WO2023078192A1 - 支架机构、阀芯组件、增压泵和净水器 - Google Patents

支架机构、阀芯组件、增压泵和净水器 Download PDF

Info

Publication number
WO2023078192A1
WO2023078192A1 PCT/CN2022/128494 CN2022128494W WO2023078192A1 WO 2023078192 A1 WO2023078192 A1 WO 2023078192A1 CN 2022128494 W CN2022128494 W CN 2022128494W WO 2023078192 A1 WO2023078192 A1 WO 2023078192A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
base
heat
valve core
axis
Prior art date
Application number
PCT/CN2022/128494
Other languages
English (en)
French (fr)
Inventor
刘建斌
汪耀东
王宏旭
唐伟鹏
周军
李伟
陈茂伟
吴志文
Original Assignee
佛山市顺德区美的洗涤电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122718278.0U external-priority patent/CN216198922U/zh
Priority claimed from CN202122718282.7U external-priority patent/CN216198923U/zh
Priority claimed from CN202123358407.6U external-priority patent/CN216477771U/zh
Priority claimed from CN202123357215.3U external-priority patent/CN216477768U/zh
Priority claimed from CN202111635143.6A external-priority patent/CN116412108A/zh
Priority claimed from CN202111635120.5A external-priority patent/CN116412107A/zh
Application filed by 佛山市顺德区美的洗涤电器制造有限公司 filed Critical 佛山市顺德区美的洗涤电器制造有限公司
Priority to EP22889217.0A priority Critical patent/EP4332378A1/en
Publication of WO2023078192A1 publication Critical patent/WO2023078192A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing

Definitions

  • the present application relates to the technical field of medium pumping, in particular to a support mechanism, a valve core assembly, a booster pump and a water purifier.
  • the flow demand of the booster pump is developing from 600G to 800G and 1200G.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • At least one embodiment of the present application proposes a bracket mechanism.
  • At least one embodiment of the present application proposes a valve core assembly.
  • At least one embodiment of the present application proposes a booster pump.
  • At least one embodiment of the present application proposes a water purifier.
  • At least one embodiment of the present application proposes a valve core assembly.
  • At least one embodiment of the present application proposes a booster pump.
  • At least one embodiment of the present application proposes a water purifier.
  • At least one embodiment of the present application proposes a valve core assembly.
  • At least one embodiment of the present application proposes a booster pump.
  • At least one embodiment of the present application proposes a water purifier.
  • At least one embodiment of the present application proposes a valve core assembly.
  • At least one embodiment of the present application proposes a booster pump.
  • At least one embodiment of the present application proposes a water purifier.
  • the support mechanism includes: a base including a guide groove; a heat-resisting member arranged on the base, and the heat-resisting member is partially embedded in the guide groove Among them, the heat-resisting member is used to support the diaphragm, and the heat-resisting member is used to drive the diaphragm to move; wherein, in the depth direction of the guide groove, the cross-sectional area of the guide groove gradually decreases.
  • valve core assembly in the second embodiment of the present application, includes: the bracket mechanism as in the first embodiment; between the membranes.
  • a booster pump in the third embodiment of the present application, includes: a casing including a cavity; the valve core assembly as in the second embodiment is arranged in the cavity, and the diaphragm and the casing The body is connected, and the diaphragm separates the cavity.
  • a fourth embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump as in the third embodiment.
  • a valve core assembly in the fifth embodiment of the present application, includes: a base; a heat-resistant element arranged on the base; and the diaphragm, and the thermal resistance can drive the diaphragm to move.
  • the sixth embodiment of the present application provides a booster pump.
  • the booster pump includes: a casing including a cavity; the valve core assembly as in the fifth embodiment is arranged in the cavity, and the diaphragm and the casing The body is connected, and the diaphragm separates the cavity.
  • a seventh embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump as in the sixth embodiment.
  • the eighth embodiment of the present application provides a valve core assembly.
  • the valve core assembly includes: an eccentric wheel, which can rotate around a first axis, and includes a shaft body. There is a first axis between the axis of the shaft body and the first axis. The included angle; the bracket mechanism is sleeved on the shaft body; the diaphragm is connected with the bracket mechanism; extending away from the diaphragm.
  • the ninth embodiment of the present application provides a booster pump.
  • the booster pump includes: a casing including a cavity; the valve core assembly as in the eighth embodiment is arranged in the cavity, and the diaphragm and the casing The bodies are connected and the cavities are separated.
  • a tenth embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump as in the ninth embodiment.
  • the eleventh embodiment of the present application provides a valve core assembly.
  • the valve core assembly includes: an eccentric wheel, which can rotate around the first axis, and includes a shaft body. There is a second axis between the axis of the shaft body and the first axis. Three included angles; the bracket mechanism is sleeved on the shaft body; the diaphragm is connected to the bracket mechanism; the intersection point of the first axis and the axis of the shaft body is the first intersection point; the first intersection point is located on the surface of the diaphragm, or the first The point of intersection is inside the diaphragm.
  • the twelfth embodiment of the present application provides a booster pump.
  • the booster pump includes: a housing including a cavity; the valve core assembly as in the eleventh embodiment is set in the cavity, and the diaphragm It is connected with the shell and separates the cavity.
  • the thirteenth embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump as in the twelfth embodiment.
  • FIG. 1 shows one of the structural schematic diagrams of a bracket mechanism according to an embodiment of the present application
  • Fig. 2 shows the second structural schematic diagram of the bracket mechanism according to an embodiment of the present application
  • Fig. 3 shows one of the structural schematic diagrams of the base according to an embodiment of the present application
  • Fig. 4 shows the second structural schematic diagram of the base according to an embodiment of the present application
  • Fig. 5 shows the third structural schematic diagram of the base according to an embodiment of the present application.
  • Fig. 6 shows a sectional view of the base of the embodiment shown in Fig. 5 in the A-A direction;
  • FIG. 7 shows one of the structural schematic diagrams of a heat-resistant element according to an embodiment of the present application.
  • Fig. 8 shows the second structural schematic diagram of a heat-resistant element according to an embodiment of the present application.
  • FIG. 9 shows the third structural schematic diagram of a heat-resistant element according to an embodiment of the present application.
  • Fig. 10 shows a cross-sectional view of the heat resistance member in the B-B direction of the embodiment shown in Fig. 9;
  • FIG 11 shows one of the structural schematic diagrams of the valve core assembly according to an embodiment of the present application.
  • Figure 12 shows one of the structural schematic diagrams of a booster pump according to an embodiment of the present application
  • Fig. 13 shows the second structural schematic diagram of the valve core assembly according to an embodiment of the present application
  • Fig. 14 shows the third schematic structural view of the valve core assembly according to an embodiment of the present application.
  • Fig. 15 shows one of the structural schematic diagrams of the eccentric wheel according to an embodiment of the present application.
  • Fig. 16 shows the third structural schematic diagram of the bracket mechanism according to an embodiment of the present application.
  • Fig. 17 shows the fourth structural schematic diagram of the bracket mechanism according to an embodiment of the present application.
  • Fig. 18 shows the second structural schematic diagram of a booster pump according to an embodiment of the present application.
  • Fig. 19 shows the fourth schematic structural view of the valve core assembly according to an embodiment of the present application.
  • Fig. 20 shows the fifth schematic structural view of the valve core assembly according to an embodiment of the present application.
  • Fig. 21 shows the second structural schematic diagram of the eccentric wheel according to an embodiment of the present application.
  • Fig. 22 shows the fifth structural schematic diagram of the bracket mechanism according to an embodiment of the present application.
  • bracket mechanism 110 base, 112 positioning part, 1122 guide groove, 114 guide piece, 116 contact surface, 118 first rib, 120 heat resistance piece, 121 base body, 122 installation groove, 124 protrusion, 126 connector , 200 spool assembly, 210 diaphragm, 220 pressing piece, 230 eccentric wheel, 232 shaft body, 234 shaft hole, 236 second rib, 250 drive assembly, 252 drive shaft, 254 bearing, 256 drive piece, 300 increase Pressure pump, 310 housing.
  • a bracket mechanism, a valve core assembly, a booster pump and a water purifier according to some embodiments of the present application are described below with reference to FIGS. 1 to 22 .
  • the support mechanism 100 includes: a base 110, including a guide groove 1122; On the base 110, the heat-resisting member 120 is partially embedded in the guide groove 1122, the heat-resisting member 120 is used to support the diaphragm 210, and the heat-resisting member 120 is used to drive the diaphragm 210 to move; wherein, in the guide groove 1122 In the depth direction, the cross-sectional area of the guide groove 1122 gradually decreases.
  • the present application defines a bracket mechanism 100 applied to a booster pump 300.
  • the bracket mechanism 100 includes a base 110, the base 110 is used to connect the diaphragm 210 on the booster pump 300, and drives the diaphragm 210 to move on the booster pump 300. in motion.
  • Diaphragm 210 is the core component in booster pump 300
  • base 110 is used to connect diaphragm 210 and drive assembly 250
  • drive assembly 250 drives diaphragm 210 in booster pump 300 by swinging bearing 254 on drive base 110
  • the swinging diaphragm 210 can change the space size of the pumping cavity on the opposite side of the base 110. When the swinging diaphragm 210 enlarges the pumping cavity, the negative pressure will press the liquid into the pumping cavity. Conversely, when the oscillating diaphragm 210 shrinks the pumping cavity, the previously pumped liquid is pressed out of the pumping cavity, thereby satisfying the pumping requirement of the liquid.
  • the demand for the pumping flow of the booster pump 300 is getting higher and higher, and the flow rate of the booster pump 300 on the market is developing from 600G, 800G to 0G.
  • one of the ways to increase the pumping flow rate is to speed up the movement frequency of the diaphragm 210, but this high-speed synergistic method will generate a lot of heat during the working process, causing the base 110 and the diaphragm 210 to be released from the base 110 Heating up, the actual temperature can reach around 70°C.
  • the diaphragm 210 is mostly made of elastic materials such as rubber, and high temperature has an irreversible impact on the performance of the diaphragm 210 , resulting in rapid aging of the diaphragm 210 . Therefore, the technical problems of short service life of the diaphragm 210, high failure rate and poor reliability of the booster pump 300 arise.
  • the present application provides a heat-resisting element 120 in the support mechanism 100 .
  • the heat-resisting member 120 is fixed on the base 110, and the heat-resisting member 120 is used to support the diaphragm 210.
  • the heat-resisting member 120 is located between the base 110 and the diaphragm 210, and the heat-resisting member 120 Keeping in contact with the diaphragm 210 , when the heat-resisting member 120 moves with the base 110 , the diaphragm 210 in contact with the heat-resisting member 120 is deformed.
  • the heat-resisting element 120 has excellent heat-insulating performance, and can slow down the heat transfer efficiency between the base 110 and the diaphragm 210 .
  • the heat-resistant element 120 can be made of PA6+30GF (nylon 66+30% glass fiber), or can be made of heat-insulating materials such as ceramics, so the heat-resistant element is not included in this embodiment.
  • the material of 120 is rigidly limited to meet the heat insulation requirements.
  • the heat transfer efficiency from the base 110 to the diaphragm 210 can be effectively reduced, thereby reducing the temperature of the diaphragm 210 during operation and avoiding damage to the diaphragm 210 due to high temperature .
  • the technical problems existing in the foregoing related technologies are solved.
  • the technical effects of optimizing the structure of the spool assembly 200, prolonging the service life of the diaphragm 210, reducing the failure rate of the bracket mechanism 100, and reducing the failure rate of the booster pump 300 are realized on the basis of meeting the high-flow pumping demand.
  • the base 110 and the heat-resisting member 120 are of a split structure.
  • the base 110 can be made of a metal material with higher strength, so as to It is ensured that the base 110 can drive the diaphragm 210 to move at a high speed for a long time, and the failure rate of the base 110 is reduced.
  • the thermal insulation performance of the heat-resisting member 120 can be adjusted by selecting and replacing the heat-resisting member 120 of different materials, so as to select the corresponding material of the heat-resisting member 120 according to the pumping flow demand of the booster pump 300, so as to meet the The cost of the bracket mechanism 100 is compressed based on insulation requirements.
  • the base 110 is provided with a guide groove 1122, the shape of the guide groove 1122 is adapted to the outer contour shape of part of the heat-resistant element 120, and the heat-resistant element can be completed by inserting part of the heat-resistant element 120 into the guide groove 1122
  • the positioning assembly of 120 on the base 110 ensures the positioning accuracy of the heat-resistant element 120 on the base 110 , and ensures that the base 110 and the heat-resistant element 120 can drive the diaphragm 210 to swing precisely.
  • the cross-sectional area of the guide groove 1122 can be determined, and in the depth direction of the guide groove 1122, the cross-sectional area of the guide groove 1122 gradually decreases, thereby forming
  • the guide groove 1122 is tapered from top to bottom.
  • a guide groove 1122 in the shape of a bell mouth can be formed, so as to realize the guiding function through the bell mouth, so that part of the heat-resistant element 120 can slide to a predetermined installation position after being placed in the guide groove 1122 , thereby reducing the probability of wrong installation of the thermal resistance element 120 .
  • the technical effect of optimizing the positioning structure of the heat-resisting member 120 improving the positioning accuracy of the heat-resisting member 120 , and increasing the yield rate of the bracket mechanism 100 is achieved.
  • the base 110 also includes a blind hole
  • the bracket mechanism 100 also includes: a guide 114 disposed in the blind hole, including A guide slope opposite to the side wall of the blind hole; the guide groove 1122 is surrounded by the guide slope and the blind hole.
