JP2012173530A - Retardation film, method for manufacturing the same, and image display device - Google Patents

Retardation film, method for manufacturing the same, and image display device Download PDF

Info

Publication number
JP2012173530A
JP2012173530A JP2011035875A JP2011035875A JP2012173530A JP 2012173530 A JP2012173530 A JP 2012173530A JP 2011035875 A JP2011035875 A JP 2011035875A JP 2011035875 A JP2011035875 A JP 2011035875A JP 2012173530 A JP2012173530 A JP 2012173530A
Authority
JP
Japan
Prior art keywords
polymer
resin
retardation film
film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011035875A
Other languages
Japanese (ja)
Inventor
Michiaki Kitamura
倫明 北村
Yoshitomo Nakada
善知 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011035875A priority Critical patent/JP2012173530A/en
Publication of JP2012173530A publication Critical patent/JP2012173530A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a retardation film showing reverse wavelength dispersion, the film having little fluctuation in the wavelength dispersion even when stretching conditions of a raw film are changed during manufacturing.SOLUTION: The retardation film comprises a resin composition (C) containing a resin (A) having positive intrinsic birefringence and showing normal wavelength dispersion and a polymer (B) as a wavelength dispersion controlling material, having negative intrinsic birefringence, showing normal wavelength dispersion and a greater change in the wavelength dispersion in a visible light region than that of the resin (A), and having a Tg, which is different by less than 20°C from the Tg of the resin (A). A mixing ratio of the resin (A) to the polymer (B) in the resin composition (C) is in a range represented by resin (A): polymer (B)=(95 to 70 parts by weight):(5 to 30 parts by weight). At least one selected from a polymer included in the resin (A) and the polymer (B) includes a (meth)acrylate unit as a structural unit, and the content percentage of (meth)acrylate units in the resin composition (C) is 60 wt.% or more.

Description

本発明は、可視光域において波長が短くなるほど複屈折が小さくなる波長分散性(逆波長分散性)を示す位相差フィルムとその製造方法、および当該位相差フィルムを備える画像表示装置に関する。   The present invention relates to a retardation film exhibiting wavelength dispersion (reverse wavelength dispersion) in which birefringence is reduced as the wavelength is shortened in the visible light region, a manufacturing method thereof, and an image display device including the retardation film.

高分子の配向により生じる複屈折を利用した光学部材が、画像表示分野において幅広く使用されている。このような光学部材の一つに、色調の補償、視野角の補償などを目的として画像表示装置に組み込まれる位相差フィルムがある。例えば、反射型の液晶表示装置(LCD)では、複屈折により生じた位相差に基づく光路長差(リターデーション)が波長の1/4である位相差板(λ/4板)が使用される。有機ELディスプレイ(OELD)では、外光の反射防止を目的として、偏光板とλ/4板とを組み合わせた反射防止板が用いられることがある。これら複屈折性を示す光学部材は、今後のさらなる用途拡大が期待される。   Optical members using birefringence generated by polymer orientation are widely used in the field of image display. One such optical member is a retardation film incorporated in an image display device for the purpose of color tone compensation, viewing angle compensation, and the like. For example, in a reflective liquid crystal display device (LCD), a retardation plate (λ / 4 plate) having an optical path length difference (retardation) based on a phase difference caused by birefringence is ¼ of the wavelength is used. . In an organic EL display (OELD), an antireflection plate combining a polarizing plate and a λ / 4 plate may be used for the purpose of preventing reflection of external light. These optical members exhibiting birefringence are expected to be further expanded in future.

従来、光学部材には、トリアセチルセルロース(TAC)に代表されるセルロース誘導体、ポリカーボネート、ポリシクロオレフィンが主に用いられてきたが、これら一般的な高分子は、光の波長が短くなるほど複屈折が大きくなる(位相差が増大する)波長分散性を示す。表示特性に優れる画像表示装置とするためには、これとは逆に、光の波長が短くなるほど複屈折が小さくなる(位相差が減少する)波長分散性を示す位相差フィルムが望まれる。本明細書では、可視光域において光の波長が短くなるほど位相差が小さくなる波長分散性を、当業者の慣用の呼び名に従い、また、一般的な高分子ならびに当該高分子により形成された位相差フィルムが示す波長分散性とは逆であることに基づいて、「逆波長分散性」と呼ぶ。一方、可視光域において光の波長が短くなるほど位相差が大きくなる波長分散性を「順波長分散性」と呼ぶ。   Conventionally, cellulose derivatives represented by triacetyl cellulose (TAC), polycarbonate, and polycycloolefin have been mainly used for optical members, but these general polymers are birefringent as the wavelength of light becomes shorter. The wavelength dispersibility is increased (the phase difference is increased). In contrast to this, in order to obtain an image display device having excellent display characteristics, a retardation film exhibiting wavelength dispersibility that decreases birefringence (a phase difference decreases) as the wavelength of light decreases is desired. In this specification, the wavelength dispersion in which the phase difference decreases as the wavelength of light in the visible light region becomes shorter, according to the commonly used name of those skilled in the art, and also a general polymer and a phase difference formed by the polymer. It is called “reverse wavelength dispersion” based on the fact that it is opposite to the wavelength dispersion exhibited by the film. On the other hand, wavelength dispersion in which the phase difference increases as the wavelength of light becomes shorter in the visible light region is called “forward wavelength dispersion”.

特許文献1(特開2009-162850号公報)には、固有複屈折が正であり、主鎖に環構造を有する重合体と、固有複屈折が負であり、複素芳香族基を有するα,β−不飽和単量体単位を構成単位として有する重合体とを含む樹脂組成物が開示されている。特許文献1には、当該樹脂組成物によって、逆波長分散性を示す位相差フィルムが得られることが記載されている。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-162850) discloses that a polymer having a positive intrinsic birefringence and a ring structure in the main chain, a negative intrinsic birefringence and having a heteroaromatic group, α, A resin composition containing a polymer having a β-unsaturated monomer unit as a constituent unit is disclosed. Patent Document 1 describes that a retardation film exhibiting reverse wavelength dispersibility can be obtained by the resin composition.

特許文献2(国際公開第00/26705号パンフレット)には、(1)正の屈折率異方性を有する高分子と負の屈折率異方性を有する高分子とからなるブレンド高分子から構成されるフィルムであって、(2)正の屈折率異方性を有する高分子のR(450)/R(550)は、負の屈折率異方性を有する高分子のR(450)/R(550)よりも小さく、かつ、(3)正の屈折率異方性を有する高分子配向フィルムが開示されている。特許文献2には、正の屈折率異方性を有する高分子としてポリフェニレンオキサイド(PPO)と、負の屈折率異方性を有する高分子としてポリスチレン(PS)とを組み合わせたブレンド高分子が、透明性の観点から好ましいことが記載されている。なお、特許文献2におけるR(450)およびR(550)は、それぞれ、波長450nmおよび550nmにおける高分子配向フィルムの面内位相差である。   Patent Document 2 (International Publication No. 00/26705 pamphlet) includes (1) a blend polymer composed of a polymer having a positive refractive index anisotropy and a polymer having a negative refractive index anisotropy. (2) R (450) / R (550) of a polymer having positive refractive index anisotropy is R (450) / R (450) / of a polymer having negative refractive index anisotropy A polymer oriented film that is smaller than R (550) and has (3) positive refractive index anisotropy is disclosed. Patent Document 2 discloses a blend polymer obtained by combining polyphenylene oxide (PPO) as a polymer having positive refractive index anisotropy and polystyrene (PS) as a polymer having negative refractive index anisotropy, It is described that it is preferable from the viewpoint of transparency. Note that R (450) and R (550) in Patent Document 2 are in-plane retardations of the polymer alignment film at wavelengths of 450 nm and 550 nm, respectively.

非特許文献1(Japanese Journal of Applied Physics, vol. 42 (2003), pp.5665-5669)には、特許文献2に開示されているPS/PPOブレンド高分子の配向フィルムが示す波長分散性の延伸温度依存性が開示されている。非特許文献1には、配向フィルムとする際の延伸温度を、ブレンド高分子のガラス転移温度(Tg)を基準に、Tg+5℃からTg+15℃の範囲で変化させたときに、上述したR(450)/R(550)が約0.95から0.81程度にまで変化することが開示されている(図1,2)。   Non-Patent Document 1 (Japanese Journal of Applied Physics, vol. 42 (2003), pp. 5665-5669) describes the wavelength dispersibility of the oriented film of the PS / PPO blend polymer disclosed in Patent Document 2. Stretching temperature dependence is disclosed. In Non-Patent Document 1, when the stretching temperature when making an oriented film is changed in the range of Tg + 5 ° C. to Tg + 15 ° C. on the basis of the glass transition temperature (Tg) of the blend polymer, the above-mentioned R (450 ) / R (550) varies from about 0.95 to about 0.81 (FIGS. 1 and 2).

特開2009-162850号公報JP 2009-162850 A 国際公開第00/26705号パンフレットInternational Publication No. 00/26705 Pamphlet

Japanese Journal of Applied Physics, vol. 42 (2003), pp.5665-5669Japanese Journal of Applied Physics, vol. 42 (2003), pp.5665-5669

位相差フィルムは、通常、1種または2種以上の重合体を含む樹脂(樹脂組成物)をフィルムに成形した後、得られたフィルム(原反フィルム)を延伸して形成される。樹脂組成物が2以上の重合体を含む場合、原反フィルムの延伸条件によって、得られた位相差フィルムの波長分散性が変動しやすい。一方、位相差フィルムの製造において、特に位相差フィルムの量産現場において、位相差フィルムの位相差もしくは強度の変更またはこれらの調整を目的として、延伸条件を変更することがしばしば行われる。その際、波長分散性は変化しないことが望まれる。   The retardation film is usually formed by forming a resin (resin composition) containing one or more polymers into a film and then stretching the resulting film (raw film). When the resin composition contains two or more polymers, the wavelength dispersion of the obtained retardation film is likely to vary depending on the stretching conditions of the raw film. On the other hand, in the production of a retardation film, especially in the mass production site of the retardation film, the stretching conditions are often changed for the purpose of changing or adjusting the retardation or strength of the retardation film. At that time, it is desirable that the wavelength dispersion does not change.

本発明は、逆波長分散性を示す位相差フィルムであって、その製造時に、原反フィルムの延伸条件、具体的には延伸温度および/または延伸倍率、を変化させた場合においても、波長分散性の変動が少ない位相差フィルムと、そのような位相差フィルムを製造する方法の提供を目的とする。   The present invention is a retardation film exhibiting reverse wavelength dispersion, and even when the stretching conditions of the original film, specifically, the stretching temperature and / or the stretching ratio are changed during the production thereof, the wavelength dispersion An object of the present invention is to provide a retardation film with little variation in properties and a method for producing such a retardation film.

本発明の位相差フィルムは、正の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性(順波長分散性)を示す樹脂(A)と、波長分散性制御材として、負の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性(順波長分散性)を示し、可視光域における当該波長分散性の変化が前記樹脂(A)よりも大きく、前記樹脂(A)のガラス転移温度(Tg)と自らのTgとの差が20℃未満である重合体(B)と、を含む樹脂組成物(C)からなる。前記樹脂組成物(C)における前記樹脂(A)と前記重合体(B)との混合比が、樹脂(A):重合体(B)=95〜70重量部:5〜30重量部である。前記樹脂(A)に含まれる1種または2種以上の重合体および前記重合体(B)から選ばれる少なくとも1つの重合体が、構成単位として(メタ)アクリル酸エステル単位を有する。前記樹脂組成物(C)において、全ての重合体構成単位に占める(メタ)アクリル酸エステル単位の割合が60重量%以上である。本発明の位相差フィルムは、可視光域において波長が短くなるほど面内位相差が小さくなる波長分散性(逆波長分散性)を示す。   The retardation film of the present invention has a positive intrinsic birefringence, a resin (A) exhibiting wavelength dispersion (forward wavelength dispersion) in which in-plane retardation increases as the wavelength becomes shorter in the visible light region, and wavelength As a dispersion control material, it has negative intrinsic birefringence, and shows wavelength dispersion (forward wavelength dispersion) in which the in-plane phase difference increases as the wavelength becomes shorter in the visible light region, and the wavelength dispersion in the visible light region. A resin composition comprising a polymer (B) having a greater change than the resin (A) and having a difference between the glass transition temperature (Tg) of the resin (A) and its own Tg of less than 20 ° C. C). The mixing ratio of the resin (A) and the polymer (B) in the resin composition (C) is resin (A): polymer (B) = 95 to 70 parts by weight: 5 to 30 parts by weight. . At least one polymer selected from one or two or more polymers contained in the resin (A) and the polymer (B) has a (meth) acrylic acid ester unit as a structural unit. In the resin composition (C), the proportion of (meth) acrylic acid ester units in all polymer constituent units is 60% by weight or more. The retardation film of the present invention exhibits wavelength dispersion (reverse wavelength dispersion) in which the in-plane retardation becomes smaller as the wavelength becomes shorter in the visible light region.

本発明の位相差フィルムの製造方法は、可視光域において波長が短くなるほど面内位相差が小さくなる波長分散性(逆波長分散性)を示す位相差フィルムの製造方法であって、正の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性(順波長分散性)を示す樹脂(A)と、波長分散性制御材として、負の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性(順波長分散性)を示し、可視光域における当該波長分散性の変化が前記樹脂(A)よりも大きく、前記樹脂(A)のガラス転移温度(Tg)と自らのTgとの差が20℃未満である重合体(B)と、を、樹脂(A):重合体(B)=95〜70重量部:5〜30重量部の混合比で混合して、前記樹脂(A)と前記重合体(B)とを含む樹脂組成物(C)を形成し、前記形成した樹脂組成物(C)をフィルム(原反フィルム)に成形した後に、前記得られたフィルムを延伸して前記位相差フィルムを形成する方法である。ここで、前記樹脂(A)に含まれる1種または2種以上の重合体および前記重合体(B)から選ばれる少なくとも1つの重合体が、構成単位として(メタ)アクリル酸エステル単位を有する。前記樹脂組成物(C)において、全ての重合体構成単位に占める前記(メタ)アクリル酸エステル単位の割合が60重量%以上である。   The method for producing a retardation film of the present invention is a method for producing a retardation film that exhibits wavelength dispersion (reverse wavelength dispersion) in which in-plane retardation is reduced as the wavelength is shortened in the visible light region, and is a positive intrinsic property. Resin (A) that has birefringence and has a wavelength dispersion (forward wavelength dispersion) that increases in-plane retardation as the wavelength becomes shorter in the visible light region, and negative intrinsic birefringence as a wavelength dispersion control material And shows a wavelength dispersion (forward wavelength dispersion) in which the in-plane retardation increases as the wavelength becomes shorter in the visible light region, and the change in the wavelength dispersion in the visible light region is larger than that of the resin (A). A polymer (B) in which the difference between the glass transition temperature (Tg) of the resin (A) and its own Tg is less than 20 ° C. is referred to as resin (A): polymer (B) = 95 to 70 wt. Parts: mixed at a mixing ratio of 5 to 30 parts by weight, and the resin ( ) And the polymer (B) are formed, and the formed resin composition (C) is formed into a film (raw film), and then the obtained film is stretched. And forming the retardation film. Here, at least 1 polymer chosen from the 1 type (s) or 2 or more types of polymer contained in the said resin (A), and the said polymer (B) has a (meth) acrylic acid ester unit as a structural unit. In the resin composition (C), the proportion of the (meth) acrylic acid ester units in all polymer constituent units is 60% by weight or more.

特別な記載がない限り、本明細書における「樹脂」は「重合体」よりも広い概念である。樹脂は、例えば1種または2種以上の重合体から構成されてもよいし、必要に応じて、重合体以外の材料、例えば、紫外線吸収剤、酸化防止剤、フィラー、ゴム質粒子を含む粒子、相溶化剤、安定化剤などの添加剤を含んでいてもよい。   Unless otherwise specified, “resin” in this specification is a broader concept than “polymer”. The resin may be composed of, for example, one or more polymers, and if necessary, particles other than the polymer, for example, a particle containing an ultraviolet absorber, an antioxidant, a filler, and rubber particles. , Additives such as compatibilizers and stabilizers may be included.

重合体の固有複屈折の正負は、重合体の分子鎖が一軸配向した層(例えば、フィルム)において、当該層の主面に垂直に入射した光のうち、当該層における、分子鎖が配向する方向(配向軸)に平行な方向の光の屈折率n1から、配向軸に垂直な方向の光の屈折率n2を引いた値「n1−n2」に基づいて判断できる。固有複屈折の値は、各々の重合体について、その分子構造に基づく計算により求めることができる。   The intrinsic birefringence of the polymer is determined by the orientation of the molecular chain in the layer of light that is perpendicularly incident on the principal surface of the layer in a layer (for example, a film) in which the molecular chain of the polymer is uniaxially oriented. This can be determined based on a value “n1-n2” obtained by subtracting the refractive index n2 of light in the direction perpendicular to the alignment axis from the refractive index n1 of light in the direction parallel to the direction (alignment axis). The intrinsic birefringence value can be determined by calculation based on the molecular structure of each polymer.

樹脂(樹脂組成物)の固有複屈折の正負は、当該樹脂(樹脂組成物)に含まれる重合体の分子鎖が一軸配向した層(例えば、フィルム)において、当該層の主面に垂直に入射した光のうち、当該層における、分子鎖が配向する方向(配向軸)に平行な方向の光の屈折率n3から、配向軸に垂直な方向の光の屈折率n4を引いた値「n3−n4」に基づいて判断できる。樹脂(樹脂組成物)の固有複屈折は、当該樹脂(樹脂組成物)に含まれる各重合体によって生じる複屈折の兼ね合いにより決定される。   The positive or negative of the intrinsic birefringence of the resin (resin composition) is perpendicular to the main surface of the layer in the layer (for example, film) in which the molecular chains of the polymer contained in the resin (resin composition) are uniaxially oriented. Of the obtained light, a value obtained by subtracting the refractive index n4 of light in the direction perpendicular to the orientation axis from the refractive index n3 of light in the direction parallel to the direction in which the molecular chains are oriented (orientation axis) in the layer “n3− n4 ". The intrinsic birefringence of the resin (resin composition) is determined by the balance of birefringence generated by each polymer contained in the resin (resin composition).

本明細書において、重合体(樹脂)が示す波長分散性とは、当該重合体(樹脂)の配向フィルムが示す波長分散性のことである。重合体(樹脂)の配向フィルムが順波長分散性を示すとき、当該重合体(樹脂)は順波長分散性を示す、とする。   In this specification, the wavelength dispersibility indicated by the polymer (resin) is the wavelength dispersibility indicated by the oriented film of the polymer (resin). When the oriented film of a polymer (resin) exhibits forward wavelength dispersibility, the polymer (resin) is assumed to exhibit forward wavelength dispersibility.

樹脂(A)、重合体(B)および本発明の位相差フィルムが示す波長分散性は、少なくとも可視光域において、順波長分散性または逆波長分散性であればよく、可視光域以外の波長域における波長分散性が順波長分散性であるか逆波長分散性であるかは問われない。   The wavelength dispersion exhibited by the resin (A), the polymer (B) and the retardation film of the present invention may be forward wavelength dispersion or reverse wavelength dispersion at least in the visible light region. It does not matter whether the wavelength dispersion in the region is forward wavelength dispersion or reverse wavelength dispersion.

