WO2016185722A1 - Resin composition and film - Google Patents

Resin composition and film Download PDF

Info

Publication number
WO2016185722A1
WO2016185722A1 PCT/JP2016/002447 JP2016002447W WO2016185722A1 WO 2016185722 A1 WO2016185722 A1 WO 2016185722A1 JP 2016002447 W JP2016002447 W JP 2016002447W WO 2016185722 A1 WO2016185722 A1 WO 2016185722A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
film
weight
polymer
Prior art date
Application number
PCT/JP2016/002447
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 大西
進 平間
洋平 今泉
進悟 ▲徳▼原
大祐 松井
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2017518770A priority Critical patent/JP6731913B2/en
Publication of WO2016185722A1 publication Critical patent/WO2016185722A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a resin composition and a film composed of the resin composition. More specifically, the present invention is for an optical film that can constitute an optical film such as a protective film, an antireflection film, a conductive film, and a polarizing film used in an image display device such as a liquid crystal display device and an organic electroluminescence display device.
  • the present invention relates to a resin composition and the optical film.
  • An acrylic polymer typified by polymethyl methacrylate (PMMA) is widely used for optical applications because it is highly polymerizable and relatively easy to produce and has excellent optical transparency.
  • PMMA polymethyl methacrylate
  • a film optical film
  • image display devices such as liquid crystal display devices (LCD) and organic electroluminescence display devices (OLED).
  • acrylic resins are required to have heat resistance.
  • the design of the device has heat resistance because it is necessary to dispose the optical film close to a heating element such as a power supply unit, a light emitting unit, and a circuit board.
  • An optical film is required.
  • Other examples of applications that require heat resistance include use in devices that are expected to be used in high-temperature environments such as devices mounted on vehicles, and substrates of transparent conductive films such as indium tin oxide (ITO) films For example, it is used for members that require processing at high temperatures.
  • ITO indium tin oxide
  • Tg glass transition temperature
  • PMMA polymethyl methacrylate copolymer
  • acrylic resins including the same is about 100 ° C. at the maximum. From a general acrylic resin, for example, it is not possible to obtain an optical film having heat resistance enough to withstand use in an image display device.
  • Patent Document 1 discloses an optical film composed of a resin composition including an acrylic polymer having a ring structure in the main chain and having positive intrinsic birefringence, and a styrene polymer having negative intrinsic birefringence. Is disclosed.
  • the ring structure of the main chain improves its Tg.
  • the Tg increases as the content of the ring structure in the polymer increases, the mechanical properties of the polymer decrease, typically changing to a hard and brittle polymer.
  • acrylic polymers are inherently harder and more brittle than other thermoplastic polymers.
  • the simple increase in the content of the cyclic structure in the acrylic polymer is the resin composition. Therefore, it may be difficult to obtain characteristics that are expected to be achieved originally.
  • An example of specific characteristics is low birefringence.
  • By reducing the birefringence of the resin composition it is possible to reduce the retardation development property due to stretching. For example, a stretched optical film having a small in-plane retardation Re and a thickness direction retardation Rth can be obtained.
  • the ring structure of the main chain in the acrylic polymer positively increases the intrinsic birefringence of the polymer and the resin containing the polymer.
  • the polymer main chain is formed by polymerization of monomers that already have a ring structure.
  • a ring structure that is not introduced, but is introduced into the main chain by the progress of an intramolecular cyclization reaction on the precursor polymer.
  • the content of the structural unit contributing to the cyclization reaction in the precursor polymer must be increased.
  • One of the objects of the present invention is to enjoy the excellent optical transparency of the acrylic resin and to suppress the deterioration of the mechanical properties while achieving high heat resistance, more specifically, high Tg.
  • the present invention provides a resin composition that can be used for various applications including an optical film, which can ensure the expected characteristics more reliably because it is a resin composition in which a plurality of resins are blended.
  • the resin composition of the present invention comprises an acrylic resin (A) having a positive intrinsic birefringence, a resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer. ,including.
  • the content of the structural unit derived from the N-substituted maleimide monomer in the resin composition of the present invention is 1% by weight or more and 10% by weight or less.
  • the glass transition temperature (Tg) of the resin composition of the present invention is 130 ° C. or higher.
  • the film of the present invention consists of the resin composition of the present invention.
  • the present invention while enjoying the excellent optical transparency of the acrylic resin and achieving high heat resistance, more specifically, high Tg, a decrease in mechanical properties is suppressed, and a plurality of Since it is a resin composition in which a resin is blended, it is possible to obtain a resin composition that can be used for various applications including an optical film, which can ensure the expected characteristics more reliably.
  • the first aspect of the present disclosure includes an acrylic resin (A) having positive intrinsic birefringence, and a resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer And a resin composition having a content of structural units derived from the N-substituted maleimide monomer of 1% by weight to 10% by weight and a glass transition temperature (Tg) of 130 ° C. or higher. To do.
  • the second aspect of the present disclosure provides a resin composition in which a difference in Tg between the acrylic resin (A) and the resin (B) is 20 ° C. or less in addition to the first aspect.
  • the third aspect of the present disclosure provides a resin composition in which the absolute value of the stress optical coefficient Cr is 1.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less in addition to the first or second aspect.
  • the fourth aspect of the present disclosure provides a resin composition in which the acrylic resin (A) has a ring structure in the main chain in addition to any of the first to third aspects.
  • the ring structure is at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, a maleic anhydride structure, and an N-substituted maleimide structure.
  • a resin composition that is a seed is provided.
  • the ring structure is a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer, and the resin composition Provided is a resin composition having a ring structure content of 30% by weight or less.
  • a resin in which the content of a structural unit derived from an N-substituted maleimide monomer in the resin composition is 5% by weight or less A composition is provided.
  • the eighth aspect of the present disclosure provides a resin composition in which, in addition to any one of the first to seventh aspects, the resin (B) further includes a structural unit derived from an aromatic vinyl monomer.
  • a resin composition having an absolute value of a photoelastic coefficient of 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less is provided.
  • the tenth aspect of the present disclosure provides a film comprising the resin composition according to any one of the first to ninth aspects.
  • the eleventh aspect of the present disclosure is a stretched film in addition to the tenth aspect, and has an in-plane retardation Re for light having a wavelength of 590 nm of 5 nm or less, and an absolute value of the thickness direction retardation Rth for the light A film having a thickness of 5 nm or less is provided.
  • a twelfth aspect of the present disclosure is a stretched film in addition to the tenth or eleventh aspect, and exhibits a folding endurance of 200 times or more in a folding endurance (MIT) test performed based on the provisions of JIS P8115. Provide film.
  • MIT folding endurance
  • resin is a broader concept than “polymer”.
  • the resin may be composed of, for example, one or two or more polymers, and if necessary, materials other than the polymer, for example, additives such as ultraviolet absorbers, antioxidants, fillers, compatibilizing agents, A stabilizer and the like may be included.
  • Resin composition (C) of the present invention is a resin having a positive intrinsic birefringence (A) and a negative intrinsic birefringence and a structural unit S derived from an N-substituted maleimide monomer (B).
  • the content rate of the structural unit S in a resin composition (C) is 1 to 10 weight%, and Tg of a resin composition is 130 degreeC or more.
  • the structural unit S contained in the resin (B) corresponds to an N-substituted maleimide structure which is a kind of ring structure located in the main chain of the polymer contained in the resin. That is, the presence of the structural unit S improves the heat resistance of the resin composition (C) containing the resin (B) and the resin (B), and more specifically increases Tg.
  • the structural unit S (N-substituted maleimide structure) is particularly effective in increasing the Tg of the polymer among the ring structures located in the main chain of the polymer. For this reason, as one feature, the resin composition (C) achieves a high heat resistance of Tg ⁇ 130 ° C. due to a smaller content of the ring structure than in the past. And as another characteristic, the fall of the characteristic of a resin composition (C), for example, a mechanical characteristic, is suppressed by inclusion of a ring structure less than before in order to achieve high heat resistance.
  • the resin (B) itself has a function of giving positive intrinsic birefringence to the polymer having the unit S, but the resin (B) itself has an intrinsic birefringence. It is that it is negative. That is, although it has negative intrinsic birefringence, the absolute value of the stress optical coefficient Cr indicated by the resin (B) itself is reduced by the presence of the structural unit S. In other words, the structural unit S improves the Tg of the resin composition (C) containing the resin (B) and the resin (B), and the stress optical coefficient Cr of the resin (B) having negative intrinsic birefringence. Has the effect of reducing the absolute value.
  • the properties are, for example, mechanical properties and optical properties, and more specific examples are low birefringence, low photoelastic coefficient, low haze, high mechanical properties when made into a film (eg flexibility), Low dimensional change rate and low wavelength dispersion of birefringence.
  • the absolute value of the stress optical coefficient Cr is a numerical value corresponding to the magnitude of birefringence exhibited by the resin or resin composition when stress is applied in one direction to the resin or resin composition. The larger the absolute value, the higher the birefringence expression of the resin and the resin composition.
  • the low birefringence of the resin composition is achieved by canceling out intrinsic birefringence between a resin having positive intrinsic birefringence and a resin having negative intrinsic birefringence. If the absolute value of Cr in the resin (B) can be reduced, low birefringence as the resin composition (C) can be achieved while adopting a resin having a small Cr absolute value as the resin (A) combined therewith. This means that the low birefringence in the resin composition (C) is more reliably achieved, and the stability of the low birefringence when, for example, a resin molded body, typically a stretched film, is used. Improve.
  • the resin (A) includes a ring structure as will be described later, as a more specific example, when the resin (A) includes a polymer having a ring structure in the main chain, a resin having a low ring structure content ( A) can be adopted. This contributes to the low photoelastic coefficient, low haze, high flexibility, small dimensional change rate, etc., as the resin composition (C). In addition, the positive and negative intrinsic birefringence cancel each other between the constituent units of the resin (B) and between the resins of the resin composition (C). It means that sex is achieved. And as a premise of these advantageous characteristics, high Tg of 130 degreeC or more is achieved in the resin composition (C).
  • Acrylic resin originally has characteristics that are harder and more brittle than other thermoplastic resins, and even if it is judged from the fact that the ring structure located in the main chain of the polymer makes this characteristic stronger, the resin composition
  • resin (A) and resin (B) Specific examples of resin (A) and resin (B) will be described.
  • the resin (A) is, for example, a thermoplastic resin.
  • Resin (A) may be an amorphous resin.
  • Resin (A) is an acrylic resin containing an acrylic polymer (D).
  • the content of the acrylic polymer (D) in the resin (A) is, for example, 50% by weight or more, 80% by weight or more, 90% by weight or more, and further 95% by weight or more.
  • Resin (A) may contain only an acrylic polymer (D) as a polymer, and may consist of an acrylic polymer (D).
  • the acrylic polymer (D) has, for example, positive intrinsic birefringence.
  • the resin (A) is derived from the acrylic polymer (D) contained in the resin, and has an effect of imparting excellent optical transparency to the resin composition (C) and a molded body (resin molded body) of the composition. Have.
  • the acrylic polymer has a constitutional unit derived from (meth) acrylic acid ester (hereinafter referred to as (meth) acrylic acid ester unit) as a proportion of all structural units of the polymer ((meth) acrylic acid ester in the polymer).
  • the polymer has a ring structure that is a derivative of a (meth) acrylate unit in the main chain
  • a monomer having a ring structure that is a derivative of a (meth) acrylate unit When the ring structure is introduced into the main chain of the polymer by copolymerization with, or in the precursor polymer, by an intramolecular cyclization reaction between two adjacent structural units containing a (meth) acrylate unit
  • the polymer has the formed ring structure in the main chain, if the total of the content of (meth) acrylic acid ester units and the content of the ring structure is 50 mol% or more, the polymer is an acrylic polymer. It is a coalescence.
  • (meth) acrylic acid esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate.
  • the acrylic polymer (D) preferably has a methyl (meth) acrylate unit, and more preferably has a methyl methacrylate (MMA) unit. In these cases, the optical properties and thermal stability of the resin molding obtained by molding the resin composition (C) are further improved.
  • the acrylic polymer (D) may have two or more (meth) acrylic acid ester units.
  • the acrylic polymer (D) can have a ring structure in the main chain.
  • the above-described effect achieved by the resin composition (C) becomes more reliable.
  • the acrylic polymer (D) has a ring structure in the main chain, that is, when the resin (A) has the ring structure, the resin composition (C) is a resin having a ring structure together with the resin (B). Will contain at least two or more.
  • the Tg of the resin composition (C) becomes a high value of 130 ° C. or more due to the presence of the ring structure. In this case, not only the resin (B) but also the resin (A) increases the Tg of the resin composition (C). Has an effect.
  • the state of both resins (for example, the stretched state) is unsatisfactory due to long-term use of the resin molded body or application of heat to the resin molded body. This is because it may change evenly.
  • the resin composition (C) is stretched to obtain a resin molded body, the smaller the difference in Tg between the two resins (A) and (B), the lower the degree of freedom in adjusting the stretching conditions, particularly the stretching temperature. Increase. This is because the stretched state of the resin changes greatly depending on the temperature difference between the stretching temperature and the Tg of the resin.
  • the ring structure that the acrylic polymer (D) may have in the main chain is, for example, at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, a maleic anhydride structure, and an N-substituted maleimide structure. is there. These ring structures have a function of imparting positive intrinsic birefringence to the acrylic polymer (D) and the resin (A) containing the polymer (D).
  • the following formula (1) shows an N-substituted maleimide structure and a maleic anhydride structure.
  • the structure shown in Formula (1) can also be a structural unit of the acrylic polymer (D) having the structure in the main chain.
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group, and X 1 is an oxygen atom or a nitrogen atom.
  • R 3 does not exist, and when X 1 is a nitrogen atom, R 3 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, a phenyl group Or a benzyl group.
  • phenyl group and benzyl group one or more hydrogen atoms of the benzene ring may be substituted.
  • R 3 is preferably a methyl group, a cyclohexyl group, a phenyl group, or a benzyl group, and more preferably a methyl group, a cyclohexyl group, or a phenyl group.
  • the ring structure represented by the formula (1) is an N-substituted maleimide structure.
  • the acrylic polymer having an N-substituted maleimide structure in the main chain can be formed, for example, by copolymerizing a monomer group containing N-substituted maleimide and (meth) acrylic acid ester as monomers.
  • N-substituted maleimide structures are, for example, cyclohexylmaleimide, methylmaleimide, phenylmaleimide, and benzylmaleimide.
  • the ring structure represented by the formula (1) is a maleic anhydride structure.
  • the acrylic polymer having a maleic anhydride structure in the main chain can be formed, for example, by copolymerizing a monomer group containing maleic anhydride and (meth) acrylic acid ester as monomers.
  • the following formula (2) shows a glutarimide structure and a glutaric anhydride structure.
  • the structure shown in Formula (2) is a ring structure formed by an intramolecular cyclization reaction of the precursor polymer.
  • the structure in which the methylene group is bonded to any one of the main chain carbon atoms (the carbon atom to which R 4 or R 5 is bonded) in the structure represented by the formula (2) is an acrylic polymer (D). It becomes a structural unit.
  • R 4 and R 5 in formula (2) are each independently a hydrogen atom or a methyl group, and X 2 is an oxygen atom or a nitrogen atom.
  • X 2 is an oxygen atom
  • R 6 is not present, and when X 2 is a nitrogen atom, R 6 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, a phenyl group Or a benzyl group.
  • R 6 is preferably a methyl group, a cyclohexyl group, a phenyl group, or a benzyl group, and more preferably a methyl group, a cyclohexyl group, or a phenyl group.
  • the ring structure represented by the formula (2) is a glutarimide structure.
  • An acrylic polymer having a glutarimide structure in the main chain is formed, for example, by intramolecular cyclization (imidation) of a precursor polymer that is an uncyclized acrylic polymer such as PMMA with an imidizing agent such as methylamine. it can.
  • a glutarimide structure is formed by a cyclization reaction between two adjacent structural units in the precursor polymer, more specifically, between two adjacent (meth) acrylate units.
  • the ring structure represented by the formula (2) is a glutaric anhydride structure.
  • the acrylic polymer having a glutaric anhydride structure in the main chain is obtained by, for example, subjecting a precursor polymer, which is a copolymer of (meth) acrylic acid ester and (meth) acrylic acid, to dealcoholization cyclocondensation in the molecule. Can be formed.
  • a glutaric anhydride structure is formed by cyclization reaction between two adjacent structural units in the precursor polymer, more specifically, between adjacent (meth) acrylic acid ester units and (meth) acrylic acid units. Is formed.
  • the structure shown in Formula (3) is a ring structure formed by an intramolecular cyclization reaction of the precursor polymer.
  • a structure in which a methylene group is bonded to a carbon atom to which R 9 is bonded is a constituent unit of the acrylic polymer (D).
  • R 7 , R 8 and R 9 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • the organic residue is, for example, an alkyl group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, or a propyl group; an unsaturated aliphatic carbonization having 1 to 20 carbon atoms, such as an ethenyl group or a propenyl group.
  • a hydrogen group an aromatic hydrocarbon group having 1 to 20 carbon atoms, such as a phenyl group or a naphthyl group; one of hydrogen atoms in the alkyl group, the unsaturated aliphatic hydrocarbon group and the aromatic hydrocarbon group;
  • One or more groups are substituted with at least one group selected from a hydroxyl group, a carboxyl group, an ether group and an ester group.
  • the acrylic polymer having a lactone ring structure represented by the formula (3) in the main chain includes, for example, a (meth) acrylic acid ester and a (meth) acrylic acid ester having a hydroxyl group and / or a carboxyl group in the molecule. After copolymerization of the monomer group, it can be formed by proceeding an intramolecular dealcoholization cyclocondensation reaction between constituent units derived from the respective monomers with respect to the obtained precursor polymer as a copolymer. .
  • the (meth) acrylic acid ester is, for example, methyl methacrylate (MMA), and the (meth) acrylic acid ester having a hydroxyl group and / or a carboxyl group in the molecule is, for example, methyl 2- (hydroxymethyl) acrylate (MHMA). ).
  • MMA methyl methacrylate
  • MHMA methyl 2- (hydroxymethyl) acrylate
  • the adjacent MMA unit and MHMA unit in the obtained copolymer are subjected to dealcoholization cyclocondensation so that R 7 is H and R 8 and R 9 are CH 3.
  • the lactone ring structure is not limited to the structure shown in Formula (3), and may be, for example, a 5-membered lactone ring structure instead of the 6-membered ring shown in Formula (3).
  • a glutarimide structure, a glutaric anhydride structure, and a lactone ring structure are ring structures formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer.
  • Such a ring structure becomes a structural unit of the acrylic polymer (D) in a state where a methylene group is bonded to a carbon atom of the main chain of the ring structure. Therefore, when the acrylic polymer (D) has such a ring structure in the main chain, the steric hindrance due to the ring structure is alleviated by the methylene group, and the mechanical properties of the resin (A) and the resin composition (C) are reduced. The decrease can be further suppressed.
  • the direction of the main chain of the polymer and the polarization direction of the conjugated electrons of the ring structure are almost parallel, and the action of the ring structure that gives positive intrinsic birefringence to the polymer becomes stronger.
  • the content of the ring structure in the polymer (D) and the resin (A) can be reduced. This also contributes to the reduction in mechanical properties of the resin (A) and the resin composition (C).
  • the polymer (D) may have a structural unit remaining from the precursor polymer without participating in the intramolecular cyclization reaction.
  • the polymer (D) can have a (meth) acrylic acid ester unit having an unreacted hydroxyl group and / or carboxyl group.
  • the resin composition (C) From the viewpoint of further improving the compatibility of the resin composition (C) with the resin (B), and compared with the ring structure formed by the intramolecular cyclization reaction of the precursor polymer, the resin composition (C) From the viewpoint of further improving heat resistance, typically Tg, the ring structure of the acrylic polymer (D) in the main chain may be an N-substituted maleimide structure.
  • the content of the ring structure in the polymer (D) is, for example, 2% by weight or more and 50% by weight or less.
  • the lower limit of the content of the ring structure in the acrylic polymer (D) is more preferable in the order of 3% by weight, 4% by weight or more, 5% by weight or more, and 6% by weight or more.
  • the upper limit of the content of the ring structure in the acrylic polymer (D) is more preferable in the order of 45% by weight or less, 40% by weight or less, and 35% by weight or less. The same applies to the content of the ring structure in the resin (A).
  • the weight average molecular weight Mw of the acrylic polymer (D) is, for example, 10,000 to 500,000, preferably 50,000 to 300,000.
  • the acrylic polymer (D) may further have a structural unit other than the (meth) acrylic acid ester unit and the ring structure described above.
  • the structural unit includes, for example, structural units derived from aromatic vinyl monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, ⁇ -hydroxymethylstyrene, and ⁇ -hydroxyethylstyrene; and acrylonitrile, methacrylonitrile, For each monomer such as ril alcohol, allyl alcohol, ethylene, propylene, 4-methyl-1-pentene, vinyl acetate, 2-hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone, N-vinyl carbazole It is a derived structural unit.
  • the acrylic polymer (D) can have two or more of these structural units.
  • the content of the structural unit in the acrylic polymer (D) is preferably 5% by weight or less, more preferably 4 % By weight or less.
  • the formation method of the acrylic polymer (D) is not limited, and can be formed by a general polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, living radical polymerization, and anionic polymerization.
  • a general polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, living radical polymerization, and anionic polymerization.
  • cast polymerization that does not use a suspending agent and an emulsifier in order to avoid as much as possible the entry of minute foreign matters into the acrylic polymer (D) and the resin composition (C).
  • formation of the acrylic polymer (D) by solution polymerization is preferable.
  • the upper limit of the stress optical coefficient Cr of the resin (A) is, for example, 6.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less, 5.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less, 4.5 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less. It is more preferable in this order.
  • the lower limit of the stress optical coefficient Cr of the resin (A) is, for example, 0.1 ⁇ 10 ⁇ 10 Pa ⁇ 1 or more, 0.5 ⁇ 10 ⁇ 10 Pa ⁇ 1 or more, 1.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or more. It is more preferable in this order.
  • the method for forming the resin (A) is not limited, and the acrylic polymer (D) may be used as it is, and if necessary, the acrylic polymer (D), other polymers, other resins and / or Or it can form by mixing an additive with a well-known method.
  • an extruder can be used.
  • the resin (A) discharged from the extruder may be pelletized with a pelletizer as it is.
  • Other resins and additives will be described later in the description of the resin composition (C).
  • Resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer
  • Resin (B) is, for example, a thermoplastic resin.
  • Resin (B) may be an amorphous resin.
  • Resin (B) has negative intrinsic birefringence and an N-substituted maleimide structure that is a structural unit derived from an N-substituted maleimide monomer.
  • the resin (B) includes, for example, a polymer (E) having an N-substituted maleimide structure in the main chain.
  • the polymer (E) has a negative intrinsic birefringence.
  • the specific N-substituted maleimide structure is the same as the above-described N-substituted maleimide structure that the acrylic polymer (D) may have in the main chain.
  • the N-substituted maleimide structure is more polymerized than the main chain ring structure introduced by the intramolecular cyclization reaction to the precursor polymer, such as glutarimide structure, glutaric anhydride structure, and lactone structure.
  • the precursor polymer such as glutarimide structure, glutaric anhydride structure, and lactone structure.
  • the effect of making the intrinsic birefringence positive is low.
  • the resin (B) tends to maintain negative intrinsic birefringence.
  • a polymer having an N-substituted maleimide structure in the main chain a methylene group does not necessarily exist adjacent to the N-substituted maleimide structure. Therefore, due to the steric hindrance of the ring structure, the N-substituted maleimide structure has a high effect of improving the heat resistance of the polymer, typically Tg.
  • the content of the N-substituted maleimide structure in the polymer (E) which is a maleimide polymer is, for example, 5% by weight or more and 50% by weight or less.
  • the content of the N-substituted maleimide structure in the polymer (E) is excessively small, the effect of improving the heat resistance of the resin (B) and the resin composition (C) cannot be sufficiently obtained.
  • the content of the N-substituted maleimide structure in the polymer (E) becomes excessively large, the resin (B) becomes hard and brittle, and the effect of suppressing the deterioration of the mechanical properties of the resin composition (C) is obtained. It becomes difficult.
  • the lower limit of the content of the N-substituted maleimide structure in the polymer (E) is more preferably in the order of 10% by weight or more, 15% by weight or more, 20% by weight or more, and 25% by weight or more.
  • the upper limit of the content of the N-substituted maleimide structure in the polymer (E) is more preferably 45% by weight or less, 40% by weight or less, and 35% by weight or less.
  • the polymer (E) is a structural unit derived from an aromatic vinyl monomer (hereinafter referred to as an aromatic vinyl monomer) in order to cause the polymer (E) and the resin (B) to exhibit negative intrinsic birefringence. Unit) as a constituent unit.
  • aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, vinyl toluene, ⁇ -methyl styrene, ⁇ -hydroxymethyl styrene, ⁇ -hydroxyethyl styrene, and chlorostyrene.
  • the lower limit of the content of the aromatic vinyl monomer unit in the polymer (E) is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more.
  • the upper limit of the content is, for example, 95% by weight or less, preferably 90% by weight or less, and more preferably 85% by weight or less.
  • the upper limit of the content of the aromatic vinyl monomer unit in the polymer (E) is 80% by weight or less, 70% by weight. % Or less and 60% by weight or less are more preferable in this order.
  • the weight average molecular weight Mw of the polymer (E) is, for example, 10,000 to 500,000, preferably 50,000 to 300,000.
  • the polymer (E) may further have a structural unit other than the N-substituted maleimide structure and the aromatic vinyl monomer unit.
  • the structural unit includes, for example, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, methacrylonitrile, methallyl alcohol, allyl alcohol, ethylene, propylene, 4-methyl-1-pentene, vinyl acetate, A structural unit derived from each monomer of -hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone and N-vinyl carbazole.
  • the polymer (E) can have two or more of these structural units.
  • the lower limit of the content of the structural unit in the polymer (E) is, for example, 3% by weight or more, preferably 5% by weight or more. Preferably it is 10 weight% or more.
  • the upper limit of the content is, for example, 40% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less.
  • the upper limit of the stress optical coefficient Cr of the resin (B) is, for example, ⁇ 10.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less, ⁇ 15.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less, or ⁇ 20.0 ⁇ 10 ⁇ 10 Pa. -1 or less is more preferable.
  • the lower limit of the stress optical coefficient Cr of the resin (B) is, for example, ⁇ 45.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or more, ⁇ 40.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or more, ⁇ 35.0 ⁇ 10 ⁇ 10 Pa. -1 or more is more preferable.
  • the formation method of the polymer (E) is not limited, and can be formed by a general polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, living radical polymerization, and anionic polymerization.
  • a general polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, living radical polymerization, and anionic polymerization.
  • cast polymerization without using a suspending agent and an emulsifier or Formation of polymer (E) by solution polymerization is preferred.
  • the method for forming the resin (B) is not limited, and the polymer (E) may be used as it is, and if necessary, the polymer (E), another polymer, another resin and / or addition It can be formed by mixing the agent with a known method.
  • a known method for mixing, for example, an extruder can be used.
  • the resin (B) discharged from the extruder may be pelletized with a pelletizer as it is.
  • Other resins and additives will be described later in the description of the resin composition (C).
  • Resin composition (C) has a Tg of 130 ° C. or higher.
  • the upper limit of Tg of a resin composition (C) is not specifically limited, For example, it is 200 degreeC and the moldability of a resin composition (C) becomes high in the range of 130 to 200 degreeC.
  • the heat resistance of the resin composition (C) having a Tg of 130 ° C. or higher is high.
  • a film composed of the resin composition (C) can be easily arranged in the vicinity of a heat generating part such as a light source in an image display device.
  • the molded article of the resin composition (C) can be used for a device that is assumed to be used in a high temperature environment such as a device mounted on a vehicle; or a substrate of a transparent conductive film or the like needs to be processed at a high temperature.
  • Advantageous effects such as being able to use the resin composition (C) for the member are achieved.
  • the resin (A) and the resin (B) are in a mutually compatible state. For this reason, a resin composition (C) can be used for an optical use. It can be judged that the resins contained in the resin composition are compatible with each other because the Tg of the resin composition measured in a temperature range of room temperature or higher is only one point. In other words, when the resins are not compatible with each other, a plurality of Tg values corresponding to the respective resins are measured in a temperature range of normal temperature or higher.
  • the content of the N-substituted maleimide structure in the resin composition (C) is 1% by weight or more and 10% by weight or less. When the said content rate is less than 1 weight%, the high heat resistance of a resin composition is not achieved. On the other hand, if the content exceeds 10% by weight, the mechanical properties of the resin composition are greatly reduced, or it is difficult to ensure the expected properties because the resin composition is a blend of a plurality of resins.
  • the content of the N-substituted maleimide structure in the resin composition (C) is preferably 2% by weight to 8% by weight, more preferably 3% by weight to 6% by weight.
  • the upper limit of the content of the N-substituted maleimide structure in the resin composition (C) can be 5% by weight or less.
  • the resin (A) contains an N-substituted maleimide structure
  • the acrylic polymer (D) contained in the resin (A) has an N-substituted maleimide structure in the main chain
  • the resin The N-substituted maleimide structure of the composition (C) is derived from both the resin (A) and the resin (B).
  • the acrylic polymer (D) contained in the resin (A) mainly has a ring structure other than the N-substituted maleimide structure.
  • the resin composition (C) contains the ring structure in addition to the N-substituted maleimide structure.
  • the ring structure contained in the resin composition (C) is not collected in either one of the resin (A) and the resin (B), but the resin (A) and the resin (B) Moreover, it is also in a state of being sorted according to the type. In this case, the effect of the present invention described above becomes more remarkable. More specifically, while achieving high heat resistance, the deterioration of mechanical properties is further suppressed, and the expected properties can be ensured more reliably because of the resin composition.
  • the lower limit of the content of all ring structures including the N-substituted maleimide structure in the resin composition (C) is, for example, 10% by weight. Yes, 15% by weight or more, 20% by weight or more, and 25% by weight or more in order.
  • the upper limit of the content is more preferably, for example, in the order of 40% by weight or less, 35% by weight or less, and 30% by weight or less in order to more reliably suppress the deterioration of the mechanical properties of the resin composition.
  • the ring structure is a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer.
  • the content of the ring structure in the resin composition (C) may be 30% by weight or less.
  • the Tg of the resin composition is made to be 130 ° C. or higher only with such a ring structure, the content of the ring structure in the resin composition needs to be larger, for example, 35% by weight or more.
  • such a resin composition can achieve a high Tg, the mechanical properties are strongly reduced.
  • the resin composition (C) in which the resin (A) contains a ring structure other than the N-substituted maleimide structure contains an N-substituted maleimide structure that has a strong effect of improving the heat resistance of the resin composition.
  • the content can be reduced to 30% by weight or less, and the deterioration of the mechanical properties of the resin composition can be further suppressed while achieving high heat resistance.
  • the content of the ring structure other than the N-substituted maleimide structure with respect to the content T1 of the N-substituted maleimide structure in the resin composition (C) is, for example, 1 or more, preferably 3 or more, more preferably 5 or more, and the upper limit of the ratio is, for example, 20 or less, preferably 15 or less, more preferably 10 or less.
  • the ring structure other than the N-substituted maleimide structure is, for example, a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer.
  • Specific examples include a glutarimide structure, an anhydrous structure, and the like. It is at least one selected from a glutaric acid structure and a lactone ring structure, and a more specific example is a lactone ring structure.
  • the content of the (meth) acrylic acid ester unit in the resin composition (C) is preferably 50% by weight or more and 70% by weight or less. In this range, when the content of the ring structure in the resin composition (C) and the resin (B) have an aromatic vinyl monomer unit, the content of the unit is further set to a more appropriate range. Therefore, the effect of the present invention can be obtained more reliably.
  • the upper limit of the content of the unit in the resin composition (C) is preferably 15% by weight or less.
  • the content of the unit in the resin composition (C) becomes excessively large, for example, the birefringence of the resin composition (C) becomes negatively large and a small birefringence cannot be achieved, that is, the resin composition ( The degree of freedom in controlling the characteristics in C) decreases.
  • the mixing ratio (weight ratio) of the resin (A) and the resin (B) in the resin composition (C) is such that the content of the N-substituted maleimide structure in the resin composition (C) is 1 wt% or more and 10 wt% or less. There is no particular limitation as long as compatibility between the resin (A) and the resin (B) is ensured and the effect of the present invention is obtained.
  • Resin composition (C) may be an acrylic resin composition.
  • the difference in Tg between the resin (A) and the resin (B) is preferably 0 to 20 ° C, more preferably 0 to 18 ° C, and further preferably 0 to 17 ° C.
  • the resin (A) and the resin (B) are compatible in the resin composition (C)
  • the difference in Tg between the two increases, depending on the stretching temperature and / or the use temperature of the resin molding, This is because the orientation of the molecular chains is likely to be affected differently by changes in the stretching temperature and / or the use temperature.
  • Resin composition (C) may contain a polymer and / or a resin other than the above-described polymer and resin. These polymers and / or resins may be derived from the resin (A) (included in the resin (A)) or from the resin (B), or the resins (A) and (B). And may be contained in the resin composition (C) independently. That is, the origin of these polymers and / or resins in the resin composition (C) does not matter. However, the compatibility of the resin composition (C) as a whole needs to be satisfied.
  • the resin and polymer include polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene), and halogen-containing heavy resins such as polyvinyl chloride and polychlorinated vinyl.
  • the resin composition can contain two or more of these polymers and / or resins.
  • the total content of these polymers and resins in the resin composition (C) is, for example, 15% by weight or less, and more preferably in the order of 12% by weight or less and 10% by weight or less.
  • the resin composition (C) is a resin (A) and / or A polymer and / or resin that is incompatible with the resin (B) can be included.
  • An example of these polymers and resins is an elastomer (G) such as a rubbery polymer.
  • the resin composition can contain 2 or more types of elastomers (G).
  • the mechanical properties of the resin composition (C) and the resin molded body composed of the composition for example, flexibility, and more specific bending resistance Improve.
  • the configuration and shape of the elastomer (G) are not limited, and examples thereof include organic fine particles having a crosslinked structure, and a block copolymer having a hard part (g1) and a soft part (g2).
  • Organic fine particles having a crosslinked structure can be formed, for example, by polymerization of a monomer group containing a polyfunctional compound having two or more nonconjugated double bonds per molecule.
  • the organic fine particles exhibit crosslinking elasticity based on a core portion having a crosslinked structure.
  • the organic fine particles preferably have a core-shell structure. In this case, the dispersibility of the organic fine particles in the resin composition (C) is improved.
  • a structure derived from a polyfunctional compound is constructed only in the central portion (core), and a resin (in the shell) surrounding the central portion (core) is formed.
  • a structure having high compatibility with the acrylic resin (A) contained in the composition (C) is constructed.
  • the dispersibility of the organic fine particles in the resin composition (C) is further improved.
  • the improvement in dispersibility makes the dispersed state of the organic fine particles in the resin composition (C) more uniform.
  • the flexibility (for example, bending resistance) of the film comprised from the resin composition (C) can be further improved, for example.
  • the composition can be filtered while preventing the filter from being clogged when forming the resin composition (C), and foreign matter contained therein
  • the resin composition (C) with a small amount of can be provided.
  • organic fine particles include, for example, Kane Ace M210, an acrylic modifier manufactured by Kaneka (rubber particles having a multilayer structure; a core is a multilayer acrylic rubber; a shell is an acrylic polymer mainly composed of methyl methacrylate; About 220 nm).
  • the configuration of the block copolymer is not limited.
  • the molecular chain may be linear, branched, or radial.
  • a preferred form of the block copolymer is at least a polymer block mainly composed of methacrylic acid ester units as the hard portion (g1), and a polymer block mainly composed of acrylate ester units as the soft portion (g2). Have one.
  • Another preferred embodiment is a binary triblock copolymer represented by (g1)-(g2)-(g1) or (g2)-(g1)-(g2).
  • the hard part (g1) has a composition that achieves high compatibility with the resin (A) and / or the resin (B), and in a more preferred form, the hard part ( g1) has the same composition as resin (A) or resin (B).
  • the flexibility (for example, bending resistance) of the film comprised from the resin composition (C) can be further improved, for example.
  • the composition can be filtered while preventing clogging of the filter when the resin composition (C) is formed.
  • a resin composition (C) with a reduced amount of foreign matter can be provided.
  • Commercially available block copolymers are, for example, Kuraray, Clarity LA4285 and LA2250.
  • the content of the elastomer (G) in the resin composition (C) is limited unless it greatly affects the optical transparency of the resin composition (C). For example, it is 1% by weight or more and 15% by weight or less. In this range, the effect of improving the mechanical properties of the film, such as flexibility, is ensured, and the decrease in Tg of the resin composition (C) is suppressed.
  • the lower limit of the content is more preferably in the order of 2% by weight or more, 3% by weight or more, 4% by weight or more, and 5% by weight or more.
  • the upper limit of the content is preferably 10% by weight or less.
  • Tg of elastomer (G) is normally less than normal temperature
  • Tg of elastomer is not measured in the measurement of Tg of the resin composition in the temperature range above normal temperature. This means that the compatibility between the resins (A) and (B) can be determined by the measurement.
  • the resin composition in the temperature region where the Tg of the hard part (g1) when the elastomer (G) is a block copolymer and the Tg of the shell when the elastomer (G) has a core-shell structure is a room temperature or higher. It may be measured in the measurement of the Tg of an object. At this time, since the Tg can be easily distinguished from the Tg of the resins (A) and (B), the compatibility between the resins (A) and (B) can be determined by the measurement.
  • the resin composition (C) can contain materials other than the polymer and the resin, for example, additives.
  • Additives include, for example, antioxidants, light stabilizers, weather stabilizers, heat stabilizers and other stabilizers; phase difference adjusting agents such as phase difference increasing agents, phase difference reducing agents, phase difference stabilizers; glass fibers, Reinforcing materials such as carbon fibers; ultraviolet absorbers; near infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; antistatic agents including anionic, cationic or nonionic surfactants Agents; colorants such as inorganic pigments, organic pigments, dyes; organic fillers, inorganic fillers, resin modifiers, plasticizers, lubricants.
  • the total content of additives in the resin composition (C) is preferably less than 7% by weight, more preferably 5% by weight or less, still more preferably 2% by weight or less, and
  • the total content of the resin (A) and the resin (B) in the resin composition (C) is preferably 80% by weight or more, and more preferably 90% by weight or more.
  • Resin composition (C) may consist of resin (A) and resin (B).
  • NMR 1 H-nuclear magnetic resonance
  • IR infrared spectroscopy
  • the resin composition (C) contains a material that is incompatible with the resin (A) and the resin (B), for example, the elastomer (G)
  • the evaluation is performed on the resin composition from which these materials have been removed. It is preferable to do.
  • the resin composition (C) since it is a resin composition in which a plurality of resins are blended, the expected characteristics can be more reliably ensured.
  • An example of a property is low birefringence.
  • the absolute value of the stress optical coefficient Cr of the resin composition (C) can be, for example, 1.0 ⁇ 10 ⁇ 10 Pa ⁇ 1 or less.
  • a film that exhibits low birefringence for example, a film that exhibits low birefringence, that is, a small retardation value is obtained.
  • a film can be used for an image display device as a polarizer protective film, for example.
  • each of the resin (A) and the resin (B) may take an absolute value range of these stress optical coefficients Cr.
  • a characteristic is a low photoelastic coefficient, more precisely the absolute value of the low photoelastic coefficient.
  • a resin composition having a small absolute value of the photoelastic coefficient and a resin molded body composed of such a resin composition have a small change in birefringence due to the application of external force.
  • the resin composition (C) showing a low photoelastic coefficient for example, a film showing a low photoelastic coefficient can be obtained.
  • Such a film can be used for an image display device, for example, as a film capable of suppressing light leakage, particularly light leakage in a high temperature and high humidity environment.
  • the absolute value of the photoelastic coefficient of the resin composition can be, for example, 1.0 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and depending on the composition of the resin composition (C), 0.9 ⁇ 10 ⁇ 12 Pa ⁇ 1.
  • the resin composition (C) having a small haze has high optical transparency when used as a film, for example, and such a film can be suitably used for optical applications.
  • the haze of the resin composition (C) can be, for example, 2% or less as a value in the thickness direction when a film having a thickness of 100 ⁇ m is formed.
  • 1. It can be 5% or less, 1% or less, and even 0.5% or less.
  • the resin composition (C) can have, for example, high flexibility and low dimensional change rate when formed into a film.
  • the flexibility can be evaluated by, for example, a film folding resistance test (MIT test). Details will be described later in the description of the film composed of the resin composition (C).
  • the formation method of the resin composition (C) is not particularly limited.
  • the resin composition (C) is, for example, a resin (A) and (B) and, if necessary, a polymer and / or resin other than the resins (A) and (B), or additives, It can be formed by mixing by the method. Materials other than the resins (A) and (B) may be mixed together with the resins (A) and (B), or may be mixed in advance separately from the resins (A) and (B). You may mix further in addition to the mixture of A) and (B). Mixing can be carried out, for example, by pre-blending with a mixer such as an omni mixer and then kneading the resulting mixture with a kneader.
  • a mixer such as an omni mixer
  • a kneading machine is not limited, For example, they are extruders, such as a single screw extruder and a twin screw extruder, and a pressure kneader.
  • the obtained resin composition (C) may be pelletized with a pelletizer or the like, if necessary.
  • Resin composition (C) can be used, for example, as a resin molded body.
  • a known method can be used for molding the resin molded body (C).
  • melt molding and solution molding can be used.
  • the resin molding is a film
  • a known film molding method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, or a compression molding method can be employed. Of these, the solution casting method and the melt extrusion method are preferable.
  • the kneader used for melt extrusion of the resin composition (C) is not limited, and various types of extruders such as a single screw extruder and a twin screw extruder and known kneaders such as a pressure kneader can be used.
  • the formation of the resin composition (C) and the molding of the resin composition (C) may be performed continuously.
  • the resins (A) and (B), and the resin (A ) And (B) and other polymers and / or resins or additives are mixed by a known method, and this is melt-extruded.
  • Specific examples of the melt extrusion method are a T-die method and an inflation method.
  • the molding temperature at the time of melt extrusion molding is preferably 200 to 350 ° C., more preferably 250 to 300 ° C., further preferably 255 to 300 ° C., and particularly preferably 260 to 300 ° C.
  • a film (resin film) wound in a roll shape is obtained by extruding the resin composition (C) from an extruder having a T-die attached to the tip and winding the film extruded from the T-die. can get.
  • the obtained film (unstretched film) may be further stretched, whereby a stretched film (uniaxially stretched film, biaxially stretched film) is obtained.
  • a typical embodiment of the stretched film composed of the resin composition (C) is a biaxially stretched film.
  • a known stretching machine can be used for stretching.
  • the film may be uniaxially stretched in the feeding direction (MD direction) by an oven longitudinal stretching machine or a roll longitudinal stretching machine, or the film may be stretched by a tenter transverse stretching machine. You may uniaxially stretch in the width direction (TD direction).
  • Biaxial stretching can also be performed by combining stretching in the MD direction and stretching in the TD direction.
  • the biaxial stretching may be not only sequential biaxial stretching but also simultaneous biaxial stretching by a simultaneous biaxial stretching machine.
  • the type of the extruder is not limited, and any of short-shaft, twin-screw and multi-screw extruders can be employed.
  • the L / D value of the extruder (L is the cylinder length of the extruder and D is the cylinder inner diameter) is preferably in order to sufficiently plasticize the resin composition and achieve a good kneading state. It is 10 or more and 100 or less, more preferably 15 or more and 80 or less, and further preferably 20 or more and 60 or less.
  • the set temperature of the cylinder of the extruder is preferably 200 to 350 ° C., more preferably 250 to 300 ° C., similarly to the molding temperature in melt molding.
  • the melt viscosity of the resin composition in the extruder can be controlled to a range suitable for efficient melt molding, and the composition and the resin contained in the composition can be thermally decomposed. It is suppressed.
  • the extruder has one or more open vent portions.
  • the decomposition gas generated by melting the resin composition in the extruder can be sucked from the open vent portion, and the amount of volatile components remaining in the formed film can be reduced.
  • the open vent portion may be in a reduced pressure atmosphere, and the degree of pressure reduction at that time is set to the pressure (absolute pressure) of the open vent portion, for example, 931 to 1. 3 hPa, preferably 798 to 13.3 hPa.
  • the pressure of the open vent part of the extruder lower than 1.3 hPa.
  • the resin composition When the resin composition is melt-extruded, it is preferable to perform filtration of the molten resin composition with a polymer filter. Thereby, since the quantity of the foreign material contained in a resin composition can be reduced, the fault on the external appearance by the said foreign material of the film obtained by melt molding can be reduced, for example. Since such a defect also becomes an optical defect of the resin molded body, the above filtration is particularly preferable when obtaining a resin molded body for optical use.
  • the molding temperature in melt molding is preferably 255 to 350 ° C., more preferably 260 to 320 ° C.
  • the viscosity (melt viscosity) of the resin composition in a molten state can be kept lower, and the residence time (passage time) of the resin composition in the polymer filter can be shortened.
  • the residence time is shortened, the deterioration of the resin composition in a high-temperature molten state that can occur when passing through the polymer filter is suppressed.
  • the gas component generated by the deterioration and / or the colored deterioration product resin composition Can be prevented. Incorporation of gas components and colored deterioration products can cause defects such as perforations, flow patterns, and flow lines in the obtained film.
  • the filtration accuracy of the polymer filter is not limited and is usually 15 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • An excessively small filtration accuracy for example, a filtration accuracy of 1 ⁇ m or less increases the residence time of the resin composition in the polymer filter, so that the degree of thermal deterioration of the resin composition during filtration increases, and the productivity of the resin molded body May decrease.
  • excessively high filtration accuracy for example, filtration accuracy exceeding 15 ⁇ m, reduces the removal rate of foreign substances contained in the resin composition.
  • the filtration area of the polymer filter is not limited and can be selected according to the treatment amount of the resin composition in the filter.
  • the filtration area is, for example, 0.001 to 0.15 m 2 / (kg / hour) as an area relative to the throughput per hour.
  • the shape of the polymer filter is not limited, for example, an internal flow type having a plurality of resin flow ports and a resin flow path in the center pole; the cross section is on the inner peripheral surface of the leaf disk filter at a plurality of vertices or faces And an external flow type having a resin flow path on the outer surface of the center pole.
  • Outflow type is preferred because there are few resin stays.
  • the residence time of the resin composition in the polymer filter is not limited, but is preferably 20 minutes or less, more preferably 10 minutes or less, and even more preferably 5 minutes or less.
  • the filter inlet pressure and the filter outlet pressure during filtration are, for example, 3 to 15 MPa and 0.3 to 10 MPa, respectively. It is preferable to control the pressure loss during filtration (pressure difference between the filter inlet pressure and the outlet pressure) to 1 to 15 MPa. When the pressure loss is 1 MPa or less, the resin composition tends to be biased in the flow path through the filter, and the quality of the obtained film tends to decrease. On the other hand, when the pressure loss exceeds 15 MPa, the polymer filter is easily damaged during filtration.
  • the temperature of the resin composition introduced into the polymer filter is, for example, 250 to 300 ° C., preferably 255 to 300 ° C., more preferably 260 to 300 ° C.
  • the specific process of forming a film with few defects such as foreign matters and colored substances by melt molding combined with filtration using a polymer filter is not limited.
  • the resin composition that has passed through the polymer filter is preferably extruded as it is to form a film.
  • the thermal history of the resin composition can be reduced as compared with the case where the resin composition is pelletized and the obtained pellet is remelted to form a film, the thermal deterioration of the resin composition can be suppressed.
  • contamination of foreign matters from the environment can be further suppressed, and contamination and / or coloring of foreign matters in the obtained film can be further suppressed.
  • the use of the resin composition (C) is not limited. A use can be selected according to the characteristic which a resin composition (C) can show.
  • the characteristic is, for example, high heat resistance (Tg of 130 ° C. or higher); suppression of deterioration of mechanical characteristics, that is, retention of high mechanical characteristics. More specific examples are high flexibility, low dimensional change rate. Excellent optical properties, more specific examples are low birefringence, low photoelastic coefficient.
  • the specific use of the resin composition (C) is, for example, a resin molded body, and examples of the resin molded body include a film, a sheet, a plate, a substrate, a disk, a block, a ball, a lens, a rod, a strand, a cord, It is a fiber.
  • examples of more specific applications are various products such as mobile phones, keyboards, notebook computers, computer cases, game machines, cosmetics, stationery, sporting goods, and various industries such as the decoration industry and the information industry.
  • Resin composition (C) may be an optical resin composition or an optical film resin composition.
  • the film (F) has characteristics derived from the resin composition (C).
  • the film (F) for example, enjoys the excellent optical transparency possessed by the acrylic resin, and achieves high heat resistance, more specifically, high Tg of 130 ° C. or higher, while reducing mechanical properties. It is a film that is suppressed and is configured from a resin composition, and thus ensures the expected properties more reliably.
  • the characteristics expected specifically are as described above.
  • the film (F) is, for example, an optical member such as an optical film; a film included in a device expected to be used in a high temperature environment such as a device mounted on a vehicle; a transparent conductive film such as an ITO film; It can be used for a member that needs to be processed at a high temperature, such as a substrate film.
  • an optical member such as an optical film
  • a film included in a device expected to be used in a high temperature environment such as a device mounted on a vehicle
  • a transparent conductive film such as an ITO film
  • the thickness of the film (F) is, for example, 1 to 400 ⁇ m.
  • the thickness of the film (F) is preferably 1 to 250 ⁇ m, more preferably 10 to The thickness is 100 ⁇ m, more preferably 20 to 80 ⁇ m.
  • the thickness of the film (F) is preferably 20 to 400 ⁇ m, more preferably 30 It is ⁇ 350 ⁇ m, more preferably 40 to 300 ⁇ m.
  • the film (F) can have high optical transparency.
  • the total light transmittance of the film (F) (total light transmittance evaluated in accordance with the provisions of JIS K7361) is, for example, 85% or more, depending on the composition of the resin composition (C) and the configuration of the film (F). Can be 90% or more, and further 91% or more.
  • the total light transmittance of the film is an index of the optical transparency of the film. A film having a total light transmittance of less than 85% is not suitable for optical applications.
  • Film (F) may have a low haze.
  • the haze of the film (F) (haze evaluated according to the provisions of JIS K7136) is, for example, 1.0% or less as a value in the thickness direction of the film per 100 ⁇ m of film thickness.
  • the haze includes a total haze considering an effect derived from the shape of the film surface and an internal haze excluding the effect.
  • the total haze and / or internal haze of the film (F) is set to the above value, for example, 1.0% or less.
  • the internal haze can be 0.7% or less depending on the composition of the resin composition (C) and the structure of the film (F).
  • the film (F) is a stretched film and can be an optically isotropic film (low retardation film) whose birefringence is almost zero, more specifically, a retardation value is almost zero.
  • An optically isotropic film can be used as, for example, a polarizer protective film provided in an image display device, and a polarizing plate can be formed by combining the film with a polarizer.
  • phase difference absolute value of the in-plane phase difference Re and the thickness direction phase difference Rth
  • the absolute values of Re and Rth of the optically isotropic film are preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less. That is, the film (F) is a stretched film, an in-plane retardation Re for light having a wavelength of 590 nm is 5 nm or less, and an absolute value of a thickness direction retardation Rth for the light may be 5 nm or less. .
  • the film (F) is a stretched film and is not optically isotropic (optical Film having a certain anisotropy).
  • a film showing a retardation can be used as, for example, a retardation film or an antireflection film combined with a polarizing plate.
  • the low birefringence that the resin composition (C) and the film (F) composed of the composition may have is based solely on the high degree of freedom of birefringence control in the resin composition (C).
  • the resin composition (C) and the film (F) are not limited to those exhibiting low birefringence. However, low birefringence combined with high Tg is one of the particularly advantageous effects of the present invention.
  • Film (F) can be a stretched film. More specifically, the film (F) can be a uniaxially stretched film or a biaxially stretched film.
  • the stretching direction is preferably an arbitrary direction in the film plane and a direction perpendicular to the direction in the film plane.
  • the arbitrary direction is, for example, its longitudinal direction (flow direction; MD)
  • the perpendicular direction is, for example, its width direction (TD).
  • MD longitudinal direction
  • TD width direction
  • the film (F) is a biaxially stretched film, the mechanical properties of the film in both the arbitrary direction and the perpendicular direction, such as flexibility, are improved.
  • the film (F) which is a stretched film can be formed by stretching an unstretched film of the resin composition (C).
  • stretching temperature is Tg or more, for example, and it is more preferable in order of Tg + 5 degreeC or more, Tg + 10 degreeC or more, and Tg + 15 degreeC or more.
  • the upper limit of the stretching temperature is, for example, Tg + 40 ° C. or lower, and more preferable in the order of Tg + 35 ° C. or lower, Tg + 30 ° C. or lower, and Tg + 25 ° C. or lower.
  • the stretching temperature increases, the effect of improving the strength based on the orientation of the molecular chain of the polymer contained in the resin composition decreases, but the dimensional change rate of the film at a high temperature tends to be suppressed to a low level.
  • the stretching temperature is lowered, the effect of improving the strength is enhanced, but the dimensional change rate at a high temperature tends to be increased.
  • the stretching ratio in the above-mentioned arbitrary direction in biaxial stretching, for example, the MD direction is, for example, 1.3 to 1.9 times, preferably 1.4 to 1.9 times.
  • the draw ratio is excessively small, the orientation of the molecular chain in the stretched film cannot be sufficiently ensured.
  • the flexibility of the film more specifically, the flexibility in the MD direction is expected to be expected by stretching. Will not be achieved.
  • a film with low flexibility may be whitened by bending, for example.
  • the stretching ratio in the perpendicular direction for example, the TD direction
  • the stretching ratio in the perpendicular direction is, for example, 1.8 to 4.0 times, preferably 2.0 to 3.8 times. If the draw ratio is excessively small, the orientation of the molecular chain in the stretched film cannot be sufficiently secured, and for example, the flexibility of the film, more specifically, the flexibility in the TD direction is expected to be expected by stretching. Will not be achieved.
  • a film with low flexibility may be whitened by bending, for example.
  • the stretching speed is preferably 10 to 20,000% / min, more preferably 100 to 10,000% / min per one direction of stretching. In these cases, a stretched film can be formed more efficiently while preventing breakage during film stretching.
  • the film (F) is a stretched film, more specifically a biaxially stretched film, which has a folding resistance of 200 times or more in a folding resistance test (MIT test) performed based on the provisions of JIS P8115. It can be the film shown.
  • the number of folding times varies depending on the film direction, for example, when the number of folding times in the MD direction is different from the number of folding times in the TD direction, the smaller number of times can be 200 or more.
  • the stretched state of the film (F) the film (F) may be 250 times or more, 300 times or more, or 350 times in the folding resistance test. It may be a film showing the number of folding times more than the number of times.
  • Such a film (F) has high flexibility, prevents breakage during production, and is excellent in handling and durability when used, particularly as an optical member.
  • the film (F) is a stretched film, more specifically, a biaxially stretched film, and the dimensional change rate before and after the test is -1.
  • the film may be 5% or more and 0.5% or less.
  • the film (F) has a lower limit of the dimensional change rate of ⁇ 1.2% or more, and ⁇ 1.
  • the film may be 0% or more, more preferably ⁇ 0.8% or more, and the upper limit of the dimensional change rate may be 0.3% or less, further 0.1% or less.
  • Such a film has heat resistance that can withstand processing at high temperatures, and is excellent in durability at high temperatures. A negative dimensional change value indicates that the film has shrunk by the test.
  • the film (F) is a stretched film, more specifically a biaxially stretched film, and a dimensional change before and after the test in a 120-hour wet heat durability test in a high-temperature wet state at 85 ° C. and a relative humidity of 95% RH.
  • the film may have a rate of ⁇ 1.5% to 0.5%.
  • the film (F) has a lower limit of the dimensional change rate of ⁇ 1.2% or more, and ⁇ 1.
  • the film may be 0% or more, further ⁇ 0.8% or more, and the upper limit of the dimensional change rate may be 0.3% or less, further 0.1% or less.
  • Such a film has heat resistance capable of withstanding processing at high temperature and high humidity, and is excellent in durability when used at high temperature and high humidity.
  • Film (F) is an antistatic layer, an adhesive layer, an adhesive layer, an easy-adhesion layer, an antiglare (non-glare) layer, an antifouling layer such as a photocatalyst layer, an antireflection layer, or a hard coat layer as necessary.
  • various functional layers such as an ultraviolet shielding layer, a heat ray shielding layer, an electromagnetic wave shielding layer, a light diffusion layer, a gas barrier layer, and a transparent conductive layer may be further included. These functional layers may be a coating layer of the film (F) applied on the surface of the film (F), or an independent layer laminated on the film (F) via an adhesive or an adhesive. It may be.
  • the film (F) may have two or more functional layers, and for the laminate of the film (F) and the functional layer, the laminate has two or more films (F). Also good.
  • the order of laminating the functional layers on the film (F) and the laminating method are not limited.
  • the use of the film (F) is not limited, and is, for example, use as an optical member (optical use).
  • Optical members include, for example, a polarizer protective film, a retardation film, a viewing angle compensation film, a light diffusion film, a reflection film, an antireflection film, an antiglare film, a brightness enhancement film, a conductive film for touch panels, and various optical disks used for polarizing plates. (VD, CD, DVD, MD, LD, etc.)
  • the film (F) which shows small birefringence can be used suitably for a polarizer protective film, for example.
  • the film (F) which shows a small photoelastic coefficient with small birefringence can satisfy
  • the high heat resistance that can be exhibited by the film (F) makes the effect of the use of the film (F) for in-vehicle devices more remarkable.
  • Film (F) can be a strip-shaped film.
  • the band-shaped film (F) can be efficiently manufactured and processed by, for example, roll-to-roll. More specific examples of the production and processing are production of a polarizing plate by bonding with a polarizing film, formation of a transparent conductive film by sputtering or vapor deposition on the film (F), and formation of a functional layer by coating. is there.
  • MMA Methyl methacrylate
  • MHMA Methyl 2- (hydroxymethyl) acrylate
  • PMI N-phenylmaleimide
  • AN Acrylonitrile
  • St Styrene
  • MEK Methyl ethyl ketone
  • MIBK Methyl isobutyl ketone
  • the polymer and the resin are the same.
  • the weight average molecular weight Mw of the resin was determined by gel permeation chromatography (GPC) according to the following measurement conditions.
  • Measurement system “GPC system HLC-8220” manufactured by Tosoh Corporation Developing solvent: Chloroform (Wako Pure Chemical Industries, special grade) Solvent flow rate: 0.6 mL / min Standard sample: TSK standard polystyrene (“PS-oligomer kit” manufactured by Tosoh Corporation)
  • Reference side column configuration reference column (“TSK manufactured by Tosoh” gel SuperH-RC ”)
  • the glass transition temperature Tg of the resin and the resin composition was measured in accordance with JIS K7121 regulations. Specifically, using a differential scanning calorimeter (“Thermo plus EVO DSC-8230” manufactured by Rigaku), a sample of about 10 mg was heated from normal temperature to 200 ° C. (temperature increase rate: 20 ° C./min) in a nitrogen gas atmosphere. From the DSC curve obtained in this way, it was determined by the starting point method. ⁇ -alumina was used as a reference.
  • the stress optical coefficient Cr of the resin composition was evaluated as follows.
  • the resin composition to be evaluated was formed into a film by a melt press to produce an unstretched film (thickness: 100 ⁇ m).
  • the produced unstretched film was cut into a 60 mm ⁇ 20 mm rectangle to be an evaluation sample, and a weight selected so that a stress of 1 N / mm 2 or less was applied to the sample was attached to one of the short sides of the sample.
  • the sample was set in a constant temperature dryer (DOV-450A, manufactured by AS ONE) with a chuck distance of 40 mm so that the attached weight became the lower end.
  • the set temperature of the constant temperature dryer was set to Tg + 3 ° C.
  • the constant temperature dryer was preheated to the temperature before setting the sample. After setting the sample, the sample was held for about 30 minutes without changing the set temperature of the constant temperature dryer, thereby uniaxially stretching the sample based on the load of the attached weight. Next, the constant temperature dryer was cooled at a cooling rate of about 1 ° C./min until the temperature inside the device reached Tg ⁇ 40 ° C. of the resin composition. After cooling, the film was taken out from the dryer, and the length and thickness of the stretched film, the weight of the weight, and the in-plane retardation Re of the stretched film with respect to light having a wavelength of 590 nm were measured.
  • the calculation method of Cr is described in “Forefront of Transparent Plastics (Edited by Society of Polymer Science)” pp.
  • nx is the refractive index in the slow axis direction in the plane of the film (the direction showing the maximum refractive index in the film plane), and ny is the fast axis direction in the plane of the film (perpendicular to nx in the film plane).
  • the in-plane phase difference Re is given by the equation (nx ⁇ ny) ⁇ d. d is the thickness of the film (unit: ⁇ m). A method for measuring the in-plane retardation Re will be described later.
  • the photoelastic coefficient of the resin composition with respect to light having a wavelength of 590 nm was evaluated using an ellipsometer (manufactured by JASCO, M-150) as follows. First, the resin composition to be evaluated was formed into a film by a melt press to produce an unstretched film (thickness: 100 ⁇ m). Next, the produced unstretched film was cut into a size of 20 mm ⁇ 50 mm to obtain a measurement sample.
  • the cut-out measurement sample is mounted in an ellipsometer photoelasticity measurement unit, and three-point birefringence is measured while applying a stress load of 5 to 25 N parallel to the long side direction of the sample, and light having a wavelength of 590 nm is measured.
  • the slope of birefringence with respect to the stress when using was used as the photoelastic coefficient of the resin composition.
  • In-plane retardation Re and thickness direction retardation Rth for light with a wavelength of 590 nm of the film were measured using a retardation film / optical material inspection apparatus RETS-100 (manufactured by Otsuka Electronics Co., Ltd.) at an incident angle of 40 °. did.
  • the in-plane retardation Re and the thickness direction retardation Rth are the refractive index in the slow axis direction in the plane of the film nx, the refractive index in the fast axis direction in the film plane ny, and the thickness direction of the film Where nz is the refractive index and d is the thickness of the film.
  • In-plane retardation Re (nx ⁇ ny) ⁇ d
  • Thickness direction retardation Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d
  • the positive / negative of the intrinsic birefringence of the resin was evaluated as follows.
  • the phase difference of a uniaxially stretched film composed of the resin to be measured is measured by the above method, and the resin is used when the slow axis direction of the film determined by the measurement is parallel to the stretch direction of the film (including the case of being substantially parallel).
  • the intrinsic birefringence of the resin was negative, and the intrinsic birefringence of the resin was negative when the slow axis direction of the film was perpendicular to the stretching direction of the film (including the case of being substantially perpendicular).
  • a uniaxially stretched resin film was prepared as follows.
  • the resin composition to be evaluated was formed into a film by a melt press to produce an unstretched film (thickness: 100 ⁇ m).
  • the produced unstretched film was cut into a size of 80 mm ⁇ 50 mm.
  • the autograph manufactured by Shimadzu Corp., AG-1kNX
  • the cut film was stretched from the initial state where the distance between chucks was 40 mm under the stretching temperature (Tg + 10) ° C. and the stretching speed of 40 mm / min.
  • a uniaxially stretched film was obtained by uniaxial stretching at a free end of 2 times.
  • the number of folding resistances of the film was evaluated in accordance with JIS P8115. Specifically, a measurement sample having a length of 90 mm and a width of 15 mm was cut out from the film and allowed to stand in an atmosphere of 23 ° C. and 50% relative humidity (RH) for 1 hour or longer. The sample was subjected to a bending test under the conditions of a bending angle of 135 °, a bending speed of 175 cpm, and a load of 200 g. Five samples were prepared for one film, and the average of the measured values of each sample was defined as the number of folding times of the film. Evaluation of the folding endurance number was performed for each of the case where the MD direction of the film was the length direction of the sample and the case where the TD direction was the length direction of the sample.
  • the durability (dimensional change rate) of the film was evaluated as follows. First, the film was cut out to produce three 80 mm ⁇ 80 mm square measurement samples. Next, the length (La1, La2, La3, La4) of the four sides of the cut out sample was measured with a digital caliper. Next, the sample was stored for 120 hours in a constant temperature bath set to 110 ° C. or a constant temperature bath set to 85 ° C. and relative humidity (RH) 95%, and the length of the four pieces of the sample (Lb1, Lb2 after storage) , Lb3, Lb4) were measured again.
  • RH relative humidity
  • dimensional change rate
  • the rate of dimensional change was In the above formula, La is the length of one side of the film before storage, and Lb is the length of one piece of the film after storage.
  • the content of the structural unit derived from the N-substituted maleimide monomer in the resin composition was determined as follows.
  • the content of the structural unit in a resin having a structural unit derived from an N-substituted maleimide monomer is measured using an NMR measuring apparatus (Varian, Unity Plus 400). And determined by measuring the 1 H-NMR spectrum of the resin.
  • the resin to be evaluated (weight a) and 1,1,2,2-tetrachloroethane (molecular weight 167.85, weight b) as an internal standard were dissolved in deuterated chloroform, and the internal standard in the measured spectrum was measured. From the area ratio (X / Y) between the peak area X of (chemical shift 5.9 ppm, 4 protons) and the peak area Y derived from the protons of the groups R 1 and R 2 of the structural unit, The content rate of the said structural unit in resin was calculated
  • the content of the structural unit in the resin is 2/4 ⁇ 173.17 / 167.85.
  • the content of the structural unit in the resin composition was calculated.
  • a lactone ring structure was formed by intramolecular cyclocondensation reaction (dealcoholization cyclocondensation reaction between MMA unit and MHMA unit) in the precursor polymer. Based on the weight reduction rate of the polymer when it is assumed that all hydroxyl groups (hydroxyl groups derived from MHMA units) contained in the precursor polymer have been dealcoholated as methanol, the actually produced resin is heated to the resin. The weight loss rate due to dealcoholization of the remaining hydroxyl group as methanol was measured and compared with the above criteria to determine the lactone ring content.
  • the theoretical weight reduction rate Q was calculated from the content of constituent units (constituent units having a hydroxyl group) involved in the dealcoholization reaction in the precursor polymer.
  • the dealcohol content of the resin to be evaluated is determined according to the formula: ⁇ 1- (actual weight reduction rate P / theoretical weight reduction rate Q) ⁇ ⁇ 100
  • the reaction rate (%) was determined.
  • the dealcoholized reaction rate corresponds to the amount of structural units that have undergone a cyclization reaction during the production of a polymer having a lactone ring structure in the main chain to be evaluated from the precursor polymer.
  • the content of the lactone ring structure in the resin was determined according to the formula: B ⁇ A ⁇ MR / Mm, assuming that the lactone cyclization reaction proceeded during the resin preparation by the determined dealcoholization reaction rate.
  • B is the content of the constituent unit (constituent unit having a hydroxyl group) involved in the lactone cyclization reaction in the precursor polymer (the polymer before the lactone cyclization reaction proceeds), and MR is determined by the cyclization reaction.
  • Mm is the molecular weight of the structural unit
  • A is the dealcoholization reaction rate.
  • Example 1 Production of resin composition P1 (Preparation of acrylic resin A1 having positive intrinsic birefringence)
  • a reaction vessel having an internal volume of 30 L equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe
  • 8000 g of MMA, 2000 g of MHMA, and 10,000 g of toluene as a polymerization solvent were charged, and nitrogen was passed through to 105 ° C. The temperature rose.
  • 10.0 g of t-amyl peroxyisononanoate manufactured by Arkema Yoshitomi, Luperox 570, hereinafter the same
  • t-amyl peroxyisononanoate manufactured by Arkema Yoshitomi, Luperox 570, hereinafter the same
  • stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Co., Ltd.) as a cyclization catalyst was added to the polymerization solution thus obtained, and 5 ° C. under reflux at about 90 to 120 ° C.
  • the cyclization condensation reaction in which a lactone ring structure was formed was allowed to proceed over time.
  • the polymerization solution was heated and pressurized by an autoclave using a heating medium at 240 ° C., and the cyclization condensation reaction was allowed to proceed for an additional 1.5 hours.
  • the pressure of the autoclave was set to a maximum of about 2 MPa as a gauge pressure.
  • the polymerization solution thus obtained was set to a barrel temperature of 260 ° C., a rotation speed of 100 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a vent having one rear vent and four forevents.
  • the weight average molecular weight Mw of the resin A1 is 1480,000, the glass transition temperature Tg is 130 ° C., the intrinsic birefringence is positive, the lactone ring content is 29.2%, and the stress optical coefficient Cr is 4.2 ⁇ 10 ⁇ 10 Pa. -1 .
  • PMI structure N-substituted maleimide structure
  • the weight average molecular weight Mw of the resin B1 was 153,000, the glass transition temperature Tg was 146 ° C., the intrinsic birefringence was negative, and the stress optical coefficient Cr was ⁇ 24.8 ⁇ 10 ⁇ 10 Pa ⁇ 1 .
  • the content of the N-substituted maleimide structure in resin B1 was 31.6%.
  • Example 2 Preparation of resin composition P2
  • the mixture was kneaded at 0 ° C. to obtain a pellet-shaped resin composition P2.
  • the content of the N-substituted maleimide structure was 4.0%
  • the content of the lactone ring structure was 25.5% by weight.
  • Table 1 summarizes the Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P2. Only one point was measured for the Tg of the resin composition P2, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P2.
  • Example 3 Preparation of resin composition P3
  • a pellet-shaped resin composition P3 was obtained.
  • the content of the N-substituted maleimide structure was 4.4%
  • the content of the lactone ring structure was 25.1% by weight.
  • Table 1 summarizes the Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P2. Only one point of Tg of the resin composition P3 was measured, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P3.
  • the resin composition P4 did not have an N-substituted maleimide structure, and the content of the lactone ring structure in the resin composition P4 was 26.3%.
  • Table 1 summarizes Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of resin composition P4. Only one point of Tg of the resin composition P4 was measured, that is, it was confirmed that the resin A1 and the resin B2 were compatible in the resin composition P4.
  • the polymerization solution thus obtained was introduced into a twin-screw extruder in the same manner as in Example 1 and further cyclization condensation reaction proceeded and devolatilized in the extruder, and further extruded from its tip.
  • a transparent pellet of acrylic resin A2 having a lactone ring structure in the main chain was obtained.
  • the weight average molecular weight Mw of the resin A2 is 1270
  • glass transition temperature Tg is 140 ° C.
  • intrinsic birefringence is positive
  • lactone ring content is 43.9%
  • the stress optical coefficient Cr is 6.5 ⁇ 10 ⁇ 10 Pa. -1 .
  • the evaluation results of the obtained film F2 are summarized in Table 2 below.
  • Example 6 Preparation of rubber polymer G1
  • a polymerization vessel equipped with a cooler and a stirrer 710 parts of deionized water and 1.5 parts of sodium lauryl sulfate were added and dissolved, and the internal temperature was raised to 70 ° C.
  • a mixed solution of 0.93 part of sodium formaldehyde sulfoxylate (SFS), 0.001 part of ferrous sulfate, 0.003 part of disodium ethylenediaminetetraacetate (EDTA), and 20 parts of deionized water is polymerized. After further charging into the vessel all at once, the inside of the polymerization vessel was sufficiently replaced with nitrogen gas.
  • SFS sodium formaldehyde sulfoxylate
  • EDTA disodium ethylenediaminetetraacetate
  • a monomer mixed solution of 7.1 parts of butyl acrylate (BA), 2.9 parts of St, 0.02 part of 1,4-butanediol dimethacrylate (BDMA) and 0.02 part of allyl methacrylate (AMA) M-1 and a polymerization initiator solution of 0.13 part of t-butyl hydroperoxide (PBH) and 10.0 parts of deionized water are further added to the polymerization vessel all at once, and the polymerization reaction is performed for 60 minutes. Made progress.
  • a monomer mixture M2 of 63.9 parts of BA, 25.2 parts of St and 0.9 part of AMA, and a polymerization initiator solution of 0.246 parts of PBH and 20.0 parts of deionized water were separately added over 90 minutes. While continuously dropping into the polymerization vessel, further polymerization reaction was allowed to proceed, and the polymerization reaction was continued for another 60 minutes after the completion of these droppings. Through this series of reactions, a rubber polymer core-shell part was obtained.
  • a monomer mixture M3 of 73.0 parts of St and acrylonitrile (AN) 27.0 parts, and a polymerization initiator solution of 0.27 parts of PBH and 20.0 parts of deionized water were continuously separated over 100 minutes. Further polymerization reaction was allowed to proceed while dropping, and the polymerization reaction was continued for 120 minutes by raising the internal temperature of the polymerization vessel to 80 ° C. even after completion of these droppings.
  • the polymerization container was cooled to an internal temperature of 40 ° C., the contents were passed through a 300-mesh wire mesh to obtain an emulsion polymerization solution of a rubber polymer having a core / shell structure.
  • the obtained emulsion polymerization solution was salted out and coagulated with calcium chloride, and then the solid was washed with water and dried to obtain a powdery rubber polymer G1 (average particle size 0.105 ⁇ m).
  • Example 7 (Preparation of resin composition P7)
  • the content of the N-substituted maleimide structure was 3.8%
  • the content of the lactone ring structure was 23.5%.
  • Table 1 below summarizes the Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P7. Only one point of Tg of the resin composition P7 was measured, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P7.
  • the folding resistance of the examples relative to the comparative example increased despite the inclusion of the N-substituted maleimide structure. That is, the resin compositions of the examples contained N-substituted maleimide structures and were flexible despite achieving high Tg.
  • the resin composition of the present invention can be used after being formed into various shapes such as a film and a substrate.
  • the resin composition of the present invention can be used, for example, as an optical member, and more specifically as an optical film or an optical substrate. Focusing on the high Tg, it can be used in applications that are expected to be used in high-temperature environments, such as being incorporated into equipment mounted on vehicles, or in applications that are exposed to high-temperature processing such as transparent conductive film substrates. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A resin composition according to the present invention contains an acrylic resin (A) that has a positive intrinsic birefringence and a resin (B) that has a negative intrinsic birefringence and that has a constituent unit derived from N-substituted maleimide monomers. The constituent unit derived from N-substituted maleimide monomers is contained in this resin composition at between 1% and 10% by weight. The glass-transition temperature (Tg) of this resin composition is equal to or greater than 130 ºC. While the resin composition according to the present invention exhibits excellent optical transparency, which the acrylic resin possesses, and also achieves high heat resistance, to be more specific, a high Tg, deterioration of the mechanical characteristics thereof is suppressed, which makes it possible to more reliably ensure the characteristics expected of a resin composition in which multiple types of resins are mixed, and thus, the present invention provides a resin composition that can be used for various usages including optical films.

