WO2023078303A1 - 一种电动车辆充电装置的故障反馈方法、装置及设备 - Google Patents

一种电动车辆充电装置的故障反馈方法、装置及设备 Download PDF

Info

Publication number
WO2023078303A1
WO2023078303A1 PCT/CN2022/129290 CN2022129290W WO2023078303A1 WO 2023078303 A1 WO2023078303 A1 WO 2023078303A1 CN 2022129290 W CN2022129290 W CN 2022129290W WO 2023078303 A1 WO2023078303 A1 WO 2023078303A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging device
fault
electric vehicle
information
frequency
Prior art date
Application number
PCT/CN2022/129290
Other languages
English (en)
French (fr)
Inventor
王超
Original Assignee
长春捷翼汽车科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春捷翼汽车科技股份有限公司 filed Critical 长春捷翼汽车科技股份有限公司
Priority to MX2024005288A priority Critical patent/MX2024005288A/es
Priority to EP22889325.1A priority patent/EP4410589A1/en
Publication of WO2023078303A1 publication Critical patent/WO2023078303A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application relates to the field of electric vehicles, and in particular to a fault feedback method, device and equipment for an electric vehicle charging device.
  • charging piles are mostly used to charge electric vehicles, and the charging process can be summarized as follows: insert the charging gun of the charging pile into the charging device of the electric vehicle, and the electric vehicle charging device obtains the type of charging gun and the charging voltage, and will charge The type of gun and the charging voltage are sent to the controller of the electric vehicle through the communication bus.
  • the electric vehicle controller generates a charging strategy according to the type of charging gun, charging voltage and the remaining power of the electric vehicle, and sends the charging strategy to the controller according to a certain sending frequency.
  • Charging device the charging device controls the closing of the switch according to the charging strategy, connects the current of the charging gun to the charging system of the electric vehicle, and then charges the electric vehicle.
  • the charging device also obtains The state of the switch is sent to the electric vehicle controller at the same transmission frequency, so as to realize the closed-loop control of the charging process by the electric vehicle controller.
  • the message type and the frequency of message sending are usually limited.
  • the electric vehicle controller cannot obtain the charging information in time.
  • the fault information of the device cannot adjust the charging strategy in time to control the switching state of the charging device.
  • the charging pile continues to charge the electric vehicle through the faulty charging device, which increases the hidden danger of charging safety.
  • the electric vehicle controller cannot obtain the fault information of the vehicle charging device in time, which increases the hidden danger of charging safety.
  • Feedback method, device and equipment without adding new hardware or message types, when detecting a failure of the electric vehicle, sending the charging device information when the failure occurs to the electric vehicle controller, so that the electric vehicle controller The failure of the vehicle charging device can be obtained in time, and the safety hazard of charging can be reduced.
  • an embodiment of the present application provides a fault feedback method for an electric vehicle charging device, including:
  • the fault information includes the fault type.
  • obtaining an adjusted frequency higher than the original communication frequency according to the fault information and the original communication frequency of the charging device information further includes searching for a frequency value corresponding to both the original communication frequency and the fault type in a preset frequency table, and searching The frequency value obtained is used as the adjustment frequency.
  • the charging device information includes the power supply voltage and switch status of the charging device.
  • determining the fault information of the charging device according to the charging device information also includes:
  • a fault type of the electric vehicle charging device is determined based on the difference.
  • determining the fault information of the charging device according to the charging device information also includes:
  • the fault type of the electric vehicle charging device is determined.
  • the fault type includes undervoltage with function limitation, undervoltage without function limitation, overvoltage with function limitation, and overvoltage without function limitation.
  • the method also includes,
  • the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency.
  • determining the fault information of the charging device according to the charging device information also includes,
  • the fault type of the electric vehicle charging device is determined.
  • the charging device information of the electric vehicle charging device it also includes:
  • the execution result also includes the execution status, which indicates whether the charging strategy is executed
  • Determining the fault information of the charging device according to the charging device information further includes,
  • the embodiment of the present application provides a fault feedback method for an electric vehicle charging device further comprising:
  • the charging device communicates with the electric vehicle controller at the original communication frequency.
  • the embodiment of the present application also provides a fault feedback device for an electric vehicle charging device, the device includes:
  • a charging device information acquiring unit configured to acquire charging device information of an electric vehicle charging device
  • a fault information determining unit configured to determine the fault information of the charging device according to the charging device information
  • the adjustment frequency obtaining unit is configured to obtain an adjustment frequency higher than the original communication frequency according to the fault information and the original communication frequency of the charging device information, wherein the original communication frequency of the charging device information is set by the electric vehicle controller;
  • the charging device information sending unit is configured to send the charging device information to the electric vehicle controller according to the adjustment frequency, so that the electric vehicle controller can determine the fault of the charging device according to the charging device information.
  • the fault information includes the fault type.
  • the adjustment frequency acquisition unit also includes,
  • the original communication frequency acquisition module is configured to acquire the original communication frequency
  • the adjustment frequency obtaining module is configured to search the frequency value corresponding to both the original communication frequency and the fault type in the preset frequency table, and use the found frequency value as the adjustment frequency.
  • the charging device information includes the power supply voltage and switch status of the charging device.
  • the fault information determination unit further includes,
  • the power supply voltage difference calculation module is configured to calculate the difference between the power supply voltage and the preset value of the power supply voltage
  • the fault information determining unit is further configured to determine the fault type of the electric vehicle charging device according to the difference.
  • the fault information determination unit further includes,
  • the voltage range comparison module is configured to determine the fault type of the electric vehicle charging device according to the power supply voltage and the pre-configured corresponding relationship between the preset power supply voltage range and the fault type.
  • fault information determination unit is further configured such that the fault types include undervoltage with function limitation, undervoltage without function limitation, overvoltage with function limitation, and overvoltage without function limitation.
  • the fault information determination unit further includes,
  • the fault type monitoring module judges whether the fault type of the charging device has no function limit undervoltage or overvoltage without function limit changes within a preset time
  • the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency.
  • the fault information determination unit further includes,
  • the switch state comparison module is configured to determine the fault type of the electric vehicle charging device according to the switch state and the pre-configured corresponding relationship between the preset switch state and the fault type.
  • the charging device information acquisition unit also includes,
  • the charging strategy acquisition module is configured to acquire the charging strategy sent by the electric vehicle controller at the original communication frequency
  • the charging strategy execution module is configured to execute the charging strategy to obtain an execution result, the execution result including the switch status of the charging device information.
  • the execution result also includes the execution status, which indicates whether the charging strategy is executed
  • the fault information determination unit further includes,
  • the switch state difference calculation module is configured to calculate the difference between the switch state of the charging device and the charging strategy, determine the fault type of the charging device information according to the difference, and/or execute the state analysis module, and determine the fault of the charging device information according to the execution state type.
  • the fault information determining unit is further configured to judge whether there is still a fault in the charging device information according to the charging device information;
  • the charging device information sending unit is further configured to communicate with the electric vehicle controller at the original communication frequency.
  • an embodiment of the present application further provides a computer device, including a memory, a processor, and a computer program stored in the memory, and the processor implements the above method when executing the computer program.
  • the embodiment of the present application also provides a computer storage medium, on which a computer program is stored, and when the computer program is run by a processor of a computer device, the above method is executed.
  • the electric vehicle communicates with the electric vehicle controller through the original communication frequency.
  • an adjustment frequency higher than the original communication frequency is obtained according to the fault information and the original communication frequency.
  • Sending the charging device information to the electric vehicle controller improves the sending speed of the charging device information, so that the electric vehicle controller can quickly obtain the charging device information when the charging device fails, so that the electric vehicle controller can quickly determine and Handle faults and reduce the safety hazards of charging.
  • FIG. 1 is a schematic diagram of an implementation system of a fault feedback method for an electric vehicle charging device according to an embodiment of the present application
  • FIG. 2 is a flowchart of a fault feedback method for an electric vehicle charging device according to an embodiment of the present application
  • Fig. 3 shows the process of determining the fault type according to the power supply voltage according to the embodiment of the present application
  • Fig. 4 shows the process of obtaining the execution result according to the charging strategy according to the embodiment of the present application
  • Fig. 5 shows the process of restoring the original communication frequency after judging that the fault state is eliminated according to the embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a fault feedback device of an electric vehicle charging device according to an embodiment of the present application.
  • FIG. 7 is a detailed structural diagram of a fault feedback device of an electric vehicle charging device according to an embodiment of the present application.
  • FIG. 8 is a data flow diagram of the fault feedback to the controller by the charging device according to the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a computer device according to an embodiment of the present application.
  • the charging device information acquisition unit
  • the fault information determining unit
  • a power supply voltage acquisition module 7011.
  • a charging strategy acquisition module 7012.
  • Switch state acquisition module
  • the fault information determining unit
  • Switch state comparison module
  • the original communication frequency acquisition module
  • FIG. 1 is a schematic diagram of a fault feedback method implementation system for an electric vehicle charging device according to an embodiment of the present application, including: a charging pile 101 , an electric vehicle 102 , wherein the electric vehicle 102 includes a charging device 1021 , a controller 1022 and a battery 1023 .
  • the charging gun of the charging pile 101 is inserted into the charging device 1021 of the electric vehicle 102, and the charging device 1021 obtains the type and charging voltage of the charging gun of the charging pile 101, and passes the charging gun type and charging voltage through
  • the communication bus is sent to the controller 1022, the controller 1022 generates a charging strategy according to the type of the charging gun, the charging voltage, and the remaining power of the battery 1023, and sends the charging strategy to the charging device 1021 according to a certain sending frequency, and the charging device 1021 according to the charging strategy Closing of the control switch charges the electricity of the charging pile 101 into the battery 1023 of the electric vehicle 102 , and then charges the electric vehicle 102 .
  • the charging device 1021 controls the closing of the switch according to the charging strategy, it also obtains the state of the switch, and sends the state of the switch to the controller 1022 at the same transmission frequency, so as to realize the closed-loop control of the charging process by the controller 1022 .
  • the electric vehicle 102 is an electric car, and may also be other types of electric vehicles, such as electric bicycles, etc. The embodiment of this specification does not limit the type of electric vehicles.
  • the message type and the frequency of message sending are usually limited.
  • the controller 1022 cannot obtain the charging device in time due to the limitation of the message type and message sending frequency. 1021 failure information, and then can not timely adjust the charging strategy to control the switch state of the charging device 1021, the charging pile 101 continues to charge the electric vehicle 102 through the faulty charging device 1021, increasing the charging safety hazard.
  • a fault feedback method, device, and equipment for an electric vehicle charging device described in the embodiments of the present application can be applied to the charging device 1021 to solve the problem that the controller 1022 cannot obtain the charging device 1021 in time when the charging device 1021 fails in the prior art
  • the fault information increases the safety hazard of charging.
  • FIG. 2 is a flowchart of a fault feedback method for an electric vehicle charging device according to an embodiment of the present application.
  • the fault feedback process of the electric vehicle charging device is described, but more or less operation steps may be included based on routine or non-creative efforts.
  • the sequence of steps enumerated in the embodiments is only one of the execution sequences of many steps, and does not represent the only execution sequence.
  • the method may include:
  • Step 201 Obtain the charging device information of the electric vehicle charging device
  • Step 202 Determine the fault information of the charging device according to the charging device information
  • Step 203 Obtain an adjustment frequency higher than the original communication frequency according to the fault information and the original communication frequency of the charging device information, wherein the original communication frequency of the charging device information is set by the electric vehicle controller;
  • Step 204 Send the charging device information to the electric vehicle controller according to the adjustment frequency, so that the electric vehicle controller can determine the fault of the charging device according to the charging device information.
  • the electric vehicle communicates with the electric vehicle controller through the original communication frequency.
  • an adjustment frequency higher than the original communication frequency is obtained according to the fault information and the original communication frequency.
  • Adjust the frequency to send the charging device information to the electric vehicle controller which improves the sending speed of the charging device information, so that the electric vehicle controller can quickly obtain the charging device information when the charging device fails, so that the electric vehicle controller can quickly obtain the charging device information according to the charging device information.
  • the charging device and the controller need to communicate continuously, and the charging device sends the charging device information to the controller through a certain frequency, so that the controller can guide Charge.
  • the charging device fails, the adjustment frequency higher than the original communication frequency is obtained through the fault information and the original communication frequency of the charging device information, and the charging device information is sent to the controller by adjusting the frequency, and the controller can receive the charging device faster Information, and determine the fault of the charging device according to the charging device information.
  • step 202 it is determined according to the charging device information that the fault information of the charging device includes a fault type.
  • the charging device information can be compared with preset fault features to determine the fault type, wherein the charging device information can include multiple types of information, so multiple fault types can be determined according to the charging device information.
  • the process of obtaining the adjusted frequency in step 203 further includes searching for the original communication frequency and fault in the preset frequency table.
  • the frequency values corresponding to the two types, and the found frequency value is used as the adjustment frequency.
  • the preset frequency table can use the original communication frequency and fault type as an index to obtain the frequency value corresponding to the specified original communication frequency and fault type, wherein the size of the frequency value can represent the severity of the fault type, and a certain The more serious the fault, the greater its corresponding frequency value, so as to reduce the time for the controller to receive information from the charging device.
