll in the direction perpendicular to the rotation axis direction of the rolls A method for producing a multilayer film, wherein the inter-layer distance is 160-450 mm.
  17. 前記第一の冷却ロールと引き取りロールの周速度比が、1:0.995~1:0.975である、請求項16に記載の多層フィルムの製造方法。 17. The method for producing a multilayer film according to claim 16, wherein the peripheral speed ratio between the first cooling roll and the take-up roll is 1:0.995 to 1:0.975.
  18. ポリカーボネート樹脂フィルム形成用の樹脂組成物と他の層を形成用の樹脂組成物をTダイから押し出すことを含み、前記Tダイの幅が600mm以上である、請求項16または17に記載の多層フィルムの製造方法。 18. The multilayer film according to claim 16 or 17, comprising extruding the resin composition for forming the polycarbonate resin film and the resin composition for forming other layers from a T-die, wherein the T-die has a width of 600 mm or more. manufacturing method.
  19. 前記第二の冷却ロールと半溶融状の多層フィルムとの、ロールの回転軸方向に対して垂直な方向における接触長さが、2~400mmである、請求項16~18のいずれか1項に記載の多層フィルムの製造方法。 The length of contact between the second cooling roll and the semi-molten multilayer film in a direction perpendicular to the rotation axis direction of the roll is 2 to 400 mm, according to any one of claims 16 to 18. A method of making the multilayer film described.
  20. 前記他の層が、(メタ)アクリル樹脂を含む層である、請求項16~19のいずれか1項に記載の多層フィルムの製造方法。 The method for producing a multilayer film according to any one of claims 16 to 19, wherein the other layer is a layer containing a (meth)acrylic resin.
PCT/JP2022/040642 2021-11-04 2022-10-31 Polycarbonate resin film, multilayer film, display device, polycarbonate resin film manufacturing method, and multilayer film manufacturing method WO2023080104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-180171 2021-11-04
JP2021180171 2021-11-04

Publications (1)

Publication Number Publication Date
WO2023080104A1 true WO2023080104A1 (en) 2023-05-11

Family

ID=86241064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040642 WO2023080104A1 (en) 2021-11-04 2022-10-31 Polycarbonate resin film, multilayer film, display device, polycarbonate resin film manufacturing method, and multilayer film manufacturing method

Country Status (1)

Country Link
WO (1) WO2023080104A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111058A1 (en) * 2015-01-09 2016-07-14 コニカミノルタ株式会社 Vertical alignment liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111058A1 (en) * 2015-01-09 2016-07-14 コニカミノルタ株式会社 Vertical alignment liquid crystal display device

Similar Documents

Publication Publication Date Title
WO2016185722A1 (en) Resin composition and film
TWI729089B (en) Manufacturing method of extruded resin board and extruded resin board
WO2014061817A1 (en) Laminate
JP6836896B2 (en) Transparent resin laminate
JP6926088B2 (en) Manufacturing method of extruded resin plate and extruded resin plate
JP2006328329A (en) Base material for surface-protective film and surface-protective film
KR101948422B1 (en) Method for manufacturing resin laminate
TW201618930A (en) Method for manufacturing extruded resin plate and extruded resin plate
JP2013054338A (en) Retardation film manufacturing method and retardation film roll
JP6997771B2 (en) Extruded resin plate and its manufacturing method
WO2017208882A1 (en) Resin laminate with protective film
WO2012073437A1 (en) Optical film, image display device, and image display device comprising touch panel
JP2007161924A (en) Optical polyester film
CN107443700B (en) Method for producing resin laminate
WO2023080104A1 (en) Polycarbonate resin film, multilayer film, display device, polycarbonate resin film manufacturing method, and multilayer film manufacturing method
JP7182854B2 (en) Polarizing plate and image display device
WO2022131014A1 (en) Resin composition, plate-shape molded body, laminate, molded product, and molded product production method
JP7160838B2 (en) Method for manufacturing liquid crystal display protection plate
JP2013154546A (en) Laminate and protective material provided with the same
JP2007161937A (en) Optical polyester film
WO2018190173A1 (en) Optical film, polarizing plate, and image display device
WO2018190174A1 (en) Optical laminate, polarizing plate, and image display device
JP6565573B2 (en) Laminated body and manufacturing method thereof
US20230356511A1 (en) Multilayer film and method for producing same
WO2023013406A1 (en) Multilayer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023558023

Country of ref document: JP

Kind code of ref document: A