位相差フィルム(配向フィルム)が逆波長分散性を示すか順波長分散性を示すかは、当該フィルムが示す面内位相差に基づいて判断できる。可視光域において、光の波長が短くなるほど面内位相差が小さくなる波長分散性は逆波長分散性であり、逆に、光の波長が短くなるほど面内位相差が大きくなる波長分散性は順波長分散性である。具体的には、面内位相差Reに関する後述の比Re(447)/Re(590)が1未満である位相差フィルム(配向フィルム)が示す波長分散性は逆波長分散性であり、Re(447)/Re(590)が1以上である位相差フィルム(配向フィルム)が示す波長分散性は順波長分散性である。それぞれ、当該比が満たされている限り、一部の波長域における面内位相差の変化の方向が逆であってもよい。このような面内位相差の変化は、樹脂または重合体の波長分散性が可視光域に部分的な極大または極小を有する場合に起こりうる。位相差フィルムの面内位相差は、当該フィルムの面内における遅相軸の可視光域における屈折率をnx、進相軸の可視光域における屈折率をny、当該フィルムの厚さをdとして、式Re=(nx−ny)×dにより定義される。   Whether the retardation film (alignment film) exhibits reverse wavelength dispersion or forward wavelength dispersion can be determined based on the in-plane retardation of the film. In the visible light region, the wavelength dispersibility in which the in-plane phase difference decreases as the light wavelength becomes shorter is the reverse wavelength dispersibility. Conversely, the wavelength dispersibility in which the in-plane phase difference increases as the light wavelength becomes shorter. It is wavelength dispersive. Specifically, the wavelength dispersibility of the retardation film (alignment film) having a later-described ratio Re (447) / Re (590) with respect to the in-plane retardation Re is less than 1, is reverse wavelength dispersibility, and Re ( 447) The wavelength dispersion exhibited by the retardation film (alignment film) having 1 / Re (590) of 1 or more is forward wavelength dispersion. As long as the ratio is satisfied, the direction of the in-plane phase difference change in a part of the wavelength range may be reversed. Such a change in in-plane retardation can occur when the wavelength dispersion of the resin or polymer has a partial maximum or minimum in the visible light region. The in-plane retardation of the retardation film is defined as nx as the refractive index in the visible light region of the slow axis in the plane of the film, ny as the refractive index in the visible light region of the fast axis, and d as the thickness of the film. , Re = (nx−ny) × d.

可視光域は、波長にして440nm〜760nmの範囲を示す。   The visible light region has a wavelength range of 440 nm to 760 nm.

本発明によれば、正の固有複屈折を有し、可視光域において順波長分散性を示す樹脂(A)に対して、波長分散性制御材として、特定の固有複屈折および波長分散性を有し、基材である樹脂(A)のTgと自らのTgとの差が20℃未満である重合体(B)を特定の混合比で加えた樹脂組成物(C)からなる位相差フィルムとするとともに、樹脂組成物(C)において、全ての重合体構成単位に占める(メタ)アクリル酸エステル単位の割合を60重量%以上とすることにより、製造時に原反フィルムの延伸条件を変化させた場合においても波長分散性の変動が少ない、逆波長分散性を示す位相差フィルムが実現する。この波長分散性の変動の少なさは、樹脂(A)のTgと、波長分散性制御材として用いる重合体(B)のTgとの差が20℃未満であることによって、樹脂組成物(C)を延伸配向させて位相差フィルムを形成する際における、樹脂(A)および重合体(B)間の配向の程度が同程度になることによる。   According to the present invention, specific intrinsic birefringence and wavelength dispersibility can be obtained as a wavelength dispersion control material for a resin (A) having positive intrinsic birefringence and exhibiting forward wavelength dispersion in the visible light region. A retardation film comprising a resin composition (C) having a specific mixing ratio of a polymer (B) having a difference between the Tg of the resin (A) as a base material and its own Tg of less than 20 ° C. In addition, in the resin composition (C), by changing the proportion of the (meth) acrylic acid ester units in all polymer constituent units to 60% by weight or more, the stretching conditions of the raw film are changed during production. In this case, a retardation film exhibiting reverse wavelength dispersion with little variation in wavelength dispersion can be realized. This variation in the wavelength dispersion is small because the difference between the Tg of the resin (A) and the Tg of the polymer (B) used as the wavelength dispersion control material is less than 20 ° C. This is because the degree of orientation between the resin (A) and the polymer (B) becomes the same when the retardation film is formed by stretching and orientation.

なお、特許文献1〜2および非特許文献1に開示されている、正の固有複屈折を有する重合体と負の固有複屈折を有する重合体との組み合わせでは、各重合体間のTgの差は全て20℃を超える。   In addition, in the combination of the polymer which has a positive intrinsic birefringence and the polymer which has a negative intrinsic birefringence currently disclosed by patent documents 1-2 and nonpatent literature 1, the difference of Tg between each polymer All exceed 20 ° C.

[樹脂(A)]
樹脂(A)は、正の固有複屈折を有し、順波長分散性を示す限り限定されない。樹脂(A)は、例えば、アクリル樹脂またはシクロオレフィン樹脂である。アクリル樹脂およびシクロオレフィン樹脂は、高い透明性および機械的特性を有する。本発明の位相差フィルムおよび本発明の製造方法により得た位相差フィルムは、樹脂(A)を「基材」として含むが、このような樹脂(A)を含む当該位相差フィルムは、液晶表示装置(LCD)などの画像表示装置に用いる位相差フィルムとして好適である。なお、樹脂(A)は、熱可塑性樹脂である。
[Resin (A)]
The resin (A) is not limited as long as it has positive intrinsic birefringence and exhibits forward wavelength dispersion. The resin (A) is, for example, an acrylic resin or a cycloolefin resin. Acrylic resins and cycloolefin resins have high transparency and mechanical properties. The retardation film of the present invention and the retardation film obtained by the production method of the present invention include the resin (A) as a “base material”. The retardation film including such a resin (A) is a liquid crystal display. It is suitable as a retardation film for use in an image display device such as a device (LCD). Resin (A) is a thermoplastic resin.

アクリル樹脂は、(メタ)アクリル重合体を50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、さらに好ましくは80重量%以上含む樹脂である。シクロオレフィン樹脂は、シクロオレフィン重合体を50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、さらに好ましくは80重量%以上含む樹脂である。   The acrylic resin is a resin containing a (meth) acrylic polymer in an amount of 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more. The cycloolefin resin is a resin containing a cycloolefin polymer of 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more.

樹脂(A)のガラス転移温度(Tg)は、例えば、110℃以上である。樹脂(A)に含まれる重合体の種類および含有率によっては、当該Tgは、115℃以上、120℃以上、さらには130℃以上となる。このような高いTgを有する樹脂(A)を含む位相差フィルムは耐熱性に優れており、光源、電源および回路基板などの発熱体が限られた空間に収容された、LCDなどの画像表示装置への使用に好適である。また、後加工(例えばコーティングなどの表面処理)時の加工温度を高くできるため、位相差フィルムの生産性が向上する。樹脂および重合体のTgは、JIS K7121に準拠して求めることができる。   The glass transition temperature (Tg) of the resin (A) is, for example, 110 ° C. or higher. Depending on the type and content of the polymer contained in the resin (A), the Tg is 115 ° C. or higher, 120 ° C. or higher, and further 130 ° C. or higher. Such a retardation film containing a resin (A) having a high Tg has excellent heat resistance, and an image display device such as an LCD in which heating elements such as a light source, a power source and a circuit board are accommodated in a limited space. Suitable for use in. Moreover, since the processing temperature at the time of post-processing (for example, surface treatment such as coating) can be increased, the productivity of the retardation film is improved. The Tg of the resin and polymer can be determined according to JIS K7121.

樹脂が2種以上の重合体から構成される場合においても、基本的に当該重合体同士は互いに相溶しているため、測定されるTgは基本的に1点である。重合体に基づくTgが2点以上測定される場合には、樹脂における各重合体の含有率(重量%)を基準として各Tgの加重平均を求め、これを樹脂のTgとすればよい。添加剤などについては、それが低分子である場合、樹脂のTgに影響を与えない。添加剤がポリマー成分を有する粒子、例えば、機械的特性の向上を目的として位相差フィルムに加えられるゴム質粒子である場合、当該粒子に由来するTgが測定される場合がある。しかし、この場合、これらの粒子に由来するTgと、フィルムを構成する重合体に由来するTgとは容易に区別することが可能であり、後者を樹脂のTgとすればよい。これらの粒子は、位相差フィルムを形成する際の延伸により配向しない。すなわち、位相差フィルムの波長分散性および位相差に影響を与えない。   Even when the resin is composed of two or more kinds of polymers, the polymers are basically compatible with each other, and thus the measured Tg is basically one point. When Tg based on a polymer is measured at two or more points, a weighted average of each Tg may be obtained based on the content (% by weight) of each polymer in the resin, and this may be used as the Tg of the resin. If the additive is a low molecule, it does not affect the Tg of the resin. When the additive is a particle having a polymer component, for example, a rubber particle added to the retardation film for the purpose of improving mechanical properties, Tg derived from the particle may be measured. However, in this case, the Tg derived from these particles and the Tg derived from the polymer constituting the film can be easily distinguished, and the latter may be the resin Tg. These particles are not oriented by stretching when forming the retardation film. That is, it does not affect the wavelength dispersion and retardation of the retardation film.

樹脂(A)は、110℃以上のTgを有するアクリル樹脂が好ましい。   The resin (A) is preferably an acrylic resin having a Tg of 110 ° C. or higher.

樹脂(A)は、主鎖に環構造を有する重合体を含むことが好ましい。主鎖に環構造を有する重合体はTgが高いため、当該重合体を含む樹脂(A)のTgが高くなり、当該樹脂(A)を含む位相差フィルムの耐熱性が向上する。主鎖に環構造を有する重合体は、特に限定されず、例えば、シクロオレフィン重合体である。   The resin (A) preferably contains a polymer having a ring structure in the main chain. Since the polymer having a ring structure in the main chain has a high Tg, the Tg of the resin (A) containing the polymer is high, and the heat resistance of the retardation film containing the resin (A) is improved. The polymer having a ring structure in the main chain is not particularly limited, and is, for example, a cycloolefin polymer.

シクロオレフィン重合体は、シクロオレフィン単位を、全構成単位の50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上有する重合体である。   The cycloolefin polymer is a polymer having a cycloolefin unit of 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more of all structural units.

主鎖に環構造を有する重合体は、(メタ)アクリル重合体であってもよい。この場合、機械的強度、成形加工性および表面強度などの諸特性が向上した位相差フィルムとなる。   The polymer having a ring structure in the main chain may be a (meth) acrylic polymer. In this case, a retardation film having improved properties such as mechanical strength, moldability, and surface strength is obtained.

(メタ)アクリル重合体は、(メタ)アクリル酸エステル単位を、全構成単位の50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上有する重合体である。(メタ)アクリル重合体は、(メタ)アクリル酸エステル単位の誘導体である環構造を主鎖に有していてもよく、この場合、(メタ)アクリル酸エステル単位および環構造の合計が全構成単位の50重量%以上であれば、(メタ)アクリル重合体となる。   The (meth) acrylic polymer is a polymer having (meth) acrylic acid ester units in an amount of 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more based on all the structural units. The (meth) acrylic polymer may have a ring structure that is a derivative of the (meth) acrylic acid ester unit in the main chain, and in this case, the total of the (meth) acrylic acid ester unit and the ring structure is entirely composed. If it is 50 weight% or more of a unit, it will become a (meth) acrylic polymer.

樹脂(A)が主鎖に環構造を有する(メタ)アクリル重合体を含む場合、特に、樹脂(A)が当該(メタ)アクリル重合体を50重量%以上含むアクリル樹脂である場合、本発明の位相差フィルムおよび本発明の製造方法により得た位相差フィルムにおける逆波長分散性の制御の自由度が向上する。重合体(B)が示す、可視光域における波長分散性の変化(位相差の波長分散性の変化)は樹脂(A)よりも大きい。主鎖に環構造を有する(メタ)アクリル重合体を樹脂(A)が含む場合、樹脂(A)が示す、可視光域における波長分散性の変化が小さくなるため、相対的に、樹脂(A)および重合体(B)間の波長分散性の変化の差が大きくなる。このように、波長分散性の変化の差が大きい樹脂(A)および重合体(B)を組み合わせることによって、位相差フィルムにおける逆波長分散性の制御の自由度が向上する。   When the resin (A) contains a (meth) acrylic polymer having a ring structure in the main chain, particularly when the resin (A) is an acrylic resin containing 50% by weight or more of the (meth) acrylic polymer, the present invention The degree of freedom in controlling the reverse wavelength dispersion in the retardation film and the retardation film obtained by the production method of the present invention is improved. The change in wavelength dispersion (change in wavelength dispersion of retardation) in the visible light region indicated by the polymer (B) is larger than that of the resin (A). When the resin (A) contains a (meth) acrylic polymer having a ring structure in the main chain, since the change in wavelength dispersion in the visible light region indicated by the resin (A) is small, the resin (A ) And the polymer (B) have a large difference in change in wavelength dispersion. Thus, by combining the resin (A) and the polymer (B) having a large difference in wavelength dispersion, the degree of freedom in controlling the reverse wavelength dispersion in the retardation film is improved.

(メタ)アクリル重合体が主鎖に有していてもよい環構造は、例えば、エステル基、イミド基または酸無水物基を有する環構造である。   The ring structure that the (meth) acrylic polymer may have in the main chain is, for example, a ring structure having an ester group, an imide group, or an acid anhydride group.

より具体的な環構造の例は、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、N−置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である。これらの環構造を主鎖に有する(メタ)アクリル重合体は、配向によって大きな正の固有複屈折を示す。このため、重合体(B)との組み合わせにより、本発明の位相差フィルムおよび本発明の製造方法により得た位相差フィルムにおける逆波長分散性の制御の自由度が向上する。   A more specific example of the ring structure is at least one selected from a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, an N-substituted maleimide structure, and a maleic anhydride structure. The (meth) acrylic polymer having such a ring structure in the main chain exhibits a large positive intrinsic birefringence depending on the orientation. For this reason, the combination with a polymer (B) improves the freedom degree of control of reverse wavelength dispersion in the retardation film of the present invention and the retardation film obtained by the production method of the present invention.

環構造は、ラクトン環構造、無水グルタル酸構造およびグルタルイミド構造から選ばれる少なくとも1種が好ましく、ラクトン環構造およびグルタルイミド構造から選ばれる少なくとも1種がより好ましく、ラクトン環構造がさらに好ましい。ラクトン環構造またはグルタルイミド構造、特にラクトン環構造、を主鎖に有する重合体は、可視光域における波長分散性の変化がさらに小さくなる。このため、重合体(B)との組み合わせにより、本発明の位相差フィルムおよび本発明の製造方法により得た位相差フィルムにおける逆波長分散性の制御の自由度が向上する。   The ring structure is preferably at least one selected from a lactone ring structure, a glutaric anhydride structure and a glutarimide structure, more preferably at least one selected from a lactone ring structure and a glutarimide structure, and even more preferably a lactone ring structure. A polymer having a lactone ring structure or a glutarimide structure, particularly a lactone ring structure, in the main chain has a further smaller change in wavelength dispersion in the visible light region. For this reason, the combination with a polymer (B) improves the freedom degree of control of reverse wavelength dispersion in the retardation film of the present invention and the retardation film obtained by the production method of the present invention.

具体的なラクトン環構造は、特に限定されない。ラクトン環構造は、例えば、以下の式(1)により示される構造である。   A specific lactone ring structure is not particularly limited. The lactone ring structure is, for example, a structure represented by the following formula (1).

Figure 2012173530
Figure 2012173530

式(1)において、R1、R2およびR3は、互いに独立して、水素原子または炭素数1〜20の範囲の有機残基である。当該有機残基は酸素原子を含んでもよい。 In the formula (1), R 1 , R 2 and R 3 are each independently a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom.

有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数が1〜20の範囲のアルキル基;エテニル基、プロペニル基などの炭素数が1〜20の範囲の不飽和脂肪族炭化水素基;フェニル基、ナフチル基などの炭素数が1〜20の範囲の芳香族炭化水素基;上記アルキル基、上記不飽和脂肪族炭化水素基および上記芳香族炭化水素基において、水素原子の一つ以上が水酸基、カルボキシル基、エーテル基およびエステル基から選ばれる少なくとも1種の基により置換された基;である。   The organic residue is, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, an ethyl group, or a propyl group; an unsaturated aliphatic carbonization having 1 to 20 carbon atoms such as an ethenyl group or a propenyl group. A hydrogen group; an aromatic hydrocarbon group having 1 to 20 carbon atoms such as a phenyl group or a naphthyl group; one of hydrogen atoms in the alkyl group, the unsaturated aliphatic hydrocarbon group and the aromatic hydrocarbon group; One or more groups are substituted with at least one group selected from a hydroxyl group, a carboxyl group, an ether group and an ester group.

式(1)に示すラクトン環構造は、例えば、メタクリル酸メチル(MMA)と2−(ヒドロキシメチル)アクリル酸メチル(MHMA)とを含む単量体群を共重合した後、得られた共重合体における隣り合ったMMA単位とMHMA単位とを脱アルコール環化縮合させて形成できる。このとき、R1はH、R2およびR3はCH3である。 The lactone ring structure represented by the formula (1) is obtained by copolymerizing a monomer group including, for example, methyl methacrylate (MMA) and 2- (hydroxymethyl) methyl acrylate (MHMA), Adjacent MMA units and MHMA units in the coalescence can be formed by dealcoholization cyclocondensation. At this time, R 1 is H, R 2 and R 3 are CH 3 .

以下の式(2)に、グルタルイミド構造および無水グルタル酸構造を示す。   The following formula (2) shows a glutarimide structure and a glutaric anhydride structure.

Figure 2012173530
Figure 2012173530

式(2)におけるR4およびR5は、互いに独立して、水素原子またはメチル基であり、X1は、酸素原子または窒素原子である。X1が酸素原子のときR6は存在せず、X1が窒素原子のとき、R6は、水素原子、炭素数1〜6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基またはフェニル基である。 In the formula (2), R 4 and R 5 are each independently a hydrogen atom or a methyl group, and X 1 is an oxygen atom or a nitrogen atom. When X 1 is an oxygen atom, R 6 does not exist, and when X 1 is a nitrogen atom, R 6 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, or a phenyl group. .

1が窒素原子のとき、式(2)に示される環構造はグルタルイミド構造となる。グルタルイミド構造は、例えば、(メタ)アクリル酸エステル重合体をメチルアミンなどのイミド化剤によりイミド化して形成できる。 When X 1 is a nitrogen atom, the ring structure represented by the formula (2) is a glutarimide structure. The glutarimide structure can be formed, for example, by imidizing a (meth) acrylic acid ester polymer with an imidizing agent such as methylamine.

1が酸素原子のとき、式(2)に示される環構造は無水グルタル酸構造となる。無水グルタル酸構造は、例えば、(メタ)アクリル酸エステルと(メタ)アクリル酸との共重合体を、分子内で脱アルコール環化縮合させて形成できる。 When X 1 is an oxygen atom, the ring structure represented by the formula (2) is a glutaric anhydride structure. The glutaric anhydride structure can be formed, for example, by subjecting a copolymer of (meth) acrylic acid ester and (meth) acrylic acid to dealcoholization cyclocondensation within the molecule.

以下の式(3)に、N−置換マレイミド構造および無水マレイン酸構造を示す。   The following formula (3) shows an N-substituted maleimide structure and a maleic anhydride structure.

Figure 2012173530
Figure 2012173530

式(3)におけるR7およびR8は、互いに独立して、水素原子またはメチル基であり、X2は、酸素原子または窒素原子である。X2が酸素原子のときR9は存在せず、X2が窒素原子のとき、R9は、水素原子、炭素数1〜6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基またはフェニル基である。 In the formula (3), R 7 and R 8 are each independently a hydrogen atom or a methyl group, and X 2 is an oxygen atom or a nitrogen atom. When X 2 is an oxygen atom, R 9 does not exist, and when X 2 is a nitrogen atom, R 9 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, or a phenyl group. .

2が窒素原子のとき、式(3)に示される環構造はN−置換マレイミド構造となる。N−置換マレイミド構造を主鎖に有するアクリル樹脂は、例えば、N−置換マレイミドと(メタ)アクリル酸エステルとを共重合して形成できる。 When X 2 is a nitrogen atom, the ring structure represented by Formula (3) is an N-substituted maleimide structure. The acrylic resin having an N-substituted maleimide structure in the main chain can be formed, for example, by copolymerizing an N-substituted maleimide and a (meth) acrylic ester.

2が酸素原子のとき、式(3)に示される環構造は無水マレイン酸構造となる。無水マレイン酸構造を主鎖に有するアクリル樹脂は、例えば、無水マレイン酸と(メタ)アクリル酸エステルとを共重合して形成できる。 When X 2 is an oxygen atom, the ring structure represented by formula (3) is a maleic anhydride structure. The acrylic resin having a maleic anhydride structure in the main chain can be formed, for example, by copolymerizing maleic anhydride and (meth) acrylic acid ester.