  • the original communication frequency of the charging device information is set by the electric vehicle controller, and the original communication frequency can represent the load of the communication bus of the electric vehicle. Therefore, the embodiment of the present application considers the load of the current communication bus when obtaining the adjusted frequency, and then When increasing the sending frequency of charging device information, it will not affect the normal operation of other modules of the electric vehicle.
  • the charging device information of the electric vehicle charging device acquired in step 201 further includes the power supply voltage and switch status of the charging device.
  • the power supply voltage of the charging device when the power supply voltage of the charging device does not match the preset normal operating voltage, the normal operation of the charging device will be affected, resulting in failure of the charging device, so the power supply voltage of the charging device needs to be sent to the controller, So that the controller can determine the failure of the charging device according to the magnitude of the power supply voltage.
  • the switch state of the charging device when the switch state of the charging device does not match the preset switch state, the charging device will not be able to charge the electric vehicle according to the charging strategy set by the controller, resulting in failure of the charging device and increasing the hidden danger of charging safety. Therefore, it is necessary to replace the charging device
  • the switch state of the switch is sent to the controller, so that the controller can determine the failure of the charging device according to the switch state.
  • the preset normal operating voltage range of the charging device is 8.4V-16.2V.
  • the fault types indicated by the supply voltage of the charging device include: undervoltage with limited function, undervoltage with no function Limitation, overvoltage with functional limitation, and overvoltage without functional limitation.
  • the supply voltage values corresponding to the above fault types can be shown in Table 1.
  • step 202 in order to determine the fault type of the charging device according to the supply voltage, as shown in FIG. 3 , step 202 further includes:
  • Step 301 Calculate the difference between the power supply voltage and the preset value of the power supply voltage
  • Step 302 Determine the fault type of the electric vehicle charging device according to the difference.
  • the difference between the current power supply voltage and the preset value of the power supply voltage can indicate whether the charging device has undervoltage or overvoltage. If the charging device is undervoltage, the too low power supply voltage will not meet the The working requirements of each module of the charging device, if the charging device has an overvoltage, the ultra-high supply voltage will cause damage to one or some modules of the charging device.
  • the physical characteristics of the electronic devices in each module of the charging device can be used to further judge the specific module that has failed. For example, when the power supply voltage is lower than a certain range of preset voltage values, which modules can still Which modules are working and which modules are not working properly.
  • the difference between the power supply voltage and the preset value of the power supply voltage is calculated, and the fault type of the electric vehicle charging device is determined according to the difference, so that the original communication frequency obtained according to the fault type and charging device information is higher than the original communication frequency
  • the adjustment frequency is adjusted, and the power supply voltage of the charging device is sent to the electric vehicle controller according to the adjustment frequency, and the electric vehicle controller determines the fault of the charging device according to the power supply voltage.
  • the method of comparing the power supply voltage and the power supply voltage range corresponding to each fault state can also be used to determine the fault type of the charging device, which is not limited in this embodiment of the specification.
  • step 202 further includes determining the fault type of the electric vehicle charging device according to the power supply voltage and the pre-configured correspondence between the preset power supply voltage range and the fault type.
  • the current power supply voltage is 8V, and according to the corresponding relationship between the power supply voltage range and the fault type shown in Table 1, it is determined that the current fault type is undervoltage without functional limitation.
  • the power supply voltage of the charging device will be sent to the electric vehicle controller at an adjustment frequency of 20 ms .
  • a fault feedback method for an electric vehicle charging device provided in an embodiment of the present application further includes: judging whether the fault type of the charging device is undervoltage without function limitation or overvoltage without function limitation within the preset time. If there is no change, the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency.
  • the charging device can still work normally, so the undervoltage without function limitation or overvoltage without function limitation of the charging device can be judged within the preset time Whether the fault type of the functional limitation has changed.
  • the preset time can be set according to the adjustment frequency, for example, if the adjustment frequency is 20 ms, then it can be judged within the time range corresponding to the five adjustment frequencies that the charging device has no function limit for undervoltage or overvoltage without function limit Whether the fault type has changed. If there is no change, the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency, reducing the pressure on the electric vehicle communication bus.
  • step 202 further includes determining the fault type of the electric vehicle charging device according to the switch state and the pre-configured correspondence between the preset switch state and the fault type.
  • the corresponding relationship between the switch state and the fault type may be preconfigured, and then determine which preconfigured switch state the current switch state of the charging device belongs to, so as to determine the fault type corresponding to the current switch state.
  • step 201 in order to obtain the switch state in time, thereby reducing the probability of misjudgment and improving the accuracy of fault feedback, as shown in FIG. 4 , before step 201, it also includes,
  • Step 401 Obtain the charging strategy sent by the electric vehicle controller at the original communication frequency
  • Step 402 Execute the charging strategy to obtain an execution result, the execution result including the switch state of the charging device.
  • the controller sends the charging strategy at the original communication frequency of the charging device information in step 203.
  • the charging strategy includes the switch state of the charging device.
  • the charging device executes the charging strategy, it adjusts the switch state according to the charging strategy, so that the charging The current of the pile is charged into the battery of the electric vehicle through the switch of the charging device.
  • the charging device obtains the switch state after executing the charging strategy, which improves the timeliness of obtaining the switch state, thereby reducing the probability of misjudgment and improving the accuracy of fault feedback.
  • the execution result obtained in step 402 also includes an execution status, which indicates whether the charging strategy in step 401 is executed.
  • the fault of the charging device may also include not executing the charging strategy, executing the charging strategy but failing to execute it successfully, so step 202 also includes calculating the difference between the state of the charging device switch and the charging strategy, and determining the charging strategy according to the difference.
  • the difference between the switch state of the charging device and the switch state in the charging strategy can be calculated, and the switch of the charging device different from the charging strategy can be found according to the difference; the fault that the charging strategy is not executed can be determined according to the execution state; Fault type and determining the fault type of the charging device according to the execution state, it is possible to determine the fault that the charging strategy has been executed but failed.
  • a fault feedback method for an electric vehicle charging device provided in an embodiment of the present application further includes:
  • Step 501 Judging whether the charging device is still faulty according to the information of the charging device
  • Step 502 If there is no fault, the charging device communicates with the electric vehicle controller at the original communication frequency.
  • the information of the charging device may include the power supply voltage of the charging device and the switch state of the charging device. It may be judged whether the charging device is still faulty according to the difference between the power supply voltage of the charging device and the preset value of the power supply voltage. The difference between the state of the switch and the obtained charging strategy sent by the electric vehicle controller and/or judge whether there is still a fault in the charging device according to the execution status of the charging strategy. If there is no fault, the charging device communicates with the electric vehicle controller at the original communication frequency to reduce the pressure on the communication bus, thereby ensuring the normal operation of other modules of the electric vehicle.
  • the embodiment of this specification also provides a fault feedback device for an electric vehicle charging device, as shown in FIG.
  • Device information sending unit 604 :
  • the charging device information acquiring unit 601 is used to acquire the charging device information of the electric vehicle charging device;
  • the fault information determining unit 602 determines the fault information of the charging device according to the charging device information acquired by the charging device information obtaining unit 601;
  • the adjustment frequency acquisition unit 603 acquires an adjustment frequency higher than the original communication frequency according to the fault information determined by the fault information determination unit 602 and the original communication frequency of the charging device information, wherein the original communication frequency of the charging device information is set by the electric vehicle controller ;
  • the charging device information sending unit 604 sends the charging device information obtained by the charging device information obtaining unit 601 to the electric vehicle controller according to the adjustment frequency obtained by the adjustment frequency obtaining unit 603, so that the electric vehicle controller determines the charging device information according to the charging device information. Fault.
  • Figure 7 describes the detailed structure of the fault feedback device of the electric vehicle charging device, specifically including the charging device information acquisition unit 701 , a fault information determining unit 702 , an adjustment frequency acquiring unit 703 , and a charging device information sending unit 704 .
  • the charging device information acquisition unit 701 further includes a power supply voltage acquisition module 7011, configured to acquire the power supply voltage of the charging device, so that the electric vehicle controller can determine the failure of the charging device according to the magnitude of the power supply voltage.
  • the charging device information acquiring unit 701 further includes a charging strategy acquiring module 7012, configured to acquire the charging strategy sent by the electric vehicle controller according to the original communication frequency, the charging strategy includes the switch state of the charging device, and then Send the charging strategy to the charging strategy execution module 7013, so that the charging strategy execution module 7013 adjusts the switch state of the charging device according to the obtained charging strategy, so that the current of the charging pile is charged into the battery of the electric vehicle through the switch of the charging device .
  • a charging strategy acquiring module 7012 configured to acquire the charging strategy sent by the electric vehicle controller according to the original communication frequency, the charging strategy includes the switch state of the charging device, and then Send the charging strategy to the charging strategy execution module 7013, so that the charging strategy execution module 7013 adjusts the switch state of the charging device according to the obtained charging strategy, so that the current of the charging pile is charged into the battery of the electric vehicle through the switch of the charging device .
  • the charging device information acquisition unit 701 further includes a charging strategy execution module 7013, configured to adjust the switching state of the charging device according to the charging strategy acquired by the charging strategy acquisition module 7012, so that the current of the charging pile passes through the charging The switch of the device is charged into the battery of the electric vehicle.
  • a charging strategy execution module 7013 configured to adjust the switching state of the charging device according to the charging strategy acquired by the charging strategy acquisition module 7012, so that the current of the charging pile passes through the charging The switch of the device is charged into the battery of the electric vehicle.
  • the charging device information acquisition unit 701 further includes an execution status acquisition module 7014, configured to acquire the execution status of the charging strategy, and the status may indicate whether the charging strategy execution module 7013 has executed the charging strategy.
  • the fault of the charging device also includes that the charging strategy represented by the execution state is not executed, and the charging strategy is executed but failed to execute successfully.
  • the execution state obtaining module 7014 sends the obtained execution state to the fault information determining unit 702, so that the fault information determining unit 702 determines the fault type of the charging device according to the execution state.
  • the charging device information acquisition unit 701 further includes a switch state acquisition module 7015, which is used to obtain the switch state of the charging device after the charging strategy execution module 7013 executes the charging strategy, and then send the switch state of the charging device to The fault information determining unit 702, so that the fault information determining unit 702 determines the fault type of the charging device according to the switch state of the charging device.
  • a switch state acquisition module 7015 which is used to obtain the switch state of the charging device after the charging strategy execution module 7013 executes the charging strategy, and then send the switch state of the charging device to The fault information determining unit 702, so that the fault information determining unit 702 determines the fault type of the charging device according to the switch state of the charging device.
  • the fault information determination unit 702 further includes a power supply voltage difference calculation module 7021 for determining the fault type of the charging device according to the power supply voltage of the charging device obtained by the power supply voltage obtaining module 7011 .
  • the difference between the current power supply voltage and the preset value of the power supply voltage can indicate whether the charging device has undervoltage or overvoltage. If the charging device is undervoltage, the too low power supply voltage will not meet the The work of all modules of the charging device requires that if the charging device is over-voltaged, the ultra-high supply voltage will cause damage to one or some modules of the charging device.
  • the physical characteristics of the electronic devices in each module of the charging device can be used to further judge the specific module that has failed. For example, when the power supply voltage is lower than a certain range of preset voltage values, which modules can still Which modules are working and which modules are not working properly. Specifically, the difference between the power supply voltage and the preset value of the power supply voltage can be calculated, and the fault type of the electric vehicle charging device can be determined according to the difference, so that the adjustment frequency acquisition unit 703 can acquire a value higher than the fault type and the original communication frequency of the charging device information. The adjustment frequency of the original communication frequency, the charging device information sending unit 704 sends the power supply voltage of the charging device to the electric vehicle controller according to the adjustment frequency, and the electric vehicle controller determines the fault of the charging device according to the power supply voltage.
  • the fault information determination unit 702 further includes a switch state difference calculation module 7022, which is used to calculate the difference between the switch state acquired by the switch state acquisition module 7015 and the switch state in the charging strategy acquired by the charging strategy acquisition module 7012 Difference, according to the difference, find the switch of the charging device that is different from the charging strategy, and determine the fault type of the charging device.
  • the adjustment frequency obtaining unit 703 obtains an adjustment frequency higher than the original communication frequency according to the fault type and the original communication frequency of the charging device information, and the charging device information sending unit 704 sends the switch state of the charging device to the electric vehicle controller according to the adjustment frequency, and the electric vehicle The vehicle controller determines a malfunction of the charging device based on the state of the switch.
  • the fault information determination unit 702 further includes an execution state analysis module 7023, configured to analyze the execution state obtained by the execution state acquisition module 7014, and determine the fault that the charging strategy is not executed according to the execution state.
  • the fault information determination unit 702 further includes a voltage range comparison module 7024, which determines the fault type of the electric vehicle charging device according to the switch state and the pre-configured correspondence between the preset switch state and the fault type.
  • the fault types represented by the power supply voltage of the charging device in the embodiment of the present application may include undervoltage with function limitation, undervoltage without function limitation, overvoltage with function limitation, and overvoltage without function limitation as shown in Table 1.
  • the correspondence between the supply voltage range and the fault type as shown in Table 1 can be pre-configured, and then the supply voltage range corresponding to the current supply voltage value of the charging device can be searched to determine the fault type corresponding to the current supply voltage value.
