WO2023079674A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2023079674A1
WO2023079674A1 PCT/JP2021/040727 JP2021040727W WO2023079674A1 WO 2023079674 A1 WO2023079674 A1 WO 2023079674A1 JP 2021040727 W JP2021040727 W JP 2021040727W WO 2023079674 A1 WO2023079674 A1 WO 2023079674A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
control
power supply
initialization
scanning signal
Prior art date
Application number
PCT/JP2021/040727
Other languages
English (en)
French (fr)
Inventor
誠一 内田
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2021/040727 priority Critical patent/WO2023079674A1/ja
Publication of WO2023079674A1 publication Critical patent/WO2023079674A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element

Definitions

  • the following disclosure relates to a display device that employs a configuration that compensates for variations in the characteristics of transistors in pixel circuits using an internal compensation system, and a driving method thereof.
  • organic EL display devices equipped with pixel circuits including organic EL elements have been put to practical use.
  • An organic EL element also called an OLED (Organic Light-Emitting Diode)
  • OLED Organic Light-Emitting Diode
  • the organic EL display device can be easily made thinner, consumes less power, and has higher brightness than the liquid crystal display device which requires a backlight and a color filter. It is possible to plan for Therefore, in recent years, the development of organic EL display devices has been actively promoted.
  • a thin film transistor is typically employed as a drive transistor for controlling current supply to the organic EL element.
  • TFT thin film transistor
  • thin film transistors tend to vary in their characteristics. Specifically, the threshold voltage tends to vary. Variation in the threshold voltage of the drive transistors provided in the display unit causes variation in brightness, thereby deteriorating the display quality. Therefore, various processes (compensation processes) have been proposed to compensate for variations in threshold voltage.
  • compensation processing there is an internal compensation method in which compensation processing is performed by providing a capacitor in the pixel circuit for holding information on the threshold voltage of the drive transistor, and an internal compensation method, for example, by adjusting the magnitude of the current flowing through the drive transistor under predetermined conditions. is measured by a circuit provided outside the pixel circuit, and compensation processing is performed by correcting the video signal based on the measurement result.
  • FIG. 1 As a pixel circuit of an organic EL display device that employs an internal compensation method for compensation processing, for example, as shown in FIG. 1 initialization transistor T91, threshold voltage compensation transistor T92, write control transistor T93, drive transistor T94, power supply control transistor T95, light emission control transistor T96, second initialization transistor T97) and one holding capacitor C9. Circuit 90 is known.
  • the node connected to the control terminal of the drive transistor T94 will be referred to as "drive current control node”.
  • FIG. 20 shows the configuration of the pixel circuit 90 in the n-th row and the m-th column.
  • the operation of the pixel circuit 90 shown in FIG. 20 will be described with reference to FIG.
  • the scanning signal GL(n ⁇ 1) and the scanning signal GL(n) are at high level
  • the emission control signal EM(n) is at low level
  • the potential of the drive current control node NG is at the previous level. is the level according to the writing of the data signal DL(m) in the frame.
  • the power supply control transistor T95 and the light emission control transistor T96 are in the ON state, and the driving current flows as indicated by the arrow with reference numeral 91 in FIG.
  • the organic EL element 99 emits light according to the magnitude of the drive current.
  • the emission control signal EM(n) changes from low level to high level.
  • the power supply control transistor T95 and the light emission control transistor T96 are turned off.
  • the current supply to the organic EL element 99 is interrupted, and the organic EL element 99 is turned off.
  • the scanning signal GL(n-1) changes from high level to low level, thereby turning on the first initialization transistor T91.
  • the potential of the drive current control node NG is initialized based on the initialization potential Vini, as indicated by the arrow labeled 92 in FIG.
  • the scanning signal GL(n-1) changes from low level to high level.
  • the first initialization transistor T91 is turned off.
  • the scanning signal GL(n) changes from high level to low level.
  • This turns on the threshold voltage compensation transistor T92, the write control transistor T93, and the second initialization transistor T97.
  • data signal DL(m) is applied to drive current control node NG.
  • the gate-source voltage of the drive transistor T94 becomes equal to the threshold voltage of the drive transistor T94, the drive transistor T94 is turned off.
  • the potential of the drive current control node NG becomes equal to the sum of the source potential of the drive transistor T94 and the threshold voltage of the drive transistor T94. In this manner, the drive current control node NG is charged based on the data signal DL(m), and the threshold voltage of the drive transistor T94 is compensated. Also, by turning on the second initialization transistor T97, the anode potential of the organic EL element 99 is initialized based on the initialization potential Vini, as indicated by the arrow labeled 94 in FIG.
  • the scanning signal GL(n) changes from low level to high level. This turns off the threshold voltage compensation transistor T92, the write control transistor T93, and the second initialization transistor T97. Also, during the period P94, the emission control signal EM(n) changes from high level to low level. As a result, the power supply control transistor T95 and the light emission control transistor T96 are turned on, and the drive current flows as indicated by the arrow with reference numeral 91 in FIG. That is, the organic EL element 99 emits light according to the magnitude of the drive current.
  • an adjustment value for the light emission period is calculated for each pixel based on the light emission luminance information and the external light illuminance information, and the operation of the scan circuit is controlled based on the adjustment value.
  • An organic EL display device is disclosed which adjusts the display luminance by means of Further, Japanese Patent Application Laid-Open No. 2005-92006 describes a pixel having a configuration in which a light detection diode is provided in parallel with a driving transistor so that the emission intensity of an organic EL element can be adjusted independently according to the intensity of external light.
  • An organic EL display device having circuitry is disclosed.
  • the following disclosure relates to a display device using a display element driven by current (for example, an organic EL display device), while suppressing deterioration in display quality and increase in cost, visibility in an environment with strong external light
  • a display element driven by current for example, an organic EL display device
  • a display device is a display device including a plurality of pixel circuits including display elements that emit light with luminance corresponding to the amount of drive current supplied, a first power supply line supplied with a first power supply potential; a second power supply line supplied with a second power supply potential; an initialization power supply line supplied with an initialization potential; an adjustment circuit that adjusts the amount of the drive current; an adjustment capacitor;
  • Each pixel circuit is the display element provided between the first power line and the second power line and having a first terminal on the first power line side and a second terminal on the second power line side; a drive transistor having a control terminal, a first conduction terminal, and a second conduction terminal, arranged in series with the display element for supplying the drive current to the display element during a predetermined light emission period; a drive current control node connected to a control terminal of the drive transistor and one end of the adjustment capacitor, which is charged based on a data signal for a predetermined charging period;
  • the adjustment circuit is a light emission intensity adjustment no
  • a driving method (of a display device) is a driving method of a display device including a plurality of pixel circuits including display elements that emit light with luminance corresponding to the amount of drive current supplied.
  • the display device a first power supply line supplied with a first power supply potential; a second power supply line supplied with a second power supply potential; an initialization power supply line supplied with an initialization potential; an adjustment circuit that adjusts the amount of the drive current; an adjustment capacitor;
  • Each pixel circuit is the display element provided between the first power line and the second power line and having a first terminal on the first power line side and a second terminal on the second power line side; a drive transistor having a control terminal, a first conduction terminal, and a second conduction terminal, arranged in series with the display element for supplying a drive current to the display element during a predetermined light emission period; a drive current control node connected to a control terminal of the drive transistor and one end of the tuning capacitor;
  • the adjustment circuit is a light emission intensity adjustment no
  • the display device is provided with an adjustment circuit that adjusts the amount of drive current supplied to the display element in the pixel circuit.
  • the adjustment circuit includes a light receiving circuit connected to the emission intensity adjustment node and generating a photocurrent corresponding to the intensity of light, and an emission intensity adjustment node initialization circuit for initializing the emission intensity adjustment node.
  • the display device is provided with an adjustment capacitor having one end connected to a drive current control node (a node connected to the control terminal of the drive transistor) and the other end connected to an emission intensity adjustment node.
  • the potential change of the emission intensity adjustment node due to the initialization is Accordingly, the potential of the drive current control node changes. That is, the potential of the drive current control node changes according to the intensity of the outside light.
  • the display element is supplied with a larger amount of drive current than it should, depending on the intensity of the outside light.
  • the light receiving element in the adjustment circuit is not directly connected to the drive transistor or the display element, no unintended current flows to the display element during the light emission period of the display element.
  • a display device a display device having a pixel circuit including a display element that emits light with luminance corresponding to the amount of supplied drive current
  • FIG. 2 is a circuit diagram showing the configuration of a pixel circuit in the n-th row and the m-th column and its peripheral circuits in the first embodiment;
  • FIG. 1 is a block diagram showing the overall configuration of an organic EL display device according to the first embodiment;
  • FIG. 4 is a timing chart for explaining the operation of the pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 4 is a diagram for explaining operations of a pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 4 is a diagram for explaining operations of a pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 4 is a diagram for explaining operations of a pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 4 is a diagram for explaining operations of a pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 4 is a diagram for explaining operations of a pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 1 is a block diagram showing the overall configuration of an organic
  • FIG. 4 is a diagram for explaining operations of a pixel circuit and its peripheral circuits in the first embodiment;
  • FIG. 4 is a circuit diagram showing the configuration of a pixel circuit in the n-th row and the m-th column and its peripheral circuits in a modification of the first embodiment;
  • It is a block diagram showing the overall configuration of an organic EL display device according to a second embodiment.
  • FIG. 10 is a circuit diagram showing the configuration of a pixel circuit in the n-th row and the m-th column and its peripheral circuits in the second embodiment; 8 is a timing chart for explaining the operation of the pixel circuit and its peripheral circuits in the second embodiment;
  • FIG. 10 is a circuit diagram showing the configuration of a pixel circuit in the n-th row and the m-th column and its peripheral circuits in the second embodiment;
  • 8 is a timing chart for explaining the operation of the pixel circuit and its peripheral circuits in the second embodiment;
  • FIG. 10 is a circuit diagram showing the configuration of a pixel circuit in the n-th row and the m-th column and its peripheral circuits in the third embodiment;
  • FIG. 11 is a timing chart for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 12 is a diagram for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 12 is a diagram for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 12 is a diagram for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 12 is a diagram for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 12 is a diagram for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 12 is a diagram for explaining the operation of the pixel circuit and its peripheral circuits in the third embodiment;
  • FIG. 11 is a timing chart for explaining the operation of the
  • FIG. 10 is a circuit diagram showing the configuration of a pixel circuit and its peripheral circuits in a fourth embodiment
  • FIG. 20 is a diagram for explaining how an adjustment circuit is provided in a modification of the fourth embodiment
  • FIG. 1 is a circuit diagram showing a general configuration of a pixel circuit of an organic EL display device that employs an internal compensation method for compensation processing
  • FIG. 21 is a timing chart for explaining the operation of the pixel circuit shown in FIG. 20
  • 21 is a diagram for explaining the operation of the pixel circuit shown in FIG. 20
  • FIG. 21 is a diagram for explaining the operation of the pixel circuit shown in FIG. 20
  • FIG. 21 is a diagram for explaining the operation of the pixel circuit shown in FIG. 20
  • FIG. 21 is a diagram for explaining the operation of the pixel circuit shown in FIG. 20;
  • FIG. 21 is a diagram for explaining the operation of the pixel circuit shown in FIG. 20;
  • FIG. 21 is a diagram for explaining the operation of the pixel circuit shown in FIG. 20;
  • FIG. 2 is a block diagram showing the overall configuration of the organic EL display device according to the first embodiment.
  • this organic EL display device includes a display control circuit 100, a display section 200, a gate driver (scanning signal line driving circuit) 300, an emission driver (emission control line driving circuit) 400, and a source driver (data signal line drive circuit) 500.
  • the gate driver 300 is provided only on one end side of the display section 200 (on the left side of the display section 200 in the drawing).
  • a configuration in which gate drivers 300 are provided on both sides (on the right side of the unit 200) can also be adopted.
  • emission drivers 400 are provided on both the one end side and the other end side of the display section 200 can be adopted.
  • the display unit 200 includes (i+2) scanning signal lines GL(0) to GL(i+1), i emission control lines EM(1) to EM(i), and j data signal lines DL(1). ) to DL(j) are provided. Note that illustration of the inside of the display unit 200 in FIG. 2 is omitted.
  • the scanning signal lines GL(0) to GL(i+1) and the emission control lines EM(1) to EM(i) are typically parallel to each other.
  • the scanning signal lines GL(0) to GL(i+1) and the data signal lines DL(1) to DL(j) are orthogonal.
  • Each scanning signal line GL transmits a scanning signal
  • each emission control line EM transmits an emission control signal
  • each data signal line DL transmits a data signal.
  • the display unit 200 is also provided with i ⁇ j pixel circuits 20 .
  • the i ⁇ j pixel circuits 20 form a pixel matrix of i rows ⁇ j columns.
  • the scanning signal will be denoted by GL
  • the emission control signal will be denoted by EM
  • the data signal will also be denoted by DL, if necessary.
  • High-level power supply potential ELVDD, low-level power supply potential ELVSS, and initialization potential Vini are supplied from a power supply circuit (not shown).
  • the high-level power supply potential ELVDD corresponds to the first power supply potential
  • the low-level power supply potential ELVSS corresponds to the second power supply potential.
  • the high-level power line corresponds to the first power line
  • the low-level power line corresponds to the second power line.
  • the display control circuit 100 receives an input image signal DIN and a group of timing signals (horizontal synchronizing signal, vertical synchronizing signal, etc.) TG sent from the outside, and outputs a digital video signal DV and a gate control signal for controlling the operation of the gate driver 300.
  • GCTL an emission driver control signal EMCTL for controlling the operation of the emission driver 400
  • a source control signal SCTL for controlling the operation of the source driver 500 are output.
  • the gate control signal GCTL includes a gate start pulse signal, a gate clock signal, and the like.
  • the emission driver control signal EMCTL includes an emission start pulse signal, an emission clock signal, and the like.
  • the source control signal SCTL includes a source start pulse signal, a source clock signal, a latch strobe signal, and the like.
  • the gate driver 300 is connected to scanning signal lines GL(0) to GL(i+1).
  • the gate driver 300 applies scanning signals to the scanning signal lines GL( 0 ) to GL(i+1) based on the gate control signal GCTL output from the display control circuit 100 . That is, the gate driver 300 sequentially and selectively drives the scanning signal lines GL(0) to GL(i+1).
  • the emission driver 400 is connected to the emission control lines EM(1) to EM(i).
  • the emission driver 400 applies emission control signals to the emission control lines EM( 1 ) to EM(i) based on the emission driver control signal EMCTL output from the display control circuit 100 .
