WO2023078381A1 - 夹层玻璃组件、信号传输系统及车辆 - Google Patents
夹层玻璃组件、信号传输系统及车辆 Download PDFInfo
- Publication number
- WO2023078381A1 WO2023078381A1 PCT/CN2022/129798 CN2022129798W WO2023078381A1 WO 2023078381 A1 WO2023078381 A1 WO 2023078381A1 CN 2022129798 W CN2022129798 W CN 2022129798W WO 2023078381 A1 WO2023078381 A1 WO 2023078381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laminated glass
- signal transmission
- layer
- wave
- transmission area
- Prior art date
Links
- 230000008054 signal transmission Effects 0.000 title claims abstract description 172
- 239000005340 laminated glass Substances 0.000 title claims abstract description 157
- 238000009413 insulation Methods 0.000 claims abstract description 127
- 238000002834 transmittance Methods 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims description 87
- 239000002313 adhesive film Substances 0.000 claims description 70
- 238000001514 detection method Methods 0.000 claims description 64
- 239000011521 glass Substances 0.000 claims description 17
- 239000000945 filler Substances 0.000 claims description 15
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 252
- 238000010586 diagram Methods 0.000 description 42
- 238000000034 method Methods 0.000 description 12
- 229920006254 polymer film Polymers 0.000 description 11
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910003087 TiOx Inorganic materials 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical group [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/266—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10082—Properties of the bulk of a glass sheet
- B32B17/1011—Properties of the bulk of a glass sheet having predetermined tint or excitation purity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10174—Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
- B32B17/1022—Metallic coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10779—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J3/00—Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
- B60J3/06—Antiglare equipment associated with windows or windscreens; Sun visors for vehicles using polarising effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3644—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/36—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
- C03C17/3602—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
- C03C17/3681—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C27/00—Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
- C03C27/06—Joining glass to glass by processes other than fusing
- C03C27/10—Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/304—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/412—Transparent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/42—Polarizing, birefringent, filtering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/08—Cars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J1/00—Windows; Windscreens; Accessories therefor
- B60J1/001—Double glazing for vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/73—Anti-reflective coatings with specific characteristics
- C03C2217/734—Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/90—Other aspects of coatings
- C03C2217/94—Transparent conductive oxide layers [TCO] being part of a multilayer coating
Definitions
- the present application relates to the field of vehicle automatic driving, in particular to a laminated glass assembly, a signal transmission system and a vehicle.
- the demand for installing detectors inside the vehicle is gradually increasing, and more and more windows on vehicles are made of insulating glass.
- the detection signal of the detector will be blocked when it passes through the insulating glass.
- the insulating glass absorbs and/or reflects. Therefore, the insulating glass will greatly reduce the transmittance of the detector to transmit the detection signal, which will reduce the detection accuracy of the detector and cause it to fail to work normally.
- the application provides a laminated glass assembly, the laminated glass assembly comprising:
- the laminated glass has a signal transmission area and a non-signal transmission area
- the wave transparent layer is carried on the laminated glass, and the orthographic projection of the wave transparent layer on the laminated glass covers the signal transmission area and the non-signal transmission area;
- a heat insulation layer, the heat insulation layer is carried on the laminated glass, and the orthographic projection of the heat insulation layer on the laminated glass covers the non-signal transmission area and avoids the signal transmission area.
- the laminated glass includes:
- the first transparent substrate has a first surface and a second surface disposed opposite to each other;
- the second transparent substrate has a third surface and a fourth surface disposed opposite to each other, and the third surface is disposed adjacent to the second surface compared to the fourth surface;
- the adhesive film is used for bonding the first transparent substrate and the second transparent substrate.
- the second transparent substrate, the adhesive film and the heat insulation layer all have through holes communicating with each other, and the through holes are at least partly located in the signal transmission area;
- the wave-transparent layer is arranged on the on the second surface;
- the heat insulation layer is disposed on the surface of the wave-transparent layer close to the second transparent substrate, or the heat insulation layer is disposed on the third surface, or the heat insulation layer A thermal layer is disposed in the adhesive film.
- both the heat insulation layer and the adhesive film have through holes communicating with each other, and the through holes are at least partially located in the signal transmission area;
- the wave-transparent layer is arranged on the fourth surface;
- the heat insulation layer is disposed on the second surface, or the heat insulation layer is disposed on the third surface, or the heat insulation layer is disposed in the adhesive film.
- both the heat insulation layer and the adhesive film have through holes communicating with each other, and the through holes are at least partially located in the signal transmission area;
- the wave-transparent layer is arranged on the third surface;
- the heat insulation layer is arranged on the second surface, or the heat insulation layer is arranged on the surface of the wave transparent layer close to the first transparent substrate, or the heat insulation layer is arranged on the adhesive In the conjunctiva.
- the through hole is arranged in the inner area or edge of the laminated glass component, and the area S of the orthographic projection of the signal transmission area on the second surface is ⁇ 50mm*80mm.
- the through hole of the adhesive film is provided with a filler, and the blocking rate of the filler to the detection signal with a wavelength of normal incidence within the range of 380nm to 1650nm or 3mm to 30mm is not higher than 2%, and the The filler has a blocking rate of no higher than 5% for detection signals with a wavelength within the range of 380nm to 1650nm or 3mm to 30mm incident at an incident angle of 55° to 70°.
- the orthographic projection of the wave-transparent layer on the laminated glass accounts for more than 70% of the area of the laminated glass
- the orthographic projection of the heat-insulating layer on the laminated glass accounts for 70% of the area of the laminated glass More than 70%
- the overlapping area of the orthographic projection of the wave-transparent layer on the laminated glass and the orthographic projection of the heat insulating layer on the laminated glass accounts for at least the orthographic projection of the heat insulating layer on the laminated glass More than 80% of the projection.
- the total solar energy transmittance of the overlapped area of the wave-transparent layer and the heat-insulating layer is ⁇ 53%, and the signal transmission area is within the range of 380nm-1650nm or 3mm-
- the detection signal within 30mm has a transmittance of at least 85%.
- the wave-transmitting layer comprises at least one laminate structure of high refractive index layer/low refractive index layer, the refractive index of the high refractive index layer is 1.9-2.6, and the refractive index of the low refractive index layer is 1.3-2.6.
- the thermal insulation layer comprises at least one metallic silver layer, silver alloy layer or transparent conductive oxide layer.
- the transmittance of the signal transmission area with the wave-transparent layer to the detection signal incident at an incident angle of 55°-70° is higher than that of the signal transmission area without the wave-transparent layer at an angle of 55°-70°
- the transmittance of the detection signal at an angle of incidence is at least 3% greater.
- the second transparent substrate is selected from colored glass.
- the adhesive film is an adhesive film with thermal insulation performance.
- the present application also provides a signal transmission system.
- the signal transmission system includes a detector and the above-mentioned laminated glass assembly.