(メタ)アクリル重合体が主鎖に環構造を有する場合、当該重合体における環構造の含有率は特に限定されないが、通常5〜90重量%であり、20〜90重量%が好ましい。当該含有率は、30〜90重量%、35〜90重量%、40〜80重量%および45〜75重量%になるほど、さらに好ましい。環構造の含有率は、特開2001-151814号公報に記載の方法により求めることができる。   When the (meth) acrylic polymer has a ring structure in the main chain, the content of the ring structure in the polymer is not particularly limited, but is usually 5 to 90% by weight, and preferably 20 to 90% by weight. The content is more preferably 30 to 90% by weight, 35 to 90% by weight, 40 to 80% by weight, and 45 to 75% by weight. The content of the ring structure can be determined by the method described in JP-A-2001-151814.

樹脂(A)および樹脂(A)が含む重合体は、公知の方法により製造できる。   The polymer which resin (A) and resin (A) contain can be manufactured by a well-known method.

一例として、主鎖にラクトン環構造を有する(メタ)アクリル重合体は、分子鎖内に水酸基とエステル基とを有する重合体(a)を任意の触媒存在下で加熱し、脱アルコールを伴うラクトン環化縮合反応を進行させて、得ることができる。   As an example, a (meth) acrylic polymer having a lactone ring structure in the main chain is a lactone accompanied by dealcoholization by heating a polymer (a) having a hydroxyl group and an ester group in the molecular chain in the presence of an arbitrary catalyst. It can be obtained by proceeding the cyclization condensation reaction.

重合体(a)は、例えば、以下の式(4)に示される単量体を含む単量体群の重合により形成できる。   The polymer (a) can be formed, for example, by polymerization of a monomer group including a monomer represented by the following formula (4).

Figure 2012173530
Figure 2012173530

式(4)において、R10およびR11は、互いに独立して、水素原子または式(1)における有機残基として例示した基である。 In the formula (4), R 10 and R 11 are each independently a hydrogen atom or a group exemplified as the organic residue in the formula (1).

式(4)に示される単量体の具体的な例は、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシメチル)アクリル酸イソプロピル、2−(ヒドロキシメチル)アクリル酸ノルマルブチル、2−(ヒドロキシメチル)アクリル酸t−ブチルである。なかでも、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルが好ましく、高い透明性および耐熱性を有する光学フィルム1が得られることから、2−(ヒドロキシメチル)アクリル酸メチル(MHMA)が特に好ましい。   Specific examples of the monomer represented by the formula (4) include methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- ( Hydroxymethyl) normal butyl acrylate, 2- (hydroxymethyl) acrylate t-butyl. Of these, methyl 2- (hydroxymethyl) acrylate and ethyl 2- (hydroxymethyl) acrylate are preferable, and optical film 1 having high transparency and heat resistance can be obtained. Accordingly, 2- (hydroxymethyl) acrylic acid is obtained. Methyl (MHMA) is particularly preferred.

なお、これらの単量体の重合により形成された構成単位は、環化により、当該単位を有する重合体に対して正の固有複屈折を与える作用を有する。   In addition, the structural unit formed by the polymerization of these monomers has a function of giving positive intrinsic birefringence to the polymer having the unit by cyclization.

重合体(a)の形成に用いる単量体群は、式(4)に示される単量体を2種以上含んでもよい。   The monomer group used for forming the polymer (a) may contain two or more monomers represented by the formula (4).

重合体(a)の形成に用いる単量体群は、式(4)に示される単量体以外の単量体を含んでもよい。このような単量体は、式(4)に示される単量体と共重合可能な単量体である限り特に限定されず、例えば、式(4)に示される単量体以外の(メタ)アクリル酸エステルである。   The monomer group used for forming the polymer (a) may include a monomer other than the monomer represented by the formula (4). Such a monomer is not particularly limited as long as it is a monomer copolymerizable with the monomer represented by the formula (4). For example, (metha) other than the monomer represented by the formula (4) ) Acrylic acid ester.

上記(メタ)アクリル酸エステルは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;である。なかでも、高い透明性および耐熱性を有する位相差フィルムが得られることから、メタクリル酸メチル(MMA)が好ましい。   Examples of the (meth) acrylic acid ester include acrylic acid esters such as methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, and benzyl acrylate; methacrylic acid Methacrylic acid esters such as methyl, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate and benzyl methacrylate. Among these, methyl methacrylate (MMA) is preferable because a retardation film having high transparency and heat resistance can be obtained.

重合体(a)の形成に用いる単量体群は、これら(メタ)アクリル酸エステルを2種以上含んでもよい。   The monomer group used for forming the polymer (a) may contain two or more of these (meth) acrylic acid esters.

重合体(a)の形成に用いる単量体群は、その他、スチレン、ビニルトルエン、α−メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニルなどの単量体を、1種または2種以上含んでもよい。   The monomer group used for forming the polymer (a) is one or two other monomers such as styrene, vinyl toluene, α-methyl styrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, and vinyl acetate. More than one species may be included.

主鎖に無水グルタル酸構造を有する(メタ)アクリル重合体は、例えば、特開2006-283013号公報、特開2006-335902号公報、特開2006-274118号公報に記載されている重合体であり、当該公報に記載されている方法により形成できる。   The (meth) acrylic polymer having a glutaric anhydride structure in the main chain is, for example, a polymer described in JP 2006-283013 A, JP 2006-335902 A, or JP 2006-274118 A. Yes, it can be formed by the method described in the publication.

主鎖にグルタルイミド構造を有する(メタ)アクリル重合体は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報に記載されている重合体であり、当該公報に記載されている方法により形成できる。   Examples of the (meth) acrylic polymer having a glutarimide structure in the main chain include, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328329, JP-A-2006-328334, JP-A-2006-337491, JP-A-2006-337492, JP-A-2006-337493, JP-A-2006-337569, JP-A-2007-009182 It can be formed by the method described in the publication.

樹脂(A)は、正の固有複屈折を有し、順波長分散性を示すとともに、本発明の効果が得られる限り、上述した重合体以外の他の熱可塑性重合体を含んでいてもよい。他の熱可塑性重合体は、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ(4−メチル−1−ペンテン)などのオレフィン重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ塩素化ビニルなどのハロゲン化ビニル重合体;ポリスチレン、スチレン−メタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体などのスチレン系重合体;セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロース系重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリスルホン;ポリエーテルスルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴムあるいはアクリル系ゴムを配合したABS樹脂、ASA樹脂などのゴム質重合体;である。   The resin (A) has positive intrinsic birefringence, exhibits forward wavelength dispersion, and may contain other thermoplastic polymers than the above-described polymers as long as the effects of the present invention are obtained. . Other thermoplastic polymers include, for example, polyethylene, polypropylene, ethylene-propylene copolymers, olefin polymers such as poly (4-methyl-1-pentene); polyvinyl chloride, polyvinylidene chloride, polychlorinated vinyl, etc. Styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer; cellulose triacetate, cellulose acetate propionate, Cellulose polymers such as cellulose acetate butyrate; Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; Polyamides such as nylon 6, nylon 66 and nylon 610 Polyacetal; Polycarbonate; Polyphenylene oxide; Polyphenylene sulfide; Polyether ether ketone; Polysulfone; Polyether sulfone; Polyoxybenzylene; Polyamideimide; Coalescence;

樹脂(A)における他の熱可塑性重合体の含有率は、好ましくは0〜50重量%、より好ましくは0〜40重量%、さらに好ましくは0〜30重量%、特に好ましくは0〜20重量%である。   The content of the other thermoplastic polymer in the resin (A) is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, further preferably 0 to 30% by weight, and particularly preferably 0 to 20% by weight. It is.

樹脂(A)は、正の固有複屈折を有し、順波長分散性を示すとともに、本発明の効果が得られる限り、重合体以外の材料、例えば添加剤、を含んでいてもよい。添加剤は、例えば、ヒンダードフェノール系、リン系、イオウ系などの酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤などの安定剤;ガラス繊維、炭素繊維などの補強材;フェニルサリチレート、(2,2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−ヒドロキシベンゾフェノンなどの紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤から構成される帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機フィラー、無機フィラー;アンチブロッキング剤;樹脂改質剤;有機充填剤、無機充填剤;可塑剤;滑剤;難燃剤である。   The resin (A) has positive intrinsic birefringence, exhibits forward wavelength dispersion, and may contain a material other than a polymer, such as an additive, as long as the effects of the present invention are obtained. Additives include, for example, hindered phenol-based, phosphorus-based, sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, thermal stabilizers, and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; UV absorbers such as tyrates, (2,2′-hydroxy-5-methylphenyl) benzotriazole, 2-hydroxybenzophenone; near infrared absorbers; difficulties such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide Antistatic agent composed of anionic, cationic and nonionic surfactants; Colorants such as inorganic pigments, organic pigments and dyes; Organic fillers, inorganic fillers; Antiblocking agents; Resin modifiers; Organic Fillers, inorganic fillers; plasticizers; lubricants; flame retardants.

樹脂(A)における添加剤の含有率は、好ましくは0〜5重量%、より好ましくは0〜2重量%、さらに好ましくは0〜0.5重量%である。   The content of the additive in the resin (A) is preferably 0 to 5% by weight, more preferably 0 to 2% by weight, and still more preferably 0 to 0.5% by weight.

[重合体(B)]
重合体(B)は、負の固有複屈折を有し、順波長分散性を示し、可視光域における波長分散性の変化が樹脂(A)よりも大きく、樹脂(A)のTgと自らのTgとの差が20℃未満である限り、限定されない。なお、重合体(B)は、熱可塑性重合体である。また、「可視光域における波長分散性の変化が樹脂(A)よりも大きい」とは、重合体(B)の配向フィルムが示す波長分散性の変化が、樹脂(A)の配向フィルムが示す波長分散性の変化よりも大きい、ことを示す。波長分散性の変化は、例えば、波長447nmの光に対する配向フィルムの面内位相差Re(447)と、波長590nmの光に対する配向フィルムの面内位相差Re(590)との比Re(447)/Re(590)により表される。
[Polymer (B)]
The polymer (B) has a negative intrinsic birefringence, exhibits forward wavelength dispersion, a change in wavelength dispersion in the visible light region is larger than that of the resin (A), and the Tg of the resin (A) and its own As long as the difference with Tg is less than 20 degreeC, it is not limited. The polymer (B) is a thermoplastic polymer. Further, “the change in wavelength dispersion in the visible light region is larger than that of the resin (A)” means that the change in wavelength dispersion exhibited by the alignment film of the polymer (B) is indicated by the alignment film of the resin (A). It is larger than the change in wavelength dispersion. The change in wavelength dispersion is, for example, the ratio Re (447) between the in-plane retardation Re (447) of the alignment film with respect to light having a wavelength of 447 nm and the in-plane retardation Re (590) of the alignment film with respect to light having a wavelength of 590 nm. / Re (590).

重合体(B)は、例えば、構成単位として(メタ)アクリル酸エステル単位を有する。このような重合体(B)は、(メタ)アクリル重合体を含む樹脂(A)、特にアクリル樹脂である樹脂(A)との相溶性に優れる。重合体(B)と樹脂(A)との相溶性が優れる場合、本発明の位相差フィルムおよび本発明の製造方法により得た位相差フィルムの光学特性、特に波長分散性、が向上する。   The polymer (B) has, for example, a (meth) acrylic acid ester unit as a structural unit. Such a polymer (B) is excellent in compatibility with a resin (A) containing a (meth) acrylic polymer, particularly a resin (A) which is an acrylic resin. When the compatibility between the polymer (B) and the resin (A) is excellent, the optical properties, particularly wavelength dispersibility, of the retardation film of the present invention and the retardation film obtained by the production method of the present invention are improved.

重合体(B)は、構成単位として、(メタ)アクリル酸エステル単位と、複素芳香族基を有するα,β−不飽和単量体単位(以下、単に「α,β−不飽和単量体単位」という)とを有する共重合体であることが好ましい。このとき、重合体(B)の全構成単位に占めるα,β−不飽和単量体単位の割合(重合体(B)におけるα,β−不飽和単量体単位の含有率)が、20重量%を超え60重量%以下であることが好ましい。   The polymer (B) includes a (meth) acrylic acid ester unit and an α, β-unsaturated monomer unit having a heteroaromatic group (hereinafter simply referred to as “α, β-unsaturated monomer” as structural units. It is preferably a copolymer having a “unit”). At this time, the proportion of α, β-unsaturated monomer units in all the structural units of the polymer (B) (content of α, β-unsaturated monomer units in the polymer (B)) was 20 It is preferably more than 60% by weight and less than 60% by weight.

α,β−不飽和単量体単位は、重合体(B)に負の固有複屈折を与える作用を有するとともに、重合体(B)のTgを向上させる作用を有する。構成単位として(メタ)アクリル酸エステル単位のみを有し、主鎖に環構造を有さない重合体が示すTgは、一般に低い。一方、(メタ)アクリル酸エステル単位とα,β−不飽和単量体単位とを構成単位として有する共重合体とすることにより、α,β−不飽和単量体単位がTg向上成分として作用し、重合体(B)のTgが向上する。これにより、樹脂(A)のTgと重合体(B)とのTgとの差を、より確実に20℃未満とすることができる。当該共重合体は、樹脂(A)が主鎖に環構造を有する重合体を含む場合に、特に好ましい。   The α, β-unsaturated monomer unit has an action of giving negative intrinsic birefringence to the polymer (B) and an action of improving the Tg of the polymer (B). The Tg of a polymer having only a (meth) acrylic acid ester unit as a structural unit and having no ring structure in the main chain is generally low. On the other hand, by using a copolymer having (meth) acrylic acid ester units and α, β-unsaturated monomer units as constituent units, the α, β-unsaturated monomer units act as a Tg improving component. And Tg of the polymer (B) is improved. Thereby, the difference of Tg of resin (A) and Tg of a polymer (B) can be more reliably made less than 20 degreeC. The copolymer is particularly preferable when the resin (A) includes a polymer having a ring structure in the main chain.

(メタ)アクリル酸エステル単位とα,β−不飽和単量体単位とを構成単位として有する重合体(B)におけるα,β−不飽和単量体単位の含有率は、30重量%以上がより好ましく、40重量%以上がさらに好ましい。当該含有率が20重量%以下では、α,β−不飽和単量体単位による上述した作用が不十分となることがある。当該含有率が60重量%を超えると、樹脂(A)の種類にもよるが、樹脂(A)との相溶性の確保が難しくなることがある。   The content of the α, β-unsaturated monomer unit in the polymer (B) having (meth) acrylic acid ester units and α, β-unsaturated monomer units as constituent units is 30% by weight or more. More preferred is 40% by weight or more. When the content is 20% by weight or less, the above-described action by the α, β-unsaturated monomer unit may be insufficient. If the content exceeds 60% by weight, it may be difficult to ensure compatibility with the resin (A), although it depends on the type of the resin (A).

α,β−不飽和単量体単位は特に限定されず、例えば、当該単位が有する複素芳香族基は特に限定されない。複素芳香族基におけるヘテロ原子は、典型的には酸素原子、硫黄原子または窒素原子である。重合体(B)が示す、可視光域における波長分散性の変化(位相差の波長分散性の変化)が大きくなることから、窒素原子が好ましい。重合体(B)が示す、可視光域における波長分散性の変化が大きくなると、相対的に、樹脂(A)および重合体(B)間の波長分散性の変化の差が大きくなる。このように、波長分散性の変化の差が大きい樹脂(A)および重合体(B)を組み合わせることによって、位相差フィルムにおける逆波長分散性の制御の自由度が向上する。   The α, β-unsaturated monomer unit is not particularly limited, and for example, the heteroaromatic group that the unit has is not particularly limited. The hetero atom in the heteroaromatic group is typically an oxygen atom, a sulfur atom or a nitrogen atom. Nitrogen atoms are preferred because the change in wavelength dispersion (change in wavelength dispersion of retardation) in the visible light region indicated by the polymer (B) becomes large. When the change in wavelength dispersion in the visible light region indicated by the polymer (B) is increased, the difference in change in wavelength dispersion between the resin (A) and the polymer (B) is relatively increased. Thus, by combining the resin (A) and the polymer (B) having a large difference in wavelength dispersion, the degree of freedom in controlling the reverse wavelength dispersion in the retardation film is improved.

複素芳香族基は、例えば、カルバゾール基、ピリジン基、イミダゾール基およびチオフェン基から選ばれる少なくとも1種である。   The heteroaromatic group is at least one selected from, for example, a carbazole group, a pyridine group, an imidazole group, and a thiophene group.

α,β−不飽和単量体単位は、例えば、N−ビニルカルバゾール単位、ビニルピリジン単位、ビニルイミダゾール単位およびビニルチオフェン単位から選ばれる少なくとも1種である。重合体(B)が示す、可視光域における波長分散性の変化が特に大きいことから、α,β−不飽和単量体単位はN−ビニルカルバゾール単位が好ましい。   The α, β-unsaturated monomer unit is, for example, at least one selected from an N-vinylcarbazole unit, a vinylpyridine unit, a vinylimidazole unit, and a vinylthiophene unit. The α, β-unsaturated monomer unit is preferably an N-vinylcarbazole unit because the change in wavelength dispersibility in the visible light region indicated by the polymer (B) is particularly large.

N−ビニルカルバゾール単位を、以下の式(5)に示す。なお、式(5)に示す環上の水素原子の一部が、式(1)における有機残基として例示した基によって置換されていてもよい。   The N-vinylcarbazole unit is shown in the following formula (5). In addition, a part of hydrogen atom on the ring shown in Formula (5) may be substituted by the group exemplified as the organic residue in Formula (1).

Figure 2012173530
Figure 2012173530

重合体(B)における(メタ)アクリル酸エステル単位は、例えば、上記例示した(メタ)アクリル酸エステル単量体の重合により形成された構成単位である。重合体(B)における(メタ)アクリル酸エステル単位は、樹脂(A)との相溶性およびα,β−不飽和単量体単位との共重合性の観点から、(メタ)アクリル酸メチル単位、(メタ)アクリル酸エチル単位、(メタ)アクリル酸プロピル単位、(メタ)アクリル酸ブチル単位などの(メタ)アクリル酸アルキルエステル単位が好ましい。   The (meth) acrylic acid ester unit in the polymer (B) is, for example, a structural unit formed by polymerization of the exemplified (meth) acrylic acid ester monomer. The (meth) acrylate unit in the polymer (B) is a methyl (meth) acrylate unit from the viewpoint of compatibility with the resin (A) and copolymerization with the α, β-unsaturated monomer unit. (Meth) acrylic acid alkyl ester units such as (meth) ethyl acrylate units, (meth) propyl propyl units and (meth) butyl butyl units are preferred.

重合体(B)が、構成単位として(メタ)アクリル酸エステル単位とα,β−不飽和単量体単位とを有する共重合体である場合、重合体(B)は、構成単位として、アクリロニトリル単位をさらに有することが好ましい。このような重合体(B)は、(メタ)アクリル重合体を含む樹脂(A)、特にアクリル樹脂である樹脂(A)との相溶性に優れる。すなわち、樹脂(A)が(メタ)アクリル重合体を含む場合、特に、アクリル樹脂である場合、重合体(B)が、構成単位として、(メタ)アクリル酸エステル単位、α,β−不飽和単量体単位およびアクリロニトリル単位を有することが好ましい。   When the polymer (B) is a copolymer having a (meth) acrylic acid ester unit and an α, β-unsaturated monomer unit as structural units, the polymer (B) is composed of acrylonitrile as the structural unit. It is preferable to further have a unit. Such a polymer (B) is excellent in compatibility with a resin (A) containing a (meth) acrylic polymer, particularly a resin (A) which is an acrylic resin. That is, when the resin (A) contains a (meth) acrylic polymer, in particular, when it is an acrylic resin, the polymer (B) has (meth) acrylic acid ester units, α, β-unsaturated as structural units. It preferably has a monomer unit and an acrylonitrile unit.

重合体(B)が構成単位としてアクリロニトリル単位を有する場合、重合体(B)におけるアクリロニトリル単位の含有率は、10〜40重量%が好ましく、20〜35重量%がより好ましい。   When a polymer (B) has an acrylonitrile unit as a structural unit, 10 to 40 weight% is preferable and, as for the content rate of the acrylonitrile unit in a polymer (B), 20 to 35 weight% is more preferable.