  • the current power supply voltage is 8V, and according to the corresponding relationship between the power supply voltage range and the fault type shown in Table 1, it is determined that the current fault type is undervoltage without functional limitation.
  • the fault information determination unit 702 further includes a fault type monitoring module 7025, which judges whether the fault type of the charging device is undervoltage without function limitation or overvoltage without function limitation changes within a preset time; if If there is no change, the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency.
  • a fault type monitoring module 7025 which judges whether the fault type of the charging device is undervoltage without function limitation or overvoltage without function limitation changes within a preset time; if If there is no change, the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency.
  • the faults of undervoltage without function limitation and overvoltage without function limitation are not serious, and the charging device can still work normally, so it can be judged within the preset time that the charging device has no function limitation or overvoltage. Whether the fault type without functional limitation has changed.
  • the preset time can be set according to the adjustment frequency, for example, if the adjustment frequency is 20 ms, then it can be judged within the time range corresponding to the five adjustment frequencies that the charging device has no function limit for undervoltage or overvoltage without function limit Whether the fault type has changed. If there is no change, the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency, reducing the pressure on the electric vehicle communication bus.
  • the fault information determination unit 702 further includes a switch state comparison module 7026, which determines the fault type of the electric vehicle charging device according to the switch state and the pre-configured correspondence between the preset switch state and the fault type.
  • the corresponding relationship between the switch state and the fault type may be pre-configured, and then the current switch state of the charging device and which pre-configured switch state belongs to are determined, so as to determine the fault type corresponding to the current switch state.
  • the fault information determining unit 702 can also combine the fault types determined by the switch state difference calculation module 7022 and the fault types determined by the execution state analysis module 7023 to determine the faults that the charging strategy was executed but failed to execute.
  • the fault information determination unit 702 can also judge whether there is still a fault in the charging device according to the charging device information obtained by the charging device information acquisition unit 701. If there is no fault, the charging device will acquire the module at the original communication frequency
  • the original communication frequency acquired by 7031 communicates with the electric vehicle controller, avoiding the communication between the electric vehicle charging device and the controller through an adjustment frequency higher than the original communication frequency after the fault is eliminated, resulting in excessive pressure on the communication bus question.
  • the charging device can be judged whether there is still a fault in the charging device according to the difference between the power supply voltage of the charging device obtained by the power supply voltage obtaining module 7011 and the preset value of the power supply voltage, or according to the switch state and Based on the difference of the charging strategy obtained by the charging strategy obtaining module 7012 and/or the execution state of the charging strategy obtained by the charging execution state obtaining module 7014, it is judged whether the charging device still has a fault.
  • the adjusted frequency acquisition unit 703 further includes an original communication frequency acquisition module 7031, which is used to acquire the original communication frequency for communication with the charging device set by the electric vehicle controller according to the load condition of the communication bus of the electric vehicle .
  • the charging device When the charging device of the electric vehicle is working normally, the charging device and the controller continue to communicate according to the original communication frequency.
  • the charging device sends the charging device information including the power supply voltage and switch status to the controller through the original communication frequency. guide charging.
  • the adjusted frequency acquiring unit 703 further includes an adjusted frequency acquiring module 7032, which is used to acquire the high Based on the adjustment frequency of the original communication frequency, the adjustment frequency acquisition unit 703 obtains an adjustment frequency higher than the original communication frequency according to the fault type and the original communication frequency of the charging device information, and the charging device information sending unit 704 sends the electric vehicle controller according to the adjustment frequency The power supply voltage of the charging device is sent, and the electric vehicle controller determines the failure of the charging device according to the power supply voltage.
  • an adjusted frequency acquiring module 7032 which is used to acquire the high Based on the adjustment frequency of the original communication frequency
  • the adjustment frequency acquisition unit 703 obtains an adjustment frequency higher than the original communication frequency according to the fault type and the original communication frequency of the charging device information
  • the charging device information sending unit 704 sends the electric vehicle controller according to the adjustment frequency
  • the power supply voltage of the charging device is sent, and the electric vehicle controller determines the failure of the charging device according to the power supply voltage.
  • the frequency value corresponding to the original communication frequency and the fault type can be searched in the preset frequency table, and the found frequency value can be used as the adjustment frequency, wherein the preset frequency table can use the original communication frequency and the fault type as an index, Determine the specified original communication frequency and the frequency value corresponding to the fault type, where the size of the frequency value can indicate the severity of the fault type, the more serious a fault is, the greater the corresponding frequency value, so as to reduce the number of charging device information received by the controller time.
  • the original communication frequency of the charging device information is set by the electric vehicle controller, and the original communication frequency can represent the load of the communication bus of the electric vehicle. Therefore, the embodiment of the present application considers the load of the current communication bus when obtaining the adjusted frequency, and then When the sending speed of charging device information is increased, the normal operation of other modules of the electric vehicle will not be affected.
  • the charging device information sending unit 704 is configured to send the information obtained by the charging device information obtaining unit 701 including the power supply voltage and switch state of the charging device to the electric vehicle controller according to the adjustment frequency obtained by the adjustment frequency obtaining module 7032 Charging device information, so that the electric vehicle controller can receive the charging device information more quickly, and determine the fault of the charging device according to the charging device information.
  • Step 801 the charging device receives the current of the charging pile.
  • the charging device may also obtain information about the charging pile, and send the information about the charging pile to the controller, so that the controller generates a charging strategy based on the information about the charging pile.
  • Step 802 the controller sends a charging strategy to the charging device according to the original communication frequency.
  • Step 803 the charging device adjusts the switch state according to the charging strategy, and charges the current of the charging pile into the battery.
  • the charging device may include a plurality of switches, and the opening and closing of each switch is controlled according to the charging strategy, so as to charge the current of the charging pile into the battery.
  • Step 804 the charging device obtains the power supply voltage and the switch state, and sends the power supply voltage and the switch state to the controller at the original communication frequency.
  • Step 805 the charging device obtains the power supply voltage and the execution result of the charging strategy.
  • the charging device obtains the power supply voltage and the execution result of the charging strategy in the fault state, and judges whether a fault occurs according to the power supply voltage and the execution result of the charging strategy.
  • Step 806 the charging device determines fault information of the charging device according to the supply voltage.
  • the charging device determines the fault information of the charging device according to the difference between the power supply voltage in the fault state and the preset value of the power supply voltage.
  • Fault information includes the type of fault.
  • the difference between the power supply voltage and the preset value of the power supply voltage can indicate whether the charging device is undervoltage or overvoltage. If the charging device is undervoltage, the low power supply voltage will not meet the charging requirements.
  • the working requirements of each module of the device if the charging device is overvoltage, the ultra-high supply voltage will cause damage to one or some modules of the charging device.
  • the physical characteristics of the electronic devices in each module of the charging device can be used to further judge the specific module that has failed. For example, when the power supply voltage is lower than a certain range of preset voltage values, which modules can still Which modules are working and which modules are not working properly.
  • the fault type of the electric vehicle charging device may also be determined according to the power supply voltage and the pre-configured correspondence between the preset power supply voltage range and the fault type. Specifically, the correspondence between the supply voltage range and the fault type as shown in Table 1 can be pre-configured, and then the supply voltage range corresponding to the current supply voltage value of the charging device can be searched to determine the fault type corresponding to the current supply voltage value.
  • the fault type indicated by the power supply voltage of the charging device may include, as shown in Table 1, undervoltage with function limitation, undervoltage without function limitation, overvoltage with function limitation, and overvoltage without function limitation.
  • Step 807 the charging device acquires the adjusted frequency according to the fault information and the original communication frequency.
  • the charging device can search the frequency value corresponding to the original communication frequency and the fault type in the preset frequency table, and use the found frequency value as the adjustment frequency, and the preset frequency table can use the original communication frequency and the fault type As an index, get the specified original communication frequency and the frequency value corresponding to the fault type, where the size of the frequency value can represent the severity of the fault type, the more serious a fault is, the larger the corresponding frequency value is, so as to reduce the controller received The time of charging device information.
  • Step 808 the charging device sends the power supply voltage to the controller according to the adjusted frequency, so that the controller determines the fault according to the fault information.
  • the charging device sends the power supply voltage to the controller according to the adjustment frequency higher than the original communication frequency, so the controller can receive the power supply voltage when the charging device fails faster, thereby determining the fault of the charging device faster .
  • Step 809 the charging device determines the fault information of the charging device according to the execution result of the charging strategy.
  • the fault information includes the fault type
  • the execution result of the charging strategy includes the execution state and switch state of the charging strategy, wherein the execution state indicates whether the charging strategy is executed.
  • the fault type of the electric vehicle charging device may also be determined according to the switch state and the pre-configured correspondence between the preset switch state and the fault type. Specifically, the corresponding relationship between the switch state and the fault type may be preconfigured, and then determine which preconfigured switch state the current switch state of the charging device belongs to, so as to obtain the fault type corresponding to the current switch state.
  • Step 810 the charging device obtains the adjusted frequency according to the fault information and the original communication frequency.
  • the charging device may search the frequency value corresponding to the original communication frequency and the fault type in the preset frequency table, and use the found frequency value as the adjusted frequency.
  • Step 811 the charging device sends the switch status to the controller according to the adjusted frequency, so that the controller can determine the fault according to the fault information.
  • the charging device sends the switch state to the controller according to the adjustment frequency higher than the original communication frequency, so the controller can receive the switch state when the charging device fails faster, thereby determining the fault of the charging device faster .
  • Step 812 the controller adjusts the charging strategy according to the state of the switch.
  • Step 813 the controller sends the adjusted charging strategy to the charging device according to the adjusted frequency.
  • the adjusted charging strategy is sent to the charging device according to the adjusted frequency higher than the original communication frequency, so the charging device can receive the adjusted charging strategy faster, so that by executing The adjusted charging strategy handles the failure.
  • Step 814 the charging device executes the adjusted charging strategy, and judges whether there is still a fault.
  • the charging device judges whether there is still a fault through the same method as steps 806 and 809, and if there is still a fault, repeat steps 805-811.
  • the charging device can also judge whether the fault type of the charging device, such as undervoltage without function limitation or overvoltage without function limitation, has changed within the preset time;
  • the converter sends the supply voltage of the charging device.
  • the faults of undervoltage without function limitation and overvoltage without function limitation are not serious, and the charging device can still work normally, so it can be judged within the preset time whether the undervoltage without function limitation or overvoltage without function limitation of the charging device Whether the fault type has changed.
  • the preset time can be set according to the adjustment frequency, for example, if the adjustment frequency is 20 ms, then it can be judged within the time range corresponding to the five adjustment frequencies that the charging device has no function limit for undervoltage or overvoltage without function limit Whether the fault type has changed. If there is no change, the charging device sends the power supply voltage of the charging device to the electric vehicle controller according to the original communication frequency, reducing the pressure on the electric vehicle communication bus.
  • Step 815 if the fault does not exist, the charging device sends the charging voltage and switch state to the controller according to the original communication frequency.
  • the charging device communicates with the electric vehicle controller at the original communication frequency to reduce the pressure on the communication bus, thereby ensuring the normal operation of other modules of the electric vehicle.
  • FIG. 9 is a schematic structural diagram of a computer device according to an embodiment of the present application.
  • the fault feedback device of an electric vehicle charging device in this application may be the computer device in this embodiment, which executes the above-mentioned method of this application.
  • Computer device 902 may include one or more processing devices 904, such as one or more central processing units (CPUs), each of which may implement one or more hardware threads.
  • the computer device 902 may also include any storage resources 906 for storing any kind of information, such as codes, settings, data, and the like.
  • the storage resource 906 may include any one or combination of the following: any type of RAM, any type of ROM, flash memory device, hard disk, optical disc, and so on. More generally, any storage resource can use any technology to store information.
  • any storage resource may provide for volatile or non-volatile retention of information.
  • any storage resource may represent a fixed or removable component of computer device 902 .
  • processing device 904 executes the associated instructions stored in any storage resource or combination of storage resources
  • computing device 902 may perform any operation of the associated instructions.
  • the computer device 902 also includes one or more drive mechanisms 908 for interacting with any storage resources, such as a crystal oscillator, to provide a clock signal for the processing device to operate.
  • the computer device 902 may also include one or more network interfaces 912, such as a CAN receiving module, which is used to receive data sent by the controller.
  • network interfaces 912 such as a CAN receiving module, which is used to receive data sent by the controller.
  • One or more communication buses 910 couple together the components described above.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed when the processor runs The steps of the optimization method of the fault feedback device of the electric vehicle charging device.
  • the embodiment of the present application also provides a computer-readable instruction, wherein when the processor executes the instruction, the program therein causes the processor to execute the methods shown in FIG. 2-FIG. 5 and FIG. 8 .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage medium
  • several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请涉及电动车辆领域,尤其涉及一种电动车辆充电装置的故障反馈方法、装置及设备。其方法包括,获取电动车辆充电装置的充电装置信息;根据所述充电装置信息确定所述充电装置的故障信息;根据所述故障信息以及充电装置信息的原通信频率获取高于所述原通信频率的调整频率,其中,所述充电装置信息的原通信频率由电动车辆控制器设定;根据所述调整频率向所述电动车辆控制器发送所述充电装置信息,以使所述电动车辆控制器根据所述充电装置信息确定所述充电装置的故障。通过本申请实施例,提高了充电装置信息的发送速度,以使电动车辆控制器根据充电装置信息快速确定并处理故障,降低充电的安全隐患。