Description

樹脂組成物およびフィルムResin composition and film
 本発明は、樹脂組成物と、当該樹脂組成物から構成されるフィルムとに関する。より具体的に本発明は、例えば、液晶表示装置および有機電界発光表示装置といった画像表示装置に用いられる保護フィルム、反射防止フィルム、導電性フィルムおよび偏光フィルムなどの光学フィルムを構成しうる光学フィルム用樹脂組成物と、当該光学フィルムとに関する。 The present invention relates to a resin composition and a film composed of the resin composition. More specifically, the present invention is for an optical film that can constitute an optical film such as a protective film, an antireflection film, a conductive film, and a polarizing film used in an image display device such as a liquid crystal display device and an organic electroluminescence display device. The present invention relates to a resin composition and the optical film.
 ポリメタクリル酸メチル(PMMA)に代表されるアクリル重合体は、重合性が高く製造が比較的容易であるとともに光学的な透明性に優れることから、光学用途に幅広く使用されている。例えば、アクリル重合体を含むアクリル樹脂のレンズおよび基板といったバルク体としての使用に加えて、フィルム(光学フィルム)としての使用も一般的である。光学フィルムは、近年、液晶表示装置(LCD)および有機電界発光表示装置(OLED)とはじめとする各種の画像表示装置への使用がますます拡大している。 An acrylic polymer typified by polymethyl methacrylate (PMMA) is widely used for optical applications because it is highly polymerizable and relatively easy to produce and has excellent optical transparency. For example, in addition to use as a bulk body such as an acrylic resin lens and substrate containing an acrylic polymer, use as a film (optical film) is also common. In recent years, optical films have been increasingly used in various image display devices such as liquid crystal display devices (LCD) and organic electroluminescence display devices (OLED).
 用途が拡大するにつれ、アクリル樹脂には耐熱性が求められるようになっている。例えば、画像表示装置に光学フィルムを使用する場合、当該装置の設計上、電源部、発光部、回路基板といった発熱体に近接して光学フィルムを配置することが余儀なくされるため、耐熱性を有する光学フィルムが必要である。耐熱性が要求される用途の別の例は、車両に搭載する装置といった高温環境下での使用が想定される装置への使用、および酸化インジウムスズ(ITO)膜のような透明導電膜の基板など、高温での加工が必要な部材への使用である。 As the application expands, acrylic resins are required to have heat resistance. For example, when an optical film is used for an image display device, the design of the device has heat resistance because it is necessary to dispose the optical film close to a heating element such as a power supply unit, a light emitting unit, and a circuit board. An optical film is required. Other examples of applications that require heat resistance include use in devices that are expected to be used in high-temperature environments such as devices mounted on vehicles, and substrates of transparent conductive films such as indium tin oxide (ITO) films For example, it is used for members that require processing at high temperatures.
 重合体および樹脂の耐熱性の指標の一つはガラス転移温度(Tg)であり、Tgが高いほどこれらの耐熱性は高い。しかし、PMMAをはじめとする一般的なアクリル重合体、およびこれを含むアクリル樹脂のTgは最大100℃程度である。一般的なアクリル樹脂からは、例えば、画像表示装置への使用に十分に耐えうるだけの耐熱性を有する光学フィルムが得られない。 One of the indices of heat resistance of polymers and resins is the glass transition temperature (Tg), and the higher the Tg, the higher the heat resistance. However, Tg of general acrylic polymers including PMMA and acrylic resins including the same is about 100 ° C. at the maximum. From a general acrylic resin, for example, it is not possible to obtain an optical film having heat resistance enough to withstand use in an image display device.
 主鎖に環構造を配置することによりTgを向上させた耐熱性アクリル重合体と、このような重合体を含むアクリル樹脂からなる光学フィルムが知られている。また、他の樹脂とブレンドして樹脂組成物とすることによって、光学フィルムが示す光学特性のさらなる向上を図る、例えば複屈折性を低減させる、ことが提案されている(特許文献1参照)。特許文献1には、主鎖に環構造を有し、正の固有複屈折を有するアクリル重合体と、負の固有複屈折を有するスチレン系重合体とを含む樹脂組成物から構成される光学フィルムが開示されている。 An optical film made of a heat-resistant acrylic polymer whose Tg is improved by arranging a ring structure in the main chain and an acrylic resin containing such a polymer is known. Further, it has been proposed to further improve the optical properties exhibited by the optical film, for example, to reduce birefringence, by blending with other resins to obtain a resin composition (see Patent Document 1). Patent Document 1 discloses an optical film composed of a resin composition including an acrylic polymer having a ring structure in the main chain and having positive intrinsic birefringence, and a styrene polymer having negative intrinsic birefringence. Is disclosed.
特開2012-18315号公報JP 2012-18315 A
 耐熱性アクリル重合体では、主鎖の環構造がそのTgを向上させる。しかし、重合体における当該環構造の含有率が大きいほどTgが高くなる一方で、当該重合体の機械的特性が低下し、典型的には硬く脆い重合体へと変化する。また、アクリル重合体は、元来、他の熱可塑性重合体に比べて硬くて脆い特性を有する。これらの点は、アクリル重合体のTgをさらに高くすることが求められた場合に、その機械的特性の十分な確保を考慮すると、主鎖の環構造の含有率を単純に増加させればよいわけではないことを意味する。例えば、主鎖の環構造の含有率を単純に増加させたアクリル重合体の光学フィルムへの使用は、フィルムのTgをさらに高くし、耐熱性の向上をもたらすかもしれないが、同時にフィルムの強度、可撓性および取扱性(ハンドリング性)といった機械的特性の低下を引き起こす。機械的特性の低下はフィルムの延伸により緩和可能であるが、未延伸フィルムの状態における機械的特性の確保も、当然ながら延伸フィルムの製造に必要である。また、機械的特性の低下は未延伸フィルムの延伸性自体を低下させる。 In the heat-resistant acrylic polymer, the ring structure of the main chain improves its Tg. However, while the Tg increases as the content of the ring structure in the polymer increases, the mechanical properties of the polymer decrease, typically changing to a hard and brittle polymer. In addition, acrylic polymers are inherently harder and more brittle than other thermoplastic polymers. These points can be obtained by simply increasing the content of the ring structure of the main chain when it is required to further increase the Tg of the acrylic polymer, taking into account sufficient securing of its mechanical properties. That doesn't mean that. For example, the use of an acrylic polymer with a simple increase in the content of the ring structure of the main chain in an optical film may further increase the Tg of the film and improve the heat resistance. , Causing deterioration of mechanical properties such as flexibility and handling (handling property). Although the deterioration of the mechanical properties can be alleviated by stretching the film, it is of course necessary to secure the mechanical properties in the unstretched film state for the production of the stretched film. In addition, the decrease in mechanical properties reduces the stretchability of the unstretched film itself.
 次に、主鎖に環構造を有するアクリル重合体を含む樹脂を他の樹脂とブレンドして樹脂組成物とする場合に、アクリル重合体における当該環構造の含有率の単純な増加は、樹脂組成物とするが故に本来達成されることが期待される特性を得難くすることがある。具体的な特性の一例は、低い複屈折性である。樹脂組成物の複屈折性を低くすることによって、延伸による位相差発現性を小さくでき、例えば、面内位相差Reおよび厚さ方向の位相差Rthが小さい延伸光学フィルムが得られる。しかし、アクリル重合体における主鎖の環構造は、当該重合体および当該重合体を含む樹脂の固有複屈折を正に大きくする。このようなアクリル重合体を含む樹脂組成物の複屈折性を低くするためには、負の固有複屈折を有する重合体および/または添加剤を多く樹脂組成物に加えることが余儀なくされる。添加する重合体および添加剤の種類によっては樹脂組成物のTgを下げ、耐熱性を低下させるものも多く、上記環構造の含有率を増加させることにより一度は到達できた高い耐熱性が、複屈折性を抑えるためのこのような重合体および/または添加剤の添加により、樹脂組成物として維持できなくなる。換言すれば、主鎖に環構造を有するアクリル重合体を含む樹脂組成物において、高い耐熱性と低い複屈折性との両立は困難である。 Next, when a resin containing an acrylic polymer having a cyclic structure in the main chain is blended with another resin to obtain a resin composition, the simple increase in the content of the cyclic structure in the acrylic polymer is the resin composition. Therefore, it may be difficult to obtain characteristics that are expected to be achieved originally. An example of specific characteristics is low birefringence. By reducing the birefringence of the resin composition, it is possible to reduce the retardation development property due to stretching. For example, a stretched optical film having a small in-plane retardation Re and a thickness direction retardation Rth can be obtained. However, the ring structure of the main chain in the acrylic polymer positively increases the intrinsic birefringence of the polymer and the resin containing the polymer. In order to lower the birefringence of such a resin composition containing an acrylic polymer, it is necessary to add a large amount of polymer and / or additive having negative intrinsic birefringence to the resin composition. Depending on the type of polymer and additive to be added, there are many that lower the Tg of the resin composition and lower the heat resistance, and by increasing the content of the ring structure, the high heat resistance that could be achieved once is more than one. By adding such a polymer and / or additive for suppressing the refractive property, the resin composition cannot be maintained. In other words, in a resin composition including an acrylic polymer having a ring structure in the main chain, it is difficult to achieve both high heat resistance and low birefringence.
 次に、環構造の種類によっては、別の問題が生じうる。アクリル重合体が主鎖に有しうる環構造の中に、グルタルイミド構造、無水グルタル酸構造、およびラクトン環構造のように、既に環構造を持つ単量体の重合により重合体の主鎖に導入されるのではなく、前駆重合体に対する分子内環化反応の進行によって主鎖に導入される環構造がある。このような環構造の含有率を増加させようとすると、前駆重合体における環化反応に寄与する構成単位の含有率を増加させなければならない。しかし、その場合、理想的な分子内環化反応だけではなく、前駆重合体の主鎖間で反応が進行したり、未反応のまま上記構成単位が重合体に残留したりする傾向が強くなる。主鎖間の反応および上記構成単位の残留は、アクリル重合体のゲル化および着色といった不具合を引き起こす。すなわち、アクリル重合体における主鎖の環構造の含有率の単純な増加には限界がある。 Next, another problem may occur depending on the type of ring structure. Among the ring structures that an acrylic polymer can have in the main chain, such as a glutarimide structure, a glutaric anhydride structure, and a lactone ring structure, the polymer main chain is formed by polymerization of monomers that already have a ring structure. There is a ring structure that is not introduced, but is introduced into the main chain by the progress of an intramolecular cyclization reaction on the precursor polymer. In order to increase the content of such a ring structure, the content of the structural unit contributing to the cyclization reaction in the precursor polymer must be increased. However, in that case, not only an ideal intramolecular cyclization reaction but also a reaction tends to proceed between the main chains of the precursor polymer, or the above structural units remain unreacted in the polymer. . The reaction between the main chains and the remaining of the structural unit cause problems such as gelation and coloring of the acrylic polymer. That is, there is a limit to simply increasing the content of the main chain ring structure in the acrylic polymer.
 これらの点は、従来の技術では全く考慮されていない。 These points are not considered at all in the conventional technology.
 本発明の目的の一つは、アクリル樹脂が有する優れた光学的透明性を享受するとともに、高い耐熱性、より具体的には高いTg、が達成されながらも、機械的特性の低下が抑制され、複数の樹脂がブレンドされた樹脂組成物であるが故に期待される特性をより確実に確保できる、光学フィルムをはじめとする各種用途に使用可能な樹脂組成物の提供である。 One of the objects of the present invention is to enjoy the excellent optical transparency of the acrylic resin and to suppress the deterioration of the mechanical properties while achieving high heat resistance, more specifically, high Tg. The present invention provides a resin composition that can be used for various applications including an optical film, which can ensure the expected characteristics more reliably because it is a resin composition in which a plurality of resins are blended.
 本発明の樹脂組成物は、正の固有複屈折を有するアクリル樹脂(A)と、負の固有複屈折を有し、N-置換マレイミド単量体に由来する構成単位を有する樹脂(B)と、を含む。本発明の樹脂組成物における前記N-置換マレイミド単量体に由来する構成単位の含有率は1重量%以上10重量%以下である。本発明の樹脂組成物のガラス転移温度(Tg)は130℃以上である。 The resin composition of the present invention comprises an acrylic resin (A) having a positive intrinsic birefringence, a resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer. ,including. The content of the structural unit derived from the N-substituted maleimide monomer in the resin composition of the present invention is 1% by weight or more and 10% by weight or less. The glass transition temperature (Tg) of the resin composition of the present invention is 130 ° C. or higher.
 本発明のフィルムは、上記本発明の樹脂組成物からなる。 The film of the present invention consists of the resin composition of the present invention.
 本発明によれば、アクリル樹脂が有する優れた光学的透明性を享受するとともに、高い耐熱性、より具体的には高いTg、が達成されながらも、機械的特性の低下が抑制され、複数の樹脂がブレンドされた樹脂組成物であるが故に期待される特性をより確実に確保できる、光学フィルムをはじめとする各種用途に使用可能な樹脂組成物が得られる。 According to the present invention, while enjoying the excellent optical transparency of the acrylic resin and achieving high heat resistance, more specifically, high Tg, a decrease in mechanical properties is suppressed, and a plurality of Since it is a resin composition in which a resin is blended, it is possible to obtain a resin composition that can be used for various applications including an optical film, which can ensure the expected characteristics more reliably.
 本開示の第1の態様は、正の固有複屈折を有するアクリル樹脂(A)と、負の固有複屈折を有し、N-置換マレイミド単量体に由来する構成単位を有する樹脂(B)と、を含み、前記N-置換マレイミド単量体に由来する構成単位の含有率が1重量%以上10重量%以下であり、ガラス転移温度(Tg)が130℃以上である樹脂組成物を提供する。 The first aspect of the present disclosure includes an acrylic resin (A) having positive intrinsic birefringence, and a resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer And a resin composition having a content of structural units derived from the N-substituted maleimide monomer of 1% by weight to 10% by weight and a glass transition temperature (Tg) of 130 ° C. or higher. To do.
 本開示の第2の態様は、第1の態様に加え、前記アクリル樹脂(A)と前記樹脂(B)との間のTgの差が20℃以下である樹脂組成物を提供する。 The second aspect of the present disclosure provides a resin composition in which a difference in Tg between the acrylic resin (A) and the resin (B) is 20 ° C. or less in addition to the first aspect.
 本開示の第3の態様は、第1または第2の態様に加え、応力光学係数Crの絶対値が1.0×10-10Pa-1以下である樹脂組成物を提供する。 The third aspect of the present disclosure provides a resin composition in which the absolute value of the stress optical coefficient Cr is 1.0 × 10 −10 Pa −1 or less in addition to the first or second aspect.
 本開示の第4の態様は、第1から第3のいずれかの態様に加え、前記アクリル樹脂(A)が主鎖に環構造を有する樹脂組成物を提供する。 The fourth aspect of the present disclosure provides a resin composition in which the acrylic resin (A) has a ring structure in the main chain in addition to any of the first to third aspects.
 本開示の第5の態様は、第4の態様に加え、前記環構造が、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、無水マレイン酸構造、およびN-置換マレイミド構造から選ばれる少なくとも1種である樹脂組成物を提供する。 According to a fifth aspect of the present disclosure, in addition to the fourth aspect, the ring structure is at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, a maleic anhydride structure, and an N-substituted maleimide structure. A resin composition that is a seed is provided.
 本開示の第6の態様は、第4の態様に加え、前記環構造が、前駆重合体における隣り合う2つの構成単位間の分子内環化反応により形成された環構造であり、前記樹脂組成物における当該環構造の含有率が30重量%以下である樹脂組成物を提供する。 According to a sixth aspect of the present disclosure, in addition to the fourth aspect, the ring structure is a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer, and the resin composition Provided is a resin composition having a ring structure content of 30% by weight or less.
 本開示の第7の態様は、第1から第6のいずれかの態様に加え、前記樹脂組成物におけるN-置換マレイミド単量体に由来する構成単位の含有率が5重量%以下である樹脂組成物を提供する。 According to a seventh aspect of the present disclosure, in addition to any one of the first to sixth aspects, a resin in which the content of a structural unit derived from an N-substituted maleimide monomer in the resin composition is 5% by weight or less A composition is provided.
 本開示の第8の態様は、第1から第7のいずれかの態様に加え、前記樹脂(B)が、芳香族ビニル単量体に由来する構成単位をさらに有する樹脂組成物を提供する。 The eighth aspect of the present disclosure provides a resin composition in which, in addition to any one of the first to seventh aspects, the resin (B) further includes a structural unit derived from an aromatic vinyl monomer.
 本開示の第9の態様は、第1から第8のいずれかの態様に加え、光弾性係数の絶対値が1.0×10-12Pa-1以下である樹脂組成物を提供する。 According to a ninth aspect of the present disclosure, in addition to any one of the first to eighth aspects, a resin composition having an absolute value of a photoelastic coefficient of 1.0 × 10 −12 Pa −1 or less is provided.
 本開示の第10の態様は、第1から第9のいずれかの態様の樹脂組成物からなるフィルムを提供する。 The tenth aspect of the present disclosure provides a film comprising the resin composition according to any one of the first to ninth aspects.
 本開示の第11の態様は、第10の態様に加え、延伸フィルムであり、波長590nmの光に対する面内位相差Reが5nm以下であり、前記光に対する厚さ方向の位相差Rthの絶対値が5nm以下であるフィルムを提供する。 The eleventh aspect of the present disclosure is a stretched film in addition to the tenth aspect, and has an in-plane retardation Re for light having a wavelength of 590 nm of 5 nm or less, and an absolute value of the thickness direction retardation Rth for the light A film having a thickness of 5 nm or less is provided.
 本開示の第12の態様は、第10または第11の態様に加え、延伸フィルムであり、JIS P8115の規定に基づいて実施した耐折性(MIT)試験において200回以上の耐折回数を示すフィルムを提供する。 A twelfth aspect of the present disclosure is a stretched film in addition to the tenth or eleventh aspect, and exhibits a folding endurance of 200 times or more in a folding endurance (MIT) test performed based on the provisions of JIS P8115. Provide film.
 本明細書において、「樹脂」は「重合体」よりも広い概念である。樹脂は、例えば1種または2種以上の重合体からなってもよいし、必要に応じて、重合体以外の材料、例えば紫外線吸収剤、酸化防止剤、フィラーなどの添加剤、相溶化剤、安定化剤などを含んでいてもよい。 In this specification, “resin” is a broader concept than “polymer”. The resin may be composed of, for example, one or two or more polymers, and if necessary, materials other than the polymer, for example, additives such as ultraviolet absorbers, antioxidants, fillers, compatibilizing agents, A stabilizer and the like may be included.
 [樹脂組成物(C)]
 本発明の樹脂組成物(C)は、正の固有複屈折を有するアクリル樹脂(A)と、負の固有複屈折を有し、N-置換マレイミド単量体に由来する構成単位Sを有する樹脂(B)と、を含む。樹脂組成物(C)における構成単位Sの含有率は1重量%以上10重量%以下であり、樹脂組成物のTgは130℃以上である。
[Resin composition (C)]
Resin composition (C) of the present invention is a resin having a positive intrinsic birefringence (A) and a negative intrinsic birefringence and a structural unit S derived from an N-substituted maleimide monomer (B). The content rate of the structural unit S in a resin composition (C) is 1 to 10 weight%, and Tg of a resin composition is 130 degreeC or more.
 樹脂(B)が有する構成単位Sは、当該樹脂に含まれる重合体の主鎖に位置する環構造の1種であるN-置換マレイミド構造に対応する。すなわち、構成単位Sの存在により、樹脂(B)および樹脂(B)を含む樹脂組成物(C)の耐熱性が向上し、より具体的にはTgが高くなる。そして、構成単位S(N-置換マレイミド構造)は、重合体の主鎖に位置する環構造のなかでも、当該重合体のTgを高くする効果が特に強い。このため、一つの特徴として樹脂組成物(C)では、従来より少ない環構造の含有率によって、Tg≧130℃の高い耐熱性が達成される。そして別の一つの特徴として、高い耐熱性を達成するための従来より少ない環構造の含有によって、樹脂組成物(C)の特性、例えば機械的特性、の低下が抑制される。 The structural unit S contained in the resin (B) corresponds to an N-substituted maleimide structure which is a kind of ring structure located in the main chain of the polymer contained in the resin. That is, the presence of the structural unit S improves the heat resistance of the resin composition (C) containing the resin (B) and the resin (B), and more specifically increases Tg. The structural unit S (N-substituted maleimide structure) is particularly effective in increasing the Tg of the polymer among the ring structures located in the main chain of the polymer. For this reason, as one feature, the resin composition (C) achieves a high heat resistance of Tg ≧ 130 ° C. due to a smaller content of the ring structure than in the past. And as another characteristic, the fall of the characteristic of a resin composition (C), for example, a mechanical characteristic, is suppressed by inclusion of a ring structure less than before in order to achieve high heat resistance.
 これとは異なる別の特徴は、樹脂(B)について、構成単位Sが当該単位を有する重合体に正の固有複屈折を与える作用を有しながらも、樹脂(B)自体の固有複屈折が負であるということにある。すなわち、負の固有複屈折を有しているものの、樹脂(B)自体が示す応力光学係数Crの絶対値は、構成単位Sの存在により小さくなる。換言すれば、構成単位Sは、樹脂(B)および樹脂(B)を含む樹脂組成物(C)のTgを向上させるとともに、負の固有複屈折を有する樹脂(B)の応力光学係数Crの絶対値を低下させる作用を有する。このことは、例えば、複数の樹脂がブレンドされた樹脂組成物であるが故に期待される、より具体的には樹脂(A)との組み合わせに基づいて期待される、特性をより確実に確保できることを意味する。換言すれば、樹脂組成物(C)における特性の制御の自由度が向上する。特性は、例えば機械的特性および光学的特性であり、より具体的な例は、低い複屈折性、低い光弾性係数、低いヘイズ、フィルムとしたときの高い機械的特性(例えば可撓性)、低い寸法変化率、および複屈折の低い波長分散性である。なお、応力光学係数Crの絶対値は、樹脂または樹脂組成物に対して一方向に応力を加えたときに当該樹脂または樹脂組成物が示す複屈折の大きさに対応する数値であり、Crの絶対値が大きいほど、樹脂および樹脂組成物の複屈折発現性は高い。 Another feature different from this is that the resin (B) itself has a function of giving positive intrinsic birefringence to the polymer having the unit S, but the resin (B) itself has an intrinsic birefringence. It is that it is negative. That is, although it has negative intrinsic birefringence, the absolute value of the stress optical coefficient Cr indicated by the resin (B) itself is reduced by the presence of the structural unit S. In other words, the structural unit S improves the Tg of the resin composition (C) containing the resin (B) and the resin (B), and the stress optical coefficient Cr of the resin (B) having negative intrinsic birefringence. Has the effect of reducing the absolute value. This is because, for example, a resin composition in which a plurality of resins are blended is expected, and more specifically, the characteristics expected based on the combination with the resin (A) can be ensured more reliably. Means. In other words, the degree of freedom in controlling the characteristics of the resin composition (C) is improved. The properties are, for example, mechanical properties and optical properties, and more specific examples are low birefringence, low photoelastic coefficient, low haze, high mechanical properties when made into a film (eg flexibility), Low dimensional change rate and low wavelength dispersion of birefringence. The absolute value of the stress optical coefficient Cr is a numerical value corresponding to the magnitude of birefringence exhibited by the resin or resin composition when stress is applied in one direction to the resin or resin composition. The larger the absolute value, the higher the birefringence expression of the resin and the resin composition.
 樹脂組成物の低い複屈折性は、正の固有複屈折を有する樹脂と、負の固有複屈折を有する樹脂との間の固有複屈折の打ち消し合いにより達成される。樹脂(B)のCrの絶対値を小さくできると、これと組み合わせる樹脂(A)としてCrの絶対値が小さい樹脂を採用しながらも樹脂組成物(C)としての低い複屈折性を達成できる。このことは、樹脂組成物(C)における低い複屈折性の達成がより確実となりながら、さらに例えば、樹脂成形体、典型的には延伸フィルム、としたときの当該低い複屈折性の安定性を向上させる。樹脂組成物に含まれる樹脂のCrの絶対値が高い場合、低い複屈折性を発現させるための樹脂組成物(C)の延伸条件がシビアとなる。また、樹脂組成物に含まれる樹脂のCrの絶対値が高い場合、樹脂成形体の長期の使用により、また、樹脂成形体への熱の印加により、樹脂間で固有複屈折が打ち消し合う効果が薄れ、当該絶対値の高さに応じた複屈折性が復元する可能性があるためである。また、後述のように樹脂(A)が環構造を含む場合、より具体的な例として樹脂(A)が主鎖に環構造を有する重合体を含む場合、環構造の含有率の低い樹脂(A)を採用できる。このことは、樹脂組成物(C)としての低い光弾性係数、低いヘイズ、高い可撓性、寸法変化率の小ささなどに寄与する。また、樹脂(B)の構成単位間において、および樹脂組成物(C)の樹脂間において、正および負の固有複屈折が打ち消しあっていることは、その組成によっては、複屈折の低い波長分散性が達成されることを意味する。そして、これらの有利な特徴の前提として、樹脂組成物(C)では130℃以上の高いTgが達成されている。 The low birefringence of the resin composition is achieved by canceling out intrinsic birefringence between a resin having positive intrinsic birefringence and a resin having negative intrinsic birefringence. If the absolute value of Cr in the resin (B) can be reduced, low birefringence as the resin composition (C) can be achieved while adopting a resin having a small Cr absolute value as the resin (A) combined therewith. This means that the low birefringence in the resin composition (C) is more reliably achieved, and the stability of the low birefringence when, for example, a resin molded body, typically a stretched film, is used. Improve. When the absolute value of Cr of the resin contained in the resin composition is high, the stretching condition of the resin composition (C) for expressing low birefringence becomes severe. Also, when the absolute value of Cr of the resin contained in the resin composition is high, there is an effect of canceling out the intrinsic birefringence between the resins due to long-term use of the resin molded body and application of heat to the resin molded body. This is because there is a possibility that the birefringence corresponding to the height of the absolute value is restored. In addition, when the resin (A) includes a ring structure as will be described later, as a more specific example, when the resin (A) includes a polymer having a ring structure in the main chain, a resin having a low ring structure content ( A) can be adopted. This contributes to the low photoelastic coefficient, low haze, high flexibility, small dimensional change rate, etc., as the resin composition (C). In addition, the positive and negative intrinsic birefringence cancel each other between the constituent units of the resin (B) and between the resins of the resin composition (C). It means that sex is achieved. And as a premise of these advantageous characteristics, high Tg of 130 degreeC or more is achieved in the resin composition (C).
 環構造の含有によりTgが向上した樹脂と、他の樹脂とを混合して2種以上の樹脂を含む樹脂組成物とすることによる従来の効果は、樹脂組成物の光学的特性および/または機械的特性の調整に限られる一方で、Tgは、樹脂組成物とすることにより低下していた。これに対して樹脂組成物(C)では、130℃以上の高いTgを確保しながら、さらに機械的特性の低下が抑制され、光学的特性および/または機械的特性の制御の自由度の向上までも視野に入れることができる。アクリル樹脂が、元来、他の熱可塑性樹脂よりも硬くて脆い特性を有しており、重合体の主鎖に位置する環構造がこの特性をより強くすることから判断しても、樹脂組成物(C)により達成されるこれらの効果は非常に有利かつ顕著である。 Conventional effects obtained by mixing a resin having an improved Tg due to the inclusion of a ring structure with another resin to form a resin composition containing two or more resins are the optical properties and / or mechanical properties of the resin composition. On the other hand, the Tg was lowered by using a resin composition, while being limited to the adjustment of the target characteristics. On the other hand, in the resin composition (C), while ensuring a high Tg of 130 ° C. or higher, the deterioration of the mechanical properties is further suppressed, and the degree of freedom in controlling the optical properties and / or mechanical properties is improved. Can also be put into view. Acrylic resin originally has characteristics that are harder and more brittle than other thermoplastic resins, and even if it is judged from the fact that the ring structure located in the main chain of the polymer makes this characteristic stronger, the resin composition These effects achieved by the product (C) are very advantageous and significant.
 樹脂(A)および樹脂(B)の具体例を説明する。 Specific examples of resin (A) and resin (B) will be described.
 [正の固有複屈折を有するアクリル樹脂(A)]
 樹脂(A)は、例えば、熱可塑性樹脂である。樹脂(A)は、非晶性樹脂でありうる。
[Acrylic resin having positive intrinsic birefringence (A)]
The resin (A) is, for example, a thermoplastic resin. Resin (A) may be an amorphous resin.
 樹脂(A)は、アクリル重合体(D)を含むアクリル樹脂である。樹脂(A)におけるアクリル重合体(D)の含有率は、例えば、50重量%以上であり、80重量%以上、90重量%以上、さらには95重量%以上でありうる。樹脂(A)は、重合体としてアクリル重合体(D)のみを含んでいてもよいし、アクリル重合体(D)からなってもよい。 Resin (A) is an acrylic resin containing an acrylic polymer (D). The content of the acrylic polymer (D) in the resin (A) is, for example, 50% by weight or more, 80% by weight or more, 90% by weight or more, and further 95% by weight or more. Resin (A) may contain only an acrylic polymer (D) as a polymer, and may consist of an acrylic polymer (D).
 アクリル重合体(D)は、例えば、正の固有複屈折を有する。 The acrylic polymer (D) has, for example, positive intrinsic birefringence.
 樹脂(A)は、当該樹脂が含むアクリル重合体(D)に由来して、樹脂組成物(C)および当該組成物の成形体(樹脂成形体)に優れた光学的透明性を与える作用を有する。 The resin (A) is derived from the acrylic polymer (D) contained in the resin, and has an effect of imparting excellent optical transparency to the resin composition (C) and a molded body (resin molded body) of the composition. Have.
 アクリル重合体は、(メタ)アクリル酸エステルに由来する構成単位(以下、(メタ)アクリル酸エステル単位)を、重合体の全構成単位に占める割合にして(重合体における(メタ)アクリル酸エステル単位の含有率にして)、40モル%以上、好ましくは50モル%以上、より好ましくは60モル%以上有する重合体である。ただし、重合体が(メタ)アクリル酸エステル単位の誘導体である環構造を主鎖に有する場合、より具体的な例として、(メタ)アクリル酸エステル単位の誘導体である環構造を有する単量体との共重合により、当該環構造が重合体の主鎖に導入された場合、あるいは前駆重合体における、(メタ)アクリル酸エステル単位を含む隣り合う2つの構成単位間の分子内環化反応により形成された環構造を重合体が主鎖に有する場合、(メタ)アクリル酸エステル単位の含有率と当該環構造の含有率との合計が50モル%以上であれば、当該重合体はアクリル重合体である。 The acrylic polymer has a constitutional unit derived from (meth) acrylic acid ester (hereinafter referred to as (meth) acrylic acid ester unit) as a proportion of all structural units of the polymer ((meth) acrylic acid ester in the polymer). A polymer having a unit content of 40 mol% or more, preferably 50 mol% or more, more preferably 60 mol% or more. However, when the polymer has a ring structure that is a derivative of a (meth) acrylate unit in the main chain, as a more specific example, a monomer having a ring structure that is a derivative of a (meth) acrylate unit When the ring structure is introduced into the main chain of the polymer by copolymerization with, or in the precursor polymer, by an intramolecular cyclization reaction between two adjacent structural units containing a (meth) acrylate unit When the polymer has the formed ring structure in the main chain, if the total of the content of (meth) acrylic acid ester units and the content of the ring structure is 50 mol% or more, the polymer is an acrylic polymer. It is a coalescence.
 (メタ)アクリル酸エステルは、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチルの各単量体に由来する構成単位である。アクリル重合体(D)は、(メタ)アクリル酸メチル単位を有することが好ましく、メタクリル酸メチル(MMA)単位を有することがより好ましい。これらの場合、樹脂組成物(C)を成形して得た樹脂成形体の光学特性および熱安定性がより向上する。アクリル重合体(D)は、2種以上の(メタ)アクリル酸エステル単位を有していてもよい。 Examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t-butyl (meth) acrylate. , N-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , (Meth) acrylic acid 3-hydroxypropyl, (meth) acrylic acid 2,3,4,5,6-pentahydroxyhexyl, (meth) acrylic acid 2,3,4,5-tetrahydroxypentyl A structural unit derived from the body. The acrylic polymer (D) preferably has a methyl (meth) acrylate unit, and more preferably has a methyl methacrylate (MMA) unit. In these cases, the optical properties and thermal stability of the resin molding obtained by molding the resin composition (C) are further improved. The acrylic polymer (D) may have two or more (meth) acrylic acid ester units.
 アクリル重合体(D)は、主鎖に環構造を有しうる。この場合、樹脂組成物(C)により達成される上述した効果がより確実となる。アクリル重合体(D)が主鎖に環構造を有する場合、すなわち樹脂(A)が当該環構造を有する場合、樹脂組成物(C)は、樹脂(B)と合わせて、環構造を有する樹脂を少なくとも2種以上含むことになる。環構造の存在により樹脂組成物(C)のTgは130℃以上の高い値となるが、この場合、樹脂(B)だけではなく樹脂(A)も樹脂組成物(C)のTgを高くする作用を有する。このため、Tgを130℃以上に保持した状態で、樹脂(A)における環構造の種類および双方の樹脂(A),(B)における環構造の含有率のさらなる制御が可能となることから、TgおよびTg以外の他の特性の制御の自由度がより増すことになる。これに加えて、樹脂(A),(B)の双方が環構造を有することにより、樹脂(A)と樹脂(B)との間のTgの差を小さくすることができる。このことは、樹脂組成物(C)における低い複屈折性の達成がより確実となりながら、さらに例えば、樹脂成形体、典型的には延伸フィルム、としたときの当該低い複屈折性の安定性を向上させる。樹脂組成物に含まれる樹脂の間でTgの差が大きい場合、樹脂成形体の長期の使用により、また、樹脂成形体への熱の印加により、双方の樹脂の状態(例えば延伸状態)が不均等に変化することがあるためである。また、樹脂組成物(C)を延伸して樹脂成形体とする場合、双方の樹脂(A),(B)間のTgの差が小さいほど、延伸条件、特に延伸温度、の調整の自由度が増す。延伸温度と樹脂のTgとの温度差によって、樹脂の延伸状態が大きく変化するためである。 The acrylic polymer (D) can have a ring structure in the main chain. In this case, the above-described effect achieved by the resin composition (C) becomes more reliable. When the acrylic polymer (D) has a ring structure in the main chain, that is, when the resin (A) has the ring structure, the resin composition (C) is a resin having a ring structure together with the resin (B). Will contain at least two or more. The Tg of the resin composition (C) becomes a high value of 130 ° C. or more due to the presence of the ring structure. In this case, not only the resin (B) but also the resin (A) increases the Tg of the resin composition (C). Has an effect. For this reason, it is possible to further control the type of the ring structure in the resin (A) and the content of the ring structure in both resins (A) and (B) while maintaining Tg at 130 ° C. or higher. The degree of freedom in controlling other characteristics other than Tg and Tg is further increased. In addition, since both the resins (A) and (B) have a ring structure, the difference in Tg between the resin (A) and the resin (B) can be reduced. This means that the low birefringence in the resin composition (C) is more reliably achieved, and the stability of the low birefringence when, for example, a resin molded body, typically a stretched film, is used. Improve. When the difference in Tg between the resins contained in the resin composition is large, the state of both resins (for example, the stretched state) is unsatisfactory due to long-term use of the resin molded body or application of heat to the resin molded body. This is because it may change evenly. When the resin composition (C) is stretched to obtain a resin molded body, the smaller the difference in Tg between the two resins (A) and (B), the lower the degree of freedom in adjusting the stretching conditions, particularly the stretching temperature. Increase. This is because the stretched state of the resin changes greatly depending on the temperature difference between the stretching temperature and the Tg of the resin.
 アクリル重合体(D)が主鎖に有しうる環構造は、例えば、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、無水マレイン酸構造、およびN-置換マレイミド構造から選ばれる少なくとも1種である。これらの環構造は、アクリル重合体(D)および重合体(D)を含む樹脂(A)に、正の固有複屈折を与える作用を有する。 The ring structure that the acrylic polymer (D) may have in the main chain is, for example, at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, a maleic anhydride structure, and an N-substituted maleimide structure. is there. These ring structures have a function of imparting positive intrinsic birefringence to the acrylic polymer (D) and the resin (A) containing the polymer (D).
 以下の式(1)に、N-置換マレイミド構造および無水マレイン酸構造を示す。式(1)に示す構造は、当該構造を主鎖に有するアクリル重合体(D)の構成単位でもありうる。 The following formula (1) shows an N-substituted maleimide structure and a maleic anhydride structure. The structure shown in Formula (1) can also be a structural unit of the acrylic polymer (D) having the structure in the main chain.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)におけるRおよびRは、互いに独立して、水素原子またはメチル基であり、Xは、酸素原子または窒素原子である。Xが酸素原子のときRは存在せず、Xが窒素原子のとき、Rは、水素原子、炭素数1~6の直鎖または分岐アルキル基、シクロペンチル基、シクロヘキシル基、フェニル基またはベンジル基である。フェニル基およびベンジル基では、ベンゼン環の1以上の水素原子が置換されていてもよい。Xが窒素原子のとき、Rは、メチル基、シクロヘキシル基、フェニル基、ベンジル基が好ましく、メチル基、シクロヘキシル基、フェニル基がより好ましい。 In the formula (1), R 1 and R 2 are each independently a hydrogen atom or a methyl group, and X 1 is an oxygen atom or a nitrogen atom. When X 1 is an oxygen atom, R 3 does not exist, and when X 1 is a nitrogen atom, R 3 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, a phenyl group Or a benzyl group. In the phenyl group and benzyl group, one or more hydrogen atoms of the benzene ring may be substituted. When X 1 is a nitrogen atom, R 3 is preferably a methyl group, a cyclohexyl group, a phenyl group, or a benzyl group, and more preferably a methyl group, a cyclohexyl group, or a phenyl group.
 Xが窒素原子のとき、式(1)に示される環構造はN-置換マレイミド構造である。N-置換マレイミド構造を主鎖に有するアクリル重合体は、例えば、単量体としてN-置換マレイミドおよび(メタ)アクリル酸エステルを含む単量体群を共重合して形成できる。 When X 1 is a nitrogen atom, the ring structure represented by the formula (1) is an N-substituted maleimide structure. The acrylic polymer having an N-substituted maleimide structure in the main chain can be formed, for example, by copolymerizing a monomer group containing N-substituted maleimide and (meth) acrylic acid ester as monomers.
 N-置換マレイミド構造は、例えば、シクロヘキシルマレイミド、メチルマレイミド、フェニルマレイミド、およびベンジルマレイミドである。 N-substituted maleimide structures are, for example, cyclohexylmaleimide, methylmaleimide, phenylmaleimide, and benzylmaleimide.
