WO2014061817A1 - Laminate - Google Patents

Laminate Download PDF

Info

Publication number
WO2014061817A1
WO2014061817A1 PCT/JP2013/078395 JP2013078395W WO2014061817A1 WO 2014061817 A1 WO2014061817 A1 WO 2014061817A1 JP 2013078395 W JP2013078395 W JP 2013078395W WO 2014061817 A1 WO2014061817 A1 WO 2014061817A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
laminate
resin layer
roll
thermoplastic resin
Prior art date
Application number
PCT/JP2013/078395
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 豊嶋
智清 土井
常守 秀幸
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN201380053406.XA priority Critical patent/CN104703796A/en
Priority to KR1020157009005A priority patent/KR102139840B1/en
Priority to JP2014542207A priority patent/JP5872058B2/en
Publication of WO2014061817A1 publication Critical patent/WO2014061817A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a laminate having high pencil hardness, excellent heat resistance, and hardly warping and deforming.
  • Polycarbonate resin sheets are excellent in transparency, heat resistance, impact resistance, and mechanical strength, and are used in displays for OA / electronic devices, touch panel front plates, and the like.
  • the polycarbonate resin has a drawback that the surface of the resin is easily scratched due to its low pencil hardness, and discoloration tends to occur during outdoor use due to its low weather resistance.
  • a layer made of a methacrylic resin excellent in weather resistance and pencil hardness hereinafter sometimes abbreviated as PMMA layer
  • PC layer polycarbonate resin
  • Patent Document 1 discloses a laminate in which a PMMA layer having excellent weather resistance is laminated on a PC layer. According to Patent Document 1, it is described that this laminate hardly causes warpage due to water absorption and is excellent in weather resistance.
  • Patent Document 1 does not discuss the suppression of warpage deformation of the laminate in a high temperature and high humidity environment.
  • Patent Document 2 discloses a laminate in which warpage fluctuations in a high-temperature and high-humidity environment are suppressed by curving the sheet with a constant radius of curvature when forming the sheet.
  • the thermoplastic resin used in the laminate is mainly composed of methyl methacrylate, and in a long-term high-temperature and high-humidity environment (temperature 85 ° C., humidity 85% for 120 hours), heat resistance and water absorption In terms of properties, it is insufficient to suppress warpage deformation.
  • Patent Document 3 when a laminate is formed with three rolls, the warp after heating to 80 ° C.
  • Patent Document 4 discloses a laminate in which a modified polycarbonate resin layer excellent in heat resistance and pencil hardness is laminated on a PC layer. However, Patent Document 4 does not discuss the suppression of warpage deformation of the laminate in a high temperature and high humidity environment.
  • An object of the present invention is a laminate having excellent pencil hardness, scratch resistance, heat resistance, and low water absorption, small warpage deformation in a normal temperature and normal humidity environment, and low warpage deformation in a long-term high temperature and high humidity environment. Is to provide. Moreover, the objective of this invention is providing the laminated body with few peeling by curvature deformation, when it uses for display cover panels, such as a smart phone, and a touchscreen front plate.
  • the inventors melt-extruded a laminate including a resin layer (A) and a resin layer (B) made of two different thermoplastic resins having a specific glass transition point and water absorption, and three cooling rolls.
  • the present invention has been completed by finding that the rate can be 0.2% or less.
  • the present invention is based on the finding that the warpage rate under a high-temperature and high-humidity environment is reduced by finely stretching a laminate composed of two specific types of thermoplastic resins. That is, the present invention is a laminate comprising a resin layer (A) comprising a thermoplastic resin (A) and a resin layer (B) comprising a thermoplastic resin (B) laminated on at least one surface thereof.
  • the thickness of the resin layer (B) is 40 to 150 ⁇ m, and the total thickness of the resin layer (A) and the resin layer (B) is 0.8 mm to 3.0 mm,
  • the glass transition points TgA and TgB of the thermoplastic resin (A) and the thermoplastic resin (B) are both 115 ° C. or higher, and the difference between TgA and TgB is 30 ° C. or lower.
  • thermoplastic resin (A) and the thermoplastic resin (B) are both 0.7% or less and the difference in water absorption is 0.5% or less
  • thermoplastic resin (B) are both 0.7% or less and the difference in water absorption is 0.5% or less
  • the warpage rate after leaving the laminate for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH is 0.2% or less. It is the laminate.
  • the present invention also includes (i) extruding a laminate including a resin layer (A) and a resin layer (B) laminated on at least one surface thereof from a die in a molten state, (Ii) cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll; Including each process,
  • the first to third cooling rolls have parallel rotation center axes, are on the same plane, are arranged close to each other, and the peripheral speed of the take-up roll with respect to the second roll peripheral speed is 0.996 to 1..
  • FIG. 1 is a diagram showing the apparatus used in the example.
  • the resin layer (A) is made of a thermoplastic resin (A).
  • the thermoplastic resin (A) has a glass transition point TgA of 115 ° C. or higher and a water absorption of 0.7% or lower.
  • the glass transition point TgA is preferably 115 to 180 ° C, more preferably 130 to 160 ° C, and still more preferably 140 to 150 ° C.
  • the glass transition point in the present invention is obtained by using a differential scanning calorimeter (DSC) and measuring at a heating rate of 20 ° C./min in accordance with JIS K7121.
  • the water absorption is preferably 0.5% or less, and more preferably 0.4% or less.
  • a polycarbonate resin is preferably a main component.
  • the content of the polycarbonate resin in the thermoplastic resin (A) is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and particularly preferably 90% by weight. Most preferably, it consists essentially of a polycarbonate resin.
  • the polycarbonate resin is an aromatic polycarbonate resin produced by reacting a dihydric phenol and a carbonate precursor by a known method such as an interfacial polycondensation method or a melt transesterification method.
  • dihydric phenols include 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl).
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • 1,1-bis (4-hydroxyphenyl) ethane 1,1-bis (4-hydroxyphenyl
  • Cyclohexane 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, bis (4-hydroxyphenyl) sulfide, Bis (4-hydroxyphenyl) sulfone etc.
  • Preferred dihydric phenols are bis (4-hydroxyphenyl) alkanes, and bisphenol A is particularly preferred.
  • Examples of the carbonate precursor include carbonyl halide, carbonate ester, haloformate, and the like, and specifically include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
  • the above dihydric phenols can be used alone or in combination of two or more thereof, and a molecular weight regulator, a branching agent, a catalyst and the like can be used as necessary.
  • the viscosity average molecular weight of the polycarbonate resin used for the resin layer (A) is preferably 1.0 ⁇ 10 4 to 10.0 ⁇ 10 4 , more preferably 1.5 ⁇ 10 4 to 4.5 ⁇ 10 4 , It is preferably 1.8 ⁇ 10 4 to 3.0 ⁇ 10 4 .
  • the viscosity average molecular weight is obtained by inserting the specific viscosity ( ⁇ sp ) obtained from a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20 ° C. into the following equation.
  • polycarbonate resins may contain additives such as heat stabilizers (0.001 to 0.2% by weight) such as phosphites, phosphates and phosphonates, and esters of alcohol and fatty acids. Molding agents (0.005 to 2.0% by weight), tetrabromobisphenol A, low molecular weight polycarbonate of tetrabromobisphenol A, flame retardants (3 to 15% by weight) such as decabromodiphenyl ether, colorants, fluorescent whitening agents Etc. may be blended.
  • the thickness of the resin layer (A) is in the range of 0.65 mm to 2.96 mm. Preferably, it is in the range of 0.8 mm to 2.5 mm.
  • the resin layer (B) is made of a thermoplastic resin (B).
  • the thermoplastic resin (B) has a glass transition point TgB of 115 ° C. or higher and a water absorption of 0.7% or lower.
  • the glass transition point TgB is preferably 115 to 150 ° C., more preferably 117 to 140 ° C., and still more preferably 120 to 130 ° C.
  • the water absorption is preferably 0.6% or less, more preferably 0.5% or less. When TgB is less than 115 ° C.
  • the laminate is warped by heat and moisture absorption in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH. It is easy to generate.
  • the difference (TgA-TgB) of the glass transition point TgA and the glass transition point TgB is 30 degrees C or less.
  • the difference between the glass transition point TgA and the glass transition point TgB is preferably 28 ° C. or lower, more preferably 25 ° C. or lower. Further, the difference in water absorption between the thermoplastic resin (A) and the thermoplastic resin (B) (water absorption of the thermoplastic resin (B) ⁇ water absorption of the thermoplastic resin (A)) is 0.5% or less. . When the difference in water absorption exceeds 0.5%, a dimensional change occurs due to hygroscopic expansion in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH, and warpage is likely to occur.
  • the difference in water absorption between the thermoplastic resin (A) and the thermoplastic resin (B) is preferably 0.4% or less, more preferably 0.3% or less, and further preferably 0.2% or less. Yes, particularly preferably 0.1% or less.
  • the pencil hardness of the resin layer (B) is measured according to JIS K5600-5-4.
  • the pencil hardness of the resin layer (B) is preferably F or more, more preferably H or more, and further preferably 2H or more.
  • the thickness of the resin layer (B) is 40 to 150 ⁇ m, preferably 50 to 120 ⁇ m, more preferably 60 to 100 ⁇ m.
  • the thermoplastic resin (B) includes a unit [1] represented by the following formula and a unit [2] represented by the following formula, and the ratio of the unit [1] is 50 to 100 mol% based on all units. And a modified polycarbonate resin having a viscosity average molecular weight of 1.0 ⁇ 10 4 to 8.0 ⁇ 10 4 .
  • W represents a single bond, an alkanediyl group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a cycloalkylene group having 3 to 8 carbon atoms.
  • alkanediyl group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a propanediyl group, a propane-2,2-diyl group, and a butanediyl group.
  • Examples of the arylene group having 6 to 10 carbon atoms include phenylene group, naphthalenediyl group, biphenoldiyl group, and toluenediyl group.
  • cycloalkylene having 3 to 8 carbon atoms examples include a cyclopentylene group, a cyclohexylene group, and a cyclooctylene group.
  • Unit [1] consists of 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and 2,2′-methyl-4,4. It is preferably a unit derived from at least one selected from the group consisting of '-biphenyldiol. In particular, a unit derived from 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane or 2,2-bis (4-hydroxy-3-methylphenyl) propane is preferable.
  • the proportion of the unit [1] in all units is preferably 60 mol% or more, more preferably 80 mol% or more, further preferably 90 mol% or more, and particularly preferably substantially 100%.
  • the modified polycarbonate resin may be a copolymer or a polymer blend resin as long as the ratio of the unit [1] is satisfied.
  • a method for producing the modified polycarbonate resin a method of reacting a dihydric phenol and a carbonate precursor by a known method such as an interfacial polycondensation method or a melt transesterification method is used in the same manner as the polycarbonate resin.
  • the viscosity average molecular weight of the modified polycarbonate resin is preferably 1.1 ⁇ 10 4 to 6.0 ⁇ 10 4 , more preferably 1.3 ⁇ 10 4 to 4.5 ⁇ 10 4 , and even more preferably 1 .5 ⁇ 10 4 to 3.0 ⁇ 10 4 .
  • the thermoplastic resin (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units, and has a weight average molecular weight of 5,000 to 30,000.
  • a blend resin of 20 to 60 parts by weight of a certain acrylic copolymer and 40 to 80 parts by weight of a polycarbonate resin (however, the total of the acrylic polymer and the polycarbonate resin is 100 parts by weight) can be mentioned.
  • a blend resin is preferable because it has high pencil hardness and good heat resistance.
  • the acrylic copolymer preferably contains 10 to 60% by weight of aromatic (meth) acrylate units and 40 to 90% by weight of methyl (meth) acrylate units, and 20 to 50% by weight of aromatic (meth) acrylate units and More preferably, it contains 50 to 80% by weight of methyl (meth) acrylate units.
  • the weight average molecular weight of the acrylic copolymer is preferably in the range of 8,000 to 28,000, and more preferably in the range of 10,000 to 25,000.
  • the blend resin is preferably a mixture of 25 to 55 parts by weight of an acrylic copolymer and 45 to 75 parts by weight of a polycarbonate resin, and a mixture of 30 to 50 parts by weight of an acrylic copolymer and 50 to 70 parts by weight of a polycarbonate resin. More preferred.
  • the polymer blending can be carried out by any method. For example, a method of mixing with a tumbler, V-type blender, nauter mixer, kneading roll, extruder or the like is appropriately used.
  • a thermoplastic resin (B) contains a ultraviolet absorber.
  • the resin layer (B) absorbs ultraviolet rays, thereby suppressing degradation of the resin layer (A) due to light energy. be able to.
  • the content of the ultraviolet absorber is preferably in the range of 0.5 to 5.0 parts by weight and more preferably in the range of 1.0 to 4.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin (B).
  • Examples of the ultraviolet absorber include benzotriazole, benzophenone, benzoxazine, and triazine.
  • Examples of the benzotriazole ultraviolet absorber include 2,2′-methylenebis [6- (benzotriazol-2-yl) -4-tert-octylphenol], 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ ). -Dimethylbenzyl) phenyl] -2H-benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, and the like.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2- [4,6-bis (2,4-dimethylphenyl). ) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol.
  • another additive can also be added to a thermoplastic resin (B).
  • a known antioxidant can be used as the antioxidant.
  • the content of the antioxidant is preferably in the range of 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the thermoplastic resin (B).
  • Phenol antioxidants include n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl-3- (3,5-di-t-butyl- 4-hydroxyphenyl) -acetate, n-octadecyl-3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl-3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl -3,5-di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
  • Examples of phosphorus antioxidants include tris (2,4-di-t-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f ] [1,3,2] dioxaphosphin-6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1 dimethylethyl) dibenzo [d , F] [1,3,2] dioxaphosphin-6-yl] oxy] -ethyl] ethanamine, diphenyltridecyl phosphite.
  • a hard coat layer may be laminated on the resin (B).
  • the hard coat layer is not particularly limited in material, application method, and the like as long as it has sufficient adhesion without impairing transparency.
  • Examples of the method for forming the hard coat layer include a method of applying a curable coating that is cured by heat, ultraviolet rays, electron beams, and the like, a physical vapor deposition method, a chemical vapor deposition method, and the like. From the viewpoint of production, a method of applying an ultraviolet curable coating is preferred.
  • the ultraviolet curable coating is not particularly limited as long as it is a composition containing an ultraviolet curable resin and a photopolymerization initiator.
  • Examples of the ultraviolet curable resin include urethane acrylate, epoxy acrylate, polyether acrylate, polyester acrylate, glycidyl compound, alicyclic epoxy compound, and oxetane compound.
  • photopolymerization initiators 1-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropane-1-one, 2-hydroxy-2-methyl-1-phenylpropane-1- ON, 2-methyl-1-[(4-methylthio) phenyl] -2-morpholinopropan-1-one, benzophenone, 4-benzoyl-4′-methylphenyl sulfide, 2,4-diethylthioxanthone and the like.
  • coating means for forming a hard coat layer using an ultraviolet curable coating include a micro gravure coating method, a spin coating method, a cast transfer method, a spray coating method, a flow coating method, a dipping method, a roll coating method, and a bar coating. Any method such as a method may be used. From the viewpoint of paint properties, a micro gravure coating method, a roll coating method, and a bar coating method are more preferable. Moreover, when coating on both surfaces, both surfaces may be coated by the same method, or by different methods.
  • the thickness of the hard coat layer is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 3 to 25 ⁇ m, and still more preferably in the range of 5 to 20 ⁇ m.
  • the thickness of the hard coat layer is less than 1 ⁇ m, sufficient scratch resistance cannot be obtained.
  • the thickness of the hard coat layer is more than 30 ⁇ m, cracks due to stress are likely to occur, which is not suitable for applications such as display cover panels and touch panels.
  • the pencil hardness of the hard coat layer is preferably 3H or more, more preferably 4H or more, and further preferably 5H or more.
  • the pencil hardness of the hard coat layer is measured according to JIS K5600-5-4.
  • ⁇ Laminated body> the resin layer (B) is laminated on at least one surface of the resin layer (A).
  • the total thickness of the resin layer (A) and the resin layer (B) is 0.8 mm to 3.0 mm.
  • the total thickness of the resin layer (A) and the resin layer (B) is preferably 0.9 mm to 2.5 mm, more preferably 1.0 to 2.0 mm.
  • the layered product of the present invention has a warp rate of preferably 0.2% or less, more preferably 0.15% or less after being left for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH.
  • the laminate of the present invention has a warpage rate of 0.2% or less, preferably 0.15% or less after being left for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C.
  • the layered product on which the hard coat layer of the present invention is laminated has a warp rate of preferably 0.2% or less, more preferably 0.15 after standing for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH. % Or less. Further, the laminate in which the hard coat layer of the present invention is laminated has a warpage rate of 0.2% or less after being left for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH, preferably It is 0.15% or less.
  • the laminate of the present invention is (i) extruding a laminate including a resin layer (A) and a resin layer (B) laminated on at least one surface thereof from a die in a molten state, (Ii) cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll; It can be manufactured by each process.
  • Extrusion process (i) This is a step of extruding from a die a molten body containing a resin layer (A) and a resin layer (B) laminated on at least one surface thereof.
  • This step is a coextrusion molding method in which the thermoplastic resin (A) and the thermoplastic resin (B) are melted by an extruder and laminated using a feed block method or a multi-manifold method.
  • the thermoplastic resin (A) and the thermoplastic resin (B) are melted, and the multilayer integrated resin is brought into close contact with the roll to perform molding. Specifically, it can be extruded from a multi-manifold die or a feed block die.
  • thermoplastic resin (A) and the thermoplastic resin (B) are transparent even if they are mixed, the cut part at the end that occurs during the molding of the laminated sheet is collected, crushed, and specified as the resin layer (A) Ratio, preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin (A) before recovery, thereby reducing the material loss without deteriorating the properties as a laminated sheet. Can be put out.
  • Cooling step (ii) This step is a step of cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll. As shown in FIG. 1, the first to third cooling rolls are parallel to each other, are on the same plane, and are arranged close to each other.
  • the interval between the first to third cooling rolls corresponds to the thickness of the laminate.
  • the extruded laminate is sandwiched between the first cooling roll and the second cooling roll, (b) is then wound around the second cooling roll, and (c) the third cooling roll is then placed. It is done by wrapping around.
  • the peripheral speed of the take-up roll relative to the second roll peripheral speed In the present invention, the peripheral speed of the take-up roll with respect to the second roll peripheral speed is set to 0.996 to 1.010 times, so that it is left for 120 hours in a high-temperature and high-humidity environment with a temperature of 85 ° C. and a humidity of 85% RH.
  • the warp rate after the treatment can be 0.2% or less.
  • the peripheral speed of the take-up roll relative to the second roll peripheral speed is set to about 0.990 to 0.995 times due to shrinkage due to cooling of the resin.
  • the present invention is based on the finding that the warpage rate under a high-temperature and high-humidity environment is reduced by slightly stretching the laminate.
  • the peripheral speed of the take-up roll with respect to the second roll peripheral speed is preferably 0.997 to 1.005 times, more preferably 0.998 to 1.000 times.
  • the peripheral speed of the take-up roll with respect to the second roll peripheral speed is less than the lower limit of the above range, distortion at the time of molding in the sheet traveling direction (MD direction) increases, and warpage fluctuation due to distortion relaxation occurs in a high temperature and high humidity environment.
  • the peripheral speed of the take-up roll with respect to the second roll peripheral speed exceeds the upper limit of the above range, the sheet appearance is adversely affected. For example, the thickness unevenness of the sheet increases and the phase difference increases, which adversely affects the optical characteristics.
  • the peripheral speed of the third roll relative to the peripheral speed of the second roll Usually, the peripheral speed of the third roll is the same as the peripheral speed of the second roll.
  • the warp rate can be further reduced by setting the peripheral speed of the third roll with respect to the second roll peripheral speed to a specific range.
  • the peripheral speed of the third roll relative to the peripheral speed of the second roll is preferably 1.001 to 1.030 times, more preferably 1.002 to 1.020 times, and still more preferably 1.003 to 1.010 times. It is. If the peripheral speed of the third roll relative to the peripheral speed of the second roll is within the above range, distortion during molding in the sheet traveling direction (MD direction) is reduced, and warpage fluctuation due to strain relaxation is unlikely to occur in a high-temperature and high-humidity environment. . Further, when the peripheral speed of the take-up roll with respect to the second roll peripheral speed is within the above range, the appearance of the sheet is improved. (Lamination of hard coat layer) A hard coat layer may be laminated on the resin layer (B) of the laminate obtained by cooling. The hard coat layer and the laminating method are as described above. ⁇ Application> The laminate of the present invention can be used as a display cover panel or a touch panel front plate.
  • thermoplastic resin molding plate (length 80 mm, width 10 mm, thickness 4 mm) for each layer was prepared and used as a test piece.
  • the test piece was left in a constant temperature and humidity chamber at a temperature of 85 ° C. and a humidity of 0% RH for 24 hours. It was taken out later and further allowed to stand at room temperature for 10 minutes, and then the weight was measured with a balance to obtain a dry weight.
  • the weight is measured with a balance, It was.
  • the water absorption was determined by the following formula.
  • the laminate was cut into three pieces each having a size of 50 mm long ⁇ 100 mm wide so that the sheet advancing direction at the time of production was the long side and 50 mm long ⁇ 100 mm wide so that the sheet width direction was the long side. After leaving the test pieces for 4 hours in an environment of 23 ° C. and 50% humidity, place them flat so that the resin layer (B) side is up, and lift up to a total of 8 points at the four corners and the middle point. It was measured. The maximum floating amount (maximum warpage amount) was obtained from the 6 sheets measured, and the value calculated by the following equation was used as the warpage rate (%).
  • Warpage rate (%) 100 ⁇ maximum warpage amount (mm) / 100 (mm)
  • the floating amount in which the resin layer (B) side is concave was defined as positive.
  • the laminate was cut into three pieces each having a size of 50 mm long ⁇ 100 mm wide so that the sheet advancing direction at the time of production was the long side and 50 mm long ⁇ 100 mm wide so that the sheet width direction was the long side.
  • the test pieces were left in an environment of 85 ° C. and humidity 85% RH for 120 hours, and then left in an environment of temperature 23 ° C. and humidity 50% RH for 4 hours, so that the resin layer (B) side was up.
  • Warpage rate (%) 100 ⁇ maximum warpage amount (mm) / 100 (mm)
  • the floating amount in which the resin layer (B) side is concave was defined as positive.
  • this solution is passed through a filter having an aperture of 0.3 ⁇ m, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter outlet at the bearing, and the polycarbonate resin is flaked while distilling off methylene chloride.
  • the liquid-containing flakes were pulverized and dried to obtain a powder.
  • tris (2,4-di-tert-butylphenyl) phosphite is added to the powder so as to be 0.0025% by weight, and stearic acid monoglyceride is added to 0.05% by weight.
  • the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and further washed with water until the conductivity of the aqueous phase becomes substantially the same as that of ion-exchanged water. Obtained.
  • this solution is passed through a filter having an aperture of 0.3 ⁇ m, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter outlet at the bearing, and the polycarbonate resin is flaked while distilling off methylene chloride.
  • the liquid-containing flakes were pulverized and dried to obtain a powder.
  • a dispersing agent As a dispersing agent, a mass ratio of a polymer obtained by copolymerizing 70 parts of potassium methacrylate and 30 parts of methyl methacrylate, and a polymer obtained by copolymerizing 65 parts of sodium 2-sulfoethyl methacrylate, 10 parts of potassium methacrylate, and 25 parts of methyl methacrylate.
  • the mixture was mixed 1: 1 and a 10% aqueous solution of the mixed polymer was used.
  • the obtained acrylic copolymer and polycarbonate resin Teijin Chemicals Co., Ltd. bisphenol A type polycarbonate resin, viscosity average molecular weight 22,200
  • a twin screw extruder [Kobe Steel Works KTX-46].
  • Example 1 The first and second extruders 1A and 1B, the die 2, the first to third rolls 4 to 6, and the pair of take-up rolls 7 are arranged as shown in FIG. Was arranged such that the resin layer (A) was in contact with the second roll.
  • the polycarbonate resin constituting the resin layer (A) is a single screw extruder (1A in FIG. 1) having a screw diameter of 40 mm, and the thermoplastic resin constituting the resin layer (B) is a single screw extruder having a screw diameter of 30 mm.
  • each was melted, laminated into two layers by a feed block method, and extruded through a die having a set temperature of 280 ° C. It rolled with the 1st roll and the 2nd roll, and it took up, making it cool with the 3rd roll.
  • a polycarbonate resin a bisphenol A type polycarbonate resin manufactured by Teijin Chemicals Ltd., viscosity average molecular weight 23,300
  • resin 1 a laminate was produced so that the total thickness of the laminate was 1.0 mm and the thickness of the resin layer (B) was 100 ⁇ m.
  • Example 2 A laminate was obtained in the same manner as in Example 1 except that the resin 2 was used as the resin layer (B).
  • Table 1 shows the evaluation results of the obtained laminate.
  • Example 3 A laminate was obtained in the same manner as in Example 1 except that the resin 3 was used as the resin layer (B).
  • Example 4 A laminate was obtained in the same manner as in Example 1 except that the resin 4 was used as the resin layer (B). Table 1 shows the evaluation results of the obtained laminate.
  • Example 5 A laminate was obtained in the same manner as in Example 1 except that the resin 5 was used as the resin layer (B). Table 1 shows the evaluation results of the obtained laminate.
  • Example 6 A laminate was obtained in the same manner as in Example 1 except that the thickness of the resin layer (B) was 60 ⁇ m.
  • Table 1 shows the evaluation results of the obtained laminate.
  • Example 7 A laminate was obtained in the same manner as in Example 1 except that the total thickness of the laminate was 2.0 mm. Table 1 shows the evaluation results of the obtained laminate.
  • Example 8 A laminate was obtained in the same manner as in Example 1, except that the peripheral speed ratio of the third roll to the second roll during molding was 1.005 times. Table 1 shows the evaluation results of the obtained laminate.
  • Example 9 The laminated body was made in the same manner as in Example 1 except that the circumferential speed ratio of the third roll to the second roll during molding was 1.003 times and the circumferential speed ratio of the take-up roll to the second roll was 0.996 times. Obtained. Table 1 shows the evaluation results of the obtained laminate.
  • Example 10 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- [2H-benzotriazol-2-yl] phenol as an ultraviolet absorber with respect to 100 parts by weight of the resin 1 ]]
  • a laminate was obtained in the same manner as in Example 1 except that 1.0 part by weight of ADEKA (trade name: ADK STAB LA-31) was added. Table 1 shows the evaluation results of the obtained laminate.
  • Comparative Example 1 A commercially available acrylic resin (trade name: Acrypet VH001 manufactured by Mitsubishi Rayon Co., Ltd.) was used as the resin layer (B), and a laminate was obtained in the same manner as in Example 1 except that the thickness of the resin layer (B) was 60 ⁇ m. It was.
  • Table 1 shows the evaluation results of the obtained laminate.
  • Comparative Example 2 A commercially available acrylic resin (manufactured by Arkema, trade name: Altglas HT-121) was used as the resin layer (B), and a laminate was obtained in the same manner as in Example 1 except that the thickness of the resin layer (B) was 60 ⁇ m. It was. Table 1 shows the evaluation results of the obtained laminate.
  • Comparative Example 3 A laminate was obtained in the same manner as in Example 1 except that the peripheral speed ratio of the take-up roll to the second roll during molding was 0.992 times. Table 1 shows the evaluation results of the obtained laminate. As is clear from Table 1, in Examples 1 to 10, both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were 0.2% or less.
  • thermoplastic resin molding plate (length 80 mm, width 10 mm, thickness 4 mm) for each layer was prepared and used as a test piece.
  • the test piece was left in a constant temperature and humidity chamber at a temperature of 85 ° C. and a humidity of 0% RH for 24 hours. It was taken out later and further allowed to stand at room temperature for 10 minutes, and then the weight was measured with a balance to obtain a dry weight.
  • the weight is measured with a balance, It was.
  • the water absorption was determined by the following formula.
  • Water absorption [%] (Water absorption weight [g] ⁇ Dry weight [g]) / Dry weight [g] ⁇ 100 [%] (Pencil hardness)
  • the laminate before and after laminating the hard coat layer is measured in accordance with JIS K5600-5-4, and the pencil hardness is measured with a weight of 750 g applied to the surface of the hard coat layer on the resin layer (B) and the resin layer (B).
  • the hardness of the pencil whose surface was not visually damaged was taken as the evaluation result.
  • the pencil used was Mitsubishi Pencil Uni (trade name).
  • the laminate with the hard coat layer laminated is 3 in size of 50 mm in length and 100 mm in width so that the sheet traveling direction at the time of manufacture is the long side, and 50 mm in length and 100 mm in width so that the sheet width direction is the long side. Cut out 6 sheets each and left them for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH, and then placed them flat with the resin layer (B) side up. The floating amount at 8 points was measured. The maximum floating amount (maximum warpage amount) was obtained from the 6 sheets measured, and the value calculated by the following equation was used as the warpage rate (%).
  • Warpage rate (%) 100 ⁇ maximum warpage amount (mm) / 100 (mm)
  • the floating amount in which the resin layer (B) side is concave was defined as positive.
  • the laminate with the hard coat layer laminated is 3 in size of 50 mm in length and 100 mm in width so that the sheet traveling direction at the time of manufacture is the long side, and 50 mm in length and 100 mm in width so that the sheet width direction is the long side.
  • Each of these six test pieces was cut out for 120 hours in a temperature of 85 ° C. and a humidity of 85% RH, and then left in a temperature of 23 ° C.
  • Warpage rate (%) 100 ⁇ maximum warpage amount (mm) / 100 (mm)
  • the floating amount in which the resin layer (B) side is concave was defined as positive.
  • Example 11 The first and second extruders 1A and 1B, the die 2, the first to third rolls 4 to 6, and the pair of take-up rolls 7 are arranged as shown in FIG. Was arranged such that the resin layer (A) was in contact with the second roll.
  • the polycarbonate resin constituting the resin layer (A) is a single screw extruder (1A in FIG. 1) having a screw diameter of 40 mm
  • the thermoplastic resin constituting the resin layer (B) is a single screw extruder having a screw diameter of 30 mm. (1B in FIG.
  • each is melted and laminated into two layers by the feed block method, extruded through a die having a set temperature of 280 ° C., rolled with a first roll and a second roll, and cooled with a third roll. Then, it was taken up by a pair of take-up rolls.
  • Polycarbonate resin bisphenol A type polycarbonate resin, viscosity average molecular weight 23,300 manufactured by Teijin Chemicals Ltd.
  • resin layer (A) resin 1 as resin layer (B)
  • the laminate was manufactured so that the total thickness of (B) was 1.0 mm and the thickness of the resin layer (B) was 100 ⁇ m.
  • An ultraviolet curable coating (Arakawa Chemical Industries, Ltd.
  • Beam Set 575CL was applied to both sides of the resulting laminate using a metal bar coater to a thickness of 10 ⁇ m, dried, and then exposed to ultraviolet rays.
  • the laminate was cured using an irradiation apparatus so as to have an integrated light amount of 600 mJ / cm 2, and a hard coat layer was laminated.
  • Example 12 A laminate in which the hard coat layer was laminated was obtained in the same manner as in Example 11 except that an ultraviolet curable paint (Arakawa Chemical Industries, Ltd. Beam Set 575CL) was applied so that the thickness of the hard coat layer was 5 ⁇ m. It was. The evaluation results are shown in Table 2.
  • Example 13 A laminate in which the hard coat layer was laminated was obtained in the same manner as in Example 11 except that an ultraviolet curable paint (Arakawa Chemical Industries, Ltd. Beam Set 575CL) was applied so that the thickness of the hard coat layer was 20 ⁇ m. It was. The evaluation results are shown in Table 2.
  • Example 14 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the resin 2 was used as the resin layer (B).
  • Example 15 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the resin 3 was used as the resin layer (B). The evaluation results are shown in Table 2.
  • Example 16 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the resin 4 was used as the resin layer (B). The evaluation results are shown in Table 2.
  • Example 17 A laminate having a hard coat layer laminated thereon was obtained in the same manner as in Example 11 except that the resin 5 was used as the resin layer (B). The evaluation results are shown in Table 2.
  • Example 18 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the thickness of the resin layer (B) was 60 ⁇ m.
  • Example 19 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the total thickness of the resin layer (A) and the resin layer (B) was 2.0 mm. The evaluation results are shown in Table 2.
  • Example 20 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the circumferential speed ratio of the third roll to the second roll during molding was 1.005 times. The evaluation results are shown in Table 2.
  • Example 21 The hard coat layer was the same as in Example 11 except that the circumferential speed ratio of the third roll to the second roll during molding was 1.003 times and the circumferential speed ratio of the take-up roll to the second roll was 0.996 times. As a result, a laminated body was obtained.
  • Example 22 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- [2H-benzotriazol-2-yl] phenol as an ultraviolet absorber with respect to 100 parts by weight of the resin 1 ]
  • a laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that 1.0 part by weight (manufactured by ADEKA, product name: ADK STAB LA-31) was added.
  • the evaluation results are shown in Table 2.
  • Comparative Example 4 A hard coat layer was formed in the same manner as in Example 11 except that a commercially available acrylic resin (trade name: Acrypet VH001 manufactured by Mitsubishi Rayon Co., Ltd.) was used as the resin layer (B), and the thickness of the resin layer (B) was 60 ⁇ m. A laminated body was obtained. The evaluation results are shown in Table 2. Comparative Example 5 A hard coat layer was prepared in the same manner as in Example 11 except that a commercially available acrylic resin (trade name: Altglas HT-121) manufactured by Arkema was used as the resin layer (B), and the thickness of the resin layer (B) was 60 ⁇ m. A laminated body was obtained. The evaluation results are shown in Table 2.
  • Comparative Example 6 A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the peripheral speed ratio of the take-up roll to the second roll at the time of molding was 0.992 times.
  • the evaluation results are shown in Table 2.
  • Table 2 both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were 0.2% or less.
  • Comparative Example 4 in which a resin having a Tg of less than 115 ° C. and a water absorption rate of 0.7% or more for the resin layer (B) was used, and the Tg was 115 ° C.
  • Comparative Example 5 in which a resin exceeding 100% was used for the resin layer (B), both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were large. Moreover, although the layer structure is the same as that of Example 11, Comparative Example 6 having a low peripheral speed ratio of the take-up roll to the second roll during molding resulted in a large warpage rate after the wet heat test.
  • the laminate of the present invention has high pencil hardness, excellent scratch resistance, excellent heat resistance, small warpage deformation under normal temperature and normal humidity environment, and hardly warp deformation under a long-term high temperature and high humidity environment. According to the method for producing a laminate of the present invention, it is possible to produce a laminate that is small in warp deformation under a normal temperature and normal humidity environment and that hardly warps and deforms even under a long-term high temperature and high humidity environment.
  • the laminate of the present invention is useful as a display cover panel or touch panel front plate for OA / electronic devices.
  • thermoplastic resin of the resin layer (A) and the thermoplastic resin of the resin layer (B) are both 0.7% or less, and the difference in water absorption is 0.5% or less.
  • a warp rate after leaving the resin laminate for 120 hours in a high temperature and high humidity environment at a temperature of 85 ° C. and a humidity of 85% RH is 0.2% or less.
  • thermoplastic resin of the resin layer (A) is a polycarbonate resin
  • thermoplastic resin of the resin layer (B) is a structural unit [1] represented by the following formula [1];
  • W represents a single bond, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclic alkyl group having 3 to 8 carbon atoms.
  • the resin laminate as described in 1 above which is a modified polycarbonate resin in which the proportion of the structural unit [1] in all the structural units is 50 to 100 mol% and the viscosity average molecular weight is 1.0 ⁇ 10 4 to 8.0 ⁇ 10 4 body.
  • the thermoplastic resin of the resin layer (A) contains polycarbonate resin
  • the thermoplastic resin of the resin layer (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units. 2.
  • the resin laminate according to item 1 which is a polymer blend resin of 20 to 60 parts by weight of an acrylic copolymer having a weight average molecular weight of 5,000 to 30,000 and 40 to 80 parts by weight of a polycarbonate resin. 4). 2. The resin laminate according to item 1 above, containing 0.5 to 5.0 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the thermoplastic resin of the resin layer (B). 5. 2. The resin laminate according to item 1, wherein the resin layer (B) has a pencil hardness of F or more. 6). 2. The resin laminate according to item 1, wherein the resin laminate has a warpage rate of 0.2% or less after being left in a temperature of 23 ° C. and a humidity of 50% RH for 4 hours. 7).
  • the resin laminate according to item 1 which is used as a display cover panel or a touch panel front plate. Moreover, there exists the following invention as an aspect which has a hard-coat layer. 1.
  • a resin layer (B) made of another thermoplastic resin different from the resin layer (A) having a thickness of 40 to 150 ⁇ m is laminated on at least one surface of the thermoplastic resin layer (A), and further on the resin layer (B).
  • the hard laminate layer is laminated with a resin layer (A) and a resin layer (B) having a total thickness of 0.8 mm to 3.0 mm, and the heat of the resin layer (A)
  • the glass transition points TgA and TgB of the thermoplastic resin and the thermoplastic resin of the resin layer (B) are both 115 ° C. or higher, and the difference between TgA and TgB is 30 ° C. or lower, and the thermoplastic resin of the resin layer (A) And the resin layer (B) both have a water absorption rate of 0.7% or less and a difference in water absorption rate of 0.5% or less.
  • the warpage rate after leaving for 120 hours under high temperature and high humidity of 85% RH A resin laminate in which a hard coat layer is laminated which is 0.2% or less.
  • the thermoplastic resin of the resin layer (A) is a polycarbonate resin
  • the thermoplastic resin of the resin layer (B) is a structural unit [1] represented by the following formula [1];
  • W represents a single bond, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclic alkyl group having 3 to 8 carbon atoms.
  • the thermoplastic resin of the resin layer (A) contains polycarbonate resin
  • the thermoplastic resin of the resin layer (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units.
  • the hard coat layer according to item 1 above which is a polymer blend resin of 20 to 60 parts by weight of an acrylic copolymer having a weight average molecular weight of 5,000 to 30,000 and 40 to 80 parts by weight of a polycarbonate resin, was laminated. Resin laminate. 4).
  • a resin laminate in which the hard coat layer according to the preceding item 1 containing 0.5 to 5.0 parts by weight of an ultraviolet absorber is laminated to 100 parts by weight of the thermoplastic resin of the resin layer (B). 5.
  • a resin laminate in which the hard coat layer is laminated with the hard coat layer according to item 1 described above. 8).
  • the hard coat layer according to the preceding item 1 comprising a step of obtaining a resin laminate by setting the ratio to 996 to 1.010, and a step of laminating a hard coat layer on the resin layer (B) of the obtained resin laminate.
  • laminated resin laminates Production method. 10.