  • the source driver 500 includes a j-bit shift register, a sampling circuit, a latch circuit, and j D/A converters (not shown).
  • the shift register has j registers connected in cascade.
  • the shift register sequentially transfers the pulses of the source start pulse signal supplied to the first-stage register from the input end to the output end based on the source clock signal.
  • a sampling pulse is output from each stage of the shift register in response to the transfer of this pulse.
  • the sampling circuit stores the digital video signal DV.
  • the latch circuit takes in and holds the digital video signal DV for one row stored in the sampling circuit according to the latch strobe signal.
  • a D/A converter is provided to correspond to each data signal line DL(1) to DL(j).
  • the D/A converter converts the digital video signal DV held in the latch circuit into an analog voltage.
  • the converted analog voltage is applied as a data signal to all data signal lines DL(1) to DL(j) all at once.
  • data signals are applied to the data signal lines DL(1) to DL(j), scanning signals are applied to the scanning signal lines GL(0) to GL(i+1), and the emission control line EM(1) is applied. ) to EM(i), an image based on the input image signal DIN is displayed on the display unit 200.
  • FIG. 1 A block diagram illustrating an image based on the input image signal DIN.
  • FIG. 1 is a circuit diagram showing the configuration of a pixel circuit 20 in the n-th row and the m-th column and its peripheral circuits.
  • one pixel circuit 20 corresponds to one pixel circuit 20 and is used to adjust the amount of drive current supplied to the organic EL element 21 in the pixel circuit 20.
  • An adjustment circuit 22 is provided.
  • An adjustment capacitor Cp is provided between the pixel circuit 20 and the adjustment circuit 22 .
  • the adjustment circuit 22 and the adjustment capacitor Cp are provided for each pixel circuit 20 .
  • the adjustment capacitor Cp has a first electrode connected to the drive current control node NG in the pixel circuit 20 and a second electrode connected to the emission intensity adjustment node NP in the adjustment circuit 22 .
  • the pixel circuit 20 shown in FIG. 1 includes one organic EL element (organic light emitting diode) 21 as a display element, and seven transistors (first initialization transistor T1, threshold voltage compensation transistor T2, write control transistor T3, It includes a driving transistor T4, a power supply control transistor T5, a light emission control transistor T6, and a second initialization transistor T7), and one holding capacitor Cst.
  • the organic EL element 21, transistors T1 to T7, and holding capacitor Cst in FIG. 1 respectively correspond to the organic EL element 99, transistors T91 to T97, and holding capacitor C9 in FIG.
  • the adjustment circuit 22 shown in FIG. 1 includes one photodiode 220 as a light receiving element and two transistors (photocurrent control transistor T8 and third initialization transistor T9).
  • the transistors T1 to T9 are P-channel transistors, typically LTPS-TFTs (thin film transistors having a channel layer made of low-temperature polysilicon).
  • the control terminal is connected to the scanning signal line GL(n ⁇ 1), the first conduction terminal is connected to the drive current control node NG, and the second conduction terminal is connected to the initialization power supply line. It is For the threshold voltage compensation transistor T2, the control terminal is connected to the scanning signal line GL(n), the first conduction terminal is connected to the second conduction terminal of the drive transistor T4 and the first conduction terminal of the light emission control transistor T6, The second conduction terminal is connected to the drive current control node NG.
  • the write control transistor T3 has a control terminal connected to the scanning signal line GL(n), a first conduction terminal connected to the data signal line DL(m), and a second conduction terminal connected to the first conduction terminal of the drive transistor T4. and the second conduction terminal of the power supply control transistor T5.
  • the control terminal is connected to the drive current control node NG
  • the first conduction terminal is connected to the second conduction terminal of the write control transistor T3 and the second conduction terminal of the power supply control transistor T5
  • the second conduction terminal is connected to the second conduction terminal of the power supply control transistor T5.
  • the conduction terminal is connected to the first conduction terminal of the threshold voltage compensating transistor T2 and the first conduction terminal of the emission control transistor T6.
  • the control terminal is connected to the light emission control line EM(n)
  • the first conduction terminal is connected to the high level power supply line
  • the second conduction terminal is connected to the second conduction terminal of the write control transistor T3. It is connected to the first conduction terminal of the drive transistor T4.
  • the emission control transistor T6 has a control terminal connected to the emission control line EM(n), a first conduction terminal connected to the first conduction terminal of the threshold voltage compensation transistor T2 and the second conduction terminal of the drive transistor T4,
  • the second conduction terminal is connected to the first conduction terminal of the second initialization transistor T7 and the anode terminal (first terminal) of the organic EL element 21 .
  • the control terminal is connected to the scanning signal line GL(n)
  • the first conduction terminal is connected to the second conduction terminal of the light emission control transistor T6 and the anode terminal of the organic EL element 21,
  • the second conductive terminal is connected to the initialization power line.
  • the holding capacitor Cst the first electrode is connected to the drive current control node NG, and the second electrode is connected to the high level power supply line. Note that the capacitance value of the holding capacitor Cst is typically larger than the capacitance value of the adjustment capacitor Cp.
  • the anode terminal is connected to the second conduction terminal of the light emission control transistor T6 and the first conduction terminal of the second initialization transistor T7, and the cathode terminal (second terminal) is connected to the low level power supply line.
  • the photocurrent control transistor T8 has a control terminal connected to the scanning signal line GL(n), a first conduction terminal connected to the high-level power supply line, and a second conduction terminal connected to the cathode terminal of the photodiode 220.
  • the third initialization transistor T9 has a control terminal connected to the scanning signal line GL(n+1), a first conduction terminal connected to the emission intensity adjustment node NP, and a second conduction terminal connected to the initialization power supply line.
  • the photodiode 220 has an anode terminal connected to the emission intensity adjustment node NP and a cathode terminal connected to the second conduction terminal of the photocurrent control transistor T8.
  • the circuit between the high-level power supply line and the emission intensity adjustment node NP generates a photocurrent corresponding to the intensity of light incident on the photodiode 220 while the photocurrent control transistor T8 is on. It is configured.
  • the drive current control node initialization transistor is realized by the first initialization transistor T1
  • the display initialization transistor is realized by the second initialization transistor T7
  • the emission intensity adjustment node initialization transistor is realized by the third initialization transistor T9. Realized.
  • the photocurrent control transistor T8, the photodiode 220, and the wiring connected thereto implement a light receiving circuit
  • the third initialization transistor T9 and the wiring connected thereto implement the emission intensity adjustment node initialization circuit.
  • the scanning signal GL(n ⁇ 1), the scanning signal GL(n), and the scanning signal GL(n+1) are at high level
  • the emission control signal EM(n) is at low level
  • the driving The potential of the current control node NG is at the level corresponding to the writing of the data signal DL(m) in the previous frame
  • the potential of the emission intensity adjustment node NP is the initialized potential.
  • the power supply control transistor T5 and the light emission control transistor T6 are in the ON state, and the driving current flows as indicated by the arrow labeled 61 in FIG.
  • the organic EL element 21 emits light according to the magnitude of the drive current.
  • the emission control signal EM(n) changes from low level to high level.
  • the power supply control transistor T5 and the light emission control transistor T6 are turned off.
  • the current supply to the organic EL element 21 is cut off, and the organic EL element 21 is turned off.
  • the scanning signal GL(n-1) changes from high level to low level, thereby turning on the first initialization transistor T1.
  • the potential of the drive current control node NG is initialized based on the initialization potential Vini, as indicated by the arrow labeled 62 in FIG.
  • the scanning signal GL(n-1) changes from low level to high level.
  • the first initialization transistor T1 is turned off.
  • the scanning signal GL(n) changes from high level to low level.
  • the threshold voltage compensation transistor T2, the write control transistor T3, the second initialization transistor T7, and the photocurrent control transistor T8 are turned on.
  • data signal DL(m) is applied to drive current control node NG.
  • the gate-source voltage of the drive transistor T4 becomes equal to the threshold voltage of the drive transistor T4, the drive transistor T4 is turned off.
  • the potential of the drive current control node NG becomes equal to the sum of the source potential of the drive transistor T4 and the threshold voltage of the drive transistor T4. In this manner, the drive current control node NG is charged based on the data signal DL(m), and the threshold voltage of the drive transistor T4 is compensated. Also, by turning on the second initialization transistor T7, the anode potential of the organic EL element 21 is initialized based on the initialization potential Vini, as indicated by the arrow labeled 64 in FIG. In addition, by turning on the photocurrent control transistor T8, a current (light current) flows through the photocurrent control transistor T8 and the photodiode 220 from the high-level power supply line to the emission intensity adjustment node NP. As a result, the emission intensity adjustment node NP is charged. In this regard, the higher the intensity of outside light, the greater the amount of photocurrent, and the greater the increase in the potential of the emission intensity adjustment node NP.
  • the scanning signal GL(n) changes from low level to high level.
  • the threshold voltage compensation transistor T2, the write control transistor T3, the second initialization transistor T7, and the photocurrent control transistor T8 are turned off.
  • the scanning signal GL(n+1) changes from high level to low level.
  • the third initialization transistor T9 is turned on, and the potential of the emission intensity adjustment node NP is initialized based on the initialization potential Vini, as indicated by the arrow labeled 66 in FIG.
  • the initialization potential Vini is set to a potential lower than the high-level power supply potential ELVDD.
  • the potential of the emission intensity adjustment node NP is initialized based on the initialization potential Vini during the period P04, the potential of the emission intensity adjustment node NP is lowered. As a result, the potential of the drive current control node NG is also lowered via the adjustment capacitor Cp.
  • the scanning signal GL(n+1) changes from low level to high level.
  • the third initialization transistor T9 is turned off.
  • the emission control signal EM(n) changes from high level to low level.
  • the power supply control transistor T5 and the light emission control transistor T6 are turned on, and the drive current flows as indicated by the arrow with reference numeral 61 in FIG. That is, the organic EL element 21 emits light according to the magnitude of the drive current.
  • An image based on the input image signal DIN is displayed on the display unit 200 by the operation of each pixel circuit 20 in the display unit 200 as described above. Further, during the period P03, the higher the intensity of the outside light, the greater the potential of the emission intensity adjustment node NP rises. Then, the potential of the drive current control node NG decreases in the period P04 according to the degree of increase in the potential of the emission intensity adjustment node NP in the period P03. That is, the higher the intensity of the outside light, the larger the amount of drive current supplied to the organic EL element 21 than it should be. In this way, the visibility under external light is improved.
  • the sizes of the photodiode 220 and the adjustment capacitor Cp are appropriately designed so that the potential of the emission intensity adjustment node NP is preferably lowered in the period P04 according to the intensity of the external light, thereby obtaining good visibility. need to be
  • the scanning signal GL(n-1), the scanning signal GL(n), and the scanning signal GL(n+1) are applied during the period in which the emission control signal EM(n) is maintained at the high level. are successively kept at a low level for a predetermined period of time.
  • the gate driver 300 controls the (n-1)th scanning signal line, the nth scanning signal line, and the nth scanning signal line.
  • the signal line and the (n+1)th scanning signal line are sequentially selected for a predetermined period of time.
  • the display control circuit 100 transmits the gate control signal GCTL to the gate driver 300 and the display control circuit 100 transmits the emission driver control signal EMCTL to the emission driver 400 .
  • the step of stopping the supply of the drive current is realized by the operation when the period P01 transitions to the period P02, and the operation in the period P03 charges the drive current control node and also charges the drive current control node according to the light intensity.
  • the step of generating a photocurrent is realized, the step of initializing the emission intensity adjustment node is realized by the operation in the period P04, and the step of restarting the supply of the drive current is realized by the operation at the time of transition from the period P04 to the period P05.
  • the adjusting circuit 22 is provided for adjusting the amount of drive current supplied to the organic EL element 21 in the pixel circuit 20 .
  • the potential of the emission intensity adjustment node NP in the adjustment circuit 22 rises according to the intensity of the external light.
  • the light emission intensity adjustment node NP is initialized before the start of the light emission period, so that the potential of the drive current control node NG drops as the potential of the light emission intensity adjustment node NP drops.
  • a larger amount of drive current than originally supplied to the organic EL element 21 according to the intensity of the outside light is supplied, and the visibility under outside light is improved.
  • the photodiode 220 in the adjustment circuit 22 is not directly connected to the driving transistor T4 or the organic EL element 21. Therefore, unlike the organic EL display device disclosed in Japanese Patent Application Laid-Open No. 2005-92006, no unintended current flows through the organic EL element 21 during the light emission period. Also, the photodiode 220 generates a photocurrent only while the corresponding organic EL element 21 is in the off state. Therefore, the intensity of outside light is detected without being affected by the light emission of the organic EL element 21 . As a result, the amount of drive current can be adjusted with high accuracy. Furthermore, since the adjustment circuit 22 is provided for each pixel circuit 20, the amount of drive current can be adjusted with high accuracy. As described above, the visibility under external light is effectively improved without degrading the display quality.
  • the potential of the drive current control node NG is controlled according to the intensity of the external light.
  • the organic EL display device disclosed in Japanese Patent Application Laid-Open No. 2008-176115 there is no need to provide a control system or chip outside the panel.
  • a special system or chip that can change the data voltage over a wide range is required. No special system or chip is required, as there is no need to change the data voltage.
  • the organic EL display device it is possible to improve the visibility in an environment with strong external light while suppressing deterioration in display quality and increase in cost.
  • the photodiode 220 is provided between the photocurrent control transistor T8 and the emission intensity adjustment node NP.
  • the photodiode 220 may be provided between the high-level power supply line and the photocurrent control transistor T8. Even in such a configuration, the pixel circuit 20 and the adjustment circuit 22 operate in the same manner as in the first embodiment.
  • the transistors in the pixel circuit 20 and the transistors in the adjustment circuit 22 were all P-channel transistors (typically LTPS-TFTs).
  • the transistors in the pixel circuit 20 include P-channel transistors and N-channel transistors, and the transistors in the adjustment circuit 22 are all N-channel transistors.
  • P-channel transistors are typically LTPS-TFTs
  • N-channel transistors are typically IGZO-TFTs (made of an oxide semiconductor containing indium, gallium, zinc, and oxygen). thin film transistor having a channel layer).
  • the display unit 200 includes, as scanning signal lines, first scanning signal lines for controlling the states of the P-channel transistors in the pixel circuits 20 and N-channel transistors in the pixel circuits 20 .
  • a transistor and a second scanning signal line for controlling the state of the N-channel type transistor in the adjustment circuit 22 are provided.
  • the display unit 200 includes (i+2) first scanning signal lines GLa(0) to GLa(i+1) and i second scanning signal lines GLb(1) to GLb( i) are provided (see FIG. 9).
  • the gate driver 300 sequentially selectively drives the first scanning signal lines GLa(0) to GLa(i+1) and sequentially selectively drives the second scanning signal lines GLb(1) to GLb(i). .
  • FIG. 10 is a circuit diagram showing the configuration of the pixel circuit 20 in the n-th row and the m-th column and its peripheral circuits in this embodiment.