- the signal passes through the signal transmission area, the wavelength of the detection signal is in the range of 380nm-1650nm or 3mm-30mm, and the detection signal is incident on the signal transmission area at an incident angle of 55°-70°.
- the detector when the second transparent substrate, the adhesive film and the heat insulation layer all have a through hole communicating with each other, the detector is arranged in the through hole, and the detector and the The range of the distance d between the second surfaces is: 0mm ⁇ d ⁇ 1mm, or, the detector is arranged on the side of the second transparent substrate away from the first transparent substrate, and the detector and the The range of the distance d between the fourth surfaces is 0 ⁇ d ⁇ 25mm; when only the adhesive film and the heat insulation layer have through holes communicating with each other, the detector is arranged on the second transparent The substrate is away from the side of the first transparent substrate, and the distance d between the detector and the fourth surface is in the range of 0 ⁇ d ⁇ 25mm.
- the detection signal is circularly polarized light, or P-polarized light, or a mixed light of P-polarized light and S-polarized light, and the proportion of P-polarized light is ⁇ 50%.
- the detector is a visible light camera, a near-infrared camera, a laser radar or a millimeter-wave radar.
- the present application also provides a vehicle, which includes a vehicle body and the above-mentioned signal transmission system, and the signal transmission system is carried on the vehicle body.
- a laminated glass assembly provided by the application includes a laminated glass, a wave-transmitting layer, and a heat-insulating layer; the laminated glass has a signal transmission area and a non-signal transmission area; the wave-transmitting layer is carried on the laminated glass, and the transparent The orthographic projection of the wave layer on the laminated glass covers the signal transmission area and the non-signal transmission area; the heat insulation layer is carried on the laminated glass, and the orthographic projection of the heat insulation layer on the laminated glass covers The non-signal transmission area avoids the signal transmission area.
- the heat insulation layer is removed at the corresponding signal transmission area, and the wave-transparent layer is removed at the corresponding signal transmission area and the non-signal transmission area. Covering and setting, so that the laminated glass assembly has a heat insulation function, and improves the transmittance of the detection signal in the signal transmission area, so the laminated glass assembly of this application is compatible with heat insulation and local infrared high transparency functions.
- Fig. 1 is a schematic diagram of a laminated glass assembly provided by an embodiment of the present application.
- FIG. 2 is a cross-sectional layered structure diagram along line A-A in FIG. 1 according to an embodiment of the present application.
- FIG. 3 is a cross-sectional layered structure diagram along line A-A in FIG. 1 according to another embodiment of the present application.
- Fig. 4 is a cross-sectional layered structure diagram along line A-A in Fig. 1 according to another embodiment of the present application.
- Fig. 5 is a cross-sectional layered structure diagram along line A-A in Fig. 1 according to another embodiment of the present application.
- Fig. 6 is a cross-sectional layered structure diagram along line A-A in Fig. 1 according to another embodiment of the present application.
- Fig. 7 is a cross-sectional layered structure diagram along line A-A in Fig. 1 according to another embodiment of the present application.
- FIG. 8 is a cross-sectional layered structure diagram along line A-A in FIG. 1 according to another embodiment of the present application.
- FIG. 9 is a cross-sectional layered structure diagram along line A-A in FIG. 1 according to another embodiment of the present application.
- Fig. 10 is a cross-sectional layered structure diagram along line A-A in Fig. 1 according to another embodiment of the present application.
- Fig. 11 is a schematic diagram of a laminated glass assembly provided in another embodiment of the present application.
- FIG. 12 is a schematic cross-sectional view along line B-B in FIG. 11 according to an embodiment of the present application.
- Fig. 13 is a schematic diagram of a laminated glass assembly provided in another embodiment of the present application.
- FIG. 14 is a schematic cross-sectional view along line C-C in FIG. 13 according to an embodiment of the present application.
- FIG. 15 is a cross-sectional layered structure diagram of fillers added in FIG. 5 according to an embodiment of the present application.
- FIG. 16 is a cross-sectional layered structure diagram of fillings added in FIG. 8 according to an embodiment of the present application.
- FIG. 17 is a schematic diagram of a signal transmission system provided by an embodiment of the present application.
- Fig. 18 is a schematic diagram of a signal transmission system provided in another embodiment of the present application.
- FIG. 19 is a schematic diagram of a signal transmission system provided in another embodiment of the present application.
- Fig. 20 is a schematic diagram of a vehicle provided by an embodiment of the present application.
- Fig. 21 is a schematic diagram of a vehicle provided in another embodiment of the present application.
- Fig. 22 is a schematic diagram of a vehicle provided in another embodiment of the present application.
- vehicle 1 signal transmission system 10; vehicle body 20; laminated glass assembly 100; detector 200; laminated glass 110; Q1; non-signal transmission area Q2; first transparent substrate 1110; second transparent substrate 1120; adhesive film 1130; first surface 1111; second surface 1112; third surface 1121; fourth surface 1122.
- FIG. 1 is a schematic diagram of a laminated glass assembly provided in an embodiment of the present application.
- the present application provides a laminated glass assembly 100 , and the laminated glass assembly 100 includes a laminated glass 110 , a wave-transmitting layer 120 and a heat-insulating layer 130 .
- the laminated glass 110 has a signal transmission area Q1 and a non-signal transmission area Q2; the wave transparent layer 120 is carried on the laminated glass 110, and the orthographic projection of the wave transparent layer 120 on the laminated glass 110 covers the Signal transmission area Q1 and non-signal transmission area Q2; the heat insulation layer 130 is carried on the laminated glass 110, and the orthographic projection of the heat insulation layer 130 on the laminated glass 110 covers the non-signal transmission area Q2 and Avoid the signal transmission area Q1.
- the laminated glass assembly 100 is used to be installed on a vehicle.
- the laminated glass assembly 100 is installed as a front windshield of a vehicle.
- the laminated glass assembly 100 is installed as a rear windshield of a vehicle.
- the installation of the laminated glass assembly 100 as a front windshield of a vehicle is used as an example for illustration.
- the laminated glass 110 has a signal transmission area Q1 and a non-signal transmission area Q2, the detection signal transmitted and/or received by the detector 200 is transmitted through the signal transmission area Q1, and the signal transmission area Q1 is sensitive to the detection signal It has a high transmittance, preferably the signal transmission region Q1 has a transmittance of at least 85%, more preferably at least 90%, or even The transmittance is at least 95%, so as to ensure that the detector 200 in the vehicle can work normally and has high detection accuracy.
- the incident angle is the angle between the incident detection signal and the normal line of the signal transmission area Q1.
- the wavelength of the detection signal is within the range of 380nm to 1650nm or 3mm to 30mm
- the detector 200 can be, for example, a visible light camera (380nm to 780nm), a near infrared camera (780nm to 1650nm), a laser radar (905nm, 1550nm), millimeter wave radar (3mm ⁇ 30mm), etc., used for imaging, ranging and positioning.
- the number of the signal transmission area Q1 can be one or more, and can be set according to actual needs.