Abstract

The present invention is a laminate comprising a resin layer (A) obtained from a thermoplastic resin layer (A) and a resin layer (B) laminated on at least one side thereof and obtained from a different thermoplastic resin, wherein: (i) the thickness of the resin layer (B) is 40 - 150 µm, and the total thickness of the resin layer (A) and the resin layer (B) is 0.8 mm - 3.0 mm, (ii) the respective glass transition points TgA and TgB of the thermoplastic resin (A) and thermoplastic resin (B) are both 115°C or more and the difference between TgA and TgB is 30°C or less, (iii) the water absorption rates of the thermoplastic resin (A) and the thermoplastic resin (B) are both 0.7% or less and the difference in water absorption rates is 0.5% or less, and (iv) the warping rate after the resin laminate is left for 120 hours in a high temperature, high humidity environment of 85°C temperature and 85% RH humidity is 0.2% or less.

Description

積層体Laminated body
 本発明は、鉛筆硬度が高く、耐熱性に優れ、反り変形し難い積層体に関する。 The present invention relates to a laminate having high pencil hardness, excellent heat resistance, and hardly warping and deforming.
 ポリカーボネート樹脂シートは透明性、耐熱性、耐衝撃性、機械的強度に優れ、OA・電子機器のディスプレイやタッチパネル前面板等に用いられている。しかしポリカーボネート樹脂は鉛筆硬度が低いため樹脂表面に傷がつきやすく、耐候性が低いため屋外での使用時に変色が起こりやすいという欠点がある。これらを改善する方法として、ポリカーボネート樹脂からなる層(以下、PC層と省略することがある)に耐候性や鉛筆硬度に優れたメタクリル樹脂からなる層(以下、PMMA層と省略することがある)や変性したポリカーボネート樹脂からなる層を積層することが提案されている。
 しかしながら、PMMA層は耐熱性が乏しく、吸水性が高く、湿度変化による積層体自体の反りが発生したり、高温高湿環境下で反り変形を起こしたりする欠点がある。この欠点は、使用環境が高温下や高湿下にさらされるタッチパネル前面板、液晶ディスプレイカバー等の電子機器関連用途において重大な欠陥となる。そのため、使用環境下で生じる積層体の反り変形を抑制する試みがなされている。
 例えば、特許文献1には、PC層に耐候性の優れたPMMA層を積層した積層体が開示されている。特許文献1によると、この積層体は吸水による反りを起こし難く、耐候性にも優れることが記載されている。しかし特許文献1では、積層体の高温高湿環境下における反り変形の抑制までは検討されていない。
 特許文献2にはシート成形時に一定の曲率半径でシートを湾曲させておくことで、高温高湿環境下の反り変動を抑えた積層体が開示されている。しかし、積層体に使用されている熱可塑性樹脂はメタクリル酸メチルが主成分であり、長期の高温高湿環境下(温度85℃、湿度85%で120時間という条件)においては、耐熱性や吸水性といった点で、反り変形の抑制には不十分である。
 特許文献3には積層体を3本ロールで成形する際に第2冷却ロールの周速度と、第3冷却ロールの周速度との比を一定以上にすることで80℃に加熱した後の反り変化を抑制できることが記載されている。しかし、特許文献3に記載された積層体では、長期の高温高湿環境下(温度85℃、湿度85%で120時間という条件)においては、耐熱性や吸水性といった点で、反り変形の抑制には不十分である。
 また、特許文献4にはPC層に、耐熱性や鉛筆硬度に優れた変性ポリカーボネート樹脂層を積層した積層体が開示されている。しかし、特許文献4では、積層体の高温高湿環境下における反り変形の抑制までは検討されていない。
 スマートフォン等のディスプレイカバーパネルやタッチパネル前面板は、高温高湿環境下での前面板の反り変形により、剥がれるという問題があった。
特開2006−205478号公報 特開2012−051311号公報 特開2012−096357号公報 特開2010−188719号公報
Polycarbonate resin sheets are excellent in transparency, heat resistance, impact resistance, and mechanical strength, and are used in displays for OA / electronic devices, touch panel front plates, and the like. However, the polycarbonate resin has a drawback that the surface of the resin is easily scratched due to its low pencil hardness, and discoloration tends to occur during outdoor use due to its low weather resistance. As a method for improving these, a layer made of a methacrylic resin excellent in weather resistance and pencil hardness (hereinafter sometimes abbreviated as PMMA layer) in a layer made of polycarbonate resin (hereinafter sometimes abbreviated as PC layer) It has also been proposed to laminate layers of modified polycarbonate resins.
However, the PMMA layer has poor heat resistance, high water absorption, and has a drawback that warpage of the laminate itself due to a change in humidity occurs or warp deformation occurs in a high temperature and high humidity environment. This defect becomes a serious defect in applications related to electronic devices such as a touch panel front plate and a liquid crystal display cover that are exposed to high temperature or high humidity. Therefore, an attempt has been made to suppress warping deformation of the laminate that occurs in the use environment.
For example, Patent Document 1 discloses a laminate in which a PMMA layer having excellent weather resistance is laminated on a PC layer. According to Patent Document 1, it is described that this laminate hardly causes warpage due to water absorption and is excellent in weather resistance. However, Patent Document 1 does not discuss the suppression of warpage deformation of the laminate in a high temperature and high humidity environment.
Patent Document 2 discloses a laminate in which warpage fluctuations in a high-temperature and high-humidity environment are suppressed by curving the sheet with a constant radius of curvature when forming the sheet. However, the thermoplastic resin used in the laminate is mainly composed of methyl methacrylate, and in a long-term high-temperature and high-humidity environment (temperature 85 ° C., humidity 85% for 120 hours), heat resistance and water absorption In terms of properties, it is insufficient to suppress warpage deformation.
In Patent Document 3, when a laminate is formed with three rolls, the warp after heating to 80 ° C. by setting the ratio of the peripheral speed of the second cooling roll and the peripheral speed of the third cooling roll to a certain value or more. It is described that the change can be suppressed. However, in the laminate described in Patent Document 3, warpage deformation is suppressed in terms of heat resistance and water absorption in a long-term high-temperature and high-humidity environment (conditions of a temperature of 85 ° C. and a humidity of 85% for 120 hours). Is not enough.
Patent Document 4 discloses a laminate in which a modified polycarbonate resin layer excellent in heat resistance and pencil hardness is laminated on a PC layer. However, Patent Document 4 does not discuss the suppression of warpage deformation of the laminate in a high temperature and high humidity environment.
There has been a problem that display cover panels such as smartphones and touch panel front plates are peeled off due to warp deformation of the front plate in a high temperature and high humidity environment.
JP 2006-205478 A JP 2012-051311 A JP 2012-096357 A JP 2010-188719 A
 本発明の目的は、鉛筆硬度、耐擦傷性、耐熱性、低吸水性に優れ、常温常湿環境下での反り変形が小さく、且つ長期の高温高湿環境下での反り変形が少ない積層体を提供することにある。また本発明の目的は、スマートフォン等のディスプレイカバーパネルやタッチパネル前面板に用いたとき、反り変形による剥がれが少ない積層体を提供することにある。
 本発明者らは、特定のガラス転移点および吸水率を有する異なる2種の熱可塑性樹脂からなる樹脂層(A)および樹脂層(B)を含む積層体を、溶融押出し、3本の冷却ロールで冷却する際に、第2ロール周速度に対する引取りロールの周速度を特定の範囲に設定することにより、温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率を0.2%以下にすることができることを見出し、本発明を完成した。このように本発明は、特定の2種の熱可塑性樹脂からなる積層体を微延伸することにより、高温高湿環境下での反り率が低減されることを見出したことに基づく。
 すなわち本発明は、熱可塑性樹脂(A)からなる樹脂層(A)およびその少なくとも一方の面に積層された熱可塑性樹脂(B)からなる樹脂層(B)を含む積層体であって、
(i)樹脂層(B)の厚みは40~150μmで、樹脂層(A)と樹脂層(B)の合計厚みは0.8mm~3.0mmであり、
(ii)熱可塑性樹脂(A)と熱可塑性樹脂(B)のそれぞれのガラス転移点TgAおよびTgBが共に115℃以上で、且つTgAとTgBの差が30℃以下であり、
(iii)熱可塑性樹脂(A)と熱可塑性樹脂(B)の吸水率が共に0.7%以下で、且つ吸水率差が0.5%以下であり、
(iv)該積層体を温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率が0.2%以下である、
前記積層体である。
 また本発明は、(i)樹脂層(A)およびその少なくとも一方の面に積層された樹脂層(B)を含む積層体を溶融状態でダイから押出し、
(ii)押出された積層体を引取りロールにより引き取りながら、第1~第3冷却ロールにより冷却する、
各工程を含み、
 ここで第1~第3の冷却ロールは回転中心軸が平行で、同一平面上にあり、かつ接近して配置され、第2ロール周速度に対する引取りロールの周速度を0.996~1.010倍にし、
(a)ダイから押出された積層体を、第1冷却ロールと第2冷却ロールとの間に挟み込み、
(b)第2冷却ロールに巻き掛け、
(c)第3冷却ロールに巻き掛けることにより行う、
前記積層体の製造方法である。
An object of the present invention is a laminate having excellent pencil hardness, scratch resistance, heat resistance, and low water absorption, small warpage deformation in a normal temperature and normal humidity environment, and low warpage deformation in a long-term high temperature and high humidity environment. Is to provide. Moreover, the objective of this invention is providing the laminated body with few peeling by curvature deformation, when it uses for display cover panels, such as a smart phone, and a touchscreen front plate.
The inventors melt-extruded a laminate including a resin layer (A) and a resin layer (B) made of two different thermoplastic resins having a specific glass transition point and water absorption, and three cooling rolls. Warpage after leaving for 120 hours in a high temperature and high humidity environment with a temperature of 85 ° C. and a humidity of 85% RH by setting the peripheral speed of the take-up roll to a specific range when cooling at 2nd roll The present invention has been completed by finding that the rate can be 0.2% or less. As described above, the present invention is based on the finding that the warpage rate under a high-temperature and high-humidity environment is reduced by finely stretching a laminate composed of two specific types of thermoplastic resins.
That is, the present invention is a laminate comprising a resin layer (A) comprising a thermoplastic resin (A) and a resin layer (B) comprising a thermoplastic resin (B) laminated on at least one surface thereof.
(I) The thickness of the resin layer (B) is 40 to 150 μm, and the total thickness of the resin layer (A) and the resin layer (B) is 0.8 mm to 3.0 mm,
(Ii) The glass transition points TgA and TgB of the thermoplastic resin (A) and the thermoplastic resin (B) are both 115 ° C. or higher, and the difference between TgA and TgB is 30 ° C. or lower.
(Iii) The water absorption of the thermoplastic resin (A) and the thermoplastic resin (B) are both 0.7% or less and the difference in water absorption is 0.5% or less,
(Iv) The warpage rate after leaving the laminate for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH is 0.2% or less.
It is the laminate.
The present invention also includes (i) extruding a laminate including a resin layer (A) and a resin layer (B) laminated on at least one surface thereof from a die in a molten state,
(Ii) cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll;
Including each process,
Here, the first to third cooling rolls have parallel rotation center axes, are on the same plane, are arranged close to each other, and the peripheral speed of the take-up roll with respect to the second roll peripheral speed is 0.996 to 1.. 010 times,
(A) The laminate extruded from the die is sandwiched between the first cooling roll and the second cooling roll,
(B) Wrap around the second cooling roll,
(C) Performing by winding around a third cooling roll,
It is a manufacturing method of the said laminated body.
 図1は、実施例で使用した装置を示した図である。 FIG. 1 is a diagram showing the apparatus used in the example.
 以下、本発明を詳細に説明する。
<樹脂層(A)>
 樹脂層(A)は、熱可塑性樹脂(A)からなる。熱可塑性樹脂(A)は、ガラス転移点TgAが115℃以上であり、吸水率が0.7%以下である。ガラス転移点TgAは、好ましくは115~180℃であり、より好ましくは130~160℃であり、さらに好ましくは140~150℃である。本発明におけるガラス転移点とは、示差走査熱量分析装置(DSC)を使用し、JIS K7121に準拠した昇温速度20℃/minで測定し得られるものである。また、吸水率は好ましくは0.5%以下であり、より好ましくは0.4%以下である。
 熱可塑性樹脂(A)としては、ポリカーボネート樹脂を主成分とすることが好ましい。熱可塑性樹脂(A)中のポリカーボネート樹脂の含有量は、好ましくは50重量%以上であり、より好ましくは70重量%以上であり、さらに好ましくは80重量%以上であり、特に好ましくは90重量%以上であり、最も好ましくは実質的にポリカーボネート樹脂からなる。
 ポリカーボネート樹脂は二価フェノールとカーボネート前駆体を例えば界面重縮合法、溶融エステル交換法など公知の方法で反応させて製造される芳香族ポリカーボネート樹脂である。
 二価フェノールの代表的な例として2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、ビス(4−ヒドロキシフェニル)サルファイド、ビス(4−ヒドロキシフェニル)スルホン等が挙げられる。好ましい二価フェノールはビス(4−ヒドロキシフェニル)アルカン類であり、特にビスフェノールAが好ましい。
 カーボネート前駆体としてはカルボニルハライド、カーボネートエステル、ハロホルメート等があげられ、具体的にはホスゲン、ジフェニルカーボネート、二価フェノールのジハロホルメート等が挙げられる。
 ポリカーボネート樹脂を製造するに当り、上記二価フェノールを単独で、または二種以上併用することができ、また必要に応じて分子量調節剤、分岐剤、触媒等を用いることができる。
 樹脂層(A)に用いられるポリカーボネート樹脂の粘度平均分子量は、好ましくは1.0×10~10.0×10、より好ましくは1.5×10~4.5×10、さらに好ましくは1.8×10~3.0×10である。粘度平均分子量とは、塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液から求めた比粘度(ηsp)を次式に挿入して求めたものである。
 ηsp/c=[η]+0.45×[η]c(但し[η]は極限粘度)
 [η]=1.23×10−40.83
 c=0.7
 また、ポリカーボネート樹脂には必要に応じて添加剤、例えば亜燐酸エステル、燐酸エステル、ホスホン酸エステル等の熱安定剤(0.001~0.2重量%)、アルコールと脂肪酸とのエステル等の離型剤(0.005~2.0重量%)、テトラブロムビスフェノールA、テトラブロムビスフェノールAの低分子量ポリカーボネート、デカブロモジフェニルエーテル等の難燃剤(3~15重量%)、着色剤、蛍光増白剤等を配合してもよい。
 樹脂層(A)の厚みは、0.65mm~2.96mmの範囲である。好ましくは0.8mm~2.5mmの範囲である。
<樹脂層(B)>
 樹脂層(B)は、熱可塑性樹脂(B)からなる。熱可塑性樹脂(B)は、ガラス転移点TgBが115℃以上であり、吸水率が0.7%以下である。ガラス転移点TgBは、好ましくは115~150℃であり、より好ましくは117~140℃であり、さらに好ましくは120~130℃である。また、吸水率は好ましくは0.6%以下であり、より好ましくは0.5%以下である。TgBが115℃未満の場合または樹脂層(B)の吸水率が0.7%を超えると、温度85℃、湿度85%RHの高温高湿環境下で、熱および吸湿により積層体に反りが発生し易い。
 また、ガラス転移点TgAとガラス転移点TgBとの差(TgA−TgB)は30℃以下である。TgAとTgBの差が30℃を超えると温度85℃、湿度85%RHの高温高湿環境下で、樹脂層(A)の熱可塑性樹脂と樹脂層(B)の熱可塑性樹脂との収縮率差が大きくなり、積層体に反りが発生し易い。ガラス転移点TgAとガラス転移点TgBとの差は好ましくは28℃以下であり、より好ましくは25℃以下である。
 さらに、熱可塑性樹脂(A)と熱可塑性樹脂(B)との吸水率の差(熱可塑性樹脂(B)の吸水率−熱可塑性樹脂(A)の吸水率)は0.5%以下である。吸水率差が0.5%を超えると温度85℃、湿度85%RHの高温高湿環境下で吸湿膨張により寸法変化が生じ、やはり反りが発生し易い。熱可塑性樹脂(A)と熱可塑性樹脂(B)との吸水率の差は好ましくは0.4%以下であり、より好ましくは0.3%以下であり、さらに好ましくは0.2%以下であり、特に好ましくは0.1%以下である。
 樹脂層(B)の鉛筆硬度はJIS K5600−5−4に準拠して測定されたものである。樹脂層(B)の鉛筆硬度は、好ましくはF以上であり、より好ましくはH以上であり、さらに好ましくは2H以上である。
 樹脂層(B)の厚みは40~150μmであり、好ましくは50~120μmであり、より好ましくは60~100μmである。樹脂層(B)の厚みが薄すぎると十分な鉛筆硬度が得られず、150μmを超えると温度85℃、湿度85%RHの高温高湿環境下での反り率を0.2%以下にすることが困難になる。
 熱可塑性樹脂(B)としては、下記式で表される単位[1]と、下記式で表される単位[2]を含み、全単位に基づき単位[1]の割合が50~100モル%であり、粘度平均分子量が1.0×10~8.0×10である変性ポリカーボネート樹脂が挙げられる。
Figure JPOXMLDOC01-appb-I000003
 単位[1]中、Wは単結合、炭素原子数1~6のアルカンジイル基、炭素原子数6~10のアリーレン基、または炭素原子数3~8のシクロアルキレン基を表す。
 炭素原子数1~6のアルカンジイル基として、メチレン基、エチレン基、プロパンジイル基、プロパン−2,2−ジイル基、ブタンジイル基等が挙げられる。炭素原子数6~10のアリーレン基として、フェニレン基、ナフタレンジイル基、ビフェノールジイル基、トルエンジイル基等が挙げられる。炭素原子数3~8のシクロアルキレンとして、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基が挙げられる。
 単位[1]は、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンおよび2,2’−メチル−4,4’−ビフェニルジオールからなる群より選ばれる少なくとも一種から誘導された単位であることが好ましい。特に1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサンまたは2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパンから誘導された単位であることが好ましい。
 また全単位中の単位[1]の割合は60モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上がさらに好ましく、特に実質的に100%が好ましい。単位[1]の含有量が50モル%以上の場合、鉛筆硬度が高く、耐熱性も良好であり好ましい。なお、変性ポリカーボネート樹脂は、上記単位[1]の割合を満足する限り、共重合体でもよくポリマーブレンド樹脂であってもよい。
 変性ポリカーボネート樹脂の製造方法は、前記ポリカーボネート樹脂と同様に二価フェノールとカーボネート前駆体を界面重縮合法、溶融エステル交換法など公知の方法で反応させる方法が用いられる。変性ポリカーボネート樹脂の粘度平均分子量は、好ましくは1.1×10~6.0×10であり、より好ましくは1.3×10~4.5×10であり、さらに好ましくは1.5×10~3.0×10である。
 また、熱可塑性樹脂(B)として、芳香族(メタ)アクリレート単位5~80重量%およびメチル(メタ)アクリレート単位20~95重量%を含有し、重量平均分子量が5,000~30,000であるアクリル共重合体20~60重量部と、ポリカーボネート樹脂40~80重量部(但し、アクリル重合体とポリカーボネート樹脂との合計が100重量部)とのブレンド樹脂が挙げられる。かかるブレンド樹脂は鉛筆硬度が高く、耐熱性も良好であり好ましい。
 アクリル共重合体は、芳香族(メタ)アクリレート単位10~60重量%およびメチル(メタ)アクリレート単位40~90重量%を含有することが好ましく、芳香族(メタ)アクリレート単位20~50重量%およびメチル(メタ)アクリレート単位50~80重量%を含有することがより好ましい。また、アクリル共重合体の重量平均分子量は8,000~28,000の範囲が好ましく、10,000~25,000の範囲がより好ましい。
 ブレンド樹脂は、アクリル共重合体25~55重量部と、ポリカーボネート樹脂45~75重量部との混合物が好ましく、アクリル共重合体30~50重量部と、ポリカーボネート樹脂50~70重量部との混合物がより好ましい。ポリマーブレンドは、任意の方法で実施することができるが、例えばタンブラー、V型ブレンダー、ナウターミキサー、混練ロール、押出機などで混合する方法が適宜用いられる。
 また熱可塑性樹脂(B)は、紫外線吸収剤を含有することが好ましい。積層体の最表層となる樹脂層(B)に紫外線吸収剤を含有することで、樹脂層(B)で紫外線が吸収されることにより、樹脂層(A)の光エネルギーによる分解劣化を抑制することができる。それにより、太陽光などの紫外線を有する光が当たる場所で使用されるような場合でも、積層体の長期安定性を向上することができる。紫外線吸収剤の含有量は、熱可塑性樹脂(B)100重量部に対して、0.5~5.0重量部の範囲が好ましく、1.0~4.0重量部の範囲がより好ましい。
 紫外線吸収剤としては、ベンゾトリアゾール系、ベンゾフェノン系、ベンズオキサジン系、トリアジン系などが挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、2,2’−メチレンビス[6−(ベンゾトリアゾール−2−イル)−4−tert−オクチルフェノール]、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール等が挙げられる。
 トリアジン系紫外線吸収剤としては、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2−[4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール等が挙げられる。
 また熱可塑性樹脂(B)には、その他の添加剤を添加することもできる。例えば酸化防止剤は、公知の酸化防止剤が使用できる。酸化防止剤の含有量は、熱可塑性樹脂(B)100重量部に対して、0.001~0.2重量部の範囲が好ましい。
 フェノール系酸化防止剤としては、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−プロピオネート、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)−アセテート、n−オクタデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオ−ドデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートが挙げられる。
 リン系酸化防止剤としては、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−N,N−ビス[2−[[2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−エチル]エタナミン、ジフェニルトリデシルフォスファイトが挙げられる。
<ハードコート層>
 本発明の積層体は、樹脂(B)の上にハードコート層が積層されていても良い。ハードコート層は、透明性を損なうことなく、十分な密着性を有するものであれば、材質、付与方法等において特に限定されるものでない。ハードコート層の形成方法として、熱、紫外線、電子線等によって硬化する硬化性塗料を塗布する方法、物理気相蒸着法、化学気相蒸着法等が挙げられる。製造上の観点から紫外線硬化性塗料を塗布する方法が好ましい。
 紫外線硬化性塗料は、紫外線硬化性樹脂および光重合開始剤を含有する組成物であれば、特に限定されるものではない。紫外線硬化性樹脂としては、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、ポリエステルアクリレート、グリシジル化合物、脂環状エポキシ化合物、オキセタン化合物等が挙げられる。
 光重合開始剤としては、1−ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−1−〔(4−メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オン、ベンゾフェノン、4−ベンゾイル−4’−メチルフェニルサルファイド、2,4−ジエチルチオキサントン等が挙げられる。またこの組成物に希釈溶剤、消泡剤、レベリング剤、帯電防止剤等を添加してもよい。
 紫外線硬化性塗料を使用してハードコート層を形成する塗装手段としては、例えばマイクログラビアコート法、スピンコート法、キャスト転写法、噴霧コート法、フローコート法、ディッピング法、ロールコート法、バーコート法等の任意の方法を用いれば良い。塗料性状の観点から、マイクログラビアコート法、ロールコート法、バーコート法がより好ましい。また、両面にコートする際は両面共に同じ方法でコートしても良いし、別々の方法でコートしても良い。両面にほぼ同じ厚み(厚みの差が5μm以内)でハードコート層を形成することは、ハードコート層が積層された積層体の反り率の低減に有利である。
 ハードコート層の厚みは1~30μmの範囲が好ましく、3~25μmの範囲がより好ましく、5~20μmの範囲がさらに好ましい。ハードコート層の厚みが1μmより薄くなると十分な耐擦傷性が得られず、また30μmより厚くなると、応力によるクラックが発生し易くなり、ディスプレイカバーパネルやタッチパネル等の用途に適さない。
 ハードコート層の鉛筆硬度は、好ましくは3H以上であり、より好ましくは4H以上であり、さらに好ましくは5H以上である。ハードコート層の鉛筆硬度はJIS K5600−5−4に準拠して測定されたものである。
<積層体>
 本発明の積層体は、樹脂層(A)の少なくとも一方の面に樹脂層(B)が積層されている。
 樹脂層(A)と樹脂層(B)の合計厚みは、0.8mm~3.0mmである。樹脂層(A)と樹脂層(B)の合計厚みは、好ましくは0.9mm~2.5mmであり、より好ましくは1.0~2.0mmである。積層体の厚さが3.0mmより厚いと、ディスプレイカバーとして使用する場合、重量が重くなり、コスト的にも不利になるため好ましくない。0.8mm未満であると、ディスプレイカバーとしては剛性不足であり、また積層体として反り率を0.2%以下に抑えるのが困難になる。
 本発明の積層体は、温度23℃、湿度50%RH環境下に4時間放置した後の反り率が好ましくは0.2%以下であり、より好ましくは0.15%以下である。
 また、本発明の積層体は、温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率が0.2%以下であり、好ましくは0.15%以下である。
 本発明のハードコート層が積層された積層体は、温度23℃、湿度50%RH環境下に4時間放置した後の反り率が好ましくは0.2%以下であり、より好ましくは0.15%以下である。また、本発明のハードコート層が積層された積層体は、温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率が0.2%以下であり、好ましくは0.15%以下である。
<積層体の製造方法>
 本発明の積層体は、(i)樹脂層(A)およびその少なくとも一方の面に積層された樹脂層(B)を含む積層体を溶融状態でダイから押出し、
(ii)押出された積層体を引取りロールにより引き取りながら、第1~第3冷却ロールにより冷却する、
各工程により製造することができる。
(押出工程(i))
 樹脂層(A)およびその少なくとも一方の面に積層された樹脂層(B)を含む積層体を溶融状態でダイから押出す工程である。この工程は、熱可塑性樹脂(A)および熱可塑性樹脂(B)を押出機にて溶融させ、フィードブロック法またはマルチマニホールド法を用いて積層させる共押出成形法である。共押出成形法は、熱可塑性樹脂(A)および熱可塑性樹脂(B)を溶融し、多層一体化させた樹脂をロールに密着させて成形を行う。具体的には、マルチマニホールドダイやフィードブロックダイから押出すことができる。
 熱可塑性樹脂(A)および熱可塑性樹脂(B)は混合しても透明性が維持されるため、積層シート成形時に発生する端部のカット部分を回収、粉砕し、樹脂層(A)に特定の割合、好ましくは回収前の熱可塑性樹脂(A)100重量部に対して50重量部以下の割合で混合することにより、積層シートとしての特性を損うことなく、材料ロスを低減して押出すことができる。
(冷却工程(ii))
 この工程は、押出された積層体を引取りロールにより引き取りながら、第1~第3冷却ロールにより冷却する工程である。
 第1~第3の冷却ロールは、図1に示すように、回転中心軸が平行で、同一平面上にあり、かつ接近して配置されている。第1~第3冷却ロールの間隔は、積層体の厚みに対応する。冷却は、(a)押出された積層体を、第1冷却ロールと第2冷却ロールとの間に挟み込み、(b)その後、第2冷却ロールに巻き掛け、(c)その後、第3冷却ロールに巻き掛けることにより行う。
(第2ロール周速度に対する引取りロールの周速度)
 本発明においては、第2ロール周速度に対する引取りロールの周速度を0.996~1.010倍に設定することにより、温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率が0.2%以下を達成することができる。通常、第2ロール周速度に対する引取りロールの周速度は、樹脂の冷却による収縮のために、0.990~0.995倍程度に設定される。本発明は、積層体を微延伸することにより、高温高湿環境下での反り率が低減されることを見出したことに基づく。第2ロール周速度に対する引取りロールの周速度は、好ましくは0.997~1.005倍、さらに好ましくは0.998~1.000倍である。