Description

一种电动车辆充电装置的故障反馈方法、装置及设备
相关申请
本申请要求2021年11月3日递交的、申请号为202111310047.4、专利名称为“一种电动车辆充电装置的故障反馈方法、装置及设备”的中国发明专利的优先权,该专利的所有内容在此全部引入。
技术领域
本申请涉及电动车辆领域,尤其涉及一种电动车辆充电装置的故障反馈方法、装置及设备。
背景技术
随着新能源产业的迅速发展,电动车辆的数量也在不断增加,大规模的电动车辆同时带来了巨大的安全隐患,其中最为关键的是保证电动车辆在充电过程中的安全。
现有技术中大多采用充电桩为电动车辆进行充电,其充电过程可以概括为:将充电桩的充电枪插入电动车辆的充电装置,电动车辆充电装置获取充电枪的类型以及充电电压,并将充电枪的类型和充电电压通过通信总线发送给电动车辆的控制器,电动车辆控制器根据充电枪的类型、充电电压以及电动车辆的剩余电量等生成充电策略并根据一定的发送频率将充电策略发送给充电装置,充电装置根据充电策略控制开关的闭合,将充电枪的电流接入到电动车辆的充电系统中,进而对电动车辆进行充电,此外,充电装置在根据充电策略控制开关的闭合之后还获取开关的状态,并以相同的发送频率将开关状态发送给电动车辆控制器,实现电动车辆控制器对充电过程的闭环控制。
为了减小电动车辆通信总线的压力,通常对消息类型和消息发送的频率进行限制,而当电动车辆充电装置故障时,由于消息类型和消息发送频率的限制,电动车辆控制器不能及时获取到充电装置的故障信息,进而不能及时调整充电策略对充电装置的开关状态进行控制,充电桩持续通过故障的充电装置对电动车辆进行充电,增加了充电安全隐患。
现在亟需一种电动车辆充电装置的故障反馈方法,从而解决现有技术中电动车辆充电装置故障时,电动车辆控制器不能及时获取到车辆充电装置的故障信息,增加充电的安全隐患的问题。
本申请内容
为解决现有技术中电动车辆充电装置故障时,电动车辆控制器不能及时获取到车辆充电装置的故障信息,增加了充电安全隐患的问题,本申请实施例提供了一种电动车辆充电装置的故障反馈方法、装置及设备,在不增加新的硬件或消息类型的情况下,当检测到电动车辆发生故障时,将发生故障时的充电装置信息发送给电动车辆控制器,以使电动车辆控制器能够及时获取到车辆充电装置的故障,降低充电的安全隐患。
为了解决上述技术问题,本申请的具体技术方案如下:
一方面,本申请实施例提供了一种电动车辆充电装置的故障反馈方法,包括,
获取电动车辆充电装置的充电装置信息;
根据充电装置信息确定充电装置的故障信息;
根据故障信息以及充电装置信息的原通信频率获取高于原通信频率的调整频率,其中,充电装置信息的原通信频率由电动车辆控制器设定;
根据调整频率向电动车辆控制器发送充电装置信息,以使电动车辆控制器根据充电装置信息确定充电装置的故障。
进一步地,故障信息包括故障类型。
进一步地,根据故障信息以及充电装置信息的原通信频率获取高于原通信频率的调整频率进一步包括,在预设的频率表中查找与原通信频率和故障类型两者对应的频率值,将查找到的频率值作为调整频率。
进一步地,充电装置信息包括充电装置的供电电压和开关状态。
进一步地,根据充电装置信息确定充电装置的故障信息还包括,
计算供电电压与供电电压预设值的差值;
根据差值确定电动车辆充电装置的故障类型。
进一步地,根据充电装置信息确定充电装置的故障信息还包括,
根据供电电压,以及预先配置的预设供电电压范围与故障类型的对应关系,确定电动车辆充电装置的故障类型。
进一步地,故障类型包括欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制。
进一步地,方法还包括,
判断充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;
若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压。
进一步地,根据充电装置信息确定充电装置的故障信息还包括,
根据开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定电动车辆充电装置的故障类型。
进一步地,获取电动车辆充电装置的充电装置信息之前,还包括,
获取电动车辆控制器以原通信频率发送的充电策略;
执行充电策略得到执行结果,执行结果包括充电装置的开关状态。
进一步地,执行结果还包括执行状态,执行状态表示充电策略是否被执行;
根据充电装置信息确定充电装置的故障信息进一步包括,
计算充电装置的开关状态与充电策略的差异,根据差异确定充电装置的故障类型,和/或,根据执行状态确定充电装置的故障类型。
进一步地,本申请实施例提供了一种电动车辆充电装置的故障反馈方法还包括,
根据充电装置信息判断充电装置是否还存在故障;
若不存在故障,则充电装置以原通信频率与电动车辆控制器进行通信。
另一方面,本申请实施例还提供了一种电动车辆充电装置的故障反馈装置,装置包括,
充电装置信息获取单元,配置为获取电动车辆充电装置的充电装置信息;
故障信息确定单元,配置为根据充电装置信息确定充电装置的故障信息;
调整频率获取单元,配置为根据故障信息以及充电装置信息的原通信频率获取高于原通信频率的调整频率,其中,充电装置信息的原通信频率由电动车辆控制器设定;
充电装置信息发送单元,配置为根据调整频率向所述电动车辆控制器发送充电装置信息,以使电动车辆控制器根据充电装置信息确定充电装置的故障。
进一步地,故障信息包括故障类型。
进一步地,调整频率获取单元还包括,
原通信频率获取模块,配置为获取原通信频率;
调整频率获取模块,配置为在预设的频率表中查找与原通信频率和故障类型两者对应的频率值,将查找到的频率值作为调整频率。
进一步地,充电装置信息包括充电装置的供电电压和开关状态。
进一步地,故障信息确定单元进一步包括,
供电电压差值计算模块,配置为计算供电电压与供电电压预设值的差值;
故障信息确定单元进一步用于,配置为根据差值确定电动车辆充电装置的故障类型。
进一步地,故障信息确定单元进一步包括,
电压范围比较模块,配置为根据供电电压,以及预先配置的预设供电电压范围与故障类型的对应关系,确定电动车辆充电装置的故障类型。
进一步地,故障信息确定单元进一步配置为,故障类型包括欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制。
进一步地,故障信息确定单元进一步包括,
故障类型监测模块,判断充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;
若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压。
进一步地,故障信息确定单元进一步包括,
开关状态比较模块,配置为根据开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定电动车辆充电装置的故障类型。
进一步地,充电装置信息获取单元还包括,
充电策略获取模块,配置为获取电动车辆控制器以原通信频率发送的充电策略;
充电策略执行模块,配置为执行充电策略得到执行结果,执行结果包括充电装置信息的开关状态。
进一步地,执行结果还包括执行状态,执行状态表示充电策略是否被执行;
故障信息确定单元进一步包括,
开关状态差异计算模块,配置为计算充电装置的开关状态与所述充电策略的差异,根据差异确定充电装置信息的故障类型,和/或,执行状态分析模块,根据执行状态确定充电装置信息的故障类型。
进一步地,故障信息确定单元进一步配置为,根据充电装置信息判断充电装置信息是否还存在故障;
若不存在故障,则充电装置信息发送单元进一步配置为,以原通信频率与电动车辆控制器进行通信。
另一方面,本申请实施例还提供了一种计算机设备,包括存储器、处理器、以及存储在存储器上的计算机程序,处理器执行所述计算机程序时实现上述的方法。
最后,本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序,计算机程序被计算机设备的处理器运行时,执行上述的方法。
利用本申请实施例,电动车辆通过原通信频率与电动车辆控制器进行通信,当电动车辆的充电装置发生故障时,根据故障信息和原通信频率获取高于原通信频率的调整频率,根据调整频率向电动车辆控制器发送充电装置信息,提高了充电装置信息的发送速度,使得电动车辆控制器快速获取到充电装置发生故障时的充电装置信息,以使电动车辆控制器根据充电装置信息快速确定并处理故障,降低充电的安全隐患。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本申请实施例一种电动车辆充电装置的故障反馈方法实施系统示意图;
图2所示为本申请实施例一种电动车辆充电装置的故障反馈方法的流程图;
图3所示为本申请实施例根据供电电压确定故障类型的过程;
图4所示为本申请实施例根据充电策略得到执行结果的过程;
图5所示为本申请实施例判断故障状态消除后恢复原通信频率的过程;
图6所示为本申请实施例一种电动车辆充电装置的故障反馈装置的结构示意图;
图7所示为本申请实施例电动车辆充电装置的故障反馈装置的详细结构图;
图8所示为本申请实施例充电装置将故障反馈给控制器的数据流图;
图9所示为本申请实施例计算机设备的结构示意图。
【附图标记说明】:
101、充电桩;
102、电动车辆;
1021、充电装置;
1022、控制器;
1023、电池;
601、充电装置信息获取单元;
602、故障信息确定单元;
603、调整频率获取单元;
604、充电装置信息发送单元;
701、充电装置信息获取单元;
7011、供电电压获取模块;
7012、充电策略获取模块;
7013、充电策略执行模块;
7014、执行状态获取模块;
7015、开关状态获取模块;
702、故障信息确定单元;
7021、供电电压差值计算模块;
7022、开关状态差异计算模块;
7023、执行状态分析模块;
7024、电压范围比较模块;
7025、故障类型监测模块;
7026、开关状态比较模块;
703、调整频率获取单元;
7031、原通信频率获取模块;
7032、调整频率获取模块;
704、充电装置信息发送单元;
902、计算机设备;
904、处理设备;
906、存储资源;
908、驱动机构;
910、通信总线;
912、网络接口。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图1所示为本申请实施例一种电动车辆充电装置的故障反馈方法实施系统示意图,包括:充电桩101、电动车辆102,其中电动车辆102包括充电装置1021、控制器1022和电池1023。当为电动车辆102充电时,将充电桩101的充电枪插入电动车辆102的充电装置1021中,充电装置1021获取充电桩101的充电枪的类型以及充电电压,并将充电枪类型和充电电压通过通信总线发送给控制器1022,控制器1022根据充电枪的类型、充电电压以及电池1023的剩余电量等生成充电策略并根据一定的发送频率将充电策略发送给充电装置1021,充电装置1021根据充电策略控制开关的闭合,将充电桩101的电量充入电动车辆102的电池1023中,进而对电动车辆102进行充电。此外,充电装置1021在根据充电策略控制开关的闭合之后还获取开关的状态,并以相同的发送频率将开关状态发送给控制器1022,实现控制器1022对充电过程的闭环控制。在本申请实施例中,电动车辆102为电动汽车,也可以是其他类型的电动车辆,例如电动自行车等,本说明书实施例并不限制电动车辆的类型。
为了减小电动车辆102通信总线的压力,通常对消息类型和消息发送的频率进行限制,而当充电装置1021故障时,由于消息类型和消息发送频率的限制,控制器1022不能及时获取到充电装置1021的故障信息,进而不能及时调整充电策略对充电装置1021的开关状态进行控制,充电桩101持续通过故障的充电装置1021对电动车辆102进行充电,增加了充电安全隐患。
本申请实施例所述的一种电动车辆充电装置的故障反馈方法、装置及设备可以应用于充电装置1021中,解决现有技术中充电装置1021故障时,控制器1022不能及时获取到充电装置1021的故障信息,增加了充电的安全隐患的问题。
具体地,本申请实施例提供了一种电动车辆充电装置的故障反馈方法,能够提高充电装置信息的发送速度,降低充电的安全隐患。图2所示为本申请实施例一种电动车辆充电装置的故障反馈方法的流程图。在本图中描述了电动车辆充电装置的故障反馈的过程,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的系统或装置产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行。具体的如图2所示,所述方法可以包括:
步骤201:获取电动车辆充电装置的充电装置信息;
步骤202:根据充电装置信息确定充电装置的故障信息;
步骤203:根据故障信息以及充电装置信息的原通信频率获取高于原通信频率的调整频率,其中,充电装置信息的原通信频率由电动车辆控制器设定;
步骤204:根据调整频率向电动车辆控制器发送充电装置信息,以使电动车辆控制器根据充电装置信息确定充电装置的故障。