- the detection signal may be circularly polarized light, or P-polarized light, or a mixed light of P-polarized light and S-polarized light, and the proportion of P-polarized light in the mixed light is ⁇ 50%.
- the signal transmission area Q1 must have a higher transmittance for the detection signal of laser radar, and the Brewster angle of laminated glass to P polarized light and the described The incident angles of the detection signals are roughly similar, and the detection signal of the lidar is preferably P-polarized light or mixed light with P-polarized light accounting for ⁇ 80%.
- the wave-transparent layer 120 is carried on the laminated glass 110, and the orthographic projection of the wave-transparent layer 120 on the laminated glass 110 covers the signal transmission area Q1, and the wave-transparent layer 120 can improve the signal transmission
- the transmittance of area Q1 to the detection signal incident at an incident angle of 55° to 70°, the transmittance is measured and calculated according to the international standard ISO9050 when the detection signal is incident at an incident angle of 55° to 70°
- the transmittance of the signal transmission region Q1 with the wave-transparent layer 120 to the detection signal incident at an incident angle of 55° to 70° is higher than that of the signal transmission region without the wave-transparent layer 120
- the transmittance of the signal transmission region Q1 to the detection signal incident at an incident angle of 55°-70° is at least 3%, more preferably at least 5%, even at least 8%.
- the orthographic projection of the wave-transmissive layer 120 on the laminated glass 110 also covers the non-signal transmission area Q2, and the orthographic projection of the wave-transmissive layer 120 on the laminated glass 110 occupies 70% of the area, such as 70%, 80%, 90%, 95%, 100%, etc., so after the wave-transparent layer 120 is deposited on the laminated glass 110, there is no need to modify the non-signal transmission area Part of the wave-transmissive layer 120 corresponding to Q2 is subjected to a film removal operation, which greatly reduces the difficulty of the process and improves the production efficiency on the basis of ensuring that the transmittance of the signal transmission area Q1 to the detection signal is improved.
- the heat insulation layer 130 is carried on the laminated glass 110, and the orthographic projection of the heat insulation layer 130 on the laminated glass 110 covers the non-signal transmission area Q2 and avoids the signal transmission area Q1, that is, the After the heat insulation layer 130 is deposited on the laminated glass 110, it is only necessary to perform a film removal operation on a part of the heat insulation layer 130 corresponding to the signal transmission area Q1, so as to ensure that the heat insulation layer 130 will not reduce the signal The transmittance of the transmission area Q1 to the detection signal.
- the orthographic projection of the heat insulation layer 130 on the laminated glass 110 covers the non-signal The transmission area Q2 avoids the signal transmission area Q1.
- the orthographic projection of the heat insulation layer 130 on the laminated glass 110 accounts for more than 70% of the area of the laminated glass 110, and the heat insulation layer 130 makes the laminated glass 110
- the non-signal transmission area Q2 has a heat insulation effect.
- the overlapping area of the orthographic projection of the wave-transparent layer 120 on the laminated glass 110 and the orthographic projection of the heat insulating layer 130 on the laminated glass 110 occupies at least More than 80% on the orthographic projection.
- the total solar transmittance of the laminated glass 110 in the overlapping region of the wave-transmissive layer 120 and the heat-insulating layer 130 is ⁇ 53%
- the signal transmission area Q1 has a wavelength of 55°-70°
- the detection signal in the range of 380mm-1650mm or 3mm-30mm has a transmittance of at least 85%. It is ensured that the laminated glass 110 still has an effective heat insulation effect without removing the film of the part of the wave-transparent layer 120 corresponding to the non-signal transmission area Q2.
- a laminated glass assembly 100 provided in this application includes a laminated glass 110, a wave-transmissive layer 120, and a heat-insulating layer 130; the laminated glass 110 has a signal transmission area Q1 and a non-signal transmission area Q2; the wave-transmissive layer 120 is carried on In the laminated glass 110, the orthographic projection of the wave-transmissive layer 120 on the laminated glass 110 covers the signal transmission area Q1 and the non-signal transmission area Q2; the heat insulation layer 130 is carried on the laminated glass 110, The orthographic projection of the heat insulation layer 130 on the laminated glass 110 covers the non-signal transmission area Q2 and avoids the signal transmission area Q1 .
- the heat insulating layer 130 is removed at the corresponding signal transmission area Q1
- the wave-transparent layer 120 is removed at the corresponding signal transmission area Q1 and the The non-signal transmission area Q2 is covered, so that the laminated glass assembly 100 improves the transmittance of the detection signal in the signal transmission area Q1 on the basis of having a heat insulation function, so the laminated glass described in this application
- the module 100 is compatible with heat insulation and local infrared high transparency functions.
- the laminated glass 110 includes a first transparent substrate 1110 , a second transparent substrate 1120 and an adhesive film 1130 .
- the first transparent substrate 1110 has a first surface 1111 and a second surface 1112 opposite to each other.
- the second transparent substrate 1120 has a third surface 1121 and a fourth surface 1122 disposed opposite to each other, and the third surface 1121 is disposed adjacent to the second surface 1112 compared to the fourth surface 1122 .
- the adhesive film 1130 is used for bonding the first transparent substrate 1110 and the second transparent substrate 1120 .
- the intermediate adhesive film 1130 can be polyvinyl butyral (PVB), ionic adhesive film (SGP), ethylene-vinyl acetate copolymer (EVA) or polyurethane (PU), etc., as long as the intermediate adhesive film 1130 can closely adhere the first transparent substrate 1110 and the second transparent substrate 1120 together.
- PVB polyvinyl butyral
- SGP ionic adhesive film
- EVA ethylene-vinyl acetate copolymer
- PU polyurethane
- the laminated glass 110 When the laminated glass 110 is applied to a vehicle, the laminated glass 110 is installed on the vehicle at a certain inclination angle as a windshield.
- the first transparent substrate 1110 in the laminated glass 110 serves as the substrate of the laminated glass 110 outside the vehicle, and the second transparent substrate 1120 serves as the substrate of the laminated glass 110 inside the vehicle.
- the visible light vertical transmittance TL of the first transparent substrate 1110 is ⁇ 88%. In another embodiment, under the international standard ISO9050, the visible light vertical transmittance TL of the first transparent substrate 1110 is ⁇ 90%. In yet another embodiment, under the international standard ISO9050, the visible light vertical transmittance TL of the first transparent substrate 1110 is ⁇ 92%. The visible light transmittance of the laminated glass 110 is ensured, so that the vision of the laminated glass 110 is clearer.
- the first transparent substrate 1110 may be soda lime silicate glass, high alumina glass or borosilicate glass
- the second transparent substrate 1120 may be high alumina glass or borosilicate glass.
- the strength of the laminated glass 110 is ensured, and it can withstand impacts of a certain strength.