 第2ロール周速度に対する引取りロールの周速度が、上記範囲の下限未満であるとシート進行方向(MD方向)の成形時の歪みが大きくなり、高温高湿環境下において歪み緩和による反り変動が発生し実用に供し難くなり好ましくない。また、第2ロール周速度に対する引取りロールの周速度が上記範囲の上限を超えるとシートの外観に悪影響を及ぼすため好ましくない。例えばシートの厚みムラが大きくなり、また位相差が高くなり、光学特性に悪影響を及ぼす。
(第2ロール周速度に対する第3ロールの周速度)
 通常、第2ロール周速度に対する第3ロールの周速度は同速である。本発明においては、第2ロール周速度に対する第3ロールの周速度を特定の範囲に設定することにより、より反り率を小さくすることができる。すなわち、第2ロール周速度に対する第3ロールの周速度は、好ましくは1.001~1.030倍、より好ましくは1.002~1.020倍、さらに好ましくは1.003~1.010倍である。
 第2ロール周速度に対する第3ロールの周速度が上記範囲内であるとシート進行方向(MD方向)の成形時の歪みが小さくなり、高温高湿環境下において歪み緩和による反り変動が発生し難い。また、第2ロール周速度に対する引取りロールの周速度が上記範囲内であるとシートの外観が良好となる。
(ハードコート層の積層)
 冷却して得られた積層体の樹脂層(B)の上にハードコート層を積層しても良い。ハードコート層およびその積層方法は前述の通りである。
<用途>
 本発明の積層体は、ディスプレイカバーパネルまたはタッチパネル前面板として用いることができる。
Hereinafter, the present invention will be described in detail.
<Resin layer (A)>
The resin layer (A) is made of a thermoplastic resin (A). The thermoplastic resin (A) has a glass transition point TgA of 115 ° C. or higher and a water absorption of 0.7% or lower. The glass transition point TgA is preferably 115 to 180 ° C, more preferably 130 to 160 ° C, and still more preferably 140 to 150 ° C. The glass transition point in the present invention is obtained by using a differential scanning calorimeter (DSC) and measuring at a heating rate of 20 ° C./min in accordance with JIS K7121. Further, the water absorption is preferably 0.5% or less, and more preferably 0.4% or less.
As the thermoplastic resin (A), a polycarbonate resin is preferably a main component. The content of the polycarbonate resin in the thermoplastic resin (A) is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and particularly preferably 90% by weight. Most preferably, it consists essentially of a polycarbonate resin.
The polycarbonate resin is an aromatic polycarbonate resin produced by reacting a dihydric phenol and a carbonate precursor by a known method such as an interfacial polycondensation method or a melt transesterification method.
Representative examples of dihydric phenols include 2,2-bis (4-hydroxyphenyl) propane (commonly known as bisphenol A), 1,1-bis (4-hydroxyphenyl) ethane, and 1,1-bis (4-hydroxyphenyl). ) Cyclohexane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, bis (4-hydroxyphenyl) sulfide, Bis (4-hydroxyphenyl) sulfone etc. are mentioned. Preferred dihydric phenols are bis (4-hydroxyphenyl) alkanes, and bisphenol A is particularly preferred.
Examples of the carbonate precursor include carbonyl halide, carbonate ester, haloformate, and the like, and specifically include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
In producing the polycarbonate resin, the above dihydric phenols can be used alone or in combination of two or more thereof, and a molecular weight regulator, a branching agent, a catalyst and the like can be used as necessary.
The viscosity average molecular weight of the polycarbonate resin used for the resin layer (A) is preferably 1.0 × 10 4 to 10.0 × 10 4 , more preferably 1.5 × 10 4 to 4.5 × 10 4 , It is preferably 1.8 × 10 4 to 3.0 × 10 4 . The viscosity average molecular weight is obtained by inserting the specific viscosity (η sp ) obtained from a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20 ° C. into the following equation.
η sp /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 M 0.83
c = 0.7
In addition, polycarbonate resins may contain additives such as heat stabilizers (0.001 to 0.2% by weight) such as phosphites, phosphates and phosphonates, and esters of alcohol and fatty acids. Molding agents (0.005 to 2.0% by weight), tetrabromobisphenol A, low molecular weight polycarbonate of tetrabromobisphenol A, flame retardants (3 to 15% by weight) such as decabromodiphenyl ether, colorants, fluorescent whitening agents Etc. may be blended.
The thickness of the resin layer (A) is in the range of 0.65 mm to 2.96 mm. Preferably, it is in the range of 0.8 mm to 2.5 mm.
<Resin layer (B)>
The resin layer (B) is made of a thermoplastic resin (B). The thermoplastic resin (B) has a glass transition point TgB of 115 ° C. or higher and a water absorption of 0.7% or lower. The glass transition point TgB is preferably 115 to 150 ° C., more preferably 117 to 140 ° C., and still more preferably 120 to 130 ° C. Further, the water absorption is preferably 0.6% or less, more preferably 0.5% or less. When TgB is less than 115 ° C. or the water absorption rate of the resin layer (B) exceeds 0.7%, the laminate is warped by heat and moisture absorption in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH. It is easy to generate.
Moreover, the difference (TgA-TgB) of the glass transition point TgA and the glass transition point TgB is 30 degrees C or less. When the difference between TgA and TgB exceeds 30 ° C., the shrinkage between the thermoplastic resin of the resin layer (A) and the thermoplastic resin of the resin layer (B) in a high temperature and high humidity environment of 85 ° C. and 85% humidity. The difference becomes large, and the laminate is likely to warp. The difference between the glass transition point TgA and the glass transition point TgB is preferably 28 ° C. or lower, more preferably 25 ° C. or lower.
Further, the difference in water absorption between the thermoplastic resin (A) and the thermoplastic resin (B) (water absorption of the thermoplastic resin (B) −water absorption of the thermoplastic resin (A)) is 0.5% or less. . When the difference in water absorption exceeds 0.5%, a dimensional change occurs due to hygroscopic expansion in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH, and warpage is likely to occur. The difference in water absorption between the thermoplastic resin (A) and the thermoplastic resin (B) is preferably 0.4% or less, more preferably 0.3% or less, and further preferably 0.2% or less. Yes, particularly preferably 0.1% or less.
The pencil hardness of the resin layer (B) is measured according to JIS K5600-5-4. The pencil hardness of the resin layer (B) is preferably F or more, more preferably H or more, and further preferably 2H or more.
The thickness of the resin layer (B) is 40 to 150 μm, preferably 50 to 120 μm, more preferably 60 to 100 μm. If the thickness of the resin layer (B) is too thin, sufficient pencil hardness cannot be obtained, and if it exceeds 150 μm, the warpage rate in a high-temperature and high-humidity environment with a temperature of 85 ° C. and a humidity of 85% RH is made 0.2% or less. It becomes difficult.
The thermoplastic resin (B) includes a unit [1] represented by the following formula and a unit [2] represented by the following formula, and the ratio of the unit [1] is 50 to 100 mol% based on all units. And a modified polycarbonate resin having a viscosity average molecular weight of 1.0 × 10 4 to 8.0 × 10 4 .
Figure JPOXMLDOC01-appb-I000003
In the unit [1], W represents a single bond, an alkanediyl group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a cycloalkylene group having 3 to 8 carbon atoms.
Examples of the alkanediyl group having 1 to 6 carbon atoms include a methylene group, an ethylene group, a propanediyl group, a propane-2,2-diyl group, and a butanediyl group. Examples of the arylene group having 6 to 10 carbon atoms include phenylene group, naphthalenediyl group, biphenoldiyl group, and toluenediyl group. Examples of the cycloalkylene having 3 to 8 carbon atoms include a cyclopentylene group, a cyclohexylene group, and a cyclooctylene group.
Unit [1] consists of 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane and 2,2′-methyl-4,4. It is preferably a unit derived from at least one selected from the group consisting of '-biphenyldiol. In particular, a unit derived from 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane or 2,2-bis (4-hydroxy-3-methylphenyl) propane is preferable.
The proportion of the unit [1] in all units is preferably 60 mol% or more, more preferably 80 mol% or more, further preferably 90 mol% or more, and particularly preferably substantially 100%. When the content of the unit [1] is 50 mol% or more, the pencil hardness is high and the heat resistance is also good, which is preferable. The modified polycarbonate resin may be a copolymer or a polymer blend resin as long as the ratio of the unit [1] is satisfied.
As a method for producing the modified polycarbonate resin, a method of reacting a dihydric phenol and a carbonate precursor by a known method such as an interfacial polycondensation method or a melt transesterification method is used in the same manner as the polycarbonate resin. The viscosity average molecular weight of the modified polycarbonate resin is preferably 1.1 × 10 4 to 6.0 × 10 4 , more preferably 1.3 × 10 4 to 4.5 × 10 4 , and even more preferably 1 .5 × 10 4 to 3.0 × 10 4 .
The thermoplastic resin (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units, and has a weight average molecular weight of 5,000 to 30,000. A blend resin of 20 to 60 parts by weight of a certain acrylic copolymer and 40 to 80 parts by weight of a polycarbonate resin (however, the total of the acrylic polymer and the polycarbonate resin is 100 parts by weight) can be mentioned. Such a blend resin is preferable because it has high pencil hardness and good heat resistance.
The acrylic copolymer preferably contains 10 to 60% by weight of aromatic (meth) acrylate units and 40 to 90% by weight of methyl (meth) acrylate units, and 20 to 50% by weight of aromatic (meth) acrylate units and More preferably, it contains 50 to 80% by weight of methyl (meth) acrylate units. The weight average molecular weight of the acrylic copolymer is preferably in the range of 8,000 to 28,000, and more preferably in the range of 10,000 to 25,000.
The blend resin is preferably a mixture of 25 to 55 parts by weight of an acrylic copolymer and 45 to 75 parts by weight of a polycarbonate resin, and a mixture of 30 to 50 parts by weight of an acrylic copolymer and 50 to 70 parts by weight of a polycarbonate resin. More preferred. The polymer blending can be carried out by any method. For example, a method of mixing with a tumbler, V-type blender, nauter mixer, kneading roll, extruder or the like is appropriately used.
Moreover, it is preferable that a thermoplastic resin (B) contains a ultraviolet absorber. By containing an ultraviolet absorber in the resin layer (B) which is the outermost layer of the laminate, the resin layer (B) absorbs ultraviolet rays, thereby suppressing degradation of the resin layer (A) due to light energy. be able to. Thereby, long-term stability of a laminated body can be improved even when it is used in the place where the light which has ultraviolet rays, such as sunlight, hits. The content of the ultraviolet absorber is preferably in the range of 0.5 to 5.0 parts by weight and more preferably in the range of 1.0 to 4.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin (B).
Examples of the ultraviolet absorber include benzotriazole, benzophenone, benzoxazine, and triazine.
Examples of the benzotriazole ultraviolet absorber include 2,2′-methylenebis [6- (benzotriazol-2-yl) -4-tert-octylphenol], 2- [2-hydroxy-3,5-bis (α, α). -Dimethylbenzyl) phenyl] -2H-benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, and the like.
Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2- [4,6-bis (2,4-dimethylphenyl). ) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol.
Moreover, another additive can also be added to a thermoplastic resin (B). For example, a known antioxidant can be used as the antioxidant. The content of the antioxidant is preferably in the range of 0.001 to 0.2 parts by weight with respect to 100 parts by weight of the thermoplastic resin (B).
Phenol antioxidants include n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl-3- (3,5-di-t-butyl- 4-hydroxyphenyl) -acetate, n-octadecyl-3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl-3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl -3,5-di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
Examples of phosphorus antioxidants include tris (2,4-di-t-butylphenyl) phosphite, 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f ] [1,3,2] dioxaphosphin-6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1 dimethylethyl) dibenzo [d , F] [1,3,2] dioxaphosphin-6-yl] oxy] -ethyl] ethanamine, diphenyltridecyl phosphite.
<Hard coat layer>
In the laminate of the present invention, a hard coat layer may be laminated on the resin (B). The hard coat layer is not particularly limited in material, application method, and the like as long as it has sufficient adhesion without impairing transparency. Examples of the method for forming the hard coat layer include a method of applying a curable coating that is cured by heat, ultraviolet rays, electron beams, and the like, a physical vapor deposition method, a chemical vapor deposition method, and the like. From the viewpoint of production, a method of applying an ultraviolet curable coating is preferred.
The ultraviolet curable coating is not particularly limited as long as it is a composition containing an ultraviolet curable resin and a photopolymerization initiator. Examples of the ultraviolet curable resin include urethane acrylate, epoxy acrylate, polyether acrylate, polyester acrylate, glycidyl compound, alicyclic epoxy compound, and oxetane compound.
As photopolymerization initiators, 1-hydroxycyclohexyl phenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropane-1-one, 2-hydroxy-2-methyl-1-phenylpropane-1- ON, 2-methyl-1-[(4-methylthio) phenyl] -2-morpholinopropan-1-one, benzophenone, 4-benzoyl-4′-methylphenyl sulfide, 2,4-diethylthioxanthone and the like. . Moreover, you may add a dilution solvent, an antifoamer, a leveling agent, an antistatic agent, etc. to this composition.
Examples of coating means for forming a hard coat layer using an ultraviolet curable coating include a micro gravure coating method, a spin coating method, a cast transfer method, a spray coating method, a flow coating method, a dipping method, a roll coating method, and a bar coating. Any method such as a method may be used. From the viewpoint of paint properties, a micro gravure coating method, a roll coating method, and a bar coating method are more preferable. Moreover, when coating on both surfaces, both surfaces may be coated by the same method, or by different methods. Forming the hard coat layer on both surfaces with substantially the same thickness (thickness difference within 5 μm) is advantageous in reducing the warpage rate of the laminate in which the hard coat layer is laminated.
The thickness of the hard coat layer is preferably in the range of 1 to 30 μm, more preferably in the range of 3 to 25 μm, and still more preferably in the range of 5 to 20 μm. When the thickness of the hard coat layer is less than 1 μm, sufficient scratch resistance cannot be obtained. When the thickness of the hard coat layer is more than 30 μm, cracks due to stress are likely to occur, which is not suitable for applications such as display cover panels and touch panels.
The pencil hardness of the hard coat layer is preferably 3H or more, more preferably 4H or more, and further preferably 5H or more. The pencil hardness of the hard coat layer is measured according to JIS K5600-5-4.
<Laminated body>
In the laminate of the present invention, the resin layer (B) is laminated on at least one surface of the resin layer (A).
The total thickness of the resin layer (A) and the resin layer (B) is 0.8 mm to 3.0 mm. The total thickness of the resin layer (A) and the resin layer (B) is preferably 0.9 mm to 2.5 mm, more preferably 1.0 to 2.0 mm. When the thickness of the laminated body is larger than 3.0 mm, it is not preferable because the weight becomes heavy and disadvantageous in terms of cost when used as a display cover. If it is less than 0.8 mm, the display cover has insufficient rigidity, and it becomes difficult to suppress the warpage rate to 0.2% or less as a laminate.
The layered product of the present invention has a warp rate of preferably 0.2% or less, more preferably 0.15% or less after being left for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH.
In addition, the laminate of the present invention has a warpage rate of 0.2% or less, preferably 0.15% or less after being left for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH. .
The layered product on which the hard coat layer of the present invention is laminated has a warp rate of preferably 0.2% or less, more preferably 0.15 after standing for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH. % Or less. Further, the laminate in which the hard coat layer of the present invention is laminated has a warpage rate of 0.2% or less after being left for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH, preferably It is 0.15% or less.
<Method for producing laminate>
The laminate of the present invention is (i) extruding a laminate including a resin layer (A) and a resin layer (B) laminated on at least one surface thereof from a die in a molten state,
(Ii) cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll;
It can be manufactured by each process.
(Extrusion process (i))
This is a step of extruding from a die a molten body containing a resin layer (A) and a resin layer (B) laminated on at least one surface thereof. This step is a coextrusion molding method in which the thermoplastic resin (A) and the thermoplastic resin (B) are melted by an extruder and laminated using a feed block method or a multi-manifold method. In the coextrusion molding method, the thermoplastic resin (A) and the thermoplastic resin (B) are melted, and the multilayer integrated resin is brought into close contact with the roll to perform molding. Specifically, it can be extruded from a multi-manifold die or a feed block die.
Because the thermoplastic resin (A) and the thermoplastic resin (B) are transparent even if they are mixed, the cut part at the end that occurs during the molding of the laminated sheet is collected, crushed, and specified as the resin layer (A) Ratio, preferably 50 parts by weight or less with respect to 100 parts by weight of the thermoplastic resin (A) before recovery, thereby reducing the material loss without deteriorating the properties as a laminated sheet. Can be put out.