  • the first initialization transistor T1, the threshold voltage compensation transistor T2, the second initialization transistor T7, the photocurrent control transistor T8, and the third initialization transistor T9 are N-channel transistors. be.
  • a control terminal of the first initialization transistor T1 is connected to the first scanning signal line GLa(n-1).
  • a control terminal of the threshold voltage compensation transistor T2 is connected to the first scanning signal line GLa(n).
  • a control terminal of the write control transistor T3 is connected to the second scanning signal line GLb(n).
  • a control terminal of the second initialization transistor T7 is connected to the first scanning signal line GLa(n).
  • a control terminal of the photocurrent control transistor T8 is connected to the first scanning signal line GLa(n).
  • a control terminal of the third initialization transistor T9 is connected to the first scanning signal line GLa(n+1). Points other than the above are the same as those of the first embodiment. Note that the photodiode 220 can be provided between the high-level power supply line and the photocurrent control transistor T8 as in the modification of the first embodiment.
  • the first scanning signal GLa(n ⁇ 1), the first scanning signal GLa(n), and the first scanning signal GLa(n+1) are at low level, and the second scanning signal GLb(n) is at low level.
  • the light emission control signal EM(n) is at a low level
  • the potential of the drive current control node NG is at a level corresponding to the writing of the data signal DL(m) in the previous frame
  • the light emission intensity is
  • the potential of the adjustment node NP is the potential in the initialized state.
  • the power supply control transistor T5 and the light emission control transistor T6 are in the ON state, and the organic EL element 21 emits light according to the magnitude of the drive current.
  • the emission control signal EM(n) changes from low level to high level.
  • the power supply control transistor T5 and the light emission control transistor T6 are turned off.
  • the current supply to the organic EL element 21 is cut off, and the organic EL element 21 is turned off.
  • the first initialization transistor T1 is turned on by the change of the first scanning signal GLa(n-1) from the low level to the high level.
  • the potential of the drive current control node NG is initialized based on the initialization potential Vini.
  • the first scanning signal GLa(n-1) changes from high level to low level.
  • the first initialization transistor T1 is turned off.
  • the first scanning signal GLa(n) changes from low level to high level
  • the second scanning signal GLb(n) changes from high level to low level.
  • the threshold voltage compensation transistor T2, the write control transistor T3, the second initialization transistor T7, and the photocurrent control transistor T8 are turned on.
  • the data signal DL(m) is applied to the drive current control node NG via the write control transistor T3, the drive transistor T4, and the threshold voltage compensation transistor T2. Given.
  • the anode potential of the organic EL element 21 is initialized based on the initialization potential Vini.
  • a current (photocurrent) corresponding to the intensity of light (that is, external light) incident on the photodiode 220 flows between the photocurrent control transistor T8 and the photodiode 220. through the high-level power supply line to the emission intensity adjustment node NP. As a result, the emission intensity adjustment node NP is charged.
  • the first scanning signal GLa(n) changes from high level to low level
  • the second scanning signal GLb(n) changes from low level to high level.
  • the threshold voltage compensation transistor T2, the write control transistor T3, the second initialization transistor T7, and the photocurrent control transistor T8 are turned off.
  • the first scanning signal GLa(n+1) changes from low level to high level.
  • the third initialization transistor T9 is turned on, and the potential of the emission intensity adjustment node NP is initialized based on the initialization potential Vini.
  • the potential of the emission intensity adjustment node NP is lowered.
  • the potential of the drive current control node NG is also lowered via the adjustment capacitor Cp.
  • the first scanning signal GLa(n+1) changes from high level to low level.
  • the third initialization transistor T9 is turned off.
  • the emission control signal EM(n) changes from high level to low level.
  • the power supply control transistor T5 and the light emission control transistor T6 are turned on, and the organic EL element 21 emits light according to the magnitude of the drive current.
  • the first scanning signal GLa(n ⁇ 1), the first scanning signal GLa(n), and the first The scanning signal GLa(n+1) is at high level sequentially for a predetermined period.
  • the gate driver 300 controls the (n ⁇ 1)-th first scanning signal line, the n-th , and the (n+1)-th first scanning signal line are sequentially selected for a predetermined period of time.
  • the display control circuit 100 transmits the gate control signal GCTL to the gate driver 300 and the display control circuit 100 transmits the emission driver control signal EMCTL to the emission driver 400 .
  • the second scanning signal GLb(n) is at low level while the first scanning signal GLa(n) is at high level.
  • the gate driver 300 selects the n-th second scanning signal line while the n-th first scanning signal line is in the selected state.
  • the deterioration of the display quality and the increase in cost are achieved as in the first embodiment. visibility is improved in an environment with strong external light. Further, by adopting an IGZO-TFT as an N-channel transistor, charge leakage is suppressed, so that low-frequency driving can be performed. This significantly reduces power consumption.
  • the transistors in the pixel circuit 20 and the transistors in the adjustment circuit 22 were all P-channel transistors.
  • the transistors in the pixel circuit 20 included P-channel transistors and N-channel transistors, and the transistors in the adjustment circuit 22 were all N-channel transistors.
  • the transistors in the pixel circuit 20 and the transistors in the adjustment circuit 22 are all N-channel transistors (typically IGZO-TFTs).
  • the overall configuration is almost the same as that of the first embodiment.
  • the first initialization potential Vini1 and the second initialization potential Vini2 are used as the initialization potentials.
  • the power line that supplies the first initialization potential Vini1 will be referred to as a "first initialization power line”
  • the power line that will supply the second initialization potential Vini2 will be referred to as a "second initialization power line”.
  • the first initialization potential Vini1 is higher than the high level power supply potential ELVDD
  • the second initialization potential Vini1 is lower than the low level power supply potential ELVSS.
  • FIG. 12 is a circuit diagram showing the configuration of the pixel circuit 20 in the n-th row and the m-th column and its peripheral circuits in this embodiment.
  • the transistors T1 to T7 in the pixel circuit 20 and the transistors T8 and T9 in the adjustment circuit 22 are all N-channel type transistors.
  • a second conduction terminal of the first initialization transistor T1 is connected to the first initialization power supply line.
  • a second conduction terminal of the second initialization transistor T7 is connected to the second initialization power supply line.
  • a second conduction terminal of the third initialization transistor T9 is connected to the first initialization power supply line.
  • the photodiode 220 has an anode terminal connected to the second conduction terminal of the photocurrent control transistor T8, and a cathode terminal connected to the emission intensity adjustment node NP. Note that the photodiode 220 can be provided between the high-level power supply line and the photocurrent control transistor T8 as in the modification of the first embodiment.
  • the scanning signal GL(n ⁇ 1), the scanning signal GL(n), and the scanning signal GL(n+1) are at low level
  • the emission control signal EM(n) is at high level
  • the driving The potential of the current control node NG is at a level corresponding to the writing of the data signal DL(m) in the previous frame
  • the potential of the light emission intensity adjustment node NP is a potential initialized based on the first initialization potential Vini1. is.
  • the power supply control transistor T5 and the light emission control transistor T6 are in the ON state, and the drive current flows as indicated by the arrow with reference numeral 71 in FIG.
  • the organic EL element 21 emits light according to the magnitude of the drive current.
  • the emission control signal EM(n) changes from high level to low level.
  • the power supply control transistor T5 and the light emission control transistor T6 are turned off.
  • the current supply to the organic EL element 21 is cut off, and the organic EL element 21 is turned off.
  • the scanning signal GL(n-1) changes from low level to high level, thereby turning on the first initialization transistor T1.
  • the potential of the drive current control node NG is initialized based on the first initialization potential Vini1, as indicated by the arrow labeled 72 in FIG.
  • the scanning signal GL(n-1) changes from high level to low level.
  • the first initialization transistor T1 is turned off.
  • the scanning signal GL(n) changes from low level to high level.
  • the threshold voltage compensation transistor T2, the write control transistor T3, the second initialization transistor T7, and the photocurrent control transistor T8 are turned on.
  • data signal DL(m) is applied to drive current control node NG.
  • the anode potential of the organic EL element 21 is initialized based on the second initialization potential Vini2, as indicated by the arrow labeled 74 in FIG. be.
  • a current (light current) flows from the emission intensity adjustment node NP to the high level power supply line via the photodiode 220 and the photocurrent control transistor T8.
  • the higher the intensity of outside light the greater the amount of photocurrent, and the potential of the light emission intensity adjustment node NP greatly decreases.
  • the scanning signal GL(n) changes from high level to low level.
  • the threshold voltage compensation transistor T2, the write control transistor T3, the second initialization transistor T7, and the photocurrent control transistor T8 are turned off.
  • the scanning signal GL(n+1) changes from low level to high level.
  • the third initialization transistor T9 is turned on, and the potential of the emission intensity adjustment node NP is initialized based on the first initialization potential Vini1, as indicated by the arrow labeled 76 in FIG.
  • the first initialization potential Vini1 is set to a potential higher than the high-level power supply potential ELVDD.
  • the scanning signal GL(n+1) changes from high level to low level.
  • the third initialization transistor T9 is turned off.
  • the emission control signal EM(n) changes from low level to high level.
  • the power supply control transistor T5 and the light emission control transistor T6 are turned on, and the drive current flows as indicated by the arrow with reference numeral 71 in FIG. That is, the organic EL element 21 emits light according to the magnitude of the drive current.
  • the drive transistor T4 is an N-channel transistor. Therefore, the higher the intensity of the outside light, the more drive current is supplied to the organic EL element 21 than originally intended. In this way, the visibility under external light is improved. Moreover, like the first embodiment, the display quality does not deteriorate, and there is no need to provide a special system or chip.
  • the organic EL display device in which the transistors in the pixel circuit 20 are configured only with N-channel type transistors, deterioration in display quality and cost increase are suppressed, and external light is strong. Improves visibility in the environment.
  • the second embodiment by adopting IGZO-TFTs as N-channel transistors, low-frequency driving becomes possible, and power consumption is significantly reduced.
  • the adjustment circuit 22 and the adjustment capacitor Cp are provided for each pixel circuit 20.
  • FIG. On the other hand, in the present embodiment, the adjustment capacitor Cp is provided for each pixel circuit 20 , but the adjustment circuit 22 is provided for every three pixel circuits 20 .
  • the overall configuration is similar to that of the first embodiment.
  • FIG. 18 is a circuit diagram showing the configuration of the pixel circuit 20 and its peripheral circuits in this embodiment.
  • three pixel circuits 20 (the pixel circuit 20R for red, the pixel circuit 20B for green, and the pixel circuit 20B for blue) constituting one pixel have One adjustment circuit 22 is provided. More specifically, one photodiode 220, one photocurrent control transistor T8, and one third initialization transistor T9 are provided for every three pixel circuits 20 forming one pixel. An adjustment capacitor Cp is provided for each pixel circuit 20 .
  • the first electrode connected to the drive current control node NGr and the second electrode connected to the emission intensity adjustment node NP in the pixel circuit 20R for red are connected.
  • an adjustment capacitor Cpr having a first electrode connected to the drive current control node NGg in the pixel circuit 20G for green and a second electrode connected to the emission intensity adjustment node NP;
  • An adjustment capacitor Cpb having a first electrode connected to the drive current control node NGb in the pixel circuit 20B and a second electrode connected to the emission intensity adjustment node NP is provided.
  • the adjustment circuit 22 is provided for each three pixel circuits 20, and the second electrodes of the three adjustment capacitors Cp (adjustment capacitor Cpr, adjustment capacitor Cpg, and adjustment capacitor Cpb) corresponding to the three pixel circuits 20 are connected to the same emission intensity adjustment node NP.
  • a first electrode of each of the three adjustment capacitors Cp (adjustment capacitor Cpr, adjustment capacitor Cpg, and adjustment capacitor Cpb) is connected to the drive current control node NG included in the corresponding pixel circuit 20 .
  • the transistors in the pixel circuit 20 are P-channel transistors in this embodiment, the present invention is not limited to this.
  • the transistors in the pixel circuit 20 may include a P-channel transistor and an N-channel transistor (see FIG. 10). In this case, N-channel transistors are employed for the photocurrent control transistor T8 and the third initialization transistor T9. Further, as in the third embodiment, all the transistors in the pixel circuit 20 may be N-channel transistors (see FIG. 12). In this case also, N-channel transistors are employed for the photocurrent control transistor T8 and the third initialization transistor T9.
  • Each pixel circuit 20 (a pixel circuit 20R for red, a pixel circuit 20B for green, and a pixel circuit 20B for blue) and its peripheral circuits operate in the same manner as in the first embodiment (see FIG. 3).
  • its peripheral circuits operate in the same manner as in the first embodiment (see FIG. 3).
  • the potential of the emission intensity adjustment node NP is initialized based on the initialization potential Vini (see period P04 in FIG.
  • the capacitance values of adjustment capacitor Cpr, adjustment capacitor Cpg, and adjustment capacitor Cpb are (capacitance), the drive current control node NGr in the pixel circuit 20R for red, the drive current control node NGg in the pixel circuit 20G for green, and the drive current control node NGg in the pixel circuit 20B for blue
  • Each potential of NGb is lowered.
  • the higher the intensity of the external light the more the potentials of the drive current control node NGr, the drive current control node NGg, and the drive current control node NGb decrease.
  • the higher the intensity of external light the more the organic EL element 21r in the pixel circuit 20R for red, the organic EL element 21g in the pixel circuit 20G for green, and the organic EL element 21b in the pixel circuit 20B for blue.
  • a larger amount of drive current is supplied than it should. This improves the visibility under external light.
  • the visibility of the organic EL display device is improved in an environment where external light is strong while suppressing deterioration in display quality and increase in cost.
  • the adjustment circuit 22 including the photodiode 220, the photocurrent control transistor T8, and the third initialization transistor T9 is provided for each three pixel circuits 20, the layout of the pixel circuits 20 is reduced compared to the first embodiment. more freedom.
  • a portion denoted by reference numeral 81 in FIG. 19 shows some pixel circuits (nine pixel circuits) in the display section 200 .
  • a pixel circuit with a symbol including R is a pixel circuit for red
  • a pixel circuit with a symbol including G is a pixel circuit for green
  • a pixel circuit with a symbol including B is a pixel for blue.
  • One pixel is composed of a pixel circuit for red, a pixel circuit for green, and a pixel circuit for blue.
  • one adjustment circuit 22 is provided corresponding to the pixel circuit 20R1, the pixel circuit 20R2, and the pixel circuit 20R3, and one adjustment circuit 22 is provided corresponding to the pixel circuit 20G1, the pixel circuit 20G2, and the pixel circuit 20G3.
  • a circuit 22 is provided, and one adjustment circuit 22 is provided corresponding to the pixel circuit 20B1, the pixel circuit 20B2, and the pixel circuit 20B3.
  • the adjustment circuit 22 is provided for every three pixel circuits 20 for the same color. According to this modification, it becomes easier to design the size of the adjustment capacitor Cp than in the fourth embodiment.
  • the adjustment circuit 22 may be provided for each of k pixel circuits 20 for the same color, where k is an integer of 2 or more.
  • the organic EL display device has been described as an example in each of the above embodiments and each modification, the present invention is not limited to this.
  • the above disclosure can be applied to an inorganic EL display device, a QLED display device, or the like as long as the display device uses a display element driven by current.
  • DESCRIPTION OF SYMBOLS 20 Pixel circuit 21... Organic EL element 22... Adjustment circuit 100
  • Display control circuit 200 Display part 220... Photodiode 300
  • Source driver (data signal line drive circuit) GL... scanning signal, scanning signal line GLa... first scanning signal, first scanning signal line GLb... second scanning signal, second scanning signal line EM... emission control signal, emission control line NG... drive current control node NP...