  • the structure of the base 110 is further limited. Specifically, a blind hole is provided on the surface of the base 110 facing the heat-resisting member 120, and a guide member 114 is arranged in the blind hole, and a guide slope is formed on the peripheral side of the guide member 114.
  • the guide slope, the bottom wall of the blind hole and the blind hole The sidewalls of the hole together form a guide groove 1122 .
  • the guide slope is inclined relative to the sidewall of the blind hole, thereby forming a tapered guide groove 1122 .
  • part of the heat-resistant element 120 is inserted into the guide groove 1122 and fills the guide groove 1122 to accurately position the heat-resistant element 120 and prevent the heat-resistant element 120 from shaking relative to the base 110 during operation. Further, the control precision of the diaphragm 210 is improved, and the liquid pumping efficiency can be accurately controlled.
  • the guide member 114 is a prism, and the bottom surface of the prism is connected with the bottom wall of the blind hole.
  • the shape of the guide piece 114 is defined.
  • the guide member 114 is a prism, the bottom of the prism is connected to the bottom wall of the blind hole, and the top surface faces the heat-resisting member 120 , and the multiple sides on the prism are guide slopes.
  • the cross-sectional shapes of the guide groove 1122 and the guide member 114 are regular polygons.
  • the cross-sectional shape of the guide groove 1122 is an equilateral triangle, and the guide member 114 is a corresponding triangular prism.
  • the cross-sectional shape of the corresponding quadrangular truss or guide groove 1122 is a regular octagon, and the guide 114 is a corresponding octagonal truss.
  • the peripheral side of the prism abuts against the sidewall of the guide groove 1122 to prevent the heat-resisting element 120 from rotating relative to the positioning portion 112 .
  • this embodiment does not rigidly limit the shapes of the guide groove 1122 and the guide member 114 , as long as they meet the above positioning requirements.
  • the guide member 114 is a hexagonal prism.
  • the cross-sectional shape of the guide groove 1122 is a regular hexagon, and correspondingly, the cross-sectional shape of the guide piece 114 is a hexagonal truss, and a part of the heat-resisting element 120 can be inserted between the hexagonal truss and the guide groove 1122.
  • the heat-resisting element 120 is snapped onto the positioning portion 112 .
  • a through hole is provided in the hexagonal platform, for the connection piece 126 to connect the thermal resistance piece 120 and the base 110.
  • the heat-resisting member 120 is in interference fit with the guide groove 1122.
  • the close connection between the base 110 and the heat-resisting member 120 can be realized, so as to improve the positioning accuracy of the heat-resisting member 120 and avoid heat-resisting
  • the component 120 is misaligned relative to the positioning portion 112 during the working process and even falls out of the positioning portion 112 . Further, the technical effect of improving the structural stability and reliability of the bracket mechanism 100 is achieved.
  • N guide grooves 1122 there are N guide grooves 1122 , and the N guide grooves 1122 are evenly distributed on the base 110 ; wherein, N is an integer greater than 2.
  • the base 110 is provided with N positioning portions 112 , and each positioning portion 112 is provided with a guide groove 1122 .
  • the distribution of the guide grooves 1122 on the base 110 is limited.
  • the base 110 is a ring structure.
  • at least three guide grooves 1122 are evenly distributed on the same circle with the axis of the base 110 as the axis, so as to form an annular array of guide grooves 1122 on the base 121 .
  • the uniformity of force distribution on the base 110 can be improved and the diaphragm 210 can be prevented from being damaged due to uneven force. Further, the technical effect of optimizing the structure of the base 110 and prolonging the service life of the diaphragm 210 is achieved.
  • the base 110 is annular, and the N guide grooves 1122 are evenly distributed on the same circle with the axis of the base 110 as the axis.
  • the distribution of the guide grooves 1122 on the base 110 is limited.
  • the base 110 is a ring structure.
  • at least three guide grooves 1122 are evenly distributed on the same circle with the axis of the base 110 as the axis, so as to form an annular array of guide grooves 1122 on the base 121 .
  • the uniformity of force distribution on the base 110 can be improved and the diaphragm 210 can be prevented from being damaged due to uneven force.
  • the technical effect of optimizing the structure of the base 110 and prolonging the service life of the diaphragm 210 is achieved.
  • N heat-resistant elements 120 there are N heat-resistant elements 120 , and the N heat-resistant elements 120 are connected to the N guide grooves 1122 in one-to-one correspondence.
  • the number of heat-resisting elements 120 and the corresponding relationship between the heat-resisting elements 120 and the guide grooves 1122 are limited.
  • the number of heat-resisting elements 120 is the same as the number of guide grooves 1122, and N guide grooves 1122 are arranged in one-to-one correspondence with N heat-resisting elements 120, so as to form N heat-resisting elements distributed in a ring on the base 110 120 arrays, so that the membrane 210 is jointly supported by N thermal resistance elements 120 .
  • the area of contact surface 116 between heat-resisting members 120 and diaphragm 210 can be reduced on the basis of meeting the positioning and connection requirements of diaphragm 210, so as to avoid large-area contact affecting the diaphragm.
  • the range of motion of the slice 210 Furthermore, the technical effect of optimizing the structure of the support mechanism 100 and improving the pumping performance of the support mechanism 100 is achieved.
  • the heat-resistant element 120 includes: a base body 121; Set in the guide groove 1122 .
  • the structure of the heat-resistant element 120 is limited.
  • the heat-resistant element 120 includes a base 121 and a protrusion 124.
  • the base 121 is located outside the guide groove 1122 for supporting and connecting the diaphragm 210.
  • the top surface of the base 121 is kept in contact with the diaphragm 210, and when the base 110 is driven to swing, the base 121 pushes and pulls the diaphragm 210, so that the diaphragm 210 is deformed, so that the side away from the base 110 is changed by the deformed diaphragm 210
  • the size of the cavity to complete the suction and pumping of the liquid.
  • the protruding part 124 is arranged on the bottom surface of the base body 121, and the shape of the protruding part 124 is adapted to the shape of the guide groove 1122. During the assembly process, the protruding part 124 is first aligned with the guide groove 1122, and then the protruding part 124 is aligned with the guide groove 1122 through the guide slope. The outlet portion 124 is accurately pushed into the guide groove 1122 to accurately position the heat-resistant element 120 on the base 110 .
  • the positioning portion 112 has a columnar structure, and the heat-resisting member 120 is provided with an installation groove 122 whose shape matches the outer contour of the positioning portion 112 .
  • the positioning part 112 is first aligned with the installation groove 122 , and then the positioning part 112 is plugged into the installation groove 122 to complete the assembly of the heat resistance element 120 .
  • the positioning part 112 and the guide groove 1122 can be combined to form a nested positioning connection structure, thereby improving the positioning accuracy of the thermal resistance element 120 .
  • the nested connection structure can improve the positioning stability of the heat-resisting element 120 and prevent the heat-resisting element 120 from being dislocated or even falling off during the long-term reciprocating movement. Furthermore, the technical effect of improving the structural stability of the support mechanism 100 and reducing the failure rate of the support mechanism 100 is achieved.
  • the protruding portion 124 is in interference fit with the guiding groove 1122 .
  • the protrusion 124 is in interference fit with the guide groove 1122 .
  • the side of the protruding portion 124 facing the base 110 is the front end of the protruding portion 124
  • the opposite side is the end of the protruding portion 124 .
  • the protrusion 124 is slightly larger than the size of the guide groove 1122, the protrusion 124 is not completely submerged in the guide groove 1122, and then the protrusion 124 is pressed into the guide groove 1122 by the connector 126 to make the protrusion
  • the outer surface of the portion 124 is in close contact with the inner wall of the guide groove 1122 , thereby eliminating the gap between the protruding portion 124 and the guide groove 1122 , and preventing the heat-resisting element 120 from being dislocated or even falling off during operation.
  • the technical effects of optimizing the positioning structure of the heat-resisting element 120 improving the positioning accuracy of the heat-resisting element 120 , and reducing the failure rate of the support mechanism 100 are realized.
  • the heat-resistant element 120 is detachably connected to the base 110 .
  • the heat-resistant element 120 is detachably connected to the base 110 .
  • the modular design of the base 110 and the heat-resisting member 120 can be realized, and the heat-resisting member 120 corresponding to the heat insulation performance can be provided for the base 110 with different pumping efficiencies.
  • the maintenance of the bracket mechanism 100 can be quickly completed by disassembling and replacing the heat-resistant element 120, thereby bringing convenience to the user. Reduce product maintenance difficulty and maintenance costs.
  • the bracket mechanism 100 further includes: a connecting piece 126 , a connecting base 110 and a heat-resistant piece 120 .
  • valve core assembly 200 is also provided with a connecting piece 126. After the initial positioning of the heat-resistant piece 120 is completed through the guide groove 1122, the heat-resistant piece 120 and the base 110 are connected through the connecting piece 126, so that the base The seat 110 can drive the heat-resisting element 120 and the diaphragm 210 to swing together, so as to prevent the heat-resisting element 120 from being separated from the base 110 .
  • the connector 126 can be a screw.
  • a first screw hole is provided on the heat-resistant member 120
  • the protruding part 124 is arranged around the first screw hole
  • the base 110 is correspondingly provided with a second screw hole.
  • screw holes, the second screw holes are provided on the guide member 114 , the screws pass through the first screw holes and sink into the second screw holes, so as to connect the heat-resisting member 120 and the base 110 .
  • this structure is only an optional structure of the connector 126, and the connection between the heat-resistant member 120 and the base 110 can also be completed by setting other connection structures such as buckle slots. It is hard to limit, and it is enough to meet the requirement of reliable connection.
  • valve core assembly 200 includes: the bracket mechanism 100 in any of the above-mentioned embodiments; Above, the heat-resistant element 120 is located between the base 110 and the diaphragm 210 .
  • valve core assembly 200 provided with the bracket mechanism 100 in any of the above-mentioned embodiments is defined, so the valve core assembly 200 has the advantages of the bracket mechanism 100 in any of the above-mentioned embodiments, and can realize The technical effects achieved by the bracket mechanism 100 in any of the above-mentioned embodiments.
  • the demand for the pumping flow of the booster pump 300 is getting higher and higher, and the flow rate of the booster pump 300 on the market is developing from 600G, 800G to 0G.
  • one of the ways to increase the pumping flow rate is to speed up the movement frequency of the diaphragm 210, but this high-speed synergistic method will generate a lot of heat during the working process, causing the base 110 and the diaphragm 210 to be released from the base 110 Heating up, the actual temperature can reach around 70°C.
  • the diaphragm 210 is mostly made of elastic materials such as rubber, and high temperature has an irreversible impact on the performance of the diaphragm 210 , resulting in rapid aging of the diaphragm 210 . Therefore, the technical problems of short service life of the diaphragm 210, high failure rate and poor reliability of the booster pump 300 arise.
  • the present application provides a heat-resisting element 120 in the support mechanism 100 .
  • the heat-resisting member 120 is fixed on the base 110, and the heat-resisting member 120 is used to support the diaphragm 210.
  • the heat-resisting member 120 is located between the base 110 and the diaphragm 210, and the heat-resisting member 120 Keeping in contact with the diaphragm 210 , when the heat-resisting member 120 moves with the base 110 , the diaphragm 210 in contact with the heat-resisting member 120 is deformed.
  • the heat-resisting element 120 has excellent heat-insulating performance, and can slow down the heat transfer efficiency between the base 110 and the diaphragm 210 .
  • the heat-resistant element 120 can be made of PA6+30GF (nylon 66+30% glass fiber), or can be made of heat-insulating materials such as ceramics, so the heat-resistant element is not included in this embodiment.
  • the material of 120 is rigidly limited to meet the heat insulation requirements.
  • the heat transfer efficiency from the base 110 to the diaphragm 210 can be effectively reduced, thereby reducing the temperature of the diaphragm 210 during operation and avoiding damage to the diaphragm 210 due to high temperature .
  • the technical problems existing in the foregoing related technologies are solved.
  • the technical effects of optimizing the structure of the valve core assembly 200, prolonging the service life of the diaphragm 210, reducing the failure rate of the valve core assembly 200, and reducing the failure rate of the booster pump 300 are realized on the basis of meeting the high-flow pumping demand.
  • the base 110 and the heat-resisting member 120 are of a split structure.
  • the base 110 can be made of a metal material with higher strength, so as to It is ensured that the base 110 can drive the diaphragm 210 to move at a high speed for a long time, and the failure rate of the base 110 is reduced.
  • the thermal insulation performance of the heat-resisting member 120 can be adjusted by selecting and replacing the heat-resisting member 120 of different materials, so as to select the corresponding material of the heat-resisting member 120 according to the pumping flow demand of the booster pump 300, so as to meet the The cost of the spool assembly 200 is compressed based on insulation requirements.
  • the valve core assembly 200 further includes: a pressing member 220, disposed on the diaphragm 210, facing away from the heat-resistant member 120, the pressing member 220 is connected with the heat-resistant member 120, and is used to connect the diaphragm 210 Pressed on the heat-resistant element 120 .
  • the valve core assembly 200 is also provided with a pressing piece 220, the pressing piece 220 is arranged on the diaphragm 210, and the connecting piece 126 passes through the diaphragm 210 and connects the pressing piece 220 and the thermal resistance 120, so as to
  • the diaphragm 210 is tightly pressed against the heat-resisting member 120 by the pressing member 220 , so that the diaphragm 210 is in close contact with the top surface of the heat-resisting member 120 , thereby realizing the clamping of the diaphragm 210 .