 Xが酸素原子のとき、式(1)に示される環構造は無水マレイン酸構造である。無水マレイン酸構造を主鎖に有するアクリル重合体は、例えば、単量体として無水マレイン酸および(メタ)アクリル酸エステルを含む単量体群を共重合して形成できる。 When X 1 is an oxygen atom, the ring structure represented by the formula (1) is a maleic anhydride structure. The acrylic polymer having a maleic anhydride structure in the main chain can be formed, for example, by copolymerizing a monomer group containing maleic anhydride and (meth) acrylic acid ester as monomers.
 以下の式(2)に、グルタルイミド構造および無水グルタル酸構造を示す。式(2)に示す構造は、前駆重合体の分子内環化反応により形成される環構造である。式(2)に示す構造における主鎖の炭素原子(RまたはRが結合した炭素原子)のうち、いずれか1つの炭素原子にメチレン基が結合した構造が、アクリル重合体(D)の構成単位となる。 The following formula (2) shows a glutarimide structure and a glutaric anhydride structure. The structure shown in Formula (2) is a ring structure formed by an intramolecular cyclization reaction of the precursor polymer. The structure in which the methylene group is bonded to any one of the main chain carbon atoms (the carbon atom to which R 4 or R 5 is bonded) in the structure represented by the formula (2) is an acrylic polymer (D). It becomes a structural unit.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)におけるRおよびRは、互いに独立して、水素原子またはメチル基であり、Xは、酸素原子または窒素原子である。Xが酸素原子のときRは存在せず、Xが窒素原子のとき、Rは、水素原子、炭素数1~6の直鎖または分岐アルキル基、シクロペンチル基、シクロヘキシル基、フェニル基またはベンジル基である。Xが窒素原子のとき、Rは、メチル基、シクロヘキシル基、フェニル基、ベンジル基が好ましく、メチル基、シクロヘキシル基、フェニル基がより好ましい。 R 4 and R 5 in formula (2) are each independently a hydrogen atom or a methyl group, and X 2 is an oxygen atom or a nitrogen atom. When X 2 is an oxygen atom, R 6 is not present, and when X 2 is a nitrogen atom, R 6 is a hydrogen atom, a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, a phenyl group Or a benzyl group. When X 2 is a nitrogen atom, R 6 is preferably a methyl group, a cyclohexyl group, a phenyl group, or a benzyl group, and more preferably a methyl group, a cyclohexyl group, or a phenyl group.
 Xが窒素原子のとき、式(2)に示される環構造はグルタルイミド構造である。グルタルイミド構造を主鎖に有するアクリル重合体は、例えば、PMMAなど、未環化のアクリル重合体である前駆重合体をメチルアミンなどのイミド化剤により分子内環化して(イミド化して)形成できる。このとき、前駆重合体における隣り合う2つの構成単位間、より具体的には、隣り合う2つの(メタ)アクリル酸エステル単位間の環化反応により、グルタルイミド構造が形成される。 When X 2 is a nitrogen atom, the ring structure represented by the formula (2) is a glutarimide structure. An acrylic polymer having a glutarimide structure in the main chain is formed, for example, by intramolecular cyclization (imidation) of a precursor polymer that is an uncyclized acrylic polymer such as PMMA with an imidizing agent such as methylamine. it can. At this time, a glutarimide structure is formed by a cyclization reaction between two adjacent structural units in the precursor polymer, more specifically, between two adjacent (meth) acrylate units.
 Xが酸素原子のとき、式(2)に示される環構造は無水グルタル酸構造である。無水グルタル酸構造を主鎖に有するアクリル重合体は、例えば、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体である前駆重合体を、分子内で脱アルコール環化縮合させて形成できる。このとき、前駆重合体における隣り合う2つの構成単位間、より具体的には、隣り合う(メタ)アクリル酸エステル単位と(メタ)アクリル酸単位との間の環化反応により、無水グルタル酸構造が形成される。 When X 2 is an oxygen atom, the ring structure represented by the formula (2) is a glutaric anhydride structure. The acrylic polymer having a glutaric anhydride structure in the main chain is obtained by, for example, subjecting a precursor polymer, which is a copolymer of (meth) acrylic acid ester and (meth) acrylic acid, to dealcoholization cyclocondensation in the molecule. Can be formed. At this time, a glutaric anhydride structure is formed by cyclization reaction between two adjacent structural units in the precursor polymer, more specifically, between adjacent (meth) acrylic acid ester units and (meth) acrylic acid units. Is formed.
 以下の式(3)に、ラクトン環構造の一例を示す。式(3)に示す構造は、前駆重合体の分子内環化反応により形成される環構造である。式(3)に示す構造における主鎖の炭素原子のうち、Rが結合した炭素原子にメチレン基が結合した構造が、アクリル重合体(D)の構成単位となる。 An example of a lactone ring structure is shown in the following formula (3). The structure shown in Formula (3) is a ring structure formed by an intramolecular cyclization reaction of the precursor polymer. Of the carbon atoms in the main chain in the structure represented by the formula (3), a structure in which a methylene group is bonded to a carbon atom to which R 9 is bonded is a constituent unit of the acrylic polymer (D).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)において、R、RおよびRは、互いに独立して、水素原子または炭素数1~20の範囲の有機残基である。当該有機残基は酸素原子を含んでもよい。 In the formula (3), R 7 , R 8 and R 9 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom.
 有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数が1~20の範囲のアルキル基;エテニル基、プロペニル基などの炭素数が1~20の範囲の不飽和脂肪族炭化水素基;フェニル基、ナフチル基などの炭素数が1~20の範囲の芳香族炭化水素基;上記アルキル基、上記不飽和脂肪族炭化水素基および上記芳香族炭化水素基において、水素原子の一つ以上が水酸基、カルボキシル基、エーテル基およびエステル基から選ばれる少なくとも1種の基により置換された基;である。 The organic residue is, for example, an alkyl group having 1 to 20 carbon atoms, such as a methyl group, an ethyl group, or a propyl group; an unsaturated aliphatic carbonization having 1 to 20 carbon atoms, such as an ethenyl group or a propenyl group. A hydrogen group; an aromatic hydrocarbon group having 1 to 20 carbon atoms, such as a phenyl group or a naphthyl group; one of hydrogen atoms in the alkyl group, the unsaturated aliphatic hydrocarbon group and the aromatic hydrocarbon group; One or more groups are substituted with at least one group selected from a hydroxyl group, a carboxyl group, an ether group and an ester group.
 式(3)に示すラクトン環構造を主鎖に有するアクリル重合体は、例えば、(メタ)アクリル酸エステルと、水酸基および/またはカルボキシル基を分子内に有する(メタ)アクリル酸エステルとを含む単量体群を共重合した後、得られた共重合体である前駆重合体に対して、当該各単量体に由来する構成単位間で分子内脱アルコール環化縮合反応を進行させて形成できる。(メタ)アクリル酸エステルは、例えばメタクリル酸メチル(MMA)であり、水酸基および/またはカルボキシル基を分子内に有する(メタ)アクリル酸エステルは、例えば、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)である。この場合、得られた共重合体における隣り合ったMMA単位とMHMA単位とを脱アルコール環化縮合させて、RがHであり、RおよびRがCHである、式(3)に示すラクトン環構造を主鎖に有するアクリル重合体を形成できる。 The acrylic polymer having a lactone ring structure represented by the formula (3) in the main chain includes, for example, a (meth) acrylic acid ester and a (meth) acrylic acid ester having a hydroxyl group and / or a carboxyl group in the molecule. After copolymerization of the monomer group, it can be formed by proceeding an intramolecular dealcoholization cyclocondensation reaction between constituent units derived from the respective monomers with respect to the obtained precursor polymer as a copolymer. . The (meth) acrylic acid ester is, for example, methyl methacrylate (MMA), and the (meth) acrylic acid ester having a hydroxyl group and / or a carboxyl group in the molecule is, for example, methyl 2- (hydroxymethyl) acrylate (MHMA). ). In this case, the adjacent MMA unit and MHMA unit in the obtained copolymer are subjected to dealcoholization cyclocondensation so that R 7 is H and R 8 and R 9 are CH 3. An acryl polymer having the lactone ring structure shown in FIG.
 ラクトン環構造は式(3)に示す構造に限定されず、例えば、式(3)に示すような6員環ではなく、5員環のラクトン環構造であってもよい。 The lactone ring structure is not limited to the structure shown in Formula (3), and may be, for example, a 5-membered lactone ring structure instead of the 6-membered ring shown in Formula (3).
 上述した環構造のうち、グルタルイミド構造、無水グルタル酸構造、およびラクトン環構造は、前駆重合体における隣り合う2つの構成単位間の分子内環化反応により形成される環構造である。このような環構造は、当該環構造の主鎖の炭素原子にメチレン基が結合した状態でアクリル重合体(D)の構成単位となる。このため、アクリル重合体(D)がこのような環構造を主鎖に有する場合、環構造による立体障害がメチレン基により緩和され、樹脂(A)および樹脂組成物(C)の機械的特性の低下をより抑制できる。また、この場合、重合体の主鎖の方向と環構造の共役電子の分極方向とがほぼ平行となり、重合体に対して正の固有複屈折を与える当該環構造の作用がより強くなることから、光学的特性の確保の観点から見た、重合体(D)および樹脂(A)における環構造の含有率を低減できる。このことも、樹脂(A)および樹脂組成物(C)の機械的特性の低下を抑制できることに寄与する。 Among the ring structures described above, a glutarimide structure, a glutaric anhydride structure, and a lactone ring structure are ring structures formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer. Such a ring structure becomes a structural unit of the acrylic polymer (D) in a state where a methylene group is bonded to a carbon atom of the main chain of the ring structure. Therefore, when the acrylic polymer (D) has such a ring structure in the main chain, the steric hindrance due to the ring structure is alleviated by the methylene group, and the mechanical properties of the resin (A) and the resin composition (C) are reduced. The decrease can be further suppressed. In this case, the direction of the main chain of the polymer and the polarization direction of the conjugated electrons of the ring structure are almost parallel, and the action of the ring structure that gives positive intrinsic birefringence to the polymer becomes stronger. From the viewpoint of securing optical properties, the content of the ring structure in the polymer (D) and the resin (A) can be reduced. This also contributes to the reduction in mechanical properties of the resin (A) and the resin composition (C).
 また、このような環構造をアクリル重合体(D)が有する場合、重合体(D)は、分子内環化反応に関与することなく前駆重合体から残留した構成単位を有しうる。例えば、重合体(D)は、未反応の水酸基および/またはカルボキシル基を有する(メタ)アクリル酸エステル単位を有しうる。 Further, when the acrylic polymer (D) has such a ring structure, the polymer (D) may have a structural unit remaining from the precursor polymer without participating in the intramolecular cyclization reaction. For example, the polymer (D) can have a (meth) acrylic acid ester unit having an unreacted hydroxyl group and / or carboxyl group.
 樹脂組成物(C)における樹脂(B)との相溶性がより向上する観点から、また、前駆重合体の分子内環化反応により形成される環構造に比べて、樹脂組成物(C)の耐熱性、典型的にはTgがより向上する観点からは、アクリル重合体(D)が主鎖に有する環構造はN-置換マレイミド構造でありうる。 From the viewpoint of further improving the compatibility of the resin composition (C) with the resin (B), and compared with the ring structure formed by the intramolecular cyclization reaction of the precursor polymer, the resin composition (C) From the viewpoint of further improving heat resistance, typically Tg, the ring structure of the acrylic polymer (D) in the main chain may be an N-substituted maleimide structure.
 アクリル重合体(D)が主鎖に環構造を有する場合、重合体(D)における当該環構造の含有率は、例えば、2重量%以上50重量%以下である。この範囲において、樹脂(A)の固有複屈折を正としながら、樹脂組成物(C)の耐熱性をバランスよく向上できるとともに、樹脂組成物(C)の機械的特性の低下をより抑制できる。アクリル重合体(D)における環構造の含有率の下限は、3重量%、4重量%以上、5重量%以上、6重量%以上の順に、より好ましい。アクリル重合体(D)における環構造の含有率の上限は、45重量%以下、40重量%以下、35重量%以下の順に、より好ましい。樹脂(A)における環構造の含有率についても同様である。 When the acrylic polymer (D) has a ring structure in the main chain, the content of the ring structure in the polymer (D) is, for example, 2% by weight or more and 50% by weight or less. Within this range, while making the intrinsic birefringence of the resin (A) positive, the heat resistance of the resin composition (C) can be improved in a well-balanced manner, and the deterioration of the mechanical properties of the resin composition (C) can be further suppressed. The lower limit of the content of the ring structure in the acrylic polymer (D) is more preferable in the order of 3% by weight, 4% by weight or more, 5% by weight or more, and 6% by weight or more. The upper limit of the content of the ring structure in the acrylic polymer (D) is more preferable in the order of 45% by weight or less, 40% by weight or less, and 35% by weight or less. The same applies to the content of the ring structure in the resin (A).
 アクリル重合体(D)の重量平均分子量Mwは、例えば、10,000~500,000であり、好ましくは50,000~300,000である。 The weight average molecular weight Mw of the acrylic polymer (D) is, for example, 10,000 to 500,000, preferably 50,000 to 300,000.
 アクリル重合体(D)は、(メタ)アクリル酸エステル単位および上述した環構造以外の構成単位をさらに有しうる。当該構成単位は、例えば、スチレン、ビニルトルエン、α-メチルスチレン、α-ヒドロキシメチルスチレン、およびα-ヒドロキシエチルスチレンといった芳香族ビニル単量体に由来する構成単位;ならびにアクリロニトリル、メタクリロニトリル、メタリルアルコール、アリルアルコール、エチレン、プロピレン、4-メチル-1-ペンテン、酢酸ビニル、2-ヒドロキシメチル-1-ブテン、メチルビニルケトン、N-ビニルピロリドン、N-ビニルカルバゾールなどの各単量体に由来する構成単位である。アクリル重合体(D)は、これらの構成単位を2種以上有しうる。 The acrylic polymer (D) may further have a structural unit other than the (meth) acrylic acid ester unit and the ring structure described above. The structural unit includes, for example, structural units derived from aromatic vinyl monomers such as styrene, vinyltoluene, α-methylstyrene, α-hydroxymethylstyrene, and α-hydroxyethylstyrene; and acrylonitrile, methacrylonitrile, For each monomer such as ril alcohol, allyl alcohol, ethylene, propylene, 4-methyl-1-pentene, vinyl acetate, 2-hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone, N-vinyl carbazole It is a derived structural unit. The acrylic polymer (D) can have two or more of these structural units.
 アクリル重合体(D)が、芳香族ビニル単量体に由来する構成単位をさらに有する場合、アクリル重合体(D)における当該構成単位の含有率は、好ましくは5重量%以下、より好ましくは4重量%以下である。 When the acrylic polymer (D) further has a structural unit derived from an aromatic vinyl monomer, the content of the structural unit in the acrylic polymer (D) is preferably 5% by weight or less, more preferably 4 % By weight or less.
 アクリル重合体(D)の形成方法は限定されず、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、リビングラジカル重合、アニオン重合などの一般的な重合方法により形成できる。樹脂組成物(C)を光学用途に用いる場合、アクリル重合体(D)および樹脂組成物(C)への微小な異物の混入を出来るだけ避けるために、懸濁剤および乳化剤を使用しないキャスト重合または溶液重合によるアクリル重合体(D)の形成が好ましい。 The formation method of the acrylic polymer (D) is not limited, and can be formed by a general polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, living radical polymerization, and anionic polymerization. When the resin composition (C) is used for optical applications, cast polymerization that does not use a suspending agent and an emulsifier in order to avoid as much as possible the entry of minute foreign matters into the acrylic polymer (D) and the resin composition (C). Or formation of the acrylic polymer (D) by solution polymerization is preferable.
 樹脂(A)の応力光学係数Crの上限は、例えば、6.0×10-10Pa-1以下、5.0×10-10Pa-1以下、4.5×10-10Pa-1以下の順により好ましい。樹脂(A)の応力光学係数Crの下限は、例えば、0.1×10-10Pa-1以上、0.5×10-10Pa-1以上、1.0×10-10Pa-1以上の順により好ましい。 The upper limit of the stress optical coefficient Cr of the resin (A) is, for example, 6.0 × 10 −10 Pa −1 or less, 5.0 × 10 −10 Pa −1 or less, 4.5 × 10 −10 Pa −1 or less. It is more preferable in this order. The lower limit of the stress optical coefficient Cr of the resin (A) is, for example, 0.1 × 10 −10 Pa −1 or more, 0.5 × 10 −10 Pa −1 or more, 1.0 × 10 −10 Pa −1 or more. It is more preferable in this order.
 樹脂(A)の形成方法は限定されず、アクリル重合体(D)をそのまま使用してもよいし、必要に応じて、アクリル重合体(D)と、他の重合体、他の樹脂および/または添加剤とを公知の方法により混合して形成できる。混合には、例えば押出機を使用できる。押出機から排出した樹脂(A)は、そのままペレタイザーによりペレット化してもよい。他の樹脂および添加剤については、樹脂組成物(C)の説明において後述する。 The method for forming the resin (A) is not limited, and the acrylic polymer (D) may be used as it is, and if necessary, the acrylic polymer (D), other polymers, other resins and / or Or it can form by mixing an additive with a well-known method. For mixing, for example, an extruder can be used. The resin (A) discharged from the extruder may be pelletized with a pelletizer as it is. Other resins and additives will be described later in the description of the resin composition (C).
 [負の固有複屈折を有し、N-置換マレイミド単量体に由来する構成単位を有する樹脂(B)]
 樹脂(B)は、例えば、熱可塑性樹脂である。樹脂(B)は、非晶性樹脂でありうる。
[Resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer]
Resin (B) is, for example, a thermoplastic resin. Resin (B) may be an amorphous resin.
 樹脂(B)は、負の固有複屈折を有し、N-置換マレイミド単量体に由来する構成単位であるN-置換マレイミド構造を有する。樹脂(B)は、例えば、主鎖にN-置換マレイミド構造を有する重合体(E)を含む。重合体(E)は、負の固有複屈折を有する。 Resin (B) has negative intrinsic birefringence and an N-substituted maleimide structure that is a structural unit derived from an N-substituted maleimide monomer. The resin (B) includes, for example, a polymer (E) having an N-substituted maleimide structure in the main chain. The polymer (E) has a negative intrinsic birefringence.
 具体的なN-置換マレイミド構造は、アクリル重合体(D)が主鎖に有しうる上述したN-置換マレイミド構造と同じである。 The specific N-substituted maleimide structure is the same as the above-described N-substituted maleimide structure that the acrylic polymer (D) may have in the main chain.
 上述のようにN-置換マレイミド構造は、グルタルイミド構造、無水グルタル酸構造、およびラクトン構造といった、前駆重合体に対する分子内環化反応により導入された主鎖の環構造に比べて、重合体に対してその固有複屈折を正にする作用が低い。このため、重合体(E)および樹脂(B)へのN-置換マレイミド構造の導入量を増加させても、樹脂(B)は負の固有複屈折を維持しやすい。また、N-置換マレイミド構造を主鎖に有する重合体では、N-置換マレイミド構造に隣接して必ずしもメチレン基が存在するわけではない。このため、環構造の立体障害の影響により、N-置換マレイミド構造は重合体の耐熱性、典型的にはTg、を向上させる高い効果を有する。 As described above, the N-substituted maleimide structure is more polymerized than the main chain ring structure introduced by the intramolecular cyclization reaction to the precursor polymer, such as glutarimide structure, glutaric anhydride structure, and lactone structure. On the other hand, the effect of making the intrinsic birefringence positive is low. For this reason, even if the introduction amount of the N-substituted maleimide structure into the polymer (E) and the resin (B) is increased, the resin (B) tends to maintain negative intrinsic birefringence. In a polymer having an N-substituted maleimide structure in the main chain, a methylene group does not necessarily exist adjacent to the N-substituted maleimide structure. Therefore, due to the steric hindrance of the ring structure, the N-substituted maleimide structure has a high effect of improving the heat resistance of the polymer, typically Tg.
 マレイミド系重合体である重合体(E)におけるN-置換マレイミド構造の含有率は、例えば、5重量%以上50重量%以下である。重合体(E)におけるN-置換マレイミド構造の含有率が過度に小さくなると、樹脂(B)および樹脂組成物(C)の耐熱性を向上させる効果が十分に得られない。一方、重合体(E)におけるN-置換マレイミド構造の含有率が過度に大きくなると、樹脂(B)が硬く脆くなって、樹脂組成物(C)の機械的特性の低下を抑制する効果が得難くなる。重合体(E)におけるN-置換マレイミド構造の含有率の下限は、10重量%以上、15重量%以上、20重量%以上、25重量%以上の順に、より好ましい。重合体(E)におけるN-置換マレイミド構造の含有率の上限は、45重量%以下、40重量%以下、35重量%以下の順に、より好ましい。 The content of the N-substituted maleimide structure in the polymer (E) which is a maleimide polymer is, for example, 5% by weight or more and 50% by weight or less. When the content of the N-substituted maleimide structure in the polymer (E) is excessively small, the effect of improving the heat resistance of the resin (B) and the resin composition (C) cannot be sufficiently obtained. On the other hand, if the content of the N-substituted maleimide structure in the polymer (E) becomes excessively large, the resin (B) becomes hard and brittle, and the effect of suppressing the deterioration of the mechanical properties of the resin composition (C) is obtained. It becomes difficult. The lower limit of the content of the N-substituted maleimide structure in the polymer (E) is more preferably in the order of 10% by weight or more, 15% by weight or more, 20% by weight or more, and 25% by weight or more. The upper limit of the content of the N-substituted maleimide structure in the polymer (E) is more preferably 45% by weight or less, 40% by weight or less, and 35% by weight or less.
 重合体(E)は、当該重合体(E)および樹脂(B)に負の固有複屈折を発現させるために、芳香族ビニル単量体に由来する構成単位(以下、芳香族ビニル単量体単位)を構成単位として有することが好ましい。芳香族ビニル単量体は特に限定されず、例えば、スチレン、ビニルトルエン、α-メチルスチレン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレン、クロロスチレンである。 The polymer (E) is a structural unit derived from an aromatic vinyl monomer (hereinafter referred to as an aromatic vinyl monomer) in order to cause the polymer (E) and the resin (B) to exhibit negative intrinsic birefringence. Unit) as a constituent unit. The aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, vinyl toluene, α-methyl styrene, α-hydroxymethyl styrene, α-hydroxyethyl styrene, and chlorostyrene.
 重合体(E)における芳香族ビニル単量体単位の含有率の下限は、例えば10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上である。一方、当該含有率の上限は、例えば95重量%以下、好ましくは90重量%以下、より好ましくは85重量%以下である。重合体(E)および樹脂(B)の応力光学係数Crをできるだけ小さくする観点からは、重合体(E)における芳香族ビニル単量体単位の含有率の上限は、80重量%以下、70重量%以下、60重量%以下の順に、より好ましい。 The lower limit of the content of the aromatic vinyl monomer unit in the polymer (E) is, for example, 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more. On the other hand, the upper limit of the content is, for example, 95% by weight or less, preferably 90% by weight or less, and more preferably 85% by weight or less. From the viewpoint of minimizing the stress optical coefficient Cr of the polymer (E) and the resin (B), the upper limit of the content of the aromatic vinyl monomer unit in the polymer (E) is 80% by weight or less, 70% by weight. % Or less and 60% by weight or less are more preferable in this order.
 重合体(E)の重量平均分子量Mwは、例えば、10,000~500,000であり、好ましくは50,000~300,000である。 The weight average molecular weight Mw of the polymer (E) is, for example, 10,000 to 500,000, preferably 50,000 to 300,000.
 重合体(E)は、N-置換マレイミド構造および芳香族ビニル単量体単位以外の構成単位をさらに有しうる。当該構成単位は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、アクリロニトリル、メタクリロニトリル、メタリルアルコール、アリルアルコール、エチレン、プロピレン、4-メチル-1-ペンテン、酢酸ビニル、2-ヒドロキシメチル-1-ブテン、メチルビニルケトン、N-ビニルピロリドン、N-ビニルカルバゾールの各単量体に由来する構成単位である。重合体(E)は、これらの構成単位を2種以上有しうる。 The polymer (E) may further have a structural unit other than the N-substituted maleimide structure and the aromatic vinyl monomer unit. The structural unit includes, for example, methyl (meth) acrylate, ethyl (meth) acrylate, acrylonitrile, methacrylonitrile, methallyl alcohol, allyl alcohol, ethylene, propylene, 4-methyl-1-pentene, vinyl acetate, A structural unit derived from each monomer of -hydroxymethyl-1-butene, methyl vinyl ketone, N-vinyl pyrrolidone and N-vinyl carbazole. The polymer (E) can have two or more of these structural units.
 重合体(E)が、アクリロニトリル単量体に由来する構成単位を有する場合、重合体(E)における当該構成単位の含有率の下限は、例えば3重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上である。一方、当該含有率の上限は、例えば40重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下である。 When the polymer (E) has a structural unit derived from an acrylonitrile monomer, the lower limit of the content of the structural unit in the polymer (E) is, for example, 3% by weight or more, preferably 5% by weight or more. Preferably it is 10 weight% or more. On the other hand, the upper limit of the content is, for example, 40% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less.
 樹脂(B)の応力光学係数Crの上限は、例えば、-10.0×10-10Pa-1以下、-15.0×10-10Pa-1以下、-20.0×10-10Pa-1以下の順により好ましい。樹脂(B)の応力光学係数Crの下限は、例えば、-45.0×10-10Pa-1以上、-40.0×10-10Pa-1以上、-35.0×10-10Pa-1以上の順により好ましい。 The upper limit of the stress optical coefficient Cr of the resin (B) is, for example, −10.0 × 10 −10 Pa −1 or less, −15.0 × 10 −10 Pa −1 or less, or −20.0 × 10 −10 Pa. -1 or less is more preferable. The lower limit of the stress optical coefficient Cr of the resin (B) is, for example, −45.0 × 10 −10 Pa −1 or more, −40.0 × 10 −10 Pa −1 or more, −35.0 × 10 −10 Pa. -1 or more is more preferable.
 重合体(E)の形成方法は限定されず、例えば、キャスト重合、塊状重合、懸濁重合、溶液重合、乳化重合、リビングラジカル重合、アニオン重合などの一般的な重合方法により形成できる。樹脂組成物(C)を光学用途に用いる場合、重合体(E)および樹脂組成物(C)への微小な異物の混入を出来るだけ避けるために、懸濁剤および乳化剤を使用しないキャスト重合または溶液重合による重合体(E)の形成が好ましい。 The formation method of the polymer (E) is not limited, and can be formed by a general polymerization method such as cast polymerization, bulk polymerization, suspension polymerization, solution polymerization, emulsion polymerization, living radical polymerization, and anionic polymerization. When the resin composition (C) is used for optical applications, in order to avoid contamination of the polymer (E) and the resin composition (C) with fine foreign substances as much as possible, cast polymerization without using a suspending agent and an emulsifier or Formation of polymer (E) by solution polymerization is preferred.
 樹脂(B)の形成方法は限定されず、重合体(E)をそのまま使用してもよいし、必要に応じて、重合体(E)と、他の重合体、他の樹脂および/または添加剤とを公知の方法により混合して形成できる。混合には、例えば押出機を使用できる。押出機から排出した樹脂(B)は、そのままペレタイザーによりペレット化してもよい。他の樹脂および添加剤については、樹脂組成物(C)の説明において後述する。 The method for forming the resin (B) is not limited, and the polymer (E) may be used as it is, and if necessary, the polymer (E), another polymer, another resin and / or addition It can be formed by mixing the agent with a known method. For mixing, for example, an extruder can be used. The resin (B) discharged from the extruder may be pelletized with a pelletizer as it is. Other resins and additives will be described later in the description of the resin composition (C).
 [樹脂組成物(C)]
 樹脂組成物(C)について、さらに説明する。
[Resin composition (C)]
The resin composition (C) will be further described.
 樹脂組成物(C)のTgは130℃以上である。樹脂組成物(C)のTgの上限は特に限定されないが、例えば200℃であり、130℃以上200℃以下の範囲において樹脂組成物(C)の成形性が高くなる。130℃以上のTgを有する樹脂組成物(C)の耐熱性は高く、例えば、樹脂組成物(C)から構成されるフィルムについて、画像表示装置における光源などの発熱部の近傍への配置が容易となる;樹脂組成物(C)の成形体について、車両に搭載する装置といった高温環境下での使用が想定される装置に使用できる;あるいは透明導電膜の基板など、高温での加工が必要な部材に樹脂組成物(C)を使用できる、などの有利な効果が達成される。 Resin composition (C) has a Tg of 130 ° C. or higher. Although the upper limit of Tg of a resin composition (C) is not specifically limited, For example, it is 200 degreeC and the moldability of a resin composition (C) becomes high in the range of 130 to 200 degreeC. The heat resistance of the resin composition (C) having a Tg of 130 ° C. or higher is high. For example, a film composed of the resin composition (C) can be easily arranged in the vicinity of a heat generating part such as a light source in an image display device. The molded article of the resin composition (C) can be used for a device that is assumed to be used in a high temperature environment such as a device mounted on a vehicle; or a substrate of a transparent conductive film or the like needs to be processed at a high temperature. Advantageous effects such as being able to use the resin composition (C) for the member are achieved.
 樹脂組成物(C)において、樹脂(A)および樹脂(B)は互いに相溶した状態にある。このため、樹脂組成物(C)を光学用途に使用できる。樹脂組成物に含まれる樹脂同士が相溶していることは、常温以上の温度領域で測定される樹脂組成物のTgが1点のみであることにより判断できる。換言すれば、樹脂同士が相溶していない場合、それぞれの樹脂に対応するTgが常温以上の温度領域で複数測定される。 In the resin composition (C), the resin (A) and the resin (B) are in a mutually compatible state. For this reason, a resin composition (C) can be used for an optical use. It can be judged that the resins contained in the resin composition are compatible with each other because the Tg of the resin composition measured in a temperature range of room temperature or higher is only one point. In other words, when the resins are not compatible with each other, a plurality of Tg values corresponding to the respective resins are measured in a temperature range of normal temperature or higher.
 樹脂組成物(C)におけるN-置換マレイミド構造の含有率は、1重量%以上10重量%以下である。当該含有率が1重量%未満の場合、樹脂組成物の高い耐熱性が達成されない。一方、当該含有率が10重量%を超えると、樹脂組成物の機械的特性が大きく低下したり、複数の樹脂がブレンドされた樹脂組成物であるが故に期待される特性の確保が難しくなる。樹脂組成物(C)におけるN-置換マレイミド構造の含有率は、好ましくは2重量%以上8重量%以下、より好ましくは3重量%以上6重量%以下、である。樹脂組成物(C)におけるN-置換マレイミド構造の含有率の上限は、5重量%以下でありうる。なお、樹脂(A)がN-置換マレイミド構造を含む場合、より具体的な例として、樹脂(A)に含まれるアクリル重合体(D)がN-置換マレイミド構造を主鎖に有する場合、樹脂組成物(C)のN-置換マレイミド構造は、樹脂(A)および樹脂(B)の双方に由来する。 The content of the N-substituted maleimide structure in the resin composition (C) is 1% by weight or more and 10% by weight or less. When the said content rate is less than 1 weight%, the high heat resistance of a resin composition is not achieved. On the other hand, if the content exceeds 10% by weight, the mechanical properties of the resin composition are greatly reduced, or it is difficult to ensure the expected properties because the resin composition is a blend of a plurality of resins. The content of the N-substituted maleimide structure in the resin composition (C) is preferably 2% by weight to 8% by weight, more preferably 3% by weight to 6% by weight. The upper limit of the content of the N-substituted maleimide structure in the resin composition (C) can be 5% by weight or less. When the resin (A) contains an N-substituted maleimide structure, as a more specific example, when the acrylic polymer (D) contained in the resin (A) has an N-substituted maleimide structure in the main chain, the resin The N-substituted maleimide structure of the composition (C) is derived from both the resin (A) and the resin (B).
 樹脂(A)がN-置換マレイミド構造以外の環構造を含む場合、より具体的な例として、樹脂(A)に含まれるアクリル重合体(D)がN-置換マレイミド構造以外の環構造を主鎖に有する場合、樹脂組成物(C)は、N-置換マレイミド構造以外に当該環構造を含む。この場合は、樹脂組成物(C)が含む環構造が、樹脂(A)および樹脂(B)のいずれか一方の樹脂に集められているのではなく、樹脂(A)と樹脂(B)とに、その種類に応じて振り分けられている状態でもある。そしてこの場合、上述した本発明の効果がより顕著となる。より具体的に、高い耐熱性が達成されながらも、機械的特性の低下がさらに抑制され、樹脂組成物であるが故に期待される特性をさらに確実に確保できる。 When the resin (A) contains a ring structure other than the N-substituted maleimide structure, as a more specific example, the acrylic polymer (D) contained in the resin (A) mainly has a ring structure other than the N-substituted maleimide structure. When it is present in the chain, the resin composition (C) contains the ring structure in addition to the N-substituted maleimide structure. In this case, the ring structure contained in the resin composition (C) is not collected in either one of the resin (A) and the resin (B), but the resin (A) and the resin (B) Moreover, it is also in a state of being sorted according to the type. In this case, the effect of the present invention described above becomes more remarkable. More specifically, while achieving high heat resistance, the deterioration of mechanical properties is further suppressed, and the expected properties can be ensured more reliably because of the resin composition.
 樹脂組成物(C)がN-置換マレイミド構造以外の環構造を含む場合、樹脂組成物(C)における、N-置換マレイミド構造を含む全環構造の含有率の下限は、例えば10重量%であり、15重量%以上、20重量%以上、25重量%以上の順に、より好ましい。一方、当該含有率の上限は、樹脂組成物の機械的特性の低下をより確実に抑制するために、例えば、40重量%以下、35重量%以下、30重量%以下の順に、より好ましい。 When the resin composition (C) includes a ring structure other than the N-substituted maleimide structure, the lower limit of the content of all ring structures including the N-substituted maleimide structure in the resin composition (C) is, for example, 10% by weight. Yes, 15% by weight or more, 20% by weight or more, and 25% by weight or more in order. On the other hand, the upper limit of the content is more preferably, for example, in the order of 40% by weight or less, 35% by weight or less, and 30% by weight or less in order to more reliably suppress the deterioration of the mechanical properties of the resin composition.
 樹脂(A)がN-置換マレイミド構造以外の環構造を含む場合であって、当該環構造が、前駆重合体における隣り合う2つの構成単位間の分子内環化反応により形成された環構造である場合、樹脂組成物(C)における当該環構造の含有率は、30重量%以下でありうる。例えば、このような環構造のみにより樹脂組成物のTgを130℃以上にしようとすると、樹脂組成物における当該環構造の含有率をより大きく、例えば35重量%以上とする必要があった。しかし、このような樹脂組成物では、高いTgを達成できるものの、その機械的特性の低下が強くなる。一方、樹脂(A)がN-置換マレイミド構造以外の環構造を含む樹脂組成物(C)では、樹脂組成物の耐熱性を向上させる作用が強いN-置換マレイミド構造の含有、および樹脂(A),(B)間の環構造の振り分けにより、上記含有率を30重量%以下とすることができ、高い耐熱性が達成されながらも、樹脂組成物の機械的特性の低下をより抑制できる。 In the case where the resin (A) includes a ring structure other than the N-substituted maleimide structure, the ring structure is a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer. In some cases, the content of the ring structure in the resin composition (C) may be 30% by weight or less. For example, when the Tg of the resin composition is made to be 130 ° C. or higher only with such a ring structure, the content of the ring structure in the resin composition needs to be larger, for example, 35% by weight or more. However, although such a resin composition can achieve a high Tg, the mechanical properties are strongly reduced. On the other hand, in the resin composition (C) in which the resin (A) contains a ring structure other than the N-substituted maleimide structure, the resin composition (A) contains an N-substituted maleimide structure that has a strong effect of improving the heat resistance of the resin composition. ) And (B), the content can be reduced to 30% by weight or less, and the deterioration of the mechanical properties of the resin composition can be further suppressed while achieving high heat resistance.
 樹脂組成物(C)がN-置換マレイミド構造以外の環構造をさらに含む場合、樹脂組成物(C)におけるN-置換マレイミド構造の含有率T1に対するN-置換マレイミド構造以外の環構造の含有率T2の比T2/T1の下限は、例えば1以上、好ましくは3以上、より好ましくは5以上であり、当該比の上限は、例えば20以下、好ましくは15以下、より好ましくは10以下である。N-置換マレイミド構造以外の環構造は、例えば、前駆重合体における隣り合う2つの構成単位間の分子内環化反応により形成された環構造であり、具体的な例は、グルタルイミド構造、無水グルタル酸構造およびラクトン環構造から選ばれる少なくとも1種であり、より具体的な例は、ラクトン環構造である。 When the resin composition (C) further contains a ring structure other than the N-substituted maleimide structure, the content of the ring structure other than the N-substituted maleimide structure with respect to the content T1 of the N-substituted maleimide structure in the resin composition (C) The lower limit of the ratio T2 / T1 of T2 is, for example, 1 or more, preferably 3 or more, more preferably 5 or more, and the upper limit of the ratio is, for example, 20 or less, preferably 15 or less, more preferably 10 or less. The ring structure other than the N-substituted maleimide structure is, for example, a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer. Specific examples include a glutarimide structure, an anhydrous structure, and the like. It is at least one selected from a glutaric acid structure and a lactone ring structure, and a more specific example is a lactone ring structure.
 樹脂組成物(C)における(メタ)アクリル酸エステル単位の含有率は、好ましくは、50重量%以上70重量%以下である。この範囲において、樹脂組成物(C)における環構造の含有率、および樹脂(B)が芳香族ビニル単量体単位を有する場合には、さらに当該単位の含有率を、より適切な範囲とすることができ、本発明の効果をより確実に得ることができる。 The content of the (meth) acrylic acid ester unit in the resin composition (C) is preferably 50% by weight or more and 70% by weight or less. In this range, when the content of the ring structure in the resin composition (C) and the resin (B) have an aromatic vinyl monomer unit, the content of the unit is further set to a more appropriate range. Therefore, the effect of the present invention can be obtained more reliably.
 樹脂(B)が芳香族ビニル単量体単位を有する場合、樹脂組成物(C)における当該単位の含有率の上限は、好ましくは15重量%以下である。樹脂組成物(C)における当該単位の含有率が過度に大きくなると、例えば、樹脂組成物(C)の複屈折性が負に大きくなって小さい複屈折が達成できなくなり、すなわち、樹脂組成物(C)における特性の制御の自由度が低下する。 When the resin (B) has an aromatic vinyl monomer unit, the upper limit of the content of the unit in the resin composition (C) is preferably 15% by weight or less. When the content of the unit in the resin composition (C) becomes excessively large, for example, the birefringence of the resin composition (C) becomes negatively large and a small birefringence cannot be achieved, that is, the resin composition ( The degree of freedom in controlling the characteristics in C) decreases.
 樹脂組成物(C)における樹脂(A)と樹脂(B)の混合比(重量比)は、樹脂組成物(C)におけるN-置換マレイミド構造の含有率が1重量%以上10重量%以下であり、樹脂(A)および樹脂(B)間の相溶性が確保されるともに本発明の効果が得られる限り、特に限定されない。混合比は、具体的な樹脂(A),(B)の構成によっても異なるが、一例として、樹脂(A):樹脂(B)=99:1~1:99であり、好ましくは95:5~5:95、より好ましくは90:10~10:90である。本発明の効果をより確実に得るためには、混合比は、樹脂(A):樹脂(B)=99:1~50:50が好ましく、より好ましくは96:4~60:40、さらに好ましくは93:7~70:30である。 The mixing ratio (weight ratio) of the resin (A) and the resin (B) in the resin composition (C) is such that the content of the N-substituted maleimide structure in the resin composition (C) is 1 wt% or more and 10 wt% or less. There is no particular limitation as long as compatibility between the resin (A) and the resin (B) is ensured and the effect of the present invention is obtained. The mixing ratio varies depending on the specific structures of the resins (A) and (B), but as an example, the resin (A): resin (B) = 99: 1 to 1:99, preferably 95: 5. To 5:95, more preferably 90:10 to 10:90. In order to obtain the effect of the present invention more reliably, the mixing ratio is preferably resin (A): resin (B) = 99: 1 to 50:50, more preferably 96: 4 to 60:40, and still more preferably. Is 93: 7 to 70:30.