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

電流によって駆動される表示素子を用いた表示装置に関し、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性を改善する。 1または複数の画素回路(20)ごとに、駆動電流の量を調整する調整回路(22)および調整キャパシタ(Cp)が設けられる。調整キャパシタ(Cp)については、第1電極は駆動トランジスタ(T4)の制御端子に接続された駆動電流制御ノード(NG)に接続され、第2電極は調整回路(22)内の発光強度調整ノード(NP)に接続される。調整回路22は、ハイレベル電源線と発光強度調整ノード(NP)との間に互いに直列に設けられたフォトダイオード(220)および光電流制御トランジスタ(T8)と、初期化電源線と発光強度調整ノード(NP)との間に設けられた第3初期化トランジスタ(T9)とによって構成される。

Description

表示装置およびその駆動方法
 以下の開示は、画素回路内のトランジスタの特性のばらつきを内部補償方式によって補償する構成を採用している表示装置およびその駆動方法に関する。
 近年、有機EL素子を含む画素回路を備えた有機EL表示装置が実用化されている。有機EL素子は、OLED(Organic Light-Emitting Diode)とも呼ばれており、それに流れる電流に応じた輝度で発光する自発光型の表示素子である。このように有機EL素子は自発光型の表示素子であるので、有機EL表示装置は、バックライトおよびカラーフィルタなどを要する液晶表示装置に比べて、容易に薄型化・低消費電力化・高輝度化などを図ることができる。従って、近年、積極的に有機EL表示装置の開発が進められている。
 有機EL表示装置の画素回路に関し、有機EL素子への電流の供給を制御するための駆動トランジスタとして、典型的には薄膜トランジスタ(TFT)が採用される。しかしながら、薄膜トランジスタについては、その特性にばらつきが生じやすい。具体的には、閾値電圧にばらつきが生じやすい。表示部内に設けられている駆動トランジスタに閾値電圧のばらつきが生じると、輝度のばらつきが生じるので表示品位が低下する。そこで、閾値電圧のばらつきを補償する各種処理(補償処理)が提案されている。
 補償処理の方式としては、駆動トランジスタの閾値電圧の情報を保持するためのキャパシタを画素回路内に設けることによって補償処理を行う内部補償方式と、例えば所定条件下で駆動トランジスタに流れる電流の大きさを画素回路の外部に設けられた回路で測定してその測定結果に基づいて映像信号を補正することによって補償処理を行う外部補償方式とが知られている。
 補償処理に内部補償方式を採用した有機EL表示装置の画素回路として、例えば図20に示すような、1個の有機EL素子99と7個のトランジスタ(典型的には薄膜トランジスタ)T91~T97(第1初期化トランジスタT91、閾値電圧補償トランジスタT92、書き込み制御トランジスタT93、駆動トランジスタT94、電源供給制御トランジスタT95、発光制御トランジスタT96、第2初期化トランジスタT97)と1個の保持キャパシタC9とを含む画素回路90が知られている。以下、駆動トランジスタT94の制御端子に接続されているノードを「駆動電流制御ノード」という。なお、図20には、第n行第m列の画素回路90の構成を示している。
 図21を参照しつつ、図20に示す画素回路90の動作について説明する。期間P91には、走査信号GL(n-1)および走査信号GL(n)はハイレベルであって、発光制御信号EM(n)はローレベルであって、駆動電流制御ノードNGの電位は前のフレームにおけるデータ信号DL(m)の書き込みに応じたレベルである。このとき、電源供給制御トランジスタT95および発光制御トランジスタT96はオン状態であって、図22で符号91を付した矢印で示すように駆動電流が流れている。これにより、有機EL素子99は駆動電流の大きさに応じて発光している。
 期間P92になると、発光制御信号EM(n)がローレベルからハイレベルに変化する。これにより、電源供給制御トランジスタT95および発光制御トランジスタT96がオフ状態となる。その結果、有機EL素子99への電流の供給が遮断され、有機EL素子99は消灯状態となる。また、期間P92には、走査信号GL(n-1)がハイレベルからローレベルに変化することによって、第1初期化トランジスタT91がオン状態となる。これにより、図23で符号92を付した矢印で示すように、初期化電位Viniに基づいて駆動電流制御ノードNGの電位が初期化される。
 期間P93になると、走査信号GL(n-1)がローレベルからハイレベルに変化する。これにより、第1初期化トランジスタT91がオフ状態となる。また、期間P93には、走査信号GL(n)がハイレベルからローレベルに変化する。これにより、閾値電圧補償トランジスタT92、書き込み制御トランジスタT93、および第2初期化トランジスタT97がオン状態となる。閾値電圧補償トランジスタT92および書き込み制御トランジスタT93がオン状態となることにより、図24で符号93を付した矢印で示すように、書き込み制御トランジスタT93、駆動トランジスタT94、および閾値電圧補償トランジスタT92を介して、データ信号DL(m)が駆動電流制御ノードNGに与えられる。このとき、駆動トランジスタT94のゲート-ソース間電圧が駆動トランジスタT94の閾値電圧に等しくなると、駆動トランジスタT94がオフ状態となる。すなわち、駆動電流制御ノードNGの電位は、駆動トランジスタT94のソース電位と駆動トランジスタT94の閾値電圧との和に等しくなる。このようにして、データ信号DL(m)に基づき駆動電流制御ノードNGが充電されるとともに、駆動トランジスタT94の閾値電圧が補償される。また、第2初期化トランジスタT97がオン状態となることにより、図24で符号94を付した矢印で示すように、初期化電位Viniに基づいて有機EL素子99のアノード電位が初期化される。
 期間P94になると、走査信号GL(n)がローレベルからハイレベルに変化する。これにより、閾値電圧補償トランジスタT92、書き込み制御トランジスタT93、および第2初期化トランジスタT97がオフ状態となる。また、期間P94には、発光制御信号EM(n)がハイレベルからローレベルに変化する。これにより、電源供給制御トランジスタT95および発光制御トランジスタT96がオン状態となり、図22で符号91を付した矢印で示すように駆動電流が流れる。すなわち、駆動電流の大きさに応じて有機EL素子99が発光する。
 各画素回路90が上記のように動作することによって表示部への画像表示が行われるが、屋外など外光が強い環境下で有機EL表示装置が使用されると、相対的に明るさの程度が周囲よりも表示画面の方が低くなり、視認性が悪くなる。
 そこで、日本の特開2008-176115号公報には、発光輝度情報と外光照度情報とに基づいて画素毎に発光期間の調整値を算出して当該調整値に基づいてスキャン回路の動作を制御することによって表示輝度の調整を行う有機EL表示装置が開示されている。また、日本の特開2005-92006号公報には、外光の強度に応じて自立的に有機EL素子の発光強度が調整されるよう駆動トランジスタに並列に光検出用ダイオードを設けた構成の画素回路を有する有機EL表示装置が開示されている。
日本の特開2008-176115号公報 日本の特開2005-92006号公報
 ところが、日本の特開2008-176115号公報に開示された手法によれば、外光の強度を検出し、その検出した強度に応じて有機EL素子の発光期間を調整する必要がある。そのため、パネルの外部に制御用のシステムやチップを設ける必要性が生じ、コスト増となる。また、日本の特開2005-92006号公報に開示された手法によれば、光検出用ダイオードが駆動トランジスタと並列かつ有機EL素子と直列に接続されるので、有機EL素子に所望の電流が流れなくなることが懸念される。すなわち、表示品位の低下が懸念される。
 そこで、以下の開示は、電流によって駆動される表示素子を用いた表示装置(例えば、有機EL表示装置)に関し、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性を改善することを目的とする。
 本開示のいくつかの実施形態に係る表示装置は、供給される駆動電流の量に応じた輝度で発光する表示素子を含む複数の画素回路を備えた表示装置であって、
 第1電源電位が与えられる第1電源線と、
 第2電源電位が与えられる第2電源線と、
 初期化電位が与えられる初期化電源線と、
 前記駆動電流の量を調整する調整回路と、
 調整キャパシタと
を備え、
 各画素回路は、
  前記第1電源線と前記第2電源線との間に設けられ、前記第1電源線側の第1端子と前記第2電源線側の第2端子とを有する前記表示素子と、
  制御端子と第1導通端子と第2導通端子とを有し、前記表示素子に所定の発光期間に前記駆動電流を供給するために前記表示素子と直列に設けられた駆動トランジスタと、
  所定の充電期間にデータ信号に基づいて充電される、前記駆動トランジスタの制御端子と前記調整キャパシタの一端とに接続された駆動電流制御ノードと
を含み、
 前記調整回路は、
  前記調整キャパシタの他端に接続された発光強度調整ノードと、
  受光素子を含み、前記充電期間に前記受光素子に入射した光の強度に応じた光電流を生ずるように構成された、前記発光強度調整ノードに接続された受光回路と、
  前記充電期間と前記発光期間との間の期間に前記初期化電位に基づいて前記発光強度調整ノードの初期化を行う発光強度調整ノード初期化回路と
を含む。
 本開示のいくつかの実施形態に係る(表示装置の)駆動方法は、供給される駆動電流の量に応じた輝度で発光する表示素子を含む複数の画素回路を備えた表示装置の駆動方法であって、
 前記表示装置は、
  第1電源電位が与えられる第1電源線と、
  第2電源電位が与えられる第2電源線と、
  初期化電位が与えられる初期化電源線と、
  前記駆動電流の量を調整する調整回路と、
  調整キャパシタと
を備え、
 各画素回路は、
  前記第1電源線と前記第2電源線との間に設けられ、前記第1電源線側の第1端子と前記第2電源線側の第2端子とを有する前記表示素子と、
  制御端子と第1導通端子と第2導通端子とを有し、前記表示素子に所定の発光期間に駆動電流を供給するために前記表示素子と直列に設けられた駆動トランジスタと、
  前記駆動トランジスタの制御端子と前記調整キャパシタの一端とに接続された駆動電流制御ノードと
を含み、
 前記調整回路は、
  前記調整キャパシタの他端に接続された発光強度調整ノードと、
  受光素子を含み、前記発光強度調整ノードに接続された受光回路と
を含み、
 前記駆動方法は、
  前記表示素子への駆動電流の供給を停止するステップと、
  データ信号に基づいて前記駆動電流制御ノードを充電するとともに前記受光回路が前記受光素子に入射した光の強度に応じた光電流を生ずるステップと、
  前記初期化電位に基づいて前記発光強度調整ノードを初期化するステップと、
  前記表示素子への駆動電流の供給を再開するステップと
を含む。
 本開示のいくつかの実施形態によれば、表示装置には、画素回路内の表示素子に供給される駆動電流の量を調整する調整回路が設けられる。調整回路には、発光強度調整ノードに接続され光の強度に応じた光電流を生ずる受光回路と、発光強度調整ノードの初期化を行う発光強度調整ノード初期化回路とが含まれている。また、表示装置には、一端が駆動電流制御ノード(駆動トランジスタの制御端子に接続されたノード)に接続され他端が発光強度調整ノードに接続された調整キャパシタが設けられる。以上のような構成により、外光の強度に応じて発光強度調整ノードの電位を変化させた後、発光強度調整ノードの初期化を行うと、当該初期化による発光強度調整ノードの電位の変化に応じて駆動電流制御ノードの電位が変化する。すなわち、外光の強度に応じて、駆動電流制御ノードの電位が変化する。その結果、外光の強度に応じて本来よりも多くの量の駆動電流が表示素子に供給される。ここで、調整回路内の受光素子は駆動トランジスタや表示素子とは直接には接続されていないので、表示素子の発光期間中に意図しない電流が表示素子に流れることはない。また、外光の強度に応じて駆動電流制御ノードの電位が制御されるので、例えばパネルの外部に制御用のシステムやチップを設ける必要がない。以上より、表示装置(供給される駆動電流の量に応じた輝度で発光する表示素子を含む画素回路を備えた表示装置)に関し、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性が改善される。
第1の実施形態において、第n行第m列の画素回路およびその周辺回路の構成を示す回路図である。 上記第1の実施形態に係る有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態において、画素回路およびその周辺回路の動作について説明するためのタイミングチャートである。 上記第1の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第1の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第1の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第1の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第1の実施形態の変形例において、第n行第m列の画素回路およびその周辺回路の構成を示す回路図である。 第2の実施形態に係る有機EL表示装置の全体構成を示すブロック図である。 上記第2の実施形態において、第n行第m列の画素回路およびその周辺回路の構成を示す回路図である。 上記第2の実施形態において、画素回路およびその周辺回路の動作について説明するためのタイミングチャートである。 第3の実施形態において、第n行第m列の画素回路およびその周辺回路の構成を示す回路図である。 上記第3の実施形態において、画素回路およびその周辺回路の動作について説明するためのタイミングチャートである。 上記第3の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第3の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第3の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 上記第3の実施形態において、画素回路およびその周辺回路の動作について説明するための図である。 第4の実施形態における画素回路およびその周辺回路の構成を示す回路図である。 上記第4の実施形態の変形例において、調整回路をどのように設けるかについて説明するための図である。 補償処理に内部補償方式を採用した有機EL表示装置の画素回路の一般的な構成を示す回路図である。 図20に示す画素回路の動作について説明するためのタイミングチャートである。 図20に示す画素回路の動作について説明するための図である。 図20に示す画素回路の動作について説明するための図である。 図20に示す画素回路の動作について説明するための図である。
 以下、添付図面を参照しつつ、実施形態について説明する。第2~第4の実施形態については、主に第1の実施形態と異なる点について説明し、第1の実施形態と同様の点については適宜説明を省略する。なお、以下においては、iおよびjは2以上の整数であると仮定し、nは1以上i以下の整数であると仮定し、mは1以上j以下の整数であると仮定する。
 <1.第1の実施形態>
 <1.1 全体構成>
 図2は、第1の実施形態に係る有機EL表示装置の全体構成を示すブロック図である。図2に示すように、この有機EL表示装置は、表示制御回路100と表示部200とゲートドライバ(走査信号線駆動回路)300とエミッションドライバ(発光制御線駆動回路)400とソースドライバ(データ信号線駆動回路)500とを備えている。なお、図2では、ゲートドライバ300は表示部200の一端側(図面上で表示部200の左方)のみに設けられているが、表示部200の一端側および他端側(図面上で表示部200の右方)の双方にゲートドライバ300を備える構成を採用することもできる。同様に、表示部200の一端側および他端側の双方にエミッションドライバ400を備える構成を採用することもできる。
 表示部200には、(i+2)本の走査信号線GL(0)~GL(i+1)、i本の発光制御線EM(1)~EM(i)、およびj本のデータ信号線DL(1)~DL(j)が配設されている。なお、図2の表示部200内については、それらの図示を省略している。走査信号線GL(0)~GL(i+1)と発光制御線EM(1)~EM(i)とは典型的には互いに平行になっている。走査信号線GL(0)~GL(i+1)とデータ信号線DL(1)~DL(j)とは直交している。各走査信号線GLは走査信号を伝達し、各発光制御線EMは発光制御信号を伝達し、各データ信号線DLはデータ信号を伝達する。表示部200には、また、i×j個の画素回路20が設けられている。i×j個の画素回路20は、i行×j列の画素マトリクスを構成する。以下、必要に応じて、走査信号にも符号GLを付し、発光制御信号にも符号EMを付し、データ信号にも符号DLを付す。
 さらに、表示部200には、各画素回路20に共通の図示しない電源線が配設されている。より詳細には、有機EL素子を駆動するためのハイレベル電源電位ELVDDを供給する電源線(以下、「ハイレベル電源線」という。)、有機EL素子を駆動するためのローレベル電源電位ELVSSを供給する電源線(以下、「ローレベル電源線」という。)、および初期化電位Viniを供給する電源線(以下、「初期化電源線」という。)が配設されている。初期化電位Viniは、ハイレベル電源電位ELVDDよりも低い電位である。ハイレベル電源電位ELVDD、ローレベル電源電位ELVSS、および初期化電位Viniは、図示しない電源回路から供給される。なお、ハイレベル電源電位ELVDDは第1電源電位に相当し、ローレベル電源電位ELVSSは第2電源電位に相当する。また、ハイレベル電源線は第1電源線に相当し、ローレベル電源線は第2電源線に相当する。
 以下、図2に示す各構成要素の動作について説明する。表示制御回路100は、外部から送られる入力画像信号DINとタイミング信号群(水平同期信号、垂直同期信号など)TGとを受け取り、デジタル映像信号DVと、ゲートドライバ300の動作を制御するゲート制御信号GCTLと、エミッションドライバ400の動作を制御するエミッションドライバ制御信号EMCTLと、ソースドライバ500の動作を制御するソース制御信号SCTLとを出力する。ゲート制御信号GCTLには、ゲートスタートパルス信号、ゲートクロック信号などが含まれている。エミッションドライバ制御信号EMCTLには、エミッションスタートパルス信号、エミッションクロック信号などが含まれている。ソース制御信号SCTLには、ソーススタートパルス信号、ソースクロック信号、ラッチストローブ信号などが含まれている。
 ゲートドライバ300は、走査信号線GL(0)~GL(i+1)に接続されている。ゲートドライバ300は、表示制御回路100から出力されたゲート制御信号GCTLに基づいて、走査信号線GL(0)~GL(i+1)に走査信号を印加する。すなわち、ゲートドライバ300は、走査信号線GL(0)~GL(i+1)を順次に選択的に駆動する。
 エミッションドライバ400は、発光制御線EM(1)~EM(i)に接続されている。エミッションドライバ400は、表示制御回路100から出力されたエミッションドライバ制御信号EMCTLに基づいて、発光制御線EM(1)~EM(i)に発光制御信号を印加する。