通过本申请实施例的方法,电动车辆通过原通信频率与电动车辆控制器进行通信,当电动车辆的充电装置发生故障时,根据故障信息和原通信频率获取高于原通信频率的调整频率,根据调整频率向电动车辆控制器发送充电装置信息,提高了充电装置信息的发送速度,使得电动车辆控制器快速获取到充电装置发生故障时的充电装置信息,以使电动车辆控制器根据充电装置信息快速确定并处理故障,降低充电的安全隐患。
在本申请实施例中,电动车辆的充电装置在正常工作时,充电装置和控制器需要持续通信,充电装置通过一定的频率将充电装置信息发送给控制器,以使控制器根据充电装置信息指导充电。当充电装置发生故障时,通过故障信息和充电装置信息的原通信频率获取高于原通信频率的调整频率,通过调整频率将充电装置信息发送给控制器,控制器可以更快的接收到充电装置信息,并根据充电装置信息确定充电装置的故障。
根据本申请的一个实施例,步骤202中根据充电装置信息确定充电装置的故障信息包括故障类型。
在本申请实施例中,可以对充电装置信息和预设的故障特征进行比较确定故障类型,其中充电装置信息可以包括多种信息类型,因此可以根据充电装置信息确定多种故障类型。
根据本申请的一个实施例,为了提高充电装置信息的发送速度并保证电动车辆其他模块的正常工作,步骤203获取调整频率的过程进一步包括,在预设的频率表中查找与原通信频率和故障类型两者对应的频率值,将查找到的频率值作为调整频率。
在本申请实施例中,预设的频率表可以将原通信频率和故障类型作为索引,得到指定原通信频率和故障类型对应的频率值,其中频率值的大小可以表示故障类型的严重程度,某故障越严重,其对应的频率值越大,以使减小控制器接收到充电装置信息的时间。此外,充电装置信息的原通信频率由电动车辆控制器设定,原通信频率可以表示电动车辆的通信总线的负载情况,因此本申请实施例获取调整频率时考虑了当前通信总线的负载情况,进而在提高充电装置信息的发送频率时,不会影响电动车辆其他模块的正常工作。
根据本申请的一个实施例,步骤201获取的电动车辆充电装置的充电装置信息进一步包括充电装置的供电电压和开关状态。
在本申请实施例中,当充电装置的供电电压与预设的正常工作电压不符时,充电装置的正常工作将受到影响,导致充电装置故障,因此需要将充电装置的供电电压发送给控制器,以使控制器根据供电电压的大小确定充电装置的故障。此外,充电装置的开关状态与预设的开关状态不符时,充电装置将不能按照控制器设定的充电策略为电动车辆进行充电,导致充电装置故障,增加了充电安全隐患,因此需要将充电装置的开关状态发送给控制器,以使控制器根据开关状态确定充电装置的故障。
在本步骤中,例如预设的充电装置正常工作电压范围为8.4V-16.2V,根据本申请的一个实施例,充电装置供电电压表示的故障类型包括:欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制,上述故障类型对应的供电电压值可以如表1所示。
表1
Figure PCTCN2022129290-appb-000001
根据本申请的一个实施例,为了根据供电电压确定充电装置的故障类型,如图3所示,步骤202进一步包括,
步骤301:计算供电电压与供电电压预设值的差值;
步骤302:根据差值确定电动车辆充电装置的故障类型。
在本申请实施例中,当前的供电电压与供电电压的预设值的差值可以表示充电装置是否出现欠压或过压等情况,若充电装置出现欠压,过低的供电电压将不能满足充电装置各模块的工作需要,若充电装置出现过压,则超高的供电电压将会导致充电装置的某个或某些模块损坏。此外,当出现欠压或过压时,可以通过充电装置的各模块中电子器件的物理特性进一步判断出现故障的具体模块,例如供电电压低于预设的电压值一定范围时,哪些模块仍能正常工作,哪些模块不能正常工作。
因此在本步骤中,计算供电电压与供电电压预设值的差值,根据差值确定电动车辆充电装置的故障类型,以使根据故障类型和充电装置信息的原通信频率获取高于原通信频率的调整频率,并根据调整频率向电动车辆控制器发送充电装置的供电电压,电动车辆控制器根据供电电压确定充电装置的故障。此外,还可以比较供电电压和各故障状态对应的供电电压范围的方法判断充电装置的故障类型,在本说明书实施例中不做限制。
根据本申请的一个实施例,步骤202进一步包括,根据供电电压,以及预先配置的预设供电电压范围与故障类型的对应关系,确定电动车辆充电装置的故障类型。
在本步骤中,可以预先配置如表1所示的供电电压范围与故障类型的对应关系,然后查找充电装置当前的供电电压值所对应的供电电压范围,从而确定当前供电电压值对应的故障类型。例如,当前供电电压为8V,根据表1所示的供电电压范围与故障类型的对应关系,确定当前的故障类型是欠压无功能限制。
结合表1,本申请实施例预设的频率表可以如表2所示:
表2
Figure PCTCN2022129290-appb-000002
根据表2的内容,若原通信频率为200ms,当根据充电装置的供电电压确定充电装置的故障类型为欠压有功能限制时,则以20ms的调整频率向电动车辆控制器发送充电装置的供电电压。
根据本申请的一个实施例,为了避免当根据充电装置的供电电压确定的故障不严重时,充电装置仍以高于原通信频率的调整频率向电动车辆控制器发送充电装置的供电电压造成通信总线压力过大的问题,本申请实施例提供的一种电动车辆充电装置的故障反馈方法还包括,判断充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压。
在本步骤中,欠压无功能限制和过压无功能限制的故障并不严重,充电装置仍可以正常工作,因此可以在预设的时间内判断充电装置的欠压无功能限制或过压无功能限制的故障类型是否发生变化。其中,预设的时间可以根据调整频率进行设定,例如,调整频率为20ms,则可以在5个调整频率所对应的时间范围内判断充电装置的欠压无功能限制或过压无功能限制的故障类型是否发生变化。若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压,减小电动汽车通信总线的压力。
根据本申请的一个实施例,步骤202进一步包括,根据开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定电动车辆充电装置的故障类型。
在本步骤中,可以预先配置开关状态与故障类型的对应关系,然后确定充电装置当前的开关状态与属于预先配置的哪个开关状态,从而确定当前开关状态对应的故障类型。
根据本申请的一个实施例,为了及时得到开关状态,从而降低误判的概率,提高故障反馈的精确度,如图4所示,在步骤201之前还包括,
步骤401:获取电动车辆控制器以原通信频率发送的充电策略;
步骤402:执行充电策略得到执行结果,执行结果包括充电装置的开关状态。
在本申请实施例中,控制器以步骤203充电装置信息的原通信频率发送充电策略,充电策略中包括了充电装置的开关状态,充电装置执行充电策略时根据充电策略调整开关状态,从而使得充电桩的电流通过充电装置的开关充入到电动车辆的电池中。在本步骤中,充电装置在执行充电策略之后获取开关状态,提高了获取开关状态的及时性,从而降低误判的概率,提高故障反馈的精确度。
根据本申请的一个实施例,步骤402得到的执行结果中还包括执行状态,该状态表示步骤401的充电策略是否被执行。
在本申请实施例中,充电装置的故障还可以包括未执行充电策略、执行了充电策略但未执行成功,因此步骤202还包括,计算充电装置开关的状态与充电策略的差异,根据差异确定充电装置的故障类型,和/或,根据执行状态确定充电装置的故障类型。
在本步骤中,可以计算充电装置开关状态与充电策略中的开关状态的差异,根据差异找到与充电策略不同的充电装置开关;根据执行状态可以确定充电策略未执行的故障;结合根据差异确定的故障类型和根据执行状态确定充电装置的故障类型,可以确定执行了充电策略但未执行成功的故障。
根据本申请的一个实施例,为了避免在故障消除后,仍通过高于原通信频率的调整频率进行电动车辆充电装置与控制器的通信,造成通信总线压力过大的问题,如图5所示,本申请实施例提供的一种电动车辆充电装置的故障反馈方法还包括,
步骤501:根据充电装置信息判断充电装置是否还存在故障;
步骤502:若不存在故障,则充电装置以原通信频率与电动车辆控制器进行通信。
在本步骤中,充电装置信息可以包括充电装置的供电电压和充电装置的开关状态,可以根据充电装置供电电压与供电电压预设值的差值判断充电装置是否还存在故障,也可以根据充电装置的开关状态和获取到的电动车辆控制器发送的充电策略的差异和/或根据充电策略的执行状态判断充电装置是否还存在故障。若不存在故障了,则充电装置以原通信频率与电动车辆控制器进行通信,减小通信总线的压力,从而保证电动车辆其他模块的正常工作。
基于同一发明构思,本说明书实施例还提供了一种电动车辆充电装置的故障反馈装置,如图6所示,包括充电装置信息获取单元601、故障信息确定单元602、调整频率获取单元603、充电装置信息发送单元604:
充电装置信息获取单元601,获取电动车辆充电装置的充电装置信息;
故障信息确定单元602,根据充电装置信息获取单元601获取到的充电装置信息确定充电装置的故障信息;
调整频率获取单元603,根据故障信息确定单元602确定的故障信息以及充电装置信息的原通信频率获取高于原通信频率的调整频率,其中,充电装置信息的原通信频率由电动车辆控制器设定;
充电装置信息发送单元604,根据调整频率获取单元603获取的调整频率向电动车辆控制器发送充电装置信息获取单元601获取到的充电装置信息,以使电动车辆控制器根据充电装置信息确定充电装置的故障。
进一步地,本申请实施例电动车辆充电装置的故障反馈装置的详细结构图如图7所示,在本图中描述了电动车辆充电装置的故障反馈装置的详细结构,具体包括充电装置信息获取单元701、故障信息确定单元702、调整频率获取单元703、充电装置信息发送单元704。
根据本申请的一个实施例,充电装置信息获取单元701进一步包括供电电压获取模块7011,用于获取充电装置的供电电压,以使电动车辆控制器根据供电电压的大小确定充电装置的故障。
根据本申请的一个实施例,充电装置信息获取单元701进一步包括充电策略获取模块7012,用于获取电动车辆控制器根据原通信频率发送的充电策略,充电策略中包括了充电装置的开关状态,然后将充电策略发送给充电策略执行模块7013,以使充电策略执行模块7013根据获取到的充电策略调整充电装置的开关状态,从而使得充电桩的电流通过充电装置的开关充入到电动车辆的电池中。
根据本申请的一个实施例,充电装置信息获取单元701进一步包括充电策略执行模块7013,用于根据充电策略获取模块7012获取到的充电策略调整充电装置的开关状态,从而使得充电桩的电流通过充电装置的开关充入到电动车辆的电池中。
根据本申请的一个实施例,充电装置信息获取单元701进一步包括执行状态获取模块7014,用于获取充电策略的执行状态,该状态可以表示充电策略执行模块7013是否执行了充电策略。在本申请实施例中,充电装置的故障还包括执行状态所表示的未执行充电策略、执行了充电策略但未执行成功。执行状态获取模块7014将获取到的执行状态发送给故障信息确定单元702,以使故障信息确定单元702根据执行状态确定充电装置的故障类型。
根据本申请的一个实施例,充电装置信息获取单元701进一步包括开关状态获取模块7015,用于充电策略执行模块7013执行充电策略后,获取充电装置的开关状态,然后将充电装置的开关状态发送给故障信息确定单元702,以使故障信息确定单元702根据充电装置的开关状态确定充电装置的故障类型。
根据本申请的一个实施例,故障信息确定单元702进一步包括供电电压差值计算模块7021,用于根据供电电压获取模块7011获取的充电装置的供电电压确定充电装置的故障类型。在本申请实施例中,当前的供电电压与供电电压的预设值的差值可以表示充电装置是否出现欠压或过压等情况,若充电装置出现欠压,过低的供电电压将不能满足充电装置所有模块的工作需要,若充电装置出现过压,则超高的供电电压将会导致充电装置的某个或某些模块损坏。此外,当出现欠压或过压时,可以通过充电装置的各模块中电子器件的物理特性进一步判断出现故障的具体模块,例如供电电压低于预设的电压值一定范围时,哪些模块仍能正常工作,哪些模块不能正常工作。具体地,可以计算供电电压与供电电压预设值的差值,根据差值确定电动车辆充电装置的故障类型,以使调整频率获取单元703根据故障类型和充电装置信息的原通信频率获取高于原通信频率的调整频率,充电装置信息发送单元704根据调整频率向电动车辆控制器发送充电装置的供电电压,电动车辆控制器根据供电电压确定充电装置的故障。
根据本申请的一个实施例,故障信息确定单元702进一步包括开关状态差异计算模块7022,用于计算开关状态获取模块7015获取的开关状态与充电策略获取模块7012获取到的充电策略中的开关状态的差异,根据差异找到与充电策略不同的充电装置开关,确定充电装置的故障类型。以使调整频率获取单元703根据故障类型和充电装置信息的原通信频率获取高于原通信频率的调整频率,充电装置信息发送单元704根据调整频率向电动车辆控制器发送充电装置的开关状态,电动车辆控制器根据开关状态确定充电装置的故障。