 樹脂組成物(C)は、アクリル樹脂組成物でありうる。 Resin composition (C) may be an acrylic resin composition.
 樹脂(A)と樹脂(B)との間のTgの差は、好ましくは0~20℃であり、より好ましくは0~18℃であり、さらに好ましくは0~17℃である。この場合、樹脂組成物(C)における低い複屈折性の達成がより確実となりながら、さらに例えば、樹脂組成物から構成される樹脂成形体、典型的には延伸フィルム、における当該低い複屈折性の安定性を向上させる。樹脂組成物(C)において樹脂(A)および樹脂(B)が相溶しているとはいえ、両者のTgの差が大きくなると、延伸温度および/または樹脂成形体の使用温度によっては、また、延伸温度および/または使用温度の変化によって、両者の分子鎖の配向が異なった影響を受けやすくなるためである。 The difference in Tg between the resin (A) and the resin (B) is preferably 0 to 20 ° C, more preferably 0 to 18 ° C, and further preferably 0 to 17 ° C. In this case, while achieving low birefringence in the resin composition (C) is more reliable, for example, the low birefringence of the resin molded body composed of the resin composition, typically a stretched film, is more preferable. Improve stability. Although the resin (A) and the resin (B) are compatible in the resin composition (C), if the difference in Tg between the two increases, depending on the stretching temperature and / or the use temperature of the resin molding, This is because the orientation of the molecular chains is likely to be affected differently by changes in the stretching temperature and / or the use temperature.
 樹脂組成物(C)は、上記説明した重合体および樹脂以外の重合体および/または樹脂を含んでいてもよい。これらの重合体および/または樹脂は、樹脂(A)に由来しても(樹脂(A)に含まれていても)、樹脂(B)に由来しても、樹脂(A),(B)とは独立して樹脂組成物(C)に含まれていてもよい。すなわち、樹脂組成物(C)におけるこれら重合体および/または樹脂の由来は問わない。ただし、樹脂組成物(C)全体として相溶性が満たされている必要がある。具体的な当該樹脂および重合体は、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)などのポリオレフィン;ポリ塩化ビニル、ポリ塩素化ビニルなどの含ハロゲン重合体;ポリメタクリル酸メチルなどのアクリル重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミド;およびこれらの重合体を含む樹脂である。樹脂組成物は、2種以上のこれらの重合体および/または樹脂を含むことができる。樹脂組成物(C)におけるこれらの重合体および樹脂の含有率は、合計で、例えば15重量%以下であり、12重量%以下、10重量%以下の順に、より好ましい。 Resin composition (C) may contain a polymer and / or a resin other than the above-described polymer and resin. These polymers and / or resins may be derived from the resin (A) (included in the resin (A)) or from the resin (B), or the resins (A) and (B). And may be contained in the resin composition (C) independently. That is, the origin of these polymers and / or resins in the resin composition (C) does not matter. However, the compatibility of the resin composition (C) as a whole needs to be satisfied. Specific examples of the resin and polymer include polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene), and halogen-containing heavy resins such as polyvinyl chloride and polychlorinated vinyl. Polymer; Acrylic polymer such as polymethyl methacrylate; Polyester such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Polyamide such as nylon 6, nylon 66, nylon 610; Polyacetal; Polycarbonate; Polyphenylene oxide; Polyphenylene sulfide; Polyethersulfone; Polyethersulfone; Polyoxypentylene; Polyamideimide; and resins containing these polymers. The resin composition can contain two or more of these polymers and / or resins. The total content of these polymers and resins in the resin composition (C) is, for example, 15% by weight or less, and more preferably in the order of 12% by weight or less and 10% by weight or less.
 樹脂組成物の光学的透明性に大きな影響を与えない限り、例えば、厚さ100μmあたりのヘイズにして2%以下が達成される限り、樹脂組成物(C)は、樹脂(A)および/または樹脂(B)と相溶しない重合体および/または樹脂を含むことができる。これら重合体および樹脂の一例は、ゴム質重合体などのエラストマー(G)である。樹脂組成物は、2種以上のエラストマー(G)を含むことができる。 Unless the optical transparency of the resin composition is significantly affected, for example, as long as 2% or less is achieved in terms of haze per 100 μm thickness, the resin composition (C) is a resin (A) and / or A polymer and / or resin that is incompatible with the resin (B) can be included. An example of these polymers and resins is an elastomer (G) such as a rubbery polymer. The resin composition can contain 2 or more types of elastomers (G).
 樹脂組成物(C)がエラストマー(G)を含む場合、樹脂組成物(C)および当該組成物から構成される樹脂成形体の機械的特性、例えば可撓性、より具体的な例として耐折り曲げ性、がより向上する。 When the resin composition (C) contains the elastomer (G), the mechanical properties of the resin composition (C) and the resin molded body composed of the composition, for example, flexibility, and more specific bending resistance Improve.
 エラストマー(G)の構成および形状は限定されず、その例は、架橋構造を有する有機微粒子、および硬質部分(g1)と軟質部分(g2)とを有するブロック共重合体である。 The configuration and shape of the elastomer (G) are not limited, and examples thereof include organic fine particles having a crosslinked structure, and a block copolymer having a hard part (g1) and a soft part (g2).
 架橋構造を有する有機微粒子は、例えば、1分子あたり2個以上の非共役二重結合を有する多官能性化合物を含む単量体群の重合により形成できる。この有機微粒子は、架橋構造を有するコア部分に基づく架橋弾性を示す。有機微粒子はコア・シェル構造を有することが好ましく、この場合、当該有機微粒子の樹脂組成物(C)中への分散性が向上する。コア・シェル構造を有する有機微粒子の好ましい一形態では、中心の部分(コア)のみに多官能性化合物に由来する構造が構築され、中心の部分(コア)を囲む部分(シェル)には、樹脂組成物(C)に含まれるアクリル樹脂(A)との相溶性が高い構造が構築される。この構造の構築により、有機微粒子の樹脂組成物(C)中への分散性がより向上する。分散性の向上は、樹脂組成物(C)における有機微粒子の分散状態をより均一にする。これにより、例えば、樹脂組成物(C)から構成されるフィルムの可撓性(例えば、耐折り曲げ性)をさらに向上できる。また、樹脂組成物(C)における有機微粒子の凝集を抑制できることから、樹脂組成物(C)を形成する際に、フィルターの目詰まりを防ぎながら当該組成物を濾過することができ、含まれる異物の量が少ない樹脂組成物(C)を提供できる。市販の有機微粒子は、例えば、カネカ製のアクリルモディファイヤーであるカネエースM210(多層構造を有するゴム粒子;コアは多層のアクリルゴム;シェルはメタアクリル酸メチルを主成分とするアクリルポリマー;粒子径は約220nm)である。 Organic fine particles having a crosslinked structure can be formed, for example, by polymerization of a monomer group containing a polyfunctional compound having two or more nonconjugated double bonds per molecule. The organic fine particles exhibit crosslinking elasticity based on a core portion having a crosslinked structure. The organic fine particles preferably have a core-shell structure. In this case, the dispersibility of the organic fine particles in the resin composition (C) is improved. In a preferable embodiment of the organic fine particles having a core / shell structure, a structure derived from a polyfunctional compound is constructed only in the central portion (core), and a resin (in the shell) surrounding the central portion (core) is formed. A structure having high compatibility with the acrylic resin (A) contained in the composition (C) is constructed. By the construction of this structure, the dispersibility of the organic fine particles in the resin composition (C) is further improved. The improvement in dispersibility makes the dispersed state of the organic fine particles in the resin composition (C) more uniform. Thereby, the flexibility (for example, bending resistance) of the film comprised from the resin composition (C) can be further improved, for example. Moreover, since aggregation of the organic fine particles in the resin composition (C) can be suppressed, the composition can be filtered while preventing the filter from being clogged when forming the resin composition (C), and foreign matter contained therein The resin composition (C) with a small amount of can be provided. Commercially available organic fine particles include, for example, Kane Ace M210, an acrylic modifier manufactured by Kaneka (rubber particles having a multilayer structure; a core is a multilayer acrylic rubber; a shell is an acrylic polymer mainly composed of methyl methacrylate; About 220 nm).
 ブロック共重合体の構成は限定されず、例えば、その分子鎖の形態は、線状、分岐状、放射状でありうる。ブロック共重合体の好ましい一形態は、硬質部分(g1)としてメタクリル酸エステル単位を主体とする重合体ブロックを、軟質部分(g2)としてアクリル酸エステル単位を主体とする重合体ブロックを、それぞれ少なくとも1種有する。好ましい別の一形態は、(g1)-(g2)-(g1)または(g2)-(g1)-(g2)で表される2元トリブロック共重合体である。ブロック共重合体のより好ましい一形態では、硬質部分(g1)が樹脂(A)および/または樹脂(B)との高い相溶性を達成する組成を有し、さらに好ましい一形態では、硬質部分(g1)が樹脂(A)または樹脂(B)と同じ組成を有する。これにより、例えば、樹脂組成物(C)から構成されるフィルムの可撓性(例えば、耐折り曲げ性)をさらに向上できる。また、樹脂組成物(C)におけるブロック共重合体の凝集を抑制できることから、樹脂組成物(C)を形成する際に、フィルターの目詰まりを防ぎながら当該組成物を濾過することができ、含まれる異物の量が少ない樹脂組成物(C)を提供できる。市販のブロック共重合体は、例えば、クラレ製、クラリティLA4285およびLA2250である。 The configuration of the block copolymer is not limited. For example, the molecular chain may be linear, branched, or radial. A preferred form of the block copolymer is at least a polymer block mainly composed of methacrylic acid ester units as the hard portion (g1), and a polymer block mainly composed of acrylate ester units as the soft portion (g2). Have one. Another preferred embodiment is a binary triblock copolymer represented by (g1)-(g2)-(g1) or (g2)-(g1)-(g2). In a more preferred form of the block copolymer, the hard part (g1) has a composition that achieves high compatibility with the resin (A) and / or the resin (B), and in a more preferred form, the hard part ( g1) has the same composition as resin (A) or resin (B). Thereby, the flexibility (for example, bending resistance) of the film comprised from the resin composition (C) can be further improved, for example. Moreover, since the aggregation of the block copolymer in the resin composition (C) can be suppressed, the composition can be filtered while preventing clogging of the filter when the resin composition (C) is formed. A resin composition (C) with a reduced amount of foreign matter can be provided. Commercially available block copolymers are, for example, Kuraray, Clarity LA4285 and LA2250.
 樹脂組成物(C)がエラストマー(G)を含む場合、樹脂組成物(C)におけるエラストマー(G)の含有率は、樹脂組成物(C)の光学的透明性に大きな影響を与えない限り限定されないが、例えば、1重量%以上15重量%以下である。この範囲において、フィルムの機械的特性、例えば可撓性、を向上する効果が確保されるとともに、樹脂組成物(C)のTgの低下が抑制される。当該含有率の下限は、2重量%以上、3重量%以上、4重量%以上、5重量%以上の順に、より好ましい。当該含有率の上限は、好ましくは10重量%以下である。なお、エラストマー(G)のTgは、通常、常温未満であるため、常温以上の温度領域における樹脂組成物のTgの測定においてエラストマーのTgは測定されない。このことは、当該測定によって樹脂(A),(B)間の相溶性を判定できることを意味する。ただし、エラストマー(G)がブロック共重合体である場合の硬質部分(g1)のTg、およびエラストマー(G)がコア・シェル構造を有する場合のシェルのTgが、常温以上の温度領域における樹脂組成物のTgの測定において測定される可能性がある。このとき、当該Tgは樹脂(A),(B)のTgと容易に区別できるため、当該測定によって樹脂(A),(B)間の相溶性を判定できる。 When the resin composition (C) contains the elastomer (G), the content of the elastomer (G) in the resin composition (C) is limited unless it greatly affects the optical transparency of the resin composition (C). For example, it is 1% by weight or more and 15% by weight or less. In this range, the effect of improving the mechanical properties of the film, such as flexibility, is ensured, and the decrease in Tg of the resin composition (C) is suppressed. The lower limit of the content is more preferably in the order of 2% by weight or more, 3% by weight or more, 4% by weight or more, and 5% by weight or more. The upper limit of the content is preferably 10% by weight or less. In addition, since Tg of elastomer (G) is normally less than normal temperature, Tg of elastomer is not measured in the measurement of Tg of the resin composition in the temperature range above normal temperature. This means that the compatibility between the resins (A) and (B) can be determined by the measurement. However, the resin composition in the temperature region where the Tg of the hard part (g1) when the elastomer (G) is a block copolymer and the Tg of the shell when the elastomer (G) has a core-shell structure is a room temperature or higher. It may be measured in the measurement of the Tg of an object. At this time, since the Tg can be easily distinguished from the Tg of the resins (A) and (B), the compatibility between the resins (A) and (B) can be determined by the measurement.
 本発明の効果が得られる限り、樹脂組成物(C)は、重合体および樹脂以外の材料、例えば添加剤を含むことができる。添加剤は、例えば、酸化防止剤、耐光安定剤、耐候安定剤、熱安定剤などの安定剤;位相差上昇剤、位相差低減剤、位相差安定剤などの位相差調整剤;ガラス繊維、炭素繊維などの補強材;紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃剤;アニオン系、カチオン系またはノニオン系の界面活性剤を含む帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機フィラー、無機フィラー、樹脂改質剤、可塑剤、滑剤である。樹脂組成物(C)における添加剤の含有率は、合計で、好ましくは7重量%未満、より好ましくは5重量%以下、さらに好ましくは2重量%以下、特に好ましくは0.5重量%以下である。 As long as the effect of the present invention is obtained, the resin composition (C) can contain materials other than the polymer and the resin, for example, additives. Additives include, for example, antioxidants, light stabilizers, weather stabilizers, heat stabilizers and other stabilizers; phase difference adjusting agents such as phase difference increasing agents, phase difference reducing agents, phase difference stabilizers; glass fibers, Reinforcing materials such as carbon fibers; ultraviolet absorbers; near infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; antistatic agents including anionic, cationic or nonionic surfactants Agents; colorants such as inorganic pigments, organic pigments, dyes; organic fillers, inorganic fillers, resin modifiers, plasticizers, lubricants. The total content of additives in the resin composition (C) is preferably less than 7% by weight, more preferably 5% by weight or less, still more preferably 2% by weight or less, and particularly preferably 0.5% by weight or less. is there.
 樹脂組成物(C)における樹脂(A)および樹脂(B)の含有率の合計は、好ましくは80重量%以上であり、より好ましくは90重量%以上である。樹脂組成物(C)は、樹脂(A)および樹脂(B)からなってもよい。 The total content of the resin (A) and the resin (B) in the resin composition (C) is preferably 80% by weight or more, and more preferably 90% by weight or more. Resin composition (C) may consist of resin (A) and resin (B).
 樹脂組成物(C)の組成、例えば樹脂組成物(C)における樹脂(A)および樹脂(B)の含有率、樹脂(A)および樹脂(B)の組成、ならびに樹脂(A)および樹脂(B)以外に樹脂組成物(C)に含まれる重合体および樹脂の組成および含有率などは、公知の方法、例えば、H-核磁気共鳴(NMR)測定、赤外分光分析(IR)などの各種の手法により評価できる。樹脂組成物(C)が、樹脂(A)および樹脂(B)と相溶しない材料、例えば上記エラストマー(G)を含む場合は、これらの材料を除去した樹脂組成物に対して上記評価を実施することが好ましい。 The composition of the resin composition (C), for example, the content of the resin (A) and the resin (B) in the resin composition (C), the composition of the resin (A) and the resin (B), and the resin (A) and the resin ( In addition to B), the composition and content of the polymer and resin contained in the resin composition (C) can be determined by known methods such as 1 H-nuclear magnetic resonance (NMR) measurement, infrared spectroscopy (IR), etc. It can be evaluated by various methods. When the resin composition (C) contains a material that is incompatible with the resin (A) and the resin (B), for example, the elastomer (G), the evaluation is performed on the resin composition from which these materials have been removed. It is preferable to do.
 樹脂組成物(C)では、複数の樹脂がブレンドされた樹脂組成物であるが故に期待される特性をより確実に確保できる。特性の一例は、低い複屈折性である。樹脂組成物(C)の応力光学係数Crの絶対値は、例えば、1.0×10-10Pa-1以下をとりうるし、樹脂組成物(C)の組成によっては、0.9×10-10Pa-1以下、0.8×10-10Pa-1以下、0.7×10-10Pa-1以下、0.6×10-10Pa-1以下、0.5×10-10Pa-1以下、0.4×10-10Pa-1以下、さらには0.3×10-10Pa-1以下となりうる。低い複屈折性を示す樹脂組成物(C)によれば、例えば、低い複屈折性を示す、すなわち位相差値が小さいフィルムが得られる。このようなフィルムは、例えば、偏光子保護フィルムとして画像表示装置に使用できる。 In the resin composition (C), since it is a resin composition in which a plurality of resins are blended, the expected characteristics can be more reliably ensured. An example of a property is low birefringence. The absolute value of the stress optical coefficient Cr of the resin composition (C) can be, for example, 1.0 × 10 −10 Pa −1 or less. Depending on the composition of the resin composition (C), 0.9 × 10 − 10 Pa −1 or less, 0.8 × 10 −10 Pa −1 or less, 0.7 × 10 −10 Pa −1 or less, 0.6 × 10 −10 Pa −1 or less, 0.5 × 10 −10 Pa −1 or less, 0.4 × 10 −10 Pa −1 or less, and further 0.3 × 10 −10 Pa −1 or less. According to the resin composition (C) that exhibits low birefringence, for example, a film that exhibits low birefringence, that is, a small retardation value is obtained. Such a film can be used for an image display device as a polarizer protective film, for example.
 樹脂組成物(C)では、樹脂組成物(C)だけではなく樹脂(A)および樹脂(B)のそれぞれが、これら応力光学係数Crの絶対値の範囲をとってもよい。 In the resin composition (C), not only the resin composition (C) but also each of the resin (A) and the resin (B) may take an absolute value range of these stress optical coefficients Cr.
 特性の別の一例は、低い光弾性係数、より正確には、低い光弾性係数の絶対値である。光弾性係数の絶対値が小さい樹脂組成物およびこのような樹脂組成物から構成される樹脂成形体は、外力の印加による複屈折の変化が小さい。低い光弾性係数を示す樹脂組成物(C)によれば、例えば、低い光弾性係数を示すフィルムが得られる。このようなフィルムは、例えば、光漏れ、特に高温高湿度の環境下における光漏れを抑制できるフィルムとして、画像表示装置に使用できる。樹脂組成物の光弾性係数の絶対値は、例えば、1.0×10-12Pa-1以下をとりうるし、樹脂組成物(C)の組成によっては、0.9×10-12Pa-1以下、0.8×10-12Pa-1以下、0.7×10-12Pa-1以下、0.6×10-12Pa-1以下、さらには0.5×10-12Pa-1以下となりうる。 Another example of a characteristic is a low photoelastic coefficient, more precisely the absolute value of the low photoelastic coefficient. A resin composition having a small absolute value of the photoelastic coefficient and a resin molded body composed of such a resin composition have a small change in birefringence due to the application of external force. According to the resin composition (C) showing a low photoelastic coefficient, for example, a film showing a low photoelastic coefficient can be obtained. Such a film can be used for an image display device, for example, as a film capable of suppressing light leakage, particularly light leakage in a high temperature and high humidity environment. The absolute value of the photoelastic coefficient of the resin composition can be, for example, 1.0 × 10 −12 Pa −1 or less, and depending on the composition of the resin composition (C), 0.9 × 10 −12 Pa −1. Hereinafter, 0.8 × 10 −12 Pa −1 or less, 0.7 × 10 −12 Pa −1 or less, 0.6 × 10 −12 Pa −1 or less, and further 0.5 × 10 −12 Pa −1. It can be:
 特性の別の一例は、低いヘイズである。ヘイズが小さい樹脂組成物(C)は、例えば、フィルムとしたときの光学的透明性が高く、このようなフィルムは光学用途に好適に使用できる。樹脂組成物(C)のヘイズは、厚さ100μmのフィルムとしたときのその厚さ方向の値にして、例えば、2%以下をとりうるし、樹脂組成物(C)の組成によっては、1.5%以下、1%以下、さらには0.5%以下となりうる。 Another example of characteristics is low haze. The resin composition (C) having a small haze has high optical transparency when used as a film, for example, and such a film can be suitably used for optical applications. The haze of the resin composition (C) can be, for example, 2% or less as a value in the thickness direction when a film having a thickness of 100 μm is formed. Depending on the composition of the resin composition (C), 1. It can be 5% or less, 1% or less, and even 0.5% or less.
 特性の別の一例は、機械的特性の低下の抑制、換言すれば、高い機械的特性の保持である。樹脂組成物(C)は、例えば、フィルムとしたときの高い可撓性および低い寸法変化率を有しうる。可撓性は、例えば、フィルムの耐折性試験(MIT試験)により評価できる。詳細は、樹脂組成物(C)から構成されるフィルムの説明において後述する。 Another example of characteristics is suppression of deterioration of mechanical characteristics, in other words, retention of high mechanical characteristics. The resin composition (C) can have, for example, high flexibility and low dimensional change rate when formed into a film. The flexibility can be evaluated by, for example, a film folding resistance test (MIT test). Details will be described later in the description of the film composed of the resin composition (C).
 樹脂組成物(C)の形成方法は、特に限定されない。樹脂組成物(C)は、例えば、樹脂(A)および(B)、ならびに、必要に応じて、樹脂(A)および(B)以外の重合体および/または樹脂、または添加剤を、公知の方法で混合して形成できる。樹脂(A),(B)以外の材料は、樹脂(A),(B)とともに混合してもよいし、樹脂(A),(B)とは別に予め混合してもよいし、樹脂(A),(B)の混合物に加えてさらに混合してもよい。混合は、例えば、オムニミキサーなどの混合機によるプレブレンドの後、得られた混合物を混練機により混練することにより実施できる。混練機は限定されず、例えば、単軸押出機および二軸押出機などの押出機、ならびに加圧ニーダーである。得られた樹脂組成物(C)は、必要に応じて、ペレタイザーなどによりペレット化してもよい。 The formation method of the resin composition (C) is not particularly limited. The resin composition (C) is, for example, a resin (A) and (B) and, if necessary, a polymer and / or resin other than the resins (A) and (B), or additives, It can be formed by mixing by the method. Materials other than the resins (A) and (B) may be mixed together with the resins (A) and (B), or may be mixed in advance separately from the resins (A) and (B). You may mix further in addition to the mixture of A) and (B). Mixing can be carried out, for example, by pre-blending with a mixer such as an omni mixer and then kneading the resulting mixture with a kneader. A kneading machine is not limited, For example, they are extruders, such as a single screw extruder and a twin screw extruder, and a pressure kneader. The obtained resin composition (C) may be pelletized with a pelletizer or the like, if necessary.
 樹脂組成物(C)は、例えば、樹脂成形体として使用できる。樹脂成形体(C)の成形には公知の方法を利用でき、一例として、溶融成形および溶液成形を利用できる。樹脂成形体がフィルムである場合、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法といった公知のフィルム成形法を採用できる。例示したなかでは、溶液キャスト法および溶融押出法が好ましい。 Resin composition (C) can be used, for example, as a resin molded body. A known method can be used for molding the resin molded body (C). For example, melt molding and solution molding can be used. When the resin molding is a film, for example, a known film molding method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, or a compression molding method can be employed. Of these, the solution casting method and the melt extrusion method are preferable.
 以下、溶融押出法によるフィルムの成形について説明する。他の形状を有する樹脂成形体の成形においても同様である。 Hereinafter, film forming by the melt extrusion method will be described. The same applies to the molding of resin molded bodies having other shapes.
 樹脂組成物(C)の溶融押出に用いる混練機は限定されず、例えば、単軸押出機、二軸押出機などの各種の押出機および加圧ニーダーといった公知の混練機を利用できる。樹脂組成物(C)の形成とその樹脂成形体への成形とを連続して実施してもよく、その一例では、樹脂(A)および(B)、ならびに、必要に応じて、樹脂(A)および(B)以外の重合体および/または樹脂、または添加剤を、公知の方法で混合し、これを溶融押出成形する。具体的な溶融押出成形法の例は、Tダイ法およびインフレーション法である。溶融押出成形時の成形温度は、好ましくは200~350℃、より好ましくは250~300℃、さらに好ましくは255~300℃、特に好ましくは260~300℃である。Tダイ法では、先端部にTダイを取り付けた押出機より樹脂組成物(C)を押し出し、Tダイより押し出されたフィルムを巻き取ることによって、ロール状に巻回したフィルム(樹脂フィルム)が得られる。得られたフィルム(未延伸フィルム)は、さらに延伸してもよく、これにより延伸フィルム(一軸延伸フィルム、二軸延伸フィルム)が得られる。樹脂組成物(C)から構成される延伸フィルムの典型的な態様は、二軸延伸フィルムである。延伸には公知の延伸機を利用でき、例えば、オーブン縦延伸機またはロール縦延伸機により、フィルムをその送り出し方向(MD方向)に一軸延伸してもよいし、テンター横延伸機により、フィルムをその幅方向(TD方向)に一軸延伸してもよい。MD方向の延伸とTD方向の延伸とを組み合わせることにより、二軸延伸も実施できる。二軸延伸は、逐次二軸延伸だけではなく、同時二軸延伸機による同時二軸延伸であってもよい。 The kneader used for melt extrusion of the resin composition (C) is not limited, and various types of extruders such as a single screw extruder and a twin screw extruder and known kneaders such as a pressure kneader can be used. The formation of the resin composition (C) and the molding of the resin composition (C) may be performed continuously. In one example, the resins (A) and (B), and the resin (A ) And (B) and other polymers and / or resins or additives are mixed by a known method, and this is melt-extruded. Specific examples of the melt extrusion method are a T-die method and an inflation method. The molding temperature at the time of melt extrusion molding is preferably 200 to 350 ° C., more preferably 250 to 300 ° C., further preferably 255 to 300 ° C., and particularly preferably 260 to 300 ° C. In the T-die method, a film (resin film) wound in a roll shape is obtained by extruding the resin composition (C) from an extruder having a T-die attached to the tip and winding the film extruded from the T-die. can get. The obtained film (unstretched film) may be further stretched, whereby a stretched film (uniaxially stretched film, biaxially stretched film) is obtained. A typical embodiment of the stretched film composed of the resin composition (C) is a biaxially stretched film. A known stretching machine can be used for stretching. For example, the film may be uniaxially stretched in the feeding direction (MD direction) by an oven longitudinal stretching machine or a roll longitudinal stretching machine, or the film may be stretched by a tenter transverse stretching machine. You may uniaxially stretch in the width direction (TD direction). Biaxial stretching can also be performed by combining stretching in the MD direction and stretching in the TD direction. The biaxial stretching may be not only sequential biaxial stretching but also simultaneous biaxial stretching by a simultaneous biaxial stretching machine.
 より具体的に、押出機の種類は限定されず、短軸、二軸および多軸のいずれの押出機も採用できる。押出機のL/D値(Lは、押出機のシリンダー長であり、Dは、シリンダー内径である)は、樹脂組成物を十分に可塑化し、良好な混練状態を達成するために、好ましくは10以上100以下、より好ましくは15以上80以下、さらに好ましくは20以上60以下である。また、押出機のL/D値がこのような範囲にあると、樹脂組成物に対する過度の剪断発熱が抑制され、当該組成物および当該組成物に含まれる樹脂の熱分解が抑制される。 More specifically, the type of the extruder is not limited, and any of short-shaft, twin-screw and multi-screw extruders can be employed. The L / D value of the extruder (L is the cylinder length of the extruder and D is the cylinder inner diameter) is preferably in order to sufficiently plasticize the resin composition and achieve a good kneading state. It is 10 or more and 100 or less, more preferably 15 or more and 80 or less, and further preferably 20 or more and 60 or less. Moreover, when the L / D value of an extruder exists in such a range, the excessive shear heat_generation | fever with respect to a resin composition will be suppressed, and the thermal decomposition of the resin contained in the said composition and the said composition will be suppressed.
 押出機のシリンダーの設定温度は、溶融成形における成形温度と同様に、好ましくは200~350℃以下であり、より好ましくは250~300℃以下である。設定温度がこれらの範囲にある場合、押出機内の樹脂組成物の溶融粘度を、効率的な溶融成形に適した範囲に制御できるとともに、当該組成物および当該組成物に含まれる樹脂の熱分解が抑制される。 The set temperature of the cylinder of the extruder is preferably 200 to 350 ° C., more preferably 250 to 300 ° C., similarly to the molding temperature in melt molding. When the set temperature is within these ranges, the melt viscosity of the resin composition in the extruder can be controlled to a range suitable for efficient melt molding, and the composition and the resin contained in the composition can be thermally decomposed. It is suppressed.
 押出機の具体的な構成は限定されないが、押出機が1または2以上の開放ベント部を有することが好ましい。この場合、押出機内での樹脂組成物の溶融により生じた分解ガスを開放ベント部から吸引でき、形成したフィルムに残留する揮発成分の量を低減できる。開放ベント部から分解ガスを吸引するためには、例えば、開放ベント部を減圧雰囲気とすればよく、その際の減圧度は、開放ベント部の圧力(絶対圧)にして、例えば931~1.3hPaであり、好ましくは798~13.3hPaである。これらの範囲において、樹脂の分解により発生する単量体成分を含む揮発成分を、より効率よく除去できる。また、押出機の開放ベント部の圧力を1.3hPaより低く保つことは工業的に困難である。 Although the specific configuration of the extruder is not limited, it is preferable that the extruder has one or more open vent portions. In this case, the decomposition gas generated by melting the resin composition in the extruder can be sucked from the open vent portion, and the amount of volatile components remaining in the formed film can be reduced. In order to suck the decomposition gas from the open vent portion, for example, the open vent portion may be in a reduced pressure atmosphere, and the degree of pressure reduction at that time is set to the pressure (absolute pressure) of the open vent portion, for example, 931 to 1. 3 hPa, preferably 798 to 13.3 hPa. Within these ranges, volatile components including monomer components generated by the decomposition of the resin can be removed more efficiently. Moreover, it is industrially difficult to keep the pressure of the open vent part of the extruder lower than 1.3 hPa.
 樹脂組成物を溶融押出成形する際には、ポリマーフィルターによる、溶融樹脂組成物の濾過を併せて実施することが好ましい。これにより、樹脂組成物に含まれる異物の量を低減できるため、例えば、溶融成形により得たフィルムの当該異物による外観上の欠点を低減できる。このような欠点は、樹脂成形体の光学的な欠点ともなるため、光学用途の樹脂成形体を得る場合に、上記濾過の実施が特に好ましい。 When the resin composition is melt-extruded, it is preferable to perform filtration of the molten resin composition with a polymer filter. Thereby, since the quantity of the foreign material contained in a resin composition can be reduced, the fault on the external appearance by the said foreign material of the film obtained by melt molding can be reduced, for example. Since such a defect also becomes an optical defect of the resin molded body, the above filtration is particularly preferable when obtaining a resin molded body for optical use.
 ポリマーフィルターによる濾過を併せて実施する場合、溶融成形における成形温度は、好ましくは255~350℃であり、より好ましくは260~320℃である。これにより、溶融状態にある樹脂組成物の粘度(溶融粘度)をより低く保つことができ、ポリマーフィルターにおける樹脂組成物の滞留時間(通過時間)を短くできる。滞留時間が短くなると、ポリマーフィルターを通過する際に発生しうる高温の溶融状態にある樹脂組成物の劣化が抑制され、例えば、劣化により生成したガス成分および/または着色劣化物の樹脂組成物への混入を抑制できる。ガス成分および着色劣化物の混入は、得られたフィルムにおける穴あき、流れ模様、流れスジなどの欠点となりうる。これらの欠点は、フィルムを連続成形する際に生じやすい。 When performing filtration through a polymer filter, the molding temperature in melt molding is preferably 255 to 350 ° C., more preferably 260 to 320 ° C. Thereby, the viscosity (melt viscosity) of the resin composition in a molten state can be kept lower, and the residence time (passage time) of the resin composition in the polymer filter can be shortened. When the residence time is shortened, the deterioration of the resin composition in a high-temperature molten state that can occur when passing through the polymer filter is suppressed. For example, the gas component generated by the deterioration and / or the colored deterioration product resin composition Can be prevented. Incorporation of gas components and colored deterioration products can cause defects such as perforations, flow patterns, and flow lines in the obtained film. These drawbacks tend to occur when the film is continuously formed.
 ポリマーフィルターの濾過精度は限定されず、通常、15μm以下、好ましくは10μm以下、より好ましくは5μm以下である。過度に小さい濾過精度、例えば1μm以下の濾過精度は、ポリマーフィルターにおける樹脂組成物の滞留時間を長くするため、濾過時における樹脂組成物の熱劣化の程度が大きくなったり、樹脂成形体の生産性が低下したりすることがある。一方、過度に大きい濾過精度、例えば15μmを超える濾過精度は、樹脂組成物に含まれる異物の除去率を低下させる。 The filtration accuracy of the polymer filter is not limited and is usually 15 μm or less, preferably 10 μm or less, more preferably 5 μm or less. An excessively small filtration accuracy, for example, a filtration accuracy of 1 μm or less increases the residence time of the resin composition in the polymer filter, so that the degree of thermal deterioration of the resin composition during filtration increases, and the productivity of the resin molded body May decrease. On the other hand, excessively high filtration accuracy, for example, filtration accuracy exceeding 15 μm, reduces the removal rate of foreign substances contained in the resin composition.
 ポリマーフィルターの濾過面積は限定されず、当該フィルターにおける樹脂組成物の処理量に応じて選択できる。濾過面積は、時間あたりの処理量に対する面積にして、例えば0.001~0.15m/(kg/時間)である。 The filtration area of the polymer filter is not limited and can be selected according to the treatment amount of the resin composition in the filter. The filtration area is, for example, 0.001 to 0.15 m 2 / (kg / hour) as an area relative to the throughput per hour.
 ポリマーフィルターの形状は限定されず、例えば、複数の樹脂流通口を有し、センターポール内に樹脂の流路を有する内流型;断面が複数の頂点もしくは面においてリーフディスクフィルターの内周面に接し、センターポールの外面に樹脂の流路がある外流型;である。樹脂の滞留箇所の少ないことから、外流型が好ましい。 The shape of the polymer filter is not limited, for example, an internal flow type having a plurality of resin flow ports and a resin flow path in the center pole; the cross section is on the inner peripheral surface of the leaf disk filter at a plurality of vertices or faces And an external flow type having a resin flow path on the outer surface of the center pole. Outflow type is preferred because there are few resin stays.
 ポリマーフィルターにおける樹脂組成物の滞留時間は制限されないが、好ましくは20分以下、より好ましくは10分以下、さらに好ましくは5分以下である。 The residence time of the resin composition in the polymer filter is not limited, but is preferably 20 minutes or less, more preferably 10 minutes or less, and even more preferably 5 minutes or less.
 濾過実施時のフィルター入口圧およびフィルター出口圧は、例えば、それぞれ、3~15MPaおよび0.3~10MPaである。濾過実施時の圧力損失(フィルター入口圧と出口圧との圧力差)を1~15MPaに制御することが好ましい。圧力損失が1MPa以下になると、樹脂組成物がフィルターを通過する流路に偏りが生じやすく、得られたフィルムの品質が却って低下する傾向がある。一方、圧力損失が15MPaを超えると、濾過時におけるポリマーフィルターの破損が起こり易くなる。ポリマーフィルターに導入される樹脂組成物の温度は、例えば250~300℃であり、好ましくは255~300℃であり、さらに好ましくは260~300℃である。 The filter inlet pressure and the filter outlet pressure during filtration are, for example, 3 to 15 MPa and 0.3 to 10 MPa, respectively. It is preferable to control the pressure loss during filtration (pressure difference between the filter inlet pressure and the outlet pressure) to 1 to 15 MPa. When the pressure loss is 1 MPa or less, the resin composition tends to be biased in the flow path through the filter, and the quality of the obtained film tends to decrease. On the other hand, when the pressure loss exceeds 15 MPa, the polymer filter is easily damaged during filtration. The temperature of the resin composition introduced into the polymer filter is, for example, 250 to 300 ° C., preferably 255 to 300 ° C., more preferably 260 to 300 ° C.
 ポリマーフィルターによる濾過を併用した溶融成形により、異物および着色物などの欠点が少ないフィルムを形成する具体的な工程は限定されない。例えば、(1)クリーン環境下で樹脂組成物の形成および濾過処理を行い、引き続いてクリーン環境下で樹脂組成物を成形するプロセス、(2)異物および/または着色物含む樹脂組成物を、クリーン環境下で濾過処理した後、引き続いてクリーン環境下で樹脂組成物を成形するプロセス、(3)異物および/または着色物を含む樹脂組成物を、クリーン環境下で濾過処理するとともに成形するプロセス、を採用できる。各工程毎に、複数回、ポリマーフィルターによる樹脂組成物の濾過を実施してもよい。 The specific process of forming a film with few defects such as foreign matters and colored substances by melt molding combined with filtration using a polymer filter is not limited. For example, (1) a process of forming and filtering a resin composition in a clean environment, and subsequently molding the resin composition in a clean environment; (2) cleaning a resin composition containing foreign matter and / or coloring matter; A process of molding a resin composition in a clean environment after filtration in an environment; (3) a process of molding and molding a resin composition containing foreign matter and / or color in a clean environment; Can be adopted. You may implement filtration of the resin composition by a polymer filter in multiple times for every process.
 ポリマーフィルターによって樹脂組成物を濾過する際には、押出機とポリマーフィルターとの間にギアポンプを配置して、フィルター内における樹脂組成物の圧力を安定化させることが好ましい。 When filtering the resin composition with the polymer filter, it is preferable to arrange a gear pump between the extruder and the polymer filter to stabilize the pressure of the resin composition in the filter.
 ポリマーフィルターを通過した樹脂組成物は、そのまま押出成形してフィルムとすることが好ましい。この場合、樹脂組成物をペレット化し、得られたペレットを再溶融してフィルムを成形する場合に比べて樹脂組成物の熱履歴を少なくできることから、樹脂組成物の熱劣化を抑制できる。また、この場合、環境からの異物の混入をより抑制でき、得られたフィルムにおける異物の混入および/または着色をより抑制できる。Tダイ法を採用する場合、押出機とTダイとの間に、ギアポンプおよびポリマーフィルターを配置することが好ましい。 The resin composition that has passed through the polymer filter is preferably extruded as it is to form a film. In this case, since the thermal history of the resin composition can be reduced as compared with the case where the resin composition is pelletized and the obtained pellet is remelted to form a film, the thermal deterioration of the resin composition can be suppressed. Moreover, in this case, contamination of foreign matters from the environment can be further suppressed, and contamination and / or coloring of foreign matters in the obtained film can be further suppressed. When employing the T-die method, it is preferable to dispose a gear pump and a polymer filter between the extruder and the T-die.