(Cooling step (ii))
This step is a step of cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll.
As shown in FIG. 1, the first to third cooling rolls are parallel to each other, are on the same plane, and are arranged close to each other. The interval between the first to third cooling rolls corresponds to the thickness of the laminate. For cooling, (a) the extruded laminate is sandwiched between the first cooling roll and the second cooling roll, (b) is then wound around the second cooling roll, and (c) the third cooling roll is then placed. It is done by wrapping around.
(The peripheral speed of the take-up roll relative to the second roll peripheral speed)
In the present invention, the peripheral speed of the take-up roll with respect to the second roll peripheral speed is set to 0.996 to 1.010 times, so that it is left for 120 hours in a high-temperature and high-humidity environment with a temperature of 85 ° C. and a humidity of 85% RH. The warp rate after the treatment can be 0.2% or less. Usually, the peripheral speed of the take-up roll relative to the second roll peripheral speed is set to about 0.990 to 0.995 times due to shrinkage due to cooling of the resin. The present invention is based on the finding that the warpage rate under a high-temperature and high-humidity environment is reduced by slightly stretching the laminate. The peripheral speed of the take-up roll with respect to the second roll peripheral speed is preferably 0.997 to 1.005 times, more preferably 0.998 to 1.000 times.
When the peripheral speed of the take-up roll with respect to the second roll peripheral speed is less than the lower limit of the above range, distortion at the time of molding in the sheet traveling direction (MD direction) increases, and warpage fluctuation due to distortion relaxation occurs in a high temperature and high humidity environment. This is not preferable because it occurs and is difficult to put to practical use. Further, if the peripheral speed of the take-up roll with respect to the second roll peripheral speed exceeds the upper limit of the above range, the sheet appearance is adversely affected. For example, the thickness unevenness of the sheet increases and the phase difference increases, which adversely affects the optical characteristics.
(The peripheral speed of the third roll relative to the peripheral speed of the second roll)
Usually, the peripheral speed of the third roll is the same as the peripheral speed of the second roll. In the present invention, the warp rate can be further reduced by setting the peripheral speed of the third roll with respect to the second roll peripheral speed to a specific range. That is, the peripheral speed of the third roll relative to the peripheral speed of the second roll is preferably 1.001 to 1.030 times, more preferably 1.002 to 1.020 times, and still more preferably 1.003 to 1.010 times. It is.
If the peripheral speed of the third roll relative to the peripheral speed of the second roll is within the above range, distortion during molding in the sheet traveling direction (MD direction) is reduced, and warpage fluctuation due to strain relaxation is unlikely to occur in a high-temperature and high-humidity environment. . Further, when the peripheral speed of the take-up roll with respect to the second roll peripheral speed is within the above range, the appearance of the sheet is improved.
(Lamination of hard coat layer)
A hard coat layer may be laminated on the resin layer (B) of the laminate obtained by cooling. The hard coat layer and the laminating method are as described above.
<Application>
The laminate of the present invention can be used as a display cover panel or a touch panel front plate.
 以下、実施例を挙げて本発明を詳細に説明する。
実施例1~10、比較例1~3
<特性の評価方法>
(ガラス転移点:Tg)
 JIS K7121に準拠して、各層の熱可塑性樹脂を使用し、(株)島津製作所製 DSC−60Aにてガラス転移点を測定した。毎分50ml窒素ガスフロー環境とした試験槽内にて、熱可塑性樹脂10~20mgを毎分20℃で200℃まで昇温して融解させて35℃まで冷却して試料を得て、再び毎分20℃で昇温したときのベースラインの“ずれ”の生じた中間点をガラス転移点とした。
(吸水率)
 各層の熱可塑性樹脂の成形板(縦80mm、横10mm、厚さ4mm)を作成し、試験片として用い、試験片を温度85℃、湿度0%RHの恒温恒湿槽に24時間静置した後に取り出してさらに室温で10分間静置した後、天秤で重量を測定して、これを乾燥重量とした。次に、試験片を温度85℃、湿度85%RHの恒温恒湿槽に120時間静置した後に取り出してさらに室温で10分間静置した後、天秤で重量を測定して、これを吸水重量とした。下記式にて吸水率を求めた。
 吸水率[%]=(吸水重量[g]−乾燥重量[g])/乾燥重量[g]×100[%]
(鉛筆硬度)
 積層体を、JIS K5600−5−4に準拠し、樹脂層(B)を積層させている面に対して750g加重で鉛筆硬度の測定を行い、表面に目視で傷がつかなかった鉛筆の硬度を評価結果とした。鉛筆は三菱鉛筆Uni(商品名)を使用した。
(常温常湿試験後の反り率)
 積層体を、製造時のシート進行方向が長辺となるように縦50mm×横100mm、シート幅方向が長辺となるように縦50mm×横100mmの大きさにそれぞれ3枚ずつ切り出し、これら6枚の試験片を温度23℃、湿度50%RH環境下に4時間放置した後、樹脂層(B)側が上になるように平置きし、四隅とその中間点の計8点の浮き量を測定した。測定した6枚の中で最大浮き量(最大反り量)を求め、次式にて計算した値を反り率(%)とした。
 反り率(%)=100×最大反り量(mm)/100(mm)
 なお、樹脂層(B)側が凹となる浮き量を正とした。
(湿熱試験後の反り率)
 積層体を、製造時のシート進行方向が長辺となるように縦50mm×横100mm、シート幅方向が長辺となるように縦50mm×横100mmの大きさにそれぞれ3枚ずつ切り出し、これら6枚の試験片を温度85℃、湿度85%RH環境下に120時間放置し、次いで温度23℃、湿度50%RH環境下に4時間放置した後、樹脂層(B)側が上になるように平置きし、四隅とその中間点の計8点の浮き量を測定した。測定した6枚の中で最大浮き量(最大反り量)を求め、次式にて計算した値を反り率(%)とした。
 反り率(%)=100×最大反り量(mm)/100(mm)
 なお、樹脂層(B)側が凹となる浮き量を正とした。
(湿熱試験後の剥離確認)
 積層体から、縦50mm×横100mmのサンプルを切り出し、住友スリーエム(株)製両面テープ、品番Y4914を用いて、スマートホンの筐体に4辺で固定した。温度85℃、湿度85%RH環境下に120時間放置し、次いで温度23℃、湿度50%RH環境下に4時間放置した後、前面板固定部分の状態を目視観察し、両面テープの剥離発生有無を確認した。○を剥離発生なし、×を剥離発生ありとして表1に示した。
<樹脂1~5の製造>
 樹脂層(B)を構成する樹脂1~5は以下の方法で製造した。
(変性ポリカーボネート樹脂の製造例1:樹脂1)
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液3845部およびイオン交換水18182部を仕込み、これに2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン3984部およびハイドロサルファイト8.37部を溶解した後、塩化メチレン10567部を加え、撹拌下、15~25℃でホスゲン2000部を約60分かけて吹き込んだ。
 ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液897部およびp−tert−ブチルフェノール58.28部を加え、撹拌を再開、乳化後トリエチルアミン5.39部を加え、さらに28~33℃で1時間撹拌して反応を終了した。反応終了後生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。
 次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取出口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕・乾燥してパウダーを得た。その後、該パウダーにトリス(2,4−ジ−tert−ブチルフェニル)ホスファイトを0.0025重量%、ステアリン酸モノグリセリドを0.05重量%となるように添加し、均一に混合した後、かかるパウダーをベント式二軸押出機[(株)神戸製鋼所製KTX−46]により脱気しながら溶融混錬し、単位[1]からなる変性ポリカーボネート樹脂ペレット(粘度平均分子量25,000)を得た。これを樹脂1とした。
(変性ポリカーボネート樹脂の製造例2:樹脂2)
 温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液4485部およびイオン交換水22377部を仕込み、これに2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン1992部(7.9モル)、2,2−ビス(4−ヒドロキシフェニル)プロパン1773部(7.8モル)、およびハイドロサルファイト7.53部を溶解した後、塩化メチレン13209部を加え、撹拌下、15~25℃でホスゲン2000部を約60分かけて吹き込んだ。
 ホスゲンの吹き込み終了後、48%水酸化ナトリウム水溶液640部およびp−tert−ブチルフェノール97.90部を加え、撹拌を再開、乳化後トリエチルアミン5.39部を加え、さらに28~33℃で1時間撹拌して反応を終了した。反応終了後生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。
 次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取出口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕・乾燥してパウダーを得た。その後、該パウダーにトリス(2,4−ジ−tert−ブチルフェニル)ホスファイトを0.0025重量%、ステアリン酸モノグリセリドを0.05重量%となるように添加し、均一に混合した後、かかるパウダーをベント式二軸押出機[(株)神戸製鋼所製KTX−46]により脱気しながら溶融混錬し、単位[1]、および[2]からなる変性ポリカーボネート樹脂ペレット(粘度平均分子量19,500)を得た。これを樹脂2とした。
(変性ポリカーボネート樹脂の製造例3:樹脂3)
 製造例1と同様の操作で得られた樹脂1の乾燥パウダー50重量部と、ポリカーボネート樹脂(帝人化成(株)製ビスフェノールA型のポリカーボネート樹脂、粘度平均分子量24,000)50重量部をドライブレンドし、その後、該パウダーにトリス(2,4−ジ−tert−ブチルフェニル)ホスファイトを0.0025重量%、ステアリン酸モノグリセリドを0.05重量%となるように添加し、均一に混合した後、かかるパウダーをベント式二軸押出機[(株)神戸製鋼所製KTX−46]により脱気しながら溶融混錬し、単位[1]、および[2]からなる変性ポリカーボネート樹脂ペレット(粘度平均分子量24,500)を得た。これを樹脂3とした。
(アクリル共重合体とポリカーボネート樹脂とのブレンド樹脂の製造例:樹脂4および樹脂5)
 温度計、窒素導入管、還流冷却管、および攪拌装置を備えた加温可能な反応容器中に下記成分を仕込み、反応容器内を窒素で置換し、80℃に昇温した。脱イオン水200部、分散剤0.3部、硫酸ナトリウム0.5部、2,2’−アゾビスイソブチロニトリル0.3部、フェニルメタクリレート33部、メチルメタクリレート66部、メチルアクリレート1部、n−オクチルメルカプタン2.5部を導入し、4時間攪拌を続け、得られたビーズ状の重合体を水洗、乾燥し、アクリル共重合体(重量平均分子量19,200)を得た。なお、分散剤として、カリウムメタクリレート70部、メチルメタクリレート30部を共重合した重合体、およびナトリウム2−スルホエチルメタクリレート65部、カリウムメタクリレート10部、メチルメタクリレート25部を共重合した重合体を質量比1:1で混合し、この混合した重合体の10%水溶液を用いた。
 得られたアクリル共重合体とポリカーボネート樹脂(帝人化成(株)製ビスフェノールA型のポリカーボネート樹脂、粘度平均分子量22,200)を二軸押出機[(株)神戸製鋼所製KTX−46]に供給し、280℃で溶融混練し、樹脂組成物ペレットを得た。アクリル共重合体とポリカーボネート樹脂との比率を50:50とした樹脂ペレットを樹脂4、30:70とした樹脂ペレットを樹脂5とした。
実施例1
 第1、第2押出機1A、1B、ダイ2、および第1~第3ロール4~6、また一対の引取りロール7を図1に示すように配置し、2種2層分配のフィードブロックを樹脂層(A)が第2ロールに接触するように配置した。
 樹脂層(A)を構成するポリカーボネート樹脂はスクリュー径40mmの単軸押出機(図1の1A)押出機で、また樹脂層(B)を構成する熱可塑性樹脂はスクリュー径30mmの単軸押出機(図1の1B)でそれぞれ溶融させ、フィードブロック法にて2層に積層させ、設定温度280℃のダイを介して押出した。第1ロールと第2ロールで圧延し、第3ロールにて冷却させながら引取った。
 樹脂層(A)としてポリカーボネート樹脂(帝人化成(株)製ビスフェノールA型のポリカーボネート樹脂、粘度平均分子量23,300)を用いた。樹脂層(B)として樹脂1を用いて、積層体の総厚み1.0mm、樹脂層(B)の厚みが100μmとなるように積層体を製造した。
 得られた積層体について、総厚み、樹脂層(B)の厚み、樹脂層(A)および樹脂層(B)のガラス転移温度(Tg)、樹脂層(A)および樹脂層(B)の吸水率(%)、鉛筆硬度、成形時の第2ロールに対する第3ロール周速度比並びに第2ロールに対する引取りロールの周速度比、反り率(%)および湿熱試験後の反り率(%)の結果を表1に示す。
実施例2
 樹脂層(B)として樹脂2を用いた以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例3
 樹脂層(B)として樹脂3を用いた以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例4
 樹脂層(B)として樹脂4を用いた以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例5
 樹脂層(B)として樹脂5を用いた以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例6
 樹脂層(B)の厚みを60μmとした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例7
 積層体の総厚みを2.0mmとした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例8
 成形時の第2ロール対する第3ロールの周速度比を1.005倍とした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例9
 成形時の第2ロール対する第3ロールの周速度比を1.003倍、第2ロール対する引取りロールの周速度比を0.996倍とした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
実施例10
 100重量部の樹脂1に対して、紫外線吸収剤として2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−[2H−ベンゾトリアゾール−2−イル]フェノール]](ADEKA社製、商品名:アデカスタブLA−31)を1.0量部添加した以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
比較例1
 樹脂層(B)として市販のアクリル樹脂(三菱レイヨン株式会社製 商品名:アクリペットVH001)を用い、樹脂層(B)の厚みを60μmとした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
比較例2
 樹脂層(B)として市販のアクリル樹脂(Arkema社製、商品名:Altuglas HT−121)を用い、樹脂層(B)の厚みを60μmとした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
比較例3
 成形時の第2ロールに対する引取りロールの周速度比を0.992倍とした以外は実施例1と同様にして積層体を得た。得られた積層体について、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
 表1から明らかなように、実施例1~10は、常温常湿試験後の反り率、湿熱試験後の反り率ともに0.2%以下であった。特に樹脂1を樹脂層(B)に用いた場合、高い鉛筆硬度が得られている。
 これに対し、Tgが115℃未満であり、吸水率が0.7%を超える樹脂を樹脂層(B)に用いた比較例1、Tgが115℃以上であるが、吸水率が0.7%を超える樹脂を樹脂層(B)に用いた比較例2は常温常湿試験後の反り率、湿熱試験後の反り率ともに大きい結果となった。また、層構成は実施例1と同様だが、第2ロールに対する引取りロールの周速度比が低い比較例3は湿熱試験後の反り率が大きい結果となった。
実施例11~22、比較例4~6
<特性の評価方法>
(ガラス転移点:Tg)
 JIS K7121に準拠して、各層の熱可塑性樹脂を使用し、(株)島津製作所製 DSC−60Aにてガラス転移点を測定した。毎分50ml窒素ガスフロー環境とした試験槽内にて、熱可塑性樹脂10~20mgを毎分20℃で200℃まで昇温して融解させて35℃まで冷却して試料を得て、再び毎分20℃で昇温したときのベースラインの“ずれ“の生じた中間点をガラス転移点とした。
(吸水率)
 各層の熱可塑性樹脂の成形板(縦80mm、横10mm、厚さ4mm)を作成し、試験片として用い、試験片を温度85℃、湿度0%RHの恒温恒湿槽に24時間静置した後に取り出してさらに室温で10分間静置した後、天秤で重量を測定して、これを乾燥重量とした。次に、試験片を温度85℃、湿度85%RHの恒温恒湿槽に120時間静置した後に取り出してさらに室温で10分間静置した後、天秤で重量を測定して、これを吸水重量とした。下記式にて吸水率を求めた。
 吸水率[%]=(吸水重量[g]−乾燥重量[g])/乾燥重量[g]×100[%]
(鉛筆硬度)
 ハードコート層を積層する前後の積層体を、JIS K5600−5−4に準拠し、樹脂層(B)および樹脂層(B)上のハードコート層の面に対して750g加重で鉛筆硬度の測定を行い、表面に目視で傷がつかなかった鉛筆の硬度を評価結果とした。鉛筆は三菱鉛筆Uni(商品名)を使用した。
(耐擦傷性)
 ハードコート層を積層した積層体の樹脂層(B)上のハードコート層の面に対して、500gの加重をかけて、スチールウール(日本スチールウール株式会社製 ボンスター♯0000)を20往復擦った後の傷の有無を目視により確認した。傷の発生が無いものを○、傷の発生しているものを×とした。なお、ハードコート層を積層する前の積層体の樹脂層(B)面について、上記耐擦傷性試験を実施すると「×」判定となる。
(常温常湿試験後の反り率)
 ハードコート層を積層した積層体を、製造時のシート進行方向が長辺となるように縦50mm×横100mm、シート幅方向が長辺となるように縦50mm×横100mmの大きさにそれぞれ3枚ずつ切り出し、これら6枚の試験片を温度23℃、湿度50%RH環境下に4時間放置した後、樹脂層(B)側が上になるように平置きし、四隅とその中間点の計8点の浮き量を測定した。測定した6枚の中で最大浮き量(最大反り量)を求め、次式にて計算した値を反り率(%)とした。
 反り率(%)=100×最大反り量(mm)/100(mm)
 なお、樹脂層(B)側が凹となる浮き量を正とした。
(湿熱試験後の反り率)
 ハードコート層を積層した積層体を、製造時のシート進行方向が長辺となるように縦50mm×横100mm、シート幅方向が長辺となるように縦50mm×横100mmの大きさにそれぞれ3枚ずつ切り出し、これら6枚の試験片を温度85℃、湿度85%RH環境下に120時間放置し、次いで温度23℃、湿度50%RH環境下に4時間放置した後、樹脂層(B)側が上になるように平置きし、四隅とその中間点の計8点の浮き量を測定した。測定した6枚の中で最大浮き量(最大反り量)を求め、次式にて計算した値を反り率(%)とした。
 反り率(%)=100×最大反り量(mm)/100(mm)
 なお、樹脂層(B)側が凹となる浮き量を正とした。
(湿熱試験後の剥離確認)
 ハードコートを積層した積層体から、縦50mm×横100mmのサンプルを切り出し、住友スリーエム(株)製両面テープ、品番Y4914を用いて、スマートホンの筐体に4辺で固定した。温度85℃、湿度85%RH環境下に120時間放置し、次いで温度23℃、湿度50%RH環境下に4時間放置した後、前面板固定部分の状態を目視観察し、両面テープの剥離発生有無を確認した。○を剥離発生なし、×を剥離発生ありとして表2に示した。
<樹脂1~5>
 樹脂層(B)を構成する樹脂は、実施例1~10と同じ樹脂1~5を用いた。
実施例11
 第1、第2押出機1A、1B、ダイ2、および第1~第3ロール4~6、また一対の引取りロール7を図1に示すように配置し、2種2層分配のフィードブロックを樹脂層(A)が第2ロールに接触するように配置した。
 樹脂層(A)を構成するポリカーボネート樹脂はスクリュー径40mmの単軸押出機(図1の1A)押出機で、また樹脂層(B)を構成する熱可塑性樹脂はスクリュー径30mmの単軸押出機(図1の1B)でそれぞれ溶融させ、フィードブロック法にて2層に積層させ、設定温度280℃のダイを介して押出し、第1ロールと第2ロールで圧延し、第3ロールにて冷却させながら、一対の引取りロールにより引取った。
 樹脂層(A)としてポリカーボネート樹脂(帝人化成(株)製ビスフェノールA型のポリカーボネート樹脂、粘度平均分子量23,300)、樹脂層(B)として樹脂1を用いて、樹脂層(A)と樹脂層(B)の厚みを合計した厚みが1.0mm、樹脂層(B)の厚みが100μmとなるように積層体を製造した。
 得られた積層体の両面に、金属製バーコーターを用いて、厚み10μmの膜厚になるように紫外線硬化性塗料(荒川化学工業(株)製ビームセット575CL)を塗布し、乾燥後、紫外線照射装置を用いて積算光量600mJ/cmとなるように硬化し、ハードコート層が積層された積層体を得た。
 得られた積層体について、樹脂層(A)+樹脂層(B)の厚み、樹脂層(B)の厚み、樹脂層(A)および樹脂層(B)のガラス転移温度(Tg)、樹脂層(A)および樹脂層(B)の吸水率(%)、成形時の第2ロールに対する第3ロール周速度比並びに第2ロールに対する引取りロールの周速度比、鉛筆硬度の測定結果を表2に示す。またハードコート層が積層された積層体について、ハードコート層の厚み、鉛筆硬度、耐擦傷性、反り率(%)および湿熱試験後の反り率(%)の結果を表2に示す。
実施例12
 ハードコート層の厚みを5μmとなるように紫外線硬化性塗料(荒川化学工業(株)製 ビームセット575CL)を塗布した以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例13
 ハードコート層の厚みを20μmとなるように紫外線硬化性塗料(荒川化学工業(株)製 ビームセット575CL)を塗布した以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例14
 樹脂層(B)として樹脂2を用いた以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例15
 樹脂層(B)として樹脂3を用いた以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例16
 樹脂層(B)として樹脂4を用いた以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例17
 樹脂層(B)として樹脂5を用いた以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例18
 樹脂層(B)の厚みを60μmとした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例19
 樹脂層(A)および樹脂層(B)の厚みを合計した厚みを2.0mmとした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例20
 成形時の第2ロール対する第3ロールの周速度比を1.005倍とした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例21
 成形時の第2ロール対する第3ロールの周速度比を1.003倍、第2ロール対する引取りロールの周速度比を0.996倍とした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
実施例22
 樹脂1が100重量部に対して、紫外線吸収剤として2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−[2H−ベンゾトリアゾール−2−イル]フェノール]](ADEKA社製、商品名:アデカスタブLA−31)を1.0量部添加した以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
比較例4
 樹脂層(B)として市販のアクリル樹脂(三菱レイヨン株式会社製 商品名:アクリペットVH001)を用い、樹脂層(B)の厚みを60μmとした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
比較例5
 樹脂層(B)として市販のアクリル樹脂(Arkema社製、商品名:Altuglas HT−121)を用い、樹脂層(B)の厚みを60μmとした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
比較例6
 成形時の第2ロールに対する引取りロールの周速度比を0.992倍とした以外は実施例11と同様にしてハードコート層が積層された積層体を得た。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 表2から明らかなように、実施例11~22は、常温常湿試験後の反り率、湿熱試験後の反り率ともに0.2%以下であった。特に樹脂1を樹脂層(B)に用いた場合、高い鉛筆硬度が得られている。
 これに対し、Tgが115℃未満であり、吸水率が0.7%を超える樹脂を樹脂層(B)に用いた比較例4、Tgが115℃以上であるが、吸水率が0.7%を超える樹脂を樹脂層(B)に用いた比較例5は常温常湿試験後の反り率、湿熱試験後の反り率ともに大きい結果となった。また、層構成は実施例11と同様だが、成形時の第2ロールに対する引取りロールの周速度比が低い比較例6は湿熱試験後の反り率が大きい結果となった。
Hereinafter, the present invention will be described in detail with reference to examples.
Examples 1 to 10 and Comparative Examples 1 to 3
<Evaluation method of characteristics>
(Glass transition point: Tg)
Based on JIS K7121, the thermoplastic resin of each layer was used, and the glass transition point was measured with DSC-60A manufactured by Shimadzu Corporation. In a test tank with a nitrogen gas flow environment of 50 ml per minute, 10-20 mg of thermoplastic resin was heated to 200 ° C. at 20 ° C. per minute to melt and cooled to 35 ° C. to obtain a sample. The intermediate point where the baseline “deviation” occurred when the temperature was raised at 20 ° C. was defined as the glass transition point.
(Water absorption)
A thermoplastic resin molding plate (length 80 mm, width 10 mm, thickness 4 mm) for each layer was prepared and used as a test piece. The test piece was left in a constant temperature and humidity chamber at a temperature of 85 ° C. and a humidity of 0% RH for 24 hours. It was taken out later and further allowed to stand at room temperature for 10 minutes, and then the weight was measured with a balance to obtain a dry weight. Next, after leaving the test piece in a constant temperature and humidity chamber at 85 ° C. and humidity 85% RH for 120 hours, taking it out and leaving it at room temperature for 10 minutes, the weight is measured with a balance, It was. The water absorption was determined by the following formula.
Water absorption [%] = (Water absorption weight [g] −Dry weight [g]) / Dry weight [g] × 100 [%]
(Pencil hardness)
According to JIS K5600-5-4, the laminate was measured for pencil hardness at a weight of 750 g against the surface on which the resin layer (B) was laminated, and the hardness of the pencil whose surface was not scratched visually. Was the evaluation result. The pencil used was Mitsubishi Pencil Uni (trade name).
(Warpage rate after normal temperature and humidity test)
The laminate was cut into three pieces each having a size of 50 mm long × 100 mm wide so that the sheet advancing direction at the time of production was the long side and 50 mm long × 100 mm wide so that the sheet width direction was the long side. After leaving the test pieces for 4 hours in an environment of 23 ° C. and 50% humidity, place them flat so that the resin layer (B) side is up, and lift up to a total of 8 points at the four corners and the middle point. It was measured. The maximum floating amount (maximum warpage amount) was obtained from the 6 sheets measured, and the value calculated by the following equation was used as the warpage rate (%).
Warpage rate (%) = 100 × maximum warpage amount (mm) / 100 (mm)
In addition, the floating amount in which the resin layer (B) side is concave was defined as positive.
(Warpage rate after wet heat test)
The laminate was cut into three pieces each having a size of 50 mm long × 100 mm wide so that the sheet advancing direction at the time of production was the long side and 50 mm long × 100 mm wide so that the sheet width direction was the long side. The test pieces were left in an environment of 85 ° C. and humidity 85% RH for 120 hours, and then left in an environment of temperature 23 ° C. and humidity 50% RH for 4 hours, so that the resin layer (B) side was up. It was placed flat, and the floating amount was measured at a total of 8 points including the four corners and the middle point. The maximum floating amount (maximum warpage amount) was obtained from the 6 sheets measured, and the value calculated by the following equation was used as the warpage rate (%).
Warpage rate (%) = 100 × maximum warpage amount (mm) / 100 (mm)
In addition, the floating amount in which the resin layer (B) side is concave was defined as positive.
(Peeling confirmation after wet heat test)