- the range of thickness d1 of the first transparent substrate 1110 is 1.6mm ⁇ d1 ⁇ 4mm
- the range of thickness d2 of the second transparent substrate 1120 is 0.3mm ⁇ d2 ⁇ 2.3mm
- the total thickness d of the glass 110 is ⁇ 4.2 mm. This ensures that the laminated glass 110 can be adapted to different lightweight requirements.
- the laminated glass 110 has multiple transparent substrates, and correspondingly has a multi-layer adhesive film 1130 to closely adhere the transparent substrates together.
- the laminated glass 110 has two transparent substrates for illustration.
- the thicknesses of the wave-transparent layer 120 and the heat-insulating layer 130 are both at the nm level, and the human eyes cannot distinguish their thicknesses, and the first transparent substrate 1110, the second transparent substrate 1120, the wave-transparent layer 120, the heat insulation layer 130 and the adhesive film 1130 are closely connected without gaps, so in order to describe the structure of the laminated glass assembly 100 more clearly, the interlayer in this application
- the drawings of the glass assembly 100 are schematic diagrams of a layered structure by increasing the thickness of each component and separating each component. The specific structure of the laminated glass assembly 100 will be described below.
- Fig. 2 is a cross-sectional layered structure diagram along line A-A in Fig. 1 according to one embodiment of the present application;
- FIG. 4 is a cross-sectional layered structure diagram along line A-A in FIG. 1 of another embodiment of the present application.
- the second transparent substrate 1120, the adhesive film 1130 and the heat insulation layer 130 all have a through hole 140 communicating with each other, and the through hole 140 is at least partially located in the signal transmission District Q1.
- the wave-transparent layer 120 is disposed on the second surface 1112 .
- the heat insulation layer 130 is disposed on the surface of the wave transparent layer 120 close to the second transparent substrate 1120 (as shown in FIG. 2 ), or the heat insulation layer 130 is disposed on the third surface 1121 (as shown in FIG. FIG. 3 ), alternatively, the heat insulation layer 130 is disposed in the adhesive film 1130 (as in FIG. 4 ).
- the through hole 140 is at least partially located in the signal transmission area Q1, that is, the through hole 140 not only covers the signal transmission area Q1, but also covers the non-signal transmission area Q2, the detector
- the detection signal of 200 is transmitted through the through hole 140, the wave-transparent layer 120 and the first transparent substrate 1110, but not through the second transparent substrate 1120, the adhesive film 1130 and the heat insulation Layer 130 avoids the barrier of the second transparent substrate 1120, the adhesive film 1130 and the heat insulation layer 130 to the detection signal, and improves the performance of the second transparent substrate 1120, the adhesive film 1130 and the The degree of freedom of selection of the thermal insulation layer 130, for example, the second transparent substrate 1120 can be selected from colored glass, the adhesive film 1130 can be selected from an adhesive film with thermal insulation properties, and the thermal insulation layer 130 can be selected from higher The high-performance thermal insulation layer enriches the product portfolio of laminated glass.
- the wave-transmissive layer 120 is disposed on the second surface 1112 by methods such as physical vapor deposition (Physical Vapor Deposition, PVD) or chemical vapor deposition (Chemical Vapor Deposition, CVD).
- PVD Physical Vapor Deposition
- CVD chemical vapor deposition
- the wave-transmissive layer 120 with a high signal-transmitting function is deposited on the second surface 1112 to improve the transmittance of the signal transmission region Q1 to the detection signal.
- the heat insulation layer 130 is disposed on the surface of the wave-transmissive layer 120 close to the second transparent substrate 1120 (as shown in FIG. 2 ), or the heat insulation layer 130 is disposed on the second transparent substrate 1120.
- the heat insulating layer 130 is disposed in the adhesive film 1130 (as shown in FIG. 4 ).
- the thermal insulation layer 130 can be directly deposited on the surface of the wave-transparent layer 120 close to the second transparent substrate 1120 or on the third surface 1121 by means of PVD, CVD or sol-gel spraying.
- the thermal insulation layer 130 is deposited on a polymer film and then interlayered with the adhesive film 1130 as a part of the adhesive film 1130 , such as polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- the signal transmission area Q1 is avoided.
- the heat insulating layer 130 may be deposited on the surface of the wave-transmissive layer 120 close to the second transparent substrate 1120 or on the third surface 1121 first, or the heat insulating layer 130 is deposited on a polymer film and then interlayered with the adhesive film 1130 as a part of the adhesive film 1130 . Then, part of the heat insulation layer 130 corresponding to the signal transmission area Q1 is removed.
- a mask layer is first covered on the surface of the wave-transparent layer 120 close to the second transparent substrate 1120 or on the third surface 1121 corresponding to the signal transmission area Q1, and then The heat insulating layer 130 is deposited on the surface of the wave-transmissive layer 120 close to the second transparent substrate 1120 or on the third surface 1121 , and finally the mask layer is removed.
- first cover the mask layer on the polymer film corresponding to the signal transmission area Q1 then deposit the heat insulating layer 130 on the polymer film, remove the mask layer, and finally place the heat insulating layer 130 Interlayering with the adhesive film 1130 is performed. It can be achieved that the transmittance of the signal transmission area Q1 to the detection signal will not be affected while maintaining the heat insulation effect of the laminated glass 110 .
- the wave-transmitting layer 120 is used to improve the transmittance of the signal transmission region Q1 to the detection signal incident at an incident angle of 55°-70°, and the wave-transmitting layer 120 includes at least one high refraction
- the wave-transmitting layer 120 includes at least one high refraction
- the heat insulation layer 130 is used to reflect and/or absorb infrared rays, so that the laminated glass has a better heat insulation effect, and the heat insulation layer 130 includes at least one metal silver layer, silver alloy layer or transparent conductive oxide layer, so The metal silver layer, silver alloy layer or transparent conductive oxide layer has good infrared reflection performance, thereby reducing the transmittance of the laminated glass to infrared rays.
- the material of the silver alloy layer is preferably silver-copper alloy, silver-indium alloy, silver-gold alloy, etc., and the silver content in the silver alloy layer is preferably greater than or equal to 95%, more preferably greater than or equal to 98%.
- the transparent conductive oxide layer comprises at least one transparent conductive oxide layer (TCO layer), preferably ITO (tin-doped indium oxide), FTO (fluorine-doped tin oxide), ATO (antimony-doped tin oxide), AZO (aluminum-doped Zinc oxide), IZO (indium-doped zinc oxide), GZO (gallium-doped zinc oxide), etc.
- TCO layer transparent conductive oxide layer
- ITO tin-doped indium oxide
- FTO fluorine-doped tin oxide
- ATO antimony-doped tin oxide
- AZO aluminum-doped Zinc oxide
- IZO indium-doped zinc oxide
- GZO gallium-doped zinc oxide
- the wave-transmissive layer is usually deposited on the entire glass by magnetron sputtering, and then the wave-transmissive layer deposited on the non-signal transmission area is removed. to fulfill.
- it can be realized by first covering the corresponding non-signal transmission area of the glass with a mask layer, then depositing a wave-transparent layer, and finally removing the mask layer.