 樹脂組成物(C)の用途は限定されない。用途は、樹脂組成物(C)が示しうる特性に応じて選択できる。特性は、例えば、高い耐熱性(130℃以上のTg);機械的特性の低下の抑制、すなわち高い機械的特性の保持であり、より具体的な例は、高い可撓性、低い寸法変化率であり;優れた光学特性、より具体的な例は、低い複屈折性、低い光弾性係数;である。 The use of the resin composition (C) is not limited. A use can be selected according to the characteristic which a resin composition (C) can show. The characteristic is, for example, high heat resistance (Tg of 130 ° C. or higher); suppression of deterioration of mechanical characteristics, that is, retention of high mechanical characteristics. More specific examples are high flexibility, low dimensional change rate. Excellent optical properties, more specific examples are low birefringence, low photoelastic coefficient.
 樹脂組成物(C)の具体的な用途は、例えば、樹脂成形体であり、樹脂成形体の例は、フィルム、シート、プレート、基板、ディスク、ブロック、ボール、レンズ、ロッド、ストランド、コード、ファイバーである。より具体的な用途の例は、各種の製品、例えば携帯電話、キーボード、ノートブック型コンピュータ、コンピュータケース、ゲーム機、化粧品、文房具、スポーツ用品、および各種の産業、例えば、加飾産業、情報産業、通信産業、自動車・二輪車産業、において、表面の加飾および機能性パネルに使用される加飾フィルム;LCDおよびOLEDといった画像表示装置に使用する光学部材およびその一種である光学フィルム;車両に搭載する装置といった高温環境下での使用が想定される装置の部材(光学部材を含む);ITO膜のような透明導電膜の基板など、高温での加工が必要な部材;である。 The specific use of the resin composition (C) is, for example, a resin molded body, and examples of the resin molded body include a film, a sheet, a plate, a substrate, a disk, a block, a ball, a lens, a rod, a strand, a cord, It is a fiber. Examples of more specific applications are various products such as mobile phones, keyboards, notebook computers, computer cases, game machines, cosmetics, stationery, sporting goods, and various industries such as the decoration industry and the information industry. , Decoration films used for surface decoration and functional panels in the telecommunications industry, automobile and motorcycle industry; optical members used in image display devices such as LCDs and OLEDs; A member of an apparatus (including an optical member) assumed to be used in a high-temperature environment such as a device that performs processing at a high temperature, such as a substrate of a transparent conductive film such as an ITO film.
 樹脂組成物(C)は、光学用樹脂組成物、または光学フィルム用樹脂組成物でありうる。 Resin composition (C) may be an optical resin composition or an optical film resin composition.
 [フィルム]
 用途の一例として、樹脂組成物(C)から構成されるフィルム(樹脂フィルム);(F)を説明する。
[the film]
As an example of the application, a film (resin film); (F) composed of the resin composition (C) will be described.
 フィルム(F)は、樹脂組成物(C)に由来する特性を有する。フィルム(F)は、例えば、アクリル樹脂が有する優れた光学的透明性を享受するとともに、高い耐熱性、より具体的には130℃以上の高いTg、を達成しながら、機械的特性の低下が抑制され、樹脂組成物から構成されるが故に期待される特性がより確実に確保されたフィルムである。具体的に期待される特性については、上述したとおりである。 The film (F) has characteristics derived from the resin composition (C). The film (F), for example, enjoys the excellent optical transparency possessed by the acrylic resin, and achieves high heat resistance, more specifically, high Tg of 130 ° C. or higher, while reducing mechanical properties. It is a film that is suppressed and is configured from a resin composition, and thus ensures the expected properties more reliably. The characteristics expected specifically are as described above.
 このような特性に基づきフィルム(F)は、例えば、光学フィルムなどの光学部材;車両に搭載する装置といった高温環境下での使用が想定される装置が備えるフィルム;ITO膜のような透明導電膜の基板フィルムなど、高温での加工が必要な部材;に使用できる。 Based on such characteristics, the film (F) is, for example, an optical member such as an optical film; a film included in a device expected to be used in a high temperature environment such as a device mounted on a vehicle; a transparent conductive film such as an ITO film; It can be used for a member that needs to be processed at a high temperature, such as a substrate film.
 フィルム(F)の厚さは、例えば、1~400μmである。フィルム(F)が、LCDおよびOLEDといった画像表示装置に用いる保護フィルム、反射防止フィルム、あるいは偏光フィルムなどである場合、フィルム(F)の厚さは、好ましくは1~250μm、より好ましくは10~100μm、さらに好ましくは20~80μmである。フィルム(F)が、ITO蒸着フィルム、銀ナノワイヤーフィルム、メタルメッシュフィルムなどの透明導電性フィルムの基板フィルムである場合、フィルム(F)の厚さは、好ましくは20~400μm、より好ましくは30~350μm、さらに好ましくは40~300μmである。 The thickness of the film (F) is, for example, 1 to 400 μm. When the film (F) is a protective film, an antireflection film, a polarizing film or the like used for an image display device such as an LCD or OLED, the thickness of the film (F) is preferably 1 to 250 μm, more preferably 10 to The thickness is 100 μm, more preferably 20 to 80 μm. When the film (F) is a substrate film of a transparent conductive film such as an ITO vapor-deposited film, a silver nanowire film, or a metal mesh film, the thickness of the film (F) is preferably 20 to 400 μm, more preferably 30 It is ˜350 μm, more preferably 40 to 300 μm.
 フィルム(F)は、高い光学的透明性を有しうる。フィルム(F)の全光線透過率(JIS K7361の規定に準拠して評価した全光線透過率)は、例えば85%以上であり、樹脂組成物(C)の組成およびフィルム(F)の構成によっては、90%以上、さらには91%以上となりうる。フィルムの全光線透過率は、フィルムの光学的透明性の指標となる。全光線透過率が85%未満のフィルムは、光学用途に適しているとはいえない。 The film (F) can have high optical transparency. The total light transmittance of the film (F) (total light transmittance evaluated in accordance with the provisions of JIS K7361) is, for example, 85% or more, depending on the composition of the resin composition (C) and the configuration of the film (F). Can be 90% or more, and further 91% or more. The total light transmittance of the film is an index of the optical transparency of the film. A film having a total light transmittance of less than 85% is not suitable for optical applications.
 フィルム(F)は、低いヘイズを有しうる。フィルム(F)のヘイズ(JIS K7136の規定に準拠して評価したヘイズ)は、フィルムの厚さ100μmあたりの当該フィルムの厚さ方向の値にして、例えば1.0%以下である。ヘイズには、フィルム表面の形状に由来する効果を考慮した全ヘイズと、当該効果を考慮外とした内部ヘイズとがある。フィルム(F)の全ヘイズおよび/または内部ヘイズが、上記値にして、例えば1.0%以下である。内部ヘイズは、樹脂組成物(C)の組成およびフィルム(F)の構成によっては、0.7%以下となりうる。 Film (F) may have a low haze. The haze of the film (F) (haze evaluated according to the provisions of JIS K7136) is, for example, 1.0% or less as a value in the thickness direction of the film per 100 μm of film thickness. The haze includes a total haze considering an effect derived from the shape of the film surface and an internal haze excluding the effect. The total haze and / or internal haze of the film (F) is set to the above value, for example, 1.0% or less. The internal haze can be 0.7% or less depending on the composition of the resin composition (C) and the structure of the film (F).
 フィルム(F)は、延伸フィルムであって、その複屈折がほぼゼロである、より具体的には位相差の値がほぼゼロである光学的に等方なフィルム(低位相差フィルム)でありうる。光学的に等方なフィルムは、例えば、画像表示装置が備える偏光子保護フィルムとして使用でき、当該フィルムを偏光子と組み合わせて偏光板を形成することもできる。本明細書では、波長590nmの光に対する位相差(面内位相差Re、および厚さ方向の位相差Rthの絶対値)がいずれも10nm以下である場合を、配向複屈折の発生がない光学的に等方なフィルム(低位相差フィルム)と定める。光学的に等方なフィルムのReおよびRthの絶対値は、好ましくは5nm以下、より好ましくは3nm以下、さらに好ましくは1nm以下である。すなわち、フィルム(F)は、延伸フィルムであり、波長590nmの光に対する面内位相差Reが5nm以下であり、当該光に対する厚さ方向の位相差Rthの絶対値が5nm以下のフィルムでありうる。 The film (F) is a stretched film and can be an optically isotropic film (low retardation film) whose birefringence is almost zero, more specifically, a retardation value is almost zero. . An optically isotropic film can be used as, for example, a polarizer protective film provided in an image display device, and a polarizing plate can be formed by combining the film with a polarizer. In this specification, when the phase difference (absolute value of the in-plane phase difference Re and the thickness direction phase difference Rth) with respect to light having a wavelength of 590 nm is 10 nm or less, there is no occurrence of orientation birefringence. Isotropic film (low retardation film). The absolute values of Re and Rth of the optically isotropic film are preferably 5 nm or less, more preferably 3 nm or less, and even more preferably 1 nm or less. That is, the film (F) is a stretched film, an in-plane retardation Re for light having a wavelength of 590 nm is 5 nm or less, and an absolute value of a thickness direction retardation Rth for the light may be 5 nm or less. .
 樹脂組成物(C)の組成、例えば、樹脂(A),(B)の組成およびその混合比、によっては、フィルム(F)は、延伸フィルムであって、光学的に等方ではない(光学的な異方性を有する)フィルムでありうる。位相差を示すこのようなフィルムは、例えば、位相差フィルム、あるいは偏光板と組み合わせた反射防止フィルムとして使用できる。樹脂組成物(C)および当該組成物から構成されるフィルム(F)が有しうる低い複屈折性は、あくまでも、樹脂組成物(C)における複屈折の制御の自由度が高いことに基づいており、低い複屈折性を示すものに樹脂組成物(C)およびフィルム(F)が限定されるわけではない。もっとも、高いTgと合わせた低い複屈折性は、本発明の特に有利な効果の一つである。 Depending on the composition of the resin composition (C), for example, the composition of the resins (A) and (B) and the mixing ratio thereof, the film (F) is a stretched film and is not optically isotropic (optical Film having a certain anisotropy). Such a film showing a retardation can be used as, for example, a retardation film or an antireflection film combined with a polarizing plate. The low birefringence that the resin composition (C) and the film (F) composed of the composition may have is based solely on the high degree of freedom of birefringence control in the resin composition (C). The resin composition (C) and the film (F) are not limited to those exhibiting low birefringence. However, low birefringence combined with high Tg is one of the particularly advantageous effects of the present invention.
 フィルム(F)は延伸フィルムでありうる。より具体的に、フィルム(F)は、一軸延伸フィルムまたは二軸延伸フィルムでありうる。フィルム(F)が二軸延伸フィルムである場合、その延伸方向は、フィルム面内における任意の方向と、フィルム面内における当該方向とは垂直な方向であることが好ましい。フィルム(F)が帯状である場合、任意の方向は、例えばその長手方向(流れ方向;MD)であり、垂直な方向は、例えばその幅方向(TD)である。フィルム(F)が二軸延伸フィルムである場合、任意の方向および垂直な方向の双方の方向におけるフィルムの機械的特性、例えば可撓性、が向上する。 Film (F) can be a stretched film. More specifically, the film (F) can be a uniaxially stretched film or a biaxially stretched film. When the film (F) is a biaxially stretched film, the stretching direction is preferably an arbitrary direction in the film plane and a direction perpendicular to the direction in the film plane. When the film (F) has a strip shape, the arbitrary direction is, for example, its longitudinal direction (flow direction; MD), and the perpendicular direction is, for example, its width direction (TD). When the film (F) is a biaxially stretched film, the mechanical properties of the film in both the arbitrary direction and the perpendicular direction, such as flexibility, are improved.
 延伸フィルムであるフィルム(F)は、樹脂組成物(C)の未延伸フィルムを延伸して形成できる。延伸温度の下限は、例えばTg以上であり、Tg+5℃以上、Tg+10℃以上、Tg+15℃以上の順に、より好ましい。延伸温度の上限は、例えばTg+40℃以下であり、Tg+35℃以下、Tg+30℃以下、Tg+25℃以下の順に、より好ましい。延伸温度が高くなると、樹脂組成物に含まれる重合体の分子鎖の配向に基づく強度向上の効果が低くなるが、高温でのフィルムの寸法変化率が低く抑制される傾向が得られる。一方、延伸温度が低くなると、上記強度向上の効果が高くなるが、高温での寸法変化率が大きくなる傾向がある。 The film (F) which is a stretched film can be formed by stretching an unstretched film of the resin composition (C). The minimum of extending | stretching temperature is Tg or more, for example, and it is more preferable in order of Tg + 5 degreeC or more, Tg + 10 degreeC or more, and Tg + 15 degreeC or more. The upper limit of the stretching temperature is, for example, Tg + 40 ° C. or lower, and more preferable in the order of Tg + 35 ° C. or lower, Tg + 30 ° C. or lower, and Tg + 25 ° C. or lower. When the stretching temperature increases, the effect of improving the strength based on the orientation of the molecular chain of the polymer contained in the resin composition decreases, but the dimensional change rate of the film at a high temperature tends to be suppressed to a low level. On the other hand, when the stretching temperature is lowered, the effect of improving the strength is enhanced, but the dimensional change rate at a high temperature tends to be increased.
 二軸延伸における上記任意の方向、例えばMD方向、の延伸倍率は、例えば1.3~1.9倍であり、好ましくは1.4~1.9倍である。延伸倍率が過度に小さくなると、延伸フィルムにおける分子鎖の配向を十分に確保できず、例えば、フィルムの可撓性、より具体的にはMD方向の可撓性が、延伸により期待される程度には達成されなくなる。可撓性が低いフィルムには、例えば、折り曲げによって白化が生じることがある。 The stretching ratio in the above-mentioned arbitrary direction in biaxial stretching, for example, the MD direction is, for example, 1.3 to 1.9 times, preferably 1.4 to 1.9 times. When the draw ratio is excessively small, the orientation of the molecular chain in the stretched film cannot be sufficiently ensured. For example, the flexibility of the film, more specifically, the flexibility in the MD direction is expected to be expected by stretching. Will not be achieved. A film with low flexibility may be whitened by bending, for example.
 二軸延伸における上記垂直な方向、例えばTD方向、の延伸倍率は、例えば1.8~4.0倍であり、好ましくは2.0~3.8倍である。延伸倍率が過度に小さくなると、延伸フィルムにおける分子鎖の配向を十分に確保できず、例えば、フィルムの可撓性、より具体的にはTD方向の可撓性が、延伸により期待される程度には達成されなくなる。可撓性が低いフィルムには、例えば、折り曲げによって白化が生じることがある。 In the biaxial stretching, the stretching ratio in the perpendicular direction, for example, the TD direction, is, for example, 1.8 to 4.0 times, preferably 2.0 to 3.8 times. If the draw ratio is excessively small, the orientation of the molecular chain in the stretched film cannot be sufficiently secured, and for example, the flexibility of the film, more specifically, the flexibility in the TD direction is expected to be expected by stretching. Will not be achieved. A film with low flexibility may be whitened by bending, for example.
 延伸速度は、一方向の延伸につき、好ましくは10~20,000%/分、より好ましく100~10,000%/分である。これらの場合、フィルム延伸時の破断を防ぎながら、延伸フィルムをより効率よく形成できる。 The stretching speed is preferably 10 to 20,000% / min, more preferably 100 to 10,000% / min per one direction of stretching. In these cases, a stretched film can be formed more efficiently while preventing breakage during film stretching.
 フィルム(F)は、延伸フィルム、より具体的な例は二軸延伸フィルム、であって、JIS P8115の規定に基づいて実施した耐折性試験(MIT試験)において200回以上の耐折回数を示すフィルムでありうる。フィルムの方向によって耐折回数が異なる場合、例えば、MD方向の耐折回数とTD方向の耐折回数とが異なる場合は、少ない方の回数が200回以上でありうる。樹脂組成物(C)の構成およびフィルム(F)の構成、例えばフィルム(F)の延伸状態によっては、フィルム(F)は、上記耐折性試験において250回以上、300回以上、さらには350回以上の耐折回数を示すフィルムでありうる。このようなフィルム(F)は、その可撓性が高く、製造時における破断が抑制されるとともに、使用時、特に光学部材として使用する際の取扱性および耐久性に優れる。 The film (F) is a stretched film, more specifically a biaxially stretched film, which has a folding resistance of 200 times or more in a folding resistance test (MIT test) performed based on the provisions of JIS P8115. It can be the film shown. When the number of folding times varies depending on the film direction, for example, when the number of folding times in the MD direction is different from the number of folding times in the TD direction, the smaller number of times can be 200 or more. Depending on the configuration of the resin composition (C) and the configuration of the film (F), for example, the stretched state of the film (F), the film (F) may be 250 times or more, 300 times or more, or 350 times in the folding resistance test. It may be a film showing the number of folding times more than the number of times. Such a film (F) has high flexibility, prevents breakage during production, and is excellent in handling and durability when used, particularly as an optical member.
 フィルム(F)は、延伸フィルム、より具体的な例は二軸延伸フィルム、であって、110℃の高温乾燥状態における120時間の乾熱耐久試験において、試験前後の寸法変化率が-1.5%以上0.5%以下のフィルムでありうる。樹脂組成物(C)の構成およびフィルム(F)の構成、例えばフィルム(F)の延伸状態によっては、フィルム(F)は、上記寸法変化率の下限が-1.2%以上、-1.0%以上、さらには-0.8%以上のフィルムでありうるし、上記寸法変化率の上限が0.3%以下、さらには0.1%以下のフィルムでありうる。このようなフィルムは、高温での加工に耐えうる耐熱性を有するとともに、高温での使用における耐久性に優れる。寸法変化率の値がマイナスであることは、試験によりフィルムが収縮したことを示す。 The film (F) is a stretched film, more specifically, a biaxially stretched film, and the dimensional change rate before and after the test is -1. The film may be 5% or more and 0.5% or less. Depending on the composition of the resin composition (C) and the composition of the film (F), for example, the stretched state of the film (F), the film (F) has a lower limit of the dimensional change rate of −1.2% or more, and −1. The film may be 0% or more, more preferably −0.8% or more, and the upper limit of the dimensional change rate may be 0.3% or less, further 0.1% or less. Such a film has heat resistance that can withstand processing at high temperatures, and is excellent in durability at high temperatures. A negative dimensional change value indicates that the film has shrunk by the test.
 フィルム(F)は、延伸フィルム、より具体的な例は二軸延伸フィルム、であって、85℃および相対湿度95%RHの高温湿潤状態における120時間の湿熱耐久試験において、試験前後の寸法変化率が-1.5%以上0.5%以下のフィルムでありうる。樹脂組成物(C)の構成およびフィルム(F)の構成、例えばフィルム(F)の延伸状態によっては、フィルム(F)は、上記寸法変化率の下限が-1.2%以上、-1.0%以上、さらには-0.8%以上でありうるし、上記寸法変化率の上限が0.3%以下、さらには0.1%以下のフィルムでありうる。このようなフィルムは、高温高湿度での加工に耐えうる耐熱性を有するとともに、高温高湿度での使用における耐久性に優れる。 The film (F) is a stretched film, more specifically a biaxially stretched film, and a dimensional change before and after the test in a 120-hour wet heat durability test in a high-temperature wet state at 85 ° C. and a relative humidity of 95% RH. The film may have a rate of −1.5% to 0.5%. Depending on the composition of the resin composition (C) and the composition of the film (F), for example, the stretched state of the film (F), the film (F) has a lower limit of the dimensional change rate of −1.2% or more, and −1. The film may be 0% or more, further −0.8% or more, and the upper limit of the dimensional change rate may be 0.3% or less, further 0.1% or less. Such a film has heat resistance capable of withstanding processing at high temperature and high humidity, and is excellent in durability when used at high temperature and high humidity.
 フィルム(F)は、必要に応じて、帯電防止層、粘接着剤層、接着層、易接着層、防眩(ノングレア)層、光触媒層などの防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、光拡散層、ガスバリヤー層、透明導電層といった種々の機能性層をさらに有していてもよい。これらの機能性層は、フィルム(F)の表面に塗布されたフィルム(F)のコーティング層であってもよいし、粘着剤または接着剤を介してフィルム(F)に積層された独立した層であってもよい。フィルム(F)は2以上の機能性層を有していてもよいし、フィルム(F)と機能性層との積層体について、当該積層体は2以上のフィルム(F)を有していてもよい。フィルム(F)に対する機能性層の積層順序および積層方法は限定されない。 Film (F) is an antistatic layer, an adhesive layer, an adhesive layer, an easy-adhesion layer, an antiglare (non-glare) layer, an antifouling layer such as a photocatalyst layer, an antireflection layer, or a hard coat layer as necessary. Further, various functional layers such as an ultraviolet shielding layer, a heat ray shielding layer, an electromagnetic wave shielding layer, a light diffusion layer, a gas barrier layer, and a transparent conductive layer may be further included. These functional layers may be a coating layer of the film (F) applied on the surface of the film (F), or an independent layer laminated on the film (F) via an adhesive or an adhesive. It may be. The film (F) may have two or more functional layers, and for the laminate of the film (F) and the functional layer, the laminate has two or more films (F). Also good. The order of laminating the functional layers on the film (F) and the laminating method are not limited.
 フィルム(F)の用途は限定されず、例えば、光学部材としての使用(光学用途)である。光学部材は、例えば、偏光板に用いる偏光子保護フィルム、位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルム、各種光ディスク(VD、CD、DVD、MD、LDなど)基板の保護フィルム、拡散板、導光体、位相差板、プリズムシートである。小さい複屈折性を示すフィルム(F)は、例えば、偏光子保護フィルムに好適に使用できる。また、小さい複屈折性とともに小さい光弾性係数を示すフィルム(F)は、市場で要求される低位相差および低光弾性の性能を満たしうる。フィルム(F)が示しうる高い耐熱性は、フィルム(F)の車載機器への使用による効果をより顕著にする。 The use of the film (F) is not limited, and is, for example, use as an optical member (optical use). Optical members include, for example, a polarizer protective film, a retardation film, a viewing angle compensation film, a light diffusion film, a reflection film, an antireflection film, an antiglare film, a brightness enhancement film, a conductive film for touch panels, and various optical disks used for polarizing plates. (VD, CD, DVD, MD, LD, etc.) A substrate protective film, a diffusion plate, a light guide, a retardation plate, and a prism sheet. The film (F) which shows small birefringence can be used suitably for a polarizer protective film, for example. Moreover, the film (F) which shows a small photoelastic coefficient with small birefringence can satisfy | fill the performance of the low phase difference and low photoelasticity which are requested | required on the market. The high heat resistance that can be exhibited by the film (F) makes the effect of the use of the film (F) for in-vehicle devices more remarkable.
 フィルム(F)は帯状のフィルムでありうる。帯状のフィルム(F)は、例えば、ロールtoロールによる製造および加工を効率よく実施できる。当該製造および加工のより具体的な例は、偏光フィルムとの貼り合わせによる偏光板の製造、フィルム(F)上へのスパッタリングまたは蒸着による透明導電膜の形成、およびコーティングによる機能性層の形成である。 Film (F) can be a strip-shaped film. The band-shaped film (F) can be efficiently manufactured and processed by, for example, roll-to-roll. More specific examples of the production and processing are production of a polarizing plate by bonding with a polarizing film, formation of a transparent conductive film by sputtering or vapor deposition on the film (F), and formation of a functional layer by coating. is there.
 以下、実施例により本発明をさらに詳細に説明する。本発明は、以下に示す実施例に限定されない。以下、「%」は「重量%」を、「部」は「重量部」をそれぞれ示す。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples shown below. Hereinafter, “%” represents “% by weight”, and “part” represents “part by weight”.
 実施例では、化合物について下記の略称を用いる。 In the examples, the following abbreviations are used for compounds.
  MMA:メタクリル酸メチル
  MHMA:2-(ヒドロキシメチル)アクリル酸メチル
  PMI:N-フェニルマレイミド
  AN:アクリロニトリル
  St:スチレン
  MEK:メチルエチルケトン
  MIBK:メチルイソブチルケトン
MMA: Methyl methacrylate MHMA: Methyl 2- (hydroxymethyl) acrylate PMI: N-phenylmaleimide AN: Acrylonitrile St: Styrene MEK: Methyl ethyl ketone MIBK: Methyl isobutyl ketone
 本実施例では、樹脂は特定の1種の重合体のみを含むため、重合体と樹脂とは同じものを示す。 In this example, since the resin contains only one specific polymer, the polymer and the resin are the same.
 最初に、実施例で作製した樹脂、樹脂組成物およびフィルムの特性の評価方法を示す。 First, the evaluation method of the characteristics of the resin, resin composition and film produced in the examples will be shown.
 [重量平均分子量]
 樹脂の重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により、以下の測定条件に従って求めた。
  測定システム:東ソー社製「GPCシステムHLC-8220」
  展開溶媒:クロロホルム(和光純薬工業製、特級)
  溶媒流量:0.6mL/分
  標準試料:TSK標準ポリスチレン(東ソー製「PS-オリゴマーキット」)
  測定側カラム構成:ガードカラム(東ソー製「TSK guardcolumn SuperHZ-L」)、分離カラム(東ソー製「TSK Gel Super HZM-M」)、2本直列接続
  リファレンス側カラム構成:リファレンスカラム(東ソー製「TSK gel SuperH-RC」)
[Weight average molecular weight]
The weight average molecular weight Mw of the resin was determined by gel permeation chromatography (GPC) according to the following measurement conditions.
Measurement system: “GPC system HLC-8220” manufactured by Tosoh Corporation
Developing solvent: Chloroform (Wako Pure Chemical Industries, special grade)
Solvent flow rate: 0.6 mL / min Standard sample: TSK standard polystyrene (“PS-oligomer kit” manufactured by Tosoh Corporation)
Measurement side column configuration: guard column (“TSK guardcolumn Super HZ-L” manufactured by Tosoh), separation column (“TSK Gel Super HZM-M” manufactured by Tosoh), two in-line connection Reference side column configuration: reference column (“TSK manufactured by Tosoh” gel SuperH-RC ")
 [ガラス転移温度]
 樹脂および樹脂組成物のガラス転移温度Tgは、JIS K7121の規定に準拠して測定した。具体的に、示差走査熱量計(リガク製「Thermo plus EVO DSC-8230」)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により求めた。リファレンスには、α-アルミナを用いた。
[Glass-transition temperature]
The glass transition temperature Tg of the resin and the resin composition was measured in accordance with JIS K7121 regulations. Specifically, using a differential scanning calorimeter (“Thermo plus EVO DSC-8230” manufactured by Rigaku), a sample of about 10 mg was heated from normal temperature to 200 ° C. (temperature increase rate: 20 ° C./min) in a nitrogen gas atmosphere. From the DSC curve obtained in this way, it was determined by the starting point method. Α-alumina was used as a reference.
 [応力光学係数]
 樹脂組成物の応力光学係数Crは、以下のように評価した。評価対象の樹脂組成物を溶融プレスによりフィルムに成形して未延伸フィルム(厚さ100μm)を作製した。次に、作製した未延伸フィルムを60mm×20mmの長方形に切り出して評価試料とし、1N/mm以下の応力が試料に加わるように選択した錘を、試料の短辺の一つに取り付けた。次に、取り付けた錘が下端となるように、試料を定温乾燥機(DOV-450A、アズワン社製)にチャック間40mmでセットした。定温乾燥機の設定温度を評価対象の樹脂組成物のTg+3℃とし、試料をセットする前に、定温乾燥機を当該温度にまで予熱しておいた。試料をセットした後、定温乾燥機の設定温度を変化させることなく約30分間保持することにより、取り付けた錘の荷重に基づく試料の一軸延伸を実施した。次に、定温乾燥機を、機内の温度が樹脂組成物のTg-40℃になるまで、約1℃/分の冷却速度で冷却した。冷却後、フィルムを乾燥機から取り出し、延伸後のフィルムの長さおよび厚さ、錘の重量、ならびに延伸後のフィルムの波長590nmの光に対する面内位相差Reを測定した。同様の測定を、錘の重さを変えながら一つの樹脂組成物に対して計4回実施し、その結果から、樹脂組成物の応力光学係数Crを算出した。Crの算出方法は、『透明プラスチックの最前線(高分子学会編)』のpp.37-44に記載されている方法に従った。具体的に、延伸後のフィルムの面内位相差Reおよび厚さから当該フィルムのΔn(=nx-ny)を、錘の重さならびに延伸後のフィルムの長さおよび厚さから、延伸時にフィルムに加わった延伸応力σ(単位:N/m)を求め、4回の測定により得られたそれぞれのΔnおよびσを、Δnを縦軸の値、σを横軸の値として座標を定め、これをプロットした。次に、プロットした4点を結ぶ近似直線の傾きを最小二乗法により求め、これを樹脂組成物のCrとした。nxは、フィルムの面内における遅相軸方向(フィルム面内において最大の屈折率を示す方向)の屈折率、nyは、フィルムの面内における進相軸方向(フィルム面内においてnxと垂直な方向)の屈折率である。面内位相差Reは、式(nx-ny)×dにより与えられる。dは、フィルムの厚さ(単位:μm)である。面内位相差Reの測定方法は、後述する。
[Stress optical coefficient]
The stress optical coefficient Cr of the resin composition was evaluated as follows. The resin composition to be evaluated was formed into a film by a melt press to produce an unstretched film (thickness: 100 μm). Next, the produced unstretched film was cut into a 60 mm × 20 mm rectangle to be an evaluation sample, and a weight selected so that a stress of 1 N / mm 2 or less was applied to the sample was attached to one of the short sides of the sample. Next, the sample was set in a constant temperature dryer (DOV-450A, manufactured by AS ONE) with a chuck distance of 40 mm so that the attached weight became the lower end. The set temperature of the constant temperature dryer was set to Tg + 3 ° C. of the resin composition to be evaluated, and the constant temperature dryer was preheated to the temperature before setting the sample. After setting the sample, the sample was held for about 30 minutes without changing the set temperature of the constant temperature dryer, thereby uniaxially stretching the sample based on the load of the attached weight. Next, the constant temperature dryer was cooled at a cooling rate of about 1 ° C./min until the temperature inside the device reached Tg−40 ° C. of the resin composition. After cooling, the film was taken out from the dryer, and the length and thickness of the stretched film, the weight of the weight, and the in-plane retardation Re of the stretched film with respect to light having a wavelength of 590 nm were measured. The same measurement was performed four times on one resin composition while changing the weight of the weight, and the stress optical coefficient Cr of the resin composition was calculated from the result. The calculation method of Cr is described in “Forefront of Transparent Plastics (Edited by Society of Polymer Science)” pp. The method described in 37-44 was followed. Specifically, from the in-plane retardation Re and thickness of the stretched film, the Δn (= nx−ny) of the film is calculated from the weight and the length and thickness of the stretched film. The stretching stress σ (unit: N / m 2 ) applied to is obtained, and Δn and σ obtained by four measurements are set as coordinates with Δn as a value on the vertical axis and σ as a value on the horizontal axis, This was plotted. Next, the slope of the approximate straight line connecting the four plotted points was determined by the method of least squares, and this was used as Cr of the resin composition. nx is the refractive index in the slow axis direction in the plane of the film (the direction showing the maximum refractive index in the film plane), and ny is the fast axis direction in the plane of the film (perpendicular to nx in the film plane). Direction). The in-plane phase difference Re is given by the equation (nx−ny) × d. d is the thickness of the film (unit: μm). A method for measuring the in-plane retardation Re will be described later.
 [光弾性係数]
 樹脂組成物の波長590nmの光に対する光弾性係数は、エリプソメーター(JASCO製、M-150)を用いて、以下のように評価した。最初に、評価対象の樹脂組成物を溶融プレスによりフィルムに成形して未延伸フィルム(厚さ100μm)を作製した。次に、作製した未延伸フィルムを20mm×50mmのサイズに切り出して測定試料とした。次に、切り出した測定試料をエリプソメーターの光弾性計測ユニットに装着して、試料の長辺方向と平行に5~25Nの応力荷重を印加しながら三点複屈折を計測し、波長590nmの光を使用したときの応力に対する複屈折の傾きを、樹脂組成物の光弾性係数とした。
[Photoelastic coefficient]
The photoelastic coefficient of the resin composition with respect to light having a wavelength of 590 nm was evaluated using an ellipsometer (manufactured by JASCO, M-150) as follows. First, the resin composition to be evaluated was formed into a film by a melt press to produce an unstretched film (thickness: 100 μm). Next, the produced unstretched film was cut into a size of 20 mm × 50 mm to obtain a measurement sample. Next, the cut-out measurement sample is mounted in an ellipsometer photoelasticity measurement unit, and three-point birefringence is measured while applying a stress load of 5 to 25 N parallel to the long side direction of the sample, and light having a wavelength of 590 nm is measured. The slope of birefringence with respect to the stress when using was used as the photoelastic coefficient of the resin composition.
 [フィルムの厚さ]
 フィルムの厚さは、デジマチックマイクロメーター(ミツトヨ製)を用いて測定した。
[Film thickness]
The thickness of the film was measured using a Digimatic Micrometer (Mitutoyo).
 [ヘイズ]
 フィルムのヘイズは、濁度計(日本電色工業製、NDH 5000)を用い、JIS K7136:2000の規定に準拠して測定した。表1には、フィルムの厚さ100μmあたりに換算した値を示す。なお、ヘイズは石英セル内のテトラリン中に測定対象物であるフィルムを浸漬した状態で測定した。すなわち、測定したヘイズは内部ヘイズであった。
[Haze]
The haze of the film was measured using a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH 5000) in accordance with JIS K7136: 2000. Table 1 shows values converted per film thickness of 100 μm. In addition, haze was measured in the state which immersed the film which is a measuring object in the tetralin in a quartz cell. That is, the measured haze was internal haze.
 [光学特性]
 フィルムの波長590nmの光に対する面内位相差Reおよび厚さ方向の位相差Rthは、位相差フィルム・光学材料検査装置RETS-100(大塚電子製)を用いて、入射角40°の条件で測定した。面内位相差Reおよび厚さ方向の位相差Rthは、フィルムの面内における遅相軸方向の屈折率をnx、フィルムの面内における進相軸方向の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとして、下記式により与えられる。
  面内位相差Re=(nx-ny)×d
  厚み方向位相差Rth={(nx+ny)/2-nz}×d
[optical properties]
In-plane retardation Re and thickness direction retardation Rth for light with a wavelength of 590 nm of the film were measured using a retardation film / optical material inspection apparatus RETS-100 (manufactured by Otsuka Electronics Co., Ltd.) at an incident angle of 40 °. did. The in-plane retardation Re and the thickness direction retardation Rth are the refractive index in the slow axis direction in the plane of the film nx, the refractive index in the fast axis direction in the film plane ny, and the thickness direction of the film Where nz is the refractive index and d is the thickness of the film.
In-plane retardation Re = (nx−ny) × d
Thickness direction retardation Rth = {(nx + ny) / 2−nz} × d
 [固有複屈折]
 樹脂の固有複屈折の正負は、以下のように評価した。測定対象の樹脂から構成される一軸延伸フィルムの位相差を上記方法により測定し、測定により判明したフィルムの遅相軸方向がフィルムの延伸方向と平行の場合(略平行の場合を含む)に樹脂の固有複屈折を正とし、フィルムの遅相軸方向がフィルムの延伸方向と垂直の場合(略垂直の場合を含む)に樹脂の固有複屈折を負とした。樹脂の一軸延伸フィルムは、以下のように作製した。最初に、評価対象の樹脂組成物を溶融プレスによりフィルムに成形して未延伸フィルム(厚さ100μm)を作製した。次に、作製した未延伸フィルムを80mm×50mmのサイズに切り出した。次に、切り出したフィルムを、オートグラフ(島津製作所製、AG-1kNX)を用いて、延伸温度(Tg+10)℃、延伸速度40mm/分の延伸条件で、チャック間距離40mmの初期状態から延伸倍率2倍で自由端一軸延伸して、一軸延伸フィルムを得た。
[Intrinsic birefringence]
The positive / negative of the intrinsic birefringence of the resin was evaluated as follows. The phase difference of a uniaxially stretched film composed of the resin to be measured is measured by the above method, and the resin is used when the slow axis direction of the film determined by the measurement is parallel to the stretch direction of the film (including the case of being substantially parallel). The intrinsic birefringence of the resin was negative, and the intrinsic birefringence of the resin was negative when the slow axis direction of the film was perpendicular to the stretching direction of the film (including the case of being substantially perpendicular). A uniaxially stretched resin film was prepared as follows. First, the resin composition to be evaluated was formed into a film by a melt press to produce an unstretched film (thickness: 100 μm). Next, the produced unstretched film was cut into a size of 80 mm × 50 mm. Next, using the autograph (manufactured by Shimadzu Corp., AG-1kNX), the cut film was stretched from the initial state where the distance between chucks was 40 mm under the stretching temperature (Tg + 10) ° C. and the stretching speed of 40 mm / min. A uniaxially stretched film was obtained by uniaxial stretching at a free end of 2 times.
 [耐折回数(MIT)]
 フィルムの耐折回数は、JIS P8115の規定に準拠して評価した。具体的に、長さ90mm、幅15mmの測定試料をフィルムから切り出し、これを23℃、相対湿度(RH)50%の雰囲気に1時間以上静置させた後、MIT耐折疲労試験機(東洋精機製、DA型)に装着して、折り曲げ角度135°、折り曲げ速度175cpm、荷重200gの条件で当該試料の折り曲げ試験を実施した。一つのフィルムについて5つの試料を準備し、各試料の測定値の平均を、フィルムの耐折回数とした。耐折回数の評価は、フィルムのMD方向を試料の長さ方向とした場合と、TD方向を試料の長さ方向とした場合のそれぞれの場合について実施した。
[Fold resistance (MIT)]
The number of folding resistances of the film was evaluated in accordance with JIS P8115. Specifically, a measurement sample having a length of 90 mm and a width of 15 mm was cut out from the film and allowed to stand in an atmosphere of 23 ° C. and 50% relative humidity (RH) for 1 hour or longer. The sample was subjected to a bending test under the conditions of a bending angle of 135 °, a bending speed of 175 cpm, and a load of 200 g. Five samples were prepared for one film, and the average of the measured values of each sample was defined as the number of folding times of the film. Evaluation of the folding endurance number was performed for each of the case where the MD direction of the film was the length direction of the sample and the case where the TD direction was the length direction of the sample.
 [耐久性試験(寸法変化率)]
 フィルムの耐久性(寸法変化率)は、以下のように評価した。最初に、フィルムを切り出して、80mm×80mmの正方形の測定試料3枚を作製した。次に、切り出した試料の四辺の長さ(La1、La2、La3、La4)をデジタルノギスで測定した。次に、試料を、110℃に設定した恒温槽、または85℃、相対湿度(RH)95%に設定した恒温槽で120時間保管し、保管後の試料の四片の長さ(Lb1、Lb2、Lb3、Lb4)を再度測定した。
[Durability test (dimensional change rate)]
The durability (dimensional change rate) of the film was evaluated as follows. First, the film was cut out to produce three 80 mm × 80 mm square measurement samples. Next, the length (La1, La2, La3, La4) of the four sides of the cut out sample was measured with a digital caliper. Next, the sample was stored for 120 hours in a constant temperature bath set to 110 ° C. or a constant temperature bath set to 85 ° C. and relative humidity (RH) 95%, and the length of the four pieces of the sample (Lb1, Lb2 after storage) , Lb3, Lb4) were measured again.
 次に、保管前後における試料の各辺の寸法変化率を式:寸法変化率=|(Lb-La)/La|×100(%)により求め、3つのサンプルおよび4辺の総平均を、フィルムの寸法変化率とした。上記式のLaは、保管前のフィルムの一辺の長さ、Lbは、保管後のフィルムの一片の長さである。 Next, the dimensional change rate of each side of the sample before and after storage is obtained by the formula: dimensional change rate = | (Lb−La) / La | × 100 (%), and the total average of the three samples and the four sides is calculated as a film. The rate of dimensional change was In the above formula, La is the length of one side of the film before storage, and Lb is the length of one piece of the film after storage.