A sample measuring 50 mm in length and 100 mm in width was cut out from the laminate, and fixed to the case of the smartphone on four sides using a double-sided tape manufactured by Sumitomo 3M Limited, product number Y4914. After leaving in a temperature 85 ° C, humidity 85% RH environment for 120 hours, and then leaving in a temperature 23 ° C, humidity 50% RH environment for 4 hours, the front plate fixing part is visually observed to cause peeling of the double-sided tape. The presence or absence was confirmed. The results are shown in Table 1 with ○ indicating no occurrence of peeling and × indicating occurrence of peeling.
<Manufacture of resins 1 to 5>
Resins 1 to 5 constituting the resin layer (B) were produced by the following method.
(Production Example of Modified Polycarbonate Resin 1: Resin 1)
A reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with 3845 parts of 48% aqueous sodium hydroxide and 18182 parts of ion-exchanged water, and 2,2-bis (4-hydroxy-3-methylphenyl) was added thereto. After 3984 parts of propane and 8.37 parts of hydrosulfite were dissolved, 10567 parts of methylene chloride were added, and 2000 parts of phosgene were blown in at about 15 to 25 ° C. over about 60 minutes with stirring.
After completion of the phosgene blowing, 897 parts of 48% aqueous sodium hydroxide and 58.28 parts of p-tert-butylphenol were added, stirring was resumed, 5.39 parts of triethylamine was added after emulsification, and the mixture was further stirred at 28 to 33 ° C. for 1 hour. The reaction was terminated. After completion of the reaction, the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and further washed with water until the conductivity of the aqueous phase becomes substantially the same as that of ion-exchanged water. Obtained.
Next, this solution is passed through a filter having an aperture of 0.3 μm, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter outlet at the bearing, and the polycarbonate resin is flaked while distilling off methylene chloride. The liquid-containing flakes were pulverized and dried to obtain a powder. Thereafter, tris (2,4-di-tert-butylphenyl) phosphite is added to the powder so as to be 0.0025% by weight, and stearic acid monoglyceride is added to 0.05% by weight. The powder was melt-kneaded while degassing with a vent type twin screw extruder [KTX-46, manufactured by Kobe Steel, Ltd.] to obtain a modified polycarbonate resin pellet (viscosity average molecular weight 25,000) consisting of unit [1]. It was. This was designated as Resin 1.
(Production Example 2 of Modified Polycarbonate Resin: Resin 2)
A reactor equipped with a thermometer, a stirrer, and a reflux condenser was charged with 4485 parts of a 48% aqueous sodium hydroxide solution and 22377 parts of ion-exchanged water, and 2,2-bis (4-hydroxy-3-methylphenyl) was added thereto. After dissolving propane 1992 parts (7.9 mol), 2,2-bis (4-hydroxyphenyl) propane 1773 parts (7.8 mol) and hydrosulfite 7.53 parts, methylene chloride 13209 parts was added. Under stirring, 2000 parts of phosgene was blown in at about 15 to 25 ° C. over about 60 minutes.
After completion of the phosgene blowing, 640 parts of a 48% aqueous sodium hydroxide solution and 97.90 parts of p-tert-butylphenol were added, stirring was resumed, 5.39 parts of triethylamine was added after emulsification, and the mixture was further stirred at 28 to 33 ° C. for 1 hour. The reaction was terminated. After completion of the reaction, the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and further washed with water until the conductivity of the aqueous phase becomes substantially the same as that of ion-exchanged water. Obtained.
Next, this solution is passed through a filter having an aperture of 0.3 μm, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter outlet at the bearing, and the polycarbonate resin is flaked while distilling off methylene chloride. The liquid-containing flakes were pulverized and dried to obtain a powder. Thereafter, tris (2,4-di-tert-butylphenyl) phosphite is added to the powder so as to be 0.0025% by weight, and stearic acid monoglyceride is added to 0.05% by weight. The powder was melt-kneaded while degassing with a vent type twin screw extruder [KTX-46, manufactured by Kobe Steel, Ltd.], and modified polycarbonate resin pellets (viscosity average molecular weight 19) consisting of units [1] and [2] , 500). This was designated as Resin 2.
(Production Example 3 of Modified Polycarbonate Resin: Resin 3)
50 parts by weight of dry powder of resin 1 obtained by the same operation as in Production Example 1 and 50 parts by weight of polycarbonate resin (bisphenol A type polycarbonate resin, viscosity average molecular weight 24,000, manufactured by Teijin Chemicals Ltd.) are dry blended. After that, tris (2,4-di-tert-butylphenyl) phosphite was added to the powder so as to be 0.0025% by weight and stearic acid monoglyceride to be 0.05% by weight and mixed uniformly. These powders were melt-kneaded while venting with a vent type twin screw extruder [KTX-46, manufactured by Kobe Steel, Ltd.], and modified polycarbonate resin pellets (viscosity average) consisting of units [1] and [2] Molecular weight 24,500) was obtained. This was designated as Resin 3.
(Production example of blend resin of acrylic copolymer and polycarbonate resin: Resin 4 and Resin 5)
The following components were charged into a heatable reaction vessel equipped with a thermometer, a nitrogen introduction tube, a reflux condenser, and a stirring device, the inside of the reaction vessel was replaced with nitrogen, and the temperature was raised to 80 ° C. 200 parts deionized water, 0.3 part dispersant, 0.5 part sodium sulfate, 0.3 part 2,2'-azobisisobutyronitrile, 33 parts phenyl methacrylate, 66 parts methyl methacrylate, 1 part methyl acrylate Then, 2.5 parts of n-octyl mercaptan was introduced, stirring was continued for 4 hours, and the resulting bead-shaped polymer was washed with water and dried to obtain an acrylic copolymer (weight average molecular weight 19,200). As a dispersing agent, a mass ratio of a polymer obtained by copolymerizing 70 parts of potassium methacrylate and 30 parts of methyl methacrylate, and a polymer obtained by copolymerizing 65 parts of sodium 2-sulfoethyl methacrylate, 10 parts of potassium methacrylate, and 25 parts of methyl methacrylate. The mixture was mixed 1: 1 and a 10% aqueous solution of the mixed polymer was used.
The obtained acrylic copolymer and polycarbonate resin (Teijin Chemicals Co., Ltd. bisphenol A type polycarbonate resin, viscosity average molecular weight 22,200) are supplied to a twin screw extruder [Kobe Steel Works KTX-46]. And melt-kneaded at 280 ° C. to obtain resin composition pellets. Resin pellets with an acrylic copolymer / polycarbonate resin ratio of 50:50 as resin 4 and resin pellets with 30:70 as resin 5 were used.
Example 1
The first and second extruders 1A and 1B, the die 2, the first to third rolls 4 to 6, and the pair of take-up rolls 7 are arranged as shown in FIG. Was arranged such that the resin layer (A) was in contact with the second roll.
The polycarbonate resin constituting the resin layer (A) is a single screw extruder (1A in FIG. 1) having a screw diameter of 40 mm, and the thermoplastic resin constituting the resin layer (B) is a single screw extruder having a screw diameter of 30 mm. (1B in FIG. 1), each was melted, laminated into two layers by a feed block method, and extruded through a die having a set temperature of 280 ° C. It rolled with the 1st roll and the 2nd roll, and it took up, making it cool with the 3rd roll.
As the resin layer (A), a polycarbonate resin (a bisphenol A type polycarbonate resin manufactured by Teijin Chemicals Ltd., viscosity average molecular weight 23,300) was used. Using resin 1 as the resin layer (B), a laminate was produced so that the total thickness of the laminate was 1.0 mm and the thickness of the resin layer (B) was 100 μm.
About the obtained laminated body, the total thickness, the thickness of the resin layer (B), the glass transition temperature (Tg) of the resin layer (A) and the resin layer (B), the water absorption of the resin layer (A) and the resin layer (B) Ratio (%), pencil hardness, third roll peripheral speed ratio relative to the second roll during molding, and peripheral speed ratio of the take-up roll relative to the second roll, warpage ratio (%), and warpage ratio after wet heat test (%) The results are shown in Table 1.
Example 2
A laminate was obtained in the same manner as in Example 1 except that the resin 2 was used as the resin layer (B). Table 1 shows the evaluation results of the obtained laminate.
Example 3
A laminate was obtained in the same manner as in Example 1 except that the resin 3 was used as the resin layer (B). Table 1 shows the evaluation results of the obtained laminate.
Example 4
A laminate was obtained in the same manner as in Example 1 except that the resin 4 was used as the resin layer (B). Table 1 shows the evaluation results of the obtained laminate.
Example 5
A laminate was obtained in the same manner as in Example 1 except that the resin 5 was used as the resin layer (B). Table 1 shows the evaluation results of the obtained laminate.
Example 6
A laminate was obtained in the same manner as in Example 1 except that the thickness of the resin layer (B) was 60 μm. Table 1 shows the evaluation results of the obtained laminate.
Example 7
A laminate was obtained in the same manner as in Example 1 except that the total thickness of the laminate was 2.0 mm. Table 1 shows the evaluation results of the obtained laminate.
Example 8
A laminate was obtained in the same manner as in Example 1, except that the peripheral speed ratio of the third roll to the second roll during molding was 1.005 times. Table 1 shows the evaluation results of the obtained laminate.
Example 9
The laminated body was made in the same manner as in Example 1 except that the circumferential speed ratio of the third roll to the second roll during molding was 1.003 times and the circumferential speed ratio of the take-up roll to the second roll was 0.996 times. Obtained. Table 1 shows the evaluation results of the obtained laminate.
Example 10
2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- [2H-benzotriazol-2-yl] phenol as an ultraviolet absorber with respect to 100 parts by weight of the resin 1 ]] A laminate was obtained in the same manner as in Example 1 except that 1.0 part by weight of ADEKA (trade name: ADK STAB LA-31) was added. Table 1 shows the evaluation results of the obtained laminate.
Comparative Example 1
A commercially available acrylic resin (trade name: Acrypet VH001 manufactured by Mitsubishi Rayon Co., Ltd.) was used as the resin layer (B), and a laminate was obtained in the same manner as in Example 1 except that the thickness of the resin layer (B) was 60 μm. It was. Table 1 shows the evaluation results of the obtained laminate.
Comparative Example 2
A commercially available acrylic resin (manufactured by Arkema, trade name: Altglas HT-121) was used as the resin layer (B), and a laminate was obtained in the same manner as in Example 1 except that the thickness of the resin layer (B) was 60 μm. It was. Table 1 shows the evaluation results of the obtained laminate.
Comparative Example 3
A laminate was obtained in the same manner as in Example 1 except that the peripheral speed ratio of the take-up roll to the second roll during molding was 0.992 times. Table 1 shows the evaluation results of the obtained laminate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
As is clear from Table 1, in Examples 1 to 10, both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were 0.2% or less. In particular, when the resin 1 is used for the resin layer (B), high pencil hardness is obtained.
In contrast, Comparative Example 1 in which a resin having a Tg of less than 115 ° C. and a water absorption rate of 0.7% or more for the resin layer (B) was used, and the Tg was 115 ° C. or more. In Comparative Example 2 in which a resin exceeding 100% was used for the resin layer (B), both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were large. Moreover, although the layer structure is the same as that of Example 1, Comparative Example 3 having a low peripheral speed ratio of the take-up roll to the second roll resulted in a large warpage rate after the wet heat test.
Examples 11-22, Comparative Examples 4-6
<Evaluation method of characteristics>
(Glass transition point: Tg)
Based on JIS K7121, the thermoplastic resin of each layer was used, and the glass transition point was measured with DSC-60A manufactured by Shimadzu Corporation. In a test tank with a nitrogen gas flow environment of 50 ml per minute, 10-20 mg of thermoplastic resin was heated to 200 ° C. at 20 ° C. per minute to melt and cooled to 35 ° C. to obtain a sample. The intermediate point where the base line “deviation” occurred when the temperature was raised at 20 ° C. was defined as the glass transition point.
(Water absorption)
A thermoplastic resin molding plate (length 80 mm, width 10 mm, thickness 4 mm) for each layer was prepared and used as a test piece. The test piece was left in a constant temperature and humidity chamber at a temperature of 85 ° C. and a humidity of 0% RH for 24 hours. It was taken out later and further allowed to stand at room temperature for 10 minutes, and then the weight was measured with a balance to obtain a dry weight. Next, after leaving the test piece in a constant temperature and humidity chamber at 85 ° C. and humidity 85% RH for 120 hours, taking it out and leaving it at room temperature for 10 minutes, the weight is measured with a balance, It was. The water absorption was determined by the following formula.
Water absorption [%] = (Water absorption weight [g] −Dry weight [g]) / Dry weight [g] × 100 [%]
(Pencil hardness)
The laminate before and after laminating the hard coat layer is measured in accordance with JIS K5600-5-4, and the pencil hardness is measured with a weight of 750 g applied to the surface of the hard coat layer on the resin layer (B) and the resin layer (B). The hardness of the pencil whose surface was not visually damaged was taken as the evaluation result. The pencil used was Mitsubishi Pencil Uni (trade name).
(Abrasion resistance)
The surface of the hard coat layer on the resin layer (B) of the laminate having the hard coat layer laminated thereon was rubbed 20 times with steel wool (Bonster # 0000, manufactured by Nippon Steel Wool Co., Ltd.) under a load of 500 g. The presence or absence of subsequent scratches was confirmed visually. The case where no scratch was generated was marked with ◯, and the case where a scratch was generated was marked with ×. In addition, when the said abrasion-resistance test is implemented about the resin layer (B) surface of the laminated body before laminating | stacking a hard-coat layer, it will become "x" determination.
(Warpage rate after normal temperature and humidity test)
The laminate with the hard coat layer laminated is 3 in size of 50 mm in length and 100 mm in width so that the sheet traveling direction at the time of manufacture is the long side, and 50 mm in length and 100 mm in width so that the sheet width direction is the long side. Cut out 6 sheets each and left them for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH, and then placed them flat with the resin layer (B) side up. The floating amount at 8 points was measured. The maximum floating amount (maximum warpage amount) was obtained from the 6 sheets measured, and the value calculated by the following equation was used as the warpage rate (%).
Warpage rate (%) = 100 × maximum warpage amount (mm) / 100 (mm)
In addition, the floating amount in which the resin layer (B) side is concave was defined as positive.
(Warpage rate after wet heat test)
The laminate with the hard coat layer laminated is 3 in size of 50 mm in length and 100 mm in width so that the sheet traveling direction at the time of manufacture is the long side, and 50 mm in length and 100 mm in width so that the sheet width direction is the long side. Each of these six test pieces was cut out for 120 hours in a temperature of 85 ° C. and a humidity of 85% RH, and then left in a temperature of 23 ° C. and a humidity of 50% RH for 4 hours, and then the resin layer (B) It was placed flat so that the side was on the top, and the floating amount of a total of 8 points including the four corners and the middle point was measured. The maximum floating amount (maximum warpage amount) was obtained from the 6 sheets measured, and the value calculated by the following equation was used as the warpage rate (%).
Warpage rate (%) = 100 × maximum warpage amount (mm) / 100 (mm)
In addition, the floating amount in which the resin layer (B) side is concave was defined as positive.
(Peeling confirmation after wet heat test)
A sample of 50 mm in length and 100 mm in width was cut out from the laminate in which the hard coat was laminated, and fixed to the case of the smartphone with four sides using a double-sided tape manufactured by Sumitomo 3M Co., Ltd., product number Y4914. After leaving in a temperature 85 ° C, humidity 85% RH environment for 120 hours, and then leaving in a temperature 23 ° C, humidity 50% RH environment for 4 hours, the front plate fixing part is visually observed to cause peeling of the double-sided tape. The presence or absence was confirmed. The results are shown in Table 2 with ○ indicating no occurrence of peeling and × indicating occurrence of peeling.
<Resin 1-5>
As the resin constituting the resin layer (B), the same resins 1 to 5 as in Examples 1 to 10 were used.
Example 11
The first and second extruders 1A and 1B, the die 2, the first to third rolls 4 to 6, and the pair of take-up rolls 7 are arranged as shown in FIG. Was arranged such that the resin layer (A) was in contact with the second roll.
The polycarbonate resin constituting the resin layer (A) is a single screw extruder (1A in FIG. 1) having a screw diameter of 40 mm, and the thermoplastic resin constituting the resin layer (B) is a single screw extruder having a screw diameter of 30 mm. (1B in FIG. 1), each is melted and laminated into two layers by the feed block method, extruded through a die having a set temperature of 280 ° C., rolled with a first roll and a second roll, and cooled with a third roll. Then, it was taken up by a pair of take-up rolls.