- the related technology adds a film removal process for the signal transmission area with a small area ratio, in terms of production efficiency and process complexity. All aspects are not ideal, resulting in high quality and cost of mass production process.
- the visible light vertical transmittance TL of the first transparent substrate 1110 is 89.9%, and on the second surface 1112
- the wave-transparent layer 120 is formed by successively depositing ZnSnOx with a thickness of 92nm, TiOx with a thickness of 7nm, SiO2 with a thickness of 117nm and TiOx with a thickness of 25nm in sequence.
- AZO with a thickness of 11nm, Ag with a thickness of 12.8nm, TiOx with a thickness of 9nm, ZnSnOx with a thickness of 60nm, AZO with a thickness of 20nm, and AZO with a thickness of 9.2nm were deposited continuously.
- Ag, 9nm-thick TiOx, 8nm-thick AZO, 10nm-thick ZnSnOx and 10nm-thick Si3N4 form the thermal insulation layer 130 and remove the film at the signal transmission area Q1 corresponding to the thermal insulation layer 130 .
- the transmittance Ts2 81.5% of the detection signal at an angular incidence at a wavelength of 905 nm is increased by 5.54%.
- the setting of the heat insulating layer 130 in this embodiment can effectively insulate heat, and the setting of the wave-transmitting layer 120 can effectively increase the transmission of the signal in the signal transmission area Q1.
- efficiency, and the overlapping arrangement of the heat insulating layer 130 and the wave-transmitting layer 120 can also provide a comfortable color appearance for the eyes, such as light blue and the like.
- the wave-transparent layer 120 can partially serve as the base of the heat-insulating layer 130, and the wave-transparent layer 120 can effectively block the Alkali metal ions in the transparent substrate 1110 dissociate into the heat insulation layer 130, without additionally adding a base film layer to protect the heat insulation layer, it is possible to ensure that the heat insulation layer 130 is used in the manufacturing process of the laminated glass assembly 100 The heat insulation function will not be damaged, and it can also play a role in adjusting the color.
- the process of successively depositing the wave-transparent layer 120 and the heat-insulating layer 130 on the second surface 1112 is efficient and simple, so that the laminated glass assembly 100 is compatible with heat-insulating and local infrared high-transparency functions and has high manufacturing efficiency.
- Fig. 5 is a cross-sectional layered structure diagram along line A-A in Fig. 1 of another embodiment of the present application
- Fig. 6 is another embodiment of the present application along Fig. 1 A cross-sectional layered structure diagram of line A-A in the middle
- FIG. 7 is a cross-sectional layered structure diagram along line A-A in FIG. 1 of another embodiment of the present application.
- both the heat insulation layer 130 and the adhesive film 1130 have through holes 140 communicating with each other, and the through holes 140 are at least partially located in the signal transmission area Q1.
- the wave transparent layer 120 is disposed on the fourth surface 1122 .
- the heat insulation layer 130 is arranged on the second surface 1112 (as shown in FIG. 5 ), or, the heat insulation layer 130 is arranged on the third surface 1121 (as shown in FIG. 6 ), or, the heat insulation layer 130 is arranged on the third surface 1121 (as shown in FIG. 6 ), or the heat insulation layer Layer 130 is disposed in said adhesive film 1130 (see FIG. 7 ).
- the through hole 140 is at least partially located in the signal transmission area Q1, that is, the through hole 140 not only covers the signal transmission area Q1, but also covers the non-signal transmission area Q2, the detector
- the detection signal of 200 is transmitted through the wave transparent layer 120, the second transparent substrate 1120, the through hole 140 and the first transparent substrate 1110, but not through the adhesive film 1130 and the heat insulation
- the layer 130 prevents the detection signal from being blocked by the adhesive film 1130 and the heat insulation layer 130 .
- the wave-transparent layer 120 is disposed on the fourth surface 1122, and the wave-transparent layer 120 with a high signal transmission function can be deposited on the fourth surface 1122 by methods such as PVD or CVD. , improving the transmittance of the signal transmission area Q1 to the detection signal.
- the heat insulating layer 130 is disposed on the second surface 1112 (as shown in FIG. 5 ), or, the heat insulating layer 130 is disposed on the third surface 1121 (as shown in FIG. 6 ), Alternatively, the heat insulation layer 130 is disposed in the adhesive film 1130 (as shown in FIG. 7 ).
- the heat insulation layer 130 can be directly deposited on the second surface 1112 or the third surface 1121 by means of PVD, CVD or sol-gel spraying, or the heat insulation layer 130 can be deposited on a polymer The film is then sandwiched with the adhesive film 1130 as a part of the adhesive film 1130, such as PET.
- the signal transmission area Q1 is avoided.
- the heat insulation layer 130 can be deposited on the second surface 1112 or the third surface 1121 first, or, the heat insulation layer 130 can be deposited on the polymer film and then combined with The adhesive film 1130 is interlayered as a part of the adhesive film 1130 . Then, part of the heat insulation layer 130 corresponding to the signal transmission area Q1 is removed.
- a mask layer is covered on the second surface 1112 or the third surface 1121 corresponding to the signal transmission region Q1. Then the heat insulation layer 130 is deposited on the second surface 1112 or the third surface 1121 . Finally, the mask layer is removed.
- Fig. 8 is a cross-sectional layered structure diagram along line A-A in Fig. 1 of another embodiment of the present application
- Fig. 9 is another embodiment of the present application along Fig. 1 A cross-sectional layered structure diagram of line A-A in the middle
- FIG. 10 is a cross-sectional layered structure diagram along line A-A in FIG. 1 of another embodiment of the present application.
- both the heat insulation layer 130 and the adhesive film 1130 have through holes 140 communicating with each other, and the through holes 140 are at least partially located in the signal transmission area Q1.
- the wave transparent layer 120 is disposed on the third surface 1121 .
- the heat insulation layer 130 is disposed on the second surface 1112 (as shown in FIG. 8 ), or, the heat insulation layer 130 is disposed on the surface of the wave-transmissive layer 120 close to the first transparent substrate 1110 (such as FIG. 9 ), alternatively, the heat insulation layer 130 is disposed in the adhesive film 1130 (as in FIG. 10 ).
- the through hole 140 is at least partially located in the signal transmission area Q1, that is, the through hole 140 not only covers the signal transmission area Q1, but also covers the non-signal transmission area Q2, the detector
- the detection signal of 200 is transmitted through the second transparent substrate 1120, the wave-transparent layer 120, the through hole 140 and the first transparent substrate 1110, but not through the adhesive film 1130 and the heat insulation
- the layer 130 prevents the detection signal from being blocked by the adhesive film 1130 and the heat insulation layer 130 .
- the wave-transparent layer 120 is disposed on the third surface 1121, and the wave-transparent layer 120 with a high signal transmission function can be deposited on the third surface 1121 by methods such as PVD or CVD. , improving the transmittance of the signal transmission area Q1 to the detection signal.