 [樹脂組成物におけるN-置換マレイミド単量体に由来する構成単位の含有率]
 樹脂組成物におけるN-置換マレイミド単量体に由来する構成単位の含有率は、以下のようにして求めた。N-置換マレイミド単量体に由来する構成単位を有する樹脂(本実施例では、負の固有複屈折を有する樹脂)における当該構成単位の含有率を、NMR測定装置(Varian製、Unity Plus400)を用いて、当該樹脂の1H-NMRスペクトルを測定することによって求めた。より具体的に、評価対象の樹脂(重量a)、および内標として1,1,2,2-テトラクロロエタン(分子量167.85、重量b)を重クロロホルムに溶解させ、測定したスペクトルにおける内標(化学シフト5.9ppm、4プロトン分)のピーク面積Xと、上記構成単位の基RおよびRのプロトンに由来するピーク面積Y)との面積比(X/Y)から、評価対象の樹脂における上記構成単位の含有率を求めた。例えば、上記構成単位の基RおよびRがいずれも水素原子であり、Rがフェニル基である場合、樹脂における上記構成単位の含有率は、2/4×173.17/167.85×b/a×(Y/X)×100(重量%)となる。次に、得られた含有率と、樹脂組成物における当該樹脂および他の樹脂(本実施例では、正の固有複屈折を有する樹脂)との重量比から、樹脂組成物における上記構成単位の含有率を算出した。
[Content of constituent unit derived from N-substituted maleimide monomer in resin composition]
The content of the structural unit derived from the N-substituted maleimide monomer in the resin composition was determined as follows. The content of the structural unit in a resin having a structural unit derived from an N-substituted maleimide monomer (in this example, a resin having a negative intrinsic birefringence) is measured using an NMR measuring apparatus (Varian, Unity Plus 400). And determined by measuring the 1 H-NMR spectrum of the resin. More specifically, the resin to be evaluated (weight a) and 1,1,2,2-tetrachloroethane (molecular weight 167.85, weight b) as an internal standard were dissolved in deuterated chloroform, and the internal standard in the measured spectrum was measured. From the area ratio (X / Y) between the peak area X of (chemical shift 5.9 ppm, 4 protons) and the peak area Y derived from the protons of the groups R 1 and R 2 of the structural unit, The content rate of the said structural unit in resin was calculated | required. For example, when the groups R 1 and R 2 of the structural unit are both hydrogen atoms and R 3 is a phenyl group, the content of the structural unit in the resin is 2/4 × 173.17 / 167.85. Xb / a * (Y / X) * 100 (% by weight). Next, from the weight ratio of the obtained content and the resin in the resin composition and other resin (in this example, a resin having positive intrinsic birefringence), the content of the structural unit in the resin composition The rate was calculated.
 [脱アルコール反応率(ラクトン環化率)]
 ラクトン環構造を主鎖に有する樹脂における当該環構造の含有率は、以下のように評価した。
[Dealcoholization reaction rate (lactone cyclization rate)]
The content of the ring structure in the resin having a lactone ring structure in the main chain was evaluated as follows.
 本実施例では、前駆重合体における分子内環化縮合反応(MMA単位とMHMA単位との間の脱アルコール環化縮合反応)によりラクトン環構造を形成した。前駆重合体に含まれる全ての水酸基(MHMA単位に由来する水酸基)がメタノールとして脱アルコールしたと仮定したときの重合体の重量減少率を基準とし、実際に作製した樹脂を加熱して当該樹脂に残留していた水酸基がメタノールとして脱アルコールすることによる重量減少率を測定して上記基準と比較することにより、ラクトン環含有率を求めた。 In this example, a lactone ring structure was formed by intramolecular cyclocondensation reaction (dealcoholization cyclocondensation reaction between MMA unit and MHMA unit) in the precursor polymer. Based on the weight reduction rate of the polymer when it is assumed that all hydroxyl groups (hydroxyl groups derived from MHMA units) contained in the precursor polymer have been dealcoholated as methanol, the actually produced resin is heated to the resin. The weight loss rate due to dealcoholization of the remaining hydroxyl group as methanol was measured and compared with the above criteria to determine the lactone ring content.
 具体的に、作製した樹脂(ここでは、主鎖にラクトン環構造を有する重合体)に対してダイナミックTG測定を実施し、150℃から300℃までの間の当該樹脂の重量減少率(実測重量減少率P)を測定した。150℃は、樹脂に残留した水酸基が脱アルコール反応を開始する温度に、300℃は当該樹脂が分解を始める温度に対応する。これとは別に、前駆重合体の組成から、当該前駆重合体に含まれる全ての水酸基がラクトン環の形成に関与した、すなわち脱アルコールした、と仮定したときの理論重量減少率Qを計算した。理論重量減少率Qは、より具体的に、前駆重合体における脱アルコール反応に関与する構成単位(水酸基を有する構成単位)の含有率から算出した。次に、実測重量減少率Pおよび理論重量減少率Qから、式:{1-(実測重量減少率P/理論重量減少率Q)}×100(%)により、評価対象の樹脂の脱アルコール既反応率(%)を求めた。脱アルコール既反応率は、前駆重合体から、評価対象である主鎖にラクトン環構造を有する重合体を作製する間に環化反応した構成単位の量に対応する。そして、求めた脱アルコール既反応率の分だけ、樹脂作製時にラクトン環化反応が進行したとして、式:B×A×MR/Mmにより、樹脂におけるラクトン環構造の含有率を求めた。Bは、前駆重合体(ラクトン環化反応が進行する前の重合体)における、ラクトン環化反応に関与する構成単位(水酸基を有する構成単位)の含有率であり、MRは、環化反応により形成されるラクトン環構造の式量であり、Mmは、上記構成単位の分子量であり、Aは、脱アルコール反応率である。 Specifically, dynamic TG measurement was performed on the prepared resin (here, a polymer having a lactone ring structure in the main chain), and the weight reduction rate (measured weight) of the resin between 150 ° C. and 300 ° C. The reduction rate P) was measured. 150 ° C. corresponds to a temperature at which a hydroxyl group remaining in the resin starts a dealcoholization reaction, and 300 ° C. corresponds to a temperature at which the resin starts to decompose. Separately from this, the theoretical weight loss rate Q was calculated from the composition of the precursor polymer, assuming that all the hydroxyl groups contained in the precursor polymer were involved in the formation of the lactone ring, that is, dealcoholized. More specifically, the theoretical weight reduction rate Q was calculated from the content of constituent units (constituent units having a hydroxyl group) involved in the dealcoholization reaction in the precursor polymer. Next, from the measured weight reduction rate P and the theoretical weight reduction rate Q, the dealcohol content of the resin to be evaluated is determined according to the formula: {1- (actual weight reduction rate P / theoretical weight reduction rate Q)} × 100 The reaction rate (%) was determined. The dealcoholized reaction rate corresponds to the amount of structural units that have undergone a cyclization reaction during the production of a polymer having a lactone ring structure in the main chain to be evaluated from the precursor polymer. Then, the content of the lactone ring structure in the resin was determined according to the formula: B × A × MR / Mm, assuming that the lactone cyclization reaction proceeded during the resin preparation by the determined dealcoholization reaction rate. B is the content of the constituent unit (constituent unit having a hydroxyl group) involved in the lactone cyclization reaction in the precursor polymer (the polymer before the lactone cyclization reaction proceeds), and MR is determined by the cyclization reaction. The formula weight of the lactone ring structure to be formed, Mm is the molecular weight of the structural unit, and A is the dealcoholization reaction rate.
 (実施例1:樹脂組成物P1の作製)
  (正の固有複屈折を有するアクリル樹脂A1の作製)
 攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30Lの反応釜に、8000gのMMA、2000gのMHMA、および重合溶媒として10000gのトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温した。昇温に伴う還流が始まったところで、重合開始剤として10.0gのt-アミルパーオキシイソノナノエート(アルケマ吉富製、ルペロックス570、以下同じ)を添加した。続いて、20.0gのt-アミルパーオキシイソノナノエートと、100gのトルエンとからなる溶液を2時間かけて滴下しながら、約105~110℃の還流下で溶液重合を進行させ、さらに4時間かけて熟成を行った。
(Example 1: Production of resin composition P1)
(Preparation of acrylic resin A1 having positive intrinsic birefringence)
Into a reaction vessel having an internal volume of 30 L equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe, 8000 g of MMA, 2000 g of MHMA, and 10,000 g of toluene as a polymerization solvent were charged, and nitrogen was passed through to 105 ° C. The temperature rose. When refluxing with increasing temperature started, 10.0 g of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi, Luperox 570, hereinafter the same) was added as a polymerization initiator. Subsequently, while a solution consisting of 20.0 g of t-amylperoxyisononanoate and 100 g of toluene was added dropwise over 2 hours, solution polymerization was allowed to proceed under reflux at about 105 to 110 ° C. Aged over time.
 次に、このようにして得た重合溶液に、環化触媒として10gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学製、PhoslexA-18)を加え、約90~120℃の還流下で5時間、ラクトン環構造が生成する環化縮合反応を進行させた。これに続いて、240℃の熱媒を用いたオートクレーブにより重合溶液を加熱および加圧して、さらに1.5時間、環化縮合反応を進行させた。オートクレーブの圧力は、ゲージ圧にして最高約2MPaとした。 Next, 10 g of stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Co., Ltd.) as a cyclization catalyst was added to the polymerization solution thus obtained, and 5 ° C. under reflux at about 90 to 120 ° C. The cyclization condensation reaction in which a lactone ring structure was formed was allowed to proceed over time. Subsequently, the polymerization solution was heated and pressurized by an autoclave using a heating medium at 240 ° C., and the cyclization condensation reaction was allowed to proceed for an additional 1.5 hours. The pressure of the autoclave was set to a maximum of about 2 MPa as a gauge pressure.
 次に、このようにして得た重合溶液を、バレル温度260℃、回転速度100rpm、および減圧度13.3~400hPa(10~300mmHg)に設定し、1つのリアベントおよび4つのフォアベントを備えるベントタイプスクリュー二軸押出機(φ=30mm、L/D=40)に、樹脂量換算で2.0kg/時間の処理速度で導入することにより、押出機内でさらなる環化縮合反応の進行と脱揮とを実施し、さらにその先端より押出して、主鎖にラクトン環構造を有するアクリル樹脂A1の透明なペレットを得た。樹脂A1の重量平均分子量Mwは14.8万、ガラス転移温度Tgは130℃、固有複屈折は正、ラクトン環含有率は29.2%、応力光学係数Crは4.2×10-10Pa-1であった。 Next, the polymerization solution thus obtained was set to a barrel temperature of 260 ° C., a rotation speed of 100 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a vent having one rear vent and four forevents. By introducing into a type screw twin screw extruder (φ = 30 mm, L / D = 40) at a processing rate of 2.0 kg / hour in terms of resin amount, further progress of cyclization condensation reaction and devolatilization in the extruder And further extruding from the tip thereof to obtain a transparent pellet of acrylic resin A1 having a lactone ring structure in the main chain. The weight average molecular weight Mw of the resin A1 is 1480,000, the glass transition temperature Tg is 130 ° C., the intrinsic birefringence is positive, the lactone ring content is 29.2%, and the stress optical coefficient Cr is 4.2 × 10 −10 Pa. -1 .
  (負の固有複屈折を有する樹脂B1の作製)
 攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30Lの反応釜に、3200gのPMI、1400gのAN、5400gのSt、および重合溶媒として10000gのトルエンを仕込み、これに窒素を通じつつ、105℃まで昇温した。昇温に伴う還流が始まったところで、重合開始剤として6.0gのt-アミルパーオキシイソノナノエートを添加して、約105~110℃の還流下で溶液重合を進行させた。
(Production of resin B1 having negative intrinsic birefringence)
Into a reaction vessel having an internal volume of 30 L equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen introduction pipe, 3200 g of PMI, 1400 g of AN, 5400 g of St, and 10000 g of toluene as a polymerization solvent were charged, and nitrogen was passed through this. The temperature was raised to 105 ° C. When refluxing with increasing temperature started, 6.0 g of t-amylperoxyisononanoate was added as a polymerization initiator, and solution polymerization was allowed to proceed under reflux at about 105 to 110 ° C.
 次に、このようにして得た重合溶液を、バレル温度260℃、回転速度100rpm、および減圧度13.3~400hPa(10~300mmHg)に設定し、1つのリアベントおよび4つのフォアベントを備えるベントタイプスクリュー二軸押出し機(φ=30mm、L/D=40)に、樹脂量換算で2.0kg/時間の処理速度で導入することにより脱揮を実施し、さらにその先端より押出して、主鎖にN-置換マレイミド構造(PMI構造)を有する樹脂B1の透明なペレットを得た。樹脂B1の重量平均分子量Mwは15.3万、ガラス転移温度Tgは146℃、固有複屈折は負、応力光学係数Crは-24.8×10-10Pa-1であった。また、樹脂B1におけるN-置換マレイミド構造の含有率(N-置換マレイミド単量体に由来する構成単位の含有率)は31.6%であった。 Next, the polymerization solution thus obtained was set to a barrel temperature of 260 ° C., a rotation speed of 100 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), and a vent having one rear vent and four forevents. Volatilization was carried out by introducing it into a type screw twin screw extruder (φ = 30 mm, L / D = 40) at a processing rate of 2.0 kg / hour in terms of the amount of resin. A transparent pellet of resin B1 having an N-substituted maleimide structure (PMI structure) in the chain was obtained. The weight average molecular weight Mw of the resin B1 was 153,000, the glass transition temperature Tg was 146 ° C., the intrinsic birefringence was negative, and the stress optical coefficient Cr was −24.8 × 10 −10 Pa −1 . In addition, the content of the N-substituted maleimide structure in resin B1 (the content of the structural unit derived from the N-substituted maleimide monomer) was 31.6%.
  (樹脂組成物P1の作製)
 上記のように作製した樹脂A1および樹脂B1を、A1/B1=89/11の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて260℃で混練して、ペレット状の樹脂組成物P1を得た。樹脂組成物P1におけるN-置換マレイミド構造の含有率は3.5%、ラクトン環構造の含有率は26.0重量%であった。樹脂組成物P1のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P1のTgは1点のみが測定され、すなわち、樹脂組成物P1において樹脂A1および樹脂B1は相溶していることが確認された。
(Preparation of resin composition P1)
The resin A1 and the resin B1 produced as described above were kneaded at 260 ° C. using a twin screw extruder (φ = 30 mm, L / D = 40) so that the weight ratio of A1 / B1 = 89/11. Thus, a pellet-shaped resin composition P1 was obtained. The content of the N-substituted maleimide structure in the resin composition P1 was 3.5%, and the content of the lactone ring structure was 26.0% by weight. The Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P1 are summarized in Table 1 below. Only one point was measured for the Tg of the resin composition P1, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P1.
 (実施例2)
  (樹脂組成物P2の作製)
 上記のように作製した樹脂A1および樹脂B1を、A1/B1=87.4/12.6の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて260℃で混練して、ペレット状の樹脂組成物P2を得た。樹脂組成物P2におけるN-置換マレイミド構造の含有率は4.0%、ラクトン環構造の含有率は25.5重量%であった。樹脂組成物P2のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P2のTgは1点のみが測定され、すなわち、樹脂組成物P2において樹脂A1および樹脂B1は相溶していることが確認された。
(Example 2)
(Preparation of resin composition P2)
Using a twin screw extruder (φ = 30 mm, L / D = 40), the resin A1 and the resin B1 produced as described above were mixed at a weight ratio of A1 / B1 = 87.4 / 12.6. The mixture was kneaded at 0 ° C. to obtain a pellet-shaped resin composition P2. In resin composition P2, the content of the N-substituted maleimide structure was 4.0%, and the content of the lactone ring structure was 25.5% by weight. Table 1 below summarizes the Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P2. Only one point was measured for the Tg of the resin composition P2, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P2.
 (実施例3)
  (樹脂組成物P3の作製)
 上記のように作製した樹脂A1および樹脂B1を、A1/B1=86/14の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて260℃で混練して、ペレット状の樹脂組成物P3を得た。樹脂組成物P3におけるN-置換マレイミド構造の含有率は4.4%、ラクトン環構造の含有率は25.1重量%であった。樹脂組成物P2のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P3のTgは1点のみが測定され、すなわち、樹脂組成物P3において樹脂A1および樹脂B1は相溶していることが確認された。
(Example 3)
(Preparation of resin composition P3)
The resin A1 and the resin B1 produced as described above were kneaded at 260 ° C. using a twin-screw extruder (φ = 30 mm, L / D = 40) so as to have a weight ratio of A1 / B1 = 86/14. Thus, a pellet-shaped resin composition P3 was obtained. In resin composition P3, the content of the N-substituted maleimide structure was 4.4%, and the content of the lactone ring structure was 25.1% by weight. Table 1 below summarizes the Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P2. Only one point of Tg of the resin composition P3 was measured, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P3.
 (比較例1)
  (樹脂組成物P4の作製)
 上記のように作製した樹脂A1と、負の固有複屈折を有するスチレン-アクリロニトリル共重合体B2(スチレン/アクリロニトリルの重量比は73/27、重量平均分子量22万、応力光学係数Crは-28.9×10-10Pa-1)のペレットとを、A1/B2=90/10の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて240℃で混練して、ペレット状の樹脂組成物P4を得た。樹脂組成物P4はN-置換マレイミド構造を有しておらず、樹脂組成物P4におけるラクトン環構造の含有率は26.3%であった。樹脂組成物P4のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P4のTgは1点のみが測定され、すなわち、樹脂組成物P4において樹脂A1および樹脂B2は相溶していることが確認された。
(Comparative Example 1)
(Preparation of resin composition P4)
Resin A1 prepared as described above and styrene-acrylonitrile copolymer B2 having negative intrinsic birefringence (weight ratio of styrene / acrylonitrile is 73/27, weight average molecular weight 220,000, stress optical coefficient Cr is −28. 9 × 10 −10 Pa −1 ) pellets at 240 ° C. using a twin screw extruder (φ = 30 mm, L / D = 40) so as to have a weight ratio of A1 / B2 = 90/10 As a result, a pellet-shaped resin composition P4 was obtained. The resin composition P4 did not have an N-substituted maleimide structure, and the content of the lactone ring structure in the resin composition P4 was 26.3%. Table 1 below summarizes Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of resin composition P4. Only one point of Tg of the resin composition P4 was measured, that is, it was confirmed that the resin A1 and the resin B2 were compatible in the resin composition P4.
  (比較例2:樹脂組成物P5の作製)
  (正の固有複屈折を有するアクリル樹脂A2の作製)
 攪拌装置、温度センサー、冷却管および窒素導入管を備えた内容積30Lの反応釜に、7000gのMMA、3000gのMHMA、ならびに重合溶媒としてMIBKおよびMEKの混合溶媒(重量比9:1)6667gを仕込み、これに窒素を通じつつ、105℃まで昇温した。昇温に伴う還流が始まったところで、重合開始剤としてt-アミルパーオキシイソノナノエート6.0gを添加した。続いて、12.0gのt-アミルパーオキシイソノナノエートと、3315gの上記混合溶媒とからなる溶液を3時間かけて滴下しながら、約95~110℃の還流下で溶液重合を進行させ、さらに4時間かけて熟成を行った。
(Comparative Example 2: Production of resin composition P5)
(Preparation of acrylic resin A2 having positive intrinsic birefringence)
Into a reaction vessel having an internal volume of 30 L equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen introducing pipe, 7000 g of MMA, 3000 g of MHMA, and 6667 g of a mixed solvent of MIBK and MEK (weight ratio 9: 1) as a polymerization solvent. The temperature was raised to 105 ° C. while introducing nitrogen into the mixture. When refluxing with increasing temperature started, 6.0 g of t-amylperoxyisononanoate was added as a polymerization initiator. Subsequently, while a solution consisting of 12.0 g of t-amylperoxyisononanoate and 3315 g of the above mixed solvent was dropped over 3 hours, solution polymerization was allowed to proceed under reflux at about 95 to 110 ° C., The aging was further performed for 4 hours.
 次に、このようにして得た重合溶液に、環化触媒として20gのリン酸オクチル/リン酸ジオクチル混合物を加え、約85~100℃の還流下で2時間、ラクトン環構造が生成する環化縮合反応を進行させた。これに続いて、240℃の熱媒を用いたオートクレーブにより重合溶液を加熱および加圧して、さらに1.5時間、環化縮合反応を進行させた。オートクレーブの圧力は、ゲージ圧にして最高約2MPaとした。 Next, 20 g of an octyl phosphate / dioctyl phosphate mixture is added to the polymerization solution thus obtained as a cyclization catalyst, and cyclization in which a lactone ring structure is formed at reflux of about 85 to 100 ° C. for 2 hours. The condensation reaction was allowed to proceed. Subsequently, the polymerization solution was heated and pressurized by an autoclave using a heating medium at 240 ° C., and the cyclization condensation reaction was allowed to proceed for an additional 1.5 hours. The pressure of the autoclave was set to a maximum of about 2 MPa as a gauge pressure.
 次に、このようにして得た重合溶液を、実施例1と同様に二軸押出機に導入して押出機内でさらなる環化縮合反応の進行と脱揮とを実施し、さらにその先端より押出して、主鎖にラクトン環構造を有するアクリル樹脂A2の透明なペレットを得た。樹脂A2の重量平均分子量Mwは12.7万、ガラス転移温度Tgは140℃、固有複屈折は正、ラクトン環含有率は43.9%、応力光学係数Crは6.5×10-10Pa-1であった。 Next, the polymerization solution thus obtained was introduced into a twin-screw extruder in the same manner as in Example 1 and further cyclization condensation reaction proceeded and devolatilized in the extruder, and further extruded from its tip. Thus, a transparent pellet of acrylic resin A2 having a lactone ring structure in the main chain was obtained. The weight average molecular weight Mw of the resin A2 is 1270, glass transition temperature Tg is 140 ° C., intrinsic birefringence is positive, lactone ring content is 43.9%, and the stress optical coefficient Cr is 6.5 × 10 −10 Pa. -1 .
  (樹脂組成物P5の作製)
 上記のように作製した樹脂A2と、負の固有複屈折を有するスチレン-アクリロニトリル共重合体B2とを、A1/B2=82/18の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて260℃で混練して、ペレット状の樹脂組成物P5を得た。樹脂組成物P5はN-置換マレイミド構造を有しておらず、樹脂組成物P5におけるラクトン環構造の含有率は36.0%であった。樹脂組成物P5のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P5のTgは1点のみが測定され、すなわち、樹脂組成物P5において樹脂A2および樹脂B2は相溶していることが確認された。
(Preparation of resin composition P5)
A resin A2 produced as described above and a styrene-acrylonitrile copolymer B2 having negative intrinsic birefringence are mixed into a twin-screw extruder (φ = 30 mm, φ / mm) so that the weight ratio is A1 / B2 = 82/18. L / D = 40) and kneading at 260 ° C. to obtain a pellet-shaped resin composition P5. The resin composition P5 did not have an N-substituted maleimide structure, and the content of the lactone ring structure in the resin composition P5 was 36.0%. Table 1 below summarizes Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of resin composition P5. Only one point of Tg of the resin composition P5 was measured, that is, it was confirmed that the resin A2 and the resin B2 were compatible in the resin composition P5.
 (実施例4)
 実施例2で作製した樹脂組成物P2を、単軸押出機(φ=20mm、L/D=25)を用いてコートハンガータイプTダイ(幅150mm、Tダイ温度260℃)から溶融押出成形し、これをロール温度130℃の冷却ロール上に吐出して、厚さ160μmの未延伸フィルムを作製した。
Example 4
The resin composition P2 produced in Example 2 was melt-extruded from a coat hanger type T die (width 150 mm, T die temperature 260 ° C.) using a single screw extruder (φ = 20 mm, L / D = 25). This was discharged onto a cooling roll having a roll temperature of 130 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、得られた未延伸フィルムを96mm×96mmに切り出した後、逐次二軸延伸機(東洋精機製作所製、X-6S)を用いて、延伸温度147℃(=Tg+15℃)、240mm/分の延伸速度で縦方向および横方向(MD方向およびTD方向)の順に、それぞれ延伸倍率2倍で逐次二軸延伸を行った。延伸後、試験装置からフィルムを速やかに取り出して冷却し、厚さ40μmの二軸延伸フィルムF1を得た。得られたフィルムF1の評価結果を、以下の表2にまとめる。 Next, after cutting the obtained unstretched film into 96 mm × 96 mm, using a sequential biaxial stretching machine (manufactured by Toyo Seiki Seisakusho, X-6S), a stretching temperature of 147 ° C. (= Tg + 15 ° C.), 240 mm / min. Biaxial stretching was performed sequentially at a stretching ratio of 2 in the longitudinal direction and the transverse direction (MD direction and TD direction) at the stretching speed of. After stretching, the film was quickly taken out from the test apparatus and cooled to obtain a biaxially stretched film F1 having a thickness of 40 μm. The evaluation results of the obtained film F1 are summarized in Table 2 below.
 (実施例5)
 延伸温度を152℃(=Tg+20℃)に変更した以外は、実施例4と同様にして、厚さ40μmの二軸延伸フィルムF2を得た。得られたフィルムF2の評価結果を、以下の表2にまとめる。
(Example 5)
A biaxially stretched film F2 having a thickness of 40 μm was obtained in the same manner as in Example 4 except that the stretching temperature was changed to 152 ° C. (= Tg + 20 ° C.). The evaluation results of the obtained film F2 are summarized in Table 2 below.
 (比較例3)
 比較例1で作製した樹脂組成物P4を、単軸押出機(φ=20mm、L/D=25)を用いてコートハンガータイプTダイ(幅150mm、Tダイ温度250℃)から溶融押出成形し、これをロール温度120℃の冷却ロール上に吐出して、厚さ160μmの未延伸フィルムを作製した。
(Comparative Example 3)
The resin composition P4 produced in Comparative Example 1 was melt extruded from a coat hanger type T die (width 150 mm, T die temperature 250 ° C.) using a single screw extruder (φ = 20 mm, L / D = 25). This was discharged onto a cooling roll having a roll temperature of 120 ° C. to produce an unstretched film having a thickness of 160 μm.
 次に、得られた未延伸フィルムを96mm×96mmに切り出した後、逐次二軸延伸機(東洋精機製作所製、X-6S)を用いて、延伸温度145℃(=Tg+20℃)、240mm/分の延伸速度で縦方向および横方向(MD方向およびTD方向)の順に、それぞれ延伸倍率2倍で逐次二軸延伸した。延伸後、試験装置からフィルムを速やかに取り出して冷却し、厚さ40μmの二軸延伸フィルムF3を得た。得られたフィルムF3の評価結果を、以下の表2にまとめる。 Next, after cutting the obtained unstretched film to 96 mm × 96 mm, using a sequential biaxial stretching machine (X-6S, manufactured by Toyo Seiki Seisakusho), a stretching temperature of 145 ° C. (= Tg + 20 ° C.), 240 mm / min. The film was sequentially biaxially stretched at a stretching ratio of 2 in the order of the longitudinal direction and the transverse direction (MD direction and TD direction) at a stretching speed of. After stretching, the film was quickly taken out from the test apparatus and cooled to obtain a biaxially stretched film F3 having a thickness of 40 μm. The evaluation results of the obtained film F3 are summarized in Table 2 below.
 (比較例4)
 樹脂組成物P4の代わりに比較例2で作製した樹脂組成物P5を用いるとともに、延伸温度を151℃(=Tg+20℃)に変更した以外は、比較例3と同様にして、厚さ40μmの二軸延伸フィルムF4を得た。得られたフィルムF4の評価結果を、以下の表2にまとめる。
(Comparative Example 4)
Similar to Comparative Example 3, except that the resin composition P5 prepared in Comparative Example 2 was used instead of the resin composition P4 and the stretching temperature was changed to 151 ° C. (= Tg + 20 ° C.). An axially stretched film F4 was obtained. The evaluation results of the obtained film F4 are summarized in Table 2 below.
 (実施例6)
  (ゴム質重合体G1の作製)
 冷却器および攪拌機を備えた重合容器に、脱イオン水710部およびラウリル硫酸ナトリウム1.5部を投入して溶解させ、内温を70℃に昇温した。次に、ソジウムホルムアルデヒドスルホキシレート(SFS)0.93部、硫酸第一鉄0.001部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.003部、および脱イオン水20部の混合溶液を重合容器に一括してさらに投入した後、重合容器内を窒素ガスで十分に置換した。次に、アクリル酸ブチル(BA)7.1部、St2.9部、ジメタクリル酸1,4-ブタンジオール(BDMA)0.02部およびメタクリル酸アリル(AMA)0.02部のモノマー混合液M-1と、t-ブチルハイドロパーオキサイド(PBH)0.13部および脱イオン水10.0部の重合開始剤溶液とを、重合容器に一括してさらに添加して、60分間の重合反応を進行させた。次に、BA63.9部、St25.2部およびAMA0.9部のモノマー混合液M2と、PBH0.246部および脱イオン水20.0部の重合開始剤溶液とを、別々に90分間かけて重合容器に連続滴下しながら、さらなる重合反応を進行させ、これらの滴下終了後もさらに60分間重合反応を継続させた。この一連の反応により、ゴム質重合体のコア・シェル構造のコアとなる部分を得た。
(Example 6)
(Preparation of rubber polymer G1)
In a polymerization vessel equipped with a cooler and a stirrer, 710 parts of deionized water and 1.5 parts of sodium lauryl sulfate were added and dissolved, and the internal temperature was raised to 70 ° C. Next, a mixed solution of 0.93 part of sodium formaldehyde sulfoxylate (SFS), 0.001 part of ferrous sulfate, 0.003 part of disodium ethylenediaminetetraacetate (EDTA), and 20 parts of deionized water is polymerized. After further charging into the vessel all at once, the inside of the polymerization vessel was sufficiently replaced with nitrogen gas. Next, a monomer mixed solution of 7.1 parts of butyl acrylate (BA), 2.9 parts of St, 0.02 part of 1,4-butanediol dimethacrylate (BDMA) and 0.02 part of allyl methacrylate (AMA) M-1 and a polymerization initiator solution of 0.13 part of t-butyl hydroperoxide (PBH) and 10.0 parts of deionized water are further added to the polymerization vessel all at once, and the polymerization reaction is performed for 60 minutes. Made progress. Next, a monomer mixture M2 of 63.9 parts of BA, 25.2 parts of St and 0.9 part of AMA, and a polymerization initiator solution of 0.246 parts of PBH and 20.0 parts of deionized water were separately added over 90 minutes. While continuously dropping into the polymerization vessel, further polymerization reaction was allowed to proceed, and the polymerization reaction was continued for another 60 minutes after the completion of these droppings. Through this series of reactions, a rubber polymer core-shell part was obtained.
 次に、St73.0部およびアクリロニトリル(AN)27.0部のモノマー混合液M3と、PBH0.27部および脱イオン水20.0部の重合開始剤溶液とを、別々に100分間かけて連続滴下しながらさらなる重合反応を進行させ、これらの滴下終了後も、重合容器の内温を80℃に昇温して120分間重合反応を継続させた。次に、重合容器の内温が40℃になるまで冷却した後、内容物を300メッシュの金網を通過させて、コア・シェル構造を有するゴム質重合体の乳化重合液を得た。次に、得られた乳化重合液を塩化カルシウムで塩析および凝固した後、固形物を水洗および乾燥して、粉体状のゴム質重合体G1(平均粒子径0.105μm)を得た。 Next, a monomer mixture M3 of 73.0 parts of St and acrylonitrile (AN) 27.0 parts, and a polymerization initiator solution of 0.27 parts of PBH and 20.0 parts of deionized water were continuously separated over 100 minutes. Further polymerization reaction was allowed to proceed while dropping, and the polymerization reaction was continued for 120 minutes by raising the internal temperature of the polymerization vessel to 80 ° C. even after completion of these droppings. Next, after the polymerization container was cooled to an internal temperature of 40 ° C., the contents were passed through a 300-mesh wire mesh to obtain an emulsion polymerization solution of a rubber polymer having a core / shell structure. Next, the obtained emulsion polymerization solution was salted out and coagulated with calcium chloride, and then the solid was washed with water and dried to obtain a powdery rubber polymer G1 (average particle size 0.105 μm).
  (樹脂組成物P6の作製)
 上記のようにして作製した樹脂A1および樹脂B1、ならびにゴム質重合体G1を、A1/B1/G1=85/10/5の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて260℃で混練して、ペレット状の樹脂組成物P6を得た。樹脂組成物P6におけるN-置換マレイミド構造の含有率は3.2%、ラクトン環構造の含有率は23.4%であった。樹脂組成物P6のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P6のTgは1点のみが測定され、すなわち、樹脂組成物P6において樹脂A1および樹脂B1は相溶していることが確認された。
(Preparation of resin composition P6)
The resin A1 and the resin B1 produced as described above, and the rubber polymer G1 were mixed with a twin-screw extruder (φ = 30 mm, L / L) so that the weight ratio A1 / B1 / G1 = 85/10/5. D = 40) and kneaded at 260 ° C. to obtain a pellet-shaped resin composition P6. In resin composition P6, the content of the N-substituted maleimide structure was 3.2%, and the content of the lactone ring structure was 23.4%. The Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P6 are summarized in Table 1 below. Only one point of Tg of the resin composition P6 was measured, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P6.
 (実施例7)
  (樹脂組成物P7の作製)
 上記のようにして作製した樹脂A1および樹脂B1、ならびにゴム質重合体G1を、A1/B1/G1=80.5/12/7.5の重量比となるように二軸押出機(φ=30mm、L/D=40)を用いて260℃で混練して、ペレット状の樹脂組成物P7を得た。樹脂組成物P7におけるN-置換マレイミド構造の含有率は3.8%、ラクトン環構造の含有率は23.5%であった。樹脂組成物P7のTg、応力光学係数Cr、光弾性係数およびヘイズを、以下の表1にまとめる。樹脂組成物P7のTgは1点のみが測定され、すなわち、樹脂組成物P7において樹脂A1および樹脂B1は相溶していることが確認された。
(Example 7)
(Preparation of resin composition P7)
The resin A1 and the resin B1 produced as described above, and the rubbery polymer G1 were mixed with a twin-screw extruder (φ = 1 / B1 / G1 = 80.5 / 12 / 7.5). 30 mm, L / D = 40) and kneading at 260 ° C. to obtain a pellet-shaped resin composition P7. In resin composition P7, the content of the N-substituted maleimide structure was 3.8%, and the content of the lactone ring structure was 23.5%. Table 1 below summarizes the Tg, stress optical coefficient Cr, photoelastic coefficient, and haze of the resin composition P7. Only one point of Tg of the resin composition P7 was measured, that is, it was confirmed that the resin A1 and the resin B1 were compatible in the resin composition P7.
 (実施例8)
 樹脂組成物P2の代わりに実施例6で作製した樹脂組成物P6を用いるとともに、延伸温度を149℃(=Tg+18℃)に変更した以外は、実施例4と同様にして、厚さ40μmの二軸延伸フィルムF5を得た。得られたフィルムF5の評価結果を、以下の表2にまとめる。
(Example 8)
In the same manner as in Example 4, except that the resin composition P6 prepared in Example 6 was used instead of the resin composition P2, and the stretching temperature was changed to 149 ° C. (= Tg + 18 ° C.). An axially stretched film F5 was obtained. The evaluation results of the obtained film F5 are summarized in Table 2 below.
 (実施例9)
 樹脂組成物P2の代わりに実施例7で作製した樹脂組成物P7を用いるとともに、延伸温度を149℃(=Tg+18℃)に変更した以外は、実施例4と同様にして、厚さ40μmの二軸延伸フィルムF6を得た。得られたフィルムF6の評価結果を、以下の表2にまとめる。
Example 9
In the same manner as in Example 4, except that the resin composition P7 prepared in Example 7 was used instead of the resin composition P2, and the stretching temperature was changed to 149 ° C. (= Tg + 18 ° C.). An axially stretched film F6 was obtained. The evaluation results of the obtained film F6 are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例の樹脂組成物では、樹脂組成物における環構造の含有率が30重量%以下であるにもかかわらず、130℃以上の高いTgと小さいCrとが実現した。一方、N-置換マレイミド構造を含まず、樹脂組成物における環構造の含有率が実施例と同等である比較例1の樹脂組成物では、小さいCrを達成できた一方でTgが130℃に到達しなかった。また、同じくN-置換マレイミド構造を含まない比較例2の樹脂組成物では、130℃以上の高いTgと小さいCrとを実現するために、樹脂組成物における含有率にして36重量%と多くの環構造の含有が必要であり、これにより、光弾性係数の増加と、表2の比較例4のフィルムにおける耐折回数の極端な低下とが余儀なくされた。なお、比較例1の樹脂組成物においても光弾性係数は高くなった。また、比較例1および比較例1の樹脂組成物P4から作製した比較例3の延伸フィルムに示されているように、N-置換マレイミド構造を有さない樹脂組成物では、耐折回数が同等の場合に、実施例の樹脂組成物に比べて寸法変化率が大きくなった。実施例1,2にも示されているように、樹脂組成物におけるN-置換マレイミド構造の含有率が大きくなるとフィルムの耐折回数が低下する、すなわち樹脂組成物が硬く脆くなる傾向を示すことが一般的であるが、比較例に対する実施例の耐折回数は、N-置換マレイミド構造を含むにもかかわらず増加した。すなわち実施例の樹脂組成物は、N-置換マレイミド構造を含み、これにより高いTgが達成されているにもかかわらず柔軟であった。 As shown in Table 1, in the resin compositions of the examples, high Tg of 130 ° C. or higher and small Cr were realized even though the ring structure content in the resin composition was 30% by weight or less. On the other hand, in the resin composition of Comparative Example 1 which does not contain an N-substituted maleimide structure and the content of the ring structure in the resin composition is the same as that of the example, a small Cr can be achieved while Tg reaches 130 ° C. I did not. Similarly, in the resin composition of Comparative Example 2 that does not contain an N-substituted maleimide structure, in order to realize a high Tg of 130 ° C. or higher and a small Cr, the content ratio in the resin composition is 36% by weight. It was necessary to contain a ring structure, which forced an increase in the photoelastic coefficient and an extreme decrease in the folding resistance of the film of Comparative Example 4 in Table 2. In addition, the photoelastic coefficient became high also in the resin composition of the comparative example 1. Further, as shown in the stretched film of Comparative Example 3 prepared from the resin composition P4 of Comparative Example 1 and Comparative Example 1, the resin composition having no N-substituted maleimide structure has the same folding resistance. In this case, the dimensional change rate was larger than that of the resin composition of the example. As shown in Examples 1 and 2, when the content of the N-substituted maleimide structure in the resin composition increases, the folding resistance of the film decreases, that is, the resin composition tends to become hard and brittle. However, the folding resistance of the examples relative to the comparative example increased despite the inclusion of the N-substituted maleimide structure. That is, the resin compositions of the examples contained N-substituted maleimide structures and were flexible despite achieving high Tg.
 本発明は、その意図および本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味および範囲にあるすべての変更はそれに含まれる。 The present invention can be applied to other embodiments without departing from the intent and essential features thereof. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that fall within the meaning and scope equivalent to the claims are embraced therein.
 本発明の樹脂組成物は、フィルム、基板などの各種の形状に成形して使用できる。本発明の樹脂組成物は、例えば、光学部材に使用でき、より具体的には光学フィルム、光学基板として使用できる。高いTgに着目すると、車両に搭載される装置への組み込みといった高温環境下での使用が想定される用途、あるいは透明導電膜の基板のように高温での加工に曝される用途への使用も可能である。  The resin composition of the present invention can be used after being formed into various shapes such as a film and a substrate. The resin composition of the present invention can be used, for example, as an optical member, and more specifically as an optical film or an optical substrate. Focusing on the high Tg, it can be used in applications that are expected to be used in high-temperature environments, such as being incorporated into equipment mounted on vehicles, or in applications that are exposed to high-temperature processing such as transparent conductive film substrates. Is possible.