  • the diaphragm 210 is the main working part of the booster pump 300.
  • the booster pump 300 drives the diaphragm 210 to move to change the size of the space separated by the diaphragm 210, thereby completing the extraction of the medium. , pressurization of the medium and discharge of the medium.
  • Setting the connecting piece 126 and the pressing piece 220 can accurately position the diaphragm 210 in the booster pump 300 to reduce the possibility of misalignment of the diaphragm 210 during operation.
  • the pressing member 220 can make the diaphragm 210 close to the base 110, thereby eliminating the gap between the first positioning surface and the diaphragm 210, thereby improving the movement accuracy of the diaphragm 210 and ensuring the pumping of the valve core assembly 200. efficiency.
  • the booster pump 300 includes: a housing 310 including a cavity; In the cavity, the diaphragm 210 is connected with the casing 310, and the diaphragm 210 separates the cavity.
  • a booster pump 300 provided with the spool assembly 200 in any of the above-mentioned embodiments is defined, so the booster pump 300 has the advantages of the spool assembly 200 in any of the above-mentioned embodiments, The technical effects achieved by the spool assembly 200 in any of the above embodiments can be achieved, and to avoid repetition, details are not repeated here.
  • the booster pump 300 includes a casing 310, which is an external frame structure of the booster pump 300, and is used to enclose and define a cavity.
  • the base 110 and the pressing member 220 are disposed in the cavity to position the diaphragm 210 within the housing 310 .
  • the peripheral side of the diaphragm 210 is connected with the inner wall of the housing 310 to divide the cavity into two sub-cavities, and the base 110 and the pressing member 220 are respectively located in the sub-cavities on both sides of the diaphragm 210 .
  • the base 110 drives part of the diaphragm 210 and the pressing member 220 to move relative to the housing 310 , the diaphragm 210 connected to the housing 310 is pushed and pulled, thereby deforming.
  • the volume of the sub-cavity where the pressing member 220 is located increases, so that the booster pump 300 can suck the medium into the sub-cavity.
  • the diaphragm 210 is pushed toward the pressing member 220 by the base 110 , the volume of the subcavity where the pressing member 220 is located decreases, so that the medium in the subcavity is pushed out of the booster pump 300 . Further, the medium pumping of the booster pump 300 is realized.
  • the housing 310 further includes an inlet and an outlet, and the inlet and the outlet communicate with the cavity on the side of the diaphragm 210 away from the base 110 . connected to drive the base 110 to swing relative to the casing 310 .
  • the housing 310 is provided with an inlet and an outlet for the medium to enter and exit. Both the inlet and the outlet communicate with the subcavity on one side of the diaphragm 210 .
  • the base 110 and the driving member 256 are arranged in the sub-cavity on the side away from the inlet and the outlet.
  • the drive assembly 250 is fixed on the housing 310, and the base 110 connects the drive assembly 250 and the diaphragm 210.
  • the driving assembly 250 drives the base 110 and the pressing member 220 to move relative to the housing 310 , so as to realize the suction and discharge of the medium by pushing and pulling the diaphragm 210 .
  • the drive assembly 250 includes: a drive member 256, including a drive shaft 252; an eccentric wheel 230, sleeved on the drive shaft 252; a bearing 254, the inner ring of the bearing 254 is sleeved on the eccentric wheel 230, and the bearing The outer ring of 254 passes through the base 110 .
  • the structure of the driving assembly 250 is limited.
  • the driving assembly 250 includes a driving member 256 , an eccentric wheel 230 and a bearing 254 .
  • the eccentric wheel 230 and the bearing 254 are transmission structures between the base 110 and the driving member 256 , the bearing 254 is sleeved on the shaft body 232 of the eccentric wheel 230 , and the base 110 is sleeved outside the bearing 254 .
  • the eccentric wheel 230 rotates around the first axis, and there is a first angle between the axis of the shaft body 232 and the first axis, so that the base 110 sleeved on the shaft body 232 can be eccentric around the first axis together. turn.
  • the diaphragm 210 is disposed on the base 110 and connected with the base 110 .
  • Diaphragm 210 is made of elastic material, which can be deformed when being pushed and pulled to change the volume of the cavity in booster pump 300. For example, when the diaphragm 210 is stretched outward, the volume of the cavity will increase immediately, otherwise the membrane will When the sheet 210 returns to its original shape or is pushed inward, the volume of the cavity decreases immediately, so that the drawing and pumping of the liquid can be realized by pushing and pulling.
  • the fourth aspect of the present application provides a water purifier, and the water purifier includes: the booster pump 300 in any one of the above-mentioned embodiments.
  • a water purifier provided with the booster pump 300 in any of the above-mentioned embodiments is defined, so the water purifier possesses the advantages of the booster pump 300 in any of the above-mentioned embodiments, and can realize To avoid repetition, the technical effects achieved by the booster pump 300 in any of the above embodiments will not be repeated here.
  • valve core assembly 200 As shown in FIG. 11 , FIG. 3 and FIG. 7 , at least one embodiment of the present application provides a valve core assembly 200 , the valve core assembly 200 includes: a base 110 ; a heat-resistant element 120 disposed on the base 110 ; The diaphragm 210 is in contact with the heat-resisting member 120 , the heat-resisting member 120 is located between the base 110 and the diaphragm 210 , and the heat-resisting member 120 can drive the diaphragm 210 to move.
  • the present application defines a valve core assembly 200 applied to a booster pump 300 , and the valve core assembly 200 includes a base 110 and a diaphragm 210 .
  • the diaphragm 210 is the core component of the booster pump 300
  • the base 110 is used to connect the diaphragm 210 and the drive assembly 250
  • the drive assembly 250 drives the diaphragm 210 to move in the booster pump 300 through the drive shaft 252 bearing the base 110
  • the moving diaphragm 210 can change the space size of the pumping chamber on the opposite side of the base 110, and when the moving diaphragm 210 enlarges the pumping chamber, the negative pressure will press the liquid into the pumping chamber.
  • the moving diaphragm 210 shrinks the pumping cavity, the liquid previously drawn in is pressed out of the pumping cavity, thereby satisfying the pumping demand of the liquid.
  • the demand for the pumping flow of the booster pump 300 is getting higher and higher, and the flow rate of the booster pump 300 on the market is developing from 600G, 800G to 0G.
  • one of the ways to increase the pumping flow rate is to speed up the movement frequency of the diaphragm 210, but this high-speed synergistic method will generate a lot of heat during the working process, causing the base 110 and the diaphragm 210 to be released from the base 110 Heating up, the actual temperature can reach around 70°C.
  • the diaphragm 210 is mostly made of elastic materials such as rubber, and high temperature has an irreversible impact on the performance of the diaphragm 210 , resulting in rapid aging of the diaphragm 210 . Therefore, the technical problems of short service life of the diaphragm 210, high failure rate and poor reliability of the booster pump 300 arise.
  • the present application provides a thermal resistance element 120 in the valve core assembly 200 .
  • the heat-resisting member 120 is fixed on the base 110, and the heat-resisting member 120 is used to support the diaphragm 210.
  • the heat-resisting member 120 is located between the base 110 and the diaphragm 210, and the heat-resisting member 120 Keeping in contact with the diaphragm 210 , when the heat-resisting member 120 moves with the base 110 , the diaphragm 210 in contact with the heat-resisting member 120 is deformed.
  • the heat-resisting element 120 has excellent heat-insulating performance, and can slow down the heat transfer efficiency between the base 110 and the diaphragm 210 .
  • the heat-resistant element 120 can be made of PA6+30GF (nylon 66+30% glass fiber), or can be made of heat-insulating materials such as ceramics, so the heat-resistant element is not included in this embodiment.
  • the material of 120 is rigidly limited to meet the heat insulation requirements.
  • the heat transfer efficiency from the base 110 to the diaphragm 210 can be effectively reduced, thereby reducing the temperature of the diaphragm 210 during operation and avoiding damage to the diaphragm 210 due to high temperature .
  • the technical problems existing in the foregoing related technologies are solved.
  • the technical effects of optimizing the structure of the valve core assembly 200, prolonging the service life of the diaphragm 210, reducing the failure rate of the valve core assembly 200, and reducing the failure rate of the booster pump 300 are realized on the basis of meeting the high-flow pumping demand.
  • the base 110 and the heat-resisting member 120 are of a split structure.
  • the base 110 can be made of a metal material with higher strength, so as to It is ensured that the base 110 can drive the diaphragm 210 to move at a high speed for a long time, and the failure rate of the base 110 is reduced.
  • the thermal insulation performance of the heat-resisting member 120 can be adjusted by selecting and replacing the heat-resisting member 120 of different materials, so as to select the corresponding material of the heat-resisting member 120 according to the pumping flow demand of the booster pump 300, so as to meet the The cost of the spool assembly 200 is compressed based on insulation requirements.
  • the valve core assembly 200 further includes: a positioning part 112, which is arranged on the base 110, and the heat-resistant member 120 and the positioning part 112 connections.
  • the valve core assembly 200 is provided with a positioning portion 112, the positioning portion 112 is disposed on the base 110, and the thermal resistance member 120 is connected with the positioning portion 112 to position the thermal resistance member 120 on the base 110. on the intended installation location.
  • the positioning portion 112 it is helpful to improve the positioning accuracy of the heat-resisting element 120 on the base 110 , so as to prevent the misaligned installed heat-resisting element 120 from affecting the liquid pumping performance of the valve core assembly 200 .
  • the positioning part 112 can also prevent the heat-resisting member 120 from shaking relative to the base 110 during operation, thereby improving the movement accuracy of the diaphragm 210 and accurately controlling the liquid pumping efficiency. Further, the technical effect of optimizing the structure of the valve core assembly 200 , improving the structural stability of the valve core assembly 200 , and reducing the failure rate of the valve core assembly 200 is achieved.
  • the positioning portion 112 is cylindrical in shape, the bottom end of the cylindrical positioning portion 112 is connected to the base 110 , and the top end is connected to the heat resistance element 120 .
  • the cylindrical positioning column By setting the cylindrical positioning column, it can effectively support the thermal resistance 120 and the diaphragm 210.
  • the cylindrical positioning column can increase the distance between the diaphragm 210 and the base 110, avoiding the deformation of the diaphragm 210 and the base. 110 Interference.
  • the technical effect of improving the positioning accuracy of the diaphragm 210 and reducing the failure rate of the diaphragm 210 is achieved.
  • N positioning parts 112 there are N positioning parts 112 , and the N positioning parts 112 are evenly distributed on the base 110 ; wherein, N is an integer greater than 2.
  • the number of positioning parts 112 is limited. Specifically, there are N positioning parts 112 , and N is an integer greater than 2, that is, at least three positioning parts 112 are provided on the base 110 .
  • N is an integer greater than 2
  • the stability of the positioning parts 112 supporting the heat-resisting element 120 and the diaphragm 210 can be ensured, and the possibility of the diaphragm 210 tilting on the valve core assembly 200 can be reduced.
  • the positioning portion 112 on the base 110 By constructing the positioning portion 112 on the base 110 , convenient conditions can be provided for pushing and pulling the diaphragm 210 during operation, specifically, the deformation range of the diaphragm 210 can be increased, and the force required for pushing and pulling the diaphragm 210 can be reduced. Further, the technical effect of increasing the pumping flow rate and pumping pressure of the booster pump 300 using the spool assembly 200 and enhancing the competitiveness of related products is realized. By evenly distributing the N positioning portions 112 on the base 110 , the uniformity of force distribution between the heat-resisting element 120 and the diaphragm 210 can be improved, preventing the diaphragm 210 from being damaged due to uneven force. Further, the technical effect of prolonging the service life of the diaphragm 210 is achieved.
  • the N positioning parts 112 can be positioned together to support a single heat-resisting element 120 , or can support multiple heat-resisting elements 120 respectively, and the number and distribution of the heat-resisting elements 120 are not rigidly limited in this embodiment.
  • the base 110 is in a ring shape, and the N positioning portions 112 are evenly distributed on the same circle with the axis of the base 110 as an axis.
  • the distribution manner of the positioning portions 112 on the base 110 is limited.
  • the base 110 is a ring structure.
  • at least three positioning portions 112 are evenly distributed on the same circle with the axis of the base 110 as the axis, so as to form an array of positioning portions 112 distributed in a ring on the body.
  • the uniformity of force distribution of the base 110 can be improved, and the diaphragm 210 can be prevented from being damaged due to uneven force. Further, the technical effect of optimizing the structure of the base 110 and prolonging the service life of the diaphragm 210 is realized.
  • N heat-resisting elements 120 there are N heat-resisting elements 120 , and the N heat-resisting elements 120 are connected to the N positioning portions 112 in one-to-one correspondence.
  • the number of heat-resistant elements 120 and the corresponding relationship between the heat-resistant elements 120 and the positioning portion 112 are limited.
  • the number of heat-resisting elements 120 is the same as the number of positioning parts 112, and N positioning parts 112 are set in one-to-one correspondence with N heat-resisting elements 120, so as to form N heat-resisting elements distributed in a ring on the base 110 120 arrays, so that the membrane 210 is jointly supported by N thermal resistance elements 120 .
  • the contact surface 116 area between heat-resisting elements 120 and diaphragm 210 can be reduced on the basis of meeting the positioning and connection requirements of diaphragm 210, so as to avoid large-area contact affecting the membrane.
  • the range of motion of the slice 210 Further, the technical effect of optimizing the structure of the valve core assembly 200 and improving the pumping performance of the valve core assembly 200 is achieved.