- the heat insulation layer 130 is disposed on the second surface 1112 (as shown in FIG. 8 ), or, the heat insulation layer 130 is disposed on the wave-transparent layer 120 close to the first transparent substrate 1110 (as shown in FIG. 9 ), or, the heat insulating layer 130 is disposed in the adhesive film 1130 (as shown in FIG. 10 ).
- the thermal insulation layer 130 can be directly deposited on the second surface 1112 or the surface of the wave-transparent layer 120 close to the first transparent substrate 1110 by PVD, CVD or sol-gel spraying, or the The thermal insulation layer 130 is deposited on a polymer film and then sandwiched with the adhesive film 1130 as a part of the adhesive film 1130 , such as PET.
- the heat insulating layer 130 may be deposited on the second surface 1112 or the surface of the wave-transparent layer 120 close to the first transparent substrate 1110 first, or the heat insulating layer 130 is deposited on a polymer film and then interlayered with the adhesive film 1130 as a part of the adhesive film 1130 . Then, part of the heat insulation layer 130 corresponding to the signal transmission area Q1 is removed. In another embodiment, firstly, a mask layer is covered on the second surface 1112 or on the surface of the wave-transparent layer 120 close to the first transparent substrate 1110 corresponding to the signal transmission area Q1 .
- the heat insulating layer 130 is deposited on the second surface 1112 or on the surface of the wave transparent layer 120 close to the first transparent substrate 1110 .
- the mask layer is removed.
- the heat insulation layer 130 and the adhesive film 1130 are sandwiched. It can be achieved that the transmittance of the signal transmission area Q1 to the detection signal will not be affected while maintaining the heat insulation effect of the laminated glass 110 .
- Figure 11 is a schematic diagram of a laminated glass assembly provided in another embodiment of the present application
- Figure 12 is a schematic cross-sectional view along line B-B in Figure 11 in an embodiment of the present application
- FIG. 13 is a schematic diagram of a laminated glass assembly provided in another embodiment of the present application
- FIG. 14 is a schematic cross-sectional view along line C-C in FIG. 13 of an embodiment of the present application.
- the through hole 140 is arranged in the inner region of the laminated glass assembly 100 (as shown in FIG. 11 and FIG. 12 ) or at the edge (as shown in FIG. 13 and FIG. 14 ), and the signal transmission area Q1 is in the The area S of the orthographic projection on the second surface 1112 is greater than or equal to 50mm*80mm.
- the through hole 140 may be provided in the inner area or edge of the laminated glass assembly 100 according to actual requirements.
- the signal transmission area Q1 is disposed corresponding to the through hole 140 , and the area S of the orthographic projection of the signal transmission area Q1 on the second surface 1112 is greater than or equal to 50 mm*80 mm.
- the detector 200 needs to be placed in the signal transmission area Q1 for transmitting and receiving the detection signal, and the area S of the orthographic projection of the signal transmission area Q1 on the second surface 1112 is greater than or equal to 50 mm*80 mm to ensure sufficient
- the detection surface is used for the penetration of the signal in the signal transmission area Q1.
- Fig. 15 is a cross-sectional layered structure diagram of fillers added in Fig. 5 according to one embodiment of the present application
- Fig. 16 is a cross-sectional layered structure diagram of fillers added in Fig. 8 according to one embodiment of the present application picture.
- the through hole 140 of the adhesive film 1130 is provided with a filler 150, the blocking rate of the filler 150 to the detection signal of normal incidence is not higher than 2%, and the filler The rejection rate of 150 to the detection signal incident at an incident angle of 55°-70° is not higher than 5%, so as to ensure the high transmittance of the signal transmission area Q1 to the detection signal.
- the material of the filler 150 may be the same as or different from that of the adhesive film 1130.
- the rejection rate of the filler 150 to the detection signal incident at an incident angle of 55°-70° is less than The blocking rate of the adhesive film 1130 to the detection signal incident at an incident angle of 55° to 70°, while improving the overall strength of the laminated glass, reduces the detection of the signal transmission area Q1 by the filler 150 as much as possible. signal transmission.
- Figure 17 is a schematic diagram of a signal transmission system provided in one embodiment of the present application
- Figure 18 is a schematic diagram of a signal transmission system provided in another embodiment of the present application
- Figure 19 is a schematic diagram of this application
- the present application also provides a signal transmission system 10, the signal transmission system 10 includes a detector 200 and the above-mentioned laminated glass assembly 100, the detector 200 is set corresponding to the signal transmission area Q1, the detector 200 The transmitted and/or received detection signal passes through the signal transmission area Q1.
- the wavelength of the detection signal is in the range of 380nm-1650nm or 3mm-30mm, and the detection signal is incident on the signal transmission area Q1 at an incident angle of 55°-70°.
- the second transparent substrate 1120, the adhesive film 1130 and the heat insulation layer 130 all have a through hole 140 communicating with each other, and the detector 200 is disposed in the through hole 140 (such as 17 ), and the range of the distance d between the detector 200 and the second surface 1112 is: 0mm ⁇ d ⁇ 1mm, or, the detector 200 is arranged on the second transparent substrate 1120 away from the The first transparent substrate 1110 side (as shown in FIG. 18 ), and the distance d between the detector 200 and the fourth surface 1122 is in the range of 0 ⁇ d ⁇ 25mm.
- only the adhesive film 1130 and the heat insulation layer 130 have through holes 140 communicating with each other, and the detector 200 is disposed on the second transparent substrate 1120 away from the first One side of the transparent substrate 1110 (as shown in FIG. 19 ), and the range of the distance d between the detector 200 and the fourth surface 1122 is 0 ⁇ d ⁇ 25mm.
- Figure 20 is a schematic diagram of a vehicle provided in one embodiment of the present application
- Figure 21 is a schematic diagram of a vehicle provided in another embodiment of the present application
- Figure 22 is another implementation of the present application
- a schematic diagram of the vehicle is provided.
- this application also provides a vehicle 1
- the vehicle 1 includes a vehicle body 20 and the above-mentioned signal transmission system 10
- the signal transmission system 10 is carried on the vehicle body 20 .
- the signal transmission system 10 can be but not limited to be installed on the front side (as shown in FIG. 20 ), the side (as shown in FIG. 21 ) or the rear side (as shown in FIG. 22 ) of the vehicle body 20 .
- the laminated glass assembly 100 can be used as a front windshield, and the range of the installation angle ⁇ of the laminated glass assembly 100 is 55° ⁇ ⁇ 70°.
- the vehicle 1 may be, but not limited to, a car, a multi-purpose vehicle (multi-purpose Vehicles, MPV), a sports utility vehicle (Sport/Suburban Utility Vehicle, SUV), an off-road vehicle (Off-Road Vehicle, ORV), pickup, van, bus, truck, etc.