Polycarbonate resin (bisphenol A type polycarbonate resin, viscosity average molecular weight 23,300 manufactured by Teijin Chemicals Ltd.) as resin layer (A), resin 1 as resin layer (B), resin layer (A) and resin layer The laminate was manufactured so that the total thickness of (B) was 1.0 mm and the thickness of the resin layer (B) was 100 μm.
An ultraviolet curable coating (Arakawa Chemical Industries, Ltd. Beam Set 575CL) was applied to both sides of the resulting laminate using a metal bar coater to a thickness of 10 μm, dried, and then exposed to ultraviolet rays. The laminate was cured using an irradiation apparatus so as to have an integrated light amount of 600 mJ / cm 2, and a hard coat layer was laminated.
About the obtained laminated body, the resin layer (A) + the thickness of the resin layer (B), the thickness of the resin layer (B), the glass transition temperature (Tg) of the resin layer (A) and the resin layer (B), the resin layer Table 2 shows the water absorption rate (%) of (A) and the resin layer (B), the third roll peripheral speed ratio relative to the second roll during molding, the peripheral speed ratio of the take-up roll relative to the second roll, and the pencil hardness. Shown in Table 2 shows the results of the thickness of the hard coat layer, pencil hardness, scratch resistance, warpage rate (%), and warpage rate (%) after the wet heat test for the laminate with the hard coat layer laminated.
Example 12
A laminate in which the hard coat layer was laminated was obtained in the same manner as in Example 11 except that an ultraviolet curable paint (Arakawa Chemical Industries, Ltd. Beam Set 575CL) was applied so that the thickness of the hard coat layer was 5 μm. It was. The evaluation results are shown in Table 2.
Example 13
A laminate in which the hard coat layer was laminated was obtained in the same manner as in Example 11 except that an ultraviolet curable paint (Arakawa Chemical Industries, Ltd. Beam Set 575CL) was applied so that the thickness of the hard coat layer was 20 μm. It was. The evaluation results are shown in Table 2.
Example 14
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the resin 2 was used as the resin layer (B). The evaluation results are shown in Table 2.
Example 15
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the resin 3 was used as the resin layer (B). The evaluation results are shown in Table 2.
Example 16
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the resin 4 was used as the resin layer (B). The evaluation results are shown in Table 2.
Example 17
A laminate having a hard coat layer laminated thereon was obtained in the same manner as in Example 11 except that the resin 5 was used as the resin layer (B). The evaluation results are shown in Table 2.
Example 18
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the thickness of the resin layer (B) was 60 μm. The evaluation results are shown in Table 2.
Example 19
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the total thickness of the resin layer (A) and the resin layer (B) was 2.0 mm. The evaluation results are shown in Table 2.
Example 20
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the circumferential speed ratio of the third roll to the second roll during molding was 1.005 times. The evaluation results are shown in Table 2.
Example 21
The hard coat layer was the same as in Example 11 except that the circumferential speed ratio of the third roll to the second roll during molding was 1.003 times and the circumferential speed ratio of the take-up roll to the second roll was 0.996 times. As a result, a laminated body was obtained. The evaluation results are shown in Table 2.
Example 22
2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- [2H-benzotriazol-2-yl] phenol as an ultraviolet absorber with respect to 100 parts by weight of the resin 1 ] A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that 1.0 part by weight (manufactured by ADEKA, product name: ADK STAB LA-31) was added. The evaluation results are shown in Table 2.
Comparative Example 4
A hard coat layer was formed in the same manner as in Example 11 except that a commercially available acrylic resin (trade name: Acrypet VH001 manufactured by Mitsubishi Rayon Co., Ltd.) was used as the resin layer (B), and the thickness of the resin layer (B) was 60 μm. A laminated body was obtained. The evaluation results are shown in Table 2.
Comparative Example 5
A hard coat layer was prepared in the same manner as in Example 11 except that a commercially available acrylic resin (trade name: Altglas HT-121) manufactured by Arkema was used as the resin layer (B), and the thickness of the resin layer (B) was 60 μm. A laminated body was obtained. The evaluation results are shown in Table 2.
Comparative Example 6
A laminate in which a hard coat layer was laminated was obtained in the same manner as in Example 11 except that the peripheral speed ratio of the take-up roll to the second roll at the time of molding was 0.992 times. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
As is clear from Table 2, in Examples 11 to 22, both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were 0.2% or less. In particular, when the resin 1 is used for the resin layer (B), high pencil hardness is obtained.
In contrast, Comparative Example 4 in which a resin having a Tg of less than 115 ° C. and a water absorption rate of 0.7% or more for the resin layer (B) was used, and the Tg was 115 ° C. or more, but the water absorption rate was 0.7%. In Comparative Example 5 in which a resin exceeding 100% was used for the resin layer (B), both the warpage rate after the normal temperature and normal humidity test and the warpage rate after the wet heat test were large. Moreover, although the layer structure is the same as that of Example 11, Comparative Example 6 having a low peripheral speed ratio of the take-up roll to the second roll during molding resulted in a large warpage rate after the wet heat test.
発明の効果The invention's effect
 本発明の積層体は、鉛筆硬度が高く、耐擦傷性に優れ、耐熱性に優れ、常温常湿環境下での反り変形が小さく、且つ長期の高温高湿環境下においても反り変形し難い。本発明の積層体の製造方法によれば、常温常湿環境下での反り変形が小さく、且つ長期の高温高湿環境下においても反り変形し難い積層体を製造することができる。 The laminate of the present invention has high pencil hardness, excellent scratch resistance, excellent heat resistance, small warpage deformation under normal temperature and normal humidity environment, and hardly warp deformation under a long-term high temperature and high humidity environment. According to the method for producing a laminate of the present invention, it is possible to produce a laminate that is small in warp deformation under a normal temperature and normal humidity environment and that hardly warps and deforms even under a long-term high temperature and high humidity environment.
 本発明の積層体は、OA・電子機器のディスプレイカバーパネルやタッチパネル前面板として有用である。 The laminate of the present invention is useful as a display cover panel or touch panel front plate for OA / electronic devices.
 1A 第1押出機
 1B 第2押出機
 2 ダイ
 3 溶融状態の積層体
 4 第1ロール
 5 第2ロール
 6 第3ロール
 7 引取りロール
 本発明の具体的な態様として以下の発明がある。
1. 熱可塑性樹脂層(A)の少なくとも一方の面に、厚み40~150μmの樹脂層(A)と異なる他の熱可塑性樹脂からなる樹脂層(B)が積層されてなる総厚み0.8mm~3.0mmの樹脂積層体であって、樹脂層(A)の熱可塑性樹脂と樹脂層(B)の熱可塑性樹脂のそれぞれのガラス転移点TgAおよびTgBが共に115℃以上で、且つTgAとTgBの差が30℃以下であり、樹脂層(A)の熱可塑性樹脂と樹脂層(B)の熱可塑性樹脂の吸水率が共に0.7%以下で、且つ吸水率差が0.5%以下であり、該樹脂積層体を温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率が0.2%以下であることを特徴とする樹脂積層体。
2. 樹脂層(A)の熱可塑性樹脂がポリカーボネート樹脂、樹脂層(B)の熱可塑性樹脂が下記式[1]で表される構成単位[1]と、
Figure JPOXMLDOC01-appb-I000011
(式中、Wは単結合、炭素原子数1~6のアルキル基、炭素原子数6~10のアリール基、または炭素原子数3~8の環状アルキル基を表す。)
下記式[2]で表される構成単位[2]を含み、
Figure JPOXMLDOC01-appb-I000012
全構成単位における構成単位[1]の割合が50~100モル%であり、粘度平均分子量が1.0×10~8.0×10である変性ポリカーボネート樹脂である前項1記載の樹脂積層体。
3. 樹脂層(A)の熱可塑性樹脂がポリカーボネート樹脂、樹脂層(B)の熱可塑性樹脂が芳香族(メタ)アクリレート単位5~80重量%およびメチル(メタ)アクリレート単位20~95重量%を含有し、重量平均分子量が5,000~30,000であるアクリル共重合体20~60重量部と、ポリカーボネート樹脂40~80重量部とのポリマーブレンド樹脂である前項1記載の樹脂積層体。
4. 樹脂層(B)の熱可塑性樹脂100重量部に対して、紫外線吸収剤を0.5~5.0量部含有する前項1記載の樹脂積層体。
5. 樹脂層(B)の鉛筆硬度がF以上である前項1記載の樹脂積層体。
6. 樹脂積層体は、温度23℃、湿度50%RH環境下に4時間放置した後の反り率が0.2%以下である前項1記載の樹脂積層体。
7. 回転中心軸が平行で同一平面上にある位置関係にありかつ接近して配置した3本の冷却ロールを用い、熱可塑性樹脂層(A)の少なくとも片面に樹脂層(A)と異なる他の熱可塑性樹脂層(B)が積層された樹脂積層体を溶融状態でダイから押出し、第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛けた後、第3冷却ロールに巻き掛けることにより冷却して、樹脂層(A)の少なくとも片面に樹脂層(B)が積層された樹脂積層体を製造するにあたり、第2ロール周速度に対する引取りロールの周速度を0.996~1.010倍とすることを特徴とする前項1記載の樹脂積層体の製造方法。
8. ディスプレイカバーパネルやタッチパネル前面板として使用される前項1記載の樹脂積層体。
 またハードコート層を有する態様として以下の発明がある。
1. 熱可塑性樹脂層(A)の少なくとも一方の面に、厚み40~150μmの樹脂層(A)と異なる他の熱可塑性樹脂からなる樹脂層(B)が積層され、さらに樹脂層(B)の上にハードコート層が積層された樹脂積層体であって、樹脂層(A)と樹脂層(B)の厚みを合計した厚みが0.8mm~3.0mmであり、樹脂層(A)の熱可塑性樹脂と樹脂層(B)の熱可塑性樹脂のそれぞれのガラス転移点TgAおよびTgBが共に115℃以上で、且つTgAとTgBの差が30℃以下であり、樹脂層(A)の熱可塑性樹脂と樹脂層(B)の熱可塑性樹脂の吸水率が共に0.7%以下で、且つ吸水率差が0.5%以下であり、該ハードコート層が積層された樹脂積層体を温度85℃、湿度85%RHの高温高湿下に120時間放置した後の反り率が0.2%以下であることを特徴とするハードコート層が積層された樹脂積層体。
2. 樹脂層(A)の熱可塑性樹脂がポリカーボネート樹脂、樹脂層(B)の熱可塑性樹脂が下記式[1]で表される構成単位[1]と、
Figure JPOXMLDOC01-appb-I000013
(式中、Wは単結合、炭素原子数1~6のアルキル基、炭素原子数6~10のアリール基、または炭素原子数3~8の環状アルキル基を表す。)
下記式[2]で表される構成単位[2]を含み、
Figure JPOXMLDOC01-appb-I000014
全構成単位における構成単位[1]の割合が50~100モル%であり、粘度平均分子量が1.0×10~8.0×10である変性ポリカーボネート樹脂である前項1記載のハードコート層が積層された樹脂積層体。
3. 樹脂層(A)の熱可塑性樹脂がポリカーボネート樹脂、樹脂層(B)の熱可塑性樹脂が芳香族(メタ)アクリレート単位5~80重量%およびメチル(メタ)アクリレート単位20~95重量%を含有し、重量平均分子量が5,000~30,000であるアクリル共重合体20~60重量部と、ポリカーボネート樹脂40~80重量部とのポリマーブレンド樹脂である前項1記載のハードコート層が積層された樹脂積層体。
4. 樹脂層(B)の熱可塑性樹脂100重量部に対して、紫外線吸収剤を0.5~5.0量部含有する前項1記載のハードコート層が積層された樹脂積層体。
5. 樹脂層(B)の上に積層されたハードコート層の鉛筆硬度が3H以上である前項1記載のハードコート層が積層された樹脂積層体。
6. 温度23℃、湿度50%RH環境下に4時間放置した後の反り率が0.2%以下である前項1記載のハードコート層が積層された樹脂積層体。
7. ハードコート層が紫外線硬化塗料からなる前項1記載のハードコート層が積層された樹脂積層体。
8. ハードコート層の厚みが1~30μmである前項1記載のハードコート層が積層された樹脂積層体。
9. 回転中心軸が平行で同一平面上にある位置関係にありかつ接近して配置した3本の冷却ロールを用い、熱可塑性樹脂層(A)の少なくとも片面に樹脂層(A)と異なる他の熱可塑性樹脂層(B)が積層された樹脂積層体を溶融状態でダイから押出し、第1冷却ロールと第2冷却ロールとの間に挟み込み、第2冷却ロールに巻き掛けた後、第3冷却ロールに巻き掛けることにより冷却して、樹脂層(A)の少なくとも片面に樹脂層(B)が積層された樹脂積層体を製造するにあたり、第2ロール周速度に対する引取りロールの周速度を0.996~1.010倍とすることにより樹脂積層体を得る工程、および得られた樹脂積層体の樹脂層(B)の上にハードコート層を積層する工程を含む前項1記載のハードコート層が積層された樹脂積層体の製造方法。
10. ディスプレイカバーパネルやタッチパネル前面板として使用される前項1記載のハードコート層が積層された樹脂積層体。
DESCRIPTION OF SYMBOLS 1A 1st extruder 1B 2nd extruder 2 Die 3 Laminated body 4 1st roll 5 2nd roll 6 3rd roll 7 Take-up roll There exists the following invention as a specific aspect of this invention.
1. A total thickness of 0.8 mm to 3 in which a resin layer (B) made of another thermoplastic resin different from the resin layer (A) having a thickness of 40 to 150 μm is laminated on at least one surface of the thermoplastic resin layer (A). A resin laminate of 0.0 mm in which the glass transition points TgA and TgB of the thermoplastic resin of the resin layer (A) and the thermoplastic resin of the resin layer (B) are both 115 ° C. or higher, and TgA and TgB The difference is 30 ° C. or less, the water absorption of the thermoplastic resin of the resin layer (A) and the thermoplastic resin of the resin layer (B) are both 0.7% or less, and the difference in water absorption is 0.5% or less. A warp rate after leaving the resin laminate for 120 hours in a high temperature and high humidity environment at a temperature of 85 ° C. and a humidity of 85% RH is 0.2% or less.
2. The thermoplastic resin of the resin layer (A) is a polycarbonate resin, and the thermoplastic resin of the resin layer (B) is a structural unit [1] represented by the following formula [1];
Figure JPOXMLDOC01-appb-I000011
(In the formula, W represents a single bond, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclic alkyl group having 3 to 8 carbon atoms.)
Including a structural unit [2] represented by the following formula [2],
Figure JPOXMLDOC01-appb-I000012
2. The resin laminate as described in 1 above, which is a modified polycarbonate resin in which the proportion of the structural unit [1] in all the structural units is 50 to 100 mol% and the viscosity average molecular weight is 1.0 × 10 4 to 8.0 × 10 4 body.
3. The thermoplastic resin of the resin layer (A) contains polycarbonate resin, and the thermoplastic resin of the resin layer (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units. 2. The resin laminate according to item 1, which is a polymer blend resin of 20 to 60 parts by weight of an acrylic copolymer having a weight average molecular weight of 5,000 to 30,000 and 40 to 80 parts by weight of a polycarbonate resin.
4). 2. The resin laminate according to item 1 above, containing 0.5 to 5.0 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the thermoplastic resin of the resin layer (B).
5. 2. The resin laminate according to item 1, wherein the resin layer (B) has a pencil hardness of F or more.
6). 2. The resin laminate according to item 1, wherein the resin laminate has a warpage rate of 0.2% or less after being left in a temperature of 23 ° C. and a humidity of 50% RH for 4 hours.
7). Other heats different from the resin layer (A) on at least one surface of the thermoplastic resin layer (A) using three cooling rolls that are in a positional relationship in which the rotation center axes are parallel and on the same plane and are arranged close to each other The resin laminate on which the plastic resin layer (B) is laminated is extruded from the die in a molten state, sandwiched between the first cooling roll and the second cooling roll, wound around the second cooling roll, and then the third cooling roll. In the production of the resin laminate in which the resin layer (B) is laminated on at least one surface of the resin layer (A), the peripheral speed of the take-up roll with respect to the second roll peripheral speed is set to 0. 0. 2. The method for producing a resin laminate according to item 1, wherein the ratio is 996 to 1.010 times.
8). 2. The resin laminate according to item 1, which is used as a display cover panel or a touch panel front plate.
Moreover, there exists the following invention as an aspect which has a hard-coat layer.
1. A resin layer (B) made of another thermoplastic resin different from the resin layer (A) having a thickness of 40 to 150 μm is laminated on at least one surface of the thermoplastic resin layer (A), and further on the resin layer (B). The hard laminate layer is laminated with a resin layer (A) and a resin layer (B) having a total thickness of 0.8 mm to 3.0 mm, and the heat of the resin layer (A) The glass transition points TgA and TgB of the thermoplastic resin and the thermoplastic resin of the resin layer (B) are both 115 ° C. or higher, and the difference between TgA and TgB is 30 ° C. or lower, and the thermoplastic resin of the resin layer (A) And the resin layer (B) both have a water absorption rate of 0.7% or less and a difference in water absorption rate of 0.5% or less. The warpage rate after leaving for 120 hours under high temperature and high humidity of 85% RH A resin laminate in which a hard coat layer is laminated which is 0.2% or less.
2. The thermoplastic resin of the resin layer (A) is a polycarbonate resin, and the thermoplastic resin of the resin layer (B) is a structural unit [1] represented by the following formula [1];
Figure JPOXMLDOC01-appb-I000013
(In the formula, W represents a single bond, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a cyclic alkyl group having 3 to 8 carbon atoms.)
Including a structural unit [2] represented by the following formula [2],
Figure JPOXMLDOC01-appb-I000014
The hard coat according to item 1, which is a modified polycarbonate resin in which the proportion of the structural unit [1] in all the structural units is 50 to 100 mol% and the viscosity average molecular weight is 1.0 × 10 4 to 8.0 × 10 4 A resin laminate in which layers are laminated.
3. The thermoplastic resin of the resin layer (A) contains polycarbonate resin, and the thermoplastic resin of the resin layer (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units. The hard coat layer according to item 1 above, which is a polymer blend resin of 20 to 60 parts by weight of an acrylic copolymer having a weight average molecular weight of 5,000 to 30,000 and 40 to 80 parts by weight of a polycarbonate resin, was laminated. Resin laminate.
4). A resin laminate in which the hard coat layer according to the preceding item 1 containing 0.5 to 5.0 parts by weight of an ultraviolet absorber is laminated to 100 parts by weight of the thermoplastic resin of the resin layer (B).
5. The resin laminated body by which the hard-coat layer of the preceding clause 1 laminated | stacked whose pencil hardness of the hard-coat layer laminated | stacked on the resin layer (B) is 3H or more.
6). A resin laminate in which the hard coat layer according to item 1 is laminated, wherein a warpage rate after being left for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH is 0.2% or less.
7). A resin laminate in which the hard coat layer is laminated with the hard coat layer according to item 1 described above.
8). A resin laminate in which the hard coat layer according to item 1 is laminated, wherein the thickness of the hard coat layer is 1 to 30 μm.
9. Other heats different from the resin layer (A) on at least one surface of the thermoplastic resin layer (A) using three cooling rolls that are in a positional relationship in which the rotation center axes are parallel and on the same plane and are arranged close to each other The resin laminate on which the plastic resin layer (B) is laminated is extruded from the die in a molten state, sandwiched between the first cooling roll and the second cooling roll, wound around the second cooling roll, and then the third cooling roll. In the production of the resin laminate in which the resin layer (B) is laminated on at least one surface of the resin layer (A), the peripheral speed of the take-up roll with respect to the second roll peripheral speed is set to 0. 0. The hard coat layer according to the preceding item 1, comprising a step of obtaining a resin laminate by setting the ratio to 996 to 1.010, and a step of laminating a hard coat layer on the resin layer (B) of the obtained resin laminate. Of laminated resin laminates Production method.
10. A resin laminate in which the hard coat layer according to item 1 is used as a display cover panel or a touch panel front plate.