根据本申请的一个实施例,故障信息确定单元702进一步包括执行状态分析模块7023,用于分析执行状态获取模块7014获取到的执行状态,根据执行状态确定充电策略未执行的故障。
根据本申请的一个实施例,故障信息确定单元702进一步包括电压范围比较模块7024,根据开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定电动车辆充电装置的故障类型。本申请实施例充电装置供电电压表示的故障类型可以包括如表1所示的欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制。
具体地,可以预先配置如表1所示的供电电压范围与故障类型的对应关系,然后查找充电装置当前的供电电压值所对应的供电电压范围,从而确定当前供电电压值对应的故障类型。例如,当前供电电压为8V,根据表1所示的供电电压范围与故障类型的对应关系,确定当前的故障类型是欠压无功能限制。
根据本申请的一个实施例,故障信息确定单元702进一步包括故障类型监测模块7025,判断充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压。
在本申请实施例中,欠压无功能限制和过压无功能限制的故障并不严重,充电装置仍可以正常工作,因此可以在预设的时间内判断充电装置的欠压无功能限制或过压无功能限制的故障类型是否发生变化。其中,预设的时间可以根据调整频率进行设定,例如,调整频率为20ms,则可以在5个调整频率所对应的时间范围内判断充电装置的欠压无功能限制或过压无功能限制的故障类型是否发生变化。若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压,减小电动汽车通信总线的压力。
根据本申请的一个实施例,故障信息确定单元702进一步包括开关状态比较模块7026,根据开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定电动车辆充电装置的故障类型。
在本申请实施例中,可以预先配置开关状态与故障类型的对应关系,然后确定充电装置当前的开关状态与属于预先配置的哪个开关状态,从而确定当前开关状态对应的故障类型。
根据本申请的一个实施例,故障信息确定单元702还可以结合开关状态差异计算模块7022确定的故障类型和执行状态分析模块7023确定的故障类型,确定执行了充电策略但未执行成功的故障。
根据本申请的一个实施例,故障信息确定单元702还可以根据充电装置信息获取单元701获取到的充电装置信息判断充电装置是否还存在故障,若不存在故障,则充电装置以原通信频率获取模块7031获取到的原通信频率与电动车辆控制器进行通信,避免了在故障消除后,仍通过高于原通信频率的调整频率进行电动车辆充电装置与控制器的通信,造成通信总线压力过大的问题。
具体地,可以根据供电电压获取模块7011获取的充电装置供电电压与供电电压预设值的差值判断充电装置是否还存在故障,也可以根据开关状态获取模块7015获取到的充电装置的开关状态和充电策略获取模块7012获取到的充电策略的差异和/或根据充执行状态获取模块7014获取到的充电策略的执行状态判断充电装置是否还存在故障。
根据本申请的一个实施例,调整频率获取单元703进一步包括原通信频率获取模块7031,用于获取由电动车辆控制器根据电动车辆的通信总线的负载情况设定的与充电装置通信的原通信频率。电动车辆的充电装置在正常工作时,充电装置和控制器根据原通信频率持续通信,充电装置通过原通信频率将包括供电电压和开关状态的充电装置信息发送给控制器,控制器根据充电装置信息指导充电。
根据本申请的一个实施例,调整频率获取单元703进一步包括调整频率获取模块7032,用于根据故障信息确定单元702确定的充电装置的故障类型和原通信频率获取模块7031获取的原通信频率获取高于原通信频率的调整频率,以使调整频率获取单元703根据故障类型和充电装置信息的原通信频率获取高于原通信频率的调整频率,充电装置信息发送单元704根据调整频率向电动车辆控制器发送充电装置的供电电压,电动车辆控制器根据供电电压确定充电装置的故障。
具体地,可以在预设的频率表中查找原通信频率和故障类型对应的频率值,将查找到的频率值作为调整频率,其中预设的频率表可以将原通信频率和故障类型作为索引,确定指定原通信频率和故障类型对应的频率值,其中频率值的大小可以表示故障类型的严重程度,某故障越严重,其对应的频率值越大,以使减小控制器接收到充电装置信息的时间。此外,充电装置信息的原通信频率由电动车辆控制器设定,原通信频率可以表示电动车辆的通信总线的负载情况,因此本申请实施例获取调整频率时考虑了当前通信总线的负载情况,进而在提高充电装置信息的发送速度时,不会影响电动车辆其他模块的正常工作。
根据本申请的一个实施例,充电装置信息发送单元704用于根据调整频率获取模块7032获取的调整频率向电动车辆控制器发送充电装置信息获取单元701获取的包括充电装置的供电电压和开关状态的充电装置信息,以使电动车辆控制器更快地接收到充电装置信息,根据充电装置信息确定充电装置的故障。
如图8所示为本申请实施例充电装置将故障反馈给控制器的数据流图,具体过程为:
步骤801,充电装置接收充电桩的电流。
在本步骤中,充电装置还可以获取充电桩的信息,将充电桩的信息发送给控制器,以使控制器根据充电桩的信息生成充电策略。
步骤802,控制器根据原通信频率向充电装置发送充电策略。
步骤803,充电装置根据充电策略调整开关状态,将充电桩的电流充入电池。
在本步骤中,充电装置可以包括多个开关,根据充电策略控制各开关的开启和闭合,将充电桩的电流充入电池。
步骤804,充电装置获取供电电压和开关状态,将供电电压和开关状态以原通信频率发送给控制器。
在本步骤中,充电装置再未发生故障时需要获取充电装置的供电电压和开关状态,将供电电压和开关状态发送给控制器,以使控制器对充电装置的工作进行监控。
步骤805,充电装置获取供电电压和充电策略执行结果。
在本步骤中,充电装置获取故障状态下的供电电压和充电策略的执行结果,根据供电电压和充电策略的执行结果判断是否发生故障。
步骤806,充电装置根据供电电压确定充电装置的故障信息。
在本步骤中,充电装置根据故障状态下的供电电压和供电电压的预设值的差值确定充电装置的故障信息。故障信息包括故障类型,例如,供电电压和供电电压的预设值的差值可以表示充电装置是否出现欠压或过压等情况,若充电装置出现欠压,过低的供电电压将不能满足充电装置各模块的工作需要,若充电装置出现过压,则超高的供电电压将会导致充电装置的某个或某些模块损坏。此外,当出现欠压或过压时,可以通过充电装置的各模块中电子器件的物理特性进一步判断出现故障的具体模块,例如供电电压低于预设的电压值一定范围时,哪些模块仍能正常工作,哪些模块不能正常工作。
此外,还可以根据供电电压,以及预先配置的预设供电电压范围与故障类型的对应关系,确定电动车辆充电装置的故障类型。具体地,可以预先配置如表1所示的供电电压范围与故障类型的对应关系,然后查找充电装置当前的供电电压值所对应的供电电压范围,从而确定当前供电电压值对应的故障类型。
在本申请实施例中,充电装置供电电压表示的故障类型可以包括如表1所示的欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制。
步骤807,充电装置根据故障信息和原通信频率获取调整频率。
在本步骤中,充电装置可以在预设的频率表中查找原通信频率和故障类型对应的频率值,将查找到的频率值作为调整频率,预设的频率表可以将原通信频率和故障类型作 为索引,得到指定原通信频率和故障类型对应的频率值,其中频率值的大小可以表示故障类型的严重程度,某故障越严重,其对应的频率值越大,以使减小控制器接收到充电装置信息的时间。
步骤808,充电装置根据调整频率将供电电压发送给控制器,以使控制器根据故障信息确定故障。
在本步骤中,充电装置根据高于原通信频率的调整频率将供电电压发送给控制器,因此控制器可以更快的接收到充电装置故障时的供电电压,从而更快的确定充电装置的故障。
步骤809,充电装置根据充电策略的执行结果确定充电装置的故障信息。
在本步骤中,故障信息包括故障类型,充电策略的执行结果包括充电策略的执行状态和开关状态,其中执行状态表示充电策略是否被执行。计算充电装置开关状态与充电策略中的开关状态的差异,根据差异找到与充电策略不同的充电装置开关;根据执行状态可以确定充电策略未执行的故障;结合根据差异确定的故障类型和根据执行状态确定充电装置的故障类型,可以确定执行了充电策略但未执行成功的故障。
此外,还可以根据开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定电动车辆充电装置的故障类型。具体地,可以预先配置开关状态与故障类型的对应关系,然后确定充电装置当前的开关状态与属于预先配置的哪个开关状态,从而得到当前开关状态对应的故障类型。
步骤810,充电装置根据故障信息和原通信频率获取调整频率。
在本步骤中,与步骤807相似,充电装置可以在预设的频率表中查找原通信频率和故障类型对应的频率值,将查找到的频率值作为调整频率。
步骤811,充电装置根据调整频率将开关状态发送给控制器,以使控制器根据故障信息确定故障。
在本步骤中,充电装置根据高于原通信频率的调整频率将开关状态发送给控制器,因此控制器可以更快的接收到充电装置故障时的开关状态,从而更快的确定充电装置的故障。
步骤812,控制器根据开关状态调整充电策略。
步骤813,控制器根据调整频率向充电装置发送调整后的充电策略。
在本步骤中,为了更快的处理故障,根据高于原通信频率的调整频率将调整后的充电策略发送充电装置,因此充电装置可以更快的接收到调整后的充电策略,以使通过执行调整后的充电策略处理故障。
步骤814,充电装置执行调整后的充电策略,并判断是否还有故障。
在本步骤中,充电装置在执行调整策略后,通过与步骤806、809相同的方法判断是否还有故障,若仍存在故障,则重复步骤805-811。
此外,充电装置还可以判断充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压。其中,欠压无功能限制和过压无功能限制的故障并不严重,充电装置仍可以正常工作,因此可以在预设的时间内判断充电装置的欠压无功能限制或过压无功能限制的故障类型是否发生变化。其中,预设的时间可以根据调整频率进行设定,例如,调整频率为20ms,则可以在5个调整频率所对应的时间范围内判断充电装置的欠压无功能限制或过压无功能限制的故障类型是否发生变化。若未发生变化,则充电装置根据原通信频率向电动车辆控制器发送充电装置的供电电压,减小电动汽车通信总线的压力。
步骤815,故障不存在,充电装置根据原通信频率将充电电压和开关状态发送给控制器。
在本步骤中,若不存在故障了,则充电装置以原通信频率与电动车辆控制器进行通信,减小通信总线的压力,从而保证电动车辆其他模块的正常工作。
如图9所示为本申请实施例计算机设备的结构示意图,本申请中的电动车辆充电装置的故障反馈装置可以为本实施例中的计算机设备,执行上述本申请的方法。计算机设备902可以包括一个或多个处理设备904,诸如一个或多个中央处理单元(CPU),每个处理单元可以实现一个或多个硬件线程。计算机设备902还可以包括任何存储资源906,其用于存储诸如代码、设置、数据等之类的任何种类的信息。非限制性的,比如,存储资源906可以包括以下任一项或多种组合:任何类型的RAM,任何类型的ROM,闪存设备,硬盘,光盘等。更一般地,任何存储资源都可以使用任何技术来存储信息。进一步地,任何存储资源可以提供信息的易失性或非易失性保留。进一步地,任何存储资源可以表示计算机设备902的固定或可移除部件。在一种情况下,当处理设备904执行被存储在任何存储资源或存储资源的组合中的相关联的指令时,计算机设备902可以执行 相关联指令的任一操作。计算机设备902还包括用于与任何存储资源交互的一个或多个驱动机构908,诸如晶振等,为处理设备提供工作的时钟信号。
计算机设备902还可以包括一个或多个网络接口912,例如CAN接收模块,其用于接收控制器发送的数据。一个或多个通信总线910将上文所描述的部件耦合在一起。
对应于图2-图5、图8中的方法,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行所述电动车辆充电装置的故障反馈装置的优化方法的步骤。
本申请实施例还提供一种计算机可读指令,其中当处理器执行所述指令时,其中的程序使得处理器执行如图2-图5、图8所示的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本申请中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另 外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中应用了具体实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (26)