Claims (12)

  1.  正の固有複屈折を有するアクリル樹脂(A)と、
     負の固有複屈折を有し、N-置換マレイミド単量体に由来する構成単位を有する樹脂(B)と、を含み、
     前記N-置換マレイミド単量体に由来する構成単位の含有率が1重量%以上10重量%以下であり、
     ガラス転移温度(Tg)が130℃以上である樹脂組成物。
    An acrylic resin (A) having positive intrinsic birefringence;
    A resin (B) having a negative intrinsic birefringence and having a structural unit derived from an N-substituted maleimide monomer,
    The content of the structural unit derived from the N-substituted maleimide monomer is 1% by weight or more and 10% by weight or less,
    A resin composition having a glass transition temperature (Tg) of 130 ° C. or higher.
  2.  前記アクリル樹脂(A)と前記樹脂(B)との間のTgの差が20℃以下である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein a difference in Tg between the acrylic resin (A) and the resin (B) is 20 ° C or less.
  3.  応力光学係数Crの絶対値が1.0×10-10Pa-1以下である請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the absolute value of the stress optical coefficient Cr is 1.0 × 10 −10 Pa −1 or less.
  4.  前記アクリル樹脂(A)が主鎖に環構造を有する請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the acrylic resin (A) has a ring structure in the main chain.
  5.  前記環構造が、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、無水マレイン酸構造、およびN-置換マレイミド構造から選ばれる少なくとも1種である請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the ring structure is at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, a maleic anhydride structure, and an N-substituted maleimide structure.
  6.  前記環構造が、前駆重合体における隣り合う2つの構成単位間の分子内環化反応により形成された環構造であり、
     前記樹脂組成物における当該環構造の含有率が30重量%以下である請求項4に記載の樹脂組成物。
    The ring structure is a ring structure formed by an intramolecular cyclization reaction between two adjacent structural units in the precursor polymer;
    The resin composition according to claim 4, wherein a content of the ring structure in the resin composition is 30% by weight or less.
  7.  前記樹脂組成物におけるN-置換マレイミド単量体に由来する構成単位の含有率が5重量%以下である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the structural unit derived from the N-substituted maleimide monomer in the resin composition is 5% by weight or less.
  8.  前記樹脂(B)が、芳香族ビニル単量体に由来する構成単位をさらに有する請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin (B) further comprises a structural unit derived from an aromatic vinyl monomer.
  9.  光弾性係数の絶対値が1.0×10-12Pa-1以下である請求項1に記載の樹脂組成物。 2. The resin composition according to claim 1, wherein the absolute value of the photoelastic coefficient is 1.0 × 10 −12 Pa −1 or less.
  10.  請求項1~9のいずれかに記載の樹脂組成物からなるフィルム。 A film comprising the resin composition according to any one of claims 1 to 9.
  11.  延伸フィルムであり、
     波長590nmの光に対する面内位相差Reが5nm以下であり、前記光に対する厚さ方向の位相差Rthの絶対値が5nm以下である請求項10に記載のフィルム。
    Stretched film,
    The film according to claim 10, wherein an in-plane retardation Re for light having a wavelength of 590 nm is 5 nm or less, and an absolute value of a thickness direction retardation Rth for the light is 5 nm or less.
  12.  延伸フィルムであり、
     JIS P8115の規定に基づいて実施した耐折性(MIT)試験において200回以上の耐折回数を示す請求項10に記載のフィルム。
     