- the vehicle 1 equipped with one or more of the signal transmission systems 10 has functions such as imaging, ranging and positioning, so that the vehicle 1 can detect obstacles near the vehicle during parking or driving.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Ceramic Engineering (AREA)
- Transportation (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Joining Of Glass To Other Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims (18)
- 一种夹层玻璃组件,其特征在于,所述夹层玻璃组件包括:夹层玻璃,所述夹层玻璃具有信号传输区及非信号传输区;透波层,所述透波层承载于所述夹层玻璃,所述透波层在所述夹层玻璃上的正投影覆盖所述信号传输区及非信号传输区;以及隔热层,所述隔热层承载于所述夹层玻璃,所述隔热层在所述夹层玻璃上的正投影覆盖所述非信号传输区且避开所述信号传输区。
- 如权利要求1所述的夹层玻璃组件,其特征在于,所述夹层玻璃包括:第一透明基板,所述第一透明基板具有相背设置的第一表面及第二表面;第二透明基板,所述第二透明基板具有相背设置的第三表面及第四表面,且所述第三表面相较于所述第四表面邻近所述第二表面设置;以及粘结膜,所述粘结膜用于粘结所述第一透明基板及所述第二透明基板。
- 如权利要求2所述的夹层玻璃组件,其特征在于,所述第二透明基板、所述粘结膜及所述隔热层均具有彼此连通的通孔,且所述通孔至少部分位于所述信号传输区;所述透波层设置在所述第二表面上;所述隔热层设置在所述透波层靠近所述第二透明基板的表面上,或者,所述隔热层设置在所述第三表面上,或者,所述隔热层设置在所述粘结膜中。
- 如权利要求2所述的夹层玻璃组件,其特征在于,所述隔热层及所述粘结膜均具有彼此连通的通孔,且所述通孔至少部分位于所述信号传输区;所述透波层设置在所述第四表面上;所述隔热层设置在所述第二表面上,或者,所述隔热层设置在所述第三表面上,或者,所述隔热层设置在所述粘结膜中。
- 如权利要求2所述的夹层玻璃组件,其特征在于,所述隔热层及所述粘结膜均具有彼此连通的通孔,且所述通孔至少部分位于所述信号传输区;所述透波层设置在所述第三表面上;所述隔热层设置在所述第二表面上,或者,所述隔热层设置在所述透波层靠近所述第一透明基板的表面上,或者,所述隔热层设置在所述粘结膜中。
- 如权利要求3-5任意一项所述的夹层玻璃组件,其特征在于,所述通孔设置在所述夹层玻璃组件内部区域或者边缘,且所述信号传输区在所述第二表面上正投影的面积S≥50mm*80mm。
- 如权利要求4或5所述的夹层玻璃组件,其特征在于,所述粘结膜的通孔中设置有填充物,所述填充物对垂直入射的波长在380nm~1650nm或3mm~30mm范围内的探测信号的阻隔率不高于2%,且所述填充物对以55°~70°入射角入射的波长在380nm~1650nm或3mm~30mm范围内的探测信号的阻隔率不高于5%。
- 如权利要求1所述的夹层玻璃组件,其特征在于,所述透波层在所述夹层玻璃上的正投影占所述夹层玻璃的面积的70%以上,所述隔热层在所述夹层玻璃上的正投影占所述夹层玻璃的面积的70%以上,所述透波层在所述夹层玻璃上的正投影与所述隔热层在所述夹层玻 璃上正投影的重叠区域至少占所述隔热层在所述夹层玻璃上的正投影的80%以上。
- 如权利要求8所述的夹层玻璃组件,其特征在于,所述透波层与所述隔热层的重叠区域的太阳能总透过率≤53%,所述信号传输区对以55°~70°入射角入射的波长在380nm~1650nm或3mm~30mm范围内的探测信号具有至少85%的透过率。
- 如权利要求1所述的夹层玻璃组件,其特征在于,所述透波层包含至少一个高折射率层/低折射率层的叠层结构,所述高折射率层的折射率为1.9~2.6,所述低折射率层的折射率为1.3~1.8,所述隔热层包含至少一个金属银层、银合金层或透明导电氧化物层。
- 如权利要求1所述的夹层玻璃组件,其特征在于,具有所述透波层的信号传输区对以55°~70°入射角入射的探测信号的透过率比不具有所述透波层的信号传输区对以55°~70°入射角入射的所述探测信号的透过率大至少3%。
- 如权利要求3所述的夹层玻璃组件,其特征在于,所述第二透明基板选用着色玻璃。
- 如权利要求3-5任意一项所述的夹层玻璃组件,其特征在于,所述粘结膜选用具有隔热性能的粘结膜。
- 一种信号传输系统,其特征在于,所述信号传输系统包括探测器及如权利要求1-13任意一项所述的夹层玻璃组件,所述探测器对应所述信号传输区设置,所述探测器发射和/或接收的探测信号透过所述信号传输区,所述探测信号的波长在380nm~1650nm或3mm~30mm范围内,所述探测信号以55°~70°入射角入射至所述信号传输区。
- 如权利要求14所述的信号传输系统,其特征在于,当所述第二透明基板、所述粘结膜及所述隔热层均具有彼此连通的通孔时,所述探测器设置在所述通孔内,且所述探测器与所述第二表面之间的距离d的范围为:0mm≤d≤1mm;或者,所述探测器设置在所述第二透明基板远离所述第一透明基板一侧,且所述探测器与所述第四表面之间的距离d的范围为0≤d≤25mm;当仅有所述粘结膜及所述隔热层具有彼此连通的通孔时,所述探测器设置在所述第二透明基板远离所述第一透明基板一侧,且所述探测器与所述第四表面之间的距离d的范围为0≤d≤25mm。
- 如权利要求14所述的信号传输系统,其特征在于,所述探测信号为圆偏振光,或者为P偏振光,或者为P偏振光与S偏振光的混合光且混合光中的P偏振光的占比≥50%。
- 如权利要求14所述的信号传输系统,其特征在于,所述探测器为可见光相机、近红外相机、激光雷达或毫米波雷达。
- 一种车辆,其特征在于,所述车辆包括车体及如权利要求14-17任意一项所述的信号传输系统,所述信号传输系统承载于所述车体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22889402.8A EP4410540A1 (en) | 2021-11-05 | 2022-11-04 | Laminated glass assembly, signal transmission system, and vehicle |
KR1020247015412A KR20240089496A (ko) | 2021-11-05 | 2022-11-04 | 합판 유리 어셈블리, 신호 전송 시스템 및 차량 |
US18/654,589 US20240300206A1 (en) | 2021-11-05 | 2024-05-03 | Laminated glass assembly, signal transmission system, and vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111305472.4A CN114103312B (zh) | 2021-11-05 | 2021-11-05 | 夹层玻璃组件、信号传输系统及车辆 |
CN202111305472.4 | 2021-11-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/654,589 Continuation US20240300206A1 (en) | 2021-11-05 | 2024-05-03 | Laminated glass assembly, signal transmission system, and vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023078381A1 true WO2023078381A1 (zh) | 2023-05-11 |
Family
ID=80380829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/129798 WO2023078381A1 (zh) | 2021-11-05 | 2022-11-04 | 夹层玻璃组件、信号传输系统及车辆 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240300206A1 (zh) |
EP (1) | EP4410540A1 (zh) |
KR (1) | KR20240089496A (zh) |
CN (1) | CN114103312B (zh) |
WO (1) | WO2023078381A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117087304A (zh) * | 2023-10-19 | 2023-11-21 | 四川宇光光学玻璃有限公司 | 一种考虑内部应力检测的玻璃板pvb中间膜填充装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114103312B (zh) * | 2021-11-05 | 2023-01-06 | 福耀玻璃工业集团股份有限公司 | 夹层玻璃组件、信号传输系统及车辆 |