  1. 一种电动车辆充电装置的故障反馈方法,其特征在于,所述方法包括,
    获取电动车辆充电装置的充电装置信息;
    根据所述充电装置信息确定所述充电装置的故障信息;
    根据所述故障信息以及所述充电装置信息的原通信频率获取高于所述原通信频率的调整频率,其中,所述充电装置信息的原通信频率由电动车辆控制器设定;
    根据所述调整频率向所述电动车辆控制器发送所述充电装置信息,以使所述电动车辆控制器根据所述充电装置信息确定所述充电装置的故障。
  2. 根据权利要求1所述的电动车辆充电装置的故障反馈方法,其特征在于,所述故障信息包括故障类型。
  3. 根据权利要求2所述的电动车辆充电装置的故障反馈方法,其特征在于,根据所述故障信息以及所述充电装置信息的原通信频率获取高于所述原通信频率的调整频率进一步包括,在预设的频率表中查找与所述原通信频率和所述故障类型两者对应的频率值,将查找到的所述频率值作为所述调整频率。
  4. 根据权利要求3所述的电动车辆充电装置的故障反馈方法,其特征在于,所述充电装置信息包括所述充电装置的供电电压和开关状态。
  5. 根据权利要求4所述的电动车辆充电装置的故障反馈方法,其特征在于,根据所述充电装置信息确定所述充电装置的故障信息还包括,
    计算所述供电电压与供电电压预设值的差值;
    根据所述差值确定所述电动车辆充电装置的故障类型。
  6. 根据权利要求4所述的电动车辆充电装置的故障反馈方法,其特征在于,根据所述充电装置信息确定所述充电装置的故障信息还包括,
    根据所述供电电压,以及预先配置的预设供电电压范围与故障类型的对应关系,确定所述电动车辆充电装置的故障类型。
  7. 根据权利要求5或6所述的电动车辆充电装置的故障反馈方法,其特征在于,所述故障类型包括欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制。
  8. 根据权利要求7所述的电动车辆充电装置的故障反馈方法,其特征在于,所述方法还包括,
    判断所述充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;
    若未发生变化,则所述充电装置根据所述原通信频率向所述电动车辆控制器发送所述充电装置的供电电压。
  9. 根据权利要求4所述的电动车辆充电装置的故障反馈方法,其特征在于,根据所述充电装置信息确定所述充电装置的故障信息还包括,
    根据所述开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定所述电动车辆充电装置的故障类型。
  10. 根据权利要求4所述的电动车辆充电装置的故障反馈方法,其特征在于,获取电动车辆充电装置的充电装置信息之前,还包括,
    获取所述电动车辆控制器以所述原通信频率发送的充电策略;
    执行所述充电策略得到执行结果,所述执行结果包括所述充电装置的开关状态。
  11. 根据权利要求10所述的电动车辆充电装置的故障反馈方法,其特征在于,所述执行结果还包括执行状态,所述执行状态表示所述充电策略是否被执行;
    根据所述充电装置信息确定所述充电装置的故障信息进一步包括,
    计算所述充电装置的开关状态与所述充电策略的差异,根据所述差异确定所述充电装置的故障类型,和/或,根据所述执行状态确定所述充电装置的故障类型。
  12. 根据权利要求1所述的电动车辆充电装置的故障反馈方法,其特征在于,所述方法还包括,
    根据所述充电装置信息判断所述充电装置是否还存在故障;
    若不存在故障,则所述充电装置以所述原通信频率与所述电动车辆控制器进行通信。
  13. 一种电动车辆充电装置的故障反馈装置,其特征在于,所述装置包括,
    充电装置信息获取单元,配置为获取电动车辆充电装置的充电装置信息;
    故障信息确定单元,配置为根据所述充电装置信息确定所述充电装置的故障信息;
    调整频率获取单元,配置为根据所述故障信息以及所述充电装置信息的原通信频率获取高于所述原通信频率的调整频率,其中,所述充电装置信息的原通信频率由电动车辆控制器设定;
    充电装置信息发送单元,配置为根据所述调整频率向所述电动车辆控制器发送所述充电装置信息,以使所述电动车辆控制器根据所述充电装置信息确定所述充电装置的故障。
  14. 根据权利要求13所述的电动车辆充电装置的故障反馈装置,其特征在于,所述故障信息包括故障类型。
  15. 根据权利要求14所述的电动车辆充电装置的故障反馈装置,其特征在于,所述调整频率获取单元还包括,
    原通信频率获取模块,配置为获取所述原通信频率;
    调整频率获取模块,配置为在预设的频率表中查找与所述原通信频率和所述故障类型两者对应的频率值,将查找到的所述频率值作为所述调整频率。
  16. 根据权利要求15所述的电动车辆充电装置的故障反馈装置,其特征在于,所述充电装置信息包括所述充电装置的供电电压和开关状态。
  17. 根据权利要求16所述的电动车辆充电装置的故障反馈装置,其特征在于,所述故障信息确定单元进一步包括,
    供电电压差值计算模块,配置为计算所述供电电压与供电电压预设值的差值;
    所述故障信息确定单元进一步配置为,根据所述差值确定所述电动车辆充电装置的故障类型。
  18. 根据权利要求16所述的电动车辆充电装置的故障反馈装置,其特征在于,所述故障信息确定单元进一步包括,
    电压范围比较模块,配置为根据所述供电电压,以及预先配置的预设供电电压范围与故障类型的对应关系,确定所述电动车辆充电装置的故障类型。
  19. 根据权利要求17或18所述的电动车辆充电装置的故障反馈装置,其特征在于,所述故障类型包括欠压有功能限制、欠压无功能限制、过压有功能限制、过压无功能限制。
  20. 根据权利要求19所述的电动车辆充电装置的故障反馈装置,其特征在于,所述故障信息确定单元进一步包括,
    故障类型监测模块,配置为判断所述充电装置的欠压无功能限制或过压无功能限制的故障类型在预设的时间内是否发生变化;
    若未发生变化,则所述充电装置根据所述原通信频率向所述电动车辆控制器发送所述充电装置的供电电压。
  21. 根据权利要求16所述的电动车辆充电装置的故障反馈装置,其特征在于,所述故障信息确定单元进一步包括,
    开关状态比较模块,配置为根据所述开关状态,以及预先配置的预设开关状态与故障类型的对应关系,确定所述电动车辆充电装置的故障类型。
  22. 根据权利要求16所述的电动车辆充电装置的故障反馈装置,其特征在于,所述充电装置信息获取单元还包括,
    充电策略获取模块,配置为获取所述电动车辆控制器以所述原通信频率发送的充电策略;
    充电策略执行模块,配置为执行所述充电策略得到执行结果,所述执行结果包括所述充电装置的开关状态。
  23. 根据权利要求22所述的电动车辆充电装置的故障反馈装置,其特征在于,所述执行结果还包括执行状态,所述执行状态表示所述充电策略是否被执行;
    所述故障信息确定单元进一步包括,
    开关状态差异计算模块,计算所述充电装置的开关状态与所述充电策略的差异,根据所述差异确定所述充电装置信息的故障类型,和/或,执行状态分析模块,根据所述执行状态确定所述充电装置信息的故障类型。
  24. 根据权利要求13所述的电动车辆充电装置的故障反馈装置,其特征在于,
    所述故障信息确定单元进一步配置为,根据所述充电装置信息判断所述充电装置信息是否还存在故障;
    若不存在故障,则所述充电装置信息发送单元进一步配置为,以所述原通信频率与所述电动车辆控制器进行通信。
  25. 一种计算机设备,包括存储器、处理器、以及存储在所述存储器上的计算机程序,其特征在于,所述计算机程序被所述处理器运行时,执行根据权利要求1-12任意一项所述方法的指令。
  26. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机设备的处理器运行时,执行根据权利要求1-12任意一项所述方法的指令。
PCT/CN2022/129290 2021-11-03 2022-11-02 一种电动车辆充电装置的故障反馈方法、装置及设备 WO2023078303A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2024005288A MX2024005288A (es) 2021-11-03 2022-11-02 Metodo y aparato de retroalimentacion de fallos de dispositivo de carga de vehiculo electrico y dispositivo.
EP22889325.1A EP4410589A1 (en) 2021-11-03 2022-11-02 Fault feedback method and apparatus of electric vehicle charging device, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111310047.4A CN113879147B (zh) 2021-11-03 2021-11-03 一种电动车辆充电装置的故障反馈方法、装置及设备
CN202111310047.4 2021-11-03