Claims (13)

  1.  熱可塑性樹脂(A)からなる樹脂層(A)およびその少なくとも一方の面に積層された異なる他の熱可塑性樹脂(B)からなる樹脂層(B)を含む積層体であって、
    (i)樹脂層(B)の厚みは40~150μmで、樹脂層(A)と樹脂層(B)の合計厚みは0.8mm~3.0mmであり、
    (ii)熱可塑性樹脂(A)と熱可塑性樹脂(B)のそれぞれのガラス転移点TgAおよびTgBが共に115℃以上で、且つTgAとTgBの差が30℃以下であり、
    (iii)熱可塑性樹脂(A)と熱可塑性樹脂(B)の吸水率が共に0.7%以下で、且つ吸水率差が0.5%以下であり、
    (iv)該積層体を温度85℃、湿度85%RHの高温高湿環境下に120時間放置した後の反り率が0.2%以下である、
    積層体。
    A laminate comprising a resin layer (A) composed of a thermoplastic resin (A) and a resin layer (B) composed of a different other thermoplastic resin (B) laminated on at least one surface thereof,
    (I) The thickness of the resin layer (B) is 40 to 150 μm, and the total thickness of the resin layer (A) and the resin layer (B) is 0.8 mm to 3.0 mm,
    (Ii) The glass transition points TgA and TgB of the thermoplastic resin (A) and the thermoplastic resin (B) are both 115 ° C. or higher, and the difference between TgA and TgB is 30 ° C. or lower.
    (Iii) The water absorption of the thermoplastic resin (A) and the thermoplastic resin (B) are both 0.7% or less and the difference in water absorption is 0.5% or less,
    (Iv) The warpage rate after leaving the laminate for 120 hours in a high-temperature and high-humidity environment at a temperature of 85 ° C. and a humidity of 85% RH is 0.2% or less.
    Laminated body.
  2.  熱可塑性樹脂(A)がポリカーボネート樹脂であり、熱可塑性樹脂(B)が下記式で表される単位[1]と、下記式で表される単位[2]を含み、全単位に基づき単位[1]の割合が50~100モル%であり、粘度平均分子量が1.0×10~8.0×10である変性ポリカーボネート樹脂である請求項1記載の積層体。
    Figure JPOXMLDOC01-appb-I000001
    (式中、Wは単結合、炭素原子数1~6のアルカンジイル基、炭素原子数6~10のアリーレン基、または炭素原子数3~8のシクロアルキレン基を表す。)
    Figure JPOXMLDOC01-appb-I000002
    The thermoplastic resin (A) is a polycarbonate resin, and the thermoplastic resin (B) includes a unit [1] represented by the following formula and a unit [2] represented by the following formula. 2. The laminate according to claim 1, which is a modified polycarbonate resin having a ratio of 1] of 50 to 100 mol% and a viscosity average molecular weight of 1.0 × 10 4 to 8.0 × 10 4 .
    Figure JPOXMLDOC01-appb-I000001
    (W represents a single bond, an alkanediyl group having 1 to 6 carbon atoms, an arylene group having 6 to 10 carbon atoms, or a cycloalkylene group having 3 to 8 carbon atoms.)
    Figure JPOXMLDOC01-appb-I000002
  3.  熱可塑性樹脂(A)がポリカーボネート樹脂であり、熱可塑性樹脂(B)が芳香族(メタ)アクリレート単位5~80重量%およびメチル(メタ)アクリレート単位20~95重量%を含有し、重量平均分子量が5,000~30,000であるアクリル共重合体20~60重量部と、ポリカーボネート樹脂40~80重量部とのブレンド樹脂である請求項1記載の積層体。 The thermoplastic resin (A) is a polycarbonate resin, and the thermoplastic resin (B) contains 5 to 80% by weight of aromatic (meth) acrylate units and 20 to 95% by weight of methyl (meth) acrylate units, and has a weight average molecular weight. 2. The laminate according to claim 1, which is a blend resin of 20 to 60 parts by weight of an acrylic copolymer having a 5,000 to 30,000 and a polycarbonate resin of 40 to 80 parts by weight.
  4.  樹脂層(B)は、熱可塑性樹脂(B)100重量部に対して、紫外線吸収剤を0.5~5.0量部含有する請求項1記載の積層体。 The laminate according to claim 1, wherein the resin layer (B) contains 0.5 to 5.0 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the thermoplastic resin (B).
  5.  樹脂層(B)の鉛筆硬度がF以上である請求項1記載の積層体。 The laminate according to claim 1, wherein the resin layer (B) has a pencil hardness of F or more.
  6.  積層体は、温度23℃、湿度50%RH環境下に4時間放置した後の反り率が0.2%以下である請求項1記載の積層体。 The laminate according to claim 1, wherein the laminate has a warpage rate of 0.2% or less after being left for 4 hours in an environment of a temperature of 23 ° C and a humidity of 50% RH.
  7.  樹脂層(B)の上にハードコート層が積層された請求項1記載の積層体。 The laminate according to claim 1, wherein a hard coat layer is laminated on the resin layer (B).
  8.  ハードコート層の鉛筆硬度が3H以上である請求項7記載の積層体。 The laminate according to claim 7, wherein the hard coat layer has a pencil hardness of 3H or more.
  9.  ハードコート層が紫外線硬化塗料からなる請求項7記載の積層体。 The laminate according to claim 7, wherein the hard coat layer comprises an ultraviolet curable paint.
  10.  (i)樹脂層(A)およびその少なくとも一方の面に積層された樹脂層(B)を含む積層体を溶融状態でダイから押出し、
    (ii)押出された積層体を引取りロールにより引き取りながら、第1~第3冷却ロールにより冷却する、
    各工程を含み、
     ここで第1~第3の冷却ロールは回転中心軸が平行で、同一平面上にあり、かつ接近して配置され、第2ロール周速度に対する引取りロールの周速度を0.996~1.010倍にし、
    (a)ダイから押出された積層体を、第1冷却ロールと第2冷却ロールとの間に挟み込み、
    (b)第2冷却ロールに巻き掛け、
    (c)第3冷却ロールに巻き掛けることにより行う、
    請求項1記載の積層体の製造方法。
    (I) A laminate including the resin layer (A) and the resin layer (B) laminated on at least one surface thereof is extruded from a die in a molten state,
    (Ii) cooling the extruded laminate with the first to third cooling rolls while taking it with the take-up roll;
    Including each process,
    Here, the first to third cooling rolls have parallel rotation center axes, are on the same plane, are arranged close to each other, and the peripheral speed of the take-up roll with respect to the second roll peripheral speed is 0.996 to 1.. 010 times,
    (A) The laminate extruded from the die is sandwiched between the first cooling roll and the second cooling roll,
    (B) Wrap around the second cooling roll,
    (C) Performing by winding around a third cooling roll,
    The manufacturing method of the laminated body of Claim 1.
  11.  第2ロール周速度に対する第3ロールの周速度を1.001~1.030倍にする請求項10記載の製造方法。 The manufacturing method according to claim 10, wherein the peripheral speed of the third roll relative to the peripheral speed of the second roll is 1.001 to 1.030 times.
  12.  冷却して得られた積層体の樹脂層(B)の上にハードコート層を積層する工程を含む請求項10記載の製造方法。 The manufacturing method of Claim 10 including the process of laminating | stacking a hard-coat layer on the resin layer (B) of the laminated body obtained by cooling.
  13.  ディスプレイカバーパネルまたはタッチパネル前面板として使用される請求項1記載の積層体。 The laminate according to claim 1, which is used as a display cover panel or a touch panel front plate.
PCT/JP2013/078395 2012-10-15 2013-10-11 Laminate WO2014061817A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380053406.XA CN104703796A (en) 2012-10-15 2013-10-11 Laminate
KR1020157009005A KR102139840B1 (en) 2012-10-15 2013-10-11 Laminate
JP2014542207A JP5872058B2 (en) 2012-10-15 2013-10-11 Laminated body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-228002 2012-10-15
JP2012228002 2012-10-15
JP2012246311 2012-11-08
JP2012-246311 2012-11-08