 ソースドライバ500は、図示しないjビットのシフトレジスタ、サンプリング回路、ラッチ回路、およびj個のD/Aコンバータなどを含んでいる。シフトレジスタは、縦続接続されたj個のレジスタを有している。シフトレジスタは、ソースクロック信号に基づき、初段のレジスタに供給されるソーススタートパルス信号のパルスを入力端から出力端へと順次に転送する。このパルスの転送に応じて、シフトレジスタの各段からサンプリングパルスが出力される。そのサンプリングパルスに基づいて、サンプリング回路はデジタル映像信号DVを記憶する。ラッチ回路は、サンプリング回路に記憶された1行分のデジタル映像信号DVをラッチストローブ信号に従って取り込んで保持する。D/Aコンバータは、各データ信号線DL(1)~DL(j)に対応するように設けられている。D/Aコンバータは、ラッチ回路に保持されたデジタル映像信号DVをアナログ電圧に変換する。その変換されたアナログ電圧は、データ信号として全てのデータ信号線DL(1)~DL(j)に一斉に印加される。
 以上のようにして、データ信号線DL(1)~DL(j)にデータ信号が印加され、走査信号線GL(0)~GL(i+1)に走査信号が印加され、発光制御線EM(1)~EM(i)に発光制御信号が印加されることによって、入力画像信号DINに基づく画像が表示部200に表示される。
 <1.2 画素回路およびその周辺回路の構成>
 次に、本実施形態における画素回路20およびその周辺回路の構成について説明する。図1は、第n行第m列の画素回路20およびその周辺回路の構成を示す回路図である。本実施形態においては、図1に示すように、1個の画素回路20に対応して、当該画素回路20内の有機EL素子21に供給される駆動電流の量を調整するための1個の調整回路22が設けられている。また、画素回路20と調整回路22との間に調整キャパシタCpが設けられている。以上のように、画素回路20ごとに、調整回路22と調整キャパシタCpとが設けられている。調整キャパシタCpについては、第1電極は画素回路20内の駆動電流制御ノードNGに接続され、第2電極は調整回路22内の発光強度調整ノードNPに接続されている。
 図1に示す画素回路20は、表示素子としての1個の有機EL素子(有機発光ダイオード)21と、7個のトランジスタ(第1初期化トランジスタT1、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、駆動トランジスタT4、電源供給制御トランジスタT5、発光制御トランジスタT6、および第2初期化トランジスタT7)と、1個の保持キャパシタCstとを含んでいる。図1における有機EL素子21、トランジスタT1~T7、および保持キャパシタCstは、それぞれ、図20における有機EL素子99、トランジスタT91~T97、および保持キャパシタC9に相当する。図1に示す調整回路22は、受光素子としての1個のフォトダイオード220と、2個のトランジスタ(光電流制御トランジスタT8および第3初期化トランジスタT9)とを含んでいる。トランジスタT1~T9は、Pチャネル型のトランジスタであって、典型的にはLTPS-TFT(低温ポリシリコンによって形成されたチャネル層を有する薄膜トランジスタ)である。
 第1初期化トランジスタT1については、制御端子は走査信号線GL(n-1)に接続され、第1導通端子は駆動電流制御ノードNGに接続され、第2導通端子は初期化電源線に接続されている。閾値電圧補償トランジスタT2については、制御端子は走査信号線GL(n)に接続され、第1導通端子は駆動トランジスタT4の第2導通端子と発光制御トランジスタT6の第1導通端子とに接続され、第2導通端子は駆動電流制御ノードNGに接続されている。書き込み制御トランジスタT3については、制御端子は走査信号線GL(n)に接続され、第1導通端子はデータ信号線DL(m)に接続され、第2導通端子は駆動トランジスタT4の第1導通端子と電源供給制御トランジスタT5の第2導通端子とに接続されている。駆動トランジスタT4については、制御端子は駆動電流制御ノードNGに接続され、第1導通端子は書き込み制御トランジスタT3の第2導通端子と電源供給制御トランジスタT5の第2導通端子とに接続され、第2導通端子は閾値電圧補償トランジスタT2の第1導通端子と発光制御トランジスタT6の第1導通端子とに接続されている。
 電源供給制御トランジスタT5については、制御端子は発光制御線EM(n)に接続され、第1導通端子はハイレベル電源線に接続され、第2導通端子は書き込み制御トランジスタT3の第2導通端子と駆動トランジスタT4の第1導通端子とに接続されている。発光制御トランジスタT6については、制御端子は発光制御線EM(n)に接続され、第1導通端子は閾値電圧補償トランジスタT2の第1導通端子と駆動トランジスタT4の第2導通端子とに接続され、第2導通端子は第2初期化トランジスタT7の第1導通端子と有機EL素子21のアノード端子(第1端子)とに接続されている。第2初期化トランジスタT7については、制御端子は走査信号線GL(n)に接続され、第1導通端子は発光制御トランジスタT6の第2導通端子と有機EL素子21のアノード端子とに接続され、第2導通端子は初期化電源線に接続されている。保持キャパシタCstについては、第1電極は駆動電流制御ノードNGに接続され、第2電極はハイレベル電源線に接続されている。なお、典型的には、保持キャパシタCstの容量値は調整キャパシタCpの容量値よりも大きい。有機EL素子21については、アノード端子は発光制御トランジスタT6の第2導通端子と第2初期化トランジスタT7の第1導通端子とに接続され、カソード端子(第2端子)はローレベル電源線に接続されている。
 光電流制御トランジスタT8については、制御端子は走査信号線GL(n)に接続され、第1導通端子はハイレベル電源線に接続され、第2導通端子はフォトダイオード220のカソード端子に接続されている。第3初期化トランジスタT9については、制御端子は走査信号線GL(n+1)に接続され、第1導通端子は発光強度調整ノードNPに接続され、第2導通端子は初期化電源線に接続されている。フォトダイオード220については、アノード端子は発光強度調整ノードNPに接続され、カソード端子は光電流制御トランジスタT8の第2導通端子に接続されている。以上のように、ハイレベル電源線-発光強度調整ノードNP間の回路は、光電流制御トランジスタT8がオン状態である期間にフォトダイオード220に入射した光の強度に応じた光電流を生ずるように構成されている。
 なお、第1初期化トランジスタT1によって駆動電流制御ノード初期化トランジスタが実現され、第2初期化トランジスタT7によって表示初期化トランジスタが実現され、第3初期化トランジスタT9によって発光強度調整ノード初期化トランジスタが実現されている。また、光電流制御トランジスタT8、フォトダイオード220、およびそれらに接続された配線によって受光回路が実現され、第3初期化トランジスタT9およびそれに接続された配線によって発光強度調整ノード初期化回路が実現されている。
 <1.3 画素回路およびその周辺回路の動作>
 図3を参照しつつ、図1に示す画素回路20およびその周辺回路の動作について説明する。なお、期間P01および期間P05は発光期間に相当し、期間P03は充電期間に相当する。
 期間P01には、走査信号GL(n-1)、走査信号GL(n)、および走査信号GL(n+1)はハイレベルであって、発光制御信号EM(n)はローレベルであって、駆動電流制御ノードNGの電位は前のフレームにおけるデータ信号DL(m)の書き込みに応じたレベルであって、発光強度調整ノードNPの電位は初期化された状態の電位である。このとき、電源供給制御トランジスタT5および発光制御トランジスタT6はオン状態であって、図4で符号61を付した矢印で示すように駆動電流が流れている。これにより、有機EL素子21は駆動電流の大きさに応じて発光している。
 期間P02になると、発光制御信号EM(n)がローレベルからハイレベルに変化する。これにより、電源供給制御トランジスタT5および発光制御トランジスタT6がオフ状態となる。その結果、有機EL素子21への電流の供給が遮断され、有機EL素子21は消灯状態となる。また、期間P02には、走査信号GL(n-1)がハイレベルからローレベルに変化することによって、第1初期化トランジスタT1がオン状態となる。これにより、図5で符号62を付した矢印で示すように、初期化電位Viniに基づいて駆動電流制御ノードNGの電位が初期化される。
 期間P03になると、走査信号GL(n-1)がローレベルからハイレベルに変化する。これにより、第1初期化トランジスタT1がオフ状態となる。また、期間P03には、走査信号GL(n)がハイレベルからローレベルに変化する。これにより、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、第2初期化トランジスタT7、および光電流制御トランジスタT8がオン状態となる。閾値電圧補償トランジスタT2および書き込み制御トランジスタT3がオン状態となることにより、図6で符号63を付した矢印で示すように、書き込み制御トランジスタT3、駆動トランジスタT4、および閾値電圧補償トランジスタT2を介して、データ信号DL(m)が駆動電流制御ノードNGに与えられる。このとき、駆動トランジスタT4のゲート-ソース間電圧が駆動トランジスタT4の閾値電圧に等しくなると、駆動トランジスタT4がオフ状態となる。すなわち、駆動電流制御ノードNGの電位は、駆動トランジスタT4のソース電位と駆動トランジスタT4の閾値電圧との和に等しくなる。このようにして、データ信号DL(m)に基づき駆動電流制御ノードNGが充電されるとともに、駆動トランジスタT4の閾値電圧が補償される。また、第2初期化トランジスタT7がオン状態となることにより、図6で符号64を付した矢印で示すように、初期化電位Viniに基づいて有機EL素子21のアノード電位が初期化される。また、光電流制御トランジスタT8がオン状態となることにより、図6で符号65を付した矢印で示すように、フォトダイオード220に入射した光(すなわち、外光)の強度に応じた電流(光電流)が光電流制御トランジスタT8とフォトダイオード220とを介してハイレベル電源線から発光強度調整ノードNPへと流れる。これにより、発光強度調整ノードNPが充電される。これに関し、外光の強度が高いほど、光電流の量は大きくなり、発光強度調整ノードNPの電位が大きく上昇する。
 期間P04になると、走査信号GL(n)がローレベルからハイレベルに変化する。これにより、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、第2初期化トランジスタT7、および光電流制御トランジスタT8がオフ状態となる。また、期間P04には、走査信号GL(n+1)がハイレベルからローレベルに変化する。これにより、第3初期化トランジスタT9がオン状態となり、図7で符号66を付した矢印で示すように、初期化電位Viniに基づいて発光強度調整ノードNPの電位が初期化される。ところで、本実施形態においては初期化電位Viniはハイレベル電源電位ELVDDよりも低い電位に設定されており、上記期間P03には、発光強度調整ノードNPが充電されることによって、発光強度調整ノードNPの電位がハイレベル電源電位ELVDDよりも低くかつ初期化電位Viniよりも高くなる。そのため、この期間P04に初期化電位Viniに基づいて発光強度調整ノードNPの電位が初期化されると、発光強度調整ノードNPの電位は低下する。これにより、調整キャパシタCpを介して駆動電流制御ノードNGの電位も低下する。
 期間P05になると、走査信号GL(n+1)がローレベルからハイレベルに変化する。これにより、第3初期化トランジスタT9がオフ状態となる。また、期間P05には、発光制御信号EM(n)がハイレベルからローレベルに変化する。これにより、電源供給制御トランジスタT5および発光制御トランジスタT6がオン状態となり、図4で符号61を付した矢印で示すように駆動電流が流れる。すなわち、駆動電流の大きさに応じて有機EL素子21が発光する。
 表示部200内の各画素回路20が上記のように動作することによって、入力画像信号DINに基づく画像が表示部200に表示される。また、期間P03には、外光の強度が高いほど、発光強度調整ノードNPの電位が大きく上昇する。そして、その期間P03における発光強度調整ノードNPの電位の上昇の程度に応じて、期間P04に駆動電流制御ノードNGの電位が低下する。すなわち、外光の強度が高いほど、本来よりも多くの量の駆動電流が有機EL素子21に供給される。このようにして、外光下での視認性が改善される。
 なお、外光の強度に応じて期間P04に発光強度調整ノードNPの電位が好適に低下することにより良好な視認性が得られるよう、フォトダイオード220や調整キャパシタCpのサイズが適切に設計されている必要がある。
 ところで、本実施形態においては、発光制御信号EM(n)がハイレベルで維持されている期間中に、走査信号GL(n-1)、走査信号GL(n)、および走査信号GL(n+1)が順次に所定期間ずつローレベルとなっている。換言すれば、エミッションドライバ400が第n番目の発光制御線を非選択状態で維持している期間中に、ゲートドライバ300は、第(n-1)番目の走査信号線、第n番目の走査信号線、および第(n+1)番目の走査信号線を順次に所定期間ずつ選択状態にする。このような動作が行われるように、表示制御回路100からゲートドライバ300にゲート制御信号GCTLが送信され、表示制御回路100からエミッションドライバ400にエミッションドライバ制御信号EMCTLが送信されている。
 なお、本実施形態においては、期間P01から期間P02に遷移する際の動作によって駆動電流の供給を停止するステップが実現され、期間P03における動作によって駆動電流制御ノードを充電するとともに光の強度に応じた光電流を生ずるステップが実現され、期間P04における動作によって発光強度調整ノードを初期化するステップが実現され、期間P04から期間P05に遷移する際の動作によって駆動電流の供給を再開するステップが実現されている。
 <1.4 効果>
 本実施形態によれば、画素回路20内の有機EL素子21に供給される駆動電流の量を調整する調整回路22が設けられる。画素回路20内の駆動電流制御ノードNGがデータ信号に基づいて充電される時に、外光の強度に応じて調整回路22内の発光強度調整ノードNPの電位が上昇する。その後、発光期間が開始されるまでに、発光強度調整ノードNPの初期化が行われることによって、発光強度調整ノードNPの電位の低下に伴って駆動電流制御ノードNGの電位が低下する。これにより、外光の強度に応じて本来よりも多くの量の駆動電流が有機EL素子21に供給され、外光下での視認性が改善される。
 ところで、調整回路22内のフォトダイオード220は、駆動トランジスタT4や有機EL素子21とは直接には接続されていない。それ故、日本の特開2005-92006号公報に開示された有機EL表示装置とは異なり、発光期間中に意図しない電流が有機EL素子21に流れることはない。また、フォトダイオード220はそれに対応する有機EL素子21が消灯状態となっている期間にのみ光電流を生ずる。従って、有機EL素子21の発光の影響を受けることなく外光の強度が検出される。これにより、駆動電流の量を精度良く調整することができる。さらに、調整回路22が画素回路20ごとに設けられていることからも、駆動電流の量を精度良く調整することができる。以上より、表示品位の低下を引き起こすことなく、外光下での視認性が効果的に改善される。
 また、本実施形態によれば、外光の強度に応じて駆動電流制御ノードNGの電位が制御されるので、例えばパネルの外部で発光期間の長さやデータ電圧(データ信号の値)を調整するための計算処理を行う必要がない。すなわち、日本の特開2008-176115号公報に開示された有機EL表示装置とは異なり、パネルの外部に制御用のシステムやチップを設ける必要がない。さらに、外光の強度に応じてデータ電圧を変化させる手法を採用する場合にはデータ電圧を広い範囲で変化させることのできる特別なシステムやチップが必要となるが、本実施形態によれば、データ電圧を変化させる必要はないので、特別なシステムやチップは不要である。
 以上のように、本実施形態によれば、有機EL表示装置に関し、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性が改善される。
 <1.5 変形例>
 調整回路22の構成に関し、第1の実施形態では、フォトダイオード220は光電流制御トランジスタT8と発光強度調整ノードNPとの間に設けられていた。しかしながら、これには限定されず、図8に示すようにフォトダイオード220はハイレベル電源線と光電流制御トランジスタT8との間に設けられていても良い。このような構成においても、画素回路20および調整回路22は第1の実施形態と同様に動作する。
 <2.第2の実施形態>
 <2.1 概要など>
 第1の実施形態においては、画素回路20内のトランジスタおよび調整回路22内のトランジスタは全てPチャネル型のトランジスタ(典型的には、LTPS-TFT)であった。これに対して、本実施形態においては、画素回路20内のトランジスタにはPチャネル型のトランジスタとNチャネル型のトランジスタとが含まれ、調整回路22内のトランジスタは全てNチャネル型のトランジスタである。Pチャネル型のトランジスタについては典型的にはLTPS-TFTであって、Nチャネル型のトランジスタについては典型的にはIGZO-TFT(インジウム、ガリウム、亜鉛、および酸素を含む酸化物半導体によって形成されたチャネル層を有する薄膜トランジスタ)である。
 全体構成については、第1の実施形態とほぼ同様である。但し、本実施形態においては、表示部200には、走査信号線として、画素回路20内のPチャネル型のトランジスタの状態を制御する第1走査信号線と、画素回路20内のNチャネル型のトランジスタおよび調整回路22内のNチャネル型のトランジスタの状態を制御する第2走査信号線とが配設されている。詳しくは、表示部200には、走査信号線として、(i+2)本の第1走査信号線GLa(0)~GLa(i+1)と、i本の第2走査信号線GLb(1)~GLb(i)とが配設されている(図9参照)。ゲートドライバ300は、第1走査信号線GLa(0)~GLa(i+1)を順次に選択的に駆動するとともに第2走査信号線GLb(1)~GLb(i)を順次に選択的に駆動する。
 <2.2 画素回路およびその周辺回路の構成>
 図10は、本実施形態における第n行第m列の画素回路20およびその周辺回路の構成を示す回路図である。第1の実施形態とは異なり、第1初期化トランジスタT1、閾値電圧補償トランジスタT2、第2初期化トランジスタT7、光電流制御トランジスタT8、および第3初期化トランジスタT9は、Nチャネル型のトランジスタである。第1初期化トランジスタT1の制御端子は、第1走査信号線GLa(n-1)に接続されている。閾値電圧補償トランジスタT2の制御端子は、第1走査信号線GLa(n)に接続されている。書き込み制御トランジスタT3の制御端子は、第2走査信号線GLb(n)に接続されている。第2初期化トランジスタT7の制御端子は、第1走査信号線GLa(n)に接続されている。光電流制御トランジスタT8の制御端子は、第1走査信号線GLa(n)に接続されている。第3初期化トランジスタT9の制御端子は、第1走査信号線GLa(n+1)に接続されている。上記以外の点については、第1の実施形態と同様である。なお、第1の実施形態の変形例のようにフォトダイオード220をハイレベル電源線と光電流制御トランジスタT8との間に設けることもできる。
 <2.3 画素回路およびその周辺回路の動作>
 図11を参照しつつ、図10に示す画素回路20およびその周辺回路の動作について説明する。なお、期間P11および期間P15は発光期間に相当し、期間P13は充電期間に相当する。
 期間P11には、第1走査信号GLa(n-1)、第1走査信号GLa(n)、および第1走査信号GLa(n+1)はローレベルであって、第2走査信号GLb(n)はハイレベルであって、発光制御信号EM(n)はローレベルであって、駆動電流制御ノードNGの電位は前のフレームにおけるデータ信号DL(m)の書き込みに応じたレベルであって、発光強度調整ノードNPの電位は初期化された状態の電位である。このとき、電源供給制御トランジスタT5および発光制御トランジスタT6はオン状態であって、有機EL素子21は駆動電流の大きさに応じて発光している。