重合体(B)は、樹脂(A)のTgとの差ΔTgが20℃未満のTgを有する。ΔTgは、15℃以下が好ましく、10℃以下がより好ましく、5℃以下がさらに好ましい。樹脂(A)のTgと重合体(B)のTgとの大小関係は限定されない。   The polymer (B) has a Tg having a difference ΔTg from the Tg of the resin (A) of less than 20 ° C. ΔTg is preferably 15 ° C. or lower, more preferably 10 ° C. or lower, and further preferably 5 ° C. or lower. The magnitude relationship between the Tg of the resin (A) and the Tg of the polymer (B) is not limited.

重合体(B)は公知の方法により製造できる。   The polymer (B) can be produced by a known method.

[樹脂組成物(C)]
樹脂組成物(C)は、樹脂(A)と重合体(B)とを、樹脂(A):重合体(B)=95〜70重量部:5〜30重量部の混合比で含む。本発明の効果をより確実に得ることができることから、当該混合比は、樹脂(A):重合体(B)=95〜80重量部:5〜20重量部が好ましい。樹脂(A)が(メタ)アクリル酸エステル重合体を含み(とりわけ、樹脂(A)がアクリル樹脂であり)、重合体(B)が、構成単位として、(メタ)アクリルエステル単位と、α,β−不飽和単量体単位とを有する共重合体である場合、特に、当該共重合体がさらにアクリロニトリル単位を構成単位として有する場合は、α,β−不飽和単量体単位による高い波長分散性制御特性と、(メタ)アクリルエステル単位による樹脂(A)との相溶性(重合体(B)が構成単位としてアクリロニトリル単位をさらに有する場合は、アクリロニトリル単位による樹脂(A)とのさらなる相溶性)と、によって、樹脂(A)に対する重合体(B)の混合比を低くしながらも、十分に本発明の効果を得ることができる。なお、この混合比は、基材である樹脂(A)と波長分散性制御材である重合体(B)との混合比であり、樹脂組成物(C)が含むその他の成分に影響されない。
[Resin composition (C)]
The resin composition (C) contains the resin (A) and the polymer (B) at a mixing ratio of resin (A): polymer (B) = 95 to 70 parts by weight: 5 to 30 parts by weight. Since the effect of the present invention can be obtained more reliably, the mixing ratio is preferably resin (A): polymer (B) = 95 to 80 parts by weight: 5 to 20 parts by weight. Resin (A) contains a (meth) acrylic acid ester polymer (particularly, resin (A) is an acrylic resin), and polymer (B) has (meth) acrylic ester units as constituent units, α, In the case of a copolymer having a β-unsaturated monomer unit, particularly when the copolymer further has an acrylonitrile unit as a constituent unit, high wavelength dispersion due to the α, β-unsaturated monomer unit. Compatibility control property and compatibility with resin (A) by (meth) acrylic ester unit (when polymer (B) further has acrylonitrile unit as a constituent unit, further compatibility with resin (A) by acrylonitrile unit) ), The effect of the present invention can be sufficiently obtained while reducing the mixing ratio of the polymer (B) to the resin (A). In addition, this mixing ratio is a mixing ratio of resin (A) which is a base material and polymer (B) which is a wavelength dispersion control material, and is not affected by other components contained in the resin composition (C).

樹脂組成物(C)では、樹脂(A)に含まれる1種または2種以上の重合体および重合体(B)から選ばれる少なくとも1つの重合体が、構成単位として(メタ)アクリル酸エステル単位を有する。すなわち、樹脂組成物(C)では、重合体(B)が構成単位として(メタ)アクリル酸エステル単位を有する、および/または、樹脂(A)が、構成単位として(メタ)アクリル酸エステル単位を有する重合体を含む。   In the resin composition (C), at least one polymer selected from one or more polymers and the polymer (B) contained in the resin (A) is a (meth) acrylic acid ester unit as a structural unit. Have That is, in the resin composition (C), the polymer (B) has a (meth) acrylic acid ester unit as a structural unit, and / or the resin (A) has a (meth) acrylic acid ester unit as a structural unit. A polymer having

樹脂組成物(C)において、全ての重合体構成単位に占める(メタ)アクリル酸エステル単位の割合が60重量%以上である。当該割合は、70重量%以上が好ましく、80重量%以上がより好ましい。ラクトン環構造など、(メタ)アクリル酸エステル単位の誘導体である環構造を主鎖に有する重合体を含む場合、樹脂組成物(C)において、全ての重合体構成単位に占める当該環構造の割合と(メタ)アクリル酸エステル単位の割合との合計が60重量%以上である。樹脂組成物(C)における当該割合が60重量%以上であることによって、位相差および波長分散性以外にも、位相差フィルムとして好適な光学特性および機械的特性が実現する。なお、樹脂組成物(C)に含まれる全重合体が、それぞれ60重量%以上の(メタ)アクリル酸エステル単位の含有率(または上記環構造の含有率と(メタ)アクリル酸エステル単位の含有率との合計)を有している必要はなく、樹脂組成物(C)に含まれる重合体全体としての(メタ)アクリル酸エステル単位の含有率(または上記環構造の含有率と(メタ)アクリル酸エステル単位の含有率との合計)が60重量%以上であればよい。換言すれば、樹脂組成物(C)は、構成単位として(メタ)アクリル酸エステル単位および上記環構造を有さない重合体を含んでいてもよい。   In the resin composition (C), the proportion of (meth) acrylic acid ester units in all polymer constituent units is 60% by weight or more. The proportion is preferably 70% by weight or more, and more preferably 80% by weight or more. In the case of including a polymer having a ring structure that is a derivative of a (meth) acrylic acid ester unit, such as a lactone ring structure, in the resin composition (C), the ratio of the ring structure in all polymer constituent units And the ratio of the (meth) acrylic acid ester unit is 60% by weight or more. When the ratio in the resin composition (C) is 60% by weight or more, in addition to the retardation and wavelength dispersibility, optical characteristics and mechanical characteristics suitable as a retardation film are realized. In addition, all the polymers contained in the resin composition (C) are each 60% by weight or more of (meth) acrylic acid ester unit content (or the above-mentioned ring structure content and (meth) acrylic acid ester unit content). The content of the (meth) acrylic acid ester unit as the whole polymer contained in the resin composition (C) (or the content of the ring structure and (meth) The total content of the acrylic acid ester units) may be 60% by weight or more. In other words, the resin composition (C) may contain a (meth) acrylic acid ester unit as a constituent unit and a polymer having no ring structure.

樹脂組成物(C)は、本発明の効果が得られる限り、樹脂(A)および重合体(B)以外の成分を含んでいてもよい。当該成分は、例えば、樹脂(A)に含まれる重合体および重合体(B)の双方の重合体を除く熱可塑性重合体である。当該熱可塑性重合体は、例えば、樹脂(A)の説明において例示した「他の熱可塑性重合体」である。当該成分は、例えば、樹脂(A)の説明において例示した添加剤であってもよい。   The resin composition (C) may contain components other than the resin (A) and the polymer (B) as long as the effects of the present invention are obtained. The said component is a thermoplastic polymer except the polymer of both the polymer contained in resin (A) and a polymer (B), for example. The said thermoplastic polymer is "another thermoplastic polymer" illustrated in description of resin (A), for example. The component may be, for example, the additive exemplified in the description of the resin (A).

樹脂組成物(C)は、公知の方法により製造できる。樹脂組成物(C)は、押出溶融成形などの公知の手法により、原反フィルムに成形できる。   The resin composition (C) can be produced by a known method. The resin composition (C) can be formed into a raw film by a known method such as extrusion melt molding.

[位相差フィルム]
本発明の位相差フィルムは、樹脂組成物(C)からなる。本発明の位相差フィルムは、典型的には、樹脂組成物(C)からなる単層のフィルムである。ただし、その表面に、機能性コーティング層を有していてもよい。
[Phase difference film]
The retardation film of this invention consists of a resin composition (C). The retardation film of the present invention is typically a single layer film made of the resin composition (C). However, you may have a functional coating layer on the surface.

本発明の位相差フィルムは、逆波長分散性を示す。本発明の位相差フィルムは、正の固有複屈折を有する樹脂(A)を基材とする、正の位相差フィルムである。   The retardation film of the present invention exhibits reverse wavelength dispersion. The retardation film of the present invention is a positive retardation film based on a resin (A) having positive intrinsic birefringence.

本発明の位相差フィルムが示す、波長590nmの光に対する面内位相差Reは、例えば、20nm以上である。樹脂組成物(C)が含む樹脂(A)および重合体(B)の種類および含有率ならびに位相差フィルムの延伸状態によっては、40nm以上、さらには100nm以上となる。面内位相差Reは、位相差フィルムの面内における遅相軸の屈折率をnx、進相軸の屈折率をnyとして、式Re=(nx−ny)×dにより定義される。   The in-plane retardation Re for light having a wavelength of 590 nm, which is shown by the retardation film of the present invention, is, for example, 20 nm or more. Depending on the type and content of the resin (A) and polymer (B) contained in the resin composition (C) and the stretched state of the retardation film, the thickness is 40 nm or more, and further 100 nm or more. The in-plane retardation Re is defined by the formula Re = (nx−ny) × d, where the refractive index of the slow axis in the plane of the retardation film is nx and the refractive index of the fast axis is ny.

本発明の位相差フィルムが示す、波長590nmの光に対する厚さ方向の位相差Rthは、例えば、10nm以上である。樹脂組成物(C)が含む樹脂(A)および重合体(B)の種類および含有率ならびに位相差フィルムの延伸状態によっては、20nm以上、さらには50nm以上となる。厚さ方向の位相差Rthは、位相差フィルムの面内における遅相軸の屈折率をnx、進相軸の屈折率をnyとし、位相差フィルムの厚さ方向の屈折率をnzとして、式Rth=[(nx+ny)/2−nz]×dにより定義される。   The retardation Rth in the thickness direction with respect to light having a wavelength of 590 nm, which is shown by the retardation film of the present invention, is, for example, 10 nm or more. Depending on the type and content of the resin (A) and polymer (B) contained in the resin composition (C) and the stretched state of the retardation film, the thickness is 20 nm or more, and further 50 nm or more. The retardation Rth in the thickness direction is expressed by a formula in which the refractive index of the slow axis in the plane of the retardation film is nx, the refractive index of the fast axis is ny, and the refractive index in the thickness direction of the retardation film is nz. Rth = [(nx + ny) / 2−nz] × d.

本発明の位相差フィルムは、原反フィルムを一軸延伸して得た配向フィルムであっても、二軸延伸して得た配向フィルムであってもよい。すなわち、本発明の位相差フィルムは、一軸延伸性であっても二軸延伸性であってもよい。二軸延伸は、同時二軸延伸であっても、逐次二軸延伸であってもよい。逐次二軸延伸では、原反フィルムを加熱、延伸する時間が一軸延伸および同時二軸延伸の場合よりも長くなり、延伸条件(延伸温度、延伸倍率)の変化による波長分散性の変動が生じやすいが、本発明では、このような場合においても、原反フィルムの延伸条件の変化による位相差フィルムの波長分散性の変動が抑制される。   The retardation film of the present invention may be an oriented film obtained by uniaxially stretching a raw film or an oriented film obtained by biaxially stretching. That is, the retardation film of the present invention may be uniaxially stretchable or biaxially stretchable. Biaxial stretching may be simultaneous biaxial stretching or sequential biaxial stretching. In sequential biaxial stretching, the time for heating and stretching the raw film is longer than in the case of uniaxial stretching and simultaneous biaxial stretching, and fluctuations in wavelength dispersibility are likely to occur due to changes in stretching conditions (stretching temperature and stretching ratio). However, in the present invention, even in such a case, fluctuations in the wavelength dispersion of the retardation film due to changes in the stretching conditions of the original film are suppressed.

本発明の位相差フィルムのNZ係数は、例えば、1.0〜2.5である。本発明では、逐次二軸延伸により位相差フィルムを得る場合にも、得られた位相差フィルムの波長分散性の変動が抑制される。このため、NZ係数にして2.3以上という高い値を示す位相差フィルムが実現する。高いNZ係数を示す位相差フィルムは、VA(垂直配向)モードのLCDへの使用に好適である。なお、NZ係数は、位相差フィルムの面内における遅相軸の屈折率をnx、進相軸の屈折率をnyとし、位相差フィルムの厚さ方向の屈折率をnzとして、式{NZ=(nx−nz)/(nx−ny)}により定義される。一軸延伸性の位相差フィルムの場合、NZ係数は1.0である。   The NZ coefficient of the retardation film of the present invention is, for example, 1.0 to 2.5. In this invention, also when obtaining a phase difference film by sequential biaxial stretching, the fluctuation | variation of the wavelength dispersion of the obtained phase difference film is suppressed. For this reason, the retardation film which shows the high value of 2.3 or more as a NZ coefficient is implement | achieved. A retardation film exhibiting a high NZ coefficient is suitable for use in a VA (vertical alignment) mode LCD. The NZ coefficient is expressed by the equation {NZ = the refractive index of the slow axis in the plane of the retardation film is nx, the refractive index of the fast axis is ny, and the refractive index in the thickness direction of the retardation film is nz. It is defined by (nx−nz) / (nx−ny)}. In the case of a uniaxially stretchable retardation film, the NZ coefficient is 1.0.

本発明の位相差フィルムは、例えば、矩形状または帯状である。帯状の位相差フィルムである場合、当該フィルムはロールに巻回されていてもよい(位相差フィルムロール)。帯状の位相差フィルムは、帯状の原反フィルムを延伸して形成される。矩形状の位相差フィルムについても、帯状の原反フィルムを延伸して帯状の位相差フィルムとした後、当該帯状の位相差フィルムを所定のサイズに切断して形成できる。本発明の位相差フィルムは、原反フィルムの延伸条件を変化させた場合においても、波長分散性の変動が少ない。このため、本発明の位相差フィルムは、波長分散性が同一またはほぼ同一であるが、位相差値および/またはNZ係数が異なる2以上の部分を有する帯状の位相差フィルムまたは位相差フィルムロールでありうる。   The retardation film of the present invention has, for example, a rectangular shape or a belt shape. When it is a belt-like retardation film, the film may be wound around a roll (retardation film roll). The band-shaped retardation film is formed by stretching a band-shaped original film. The rectangular retardation film can also be formed by stretching a strip-shaped raw film to obtain a strip-shaped retardation film, and then cutting the strip-shaped retardation film into a predetermined size. The retardation film of the present invention has little variation in wavelength dispersion even when the stretching conditions of the raw film are changed. For this reason, the retardation film of the present invention is a belt-like retardation film or retardation film roll having two or more portions having the same or substantially the same wavelength dispersion but different retardation values and / or NZ coefficients. It is possible.

本発明の位相差フィルムは逆波長分散性を示すが、その強さの程度は、例えば、測定波長590nmで測定した面内位相差Re(590)に対する、測定波長447nmで測定した面内位相差Re(447)の比D(=Re(447)/Re(590))にして、0.75≦D≦0.99である。このとき、本発明の位相差フィルムが延伸条件の変化による波長分散性の変動が少ないことに対応する、以下の(1)および/または(2)が満たされることが好ましい。   The retardation film of the present invention exhibits reverse wavelength dispersion, but the degree of strength thereof is, for example, an in-plane retardation measured at a measurement wavelength of 447 nm with respect to an in-plane retardation Re (590) measured at a measurement wavelength of 590 nm. The ratio D (= Re (447) / Re (590)) of Re (447) is 0.75 ≦ D ≦ 0.99. At this time, it is preferable that the following (1) and / or (2) corresponding to the fact that the retardation film of the present invention has a small variation in wavelength dispersion due to a change in stretching conditions is satisfied.

(1)位相差フィルムを構成する樹脂組成物(C)は、当該組成物(C)からなる無配向フィルムを、当該組成物(C)のTgより5℃高い温度で、Re(590)が20nm以上となるように延伸したときに示す上記比Dの値D5と、当該組成物(C)のTgより15℃高い温度で、延伸温度以外は当該延伸と同一の延伸条件で延伸したときに示す上記比Dの値D15との間に式0≦|D15−D5|<0.05が成立する、組成を有する。樹脂組成物(C)は、D5とD15との間に式0≦|D15−D5|≦0.03が成立する組成を有することが、より好ましい。 (1) The resin composition (C) constituting the retardation film is a non-oriented film composed of the composition (C) at a temperature 5 ° C. higher than the Tg of the composition (C), and Re (590) is the value D 5 of the ratio D shown in stretching such that the 20nm or more, at a temperature from 15 ℃ high Tg of the composition (C), when other than stretching temperature was stretched by the same stretching conditions and the stretching And the value D 15 of the ratio D shown in FIG. 2 has a composition that satisfies the expression 0 ≦ | D 15 −D 5 | <0.05. More preferably, the resin composition (C) has a composition satisfying the formula 0 ≦ | D 15 −D 5 | ≦ 0.03 between D 5 and D 15 .

(2)位相差フィルムを構成する樹脂組成物(C)は、当該組成物(C)からなる無配向フィルムを、NZ係数が1.0となるように延伸したときに示す上記比Dの値D1.0と、NZ係数が1.4以上3.0以下となるように、当該延伸と同一の延伸温度で延伸したときに示す上記比Dの値D1.4-3.0との間に、式0≦|D1.4-3.0−D1.0|≦0.04が成立する組成を有する。樹脂組成物(C)は、D1.0とD1.4-3.0との間に式0≦|D1.4-3.0−D1.0|≦0.02が成立する組成を有することが好ましい。 (2) The resin composition (C) constituting the retardation film is a value of the ratio D shown when the non-oriented film made of the composition (C) is stretched so that the NZ coefficient is 1.0. Between D 1.0 and the value D 1.4-3.0 of the ratio D shown when stretching at the same stretching temperature as the stretching so that the NZ coefficient is 1.4 or more and 3.0 or less, the formula 0 ≦ | D 1.4-3.0 −D 1.0 | ≦ 0.04. The resin composition (C) preferably has a composition satisfying the formula 0 ≦ | D 1.4-3.0 −D 1.0 | ≦ 0.02 between D 1.0 and D 1.4-3.0 .

ある位相差フィルムがあったときに、当該フィルムにおいて上記(1)あるいは(2)が満たされるか否かは、以下のように調べることができる。最初に、位相差フィルムを一度加熱して、当該フィルムに含まれる重合体の配向をなくし、無配向フィルムとする。次に、得られた無配向フィルムを上記(1)または(2)の延伸条件で延伸して、D5およびD15、またはD1.0およびD1.4-3.0の値を求め、上記(1)または(2)が満たされるか否かを検証する。無配向フィルムを得るための加熱は、加熱する位相差フィルムがその形状を保持できる温度以下であって、別途測定した、加熱する位相差フィルムのTgよりも50℃以上高い温度で行えばよい。加熱の方法は特に限定されないが、例えば、溶融プレス法を応用できる。加熱の時間は、少なくとも、加熱する位相差フィルムに含まれる重合体の配向がなくなるまでの時間とすればよい。例えば、フィルムの面内位相差Re(590)が3nm以下となった時点で、当該フィルムに含まれる重合体の配向がなくなり、無配向フィルムになったと判断できる。 Whether or not the above-mentioned (1) or (2) is satisfied in the film when there is a certain retardation film can be examined as follows. First, the retardation film is heated once to eliminate the orientation of the polymer contained in the film, thereby forming a non-oriented film. Next, the obtained non-oriented film is stretched under the stretching conditions of (1) or (2) above, and the values of D 5 and D 15 , or D 1.0 and D 1.4-3.0 are determined, and the above (1) or It is verified whether (2) is satisfied. The heating for obtaining the non-oriented film may be performed at a temperature not higher than the temperature at which the heated retardation film can maintain the shape and at a temperature higher by 50 ° C. than the Tg of the separately heated retardation film. Although the heating method is not particularly limited, for example, a melt press method can be applied. The heating time may be at least a time until the orientation of the polymer contained in the retardation film to be heated disappears. For example, when the in-plane retardation Re (590) of the film becomes 3 nm or less, it can be determined that the orientation of the polymer contained in the film is lost and the film becomes a non-oriented film.