Publications (1)

Publication Number Publication Date
WO2023078303A1 true WO2023078303A1 (zh) 2023-05-11

Family

ID=79016753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129290 WO2023078303A1 (zh) 2021-11-03 2022-11-02 一种电动车辆充电装置的故障反馈方法、装置及设备

Country Status (4)

Country Link
EP (1) EP4410589A1 (zh)
CN (1) CN113879147B (zh)
MX (1) MX2024005288A (zh)
WO (1) WO2023078303A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113879147B (zh) * 2021-11-03 2023-07-14 长春捷翼汽车科技股份有限公司 一种电动车辆充电装置的故障反馈方法、装置及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211644A (ja) * 2007-02-27 2008-09-11 Auto Network Gijutsu Kenkyusho:Kk 車載通信装置及び車載通信システム
CN104954420A (zh) * 2014-03-25 2015-09-30 福特全球技术公司 可变报告速率远程信息处理
CN108279373A (zh) * 2017-01-05 2018-07-13 宁德时代新能源科技股份有限公司 电动汽车充电开关检测方法、装置
CN110091748A (zh) * 2019-05-21 2019-08-06 广州小鹏汽车科技有限公司 电动车辆充电异常的处理方法、装置和车辆
CN110636558A (zh) * 2018-06-21 2019-12-31 苏州宝时得电动工具有限公司 数据传输方法、基站和移动站
CN111038291A (zh) * 2019-12-16 2020-04-21 国网江苏省电力有限公司电力科学研究院 一种电动汽车充电故障智能诊断系统及方法
CN112440828A (zh) * 2020-11-30 2021-03-05 陕西镁好互联网技术有限公司 一种新能源汽车充电控制系统
CN113879147A (zh) * 2021-11-03 2022-01-04 长春捷翼汽车零部件有限公司 一种电动车辆充电装置的故障反馈方法、装置及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189510A (ja) * 2011-03-11 2012-10-04 Mitsubishi Electric Corp 入出力回路およびその故障検出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211644A (ja) * 2007-02-27 2008-09-11 Auto Network Gijutsu Kenkyusho:Kk 車載通信装置及び車載通信システム
CN104954420A (zh) * 2014-03-25 2015-09-30 福特全球技术公司 可变报告速率远程信息处理
CN108279373A (zh) * 2017-01-05 2018-07-13 宁德时代新能源科技股份有限公司 电动汽车充电开关检测方法、装置
CN110636558A (zh) * 2018-06-21 2019-12-31 苏州宝时得电动工具有限公司 数据传输方法、基站和移动站
CN110091748A (zh) * 2019-05-21 2019-08-06 广州小鹏汽车科技有限公司 电动车辆充电异常的处理方法、装置和车辆
CN111038291A (zh) * 2019-12-16 2020-04-21 国网江苏省电力有限公司电力科学研究院 一种电动汽车充电故障智能诊断系统及方法
CN112440828A (zh) * 2020-11-30 2021-03-05 陕西镁好互联网技术有限公司 一种新能源汽车充电控制系统
CN113879147A (zh) * 2021-11-03 2022-01-04 长春捷翼汽车零部件有限公司 一种电动车辆充电装置的故障反馈方法、装置及设备

Also Published As

Publication number Publication date
CN113879147A (zh) 2022-01-04
MX2024005288A (es) 2024-05-17
EP4410589A1 (en) 2024-08-07
CN113879147B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2020239114A1 (zh) 充电方法及装置、充电系统、电子设备、存储介质
WO2023078303A1 (zh) 一种电动车辆充电装置的故障反馈方法、装置及设备
US20120174103A1 (en) Computer system, device sharing method, and device sharing program
EP3190425B1 (en) Method and apparatus for displaying electricity quantity of battery, and electronic device
EP4068717A1 (en) Method for controlling edge node, node, and edge computing system
EP3185348B1 (en) A battery information detection and control method, smart battery,terminal and computer storage medium
US20180076634A1 (en) Charging method and electronic apparatus
WO2023226980A1 (zh) 预充电的控制方法、装置、存储介质、处理器及电子装置
WO2023001232A1 (zh) 一种适配器的控制装置、方法、适配器及充电系统
CN115071452A (zh) 无低压电池的电池架构
CN107046309B (zh) 一种自动调节充电电流的充电方法和装置
JP7111803B2 (ja) 充電方法、端末及びコンピュータ記憶媒体
EP4375126A1 (en) Charging/discharging control method, charging device, and storage medium
CN113507154B (zh) 充电方法、装置、充电机和电子设备
CN104767229A (zh) 整合式移动电源
US20180054067A1 (en) Self-Loop Detection Method and Apparatus for Charging Device
CN112744084B (zh) 扭矩控制方法及其装置、车辆、电子设备和存储介质
CN116080478A (zh) 电池充放电控制方法、装置、电池均衡设备和存储介质
WO2022135522A1 (zh) 电流控制方法、装置、车辆及存储介质
CN115091961A (zh) 动力电池处理系统、方法、电动车辆及自动驾驶车辆
CN108254694A (zh) 一种电池工作数据采集方法、系统及存储介质
CN114237380A (zh) 智能控制功耗方法、电子设备及存储介质
CN106790188A (zh) 电池管理系统的主机配置方法、装置及电池管理系统
CN115701312A (zh) 蓄电池控制装置
CN113193624A (zh) 负载调节方法、设备、计算机可读存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/005288

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2022889325

Country of ref document: EP

Effective date: 20240502

NENP Non-entry into the national phase

Ref country code: DE