 期間P12になると、発光制御信号EM(n)がローレベルからハイレベルに変化する。これにより、電源供給制御トランジスタT5および発光制御トランジスタT6がオフ状態となる。その結果、有機EL素子21への電流の供給が遮断され、有機EL素子21は消灯状態となる。また、期間P12には、第1走査信号GLa(n-1)がローレベルからハイレベルに変化することによって、第1初期化トランジスタT1がオン状態となる。これにより、初期化電位Viniに基づいて駆動電流制御ノードNGの電位が初期化される。
 期間P13になると、第1走査信号GLa(n-1)がハイレベルからローレベルに変化する。これにより、第1初期化トランジスタT1がオフ状態となる。また、期間P13には、第1走査信号GLa(n)がローレベルからハイレベルに変化するとともに第2走査信号GLb(n)がハイレベルからローレベルに変化する。これにより、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、第2初期化トランジスタT7、および光電流制御トランジスタT8がオン状態となる。閾値電圧補償トランジスタT2および書き込み制御トランジスタT3がオン状態となることにより、書き込み制御トランジスタT3、駆動トランジスタT4、および閾値電圧補償トランジスタT2を介して、データ信号DL(m)が駆動電流制御ノードNGに与えられる。また、第2初期化トランジスタT7がオン状態となることにより、初期化電位Viniに基づいて有機EL素子21のアノード電位が初期化される。また、光電流制御トランジスタT8がオン状態となることにより、フォトダイオード220に入射した光(すなわち、外光)の強度に応じた電流(光電流)が光電流制御トランジスタT8とフォトダイオード220とを介してハイレベル電源線から発光強度調整ノードNPへと流れる。これにより、発光強度調整ノードNPが充電される。
 期間P14になると、第1走査信号GLa(n)がハイレベルからローレベルに変化するとともに第2走査信号GLb(n)がローレベルからハイレベルに変化する。これにより、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、第2初期化トランジスタT7、および光電流制御トランジスタT8がオフ状態となる。また、期間P14には、第1走査信号GLa(n+1)がローレベルからハイレベルに変化する。これにより、第3初期化トランジスタT9がオン状態となり、初期化電位Viniに基づいて発光強度調整ノードNPの電位が初期化される。このとき、第1の実施形態と同様、発光強度調整ノードNPの電位は低下する。これにより、調整キャパシタCpを介して駆動電流制御ノードNGの電位も低下する。
 期間P15になると、第1走査信号GLa(n+1)がハイレベルからローレベルに変化する。これにより、第3初期化トランジスタT9がオフ状態となる。また、期間P15には、発光制御信号EM(n)がハイレベルからローレベルに変化する。これにより、電源供給制御トランジスタT5および発光制御トランジスタT6がオン状態となり、駆動電流の大きさに応じて有機EL素子21が発光する。
 ところで、本実施形態においては、発光制御信号EM(n)がハイレベルで維持されている期間中に、第1走査信号GLa(n-1)、第1走査信号GLa(n)、および第1走査信号GLa(n+1)が順次に所定期間ずつハイレベルとなっている。換言すれば、エミッションドライバ400が第n番目の発光制御線を非選択状態で維持している期間中に、ゲートドライバ300は、第(n-1)番目の第1走査信号線、第n番目の第1走査信号線、および第(n+1)番目の第1走査信号線を順次に所定期間ずつ選択状態にする。このような動作が行われるように、表示制御回路100からゲートドライバ300にゲート制御信号GCTLが送信され、表示制御回路100からエミッションドライバ400にエミッションドライバ制御信号EMCTLが送信されている。また、第1走査信号GLa(n)がハイレベルとなっている期間には第2走査信号GLb(n)はローレベルとなっている。換言すれば、ゲートドライバ300は、第n番目の第1走査信号線を選択状態としている期間に第n番目の第2走査信号線を選択状態とする。
 <2.4 効果>
 本実施形態によれば、Nチャネル型のトランジスタとPチャネル型のトランジスタとを含む画素回路20を採用している有機EL表示装置に関し、第1の実施形態と同様、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性が改善される。また、Nチャネル型のトランジスタとしてIGZO-TFTを採用することによって電荷のリークが抑制されるので、低周波駆動を行うことが可能となる。これにより、消費電力が顕著に低減される。
 <3.第3の実施形態>
 <3.1 概要など>
 第1の実施形態においては、画素回路20内のトランジスタおよび調整回路22内のトランジスタは全てPチャネル型のトランジスタであった。第2の実施形態においては、画素回路20内のトランジスタにはPチャネル型のトランジスタとNチャネル型のトランジスタとが含まれ、調整回路22内のトランジスタは全てNチャネル型のトランジスタであった。これらに対して、本実施形態においては、画素回路20内のトランジスタおよび調整回路22内のトランジスタは全てNチャネル型のトランジスタ(典型的には、IGZO-TFT)である。
 全体構成については、第1の実施形態とほぼ同様である。但し、本実施形態においては、初期化電位として第1初期化電位Vini1および第2初期化電位Vini2が用いられる。以下、第1初期化電位Vini1を供給する電源線を「第1初期化電源線」といい、第2初期化電位Vini2を供給する電源線を「第2初期化電源線」という。典型的には、第1初期化電位Vini1はハイレベル電源電位ELVDDよりも高い電位であり、第2初期化電位Vini1はローレベル電源電位ELVSSよりも低い電位である。
 <3.2 画素回路およびその周辺回路の構成>
 図12は、本実施形態における第n行第m列の画素回路20およびその周辺回路の構成を示す回路図である。上述したように、画素回路20内のトランジスタT1~T7および調整回路22内のトランジスタT8,T9は全てNチャネル型のトランジスタである。
 第1初期化トランジスタT1の第2導通端子は第1初期化電源線に接続されている。第2初期化トランジスタT7の第2導通端子は第2初期化電源線に接続されている。第3初期化トランジスタT9の第2導通端子は第1初期化電源線に接続されている。フォトダイオード220については、アノード端子は光電流制御トランジスタT8の第2導通端子に接続され、カソード端子は発光強度調整ノードNPに接続されている。なお、第1の実施形態の変形例のようにフォトダイオード220をハイレベル電源線と光電流制御トランジスタT8との間に設けることもできる。
 <3.3 画素回路およびその周辺回路の動作>
 図13を参照しつつ、図12に示す画素回路20およびその周辺回路の動作について説明する。なお、期間P21および期間P25は発光期間に相当し、期間P23は充電期間に相当する。
 期間P21には、走査信号GL(n-1)、走査信号GL(n)、および走査信号GL(n+1)はローレベルであって、発光制御信号EM(n)はハイレベルであって、駆動電流制御ノードNGの電位は前のフレームにおけるデータ信号DL(m)の書き込みに応じたレベルであって、発光強度調整ノードNPの電位は第1初期化電位Vini1に基づき初期化された状態の電位である。このとき、電源供給制御トランジスタT5および発光制御トランジスタT6はオン状態であって、図14で符号71を付した矢印で示すように駆動電流が流れている。これにより、有機EL素子21は駆動電流の大きさに応じて発光している。
 期間P22になると、発光制御信号EM(n)がハイレベルからローレベルに変化する。これにより、電源供給制御トランジスタT5および発光制御トランジスタT6がオフ状態となる。その結果、有機EL素子21への電流の供給が遮断され、有機EL素子21は消灯状態となる。また、期間P22には、走査信号GL(n-1)がローレベルからハイレベルに変化することによって、第1初期化トランジスタT1がオン状態となる。これにより、図15で符号72を付した矢印で示すように、第1初期化電位Vini1に基づいて駆動電流制御ノードNGの電位が初期化される。
 期間P23になると、走査信号GL(n-1)がハイレベルからローレベルに変化する。これにより、第1初期化トランジスタT1がオフ状態となる。また、期間P23には、走査信号GL(n)がローレベルからハイレベルに変化する。これにより、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、第2初期化トランジスタT7、および光電流制御トランジスタT8がオン状態となる。閾値電圧補償トランジスタT2および書き込み制御トランジスタT3がオン状態となることにより、図16で符号73を付した矢印で示すように、書き込み制御トランジスタT3、駆動トランジスタT4、および閾値電圧補償トランジスタT2を介して、データ信号DL(m)が駆動電流制御ノードNGに与えられる。また、第2初期化トランジスタT7がオン状態となることにより、図16で符号74を付した矢印で示すように、第2初期化電位Vini2に基づいて有機EL素子21のアノード電位が初期化される。また、光電流制御トランジスタT8がオン状態となることにより、図16で符号75を付した矢印で示すように、フォトダイオード220に入射した光(すなわち、外光)の強度に応じた電流(光電流)がフォトダイオード220と光電流制御トランジスタT8とを介して発光強度調整ノードNPからハイレベル電源線へと流れる。これに関し、外光の強度が高いほど、光電流の量は大きくなり、発光強度調整ノードNPの電位が大きく低下する。
 期間P24になると、走査信号GL(n)がハイレベルからローレベルに変化する。これにより、閾値電圧補償トランジスタT2、書き込み制御トランジスタT3、第2初期化トランジスタT7、および光電流制御トランジスタT8がオフ状態となる。また、期間P24には、走査信号GL(n+1)がローレベルからハイレベルに変化する。これにより、第3初期化トランジスタT9がオン状態となり、図17で符号76を付した矢印で示すように、第1初期化電位Vini1に基づいて発光強度調整ノードNPの電位が初期化される。ところで、本実施形態においては第1初期化電位Vini1はハイレベル電源電位ELVDDよりも高い電位に設定されており、上記期間P23には、発光強度調整ノードNPの放電によって、発光強度調整ノードNPの電位が第1初期化電位Vini1よりも低くかつハイレベル電源電位ELVDDよりも高くなる。そのため、この期間P24に第1初期化電位Vini1に基づいて発光強度調整ノードNPの電位が初期化されると、発光強度調整ノードNPの電位は上昇する。これにより、調整キャパシタCpを介して駆動電流制御ノードNGの電位も上昇する。
 期間P25になると、走査信号GL(n+1)がハイレベルからローレベルに変化する。これにより、第3初期化トランジスタT9がオフ状態となる。また、期間P25には、発光制御信号EM(n)がローレベルからハイレベルに変化する。これにより、電源供給制御トランジスタT5および発光制御トランジスタT6がオン状態となり、図14で符号71を付した矢印で示すように駆動電流が流れる。すなわち、駆動電流の大きさに応じて有機EL素子21が発光する。
 <3.4 効果>
 本実施形態においては、上記期間P23には、外光の強度が高いほど、発光強度調整ノードNPの電位が大きく低下する。そして、その期間P23における発光強度調整ノードNPの電位の低下の程度に応じて、上記期間P24に駆動電流制御ノードNGの電位が上昇する。ここで、駆動トランジスタT4は、Nチャネル型のトランジスタである。従って、外光の強度が高いほど、本来よりも多くの量の駆動電流が有機EL素子21に供給される。このようにして、外光下での視認性が改善される。また、第1の実施形態と同様、表示品位の低下を引き起こすこともなく、特別なシステムやチップを設ける必要もない。以上より、本実施形態によれば、画素回路20内のトランジスタをNチャネル型のトランジスタのみで構成している有機EL表示装置に関し、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性が改善される。また、第2の実施形態と同様、Nチャネル型のトランジスタとしてIGZO-TFTを採用することによって低周波駆動を行うことが可能となり、消費電力が顕著に低減される。
 <4.第4の実施形態>
 <4.1 概要など>
 第1~第3の実施形態においては、調整回路22および調整キャパシタCpは画素回路20ごとに設けられていた。これに対して、本実施形態においては、調整キャパシタCpは画素回路20ごとに設けられるが、調整回路22は3つの画素回路20ごとに設けられる。全体構成については、第1の実施形態と同様である。
 <4.2 画素回路およびその周辺回路の構成>
 図18は、本実施形態における画素回路20およびその周辺回路の構成を示す回路図である。図18から把握されるように、本実施形態においては、1つの画素を構成する3つの画素回路20(赤色用の画素回路20R、緑色用の画素回路20B、および青色用の画素回路20B)につき1つの調整回路22が設けられる。より詳しくは、1つの画素を構成する3つの画素回路20ごとに、1つのフォトダイオード220と1つの光電流制御トランジスタT8と1つの第3初期化トランジスタT9とが設けられる。調整キャパシタCpについては画素回路20ごとに設けられる。すなわち、1つの画素を構成する3つの画素回路20ごとに、赤色用の画素回路20R内の駆動電流制御ノードNGrに接続された第1電極と発光強度調整ノードNPに接続された第2電極とからなる調整キャパシタCprと、緑色用の画素回路20G内の駆動電流制御ノードNGgに接続された第1電極と発光強度調整ノードNPに接続された第2電極とからなる調整キャパシタCpgと、青色用の画素回路20B内の駆動電流制御ノードNGbに接続された第1電極と発光強度調整ノードNPに接続された第2電極とからなる調整キャパシタCpbとが設けられる。
 上記のように調整回路22は3つの画素回路20ごとに設けられ、それら3つの画素回路20に対応する3つの調整キャパシタCp(調整キャパシタCpr、調整キャパシタCpg、および調整キャパシタCpb)の第2電極は同じ発光強度調整ノードNPに接続されている。また、それら3つの調整キャパシタCp(調整キャパシタCpr、調整キャパシタCpg、および調整キャパシタCpb)のそれぞれの第1電極は、対応する画素回路20に含まれる駆動電流制御ノードNGに接続されている。
 なお、本実施形態においては画素回路20内のトランジスタは全てPチャネル型のトランジスタであるが、これには限定されない。第2の実施形態と同様にして、画素回路20内のトランジスタにPチャネル型のトランジスタとNチャネル型のトランジスタとを含めるようにしても良い(図10参照)。この場合、光電流制御トランジスタT8および第3初期化トランジスタT9にはNチャネル型のトランジスタが採用される。また、第3の実施形態と同様にして、画素回路20内のトランジスタを全てNチャネル型のトランジスタにしても良い(図12参照)。この場合にも、光電流制御トランジスタT8および第3初期化トランジスタT9にはNチャネル型のトランジスタが採用される。
 <4.3 画素回路およびその周辺回路の動作>
 各画素回路20(赤色用の画素回路20R、緑色用の画素回路20B、および青色用の画素回路20B)およびその周辺回路は、第1の実施形態と同様に動作する(図3参照)。これに関し、初期化電位Viniに基づいて発光強度調整ノードNPの電位が初期化される際(図3における期間P04を参照)、調整キャパシタCpr、調整キャパシタCpg、および調整キャパシタCpbのそれぞれの容量値(静電容量)に応じて、赤色用の画素回路20R内の駆動電流制御ノードNGr、緑色用の画素回路20G内の駆動電流制御ノードNGg、および青色用の画素回路20B内の駆動電流制御ノードNGbのそれぞれの電位が低下する。その際、外光の強度が高いほど、駆動電流制御ノードNGr、駆動電流制御ノードNGg、および駆動電流制御ノードNGbの電位は大きく低下する。すなわち、外光の強度が高いほど、赤色用の画素回路20R内の有機EL素子21r、緑色用の画素回路20G内の有機EL素子21g、および青色用の画素回路20B内の有機EL素子21bに本来よりも多くの量の駆動電流が供給される。これにより、外光下での視認性が改善される。
 なお、駆動電流制御ノードNGr、駆動電流制御ノードNGg、および駆動電流制御ノードNGbの電位が外光の強度に応じて好適に制御されることにより良好な視認性が得られるよう、フォトダイオード220や3つの調整キャパシタCp(調整キャパシタCpr、調整キャパシタCpg、および調整キャパシタCpb)のサイズが適切に設計されている必要がある。
 <4.4 効果>
 本実施形態によれば、第1の実施形態と同様、有機EL表示装置に関し、表示品位の低下やコスト増を抑制しつつ、外光が強い環境下での視認性が改善される。また、フォトダイオード220と光電流制御トランジスタT8と第3初期化トランジスタT9とからなる調整回路22が3つの画素回路20ごとに設けられるので、第1の実施形態に比べて画素回路20のレイアウトの自由度が高くなる。
 <4.5 変形例>
 第4の実施形態においては、1つの画素を構成する3つの画素回路20(赤色用の画素回路20R、緑色用の画素回路20B、および青色用の画素回路20B)ごとに調整回路22が設けられていた。しかしながら、これには限定されず、同じ色用の複数個(例えば、3個)の画素回路20ごとに調整回路22が設けられるようにしても良い。これについて、図19を参照しつつ、以下に説明する。
 図19で符号81を付した部分には、表示部200内の一部の画素回路(9個の画素回路)を示している。Rを含む符号を付した画素回路は赤色用の画素回路であり、Gを含む符号を付した画素回路は緑色用の画素回路であり、Bを含む符号を付した画素回路は青色用の画素回路である。1つの画素は、赤色用の画素回路と緑色用の画素回路と青色用の画素回路とによって構成される。本変形例においては、画素回路20R1と画素回路20R2と画素回路20R3とに対応して1つの調整回路22が設けられ、画素回路20G1と画素回路20G2と画素回路20G3とに対応して1つの調整回路22が設けられ、画素回路20B1と画素回路20B2と画素回路20B3とに対応して1つの調整回路22が設けられる。このように、同じ色用の3個の画素回路20ごとに調整回路22が設けられている。このような本変形例によれば、第4の実施形態に比べて調整キャパシタCpのサイズの設計が容易となる。
 なお、kを2以上の整数として、同じ色用のk個の画素回路20ごとに調整回路22を設けるようにしても良い。
 <5.その他>
 上記各実施形態および上記各変形例では有機EL表示装置を例に挙げて説明したが、これには限定されない。電流によって駆動される表示素子を用いた表示装置であれば、無機EL表示装置、QLED表示装置などにも上記開示内容を適用することができる。
20…画素回路
21…有機EL素子
22…調整回路
100…表示制御回路
200…表示部
220…フォトダイオード
300…ゲートドライバ(走査信号線駆動回路)
400…エミッションドライバ(発光制御線駆動回路)
500…ソースドライバ(データ信号線駆動回路)
GL…走査信号、走査信号線
GLa…第1走査信号、第1走査信号線
GLb…第2走査信号、第2走査信号線
EM…発光制御信号、発光制御線
NG…駆動電流制御ノード
NP…発光強度調整ノード
T1…第1初期化トランジスタ
T2…閾値電圧補償トランジスタ
T3…書き込み制御トランジスタ
T4…駆動トランジスタ
T5…電源供給制御トランジスタ
T6…発光制御トランジスタ
T7…第2初期化トランジスタ
T8…光電流制御トランジスタ
T9…第3初期化トランジスタ
Cst…保持キャパシタ
Cp…調整キャパシタ