本発明の位相差フィルムは、公知の方法(例えば、溶融押出、キャスト)による、樹脂組成物(C)からの原反フィルムの形成と、公知の延伸方法による原反フィルムの延伸により製造できる。樹脂組成物(C)からの原反フィルムの形成と、原反フィルムの延伸とは、連続的に行っても、別個に行ってもよい。   The retardation film of the present invention can be produced by forming a raw film from the resin composition (C) by a known method (for example, melt extrusion, casting) and stretching the raw film by a known stretching method. The formation of the original film from the resin composition (C) and the stretching of the original film may be performed continuously or separately.

本発明の位相差フィルムは、例えば、本発明の製造方法により製造できる。   The retardation film of the present invention can be produced, for example, by the production method of the present invention.

本発明の位相差フィルムは、逆波長分散性を示す。このような広帯域の位相差フィルムを用いることによって、表示特性に優れる画像表示装置を構築できる。本発明の位相差フィルムは、用途に応じて、他の光学部材と組み合わせて用いてもよい。本発明の位相差フィルムの用途は特に限定されず、従来の位相差フィルムと同様の用途(例えば、LCD、OLEDなどの画像表示装置)に使用できる。   The retardation film of the present invention exhibits reverse wavelength dispersion. By using such a broadband retardation film, an image display device having excellent display characteristics can be constructed. The retardation film of the present invention may be used in combination with other optical members depending on applications. The application of the retardation film of the present invention is not particularly limited, and can be used for the same applications as conventional retardation films (for example, image display devices such as LCD and OLED).

[位相差フィルムの製造方法]
本発明の製造方法では、本発明の位相差フィルムの説明において上述した樹脂(A)と重合体(B)とを、樹脂(A):重合体(B)=95〜70重量部:5〜30重量部の混合比で混合して、樹脂(A)と重合体(B)とを含む、上述した樹脂組成物(C)を形成する工程と、形成した樹脂組成物(C)をフィルム(原反フィルム)に成形した後に、得られた当該フィルムを延伸して位相差フィルムを形成する工程と、を含む。本発明の効果が得られる限り、本発明の製造方法は、その他の工程を含んでいてもよい。
[Method for producing retardation film]
In the production method of the present invention, the resin (A) and the polymer (B) described above in the description of the retardation film of the present invention are combined with resin (A): polymer (B) = 95 to 70 parts by weight: 5 to 5 parts. The step of forming the resin composition (C) described above containing the resin (A) and the polymer (B) by mixing at a mixing ratio of 30 parts by weight, and the formed resin composition (C) with the film ( And forming a retardation film by stretching the obtained film after forming the original film. As long as the effects of the present invention are obtained, the production method of the present invention may include other steps.

樹脂(A)と重合体(B)との混合比は、樹脂(A):重合体(B)=95〜80重量部:5〜20重量部が好ましい。   The mixing ratio of the resin (A) and the polymer (B) is preferably resin (A): polymer (B) = 95 to 80 parts by weight: 5 to 20 parts by weight.

樹脂(A)と重合体(B)とを混合する際の混合順序は特に限定されない。例えば、樹脂(A)に重合体(B)を混合してもよいし、重合体(B)に樹脂(A)を混合してもよい。溶融押出機などの装置を使用する場合、当該装置に樹脂(A)および重合体(B)を同時に導入して、両者を混合してもよい。   The order of mixing when mixing the resin (A) and the polymer (B) is not particularly limited. For example, the polymer (B) may be mixed with the resin (A), or the resin (A) may be mixed with the polymer (B). When an apparatus such as a melt extruder is used, the resin (A) and the polymer (B) may be simultaneously introduced into the apparatus and mixed.

樹脂(A)と重合体(B)とを混合する際には、本発明の効果が得られる限り、樹脂(A)および重合体(B)以外の材料、例えば、樹脂(A)の説明において例示した「他の熱可塑性重合体」あるいは添加剤を併せて混合してもよい。   When the resin (A) and the polymer (B) are mixed, as long as the effects of the present invention are obtained, materials other than the resin (A) and the polymer (B), for example, in the description of the resin (A) The exemplified “other thermoplastic polymer” or additives may be mixed together.

樹脂(A)と重合体(B)とを混合して樹脂組成物(C)を形成する方法は特に限定されず、公知の方法に従えばよい。   The method for mixing the resin (A) and the polymer (B) to form the resin composition (C) is not particularly limited, and a known method may be followed.

樹脂組成物(C)を成膜してフィルム(原反フィルム)を得る方法は特に限定されず、公知の方法(例えば、溶融押出法、キャスト法)に従えばよい。溶融押出法によれば、樹脂(A)および重合体(B)の混合による樹脂組成物(C)の形成と、形成した樹脂組成物(C)の溶融押出による原反フィルムの形成とを連続的に行うことも可能である。さらに、原反フィルムの延伸による位相差フィルムの形成も併せて、樹脂組成物(C)の形成、原反フィルムの形成および位相差フィルムの形成を連続的に行うことも可能である。形成する原反フィルムは帯状であってもよい。   The method for forming the resin composition (C) into a film (raw film) is not particularly limited, and may be a known method (for example, a melt extrusion method or a casting method). According to the melt extrusion method, the formation of the resin composition (C) by mixing the resin (A) and the polymer (B) and the formation of the raw film by melt extrusion of the formed resin composition (C) are continuously performed. It can also be done automatically. Furthermore, it is also possible to continuously form the resin composition (C), the raw film, and the retardation film together with the formation of the retardation film by stretching the raw film. The raw film to be formed may have a strip shape.

形成した原反フィルムを延伸して位相差フィルムを形成する方法は特に限定されず、公知の方法に従えばよい。延伸は、例えば、一軸延伸または二軸延伸である。帯状の原反フィルムを延伸して、帯状の位相差フィルムを形成してもよい。一軸延伸は、典型的には、原反フィルムの幅方向の変化を自由とする自由端一軸延伸である。原反フィルムの幅方向の変化を固定した固定端一軸延伸であってもよい。原反フィルムをその幅方向のみに延伸する横一軸延伸であってもよい。二軸延伸は、典型的には、逐次二軸延伸であるが、縦横延伸を同時に行う同時二軸延伸も好適に使用できる。さらに、延伸は、原反フィルムの厚さ方向への延伸であってもよいし、原反フィルムをその斜め方向(原反フィルムの流れ方向および幅方向の双方の方向に対して傾いた方向)に延伸してもよい。   The method of stretching the formed original film to form the retardation film is not particularly limited, and may be a known method. Stretching is, for example, uniaxial stretching or biaxial stretching. The belt-shaped raw film may be stretched to form a belt-shaped retardation film. The uniaxial stretching is typically free end uniaxial stretching in which a change in the width direction of the raw film is free. The fixed end uniaxial stretching which fixed the change of the width direction of the original fabric film may be sufficient. Transverse uniaxial stretching in which the raw film is stretched only in the width direction may be used. The biaxial stretching is typically sequential biaxial stretching, but simultaneous biaxial stretching in which longitudinal and transverse stretching are simultaneously performed can also be suitably used. Further, the stretching may be stretching in the thickness direction of the original film, or the original film may be in an oblique direction (a direction inclined with respect to both the flow direction and the width direction of the original film). It may be stretched.

延伸の際に、延伸条件、例えば延伸温度および/または延伸倍率、を変化させてもよい。位相差フィルムが得られない延伸条件に変化させる場合ならびに延伸条件の変化の程度が過度に大きい場合を除き、本発明の製造方法では、延伸条件の変化の前後における、位相差フィルムの波長分散性の変動が少ない。このため、本発明の製造方法では、波長分散性が同一またはほぼ同一であるが、位相差値および/またはNZ係数が異なる2以上の部分を有する帯状の位相差フィルムまたは位相差フィルムロールを製造できる。   During stretching, the stretching conditions such as stretching temperature and / or stretching ratio may be changed. In the production method of the present invention, the wavelength dispersibility of the retardation film before and after the change of the stretching conditions is changed except when changing to the stretching conditions where the retardation film cannot be obtained and when the degree of change of the stretching conditions is excessively large. There are few fluctuations. For this reason, the production method of the present invention produces a belt-like retardation film or retardation film roll having two or more parts having the same or substantially the same wavelength dispersion but different retardation values and / or NZ coefficients. it can.

延伸温度は、原反フィルムのTg近傍が好ましい。具体的には、Tg−5℃〜Tg+30℃が好ましく、Tg℃〜Tg+20℃がより好ましく、Tg+5℃〜Tg+15℃がさらに好ましい。   The stretching temperature is preferably in the vicinity of Tg of the raw film. Specifically, Tg-5 ° C to Tg + 30 ° C is preferable, Tg ° C to Tg + 20 ° C is more preferable, and Tg + 5 ° C to Tg + 15 ° C is more preferable.

延伸倍率は、位相差フィルムとして得たい位相差に応じて、例えば1.1〜5倍の範囲、好ましくは1.3〜3倍の範囲内で調整できる。   The draw ratio can be adjusted, for example, in the range of 1.1 to 5 times, preferably in the range of 1.3 to 3 times, depending on the retardation to be obtained as the retardation film.

原反フィルムの延伸には、公知の延伸装置を使用できる。   A known stretching apparatus can be used for stretching the raw film.

[画像表示装置]
本発明の画像表示装置は、本発明の位相差フィルムを備える。これにより、画像表示特性に優れる画像表示装置となる。本発明の画像表示装置は、例えば、LCD、OELDである。
[Image display device]
The image display device of the present invention includes the retardation film of the present invention. As a result, the image display device is excellent in image display characteristics. The image display device of the present invention is, for example, an LCD or an OELD.

以下、実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

最初に、本実施例において作製した重合体、樹脂組成物および位相差フィルムの評価方法を示す。   Initially, the evaluation method of the polymer, the resin composition, and retardation film which were produced in the present Example is shown.

[重量平均分子量]
重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求めた。測定に用いた装置および測定条件は以下の通りである。
[Weight average molecular weight]
The weight average molecular weight of the polymer was determined in terms of polystyrene using gel permeation chromatography (GPC). The apparatus and measurement conditions used for the measurement are as follows.

システム:東ソー製GPCシステム HLC−8220
展開溶媒:クロロホルム(和光純薬工業製、特級) 流量0.6mL/分
標準試料:TSK標準ポリスチレン(東ソー製、PS−オリゴマーキット)
測定側カラム構成
ガードカラム:東ソー製、TSKguardcolumn SuperHZ-L
分離カラム:東ソー製、TSKgel SuperHZM-M 2本直列
リファレンス側カラム構成
リファレンスカラム:TSKgel SuperH-RC
カラム温度:40℃
System: Tosoh GPC system HLC-8220
Developing solvent: Chloroform (manufactured by Wako Pure Chemical Industries, special grade) Flow rate 0.6 mL / min Standard sample: TSK standard polystyrene (manufactured by Tosoh, PS-oligomer kit)
Measurement side column configuration Guard column: Tosoh, TSKguardcolumn SuperHZ-L
Separation column: Tosoh, TSKgel SuperHZM-M 2 in series Reference column configuration Reference column: TSKgel SuperH-RC
Column temperature: 40 ° C

[ガラス転移温度(Tg)]
重合体、樹脂組成物および未延伸フィルムのTgは、JIS K7121の規定に準拠して求めた。具体的には、示差走査熱量計(リガク製、DSC−8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により評価した。リファレンスには、α−アルミナを用いた。なお、樹脂組成物から未延伸フィルム(原反フィルム)を作製する際、および原反フィルムを延伸して位相差フィルムを作製する際にTgは変化しないため、樹脂組成物のTgは、そのまま当該樹脂組成物からなる原反フィルムおよび位相差フィルムのTgとなる。
[Glass transition temperature (Tg)]
Tg of the polymer, the resin composition, and the unstretched film was determined in accordance with the provisions of JIS K7121. Specifically, a differential scanning calorimeter (manufactured by Rigaku, DSC-8230) is used, and a sample of about 10 mg is heated from normal temperature to 200 ° C. (temperature increase rate: 20 ° C./min) in a nitrogen gas atmosphere. The DSC curve was evaluated by the starting point method. Α-alumina was used as a reference. In addition, since Tg does not change when producing an unstretched film (raw fabric film) from the resin composition and when producing a retardation film by stretching the raw fabric film, the Tg of the resin composition remains as it is. It becomes Tg of the original fabric film and retardation film which consist of a resin composition.

[屈折率異方性]
各実施例および比較例において作製した位相差フィルムが示す、波長447nmの光に対する面内位相差Re(447)、波長590nmの光に対する面内位相差Re(590)および波長750nmの光に対する面内位相差Re(750)は、位相差測定装置(王子計測器製、KOBRA−WR)を用いて測定した。具体的には、測定項目として入射角依存性(単独N計算)を選択し、傾斜中心軸を遅相軸に、入射角を40°に、それぞれ設定して、アッベ屈折率計で別途測定した位相差フィルムの平均屈折率ならびに位相差フィルムの膜厚dを入力して測定した。位相差フィルムの膜厚dは、デジマチックマイクロメーター(ミツトヨ製)を用いて、別途測定した。
[Refractive index anisotropy]
In-plane retardation Re (447) for light with a wavelength of 447 nm, in-plane retardation Re (590) for light with a wavelength of 590 nm, and in-plane with respect to light with a wavelength of 750 nm shown by the retardation films prepared in each Example and Comparative Example The phase difference Re (750) was measured using a phase difference measuring device (manufactured by Oji Scientific Instruments, KOBRA-WR). Specifically, incident angle dependency (single N calculation) was selected as a measurement item, the tilt central axis was set as the slow axis, and the incident angle was set at 40 °, and the measurement was separately performed with an Abbe refractometer. The average refractive index of the retardation film and the film thickness d of the retardation film were input and measured. The film thickness d of the retardation film was separately measured using a Digimatic micrometer (manufactured by Mitutoyo).

位相差フィルムの比D(=Re(447)/Re(590))および比E(=Re(750)/Re(590))は、このようにして測定したRe(447)、Re(590)およびRe(750)の値から算出した。比Eは、比Dと同様に、位相差フィルムの波長分散性およびその程度を判断する指標となる。   The ratio D (= Re (447) / Re (590)) and the ratio E (= Re (750) / Re (590)) of the retardation film were measured in this way as Re (447) and Re (590). And the value of Re (750). The ratio E, like the ratio D, serves as an index for determining the wavelength dispersibility and the degree of the retardation film.

位相差フィルムのNZ係数は、上記位相差測定装置を用いて測定した。具体的には、位相差測定装置によってRe(590)を測定する際に得られるnx、nyおよびnzの値から、式NZ=(nx−nz)/(nx−ny)により算出した。   The NZ coefficient of the retardation film was measured using the retardation measuring apparatus. Specifically, it was calculated by the formula NZ = (nx−nz) / (nx−ny) from the values of nx, ny and nz obtained when Re (590) was measured by the phase difference measuring device.

(製造例1)
攪拌装置、温度センサー、冷却管、窒素導入管および滴下ロートを備えた反応容器に、N−ビニルカルバゾール(NVCZ)25重量部、アクリロニトリル(AN)10重量部、アクリル酸n−ブチル(BA)15重量部、および重合溶媒としてメチルエチルケトン29.6重量部を仕込み、これに窒素を通じつつ、85℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサナノエート(アルケマ吉富製、商品名:ルペロックス575)0.005重量部を添加するとともに、同時に、メチルエチルケトン20重量部および上記t−アミルパーオキシ−2−エチルヘキサナノエート0.01重量部の混合物の滴下を開始した。当該混合物を6時間かけて滴下しながら、約80〜85℃の還流下で溶液重合を進行させた。
(Production Example 1)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe and a dropping funnel, 25 parts by weight of N-vinylcarbazole (NVCZ), 10 parts by weight of acrylonitrile (AN), 15 parts of n-butyl acrylate (BA) Part by weight and 29.6 parts by weight of methyl ethyl ketone as a polymerization solvent were charged, and the temperature was raised to 85 ° C. while introducing nitrogen into the solvent. At the start of the reflux accompanying the temperature increase, 0.005 part by weight of t-amylperoxy-2-ethylhexanoate (manufactured by Arkema Yoshitomi, trade name: Luperox 575) was added as a polymerization initiator, and at the same time, methyl ethyl ketone. Addition of a mixture of 20 parts by weight and 0.01 parts by weight of the above t-amylperoxy-2-ethylhexanoate was started. Solution polymerization was allowed to proceed under reflux at about 80 to 85 ° C. while dropping the mixture over 6 hours.

次に、得られた重合溶液を、バレル温度240℃、回転速度100rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個およびフォアベント数4個(上流側から第1、第2、第3、第4ベントと称する)のベントタイプスクリュー二軸押出機(L/D=52.5)に、10重量部/時(樹脂量換算)の処理速度で導入し、脱揮を行った。   Next, the obtained polymerization solution was subjected to a barrel temperature of 240 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a rear vent number of 1 and a forevent number of 4 (first and Introduced into a vent type screw twin screw extruder (L / D = 52.5) at a processing rate of 10 parts by weight / hour (resin amount conversion) went.

脱揮完了後、押出機内に残された熱溶融状態にある重合体を当該押出機の先端から排出し、ストランドカッターを用いてペレット化して、構成単位として、NVCZ単位、AN単位およびBA単位を有する重合体(B−1)のペレットを得た。重合体(B−1)の重量平均分子量は291200であった。   After completion of devolatilization, the polymer in the heat-melted state remaining in the extruder is discharged from the tip of the extruder, pelletized using a strand cutter, and NVCZ units, AN units, and BA units are used as constituent units. A pellet of polymer (B-1) was obtained. The weight average molecular weight of the polymer (B-1) was 291200.

次に、得られた重合体(B−1)のペレットを、手動式加熱プレス機(井元製作所製、IMC−180C型)を用いて、240℃、30MPaで5分間溶融プレス成形して、重合体(B−1)からなる厚さ120μmの未延伸フィルムを作製した。当該フィルムのTg、すなわち重合体(B−1)のTgは101.5℃であった。次に、作製した未延伸フィルムを50mm×80mmのサイズに切り出した後、切り出したフィルムを、恒温槽付きオートグラフ(島津製作所製、AG−X)を用いて自由端一軸延伸した。具体的には、切り出したフィルムをオートグラフにセットする際のチャック間距離を40mmに設定し、チャックに取り付けた当該フィルムをそのTg+5℃で3分間予熱した後、当該温度にて延伸倍率が2倍となるように延伸して、厚さ90μmの延伸フィルムを得た。得られた延伸フィルムの配向角を、位相差測定装置(王子計測器製、KOBRA−WR)を用いて評価したところ、当該延伸フィルムの配向角(φ)は89.6°であり、すなわち、重合体(B−1)の固有複屈折は負であった。また、当該延伸フィルムの比D(=Re(447)/Re(590)は1.14、比E(=Re(750)/Re(590)は0.95であった。すなわち、当該延伸フィルムは順波長分散性を示した。   Next, the obtained polymer (B-1) pellets were melt press-molded at 240 ° C. and 30 MPa for 5 minutes using a manual heating press machine (manufactured by Imoto Seisakusho, IMC-180C type). An unstretched film having a thickness of 120 μm made of the union (B-1) was produced. The Tg of the film, that is, the Tg of the polymer (B-1) was 101.5 ° C. Next, after cutting out the produced unstretched film to the size of 50 mm x 80 mm, the cut-out film was uniaxially stretched free end using the autograph with a thermostat (Shimadzu Corporation AG-X). Specifically, the distance between chucks when setting the cut film on the autograph is set to 40 mm, the film attached to the chuck is preheated at Tg + 5 ° C. for 3 minutes, and then the draw ratio is 2 at the temperature. The film was stretched so as to be doubled to obtain a stretched film having a thickness of 90 μm. When the orientation angle of the obtained stretched film was evaluated using a phase difference measuring device (manufactured by Oji Scientific Instruments, KOBRA-WR), the orientation angle (φ) of the stretched film was 89.6 °, that is, The intrinsic birefringence of the polymer (B-1) was negative. In addition, the ratio D (= Re (447) / Re (590) of the stretched film was 1.14, and the ratio E (= Re (750) / Re (590) was 0.95. Showed forward wavelength dispersion.