Publications (1)

Publication Number Publication Date
WO2014061817A1 true WO2014061817A1 (en) 2014-04-24

Family

ID=50488370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078395 WO2014061817A1 (en) 2012-10-15 2013-10-11 Laminate

Country Status (5)

Country Link
JP (1) JP5872058B2 (en)
KR (1) KR102139840B1 (en)
CN (1) CN104703796A (en)
TW (1) TWI617445B (en)
WO (1) WO2014061817A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208962A (en) * 2014-04-28 2015-11-24 住友ベークライト株式会社 Multilayer resin sheet, liquid crystal protective sheet, window material for building base material, window material for industrial machinery and window material for merchandise display furniture
JP2015208961A (en) * 2014-04-28 2015-11-24 住友ベークライト株式会社 Multilayer resin sheet, liquid crystal protective sheet, window material for building base material, window material for industrial machinery or window material for merchandise display furniture
JPWO2015093037A1 (en) * 2013-12-19 2017-03-16 株式会社クラレ Manufacturing method of resin plate
KR20170031154A (en) 2014-07-09 2017-03-20 미츠비시 가스 가가쿠 가부시키가이샤 Synthetic resin laminate
WO2017164276A1 (en) * 2016-03-23 2017-09-28 株式会社クラレ Extruded resin sheet manufacturing method and extruded resin sheet
JP2017177553A (en) * 2016-03-30 2017-10-05 三菱エンジニアリングプラスチックス株式会社 Laminate
JP2019136994A (en) * 2018-02-14 2019-08-22 三菱瓦斯化学株式会社 Resin laminate and resin molded body using the same
WO2021241426A1 (en) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 Resin multilayer body
JP7427730B1 (en) 2022-08-23 2024-02-05 三菱瓦斯化学株式会社 Multilayer bodies and molded products
JP7427731B1 (en) 2022-08-23 2024-02-05 三菱瓦斯化学株式会社 Multilayer bodies and molded products
WO2024043180A1 (en) * 2022-08-23 2024-02-29 三菱瓦斯化学株式会社 Multilayer body and molded article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949458B1 (en) 2016-03-11 2019-02-18 주식회사 엘지화학 Preparation method of super absorbent polymer, and super absorbent polymer
JP7120225B2 (en) * 2017-05-31 2022-08-17 日本ゼオン株式会社 Touch sensor substrate and manufacturing method thereof, touch sensor member and manufacturing method thereof, and display device
KR102467377B1 (en) * 2020-12-30 2022-11-16 (주)아이컴포넌트 Coextruded film and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106185A (en) * 2004-10-01 2006-04-20 Kuraray Co Ltd Light diffusion multilayer plate
WO2007141899A1 (en) * 2006-06-05 2007-12-13 Teijin Chemicals Ltd. Polycarbonate resin film and method for production thereof
JP2010188719A (en) * 2009-01-22 2010-09-02 Teijin Chem Ltd Polycarbonate resin laminate
WO2011145630A1 (en) * 2010-05-21 2011-11-24 三菱瓦斯化学株式会社 Synthetic resin laminate
JP2012166548A (en) * 2011-01-24 2012-09-06 Mitsubishi Chemicals Corp Polycarbonate resin molding and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351535A1 (en) * 2003-11-03 2005-06-09 Röhm GmbH & Co. KG Multilayer film of (meth) acrylate copolymer and polycarbonate
JP2006205478A (en) 2005-01-27 2006-08-10 Tsutsunaka Plast Ind Co Ltd Transparent resin laminate
JP5525390B2 (en) 2010-09-03 2014-06-18 住友化学株式会社 Thermoplastic resin extrusion board
JP5520778B2 (en) * 2010-10-29 2014-06-11 住友化学株式会社 Method for producing extruded resin plate
JP5664903B2 (en) * 2010-12-17 2015-02-04 三菱レイヨン株式会社 Hard coat product
CN104169086B (en) * 2012-02-22 2016-01-06 三菱瓦斯化学株式会社 Synthetic resin laminated body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006106185A (en) * 2004-10-01 2006-04-20 Kuraray Co Ltd Light diffusion multilayer plate
WO2007141899A1 (en) * 2006-06-05 2007-12-13 Teijin Chemicals Ltd. Polycarbonate resin film and method for production thereof
JP2010188719A (en) * 2009-01-22 2010-09-02 Teijin Chem Ltd Polycarbonate resin laminate
WO2011145630A1 (en) * 2010-05-21 2011-11-24 三菱瓦斯化学株式会社 Synthetic resin laminate
JP2012166548A (en) * 2011-01-24 2012-09-06 Mitsubishi Chemicals Corp Polycarbonate resin molding and method of manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015093037A1 (en) * 2013-12-19 2017-03-16 株式会社クラレ Manufacturing method of resin plate
JP2015208961A (en) * 2014-04-28 2015-11-24 住友ベークライト株式会社 Multilayer resin sheet, liquid crystal protective sheet, window material for building base material, window material for industrial machinery or window material for merchandise display furniture
JP2015208962A (en) * 2014-04-28 2015-11-24 住友ベークライト株式会社 Multilayer resin sheet, liquid crystal protective sheet, window material for building base material, window material for industrial machinery and window material for merchandise display furniture
CN106573454B (en) * 2014-07-09 2018-09-18 三菱瓦斯化学株式会社 Synthetic resin laminated body
KR20170031154A (en) 2014-07-09 2017-03-20 미츠비시 가스 가가쿠 가부시키가이샤 Synthetic resin laminate
JPWO2017164276A1 (en) * 2016-03-23 2019-02-14 株式会社クラレ Extruded resin plate manufacturing method and extruded resin plate
CN108778675A (en) * 2016-03-23 2018-11-09 株式会社可乐丽 The manufacturing method and extruded resin sheet of extruded resin sheet
WO2017164276A1 (en) * 2016-03-23 2017-09-28 株式会社クラレ Extruded resin sheet manufacturing method and extruded resin sheet
CN108778675B (en) * 2016-03-23 2020-06-23 株式会社可乐丽 Method for producing extruded resin sheet and extruded resin sheet
JP2017177553A (en) * 2016-03-30 2017-10-05 三菱エンジニアリングプラスチックス株式会社 Laminate
JP2019136994A (en) * 2018-02-14 2019-08-22 三菱瓦斯化学株式会社 Resin laminate and resin molded body using the same
JP7065633B2 (en) 2018-02-14 2022-05-12 三菱瓦斯化学株式会社 Resin laminate and resin molded product using it
WO2021241426A1 (en) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 Resin multilayer body
JP7427730B1 (en) 2022-08-23 2024-02-05 三菱瓦斯化学株式会社 Multilayer bodies and molded products
JP7427731B1 (en) 2022-08-23 2024-02-05 三菱瓦斯化学株式会社 Multilayer bodies and molded products
WO2024043180A1 (en) * 2022-08-23 2024-02-29 三菱瓦斯化学株式会社 Multilayer body and molded article

Also Published As

Publication number Publication date
JPWO2014061817A1 (en) 2016-09-05
KR20150070136A (en) 2015-06-24
JP5872058B2 (en) 2016-03-01
CN104703796A (en) 2015-06-10
KR102139840B1 (en) 2020-07-30
TWI617445B (en) 2018-03-11
TW201429714A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
JP5872058B2 (en) Laminated body
JP5468896B2 (en) Polycarbonate resin laminate
JP5752522B2 (en) Laminated film for supporting optical functional member and method for producing the same, sheet and method for producing the same, prism sheet
JP6068456B2 (en) Synthetic resin laminate
TW201000311A (en) Adhesive modified base film and hard-coated film
TWI474036B (en) Optical sheet and touch panel
TW201445175A (en) Polarizer and image display device
US20170136748A1 (en) Transparent resin laminate
JP6836896B2 (en) Transparent resin laminate
WO2019107462A1 (en) Thermoforming laminated plate and method for manufacturing same
US20160304752A1 (en) Blue light-blocking resin composition
JP6630670B2 (en) Synthetic resin laminate
JP7045944B2 (en) Anti-glare protective plate
JP6475038B2 (en) Resin laminate
KR102062287B1 (en) Resin laminated body and its manufacturing method
KR20180129675A (en) Resin laminate
EP3912812A1 (en) Extruded resin layered body and cured coat-attached extruded resin layered body
JP2018128503A (en) Polyester film
JP2012223968A (en) Resin laminate
KR102008456B1 (en) Resin laminate with curved shape
JP2011245808A (en) Laminated polyester film
WO2019124255A1 (en) Method for manufacturing liquid crystal display protection plate
JP6565573B2 (en) Laminated body and manufacturing method thereof
JP6385200B2 (en) Laminated board
JP7257596B1 (en) Films and multilayer films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014542207

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157009005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846440

Country of ref document: EP

Kind code of ref document: A1