Claims (20)

  1.  供給される駆動電流の量に応じた輝度で発光する表示素子を含む複数の画素回路を備えた表示装置であって、
     第1電源電位が与えられる第1電源線と、
     第2電源電位が与えられる第2電源線と、
     初期化電位が与えられる初期化電源線と、
     前記駆動電流の量を調整する調整回路と、
     調整キャパシタと
    を備え、
     各画素回路は、
      前記第1電源線と前記第2電源線との間に設けられ、前記第1電源線側の第1端子と前記第2電源線側の第2端子とを有する前記表示素子と、
      制御端子と第1導通端子と第2導通端子とを有し、前記表示素子に所定の発光期間に前記駆動電流を供給するために前記表示素子と直列に設けられた駆動トランジスタと、
      所定の充電期間にデータ信号に基づいて充電される、前記駆動トランジスタの制御端子と前記調整キャパシタの一端とに接続された駆動電流制御ノードと
    を含み、
     前記調整回路は、
      前記調整キャパシタの他端に接続された発光強度調整ノードと、
      受光素子を含み、前記充電期間に前記受光素子に入射した光の強度に応じた光電流を生ずるように構成された、前記発光強度調整ノードに接続された受光回路と、
      前記充電期間と前記発光期間との間の期間に前記初期化電位に基づいて前記発光強度調整ノードの初期化を行う発光強度調整ノード初期化回路と
    を含むことを特徴とする、表示装置。
  2.  前記調整回路および前記調整キャパシタは、画素回路ごとに設けられていることを特徴とする、請求項1に記載の表示装置。
  3.  前記受光回路は、制御端子と第1導通端子と第2導通端子とを有し前記第1電源線と前記発光強度調整ノードとの間に前記受光素子と直列に設けられた光電流制御トランジスタを含み、
     前記光電流制御トランジスタは、前記充電期間以外の期間にはオフ状態で維持され、前記充電期間にオン状態となることを特徴とする、請求項2に記載の表示装置。
  4.  前記駆動トランジスタは、Pチャネル型の薄膜トランジスタであって、
     前記第1電源電位は、前記第2電源電位よりも高く、
     前記第1電源電位は、前記初期化電位よりも高く、
     前記充電期間に前記第1電源線から前記発光強度調整ノードへと前記光電流が流れるように前記受光素子と前記光電流制御トランジスタとが配置され、
     前記発光強度調整ノード初期化回路によって前記発光強度調整ノードの初期化が行われることによって、前記発光強度調整ノードの電位は低下することを特徴とする、請求項3に記載の表示装置。
  5.  iを2以上の整数として0番目から(i+1)番目までの(i+2)本の走査信号線と、
     前記(i+2)本の走査信号線を順次に選択的に駆動する走査信号線駆動回路と
    を更に備え、
     jを2以上の整数として、前記複数の画素回路は、i行×j列の画素マトリクスを構成し、
     前記発光強度調整ノード初期化回路は、制御端子と前記発光強度調整ノードに接続された第1導通端子と前記初期化電源線に接続された第2導通端子とを有する発光強度調整ノード初期化トランジスタを含み、
     nを1以上i以下の整数として前記画素マトリクスの第n行に含まれる画素回路に対応する調整回路において、
      前記光電流制御トランジスタの制御端子は、第n番目の走査信号線に接続され、
      前記発光強度調整ノード初期化トランジスタの制御端子は、第(n+1)番目の走査信号線に接続されていることを特徴とする、請求項4に記載の表示装置。
  6.  1番目からi番目までのi本の発光制御線と、
     前記i本の発光制御線を駆動する発光制御線駆動回路と、
     1番目からj番目までのj本のデータ信号線と、
     前記j本のデータ信号線に前記データ信号を印加するデータ信号線駆動回路と
    を更に備え、
     mを1以上j以下の整数として前記画素マトリクスの第n行第m列に含まれる画素回路は、
      一端が前記駆動電流制御ノードに接続され、他端が前記第1電源線に接続された保持キャパシタと
      前記第n番目の走査信号線に接続された制御端子と、第m番目のデータ信号線に接続された第1導通端子と、前記駆動トランジスタの第1導通端子に接続された第2導通端子とを有する書き込み制御トランジスタと、
      前記第n番目の走査信号線に接続された制御端子と、前記駆動トランジスタの第2導通端子に接続された第1導通端子と、前記駆動電流制御ノードに接続された第2導通端子とを有する閾値電圧補償トランジスタと、
      第(n-1)番目の走査信号線に接続された制御端子と、前記駆動電流制御ノードに接続された第1導通端子と、前記初期化電源線に接続された第2導通端子とを有する駆動電流制御ノード初期化トランジスタと、
      前記第n番目の走査信号線に接続された制御端子と、前記表示素子の第1端子に接続された第1導通端子と、前記初期化電源線に接続された第2導通端子とを有する表示初期化トランジスタと、
      第n番目の発光制御線に接続された制御端子と、前記第1電源線に接続された第1導通端子と、前記駆動トランジスタの第1導通端子に接続された第2導通端子とを有する電源供給制御トランジスタと、
      前記第n番目の発光制御線に接続された制御端子と、前記駆動トランジスタの第2導通端子に接続された第1導通端子と、前記表示素子の第1端子に接続された第2導通端子とを有する発光制御トランジスタと
    を含み、
     前記光電流制御トランジスタ、前記発光強度調整ノード初期化トランジスタ、前記書き込み制御トランジスタ、前記閾値電圧補償トランジスタ、前記駆動電流制御ノード初期化トランジスタ、前記表示初期化トランジスタ、前記電源供給制御トランジスタ、および前記発光制御トランジスタは、Pチャネル型の薄膜トランジスタであって、
     前記発光制御線駆動回路が前記第n番目の発光制御線を非選択状態で維持している期間中に、前記走査信号線駆動回路は、前記第(n-1)番目の走査信号線、前記第n番目の走査信号線、および前記第(n+1)番目の走査信号線を順次に所定期間ずつ選択状態にすることを特徴とする、請求項5に記載の表示装置。
  7.  前記発光強度調整ノード初期化回路は、制御端子と前記発光強度調整ノードに接続された第1導通端子と前記初期化電源線に接続された第2導通端子とを有する発光強度調整ノード初期化トランジスタを含み、
     前記光電流制御トランジスタおよび前記発光強度調整ノード初期化トランジスタは、酸化物半導体によりチャネル層が形成されたNチャネル型の薄膜トランジスタであることを特徴とする、請求項4に記載の表示装置。
  8.  iを2以上の整数として0番目から(i+1)番目までの(i+2)本の第1走査信号線と、
     1番目からi番目までのi本の第2走査信号線と、
     前記(i+2)本の第1走査信号線を順次に選択的に駆動するとともに前記i本の第2走査信号線を順次に選択的に駆動する走査信号線駆動回路と、
     1番目からi番目までのi本の発光制御線と、
     前記i本の発光制御線を駆動する発光制御線駆動回路と、
     jを2以上の整数として1番目からj番目までのj本のデータ信号線と、
     前記j本のデータ信号線に前記データ信号を印加するデータ信号線駆動回路と
    を更に備え、
     前記複数の画素回路は、i行×j列の画素マトリクスを構成し、
     nを1以上i以下の整数かつmを1以上j以下の整数として前記画素マトリクスの第n行第m列に含まれる画素回路は、
      一端が前記駆動電流制御ノードに接続され、他端が前記第1電源線に接続された保持キャパシタと
      第n番目の第2走査信号線に接続された制御端子と、第m番目のデータ信号線に接続された第1導通端子と、前記駆動トランジスタの第1導通端子に接続された第2導通端子とを有する書き込み制御トランジスタと、
      第n番目の第1走査信号線に接続された制御端子と、前記駆動トランジスタの第2導通端子に接続された第1導通端子と、前記駆動電流制御ノードに接続された第2導通端子とを有する閾値電圧補償トランジスタと、
      第(n-1)番目の第1走査信号線に接続された制御端子と、前記駆動電流制御ノードに接続された第1導通端子と、前記初期化電源線に接続された第2導通端子とを有する駆動電流制御ノード初期化トランジスタと、
      前記第n番目の第1走査信号線に接続された制御端子と、前記表示素子の第1端子に接続された第1導通端子と、前記初期化電源線に接続された第2導通端子とを有する表示初期化トランジスタと、
      第n番目の発光制御線に接続された制御端子と、前記第1電源線に接続された第1導通端子と、前記駆動トランジスタの第1導通端子に接続された第2導通端子とを有する電源供給制御トランジスタと、
      前記第n番目の発光制御線に接続された制御端子と、前記駆動トランジスタの第2導通端子に接続された第1導通端子と、前記表示素子の第1端子に接続された第2導通端子とを有する発光制御トランジスタと
    を含み、
     前記画素マトリクスの第n行に含まれる画素回路に対応する調整回路において、
      前記光電流制御トランジスタの制御端子は、前記第n番目の第1走査信号線に接続され、
      前記発光強度調整ノード初期化トランジスタの制御端子は、第(n+1)番目の第1走査信号線に接続され
     前記書き込み制御トランジスタ、前記電源供給制御トランジスタ、および前記発光制御トランジスタは、Pチャネル型の薄膜トランジスタであって、
     前記閾値電圧補償トランジスタ、前記駆動電流制御ノード初期化トランジスタ、および前記表示初期化トランジスタは、酸化物半導体によりチャネル層が形成されたNチャネル型の薄膜トランジスタであって、
     前記発光制御線駆動回路が前記第n番目の発光制御線を非選択状態で維持している期間中に、前記走査信号線駆動回路は、前記第(n-1)番目の第1走査信号線、前記第n番目の第1走査信号線、および前記第(n+1)番目の第1走査信号線を順次に所定期間ずつ選択状態とし、
     前記走査信号線駆動回路は、前記第n番目の第1走査信号線を選択状態としている期間に前記第n番目の第2走査信号線を選択状態とすることを特徴とする、請求項7に記載の表示装置。
  9.  前記受光素子は、アノード端子とカソード端子とを有するフォトダイオードであって、
     前記光電流制御トランジスタの第1導通端子は、前記第1電源線に接続され、
     前記光電流制御トランジスタの第2導通端子は、前記フォトダイオードのカソード端子に接続され、
     前記フォトダイオードのアノード端子は、前記発光強度調整ノードに接続されていることを特徴とする、請求項4から8までのいずれか1項に記載の表示装置。
  10.  前記受光素子は、アノード端子とカソード端子とを有するフォトダイオードであって、
     前記フォトダイオードのカソード端子は、前記第1電源線に接続され、
     前記フォトダイオードのアノード端子は、前記光電流制御トランジスタの第1導通端子に接続され、
     前記光電流制御トランジスタの第2導通端子は、前記発光強度調整ノードに接続されていることを特徴とする、請求項4から8までのいずれか1項に記載の表示装置。
  11.  前記駆動トランジスタは、Nチャネル型の薄膜トランジスタであって、
     前記初期化電源線は、第1初期化電位が与えられる第1初期化電源線と第2初期化電位が与えられる第2初期化電源線とからなり、
     前記第1電源電位は、前記第2電源電位よりも高く、
     前記第1電源電位は、前記第1初期化電位よりも低く、
     前記第1電源電位は、前記第2初期化電位よりも高く、
     前記充電期間に前記発光強度調整ノードから前記第1電源線へと前記光電流が流れるように前記受光素子と前記光電流制御トランジスタとが配置され、
     前記発光強度調整ノード初期化回路によって前記第1初期化電位に基づいて前記発光強度調整ノードの初期化が行われることによって、前記発光強度調整ノードの電位は上昇することを特徴とする、請求項3に記載の表示装置。
  12.  iを2以上の整数として0番目から(i+1)番目までの(i+2)本の走査信号線と、
     前記(i+2)本の走査信号線を順次に選択的に駆動する走査信号線駆動回路と
    を更に備え、
     jを2以上の整数として、前記複数の画素回路は、i行×j列の画素マトリクスを構成し、
     前記発光強度調整ノード初期化回路は、制御端子と前記発光強度調整ノードに接続された第1導通端子と前記第1初期化電源線に接続された第2導通端子とを有する発光強度調整ノード初期化トランジスタを含み、
     nを1以上i以下の整数として前記画素マトリクスの第n行に含まれる画素回路に対応する調整回路において、
      前記光電流制御トランジスタの制御端子は、第n番目の走査信号線に接続され、
      前記発光強度調整ノード初期化トランジスタの制御端子は、第(n+1)番目の走査信号線に接続されていることを特徴とする、請求項11に記載の表示装置。
  13.  1番目からi番目までのi本の発光制御線と、
     前記i本の発光制御線を駆動する発光制御線駆動回路と、
     1番目からj番目までのj本のデータ信号線と、
     前記j本のデータ信号線に前記データ信号を印加するデータ信号線駆動回路と
    を更に備え、
     mを1以上j以下の整数として前記画素マトリクスの第n行第m列に含まれる画素回路は、
      一端が前記駆動電流制御ノードに接続され、他端が前記第1電源線に接続された保持キャパシタと
      前記第n番目の走査信号線に接続された制御端子と、第m番目のデータ信号線に接続された第1導通端子と、前記駆動トランジスタの第1導通端子に接続された第2導通端子とを有する書き込み制御トランジスタと、
      前記第n番目の走査信号線に接続された制御端子と、前記駆動トランジスタの第2導通端子に接続された第1導通端子と、前記駆動電流制御ノードに接続された第2導通端子とを有する閾値電圧補償トランジスタと、
      第(n-1)番目の走査信号線に接続された制御端子と、前記駆動電流制御ノードに接続された第1導通端子と、前記第1初期化電源線に接続された第2導通端子とを有する駆動電流制御ノード初期化トランジスタと、
      前記第n番目の走査信号線に接続された制御端子と、前記表示素子の第1端子に接続された第1導通端子と、前記第2初期化電源線に接続された第2導通端子とを有する表示初期化トランジスタと、
      第n番目の発光制御線に接続された制御端子と、前記第1電源線に接続された第1導通端子と、前記駆動トランジスタの第1導通端子に接続された第2導通端子とを有する電源供給制御トランジスタと、
      前記第n番目の発光制御線に接続された制御端子と、前記駆動トランジスタの第2導通端子に接続された第1導通端子と、前記表示素子の第1端子に接続された第2導通端子とを有する発光制御トランジスタと
    を含み、
     前記光電流制御トランジスタ、前記発光強度調整ノード初期化トランジスタ、前記書き込み制御トランジスタ、前記閾値電圧補償トランジスタ、前記駆動電流制御ノード初期化トランジスタ、前記表示初期化トランジスタ、前記電源供給制御トランジスタ、および前記発光制御トランジスタは、Nチャネル型の薄膜トランジスタであって、
     前記発光制御線駆動回路が前記第n番目の発光制御線を非選択状態で維持している期間中に、前記走査信号線駆動回路は、前記第(n-1)番目の走査信号線、前記第n番目の走査信号線、および前記第(n+1)番目の走査信号線を順次に所定期間ずつ選択状態にすることを特徴とする、請求項12に記載の表示装置。
  14.  前記受光素子は、アノード端子とカソード端子とを有するフォトダイオードであって、
     前記光電流制御トランジスタの第1導通端子は、前記第1電源線に接続され、
     前記光電流制御トランジスタの第2導通端子は、前記フォトダイオードのアノード端子に接続され、
     前記フォトダイオードのカソード端子は、前記発光強度調整ノードに接続されていることを特徴とする、請求項11から13までのいずれか1項に記載の表示装置。
  15.  前記受光素子は、アノード端子とカソード端子とを有するフォトダイオードであって、
     前記フォトダイオードのアノード端子は、前記第1電源線に接続され、
     前記フォトダイオードのカソード端子は、前記光電流制御トランジスタの第1導通端子に接続され、
     前記光電流制御トランジスタの第2導通端子は、前記発光強度調整ノードに接続されていることを特徴とする、請求項11から13までのいずれか1項に記載の表示装置。
  16.  前記保持キャパシタの容量値は、前記調整キャパシタの容量値よりも大きいことを特徴とする、請求項6、8、および13のいずれか1項に記載の表示装置。
  17.  前記調整キャパシタは、画素回路ごとに設けられ、
     kを2以上の整数として、前記調整回路は、k個の画素回路ごとに設けられ、
     前記k個の画素回路に対応するk個の調整キャパシタの他端は、同じ発光強度調整ノードに接続され、
     前記k個の調整キャパシタのそれぞれの一端は、対応する画素回路に含まれる駆動電流制御ノードに接続されていることを特徴とする、請求項1に記載の表示装置。
  18.  前記k個の画素回路は、赤色用の画素回路と緑色用の画素回路と青色用の画素回路とを含むことを特徴とする、請求項17に記載の表示装置。
  19.  前記複数の画素回路は、赤色用の画素回路と緑色用の画素回路と青色用の画素回路とを含み、
     前記調整回路は、同じ色用のk個の画素回路ごとに設けられていることを特徴とする、請求項17に記載の表示装置。
  20.  供給される駆動電流の量に応じた輝度で発光する表示素子を含む複数の画素回路を備えた表示装置の駆動方法であって、
     前記表示装置は、
      第1電源電位が与えられる第1電源線と、
      第2電源電位が与えられる第2電源線と、
      初期化電位が与えられる初期化電源線と、
      前記駆動電流の量を調整する調整回路と、
      調整キャパシタと
    を備え、
     各画素回路は、
      前記第1電源線と前記第2電源線との間に設けられ、前記第1電源線側の第1端子と前記第2電源線側の第2端子とを有する前記表示素子と、
      制御端子と第1導通端子と第2導通端子とを有し、前記表示素子に所定の発光期間に駆動電流を供給するために前記表示素子と直列に設けられた駆動トランジスタと、
      前記駆動トランジスタの制御端子と前記調整キャパシタの一端とに接続された駆動電流制御ノードと
    を含み、
     前記調整回路は、
      前記調整キャパシタの他端に接続された発光強度調整ノードと、
      受光素子を含み、前記発光強度調整ノードに接続された受光回路と
    を含み、
     前記駆動方法は、
      前記表示素子への駆動電流の供給を停止するステップと、
      データ信号に基づいて前記駆動電流制御ノードを充電するとともに前記受光回路が前記受光素子に入射した光の強度に応じた光電流を生ずるステップと、
      前記初期化電位に基づいて前記発光強度調整ノードを初期化するステップと、
      前記表示素子への駆動電流の供給を再開するステップと
    を含むことを特徴とする、駆動方法。
PCT/JP2021/040727 2021-11-05 2021-11-05 表示装置およびその駆動方法 WO2023079674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040727 WO2023079674A1 (ja) 2021-11-05 2021-11-05 表示装置およびその駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040727 WO2023079674A1 (ja) 2021-11-05 2021-11-05 表示装置およびその駆動方法