CN116330767A (zh) * | 2023-03-17 | 2023-06-27 | 福建省万达汽车玻璃工业有限公司 | 一种局部高红外线透过的夹层隔热玻璃及包含其的车辆 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015024930A (ja) * | 2013-07-24 | 2015-02-05 | 旭硝子株式会社 | 車両用合わせガラス |
WO2015137518A1 (ja) * | 2014-03-14 | 2015-09-17 | 日本板硝子株式会社 | ウインドシールド |
CN111409314A (zh) * | 2020-03-24 | 2020-07-14 | 福耀玻璃工业集团股份有限公司 | 一种汽车夹层玻璃 |
CN111703151A (zh) * | 2020-06-28 | 2020-09-25 | 福耀玻璃工业集团股份有限公司 | 一种局部高红外线透过的夹层隔热玻璃 |
CN112208310A (zh) * | 2020-09-28 | 2021-01-12 | 福耀玻璃工业集团股份有限公司 | 一种安装有摄像头的夹层玻璃 |
CN113246562A (zh) * | 2020-02-13 | 2021-08-13 | Agc株式会社 | 夹层玻璃、车辆 |
CN114103312A (zh) * | 2021-11-05 | 2022-03-01 | 福耀玻璃工业集团股份有限公司 | 夹层玻璃组件、信号传输系统及车辆 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL278650A (zh) * | 1961-06-19 |
-
2021
- 2021-11-05 CN CN202111305472.4A patent/CN114103312B/zh active Active
-
2022
- 2022-11-04 WO PCT/CN2022/129798 patent/WO2023078381A1/zh active Application Filing
- 2022-11-04 EP EP22889402.8A patent/EP4410540A1/en active Pending
- 2022-11-04 KR KR1020247015412A patent/KR20240089496A/ko active Search and Examination
-
2024
- 2024-05-03 US US18/654,589 patent/US20240300206A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015024930A (ja) * | 2013-07-24 | 2015-02-05 | 旭硝子株式会社 | 車両用合わせガラス |
WO2015137518A1 (ja) * | 2014-03-14 | 2015-09-17 | 日本板硝子株式会社 | ウインドシールド |
CN113246562A (zh) * | 2020-02-13 | 2021-08-13 | Agc株式会社 | 夹层玻璃、车辆 |
CN111409314A (zh) * | 2020-03-24 | 2020-07-14 | 福耀玻璃工业集团股份有限公司 | 一种汽车夹层玻璃 |
CN111703151A (zh) * | 2020-06-28 | 2020-09-25 | 福耀玻璃工业集团股份有限公司 | 一种局部高红外线透过的夹层隔热玻璃 |
CN112208310A (zh) * | 2020-09-28 | 2021-01-12 | 福耀玻璃工业集团股份有限公司 | 一种安装有摄像头的夹层玻璃 |
CN114103312A (zh) * | 2021-11-05 | 2022-03-01 | 福耀玻璃工业集团股份有限公司 | 夹层玻璃组件、信号传输系统及车辆 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117087304A (zh) * | 2023-10-19 | 2023-11-21 | 四川宇光光学玻璃有限公司 | 一种考虑内部应力检测的玻璃板pvb中间膜填充装置 |
CN117087304B (zh) * | 2023-10-19 | 2024-05-24 | 四川宇光光学玻璃有限公司 | 一种考虑内部应力检测的玻璃板pvb中间膜填充装置 |
Also Published As
Publication number | Publication date |
---|---|
US20240300206A1 (en) | 2024-09-12 |
EP4410540A1 (en) | 2024-08-07 |
KR20240089496A (ko) | 2024-06-20 |
CN114103312A (zh) | 2022-03-01 |
CN114103312B (zh) | 2023-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023078381A1 (zh) | 夹层玻璃组件、信号传输系统及车辆 | |
EP4361113A1 (en) | Coated glass and laminated glass | |
US20220252952A1 (en) | Faster switching electrochromic devices | |
CN101288007A (zh) | 近红外线反射基板和利用该基板的近红外线反射层叠玻璃、近红外线反射双层玻璃 | |
US20090237782A1 (en) | Near Infrared Ray Reflective Substrate And Near Infrared Ray Reflective Laminated Glass Employing That Substrate, Near Infrared Ray Reflective Double Layer Glass | |
EP3296277B1 (en) | Heat insulating glass unit for vehicle and manufacturing method thereof | |
WO2024193454A1 (zh) | 一种局部高红外线透过的夹层隔热玻璃及包含其的车辆 | |
CN114746374A (zh) | 具有中性色太阳能控制涂层的汽车玻璃 | |
JP7493092B2 (ja) | p偏光放射線を用いるヘッドアップディスプレイ(HUD)のための投影設備 | |
US20240217314A1 (en) | Front windshield and automobile | |
EP4313587A1 (fr) | Vitrage de vehicule et dispositif avec systeme de detection proche infrarouge associe | |
CN110790516A (zh) | 一种保证电子眼摄录清晰度的双面镀膜汽车前挡夹层玻璃 | |
CN115742492B (zh) | 车窗玻璃及车辆 | |
CN115593047B (zh) | 车窗玻璃与车辆 | |
CN115891298A (zh) | 车窗玻璃及车辆 | |
CN114488360A (zh) | 汽车挡风玻璃及汽车 | |
EP4004641B1 (en) | Faster switching electrochromic devices | |
CN211664965U (zh) | 一种保证电子眼摄录清晰度的双面镀膜汽车前挡夹层玻璃 | |
JP7255179B2 (ja) | 熱線遮蔽合わせガラス | |
EP4410756A1 (en) | Vehicle window assembly and vehicle | |
JPH0474737A (ja) | 合わせガラス | |
WO2023130214A1 (zh) | 挡风玻璃及挡风玻璃总成 | |
CN116395985B (zh) | 抗反射玻璃及其制造方法、车窗玻璃 | |
WO2023092262A1 (zh) | 抬头显示车窗及车辆 | |
US20240269965A1 (en) | Projection assembly for a head-up display (hud) with p-polarized radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889402 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022889402 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2024526512 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20247015412 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2022889402 Country of ref document: EP Effective date: 20240501 |