    Stretched film,
    The film according to claim 10, which exhibits a folding endurance of 200 times or more in a folding endurance (MIT) test carried out based on JIS P8115.
PCT/JP2016/002447 2015-05-21 2016-05-19 Resin composition and film WO2016185722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017518770A JP6731913B2 (en) 2015-05-21 2016-05-19 Resin composition and film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015103367 2015-05-21
JP2015-103367 2015-05-21

Publications (1)

Publication Number Publication Date
WO2016185722A1 true WO2016185722A1 (en) 2016-11-24

Family

ID=57319738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002447 WO2016185722A1 (en) 2015-05-21 2016-05-19 Resin composition and film

Country Status (2)

Country Link
JP (1) JP6731913B2 (en)
WO (1) WO2016185722A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200032A1 (en) * 2016-05-19 2017-11-23 株式会社クラレ Methacrylic resin composition and molded body
JP2018002994A (en) * 2016-06-22 2018-01-11 旭化成株式会社 Methacrylic resin composition, optical film, and optical component
JP2018070710A (en) * 2016-10-26 2018-05-10 株式会社カネカ Resin composition
JP2018116542A (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
WO2018135360A1 (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
WO2018190173A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical film, polarizing plate, and image display device
WO2018190172A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical film, polarizing plate, and image display device
US10409067B2 (en) 2017-03-17 2019-09-10 Asahi Kasei Kabushiki Kaisha Component for head mounted display
JP2020033420A (en) * 2018-08-28 2020-03-05 日東電工株式会社 Base material for surface protective film, production method of the base material, surface protective film using the base material, and optical film with surface productive film
JP2020046509A (en) * 2018-09-18 2020-03-26 株式会社カネカ Stretched film, and method for manufacturing stretched film
JP2020147697A (en) * 2019-03-14 2020-09-17 株式会社クラレ Acrylic resin film and method for producing the same
JP2021043421A (en) * 2019-09-13 2021-03-18 住友化学株式会社 Optical laminate and display device using the same
JP2022012523A (en) * 2020-07-01 2022-01-17 株式会社日本触媒 Film with suppressed phase difference in thickness direction
WO2023100806A1 (en) * 2021-11-30 2023-06-08 株式会社カネカ Film, production method therefor, and image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297619A (en) * 2006-04-06 2007-11-15 Nippon Shokubai Co Ltd Thermoplastic resin composition, and extruded film or sheet
JP2010262253A (en) * 2009-04-08 2010-11-18 Nippon Shokubai Co Ltd Phase difference film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297619A (en) * 2006-04-06 2007-11-15 Nippon Shokubai Co Ltd Thermoplastic resin composition, and extruded film or sheet
JP2010262253A (en) * 2009-04-08 2010-11-18 Nippon Shokubai Co Ltd Phase difference film

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200032A1 (en) * 2016-05-19 2017-11-23 株式会社クラレ Methacrylic resin composition and molded body
JP2018002994A (en) * 2016-06-22 2018-01-11 旭化成株式会社 Methacrylic resin composition, optical film, and optical component
JP2018070710A (en) * 2016-10-26 2018-05-10 株式会社カネカ Resin composition
CN110192173A (en) * 2017-01-19 2019-08-30 日东电工株式会社 Touch panel film laminated body
JP2018116542A (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
WO2018135360A1 (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
WO2018135359A1 (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
JP2018116543A (en) * 2017-01-19 2018-07-26 日東電工株式会社 Film laminate for touch panel
US10409067B2 (en) 2017-03-17 2019-09-10 Asahi Kasei Kabushiki Kaisha Component for head mounted display
JPWO2018190173A1 (en) * 2017-04-10 2020-02-20 日東電工株式会社 Optical film, polarizing plate, and image display device
JP7083339B2 (en) 2017-04-10 2022-06-10 日東電工株式会社 Optical film, polarizing plate, and image display device
KR20190130592A (en) * 2017-04-10 2019-11-22 닛토덴코 가부시키가이샤 Optical film, polarizer, and image display device
CN110494772A (en) * 2017-04-10 2019-11-22 日东电工株式会社 Optical film, polarizing film and image display device
CN110537115A (en) * 2017-04-10 2019-12-03 日东电工株式会社 Optical film, polarizing film and image display device
JPWO2018190172A1 (en) * 2017-04-10 2020-02-20 日東電工株式会社 Optical film, polarizing plate, and image display device
WO2018190172A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical film, polarizing plate, and image display device
WO2018190173A1 (en) * 2017-04-10 2018-10-18 日東電工株式会社 Optical film, polarizing plate, and image display device
TWI835728B (en) * 2017-04-10 2024-03-21 日商日東電工股份有限公司 Optical films, polarizing plates, and image display devices
KR102609114B1 (en) * 2017-04-10 2023-12-04 닛토덴코 가부시키가이샤 Optical films, polarizers, and image display devices
CN110537115B (en) * 2017-04-10 2023-02-17 日东电工株式会社 Optical film, polarizing plate and image display device
JP7083340B2 (en) 2017-04-10 2022-06-10 日東電工株式会社 Optical film, polarizing plate, and image display device
TWI763824B (en) * 2017-04-10 2022-05-11 日商日東電工股份有限公司 Optical film, polarizing plate, and image display device
JP2020033420A (en) * 2018-08-28 2020-03-05 日東電工株式会社 Base material for surface protective film, production method of the base material, surface protective film using the base material, and optical film with surface productive film
JP7341643B2 (en) 2018-08-28 2023-09-11 日東電工株式会社 Substrate for surface protection film, method for producing the substrate, surface protection film using the substrate, and optical film with surface protection film
TWI829717B (en) * 2018-08-28 2024-01-21 日商日東電工股份有限公司 Base material for surface protection film, manufacturing method of the base material, surface protection film using the base material, and optical film with surface protection film
JP7169137B2 (en) 2018-09-18 2022-11-10 株式会社カネカ Stretched film and method for producing stretched film
JP2020046509A (en) * 2018-09-18 2020-03-26 株式会社カネカ Stretched film, and method for manufacturing stretched film
JP7278810B2 (en) 2019-03-14 2023-05-22 株式会社クラレ Acrylic resin film and its manufacturing method
JP2020147697A (en) * 2019-03-14 2020-09-17 株式会社クラレ Acrylic resin film and method for producing the same
JP2021043421A (en) * 2019-09-13 2021-03-18 住友化学株式会社 Optical laminate and display device using the same
JP2022012523A (en) * 2020-07-01 2022-01-17 株式会社日本触媒 Film with suppressed phase difference in thickness direction
WO2023100806A1 (en) * 2021-11-30 2023-06-08 株式会社カネカ Film, production method therefor, and image display device

Also Published As

Publication number Publication date
JP6731913B2 (en) 2020-07-29
JPWO2016185722A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6731913B2 (en) Resin composition and film
JP6236002B2 (en) Non-birefringent resin material and film
KR102059714B1 (en) Resin composition and film thereof
KR100887486B1 (en) Imide resin, and production method and use thereof
JP5666751B1 (en) Optical resin material and optical film
JP2006328334A (en) Resin composition, optical film and polarizer protection film using the same
JP2009161744A (en) Thermoplastic resin composition, optical film and polarizer protection film
JP6670236B2 (en) Optical resin composition and film
JP5124433B2 (en) Retardation film
JP2012031332A (en) Process for producing optical film
US10174191B2 (en) Resin material and film thereof
JP7145150B2 (en) DOPE FOR FILM MANUFACTURING AND METHOD FOR MANUFACTURING FILM
JP2014191175A (en) Phase difference film and image display device
JP2011137910A (en) Method for producing retardation film
JP5433328B2 (en) Retardation film
JP2010164902A (en) Positive retardation film
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP6309760B2 (en) Thermoplastic resin composition, film, polarizing plate and image display device
JP2009199044A (en) Retardation film
JP2012068430A (en) Retardation film
JP6646941B2 (en) Thermoplastic resin composition and optical film using the same
JP6246607B2 (en) Manufacturing method of optical film
JP2012173530A (en) Retardation film, method for manufacturing the same, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796117

Country of ref document: EP

Kind code of ref document: A1