  • the heat-resistant element 120 includes a mounting groove 122 , and the positioning portion 112 is inserted into the mounting groove 122 .
  • the matching connection structure between the heat-resistant element 120 and the positioning portion 112 is limited.
  • the positioning portion 112 has a columnar structure, and the heat-resisting member 120 is provided with an installation groove 122 whose shape matches the outer contour of the positioning portion 112 .
  • the positioning part 112 is first aligned with the installation groove 122 , and then the positioning part 112 is plugged into the installation groove 122 to complete the assembly of the heat resistance element 120 .
  • the positioning accuracy of the heat-resisting element 120 can be improved to ensure that the heat-resisting element 120 can work at a predetermined installation position, thereby accurately controlling the shape variable of the diaphragm 210 to realize precise pumping of liquid.
  • providing the installation groove 122 can reduce the difficulty of assembling the heat resistance element 120 and reduce the structural complexity between the heat resistance element 120 and the positioning portion 112 . Further, the technical effects of improving the positioning accuracy of the diaphragm 210 , improving the liquid pumping reliability of the spool assembly 200 , and reducing the cost of the spool assembly 200 are achieved.
  • the positioning portion 112 is provided with a guide groove 1122 on the surface facing the heat-resisting element 120
  • the valve core assembly 200 further includes: a protruding portion 124 disposed on the heat-resisting element 120 and located in the installation groove 122 , and the protrusion 124 is inserted into the guide groove 1122 .
  • the matching structure between the positioning portion 112 and the heat resistance element 120 is further defined.
  • a guide groove 1122 is provided on the surface of the positioning part 112 facing the heat-resistant element 120, that is, a guide groove 1122 is provided on the front end of the columnar positioning part 112, and the guide groove 1122 needs to be plugged into the installation groove 122 during the assembly process.
  • a protruding portion 124 is disposed in the installation groove 122 , and the shape of the protruding portion 124 matches the shape of the guide groove 1122 .
  • the protruding part 124 is gradually inserted into the installation groove 122 to cooperate with the positioning part 112 and the installation groove 122 to form a nested positioning connection structure, thereby improving the positioning of the heat resistance element 120. precision.
  • the nested connection structure can improve the positioning stability of the heat-resisting element 120 and prevent the heat-resisting element 120 from being dislocated or even falling off during the long-term reciprocating movement. Further, the structural stability of the lifting valve core assembly 200 is realized, and the technical effect of reducing the failure rate of the valve core assembly 200 is achieved.
  • the positioning portion 112 is taken by a plane perpendicular to the depth direction of the guide groove 1122 , and the guide groove 1122 is polygonal in cross-section; the protruding portion 124 fills the guide groove 1122 .
  • the shapes of the protruding portion 124 and the guide groove 1122 are limited.
  • the guide groove 1122 is defined on the end surface of the columnar positioning part 112 , and the depth direction of the guide groove 1122 is consistent with the axial direction of the columnar positioning part 112 .
  • the positioning portion 112 is cut by a plane perpendicular to the depth direction, and the guide groove 1122 has a polygonal shape in the cross-section obtained.
  • the shape of the protruding portion 124 is the same as that of the guide groove 1122 , so that the protruding portion 124 inserted into the guide groove 1122 fills the guide groove 1122 with a hook.
  • the protruding part 124 and the guide groove 1122 that are plugged together can prevent the heat-resistant part 120 from rotating relative to the positioning part 112 through a physical fit relationship, thereby ensuring The positioning accuracy of the heat-resisting element 120 and the diaphragm 210 prevents misalignment of the heat-resisting element 120 and the diaphragm 210 during operation.
  • the guide groove 1122 and the protrusion 124 with a polygonal cross-sectional shape, it is possible to assist in positioning the heat-resisting element 120 during the assembly process, reducing the probability of dislocation of the heat-resisting element 120 . Furthermore, the technical effect of improving the positioning accuracy and positioning reliability of the heat-resisting member 120 , reducing the difficulty of assembling the heat-resisting member 120 , improving the assembly accuracy of the heat-resisting member 120 , and improving the yield rate are achieved.
  • the cross-sectional shape of the guide groove 1122 and the protruding portion 124 is a regular polygon.
  • the portion 124 is a corresponding quadrangular prism or the cross-sectional shape of the guide groove 1122 is a regular octagon, and the protruding portion 124 is a corresponding octagonal prism.
  • the peripheral side of the prism abuts against the sidewall of the guide groove 1122 to prevent the heat-resisting member 120 from rotating relative to the positioning portion 112 .
  • this embodiment does not rigidly limit the shapes of the guide groove 1122 and the protruding portion 124, as long as they meet the above positioning requirements.
  • the guide groove 1122 is in the shape of a regular hexagon in cross-section.
  • the cross-sectional shape of the guide groove 1122 is a regular hexagon, and correspondingly the cross-sectional shape of the protrusion 124 is a hexagonal prism. Inserting the hexagonal prism into the guide groove 1122 can snap the heat-resistant element 120 in place. Section 112 on. Wherein the hexagonal prism is provided with a through hole for the connecting member 126 to pass through the heat-resistant member 120 and connect to the base 110 .
  • the guide groove 1122 and the protruding part 124 are interference fit, and by setting the guide groove 1122 and the protruding part 124 with an interference fit, the tight connection between the positioning part 112 and the heat-resistant element 120 can be realized, so as to lift the heat-resistant element 120
  • the positioning accuracy is high, so as to prevent the heat-resisting element 120 from being dislocated relative to the positioning portion 112 or even falling out of the positioning portion 112 during the working process.
  • the technical effects of structural stability and reliability of the poppet spool assembly 200 are achieved.
  • the thermal resistance element 120 is detachably connected to the base 110 .
  • the heat-resistant element 120 is detachably connected to the base 110 .
  • the detachable structure on the one hand, the modular design of the base 110 and the heat-resisting member 120 can be realized, and the heat-resisting member 120 corresponding to the heat insulation performance can be provided for the base 110 with different pumping efficiencies.
  • the maintenance of the valve core assembly 200 can be quickly completed by disassembling and replacing the heat-resisting member 120 when a certain heat-resisting member 120 is aging or damaged, thereby bringing convenience to users , Reduce product maintenance difficulty and maintenance cost.
  • the spool assembly 200 further includes: a pressing member 220, disposed on the diaphragm 210, away from the thermal resistance member 120; a connecting member 126, passing through the diaphragm 210, and connecting the pressing member 220 and the resistance Hot piece 120.
  • the valve core assembly 200 is also provided with a pressing piece 220 and a connecting piece 126, the pressing piece 220 is arranged on the diaphragm 210, and the connecting piece 126 passes through the diaphragm 210 and connects the pressing piece 220 and the heat resistance
  • the member 120 is used to press the diaphragm 210 tightly on the heat-resistant member 120 through the pressing member 220, so that the diaphragm 210 is closely attached to the top surface of the heat-resistant member 120, thereby realizing the clamping of the diaphragm 210.
  • the diaphragm 210 is the main working part of the booster pump 300.
  • the booster pump 300 drives the diaphragm 210 to move to change the size of the space separated by the diaphragm 210, thereby completing the extraction of the medium. , pressurization of the medium and discharge of the medium.
  • Setting the connecting piece 126 and the pressing piece 220 can accurately position the diaphragm 210 in the booster pump 300 to reduce the possibility of misalignment of the diaphragm 210 during operation.
  • the pressing member 220 can make the diaphragm 210 close to the base 110, thereby eliminating the gap between the first positioning surface and the diaphragm 210, thereby improving the movement accuracy of the diaphragm 210 and ensuring the pumping of the valve core assembly 200. efficiency.
  • the connecting piece 126 passes through the pressing piece 220 and the diaphragm 210 from one side of the pressing piece 220 , and is connected to the base 110 .
  • the connecting piece 126 By providing the connecting piece 126 , the pressing piece 220 can be tightly pressed on the membrane 210 through the connecting piece 126 to avoid gaps between the base 110 and the membrane 210 .
  • providing the connecting piece 126 can improve the structural stability of the valve core assembly 200 .
  • the setting of the through connecting part 126 can improve the stability and reliability of the positioning of the diaphragm 210 and reduce the possibility of the diaphragm 210 being dislocated or even falling off.
  • the booster pump 300 includes: a housing 310, including a cavity; a valve core assembly as in any of the above-mentioned embodiments 200 is set in the cavity, the diaphragm 210 is connected with the casing 310, and the diaphragm 210 separates the cavity.
  • a booster pump 300 provided with the spool assembly 200 in any of the above-mentioned embodiments is defined, so the booster pump 300 has the advantages of the spool assembly 200 in any of the above-mentioned embodiments, The technical effects achieved by the spool assembly 200 in any of the above embodiments can be achieved, and to avoid repetition, details are not repeated here.
  • the booster pump 300 includes a casing 310, which is an external frame structure of the booster pump 300, and is used to enclose and define a cavity.
  • the base 110 and the pressing member 220 are disposed in the cavity, thereby positioning the diaphragm 210 within the housing 310 .
  • the peripheral side of the diaphragm 210 is connected with the inner wall of the housing 310 to divide the cavity into two sub-cavities, and the base 110 and the pressing member 220 are respectively located in the sub-cavities on both sides of the diaphragm 210 .
  • the base 110 drives part of the diaphragm 210 and the pressing member 220 to move relative to the housing 310 , the diaphragm 210 connected to the housing 310 is pushed and pulled, thereby deforming.
  • the volume of the sub-cavity where the pressing member 220 is located increases, so that the booster pump 300 can suck the medium into the sub-cavity.
  • the diaphragm 210 is pushed toward the pressing member 220 by the base 110 , the volume of the subcavity where the pressing member 220 is located decreases, so that the medium in the subcavity is pushed out of the booster pump 300 . Further, the medium pumping of the booster pump 300 is realized.
  • the housing 310 further includes an inlet and an outlet, and the inlet and the outlet communicate with the cavity on the side of the diaphragm 210 away from the base 110 . connected to drive the base 110 to swing relative to the casing 310 .
  • the housing 310 is provided with an inlet and an outlet for the medium to enter and exit. Both the inlet and the outlet communicate with the subcavity on one side of the diaphragm 210 .
  • the base 110 and the driver 256 are disposed in the subcavity on the side away from the inlet and outlet.
  • the driving assembly 250 is fixed on the housing 310 , and the base 110 connects the driving assembly 250 and the diaphragm 210 .
  • the driving assembly 250 drives the base 110 and the pressing member 220 to move relative to the housing 310 , so as to realize the suction and discharge of the medium by pushing and pulling the diaphragm 210 .
  • the drive assembly 250 includes: a drive member 256, including a drive shaft 252; an eccentric wheel 230, sleeved on the drive shaft 252; a bearing 254, the inner ring of the bearing 254 is sleeved on the eccentric wheel 230, and the bearing The outer ring of 254 passes through the base 110 .
  • the structure of the driving assembly 250 is limited.
  • the driving assembly 250 includes a driving member 256 , an eccentric wheel 230 and a bearing 254 .
  • the eccentric wheel 230 and the bearing 254 are transmission structures between the base 110 and the driving member 256 , the bearing 254 is sleeved on the shaft body 232 of the eccentric wheel 230 , and the base 110 is sleeved outside the bearing 254 .
  • the eccentric wheel 230 rotates around the first axis, and there is a first angle between the axis of the shaft body 232 and the first axis, so that the base 110 sleeved on the shaft body 232 can be eccentric around the first axis together. turn.
  • the diaphragm 210 is disposed on the base 110 and connected with the base 110 .
  • Diaphragm 210 is made of elastic material, which can be deformed when being pushed and pulled to change the volume of the cavity in booster pump 300. For example, when the diaphragm 210 is stretched outward, the volume of the cavity will increase immediately, otherwise the membrane will When the sheet 210 returns to its original shape or is pushed inward, the volume of the cavity decreases immediately, so that the drawing and pumping of the liquid can be realized by pushing and pulling.
  • At least one embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump 300 in any one of the above embodiments.
  • a water purifier provided with the booster pump 300 in any of the above-mentioned embodiments is defined, so the water purifier possesses the advantages of the booster pump 300 in any of the above-mentioned embodiments, and can realize To avoid repetition, the technical effects achieved by the booster pump 300 in any of the above embodiments will not be repeated here.
  • valve core assembly 200 As shown in Fig. 13, Fig. 14, Fig. 15 and Fig. 16, at least one embodiment of the present application provides a valve core assembly 200, the valve core assembly 200 includes an eccentric wheel 230, which can rotate around a first axis, including Shaft 232, there is a first angle between the axis of shaft 232 and the first axis; bracket mechanism 100 is sleeved on shaft body 232; diaphragm 210 is connected with bracket mechanism 100; wherein, bracket mechanism 100 is connected with membrane
  • the contact surface of the sheet 210 is the contact surface 116 , and the contact surface 116 extends away from the diaphragm 210 in the radial direction from the outside to the inside of the shaft body 232 .
  • the spool assembly 200 proposed in this application can be applied to the booster pump 300.
  • the spool assembly 200 includes an eccentric wheel 230 , a bracket mechanism 100 and a diaphragm 210 .
  • the bracket mechanism 100 is a frame structure in the spool assembly 200 for positioning and supporting other working structures on the spool assembly 200 .
  • the eccentric wheel 230 is a transmission structure between the support mechanism 100 and the driving member 256 , and the support mechanism 100 is sleeved on the shaft body 232 of the eccentric wheel 230 .