(製造例2)
攪拌装置、温度センサー、冷却管、窒素導入管および滴下ロートを備えた反応容器に、NVCZ13.5重量部、AN5.5重量部、BA13.75重量部、および重合溶媒としてメチルエチルケトン19.2重量部を仕込み、これに窒素を通じつつ、85℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサナノエート(アルケマ吉富製、商品名:ルペロックス575)0.003重量部を添加するとともに、同時に、NVCz11.5重量部、AN5.75重量部、メチルエチルケトン30.3重量部および上記t−アミルパーオキシ−2−エチルヘキサナノエート0.02重量部の混合物の滴下を開始した。当該混合物を4時間かけて滴下しながら、約80〜85℃の還流下で溶液重合を進行させた。この重合法は、滴下重合法と呼ばれ、作製する重合体中の共重合組成の制御に基づいた細かなTgの制御が可能である。
(Production Example 2)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe and a dropping funnel, 13.5 parts by weight of NVCZ, 5.5 parts by weight of AN, 13.75 parts by weight of BA, and 19.2 parts by weight of methyl ethyl ketone as a polymerization solvent The temperature was raised to 85 ° C. while nitrogen was passed through. At the start of reflux accompanying the temperature increase, 0.003 part by weight of t-amylperoxy-2-ethylhexanoate (manufactured by Arkema Yoshitomi, trade name: Luperox 575) was added as a polymerization initiator, and at the same time, NVCz11 Dropping of a mixture of 0.5 parts by weight, 5.75 parts by weight of AN, 30.3 parts by weight of methyl ethyl ketone and 0.02 parts by weight of the above t-amylperoxy-2-ethylhexanoate was started. Solution polymerization was allowed to proceed under reflux at about 80 to 85 ° C. while dropping the mixture over 4 hours. This polymerization method is called a drop polymerization method, and fine Tg control based on control of the copolymer composition in the polymer to be produced is possible.

次に、得られた重合溶液を、製造例1と同様に脱揮およびペレット化して、構成単位として、NVCZ単位、AN単位およびBA単位を有する重合体(B−2)のペレットを得た。重合体(B−2)の重量平均分子量は184000であった。   Next, the obtained polymerization solution was devolatilized and pelletized in the same manner as in Production Example 1 to obtain polymer (B-2) pellets having NVCZ units, AN units, and BA units as structural units. The weight average molecular weight of the polymer (B-2) was 184000.

次に、作製した重合体(B−2)のペレットを、製造例1と同様に溶融プレス成形および延伸してTgおよび固有複屈折の正負を評価したところ、重合体(B−2)のTgは108.8℃、固有複屈折は負であった。また、当該評価に使用した延伸フィルムの比D(=Re(447)/Re(590)は1.14、比E(=Re(750)/Re(590)は0.95であった。すなわち、当該延伸フィルムは順波長分散性を示した。   Next, the produced polymer (B-2) pellets were melt press-molded and stretched in the same manner as in Production Example 1 to evaluate the Tg and the intrinsic birefringence, and the Tg of the polymer (B-2) was evaluated. Was 108.8 ° C. and the intrinsic birefringence was negative. Further, the ratio D (= Re (447) / Re (590) of the stretched film used for the evaluation was 1.14, and the ratio E (= Re (750) / Re (590) was 0.95. The stretched film exhibited forward wavelength dispersibility.

(製造例3)
攪拌装置、温度センサー、冷却管、窒素導入管および滴下ロートを備えた反応容器に、NVCZ11.2重量部、AN4.8重量部、アクリル酸エチル(EA)9.6重量部、および重合溶媒としてメチルエチルケトン36.9重量部を仕込み、これに窒素を通じつつ、82℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサナノエート(アルケマ吉富製、商品名:ルペロックス575)0.001重量部を添加するとともに、同時に、NVCz9.6重量部、AN4.8重量部、メチルエチルケトン21.6重量部および上記t−アミルパーオキシ−2−エチルヘキサナノエート0.03重量部の混合物の滴下を開始した。当該混合物を4時間かけて滴下しながら、約78〜82℃の還流下で溶液重合を進行させた。
(Production Example 3)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe and a dropping funnel, 11.2 parts by weight of NVCZ, 4.8 parts by weight of AN, 9.6 parts by weight of ethyl acrylate (EA), and a polymerization solvent 36.9 parts by weight of methyl ethyl ketone was charged, and the temperature was raised to 82 ° C. while passing nitrogen through the mixture. When refluxing with increasing temperature began, 0.001 part by weight of t-amylperoxy-2-ethylhexanoanoate (manufactured by Arkema Yoshitomi, trade name: Luperox 575) was added as a polymerization initiator, and at the same time, NVCz9 Addition of a mixture of .6 parts by weight, AN 4.8 parts by weight, methyl ethyl ketone 21.6 parts by weight and t-amylperoxy-2-ethylhexanoate 0.03 parts by weight was started. While the mixture was dripped over 4 hours, solution polymerization was allowed to proceed under reflux at about 78 to 82 ° C.

次に、得られた重合溶液を、製造例1と同様に脱揮およびペレット化して、構成単位として、NVCZ単位、AN単位およびEA単位を有する重合体(B−3)のペレットを得た。重合体(B−3)の重量平均分子量は79000であった。   Next, the obtained polymerization solution was devolatilized and pelletized in the same manner as in Production Example 1 to obtain polymer (B-3) pellets having NVCZ units, AN units, and EA units as structural units. The weight average molecular weight of the polymer (B-3) was 79000.

次に、作製した重合体(B−3)のペレットを、製造例1と同様に溶融プレス成形および延伸してTgおよび固有複屈折の正負を評価したところ、重合体(B−3)のTgは128.6℃、固有複屈折は負であった。また、当該評価に使用した延伸フィルムの比D(=Re(447)/Re(590)は1.14であり、比E(=Re(750)/Re(590)は0.95であった。すなわち、当該延伸フィルムは順波長分散性を示した。   Next, the polymer (B-3) pellets were melt press-molded and stretched in the same manner as in Production Example 1 to evaluate the Tg and the intrinsic birefringence, and the Tg of the polymer (B-3) was evaluated. Was 128.6 ° C. and the intrinsic birefringence was negative. Moreover, ratio D (= Re (447) / Re (590) of the stretched film used for the said evaluation was 1.14, and ratio E (= Re (750) / Re (590) was 0.95. That is, the stretched film exhibited forward wavelength dispersion.

(製造例4)
攪拌装置、温度センサー、冷却管、窒素導入管および滴下ロートを備えた反応容器に、NVCZ20.8重量部、AN9.6重量部、EA9.6重量部、および重合溶媒としてメチルエチルケトン47.5重量部を仕込み、これに窒素を通じつつ、84℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサナノエート(アルケマ吉富製、商品名:ルペロックス575)0.02重量部を添加するとともに、同時に、メチルエチルケトン10.2重量部および上記t−アミルパーオキシ−2−エチルヘキサナノエート0.04重量部の混合物の滴下を開始した。当該混合物を4時間かけて滴下しながら、約80〜84℃の還流下で溶液重合を進行させた。
(Production Example 4)
In a reaction vessel equipped with a stirrer, a temperature sensor, a cooling pipe, a nitrogen introduction pipe and a dropping funnel, 20.8 parts by weight of NVCZ, 9.6 parts by weight of AN, 9.6 parts by weight of EA, and 47.5 parts by weight of methyl ethyl ketone as a polymerization solvent The temperature was raised to 84 ° C. while passing nitrogen through it. At the start of reflux with temperature rise, 0.02 part by weight of t-amylperoxy-2-ethylhexanoate (manufactured by Arkema Yoshitomi, trade name: Luperox 575) was added as a polymerization initiator, and at the same time, methyl ethyl ketone. The dropwise addition of a mixture of 10.2 parts by weight and 0.04 parts by weight of the above t-amylperoxy-2-ethylhexanoate was started. Solution polymerization was allowed to proceed under reflux at about 80 to 84 ° C. while dropping the mixture over 4 hours.

次に、得られた重合溶液を、製造例1と同様に脱揮およびペレット化して、構成単位として、NVCZ単位、AN単位およびEA単位を有する重合体(B−4)のペレットを得た。重合体(B−4)の重量平均分子量は56000であった。   Next, the obtained polymerization solution was devolatilized and pelletized in the same manner as in Production Example 1 to obtain polymer (B-4) pellets having NVCZ units, AN units, and EA units as structural units. The weight average molecular weight of the polymer (B-4) was 56000.

次に、作製した重合体(B−4)のペレットを、製造例1と同様に溶融プレス成形および延伸してTgおよび固有複屈折の正負を評価したところ、重合体(B−4)のTgは129.4℃、固有複屈折は負であった。また、当該評価に使用した延伸フィルムの比D(=Re(447)/Re(590)は1.14であり、比E(=Re(750)/Re(590)は0.95であった。すなわち、当該延伸フィルムは順波長分散性を示した。   Next, the pellet of the produced polymer (B-4) was melt press-molded and stretched in the same manner as in Production Example 1 to evaluate the Tg and the positive / negative of the intrinsic birefringence. The Tg of the polymer (B-4) was evaluated. Was 129.4 ° C. and the intrinsic birefringence was negative. Moreover, ratio D (= Re (447) / Re (590) of the stretched film used for the said evaluation was 1.14, and ratio E (= Re (750) / Re (590) was 0.95. That is, the stretched film exhibited forward wavelength dispersion.

(製造例5)
攪拌装置、温度センサー、冷却管および窒素導入管を備えた反応釜に、メタクリル酸メチル(MMA)10.9重量部、2−(ヒドロキシメチル)アクリル酸メチル(MHMA)19.1重量部、メタクリル酸エチル(EMA)24.6重量部、重合溶媒としてトルエン43重量部およびメタノール1.5重量部、ならびに酸化防止剤(アデカスタブ2112、ADEKA製)0.027重量部を仕込み、これに窒素を通じつつ、88℃まで昇温させた。昇温に伴う還流が始まったところで、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサノエート(アルケマ吉富製、商品名:ルペロックス575)0.008重量部を添加した。この添加と同時に、0.8重量部のトルエンに上記t−アミルパーオキシ−2−エチルヘキサノエート0.044重量部を溶解させた溶液の滴下を開始し、当該溶液を8時間かけて滴下した。当該溶液の滴下開始後、3時間が経過したところで、21.1重量部のトルエンの滴下を開始し、当該トルエンは4時間かけて滴下した。この間、約95〜100℃の還流下で溶液重合を進行させ、上記滴下後、さらに1時間の熟成を行った。
(Production Example 5)
In a reaction kettle equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen introduction pipe, 10.9 parts by weight of methyl methacrylate (MMA), 19.1 parts by weight of methyl 2- (hydroxymethyl) acrylate (MHMA), methacryl 24.6 parts by weight of ethyl acid (EMA), 43 parts by weight of toluene as a polymerization solvent and 1.5 parts by weight of methanol, and 0.027 parts by weight of an antioxidant (Adeka Stub 2112, manufactured by ADEKA) were charged, and nitrogen was passed through this. The temperature was raised to 88 ° C. When the reflux accompanying the temperature increase started, 0.008 part by weight of t-amylperoxy-2-ethylhexanoate (manufactured by Arkema Yoshitomi, trade name: Luperox 575) was added as a polymerization initiator. Simultaneously with this addition, the addition of a solution prepared by dissolving 0.044 parts by weight of the above t-amylperoxy-2-ethylhexanoate in 0.8 parts by weight of toluene was started, and the solution was added dropwise over 8 hours. did. When 3 hours passed after the start of dropping of the solution, dropping of 21.1 parts by weight of toluene was started, and the toluene was dropped over 4 hours. During this time, solution polymerization was allowed to proceed under reflux at about 95 to 100 ° C., and after the dropwise addition, aging was further performed for 1 hour.

次に、得られた重合溶液に、環化縮合反応の触媒(環化触媒)として、リン酸ステアリル(堺化学工業製、Phoslex A-18)0.16重量部を加え、約80〜95℃の還流下において2時間、ラクトン環構造を形成するための環化縮合反応を進行させた。   Next, 0.16 parts by weight of stearyl phosphate (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) is added to the obtained polymerization solution as a catalyst for the cyclization condensation reaction (cyclization catalyst), and about 80 to 95 ° C. The cyclization condensation reaction for forming a lactone ring structure was allowed to proceed for 2 hours under reflux.

次に、得られた重合溶液を240℃に加熱した多管式熱交換器を通して環化縮合反応を完結させた後、バレル温度240℃、回転速度100rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個およびフォアベント数4個(上流側から第1、第2、第3、第4ベントと称する)のベントタイプスクリュー二軸押出機(L/D=52.5)に、24重量部/時(樹脂量換算)の処理速度で導入し、脱揮を行った。その際、別途準備しておいた酸化防止剤/環化触媒失活剤の混合溶液を1.1重量部/時の投入速度で第2ベントの後から、イオン交換水を0.4重量部/時の投入速度で第1および第3ベントの後から、それぞれ投入した。酸化防止剤/環化触媒失活剤の混合溶液には、酸化防止剤として0.6重量部のイルガノックス1010(チバスペシャリティケミカルズ製)および0.6重量部のアデカスタブAO−412S(ADEKA製)と、失活剤として4.2重量部のオクチル酸亜鉛(日本化学産業製、ニッカオクチクス亜鉛3.6%)とを、トルエン94.7重量部に溶解させた溶液を用いた。   Next, after completing the cyclization condensation reaction through the multi-tube heat exchanger heated to 240 ° C., the obtained polymerization solution was barrel temperature 240 ° C., rotation speed 100 rpm, degree of vacuum 13.3 to 400 hPa (10 to 300mmHg), vent type screw twin screw extruder (L / D = 52.5) with 1 rear vent and 4 fore vents (referred to as first, second, third and fourth vents from the upstream side) Was introduced at a treatment rate of 24 parts by weight / hour (resin amount conversion), and devolatilization was performed. At that time, 0.4 parts by weight of ion-exchanged water was added after the second vent at a charging rate of 1.1 parts by weight / hour with a separately prepared mixed solution of antioxidant / cyclization catalyst deactivator. After the first and third vents, the charging was performed at a charging speed of / hour. In the mixed solution of antioxidant / cyclization catalyst deactivator, 0.6 part by weight of Irganox 1010 (manufactured by Ciba Specialty Chemicals) and 0.6 part by weight of Adekastab AO-412S (manufactured by ADEKA) were used as antioxidants. In addition, a solution prepared by dissolving 4.2 parts by weight of zinc octylate (manufactured by Nippon Chemical Industry Co., Ltd., 3.6% of Nikka octix zinc) in 94.7 parts by weight of toluene was used as a deactivator.

次に、得られた重合溶液を、製造例1と同様に脱揮およびペレット化して、ラクトン環構造を主鎖に有する(メタ)アクリル重合体(A−1)のペレットを得た。重合体(A−1)の重量平均分子量は100000であった。   Next, the obtained polymerization solution was devolatilized and pelletized in the same manner as in Production Example 1 to obtain pellets of (meth) acrylic polymer (A-1) having a lactone ring structure in the main chain. The weight average molecular weight of the polymer (A-1) was 100,000.

次に、作製した重合体(A−1)のペレットを、製造例1と同様に溶融プレス成形および延伸してTgおよび固有複屈折の正負を評価したところ、重合体(A−1)のTgは126.2℃、配向角(φ)は−0.8°、すなわち固有複屈折は正であった。また、当該評価に使用した延伸フィルムの比D(=Re(447)/Re(590)は1.03であり、比E(=Re(750)/Re(590)は0.99であった。すなわち、当該延伸フィルムは順波長分散性を示し、その可視光域における波長分散性の変化は、製造例1〜4において形成した延伸フィルムの可視光域における波長分散性の変化よりも小さかった。   Next, the pellet of the produced polymer (A-1) was melt press-molded and stretched in the same manner as in Production Example 1 to evaluate the Tg and the intrinsic birefringence, and the Tg of the polymer (A-1) was evaluated. Was 126.2 ° C. and the orientation angle (φ) was −0.8 °, that is, the intrinsic birefringence was positive. Moreover, ratio D (= Re (447) / Re (590) of the stretched film used for the said evaluation was 1.03, and ratio E (= Re (750) / Re (590) was 0.99. That is, the stretched film exhibited forward wavelength dispersion, and the change in wavelength dispersion in the visible light region was smaller than the change in wavelength dispersion in the visible light region of the stretched films formed in Production Examples 1 to 4. .

製造例1〜4で作製した重合体の組成およびTgを以下の表1に示す。   The compositions and Tg of the polymers prepared in Production Examples 1 to 4 are shown in Table 1 below.

Figure 2012173530
Figure 2012173530

(実施例1)
製造例2で作製した重合体(B−2)のペレット9重量部と、製造例5で作製した重合体(A−1)のペレット91重量部とをドライブレンドして得た混合物を、ラボプラストミル(東洋精機製、R−60H)を用いて250℃で溶融混練(回転速度100rpm、5分間)して、樹脂組成物(C−1)を形成した。形成した樹脂組成物(C−1)における重合体(A−1)と重合体(B−2)の混合比(重量比)は、重合体(A−1):重合体(B−2)=91:9であった。
Example 1
A mixture obtained by dry blending 9 parts by weight of the polymer (B-2) pellets produced in Production Example 2 and 91 parts by weight of the polymer (A-1) pellets produced in Production Example 5 was tested in a laboratory. The resin composition (C-1) was formed by melt-kneading (rotating speed 100 rpm, 5 minutes) at 250 ° C. using a plast mill (manufactured by Toyo Seiki, R-60H). The mixing ratio (weight ratio) of the polymer (A-1) and the polymer (B-2) in the formed resin composition (C-1) is polymer (A-1): polymer (B-2). = 91: 9.

次に、形成した樹脂組成物(C−1)を、手動式加熱プレス機(井元製作所製、IMC−180C型)を用いて、240℃、30MPaで5分間溶融プレス成形して、厚さ140μmの未延伸フィルム(原反フィルム)を作製した。作製した原反フィルムのTgは127.5℃であり、すなわち、樹脂組成物(C−1)のTgは127.5℃であった。次に、作製した未延伸フィルムを50mm×80mmのサイズに切り出した後、切り出したフィルムを、恒温槽付きオートグラフ(島津製作所製、AG−X)を用いて延伸し、厚さ100μmの位相差フィルムを形成した。具体的には、切り出したフィルムをオートグラフにセットする際のチャック間距離を40mmに設定し、チャックに取り付けた当該フィルムをそのTg+5℃で3分間予熱した後、当該温度にて延伸倍率が2倍となるように自由端一軸延伸した。   Next, the formed resin composition (C-1) was melt press-molded at 240 ° C. and 30 MPa for 5 minutes using a manual heating press (manufactured by Imoto Seisakusho, IMC-180C type), and the thickness was 140 μm. An unstretched film (raw film) was prepared. Tg of the produced raw film was 127.5 ° C., that is, Tg of the resin composition (C-1) was 127.5 ° C. Next, after the produced unstretched film was cut into a size of 50 mm × 80 mm, the cut film was stretched using an autograph with a thermostatic bath (manufactured by Shimadzu Corporation, AG-X), and a retardation of 100 μm in thickness. A film was formed. Specifically, the distance between chucks when setting the cut film on the autograph is set to 40 mm, the film attached to the chuck is preheated at Tg + 5 ° C. for 3 minutes, and then the draw ratio is 2 at the temperature. The free end was uniaxially stretched so as to be doubled.

このようにして得た位相差フィルムの屈折率異方性を評価したところ、Re(447)は108.0nm、Re(590)は117.4nm、Re(750)は120.9nmであり、比D5は0.92、比E5は1.03であった。なお、比E5は、組成物(C)からなる無配向フィルムを、当該組成物(C)のTgより5℃高い温度で、Re(590)が20nm以上となるように延伸して得た位相差フィルムが示す比Eの値である。 When the refractive index anisotropy of the retardation film thus obtained was evaluated, Re (447) was 108.0 nm, Re (590) was 117.4 nm, and Re (750) was 120.9 nm. D 5 0.92, the ratio E 5 is was 1.03. The ratio E 5 is a non-oriented film comprising the composition (C), at a temperature 5 ° C. higher than the Tg of the composition (C), Re (590) is obtained by stretching so that the above 20nm This is the value of the ratio E indicated by the retardation film.