Publications (1)

Publication Number Publication Date
WO2023079674A1 true WO2023079674A1 (ja) 2023-05-11

Family

ID=86240840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040727 WO2023079674A1 (ja) 2021-11-05 2021-11-05 表示装置およびその駆動方法

Country Status (1)

Country Link
WO (1) WO2023079674A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300897A (ja) * 2004-04-12 2005-10-27 Seiko Epson Corp 画素回路の駆動方法、画素回路、電気光学装置および電子機器
JP2005538403A (ja) * 2002-09-05 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネセント表示装置
JP2008541185A (ja) * 2005-05-19 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子発光ディスプレイ装置
JP2009500650A (ja) * 2005-06-30 2009-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電界発光ディスプレイ装置
JP2009511978A (ja) * 2005-10-13 2009-03-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射ディスプレイ装置
JP2010266492A (ja) * 2009-05-12 2010-11-25 Sony Corp 画素回路、表示装置、画素回路の駆動方法
US20130009550A1 (en) * 2011-07-08 2013-01-10 Hannstar Display Corp. Compensation Circuit for Keeping Luminance Intensity of Diode
US20150035798A1 (en) * 2013-07-31 2015-02-05 Boe Technology Group Co., Ltd. Organic Light-Emitting Diode Pixel Circuit, Drive Method Thereof, and Display Device
US20210056905A1 (en) * 2019-08-19 2021-02-25 Boe Technology Group Co., Ltd. Pixel driving circuit and driving method therefor, display panel and display apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538403A (ja) * 2002-09-05 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネセント表示装置
JP2005300897A (ja) * 2004-04-12 2005-10-27 Seiko Epson Corp 画素回路の駆動方法、画素回路、電気光学装置および電子機器
JP2008541185A (ja) * 2005-05-19 2008-11-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子発光ディスプレイ装置
JP2009500650A (ja) * 2005-06-30 2009-01-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電界発光ディスプレイ装置
JP2009511978A (ja) * 2005-10-13 2009-03-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射ディスプレイ装置
JP2010266492A (ja) * 2009-05-12 2010-11-25 Sony Corp 画素回路、表示装置、画素回路の駆動方法
US20130009550A1 (en) * 2011-07-08 2013-01-10 Hannstar Display Corp. Compensation Circuit for Keeping Luminance Intensity of Diode
US20150035798A1 (en) * 2013-07-31 2015-02-05 Boe Technology Group Co., Ltd. Organic Light-Emitting Diode Pixel Circuit, Drive Method Thereof, and Display Device
US20210056905A1 (en) * 2019-08-19 2021-02-25 Boe Technology Group Co., Ltd. Pixel driving circuit and driving method therefor, display panel and display apparatus

Similar Documents

Publication Publication Date Title
US11508298B2 (en) Display panel and driving method thereof and display device
JP6959352B2 (ja) 外部補償及びアノードリセットを備えた有機発光ダイオードディスプレイ
TWI250499B (en) Electronic apparatus, electronic machine, driving method of electronic apparatus
KR101080350B1 (ko) 표시 장치 및 그 구동 방법
US11158257B2 (en) Display device and driving method for same
WO2019186857A1 (ja) 表示装置およびその駆動方法
US20200013331A1 (en) Display device and driving method of display device
US9230475B2 (en) Display device and electronic apparatus
KR20180130207A (ko) 유기 발광 다이오드 표시 장치 및 그 센싱 방법
US8497820B2 (en) Display device and driving method thereof
US10255856B2 (en) Display device and driving method of the same
KR100578838B1 (ko) 역다중화 장치와, 이를 이용한 표시 장치 및 그 표시 패널
US7486261B2 (en) Electro-luminescent display device
US11727889B2 (en) Display device
CN116416952A (zh) 显示装置
US9830862B2 (en) Display device and electronic apparatus
WO2014112278A1 (ja) 表示装置、表示駆動装置、駆動方法、および電子機器
KR20190009217A (ko) 게이트 쉬프트 레지스터와 이를 포함한 유기발광 표시장치
KR20140071727A (ko) 유기발광소자표시장치 및 그 구동방법
KR102338038B1 (ko) 유기발광 표시장치 및 그 구동방법
WO2023079674A1 (ja) 表示装置およびその駆動方法
KR20190136396A (ko) 표시 장치
KR20210082798A (ko) 게이트 구동 회로 및 이를 이용한 표시 장치
KR100629177B1 (ko) 유기 전계발광 표시장치
KR20060072784A (ko) 유기발광다이오드 표시소자의 구동방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963270

Country of ref document: EP

Kind code of ref document: A1