  • the eccentric wheel 230 rotates around the first axis, and there is a first angle between the axis of the shaft body 232 and the first axis, so that the bracket mechanism 100 sleeved on the shaft body 232 can be eccentric around the first axis together. turn.
  • the diaphragm 210 is arranged on the support mechanism 100 and connected with the support mechanism 100 . Diaphragm 210 is made of elastic material, which can be deformed when being pushed and pulled to change the volume of the cavity in booster pump 300.
  • the support mechanism 100 is ring-shaped, and the axis of the structure of this part of the ring-shaped support mechanism 100 is the axis of the support mechanism 100 .
  • the support mechanism 100 is driven by the eccentric wheel 230 to rotate around the preset first axis in the valve core assembly 200, and there is an included angle between the first axis and the axis of the support mechanism 100 to form the support mechanism 100. Eccentric rotation.
  • the outer surface of the support mechanism 100 can reciprocate in the direction of the first axis, thereby driving the part of the diaphragm 210 connected to the support mechanism 100 to reciprocate in the direction of the first axis. Due to the stretchability of the diaphragm 210 , when part of the diaphragm 210 is pushed and pulled by the support mechanism 100 , the shape of the diaphragm 210 changes regularly, so that the liquid can be drawn and pushed through the deformed diaphragm 210 .
  • the dynamic load is mainly a radial load, and the radial direction refers to a radial direction perpendicular to the first axis.
  • the radial load experienced by the support mechanism 100 at the end point on the movement path is the largest.
  • the vertical dotted line in Fig. 15 is the first axis
  • the dotted line inclined relative to the first axis is the axis of the shaft body 232
  • ⁇ 1 is the first included angle
  • the eccentrically rotated spool will vibrate due to radial load. This tendency to vibrate creates noise that affects the user experience.
  • the greater the pumping flow rate and the greater the pumping pressure of the booster pump 300 the greater the above-mentioned radial load, so that the booster pump 300 with high power and high flow rate will produce more obvious vibration during the working process, and excessive Large vibrations will reduce the service life of the spool and the booster pump 300 , and if the vibration trend is transmitted to the application products of the booster pump 300 , it will generate relatively large noises and damage the user experience.
  • the present application makes improvements to the shape of the bracket mechanism 100 .
  • the diaphragm 210 is positioned at the front end of the support mechanism 100 , and the surface on the support mechanism 100 that contacts the diaphragm 210 is the contact surface 116 , and the contact surface 116 can be a single ring surface or multiple planes.
  • the contact surface 116 extends away from the diaphragm 210 .
  • the radial direction is the radial direction of the shaft body 232 and the ring-shaped support mechanism 100, which is the direction extending from the outer peripheral side of the support mechanism 100 to the axis of the support mechanism 100 from the outside to the inside, so that the radial direction from the outside to the inside
  • a contact surface 116 is formed which is high on the outside and low on the inside.
  • the vibration generated by the valve core assembly 200 during the working process is reduced, so as to solve the above-mentioned technical problems of high vibration noise and poor reliability. Furthermore, the structure of the valve core assembly 200 is optimized, the working stability and structural reliability of the valve core assembly 200 are improved, the working noise of the product is reduced, the service life of the product is extended, and the technical effect of improving user experience is achieved.
  • the contact surface 116 is a plane, and the plane perpendicular to the axis of the support mechanism 100 is a reference plane; The second included angle ⁇ 1.
  • the contact surface 116 is further described. Specifically, the contact surface 116 is a plane, and the height of the contact surface 116 gradually decreases in the radial direction from the outside to the inside of the support mechanism 100, so as to form a plane contact surface 116 on the support mechanism 100 inclined to the central area of the support mechanism 100 .
  • a certain plane perpendicular to the axis of the support mechanism 100 is used as a reference plane, and the included angle between the reference plane and the contact surface 116 is the second included angle, and the second included angle is equal to the first included angle.
  • the structural compensation angle by adjusting the angle of the second included angle, can adjust the radial load received by the support mechanism 100 during the reciprocating motion.
  • the irregular contact surface 116 is set to compensate the first included angle
  • setting the contact surface 116 as a plane can improve the structural compensation efficiency on the one hand and help reduce the radial load on the support mechanism 100 .
  • it helps to improve the force uniformity of the diaphragm 210 and prolongs the service life of the diaphragm 210 .
  • the technical effects of optimizing the structure of the support mechanism 100, improving the working stability of the support mechanism 100, reducing product vibration and noise, and prolonging the service life of the product are realized.
  • the vertical dotted line is the axis of the bracket mechanism 100
  • the dotted line perpendicular to the vertical dotted line is used to show the reference plane
  • is the second included angle
  • the angle of the first included angle is the first angle
  • the angle of the second included angle is the second angle
  • the second angle is the product of N and the first angle, and 0.5 ⁇ N ⁇ 1.5.
  • the relationship between the first included angle and the second included angle is limited.
  • the angle of the first included angle is the first angle
  • the angle of the second included angle is the second angle.
  • the second included angle N ⁇ the first included angle.
  • the value range of N is greater than or equal to 0.5 and less than or equal to 1.5.
  • the inclined contact surface 116 can be prevented from overcompensating the radial load, and the radial load opposite to the original radial load direction on the support mechanism 100 can be avoided.
  • the component force of the support mechanism 100 in the radial direction can be reduced at the stroke end point of the reciprocating movement of the support mechanism 100, that is, at the point of maximum pressure, thereby restraining the support mechanism 100. vibration trend.
  • the technical effects of optimizing the structure of the bracket mechanism 100 improving the rotation stability of the bracket mechanism 100 , reducing product vibration and noise, and prolonging the service life of the valve core assembly 200 are realized.
  • the spool assembly 200 further includes: an eccentric wheel 230 connected to the bracket mechanism 100 , the axis of the eccentric wheel 230 coincides with the axis of the rotating shaft;
  • the shaft hole 234 is disposed on the eccentric wheel 230, and the axis of the shaft hole 234 coincides with the first axis.
  • the eccentric wheel 230 includes a cylindrical shaft body 232 and a shaft hole 234 disposed inside the shaft body 232 , and the axis of the shaft body 232 is the axis of the eccentric wheel 230 .
  • the bracket mechanism 100 is sleeved on the eccentric wheel 230 , and the axis of the bracket mechanism 100 coincides with the axis of the eccentric wheel 230 .
  • the eccentric wheel 230 rotates around the axis of the shaft hole 234. Under the physical fit, the eccentric wheel 230 drives the bracket mechanism 100 to rotate around the axis of the shaft hole 234, that is, the first axis, so as to pass through the bracket mechanism 100.
  • the eccentric rotation pushes and pulls the diaphragm 210.
  • the eccentric rotation of the bracket mechanism 100 can be formed through the contact and fit between the nested structures, and the matching structure has high compactness and strong reliability, which helps to reduce the rotation error caused by the structural gap, and It is beneficial to reduce the vibration noise of the valve core assembly 200 .
  • this structure occupies less space, which can reduce the layout difficulty of the valve core assembly 200 inside the booster pump 300 , and is beneficial to the lightweight and miniaturized design of the booster pump 300 .
  • the structure is less difficult to disassemble and assemble.
  • the bracket mechanism 100 or the eccentric wheel 230 breaks down, the user can easily complete the maintenance and replacement of the structure through disassembly and assembly.
  • the technical effect of improving the compact structure of the spool assembly 200 reducing the size of the spool assembly 200 , and improving the working stability and reliability of the spool assembly 200 is achieved.
  • valve core assembly 200 further includes: a bearing 254 sleeved on the eccentric wheel 230 , and the bracket mechanism 100 is sleeved on the bearing 254 .
  • the valve core assembly 200 is also provided with a bearing 254 .
  • the bearing 254 is sleeved on the shaft body 232 of the eccentric wheel 230
  • the bracket mechanism 100 is sleeved on the bearing 254, forming the eccentric wheel 230, the bearing 254 and the bracket mechanism 100 nested sequentially from inside to outside.
  • the arrangement of the bearing 254 helps to reduce the frictional force between the eccentric wheel 230 and the support mechanism 100 , thereby reducing the torque applied by the support mechanism 100 to the diaphragm 210 and preventing the diaphragm 210 from being twisted and torn by the support mechanism 100 .
  • setting the bearing 254 can also improve the transmission stability and reliability between the eccentric wheel 230 and the bracket mechanism 100 , suppress the vibration of the valve core assembly 200 to a certain extent, and reduce the working noise of the valve core assembly 200 .
  • the technical effect of optimizing the structure of the valve core assembly 200 , improving the working stability of the valve core assembly 200 and reducing the failure rate of the valve core assembly 200 is achieved.
  • the spool assembly 200 further includes: a first rib 118 disposed on the bracket mechanism 100; a second rib 236 disposed on the eccentric wheel 230, and the two end surfaces of the bearing 254 are respectively connected to the second rib.
  • the first rib 118 abuts against the second rib 236 .
  • the positioning structure of the bearing 254 is limited. Specifically, the first rib 118 is provided on the inner ring surface of the support mechanism 100 , and the second rib 236 is provided on the peripheral side of the shaft body 232 . After the assembly is completed, one end surface of the bearing 254 abuts against the first rib 118 , and the opposite end surface abuts against the second rib 236 , so that the bearing 254 is limited between the bracket mechanism 100 and the eccentric wheel 230 between.
  • the bearing 254 is firstly sleeved on the shaft body 232 until the lower end surface of the shaft body 232 abuts against the second rib 236, and then the support mechanism 100 is sleeved on the outside of the bearing 254 until the first rib 118 abuts against the upper end surface of the bearing 254 .
  • the bearing 254 can be prevented from jumping between the bracket mechanism 100 and the eccentric wheel 230 , so as to reduce the vibration and noise generated by the valve core assembly 200 during operation. Further, the technical effect of optimizing the transmission structure of the support mechanism 100, improving the stability and reliability of the eccentric rotation of the support mechanism 100, and reducing the vibration and noise of the product is realized.
  • valve core assembly 200 further includes: a driving shaft 252 passing through the shaft hole 234 ; and a driving member 256 connected with the driving shaft 252 .
  • the valve core assembly 200 is also provided with a drive shaft 252 and a drive member 256 .
  • the driving part 256 can be a motor, and the power output shaft of the driving part 256 is connected with one end of the driving shaft 252 through a coupling to drive the driving shaft 252 to rotate.
  • the other end of the driving shaft 252 passes through the shaft hole 234 of the eccentric wheel 230 and is connected with the eccentric wheel 230 .
  • the driving shaft 252 and the eccentric wheel 230 can be connected through a positioning key and a keyway, and the axial connection between the driving shaft 252 and the eccentric wheel 230 can also be completed by setting the shaft hole 234 and the driving shaft 252 with a polygonal cross-sectional shape.
  • the method is not limited here, and it is enough that the drive shaft 252 drives the eccentric wheel 230 to rotate synchronously.
  • the power output by the driving member 256 is transmitted to the support mechanism 100 via the drive shaft 252, the eccentric wheel 230 and the bearing 254, so that the support mechanism 100 rotates eccentrically around the axis of the drive shaft 252, that is, the first axis, and rotates eccentrically.
  • the bracket mechanism 100 pushes and pulls the diaphragm 210 to complete the pumping of the liquid.
  • the bracket mechanism 100 includes: a base 110, the base 110 is ring-shaped; at least three positioning parts 112 are arranged on the base 110 Above, the diaphragm 210 is connected to the end surface of the positioning portion 112 .
  • the bracket mechanism 100 includes a base 110 and a positioning part 112 .
  • the base 110 is the main frame structure of the support mechanism 100 and is used for positioning and supporting the positioning part 112 disposed on the base 110 .
  • the positioning portion 112 is disposed on the base 110 , and the first positioning surface is located on an end surface of the positioning portion 112 .
  • the surface 116 when the contact surface 116 is a plane, the contact surface 116 on each positioning portion 112 is inclined toward the direction of the base 110 to form an array of contact surfaces 116 that are high on the outside and low on the inside.
  • the bearing 254 is installed in the base 110, and the side wall of the surrounding layer is arranged opposite to the inner ring surface of the base 110.
  • the first rib 118 is arranged on the base 110, between the lower end surface of the base 110 and the positioning part 112. between. Wherein, there are at least three positioning parts 112 to ensure the stability of the positioning parts 112 supporting the diaphragm 210 and reduce the possibility of the diaphragm 210 tilting on the valve core assembly 200 .
  • the positioning part 112 structure By constructing the positioning part 112 structure on the support mechanism 100 , it can provide convenient conditions for pushing and pulling the diaphragm 210 during the working process, specifically, the deformation range of the diaphragm 210 can be increased, and the force required for pushing and pulling the diaphragm 210 can be reduced. Further, the structure of the bracket mechanism 100 is optimized, the pumping flow rate and the pumping pressure of the booster pump 300 using the spool assembly 200 are increased, and the technical effect of enhancing the competitiveness of related products is achieved.
  • the contact surfaces 116 on at least three positioning portions 112 meet at the same intersection point, and the intersection point is located on the axis of the base 110 .
  • the contact surface 116 is a plane, and the contact surface 116 on each positioning portion 112 is inclined toward the direction where the base 110 is located.
  • the contact surfaces 116 on at least three positioning parts 112 are inclined toward the direction where the base 110 is located.
  • optimizing the direction of the interaction force between the diaphragm 210 and the support mechanism 100 helps to reduce the resultant force of the support mechanism 100 in the radial direction perpendicular to the first axis, thereby improving the eccentricity of the inclined contact surface 116 to the support mechanism 100
  • the rotation compensation effect reduces the radial load on the support mechanism 100 .