次に、予熱および延伸温度をTg+15℃とした以外は上記と同様にして、厚さ100nmの位相差フィルムを形成した。当該位相差フィルムの屈折率異方性を評価したところ、Re(447)は40.1nm、Re(590)は45.1nm、Re(750)は46.9nmであり、比D15は0.89、比E15は1.04であった。すなわち、ΔD(=|D15−D5|)は0.03、ΔE(=|E15−E5|)は0.01であった。なお、比E15は、組成物(C)からなる無配向フィルムを、当該組成物(C)のTgより15℃高い温度で、延伸温度以外は比E5を求めた延伸と同一の延伸条件で延伸して得た位相差フィルムが示す比Eの値である。 Next, a retardation film having a thickness of 100 nm was formed in the same manner as described above except that the preheating and the stretching temperature were set to Tg + 15 ° C. When the refractive index anisotropy of the retardation film was evaluated, Re (447) was 40.1 nm, Re (590) was 45.1 nm, Re (750) was 46.9 nm, and the ratio D 15 was 0.00. 89, the ratio E 15 was 1.04. That is, ΔD (= | D 15 −D 5 |) was 0.03, and ΔE (= | E 15 −E 5 |) was 0.01. The ratio E 15 is a non-oriented film comprising the composition (C), at a temperature from 15 ℃ high Tg of the composition (C), except the stretching temperature is the same stretching conditions stretching and obtained the E 5 ratio It is the value of the ratio E which the retardation film obtained by extending | stretching by.

(実施例2)
製造例2で作製した重合体(B−2)のペレットの代わりに、製造例3で作製した重合体(B−3)のペレットを用いた以外は実施例1と同様にして、重合体(A−1)と重合体(B−3)とが混合比(重量比)91:1で混合した樹脂組成物(C−2)を作製した。樹脂組成物(C−2)のTgは、129.0℃であった。
(Example 2)
Instead of the polymer (B-2) pellet produced in Production Example 2, the polymer (B-3) pellet produced in Production Example 3 was used in the same manner as in Example 1, except that the polymer ( A resin composition (C-2) in which A-1) and the polymer (B-3) were mixed at a mixing ratio (weight ratio) of 91: 1 was produced. Tg of the resin composition (C-2) was 129.0 ° C.

次に、樹脂組成物(C−1)の代わりに樹脂組成物(C−2)を用いた以外は実施例1と同様にして、当該組成物(C−2)のTg+5℃で延伸した位相差フィルムと、Tg+15℃で延伸した位相差フィルムとを形成した。   Next, it extended | stretched at Tg + 5 degreeC of the said composition (C-2) like Example 1 except having used the resin composition (C-2) instead of the resin composition (C-1). A retardation film and a retardation film stretched at Tg + 15 ° C. were formed.

このようにして得た位相差フィルムの屈折率異方性を評価したところ、樹脂組成物(C−2)のTg+5℃で延伸して形成した位相差フィルムについて、Re(447)は113.6nm、Re(590)は126.2nm、Re(750)は131.2nmであり、比D5は0.90、比E5は1.04であった。一方、樹脂組成物(C−2)のTg+15℃で延伸して形成した位相差フィルムについて、Re(447)は41.7nm、Re(590)は46.3nm、Re(750)は48.2nmであり、比D15は0.90、比E15は1.04であった。すなわち、ΔD(=|D15−D5|)は0.00、ΔE(=|E15−E5|)は0.00であった。 When the refractive index anisotropy of the retardation film thus obtained was evaluated, Re (447) was 113.6 nm for the retardation film formed by stretching the resin composition (C-2) at Tg + 5 ° C. , Re (590) was 126.2 nm, Re (750) was 131.2 nm, the ratio D 5 was 0.90, and the ratio E 5 was 1.04. On the other hand, regarding the retardation film formed by stretching the resin composition (C-2) at Tg + 15 ° C., Re (447) is 41.7 nm, Re (590) is 46.3 nm, and Re (750) is 48.2 nm. The ratio D 15 was 0.90 and the ratio E 15 was 1.04. That is, ΔD (= | D 15 −D 5 |) was 0.00, and ΔE (= | E 15 −E 5 |) was 0.00.

(実施例3)
製造例2で作製した重合体(B−2)のペレットの代わりに、製造例4で作製した重合体(B−4)のペレットを用いた以外は実施例1と同様にして、重合体(A−1)と重合体(B−4)とが混合比(重量比)91:1で混合した樹脂組成物(C−3)を作製した。樹脂組成物(C−3)のTgは、129.0℃であった。
(Example 3)
In the same manner as in Example 1 except that the polymer (B-4) pellet produced in Production Example 4 was used instead of the polymer (B-2) pellet produced in Production Example 2, a polymer ( A resin composition (C-3) in which A-1) and the polymer (B-4) were mixed at a mixing ratio (weight ratio) of 91: 1 was produced. Tg of the resin composition (C-3) was 129.0 ° C.

次に、樹脂組成物(C−1)の代わりに樹脂組成物(C−3)を用いた以外は実施例1と同様にして、当該組成物(C−3)のTg+5℃で延伸した位相差フィルムと、Tg+15℃で延伸した位相差フィルムとを形成した。   Next, in the same manner as in Example 1 except that the resin composition (C-3) was used instead of the resin composition (C-1), the composition (C-3) was stretched at Tg + 5 ° C. A retardation film and a retardation film stretched at Tg + 15 ° C. were formed.

このようにして得た位相差フィルムの屈折率異方性を評価したところ、樹脂組成物(C−3)のTg+5℃で延伸して形成した位相差フィルムについて、Re(447)は112.3nm、Re(590)は122.1nm、Re(750)は125.8nmであり、比D5は0.92、比E5は1.03であった。一方、樹脂組成物(C−3)のTg+15℃で延伸して形成した位相差フィルムについて、Re(447)は42.3nm、Re(590)は46.0nm、Re(750)は47.4nmであり、比D15は0.92、比E15は1.03であった。すなわち、ΔD(=|D15−D5|)は0.00、ΔE(=|E15−E5|)は0.00であった。 When the refractive index anisotropy of the retardation film thus obtained was evaluated, Re (447) of the retardation film formed by stretching the resin composition (C-3) at Tg + 5 ° C. was 112.3 nm. , Re (590) was 122.1 nm, Re (750) was 125.8 nm, the ratio D 5 was 0.92, and the ratio E 5 was 1.03. On the other hand, regarding the retardation film formed by stretching the resin composition (C-3) at Tg + 15 ° C., Re (447) is 42.3 nm, Re (590) is 46.0 nm, and Re (750) is 47.4 nm. The ratio D 15 was 0.92 and the ratio E 15 was 1.03. That is, ΔD (= | D 15 −D 5 |) was 0.00, and ΔE (= | E 15 −E 5 |) was 0.00.

(比較例1)
製造例2で作製した重合体(B−2)のペレットの代わりに、製造例1で作製した重合体(B−1)のペレットを用いた以外は実施例1と同様にして、重合体(A−1)と重合体(B−1)とが混合比(重量比)91:1で混合した樹脂組成物(C−4)を作製した。樹脂組成物(C−4)のTgは、123.6℃であった。
(Comparative Example 1)
Instead of the polymer (B-2) pellet produced in Production Example 2, the polymer (B-1) pellet produced in Production Example 1 was used in the same manner as in Example 1, except that the polymer ( A resin composition (C-4) in which A-1) and the polymer (B-1) were mixed at a mixing ratio (weight ratio) of 91: 1 was produced. Tg of the resin composition (C-4) was 123.6 ° C.

次に、樹脂組成物(C−1)の代わりに樹脂組成物(C−4)を用いた以外は実施例1と同様にして、当該組成物(C−4)のTg+5℃で延伸した位相差フィルムと、Tg+15℃で延伸した位相差フィルムとを形成した。   Next, it extended | stretched at Tg + 5 degreeC of the said composition (C-4) like Example 1 except having used the resin composition (C-4) instead of the resin composition (C-1). A retardation film and a retardation film stretched at Tg + 15 ° C. were formed.

このようにして得た位相差フィルムの屈折率異方性を評価したところ、樹脂組成物(C−4)のTg+5℃で延伸して形成した位相差フィルムについて、Re(447)は104.1nm、Re(590)は118.3nm、Re(750)は124.2nmであり、比D5は0.88、比E5は1.05であった。一方、樹脂組成物(C−4)のTg+15℃で延伸して形成した位相差フィルムについて、Re(447)は19.8nm、Re(590)は25.4nm、Re(750)は27.7nmであり、比D15は0.78、比E15は1.09であった。すなわち、ΔD(=|D15−D5|)は0.10、ΔE(=|E15−E5|)は0.04であった。 When the refractive index anisotropy of the retardation film thus obtained was evaluated, Re (447) was 104.1 nm for the retardation film formed by stretching the resin composition (C-4) at Tg + 5 ° C. , Re (590) was 118.3 nm, Re (750) was 124.2 nm, the ratio D 5 was 0.88, and the ratio E 5 was 1.05. On the other hand, regarding the retardation film formed by stretching the resin composition (C-4) at Tg + 15 ° C., Re (447) is 19.8 nm, Re (590) is 25.4 nm, and Re (750) is 27.7 nm. The ratio D 15 was 0.78, and the ratio E 15 was 1.09. That is, ΔD (= | D 15 −D 5 |) was 0.10, and ΔE (= | E 15 −E 5 |) was 0.04.

実施例1〜3および比較例1の結果を、以下の表2にまとめる。   The results of Examples 1 to 3 and Comparative Example 1 are summarized in Table 2 below.

Figure 2012173530
Figure 2012173530

表2に示すように、全ての実施例および比較例において、Re(447)/Re(590)が1未満、すなわち、逆波長分散性を示す位相差フィルムが形成された。樹脂(A)である重合体(A−1)のTgとの差が20℃未満のTgを有する重合体(B)を用いた実施例1〜3では、比較例1に比べてΔDが小さくなった。すなわち、作製した位相差フィルムが示す波長分散性について、延伸温度の変化による変動が抑制された。特に、重合体(A−1)とのTgの差が5℃以下のTgを有する重合体(B)を用いた実施例2,3では、ΔDがゼロ、すなわち、延伸温度の変化による波長分散性の変動が見られなかった。比E(=Re(750)/Re(590))およびΔEも同様の傾向を示した。   As shown in Table 2, in all Examples and Comparative Examples, Re (447) / Re (590) was less than 1, that is, a retardation film showing reverse wavelength dispersion was formed. In Examples 1 to 3 using the polymer (B) having a Tg of less than 20 ° C. from the Tg of the polymer (A-1) which is the resin (A), ΔD is smaller than that of Comparative Example 1. became. That is, fluctuations due to changes in the stretching temperature were suppressed for the wavelength dispersibility exhibited by the produced retardation film. In particular, in Examples 2 and 3 using the polymer (B) having a Tg of 5 ° C. or less from the polymer (A-1), ΔD is zero, that is, wavelength dispersion due to a change in the stretching temperature. There was no change in sex. The ratio E (= Re (750) / Re (590)) and ΔE showed the same tendency.

(実施例4)
実施例1で作製した樹脂組成物(C−1)を、手動式加熱プレス機(井元製作所製、IMC−180C型)を用いて、240℃、30MPaで5分間溶融プレス成形して、厚さ140μmの未延伸フィルム(原反フィルム)を作製した。次に、作製した未延伸フィルムを70mm×97mmのサイズに切り出した後、切り出したフィルムを、コーナーストレッチ式二軸延伸試験装置(東洋精機製、X6−S)を用いて延伸し、厚さ80μmの位相差フィルムを形成した。具体的には、切り出したフィルムを延伸試験装置にセットする際のチャック間距離を80mmに設定し、チャックに取り付けた当該フィルムをそのTg+10℃で3分間予熱した後、当該温度にて延伸倍率が2.5倍となるように自由端一軸延伸した。延伸の方向は、切り出した未延伸フィルムのMD方向(流れ方向)である長辺の方向とした。このようにして得た位相差フィルムの屈折率異方性を評価したところ、NZ係数は1.0、Re(447)は84.5nm、Re(590)は91.0nm、Re(750)は93.7nmであり、比D1.0は0.93、比E1.0は1.03であった。なお、比E1.0は、組成物(C)からなる無配向フィルムを、NZ係数が1.0となるように延伸して得た位相差フィルムが示す上記比Eの値である。
Example 4
The resin composition (C-1) produced in Example 1 was melt press-molded at 240 ° C. and 30 MPa for 5 minutes using a manual heating press (manufactured by Imoto Seisakusho, IMC-180C type) to obtain a thickness. A 140 μm unstretched film (raw film) was produced. Next, after the produced unstretched film was cut into a size of 70 mm × 97 mm, the cut film was stretched using a corner stretch type biaxial stretching test apparatus (X6-S, manufactured by Toyo Seiki Co., Ltd.), and the thickness was 80 μm. A retardation film was formed. Specifically, the distance between chucks when the cut film is set in a stretching test apparatus is set to 80 mm, the film attached to the chuck is preheated at the Tg + 10 ° C. for 3 minutes, and then the stretching ratio is set at the temperature. The free end was uniaxially stretched to be 2.5 times. The direction of stretching was the long side direction which is the MD direction (flow direction) of the cut unstretched film. When the refractive index anisotropy of the retardation film thus obtained was evaluated, the NZ coefficient was 1.0, Re (447) was 84.5 nm, Re (590) was 91.0 nm, and Re (750) was It was 93.7 nm, the ratio D 1.0 was 0.93, and the ratio E 1.0 was 1.03. In addition, ratio E1.0 is the value of the said ratio E which the retardation film obtained by extending | stretching the non-oriented film which consists of a composition (C) so that NZ coefficient may be set to 1.0.

次に、これとは別に、上記と同様に作製した厚さ200μmの未延伸フィルムを97mm×97mmのサイズに切り出した後、切り出したフィルムを、コーナーストレッチ式二軸延伸試験装置(東洋精機製、X6−S)を用いて固定端逐次二軸延伸し、厚さ74μmの位相差フィルムを形成した。具体的には、以下のとおりである。まず、切り出したフィルムを延伸試験装置にセットする際のチャック間距離を、MD方向およびTD方向ともに80mmに設定し、チャックに取り付けた当該フィルムをそのTg+10℃で3分間予熱した。次に、TD方向の長さを固定してMD方向に延伸倍率1.2倍で延伸した後、MD方向の長さを固定してTD方向に延伸倍率2.5倍で延伸した。このようにして得た位相差フィルムの屈折率異方性を評価したところ、NZ係数は1.6、Re(447)は50.2nm、Re(590)は54.0nm、Re(750)は55.6nmであり、比D1.4-3.0は0.93、比E1.4-3.0は1.03であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.00、ΔE(=|E1.4-3.0−E1.0|)は0.00であった。なお、比E1.4-3.0は、組成物(C)からなる無配向フィルムを、NZ係数が1.4以上3.0以下となるように、NZ係数が1.0となるように延伸したときと同一の延伸温度で延伸して得た位相差フィルムが示す上記比Eの値である。 Next, apart from this, an unstretched film having a thickness of 200 μm produced in the same manner as described above was cut into a size of 97 mm × 97 mm, and then the cut film was subjected to a corner stretch type biaxial stretching test apparatus (manufactured by Toyo Seiki, X6-S) was used to sequentially biaxially stretch the fixed end to form a retardation film having a thickness of 74 μm. Specifically, it is as follows. First, the distance between chucks when the cut film was set in the stretching test apparatus was set to 80 mm in both the MD direction and the TD direction, and the film attached to the chuck was preheated at Tg + 10 ° C. for 3 minutes. Next, the length in the TD direction was fixed and stretched in the MD direction at a stretching ratio of 1.2 times, and then the length in the MD direction was fixed and stretched in the TD direction at a stretching ratio of 2.5 times. When the refractive index anisotropy of the retardation film thus obtained was evaluated, the NZ coefficient was 1.6, Re (447) was 50.2 nm, Re (590) was 54.0 nm, and Re (750) was The ratio D 1.4-3.0 was 0.93, and the ratio E 1.4-3.0 was 1.03. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.00, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.00. The ratio E 1.4-3.0 is when the non-oriented film made of the composition (C) is stretched so that the NZ coefficient is 1.0 so that the NZ coefficient is 1.4 or more and 3.0 or less. It is the value of the said ratio E which the retardation film obtained by extending | stretching at the same extending | stretching temperature shows.

次に、これらとは別に、上記作製した厚さ200μmの未延伸フィルムを97mm×97mmのサイズに切り出した後、切り出したフィルムを、コーナーストレッチ式二軸延伸試験装置(東洋精機製、X6−S)を用いて固定端逐次二軸延伸し、厚さ63μmの位相差フィルムを形成した。具体的には、以下のとおりである。まず、切り出したフィルムを延伸試験装置にセットする際のチャック間距離を、MD方向およびTD方向ともに80mmに設定し、チャックに取り付けた当該フィルムをそのTg+10℃で3分間予熱した。次に、TD方向の長さを固定してMD方向に延伸倍率1.6倍で延伸した後、MD方向の長さを固定してTD方向に延伸倍率2.0倍で延伸した。このようにして得た位相差フィルムの屈折率異方性を評価したところ、NZ係数は2.3、Re(447)は27.3nm、Re(590)は29.0nm、Re(750)は29.3nmであり、比D1.4-3.0は0.94、比E1.4-3.0は1.01であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.01、ΔE(=|E1.4-3.0−E1.0|)は0.02であった。 Next, separately from these, the 200 μm-thick unstretched film produced above was cut into a size of 97 mm × 97 mm, and the cut film was then subjected to a corner stretch type biaxial stretching test apparatus (X6-S, manufactured by Toyo Seiki Co., Ltd.). ) To form a retardation film having a thickness of 63 μm. Specifically, it is as follows. First, the distance between chucks when the cut film was set in the stretching test apparatus was set to 80 mm in both the MD direction and the TD direction, and the film attached to the chuck was preheated at Tg + 10 ° C. for 3 minutes. Next, after the length in the TD direction was fixed and the film was stretched in the MD direction at a stretching ratio of 1.6 times, the length in the MD direction was fixed and the film was stretched in the TD direction at a stretching ratio of 2.0 times. When the refractive index anisotropy of the retardation film thus obtained was evaluated, the NZ coefficient was 2.3, Re (447) was 27.3 nm, Re (590) was 29.0 nm, and Re (750) was It was 29.3 nm, the ratio D 1.4-3.0 was 0.94, and the ratio E 1.4-3.0 was 1.01. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.01, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.02.

(実施例5)
実施例1で作製した樹脂組成物(C−1)の代わりに、実施例2で作製した樹脂組成物(C−2)を用いた以外は、実施例4と同様にして、3種類の位相差フィルムを作製した。このようにして得た位相差フィルムの屈折率異方性を評価したところ、延伸倍率2.5倍の自由端一軸延伸により得た位相差フィルムについて、NZ係数は1.0、Re(447)は79.4nm、Re(590)は86.0nm、Re(750)は88.6nmであり、比D1.0は0.92、比E1.0は1.03であった。延伸倍率1.2倍(MD方向)×2.5倍(TD方向)の固定端逐次二軸延伸により得た位相差フィルムについて、NZ係数は1.5、Re(447)は53.9nm、Re(590)は58.0nm、Re(750)は59.7nmであり、比D1.4-3.0は0.93、比E1.4-3.0は1.03であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.01、ΔE(=|E1.4-3.0−E1.0|)は0.00であった。延伸倍率1.6倍(MD方向)×2.0倍(TD方向)の固定端逐次二軸延伸により得た位相差フィルムについて、NZ係数は2.5、Re(447)は24.2nm、Re(590)は26.0nm、Re(750)は26.5nmであり、比D1.4-3.0は0.93、比E1.4-3.0は1.02であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.01、ΔE(=|E1.4-3.0−E1.0|)は0.01であった。
(Example 5)
In the same manner as in Example 4, except that the resin composition (C-2) prepared in Example 2 was used instead of the resin composition (C-1) prepared in Example 1, three types of positions were used. A phase difference film was prepared. When the refractive index anisotropy of the retardation film thus obtained was evaluated, the NZ coefficient was 1.0 and Re (447) for the retardation film obtained by free-end uniaxial stretching at a stretching ratio of 2.5. is 79.4nm, Re (590) is 86.0nm, Re (750) is 88.6Nm, the ratio D 1.0 0.92, the ratio E 1.0 was 1.03. About the retardation film obtained by fixed-end sequential biaxial stretching at a stretching ratio of 1.2 times (MD direction) × 2.5 times (TD direction), the NZ coefficient is 1.5, Re (447) is 53.9 nm, Re (590) was 58.0 nm, Re (750) was 59.7 nm, the ratio D 1.4-3.0 was 0.93, and the ratio E 1.4-3.0 was 1.03. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.01, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.00. About retardation film obtained by fixed-end sequential biaxial stretching at a stretching ratio of 1.6 times (MD direction) × 2.0 times (TD direction), NZ coefficient is 2.5, Re (447) is 24.2 nm, Re (590) was 26.0 nm, Re (750) was 26.5 nm, the ratio D 1.4-3.0 was 0.93, and the ratio E 1.4-3.0 was 1.02. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.01, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.01.