  • the technical effect of optimizing the structure of the bracket mechanism 100, improving the rotation stability of the bracket mechanism 100, reducing product vibration and noise, and improving user experience is achieved.
  • At least three positioning portions 112 are evenly distributed on the same circle with the axis of the base 110 as the axis.
  • the distribution manner of the positioning parts 112 on the support mechanism 100 is limited.
  • the base 110 is a ring structure.
  • at least three positioning portions 112 are evenly distributed on the same circle with the axis of the base 110 as the axis, so as to form an annular array of positioning portions 112 on the base 110 .
  • the uniformity of force distribution between the support mechanism 100 and the diaphragm 210 can be improved, and the diaphragm 210 can be prevented from being damaged due to uneven force.
  • the technical effect of optimizing the structure of the base 110 and prolonging the service life of the diaphragm 210 is achieved.
  • the valve core assembly 200 further includes: a pressing member 220, which is arranged on the side of the diaphragm 210 away from the positioning portion 112, abuts against the diaphragm 210, and is used to press the diaphragm 210 on the on the positioning part 112.
  • a pressing member 220 is further arranged in the valve core assembly 200 , and the pressing member 220 is arranged on the diaphragm 210 .
  • the pressing member 220 abuts against the diaphragm 210 so that the diaphragm 210 is tightly pressed between the bracket mechanism 100 and the pressing member 220 , thereby realizing the clamping of the diaphragm 210 .
  • the diaphragm 210 is the main working part of the booster pump 300. During the working process, the booster pump 300 drives the diaphragm 210 to move to change the size of the space separated by the diaphragm 210, thereby completing the extraction of the medium.
  • the arrangement of the bracket mechanism 100 and the pressing member 220 can accurately position the diaphragm 210 in the booster pump 300 to reduce the possibility of misalignment of the diaphragm 210 during operation. And the pressing member 220 can make the diaphragm 210 close to the bracket mechanism 100 , thereby eliminating the gap between the first positioning surface and the diaphragm 210 .
  • the number of pressing pieces 220 is the same as the number of positioning portions 112 , and the pressing pieces 220 are arranged in one-to-one correspondence with the positioning portions 112 .
  • each valve core assembly 200 is provided with a plurality of pressing pieces 220, and the number of pressing pieces 220 is the same as the number of positioning portions 112 on the base 110.
  • the diaphragm 210 is now aligned and placed on at least three positioning portions 112 .
  • a pressing member 220 is correspondingly provided for each positioning portion 112, and the pressing member 220 is pressed against the diaphragm 210, so that the diaphragm 210 is pressed.
  • the fastening member 220 is pressed against the positioning portion 112 .
  • the positioning stability of the valve core assembly 200 to the diaphragm 210 can be improved by arranging a plurality of pressing parts 220, and the possibility of misalignment of the diaphragm 210 between the support mechanism 100 and the pressing part 220 can be reduced.
  • this structure can provide convenient conditions for the valve core assembly 200 to push and pull the diaphragm 210 during operation, specifically, it can increase the deformation range of the diaphragm 210 and reduce the force required for pushing and pulling the diaphragm 210 .
  • the structure of the valve core assembly 200 is optimized, the pumping flow rate and pumping pressure of the booster pump 300 using the valve core assembly 200 are improved, and the technical effect of enhancing the competitiveness of related products is realized.
  • the booster pump 300 includes: a housing 310, including a cavity; the spool assembly 200 in any of the above embodiments, located In the cavity, the diaphragm 210 is connected with the housing 310 and separates the cavity.
  • a booster pump 300 provided with the spool assembly 200 in any of the above-mentioned embodiments is defined, so the booster pump 300 has the advantages of the spool assembly 200 in any of the above-mentioned embodiments, The technical effects achieved by the spool assembly 200 in any of the above embodiments can be achieved, and to avoid repetition, details are not repeated here.
  • the booster pump 300 includes a casing 310, which is an external frame structure of the booster pump 300, and is used to enclose and define a cavity.
  • the bracket mechanism 100 and the pressing member 220 are disposed in the cavity, thereby positioning the diaphragm 210 within the housing 310 .
  • the peripheral side of the diaphragm 210 is connected with the inner wall of the housing 310 to divide the cavity into two sub-cavities, and the bracket mechanism 100 and the pressing member 220 are respectively located in the sub-cavities on both sides of the diaphragm 210 .
  • the support mechanism 100 drives part of the diaphragm 210 and the pressing member 220 to move relative to the housing 310
  • the diaphragm 210 connected to the housing 310 is pushed and pulled, thereby deforming.
  • the volume of the sub-cavity where the pressing member 220 is located increases, so that the booster pump 300 can suck the medium into the sub-cavity.
  • the diaphragm 210 When the diaphragm 210 is pushed toward the pressing member 220 by the bracket mechanism 100 , the volume of the subcavity where the pressing member 220 is located decreases, so that the medium in the subcavity is pushed out of the booster pump 300 . Further, the medium pumping of the booster pump 300 is realized.
  • the housing 310 includes an inlet and an outlet, and the inlet and the outlet communicate with the cavity on the side of the diaphragm 210 away from the bracket mechanism 100 .
  • the housing 310 is provided with an inlet and an outlet for the medium to enter and exit. Both the inlet and the outlet are in communication with the subcavity on one side of the diaphragm 210.
  • the bracket mechanism 100 and the driving member 256 are arranged in the subcavity on the side away from the inlet and the outlet.
  • the driver 256 is fixed on the housing 310 , and the bracket mechanism 100 connects the driver 256 and the diaphragm 210 .
  • the driving member 256 drives the bracket mechanism 100 and the pressing member 220 to move relative to the housing 310 , so as to realize the suction and discharge of the medium by pushing and pulling the diaphragm 210 .
  • At least one embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump 300 in any one of the above embodiments.
  • a water purifier provided with the booster pump 300 in any of the above-mentioned embodiments is defined, so the water purifier possesses the advantages of the booster pump 300 in any of the above-mentioned embodiments, and can realize To avoid repetition, the technical effects achieved by the booster pump 300 in any of the above embodiments will not be repeated here.
  • valve core assembly 200 includes: an eccentric wheel 230, which can rotate around a first axis, including a shaft 232, there is a third angle between the axis of the shaft body 232 and the first axis, in Figure 19 and Figure 21, ⁇ 2 shows the third angle; the bracket mechanism 100 is sleeved on the shaft body 232; the diaphragm 210, It is connected with the bracket mechanism 100; wherein, the intersection of the first axis and the axis of the shaft body 232 is the first intersection, and in Figure 19, Figure 20 and Figure 21, C shows the first intersection; the first intersection is located at the diaphragm 210 On the surface, or the first point of intersection, is located within the diaphragm 210 .
  • the spool assembly 200 proposed in this application can be applied to the booster pump 300.
  • the spool assembly 200 includes an eccentric wheel 230 , a bracket mechanism 100 and a diaphragm 210 .
  • the bracket mechanism 100 is a frame structure in the spool assembly 200 for positioning and supporting other working structures on the spool assembly 200 .
  • the eccentric wheel 230 is a transmission structure between the support mechanism 100 and the driving member 256 , and the support mechanism 100 is sleeved on the shaft body 232 of the eccentric wheel 230 .
  • the eccentric wheel 230 rotates around the first axis, and there is a third angle between the axis of the shaft body 232 and the first axis, so that the bracket mechanism 100 sleeved on the shaft body 232 can be eccentric around the first axis together.
  • the diaphragm 210 is arranged on the support mechanism 100 and connected with the support mechanism 100 .
  • Diaphragm 210 is made of elastic material, which can be deformed when being pushed and pulled to change the volume of the cavity in booster pump 300.
  • the support mechanism 100 is annular, and the axis of this part of the ring support mechanism 100 structure is the axis of the support mechanism 100.
  • the support mechanism 100 is driven by the eccentric wheel 230 to rotate around the preset first axis in the valve core assembly 200, and there is an included angle between the first axis and the axis of the support mechanism 100 to form the support mechanism 100. Eccentric rotation.
  • the outer surface of the support mechanism 100 can reciprocate in the direction of the first axis, thereby driving the part of the diaphragm 210 connected to the support mechanism 100 to reciprocate in the direction of the first axis. Due to the stretchability of the diaphragm 210 , when part of the diaphragm 210 is pushed and pulled by the support mechanism 100 , the shape of the diaphragm 210 changes regularly, so that the liquid can be drawn and pushed through the deformed diaphragm 210 . Wherein, the larger the third included angle is, the stronger the liquid pumping capability of the spool assembly 200 is, which is reflected in the booster pump 300 as a larger pumping flow rate.
  • the diaphragm 210 is subjected to a greater force, and the diaphragm 210 receives the largest force when the support mechanism 100 is at an end position on the movement path during a cycle of reciprocating movement of the support mechanism 100 .
  • the spool in the booster pump 300 will repeatedly push and pull the diaphragm 210 during the process of pumping liquid through eccentric rotation. If the force exceeds the threshold, the aging speed of the diaphragm 210 will be accelerated, or the diaphragm 210 will be torn directly. If the diaphragm 210 fails, the booster pump 300 will lose its ability to pump liquid, so that the reliability of the booster pump 300 will be reduced, and the life of the booster pump 300 will be affected.
  • the present application defines the matching positional relationship between the eccentric wheel 230 and the diaphragm 210 .
  • the intersection point between the first axis and the axis of the shaft body 232 is the first intersection point. Because the bracket mechanism 100 and the diaphragm 210 provided on the bracket mechanism 100 are both eccentrically rotated around the first axis, the relative position of the first intersection point and the bracket mechanism 100 and the diaphragm 210 will not be relative to the membrane during the eccentric rotation.
  • the sheet 210 and the stand mechanism 100 move.
  • the first intersection point falls on the two end surfaces of the diaphragm 210 , or the first intersection point is located between the two end surfaces of the diaphragm 210 .
  • the eccentric wheel 230 with a larger eccentric angle is selected to drive the bracket mechanism 100, although the pumping capacity of the valve core assembly 200 can be increased, the force on the diaphragm 210 will also be correspondingly increased. Defining the positional relationship between the first intersection point and the diaphragm 210 can match the eccentric angle of the eccentric wheel 230 to the thickness of the diaphragm 210, ensuring that the installed diaphragm 210 can withstand the support mechanism 100 driven by the current eccentric wheel 230 Repeated pushing and pulling, to prevent the diaphragm 210 from being subjected to a force beyond its own bearing capacity.
  • the service life of the diaphragm 210 is prolonged, and the possibility of the diaphragm 210 being torn by the support mechanism 100 is reduced, so as to solve the above-mentioned technical problems. Further, the technical effect of optimizing the structure of the valve core assembly 200 , improving the reliability of the valve core assembly 200 , and prolonging the service life of the valve core assembly 200 is achieved.
  • the surface of the bracket mechanism 100 that is in contact with the diaphragm 210 is the contact surface 116; the contact surface 116 is a plane, and the shaft 232 is formed by In the radial direction from outside to inside, the contact surface 116 is inclined away from the diaphragm 210 .
  • the diaphragm 210 is positioned at the front end of the support mechanism 100 , and the surface on the support mechanism 100 that is in contact with the diaphragm 210 is the contact surface 116 .
  • the contact surface 116 is inclined away from the diaphragm 210 .
  • the radial direction is the radial direction of the shaft body 232 and the ring-shaped support mechanism 100, which is the direction extending from the outer peripheral side of the support mechanism 100 to the axis of the support mechanism 100 from the outside to the inside, so that the radial direction from the outside to the inside In this direction, a contact surface 116 is formed which is high on the outside and low on the inside.
  • the eccentrically rotated spool will vibrate due to radial load. This tendency to vibrate creates noise that affects the user experience.
  • the greater the pumping flow rate and the greater the pumping pressure of the booster pump 300 the greater the above-mentioned radial load, so that the booster pump 300 with high power and high flow rate will produce more obvious vibration during the working process, and excessive Large vibrations will reduce the service life of the spool and the booster pump 300 , and if the vibration trend is transmitted to the application products of the booster pump 300 , it will generate relatively large noises and damage the user experience.
  • the contact surface 116 can compensate to a certain extent the eccentric angle of the eccentrically rotating bracket mechanism 100 , that is, the third included angle. Therefore, by reducing the radial load on the support mechanism 100 during the reciprocating motion, the vibration generated by the valve core assembly 200 during the working process is reduced, so as to solve the above-mentioned technical problems of high vibration noise and poor reliability. Furthermore, the structure of the valve core assembly 200 is optimized, the working stability and structural reliability of the valve core assembly 200 are improved, the working noise of the product is reduced, the service life of the product is extended, and the technical effect of improving user experience is achieved.
  • the plane perpendicular to the axis of the shaft body 232 is the reference plane, and there is a fourth included angle between the reference plane and the contact surface 116 .
  • ⁇ 2 shows the fourth included angle; the angle of the third included angle is the first angle, and the angle of the fourth included angle is the second angle; wherein, the second angle is the product of N and the first angle, 0.5 ⁇ N ⁇ 1.5.
  • the contact surface 116 is further described. Taking a certain plane perpendicular to the axis of the support mechanism 100 as a reference plane, the included angle between the reference plane and the contact surface 116 is the fourth included angle, and the fourth included angle is the structural compensation angle of the third included angle.
  • the second angle by adjusting the second angle, the deformation range of the diaphragm 210 can be adjusted, so as to adjust the stress on the inside of the diaphragm 210.
  • adjusting the second angle can adjust the radial load on the support mechanism 100 during the reciprocating motion.
  • the relationship between the third included angle and the fourth included angle is defined.
  • the angle of the third included angle is the first angle
  • the angle of the fourth included angle is the second angle.
  • Fourth included angle N ⁇ third included angle.
  • the value range of N is greater than or equal to 0.5 and less than or equal to 1.5.
  • the inclined contact surface 116 can be prevented from overcompensating the radial load, and the radial load opposite to the original radial load direction on the support mechanism 100 can be avoided.
  • the component force of the support mechanism 100 in the radial direction can be reduced at the stroke end point of the reciprocating movement of the support mechanism 100, that is, at the point of maximum pressure, thereby restraining the support mechanism 100. vibration trend.
  • the technical effects of optimizing the structure of the bracket mechanism 100 improving the rotation stability of the bracket mechanism 100 , reducing product vibration and noise, and prolonging the service life of the valve core assembly 200 are achieved.
  • the bracket mechanism 100 includes: a base 110, the base 110 is annular, and the axis of the base 110 coincides with the axis of the shaft body 232; at least three positioning parts 112 are arranged on the base 110 , the diaphragm 210 is connected to the end surface of the positioning portion 112 .
  • the bracket mechanism 100 includes a base 110 and a positioning part 112 .
  • the base 110 is the main frame structure of the support mechanism 100 and is used for positioning and supporting the positioning part 112 disposed on the base 110 .
  • the positioning portion 112 is disposed on the base 110 , and the first positioning surface is located on an end surface of the positioning portion 112 .
  • the surface 116 when the contact surface 116 is a plane, the contact surface 116 on each positioning portion 112 is inclined toward the direction of the base 110 to form an array of contact surfaces 116 that are high on the outside and low on the inside.
  • the positioning part 112 structure on the support mechanism 100 it can provide convenient conditions for pushing and pulling the diaphragm 210 during the working process, specifically, the deformation range of the diaphragm 210 can be increased, and the force required for pushing and pulling the diaphragm 210 can be reduced.
  • the structure of the bracket mechanism 100 is optimized, the pumping flow rate and the pumping pressure of the booster pump 300 using the spool assembly 200 are increased, and the technical effect of enhancing the competitiveness of related products is realized.
  • the contact surfaces 116 on at least three positioning portions 112 meet at a second intersection point.
  • D shows the second intersection point, and the second intersection point is located on the axis of the base 110 .
  • the contact surface 116 is a plane, and the contact surface 116 on each positioning portion 112 is inclined toward the direction where the base 110 is located.
  • the contact surfaces 116 on at least three positioning parts 112 are limiting to meet at the same intersection point and the second intersection point, and defining the second intersection point to be located on the axis of the base 110, a unified arrangement can be formed on the positioning parts 112 An array of multiple contact surfaces 116.
  • optimizing the direction of the interaction force between the diaphragm 210 and the support mechanism 100 helps to reduce the resultant force of the support mechanism 100 in the radial direction perpendicular to the first axis, thereby reducing the internal stress of the diaphragm 210 on the one hand, and on the other hand
  • the compensation effect of the inclined contact surface 116 on the eccentric rotation of the support mechanism 100 is improved, and the radial load on the support mechanism 100 is reduced.
  • the technical effect of optimizing the structure of the bracket mechanism 100, improving the rotation stability of the bracket mechanism 100, reducing product vibration and noise, prolonging the life of the diaphragm 210, and improving user experience is achieved.
  • the distance between the first intersection point and the second intersection point in the direction of the first axis is the first distance value; the length of the diaphragm 210 in the direction of the first axis is the second distance value; the first The distance value is less than or equal to the second distance value.
  • the positional relationship between the first intersection point and the second intersection point is defined.
  • the second intersection point is located on the axis of the bracket mechanism 100 and the shaft body 232
  • the first intersection point is located on the first axis.
  • the first intersection point and the second intersection point may coincide, or may be spaced apart in the axial direction of the support mechanism 100 .
  • the distance between the first intersection point and the second intersection point is a first distance value, and when the first intersection point and the second intersection point coincide, the first distance value is 0.
  • the first distance value can be calculated from the interval between the two points and the third angle, which will not be described here.
  • the thickness of the length of the diaphragm 210 in the direction of the first axis is the second distance value.
  • the acting force on the diaphragm 210 can be compared with the diaphragm 210 at the first distance.
  • the thicknesses in the axial direction are correlated, so as to further improve the matching degree between the diaphragm 210 and the eccentric wheel 230 .
  • the eccentric wheel 230 further includes: a shaft hole 234 provided on the eccentric wheel 230 , the axis of the shaft hole 234 coincides with the first axis.
  • the eccentric wheel 230 includes a cylindrical shaft body 232 and a shaft hole 234 disposed inside the shaft body 232 , and the axis of the shaft body 232 is the axis of the eccentric wheel 230 .
  • the bracket mechanism 100 is sleeved on the eccentric wheel 230 , and the axis of the bracket mechanism 100 coincides with the axis of the eccentric wheel 230 .
  • the eccentric wheel 230 rotates around the axis of the shaft hole 234. Under the physical fit, the eccentric wheel 230 drives the bracket mechanism 100 to rotate around the axis of the shaft hole 234, that is, the first axis, so as to pass through the bracket mechanism 100.
  • the eccentric rotation pushes and pulls the diaphragm 210.
  • the eccentric rotation of the bracket mechanism 100 can be formed through the contact and fit between the nested structures, and the matching structure has high compactness and strong reliability, which helps to reduce the rotation error caused by the structural gap, and It is beneficial to reduce the vibration noise of the valve core assembly 200 .
  • this structure occupies less space, which can reduce the layout difficulty of the valve core assembly 200 inside the booster pump 300 , and is beneficial to the lightweight and miniaturized design of the booster pump 300 .
  • the structure is less difficult to disassemble and assemble.
  • the bracket mechanism 100 or the eccentric wheel 230 breaks down, the user can easily complete the maintenance and replacement of the structure through disassembly and assembly.
  • the technical effect of improving the compact structure of the spool assembly 200 reducing the size of the spool assembly 200 , and improving the working stability and reliability of the spool assembly 200 is achieved.
  • valve core assembly 200 further includes: a bearing 254 sleeved on the eccentric wheel 230 , and the bracket mechanism 100 is sleeved on the bearing 254 .
  • the valve core assembly 200 is also provided with a bearing 254 .
  • the bearing 254 is sleeved on the shaft body 232 of the eccentric wheel 230
  • the bracket mechanism 100 is sleeved on the bearing 254, forming the eccentric wheel 230, the bearing 254 and the bracket mechanism 100 nested sequentially from inside to outside.
  • the arrangement of the bearing 254 helps to reduce the frictional force between the eccentric wheel 230 and the support mechanism 100 , thereby reducing the torque applied by the support mechanism 100 to the diaphragm 210 and preventing the diaphragm 210 from being twisted and torn by the support mechanism 100 .
  • setting the bearing 254 can also improve the transmission stability and reliability between the eccentric wheel 230 and the bracket mechanism 100 , suppress the vibration of the valve core assembly 200 to a certain extent, and reduce the working noise of the valve core assembly 200 .
  • the technical effect of optimizing the structure of the valve core assembly 200 , improving the working stability of the valve core assembly 200 and reducing the failure rate of the valve core assembly 200 is realized.
  • the spool assembly 200 further includes: a first rib 118 disposed on the bracket mechanism 100; a second rib 236 disposed on the eccentric wheel 230, and the two end surfaces of the bearing 254 are respectively connected to the second rib.
  • the first rib 118 abuts against the second rib 236 .
  • the positioning structure of the bearing 254 is limited. Specifically, the first rib 118 is provided on the inner ring surface of the support mechanism 100 , and the second rib 236 is provided on the peripheral side of the shaft body 232 . After the assembly is completed, one end surface of the bearing 254 abuts against the first rib 118 , and the opposite end surface abuts against the second rib 236 , so that the bearing 254 is limited between the bracket mechanism 100 and the eccentric wheel 230 between.
  • the bearing 254 is firstly sleeved on the shaft body 232 until the lower end surface of the shaft body 232 abuts against the second rib 236, and then the support mechanism 100 is sleeved on the outside of the bearing 254 until the first rib 118 abuts against the upper end surface of the bearing 254 .
  • the bearing 254 can be prevented from jumping between the support mechanism 100 and the eccentric wheel 230 , so as to reduce the vibration and noise generated by the valve core assembly 200 during operation. Further, the technical effect of optimizing the transmission structure of the support mechanism 100, improving the stability and reliability of the eccentric rotation of the support mechanism 100, and reducing the vibration and noise of the product is realized.
  • valve core assembly 200 further includes: a driving shaft 252 passing through the shaft hole 234 ; and a driving member 256 connected with the driving shaft 252 .
  • the valve core assembly 200 is also provided with a drive shaft 252 and a drive member 256 .
  • the driving part 256 can be a motor, and the power output shaft of the driving part 256 is connected with one end of the driving shaft 252 through a coupling to drive the driving shaft 252 to rotate.
  • the other end of the driving shaft 252 passes through the shaft hole 234 of the eccentric wheel 230 and is connected with the eccentric wheel 230 .
  • the driving shaft 252 and the eccentric wheel 230 can be connected through a positioning key and a keyway, and the axial connection between the driving shaft 252 and the eccentric wheel 230 can also be completed by setting the shaft hole 234 and the driving shaft 252 with a polygonal cross-sectional shape.
  • the method is not limited here, and it is enough that the drive shaft 252 drives the eccentric wheel 230 to rotate synchronously.
  • the power output by the driving member 256 is transmitted to the support mechanism 100 via the drive shaft 252, the eccentric wheel 230 and the bearing 254, so that the support mechanism 100 rotates eccentrically around the axis of the drive shaft 252, that is, the first axis, and rotates eccentrically.
  • the bracket mechanism 100 pushes and pulls the diaphragm 210 to complete the pumping of the liquid.
  • the valve core assembly 200 further includes: a pressing member 220, which is arranged on the side of the diaphragm 210 away from the positioning portion 112, abuts against the diaphragm 210, and is used to press the diaphragm 210 on the on the positioning part 112.
  • the valve core assembly 200 is also provided with a pressing member 220, and the pressing member 220 is arranged on the diaphragm 210.
  • the pressing member 220 abuts against the diaphragm 210 so that the diaphragm 210 is tightly pressed between the support mechanism 100 and the pressing member 220 , thereby realizing the clamping of the diaphragm 210 .
  • the diaphragm 210 is the main working part of the booster pump 300. During the working process, the booster pump 300 drives the diaphragm 210 to move to change the size of the space separated by the diaphragm 210, thereby completing the extraction of the medium.
  • the arrangement of the bracket mechanism 100 and the pressing member 220 can accurately position the diaphragm 210 in the booster pump 300 to reduce the possibility of misalignment of the diaphragm 210 during operation. And the pressing member 220 can make the diaphragm 210 close to the bracket mechanism 100 , thereby eliminating the gap between the first positioning surface and the diaphragm 210 .
  • the number of pressing pieces 220 is the same as the number of positioning portions 112 , and the pressing pieces 220 are arranged in one-to-one correspondence with the positioning portions 112 .
  • each valve core assembly 200 is provided with a plurality of pressing pieces 220 , and the number of pressing pieces 220 is the same as the number of positioning portions 112 on the base 110 .
  • the diaphragm 210 is now aligned and placed on at least three positioning portions 112 .
  • a pressing member 220 is correspondingly provided for each positioning portion 112, and the pressing member 220 is pressed against the diaphragm 210, so that the diaphragm 210 is pressed.
  • the fastening member 220 is pressed against the positioning portion 112 .
  • the positioning stability of the valve core assembly 200 to the diaphragm 210 can be improved by arranging a plurality of pressing parts 220, and the possibility of misalignment of the diaphragm 210 between the support mechanism 100 and the pressing part 220 can be reduced.
  • this structure can provide convenient conditions for the valve core assembly 200 to push and pull the diaphragm 210 during operation, specifically, it can increase the deformation range of the diaphragm 210 and reduce the force required for pushing and pulling the diaphragm 210 .
  • the technical effect of optimizing the structure of the spool assembly 200, increasing the pumping flow rate and pumping pressure of the booster pump 300 using the spool assembly 200, and enhancing the competitiveness of related products is achieved.
  • the booster pump 300 includes: a housing 310, including a cavity; the spool assembly 200 in any of the above embodiments, located In the cavity, the diaphragm 210 is connected with the housing 310 and separates the cavity.
  • a booster pump 300 provided with the spool assembly 200 in any of the above-mentioned embodiments is defined, so the booster pump 300 has the advantages of the spool assembly 200 in any of the above-mentioned embodiments, The technical effects achieved by the spool assembly 200 in any of the above embodiments can be achieved, and to avoid repetition, details are not repeated here.
  • the booster pump 300 includes a casing 310, which is an external frame structure of the booster pump 300, and is used to enclose and define a cavity.
  • the bracket mechanism 100 and the pressing member 220 are disposed in the cavity, thereby positioning the diaphragm 210 within the housing 310 .
  • the peripheral side of the diaphragm 210 is connected with the inner wall of the housing 310 to divide the cavity into two sub-cavities, and the bracket mechanism 100 and the pressing member 220 are respectively located in the sub-cavities on both sides of the diaphragm 210 .
  • the support mechanism 100 drives part of the diaphragm 210 and the pressing member 220 to move relative to the housing 310
  • the diaphragm 210 connected to the housing 310 is pushed and pulled, thereby deforming.