(実施例6)
実施例1で作製した樹脂組成物(C−1)の代わりに、実施例3で作製した樹脂組成物(C−3)を用いた以外は、実施例4と同様にして、3種類の位相差フィルムを作製した。このようにして得た位相差フィルムの屈折率異方性を評価したところ、延伸倍率2.5倍の自由端一軸延伸により得た位相差フィルムについて、NZ係数は1.0、Re(447)は69.2nm、Re(590)は76.0nm、Re(750)は78.3nmであり、比D1.0は0.91、比E1.0は1.03であった。延伸倍率1.2倍(MD方向)×2.5倍(TD方向)の固定端逐次二軸延伸により得た位相差フィルムについて、NZ係数は1.4、Re(447)は53.7nm、Re(590)は59.0nm、Re(750)は60.8nmであり、比D1.4-3.0は0.91、比E1.4-3.0は1.03であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.00、ΔE(=|E1.4-3.0−E1.0|)は0.00であった。延伸倍率1.6倍(MD方向)×2.0倍(TD方向)の固定端逐次二軸延伸により得た位相差フィルムについて、NZ係数は2.4、Re(447)は23.3nm、Re(590)は25.0nm、Re(750)は25.8nmであり、比D1.4-3.0は0.93、比E1.4-3.0は1.03であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.02、ΔE(=|E1.4-3.0−E1.0|)は0.00であった。
(Example 6)
In the same manner as in Example 4, except that the resin composition (C-3) prepared in Example 3 was used instead of the resin composition (C-1) prepared in Example 1, three types of positions were used. A phase difference film was prepared. When the refractive index anisotropy of the retardation film thus obtained was evaluated, the NZ coefficient was 1.0 and Re (447) for the retardation film obtained by free-end uniaxial stretching at a stretching ratio of 2.5. Was 69.2 nm, Re (590) was 76.0 nm, Re (750) was 78.3 nm, the ratio D 1.0 was 0.91, and the ratio E 1.0 was 1.03. About the retardation film obtained by fixed-end sequential biaxial stretching at a stretching ratio of 1.2 times (MD direction) × 2.5 times (TD direction), the NZ coefficient is 1.4, Re (447) is 53.7 nm, Re (590) was 59.0 nm, Re (750) was 60.8 nm, the ratio D 1.4-3.0 was 0.91, and the ratio E 1.4-3.0 was 1.03. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.00, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.00. About the retardation film obtained by fixed-end sequential biaxial stretching at a stretching ratio of 1.6 times (MD direction) × 2.0 times (TD direction), the NZ coefficient is 2.4, Re (447) is 23.3 nm, Re (590) was 25.0 nm, Re (750) was 25.8 nm, the ratio D 1.4-3.0 was 0.93, and the ratio E 1.4-3.0 was 1.03. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.02, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.00.

(比較例2)
実施例1で作製した樹脂組成物(C−1)の代わりに、比較例1で作製した樹脂組成物(C−4)を用いた以外は、実施例4と同様にして、3種類の位相差フィルムを作製した。このようにして得た位相差フィルムの屈折率異方性を評価したところ、延伸倍率2.5倍の自由端一軸延伸により得た位相差フィルムについて、NZ係数は1.0、Re(447)は96.9nm、Re(590)は108.0nm、Re(750)は114.5nmであり、比D1.0は0.90、比E1.0は1.06であった。延伸倍率1.2倍(MD方向)×2.5倍(TD方向)の固定端逐次二軸延伸により得た位相差フィルムについて、NZ係数は1.4、Re(447)は93.1nm、Re(590)は98.0nm、Re(750)は100.9nmであり、比D1.4-3.0は0.95、比E1.4-3.0は1.03であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.05、ΔE(=|E1.4-3.0−E1.0|)は0.03であった。延伸倍率1.6倍(MD方向)×2.0倍(TD方向)の固定端逐次二軸延伸により得た位相差フィルムについて、NZ係数は2.4、Re(447)は48.0nm、Re(590)は49.0nm、Re(750)は49.5nmであり、比D1.4-3.0は0.98、比E1.4-3.0は1.01であった。すなわち、ΔD(=|D1.4-3.0−D1.0|)は0.08、ΔE(=|E1.4-3.0−E1.0|)は0.05であった。
(Comparative Example 2)
In the same manner as in Example 4, except that the resin composition (C-4) prepared in Comparative Example 1 was used instead of the resin composition (C-1) prepared in Example 1, three types of positions were used. A phase difference film was prepared. When the refractive index anisotropy of the retardation film thus obtained was evaluated, the NZ coefficient was 1.0 and Re (447) for the retardation film obtained by free-end uniaxial stretching at a stretching ratio of 2.5. Was 96.9 nm, Re (590) was 108.0 nm, Re (750) was 114.5 nm, the ratio D 1.0 was 0.90, and the ratio E 1.0 was 1.06. About the retardation film obtained by fixed-end sequential biaxial stretching at a stretching ratio of 1.2 times (MD direction) × 2.5 times (TD direction), the NZ coefficient is 1.4, Re (447) is 93.1 nm, Re (590) was 98.0 nm, Re (750) was 100.9 nm, the ratio D 1.4-3.0 was 0.95, and the ratio E 1.4-3.0 was 1.03. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.05, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.03. About the retardation film obtained by fixed-end sequential biaxial stretching at a stretching ratio of 1.6 times (MD direction) × 2.0 times (TD direction), the NZ coefficient is 2.4, Re (447) is 48.0 nm, Re (590) was 49.0 nm, Re (750) was 49.5 nm, the ratio D 1.4-3.0 was 0.98, and the ratio E 1.4-3.0 was 1.01. That is, ΔD (= | D 1.4-3.0 −D 1.0 |) was 0.08, and ΔE (= | E 1.4-3.0 −E 1.0 |) was 0.05.

実施例4〜6および比較例2における比Dの結果を以下の表3に、実施例4〜6および比較例2における比Eの結果を以下の表4にまとめる。   The results of ratio D in Examples 4 to 6 and Comparative Example 2 are summarized in Table 3 below, and the results of ratio E in Examples 4 to 6 and Comparative Example 2 are summarized in Table 4 below.

Figure 2012173530
Figure 2012173530

Figure 2012173530
Figure 2012173530

表3に示すように、全ての実施例および比較例において、Re(447)/Re(590)が1未満、すなわち、逆波長分散性を示す位相差フィルムが形成された。樹脂(A)である重合体(A−1)のTgとの差が20℃未満のTgを有する重合体(B)を用いた実施例4〜6では、比較例2に比べてΔDが小さくなった。すなわち、作製した位相差フィルムが示す波長分散性について、延伸倍率の変化による変動が抑制された。また、表4に示すように、比E(=Re(750)/Re(590))およびΔEも同様の傾向を示した。   As shown in Table 3, in all Examples and Comparative Examples, Re (447) / Re (590) was less than 1, that is, a retardation film showing reverse wavelength dispersion was formed. In Examples 4 to 6 using the polymer (B) having a Tg of less than 20 ° C., the difference from the Tg of the polymer (A-1) which is the resin (A) is smaller than that of Comparative Example 2. became. That is, the fluctuation | variation by the change of a draw ratio was suppressed about the wavelength dispersibility which the produced retardation film showed. Further, as shown in Table 4, the ratio E (= Re (750) / Re (590)) and ΔE also showed the same tendency.

本発明の位相差フィルムは、LCD、OELDなどの画像表示装置への使用に好適である。本発明の製造方法は、このような位相差フィルムの製造、特に、大量生産に好適である。   The retardation film of the present invention is suitable for use in image display devices such as LCD and OELD. The production method of the present invention is suitable for the production of such a retardation film, particularly for mass production.

Claims (11)

正の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性を示す樹脂(A)と、
波長分散性制御材として、負の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性を示し、可視光域における当該波長分散性の変化が前記樹脂(A)よりも大きく、前記樹脂(A)のガラス転移温度(Tg)と自らのTgとの差が20℃未満である重合体(B)と、を含む樹脂組成物(C)からなり、
前記樹脂組成物(C)における前記樹脂(A)と前記重合体(B)との混合比が、樹脂(A):重合体(B)=95〜70重量部:5〜30重量部であり、
前記樹脂(A)に含まれる1種または2種以上の重合体および前記重合体(B)から選ばれる少なくとも1つの重合体が、構成単位として(メタ)アクリル酸エステル単位を有し、
前記樹脂組成物(C)において、全ての重合体構成単位に占める(メタ)アクリル酸エステル単位の割合が60重量%以上であり、
可視光域において波長が短くなるほど面内位相差が小さくなる波長分散性を示す位相差フィルム。
Resin (A) having positive intrinsic birefringence and exhibiting wavelength dispersion in which the in-plane retardation increases as the wavelength becomes shorter in the visible light region;
As a wavelength dispersion control material, it has a negative intrinsic birefringence, shows a wavelength dispersion in which the in-plane retardation increases as the wavelength becomes shorter in the visible light region, and the change in the wavelength dispersion property in the visible light region is the resin A resin composition (C) that is larger than (A) and comprises a polymer (B) having a difference between the glass transition temperature (Tg) of the resin (A) and its own Tg of less than 20 ° C .;
The mixing ratio of the resin (A) and the polymer (B) in the resin composition (C) is resin (A): polymer (B) = 95 to 70 parts by weight: 5 to 30 parts by weight. ,
At least one polymer selected from one or two or more polymers and the polymer (B) contained in the resin (A) has a (meth) acrylic acid ester unit as a structural unit,
In the resin composition (C), the proportion of (meth) acrylic acid ester units in all polymer constituent units is 60% by weight or more,
A retardation film exhibiting wavelength dispersion in which in-plane retardation is reduced as the wavelength is shortened in the visible light region.
前記重合体(B)が、構成単位として、(メタ)アクリル酸エステル単位と、複素芳香族基を有するα,β−不飽和単量体単位とを有する共重合体であり、
前記重合体(B)の全構成単位に占める前記α,β−不飽和単量体単位の割合が、20重量%を超え60重量%以下である請求項1に記載の位相差フィルム。
The polymer (B) is a copolymer having (meth) acrylic acid ester units and α, β-unsaturated monomer units having a heteroaromatic group as structural units,
2. The retardation film according to claim 1, wherein the proportion of the α, β-unsaturated monomer units in all the structural units of the polymer (B) is more than 20 wt% and 60 wt% or less.
前記α,β−不飽和単量体単位が、N−ビニルカルバゾール単位である請求項2に記載の位相差フィルム。   The retardation film according to claim 2, wherein the α, β-unsaturated monomer unit is an N-vinylcarbazole unit. 前記重合体(B)が、構成単位として、アクリロニトリル単位をさらに有する請求項2または3に記載の位相差フィルム。   The retardation film of Claim 2 or 3 in which the said polymer (B) further has an acrylonitrile unit as a structural unit. 前記混合比が、樹脂(A):重合体(B)=95〜80重量部:5〜20重量部である請求項1〜4のいずれかに記載の位相差フィルム。   The retardation film according to claim 1, wherein the mixing ratio is resin (A): polymer (B) = 95 to 80 parts by weight: 5 to 20 parts by weight. 前記樹脂(A)が、110℃以上のTgを有するアクリル樹脂である請求項1〜5のいずれかに記載の位相差フィルム。   The retardation film according to claim 1, wherein the resin (A) is an acrylic resin having a Tg of 110 ° C. or higher. 前記樹脂(A)が、主鎖に環構造を有する重合体を含む請求項1〜6のいずれかに記載の位相差フィルム。   The retardation film according to claim 1, wherein the resin (A) includes a polymer having a ring structure in the main chain. 測定波長590nmで測定した面内位相差Re(590)に対する、測定波長447nmで測定した面内位相差Re(447)の比Dが、0.75≦D≦0.99であり、
前記樹脂組成物(C)は、前記樹脂組成物(C)からなる無配向フィルムを、前記樹脂組成物(C)のTgより5℃高い温度で、Re(590)が20nm以上となるように延伸したときに示す前記比Dの値D5と、前記樹脂組成物(C)のTgより15℃高い温度で、延伸温度以外は前記延伸と同一の延伸条件で延伸したときに示す前記比Dの値D15との間に式0≦|D15−D5|<0.05が成立する組成を有する、請求項1〜7に記載の位相差フィルム。
The ratio D of the in-plane retardation Re (447) measured at the measurement wavelength 447 nm to the in-plane retardation Re (590) measured at the measurement wavelength 590 nm is 0.75 ≦ D ≦ 0.99.
In the resin composition (C), an unoriented film made of the resin composition (C) is subjected to a temperature 5 ° C. higher than the Tg of the resin composition (C), so that Re (590) is 20 nm or more. the value D 5 of the ratio D shown in stretching, at a temperature from 15 ℃ high Tg of the resin composition (C), the ratio D than the stretching temperature is shown in case of stretching at the same stretching conditions and the stretching The retardation film according to claim 1, having a composition satisfying the formula 0 ≦ | D 15 −D 5 | <0.05 with respect to the value D 15 .
測定波長590nmで測定した面内位相差Re(590)に対する、測定波長447nmで測定した面内位相差Re(447)の比Dが、0.75≦D≦0.99であり、
前記樹脂組成物(C)は、前記樹脂組成物(C)からなる無配向フィルムを、NZ係数が1.0となるように延伸したときに示す前記比Dの値D1.0と、NZ係数が1.4以上3.0以下となるように前記延伸と同一の延伸温度で延伸したときに示す前記比Dの値D1.4-3.0との間に、式0≦|D1.4-3.0−D1.0|≦0.04が成立する組成を有する、請求項1〜8に記載の位相差フィルム。
The ratio D of the in-plane retardation Re (447) measured at the measurement wavelength 447 nm to the in-plane retardation Re (590) measured at the measurement wavelength 590 nm is 0.75 ≦ D ≦ 0.99.
The resin composition (C) has a ratio D 1.0 of the ratio D shown when the non-oriented film made of the resin composition (C) is stretched so that the NZ coefficient is 1.0, and the NZ coefficient is Between the value D 1.4-3.0 of the ratio D shown when the film is stretched at the same stretching temperature as that of the stretching so as to be 1.4 or more and 3.0 or less, the formula 0 ≦ | D 1.4-3.0 −D 1.0 The retardation film according to claim 1, which has a composition satisfying | ≦ 0.04.
請求項1〜9のいずれかに記載の位相差フィルムを備える画像表示装置。   An image display apparatus provided with the retardation film in any one of Claims 1-9. 可視光域において波長が短くなるほど面内位相差が小さくなる波長分散性を示す位相差フィルムの製造方法であって、
正の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性を示す樹脂(A)と、
波長分散性制御材として、
負の固有複屈折を有し、可視光域において波長が短くなるほど面内位相差が大きくなる波長分散性を示し、可視光域における当該波長分散性の変化が前記樹脂(A)よりも大きく、前記樹脂(A)のガラス転移温度(Tg)と自らのTgとの差が20℃未満である重合体(B)と、を、
樹脂(A):重合体(B)=95〜70重量部:5〜30重量部の混合比で混合して、前記樹脂(A)と前記重合体(B)とを含む樹脂組成物(C)を形成し、
前記形成した樹脂組成物(C)をフィルムに成形した後に、前記得られたフィルムを延伸して前記位相差フィルムを形成し、
前記樹脂(A)に含まれる1種または2種以上の重合体および前記重合体(B)から選ばれる少なくとも1つの重合体が、構成単位として(メタ)アクリル酸エステル単位を有し、
前記樹脂組成物(C)において、全ての重合体構成単位に占める前記(メタ)アクリル酸エステル単位の割合が60重量%以上である、位相差フィルムの製造方法。
A method for producing a retardation film showing wavelength dispersibility in which in-plane retardation is reduced as the wavelength is shortened in the visible light region,
Resin (A) having positive intrinsic birefringence and exhibiting wavelength dispersion in which the in-plane retardation increases as the wavelength becomes shorter in the visible light region;
As a wavelength dispersion control material,
It has a negative intrinsic birefringence, shows a wavelength dispersion that increases the in-plane retardation as the wavelength becomes shorter in the visible light region, the change in the wavelength dispersion in the visible light region is larger than the resin (A), A polymer (B) having a difference between the glass transition temperature (Tg) of the resin (A) and its own Tg of less than 20 ° C.,
Resin (A): Polymer (B) = 95 to 70 parts by weight: A resin composition (C) containing the resin (A) and the polymer (B) by mixing at a mixing ratio of 5 to 30 parts by weight. )
After the formed resin composition (C) is formed into a film, the obtained film is stretched to form the retardation film,
At least one polymer selected from one or two or more polymers and the polymer (B) contained in the resin (A) has a (meth) acrylic acid ester unit as a structural unit,
In the said resin composition (C), the manufacturing method of retardation film whose ratio of the said (meth) acrylic acid ester unit to all the polymer structural units is 60 weight% or more.
JP2011035875A 2011-02-22 2011-02-22 Retardation film, method for manufacturing the same, and image display device Withdrawn JP2012173530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035875A JP2012173530A (en) 2011-02-22 2011-02-22 Retardation film, method for manufacturing the same, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035875A JP2012173530A (en) 2011-02-22 2011-02-22 Retardation film, method for manufacturing the same, and image display device

Publications (1)

Publication Number Publication Date
JP2012173530A true JP2012173530A (en) 2012-09-10

Family

ID=46976475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035875A Withdrawn JP2012173530A (en) 2011-02-22 2011-02-22 Retardation film, method for manufacturing the same, and image display device

Country Status (1)

Country Link
JP (1) JP2012173530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235266A (en) * 2013-05-31 2014-12-15 株式会社タムロン Far-infrared camera lens barrel, and far-infrared camera lens unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014235266A (en) * 2013-05-31 2014-12-15 株式会社タムロン Far-infrared camera lens barrel, and far-infrared camera lens unit

Similar Documents

Publication Publication Date Title
JP6731913B2 (en) Resin composition and film
JP5377242B2 (en) Method for producing retardation film
JP5291361B2 (en) Resin composition for optical materials
CN107429024B (en) Polymer mixture based on fluoropolymer, polymer film, and polarizer protective film
TWI285211B (en) Resin composition for optical materials
KR20080053359A (en) Resin composition for optical material
JP5124433B2 (en) Retardation film
WO2005108438A1 (en) Imide resin, method for producing same, and molded body using same
US11225540B2 (en) Copolymer and optical film using same
JP2012031332A (en) Process for producing optical film
US20130271833A1 (en) Resin composition, phase-contrast film, method for manufacturing phase-contrast film, and long circularly-polarizing plate
JP2010054750A (en) Method for manufacturing retardation film
JP2011137910A (en) Method for producing retardation film
JP5433328B2 (en) Retardation film
JP2010164902A (en) Positive retardation film
JP2013195939A (en) Method of manufacturing retardation film
JP2014191175A (en) Phase difference film and image display device
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP6309760B2 (en) Thermoplastic resin composition, film, polarizing plate and image display device
JP5226299B2 (en) Resin composition
JP2019179124A (en) Optical molding body and optical product
JP2009041007A (en) Optically isotropic acrylic resin film and its manufacturing method
JP5563348B2 (en) Retardation film and image display device having the same
JP2012173530A (en) Retardation film, method for manufacturing the same, and image display device
JP2009199044A (en) Retardation film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513