  • the volume of the sub-cavity where the pressing member 220 is located increases, so that the booster pump 300 can suck the medium into the sub-cavity.
  • the diaphragm 210 When the diaphragm 210 is pushed toward the pressing member 220 by the bracket mechanism 100 , the volume of the subcavity where the pressing member 220 is located decreases, so that the medium in the subcavity is pushed out of the booster pump 300 . Further, the medium pumping of the booster pump 300 is realized.
  • the housing 310 includes an inlet and an outlet, and the inlet and the outlet communicate with the cavity on the side of the diaphragm 210 away from the bracket mechanism 100 .
  • the housing 310 is provided with an inlet and an outlet for the medium to enter and exit. Both the inlet and the outlet communicate with the subcavity on one side of the diaphragm 210 .
  • the bracket mechanism 100 and the driving member 256 are arranged in the subcavity on the side away from the inlet and the outlet. Specifically, the driver 256 is fixed on the housing 310 , and the bracket mechanism 100 connects the driver 256 and the diaphragm 210 .
  • the driving member 256 drives the bracket mechanism 100 and the pressing member 220 to move relative to the housing 310 , so as to realize the suction and discharge of the medium by pushing and pulling the diaphragm 210 .
  • At least one embodiment of the present application provides a water purifier, and the water purifier includes: the booster pump 300 in any one of the above embodiments.
  • a water purifier provided with the booster pump 300 in any of the above-mentioned embodiments is defined, so the water purifier possesses the advantages of the booster pump 300 in any of the above-mentioned embodiments, and can realize To avoid repetition, the technical effects achieved by the booster pump 300 in any of the above embodiments will not be repeated here.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or through an intermediary indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种支架机构、阀芯组件、增压泵和净水器。支架机构(100)包括:具有导向槽(1122)的基座(110);阻热件(120),设于基座(110)上,阻热件(120)部分嵌设于导向槽(1122)中,阻热件(120)用于承托膜片(210),且阻热件(120)用于带动膜片(210)运动;在导向槽(1122)的深度方向上,导向槽(1122)的截面积逐渐缩小。通过在基座(110)和膜片(210)之间设置阻热件(120),能够有效降低基座(110)至膜片(210)的热传递效率,从而降低膜片(210)在工作过程中的温度,避免膜片(210)高温损毁。进而实现优化阀芯组件结构,在满足高流量泵送需求的基础上延长膜片的使用寿命,降低支架机构故障率,降低增压泵故障率的技术效果。

Description

支架机构、阀芯组件、增压泵和净水器
本申请要求于2021年12月29日提交到中国国家知识产权局、申请号为“202111635120.5”、申请名称为“支架机构、阀芯组件、增压泵和净水器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年12月29日提交到中国国家知识产权局、申请号为“202123357215.3”、申请名称为“支架机构、阀芯组件、增压泵和净水器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年12月29日提交到中国国家知识产权局、申请号为“202111635143.6”、申请名称为“阀芯组件、隔膜泵和净水器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年12月29日提交到中国国家知识产权局、申请号为“202123358407.6”、申请名称为“阀芯组件、隔膜泵和净水器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年11月08日提交到中国国家知识产权局、申请号为“202122718278.0”、申请名称为“阀芯组件、增压泵和净水器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2021年11月08日提交到中国国家知识产权局、申请号为“202122718282.7”、申请名称为“阀芯组件、增压泵和净水器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及介质泵送技术领域,具体而言,涉及一种支架机构、阀芯组件、增压泵和净水器。
背景技术
随着用户对液体泵送装置的泵水流量需求的提高,泵送装置中的核心部件增压泵流量和寿命的提升成为必然。根据市场需求,目前增压泵流量需求正在从600G到800G、1200G大通量的方向发展。
相关技术中,随着流量的增大,电机和轴承发热现象愈加明显。隔膜泵内部轴承支架直接与膜片接触,加快了热量从轴承支架向膜片的传导速率。但高温会缩短隔膜泵关键部件膜片的使用寿命,导致隔膜泵故障率陡增。
因此,如克服上述技术缺陷,成为了亟待解决的技术问题。
申请内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请的至少一个实施方式中提出了一种支架机构。
本申请的至少一个实施方式中提出了一种阀芯组件。
本申请的至少一个实施方式中提出了一种增压泵。
本申请的至少一个实施方式中提出了一种净水器。
本申请的至少一个实施方式中提出了一种阀芯组件。
本申请的至少一个实施方式中提出了一种增压泵。
本申请的至少一个实施方式中提出了一种净水器。
本申请的至少一个实施方式中提出了一种阀芯组件。
本申请的至少一个实施方式中提出了一种增压泵。
本申请的至少一个实施方式中提出了一种净水器。
本申请的至少一个实施方式中提出了一种阀芯组件。
本申请的至少一个实施方式中提出了一种增压泵。
本申请的至少一个实施方式中提出了一种净水器。
有鉴于此,本申请的第一个实施方式中提供了一种支架机构,支架机构包括:基座,包括导向槽;阻热件,设于基座上,阻热件部分嵌设于导向槽中,阻热件用于承托膜片,且阻热件用于带动膜片运动;其中,在导向槽的深度方向上,导向槽的截面积逐渐缩小。
本申请的第二个实施方式中提供了一种阀芯组件,阀芯组件包括:如第一个实施方式中的支架机构;膜片,设于阻热件上,阻热件位于基座和膜片之间。
本申请的第三个实施方式中提供了一种增压泵,增压泵包括:壳体,包括腔体;如第二个实施方式中的阀芯组件,设于腔体内,膜片与壳体相连接, 且膜片分隔腔体。
本申请的第四个实施方式中提供了一种净水器,净水器包括:如第三个实施方式中的增压泵。
本申请的第五个实施方式中提供了一种阀芯组件,阀芯组件包括:基座;阻热件,设于基座上;膜片,与阻热件接触,阻热件位于基座和膜片之间,且阻热件能够带动膜片运动。
本申请的第六个实施方式中提供了一种增压泵,增压泵包括:壳体,包括腔体;如第五个实施方式中的阀芯组件,设于腔体内,膜片与壳体相连接,且膜片分隔腔体。
本申请的第七个实施方式中提供了一种净水器,净水器包括:如第六个实施方式中的增压泵。
本申请的第八个实施方式中提供了一种阀芯组件,阀芯组件包括:偏心轮,能够以第一轴线为轴转动,包括轴体,轴体的轴线和第一轴线间存在第一夹角;支架机构,套设于轴体上;膜片,与支架机构相连;支架机构上与膜片相接的面为接触面,在轴体由外至内的径向方向上,接触面朝远离膜片的方向延伸。
本申请的第九个实施方式中提供了一种增压泵,增压泵包括:壳体,包括腔体;如第八个实施方式中的阀芯组件,设于腔体内,膜片与壳体相连接,且分隔腔体。
本申请的第十个实施方式中提供了一种净水器,净水器包括:如第九个实施方式中的增压泵。
本申请的第十一个实施方式中提供了一种阀芯组件,阀芯组件包括:偏心轮,能够以第一轴线为轴转动,包括轴体,轴体的轴线和第一轴线间存在第三夹角;支架机构,套设于轴体上;膜片,与支架机构相连;第一轴线和轴体的轴线的交点为第一交点;第一交点位于膜片的表面上,或第一交点位于膜片内。
本申请的第十二个实施方式中提供了一种增压泵,增压泵包括:壳体,包括腔体;如第十一个实施方式中的阀芯组件,设于腔体内,膜片与壳体相连接,且分隔腔体。
本申请的第十三个实施方式中提供了一种净水器,净水器包括:如第十 二个实施方式中的增压泵。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的支架机构的结构示意图之一;
图2示出了根据本申请的一个实施例的支架机构的结构示意图之二;
图3示出了根据本申请的一个实施例的基座的结构示意图之一;
图4示出了根据本申请的一个实施例的基座的结构示意图之二;
图5示出了根据本申请的一个实施例的基座的结构示意图之三;
图6示出了如图5所示实施例的基座在A-A方向上的剖视图;
图7示出了根据本申请的一个实施例的阻热件的结构示意图之一;
图8示出了根据本申请的一个实施例的阻热件的结构示意图之二;
图9示出了根据本申请的一个实施例的阻热件的结构示意图之三;
图10示出了如图9所示实施例的阻热件在B-B方向上的剖视图;
图11示出了根据本申请的一个实施例的阀芯组件的结构示意图之一;
图12示出了根据本申请的一个实施例的增压泵的结构示意图之一;
图13示出了根据本申请的一个实施例的阀芯组件的结构示意图之二;
图14示出了根据本申请的一个实施例的阀芯组件的结构示意图之三;
图15示出了根据本申请的一个实施例的偏心轮的结构示意图之一;
图16示出了根据本申请的一个实施例的支架机构的结构示意图之三;
图17示出了根据本申请的一个实施例的支架机构的结构示意图之四;
图18示出了根据本申请的一个实施例的增压泵的结构示意图之二;
图19示出了根据本申请的一个实施例的阀芯组件的结构示意图之四;
图20示出了根据本申请的一个实施例的阀芯组件的结构示意图之五;
图21示出了根据本申请的一个实施例的偏心轮的结构示意图之二;
图22示出了根据本申请的一个实施例的支架机构的结构示意图之五。
其中,图1至图22中的附图标记与部件名称之间的对应关系为:
100支架机构,110基座,112定位部,1122导向槽,114导向件,116接触面,118第一凸筋,120阻热件,121基体,122安装槽,124凸出部,126连接件,200阀芯组件,210膜片,220压紧件,230偏心轮,232轴体,234轴孔,236第二凸筋,250驱动组件,252驱动轴,254轴承,256驱动件,300增压泵,310壳体。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图22描述根据本申请一些实施例的支架机构、阀芯组件、增压泵和净水器。
如图1、图2、图5和图6所示,本申请的至少一个实施例提出了一种支架机构100,支架机构100包括:基座110,包括导向槽1122;阻热件120,设于基座110上,阻热件120部分嵌设于导向槽1122中,阻热件120用于承托膜片210,且阻热件120用于带动膜片210运动;其中,在导向槽1122的深度方向上,导向槽1122的截面积逐渐缩小。
本申请限定了一种应用于增压泵300的支架机构100,支架机构100包括基座110,基座110用于连接增压泵300上的膜片210,带动膜片210在增压泵300中运动。膜片210为增压泵300中的核心部件,基座110用于连接膜片210以及驱动组件250,驱动组件250通过驱动基座110上的轴承254摆动来带动膜片210在增压泵300中摆动,摆动的膜片210能够改变基座110对侧泵送腔体的空间大小,当摆动的膜片210增大泵送腔体时,负压将液体压入泵送腔体。反之摆动的膜片210缩小泵送腔体时,先前抽入的液体被压出泵送腔体,从而满足液体的泵送需求。
相关技术中,应产品需求,对增压泵300的泵送流量的需求越来越高,市 面上的增压泵300的流量正在从600G、800G至0G的大通量方向发展。然而增大泵送流量的其中一个方式便是加快膜片210的运动频率,但该高速增效方式会在工作过程中产生大量热量,导致基座110以及于基座110相解除的膜片210升温,实际温度可达到70℃上下。然而膜片210多采用橡胶等弹性材质制备,高温对膜片210的性能产生不可逆的影响,导致膜片210快速老化。从而产生了膜片210使用寿命短、故障率高、增压泵300可靠性差的技术问题。
对此,本申请在支架机构100中设置了阻热件120。具体地,阻热件120固定在基座110上,阻热件120用于承托膜片210,完成装配后,阻热件120位于基座110和膜片210之间,且阻热件120与膜片210保持接触,阻热件120随同基座110运动时,与阻热件120保持接触的膜片210发生形变。阻热件120具备优良的隔热性能,可以在基座110和膜片210之间减缓热传递效率。具体地,阻热件120可通过PA6+30GF(尼龙66+30%玻璃纤维)的材质制备而成,还可以通过陶瓷等隔热材料制备而成,对此该实施例中不对该阻热件120的材质做硬性限定,满足隔热需求即可。
通过在基座110和膜片210之间设置阻热件120,能够有效降低基座110至膜片210的热传递效率,从而降低膜片210在工作过程中的温度,避免膜片210高温损毁。从而解决前述相关技术中所存在的技术问题。进而实现优化阀芯组件200结构,在满足高流量泵送需求的基础上延长膜片210的使用寿命,降低支架机构100故障率,降低增压泵300故障率的技术效果。
具体地,该实施例中,基座110和阻热件120为分体式结构,通过设置分体式的基座110和阻热件120一方面使基座110可选择强度较高的金属材质,以保证基座110可以长期驱动膜片210高速运动,降低基座110故障率。另一方面,可以通过选择和更换不同材质的阻热件120来调节阻热件120的隔热性能,以根据增压泵300的泵送流量需求选择对应材质的阻热件120,从而在满足隔热需求的基础上压缩支架机构100的成本。
在此基础上,基座110上设置有导向槽1122,导向槽1122的形状与部分阻热件120的外轮廓形状相适配,将部分阻热件120嵌入导向槽1122即可完成阻热件120在基座110上的定位装配,以确保阻热件120在基座110上的定位精度,保证基座110和阻热件120可以驱动膜片210精准摆动。其中,通过垂直于导向槽1122深度方向的平面截取导向槽1122,即可确定出导向槽1122 的截面积,并且诶在导向槽1122的深度方向上,导向槽1122的截面积逐渐缩小,从而形成由上至下渐缩的导向槽1122。通过限定导向槽1122沿深度方向渐缩,可以形成呈喇叭口形状的导向槽1122,以通过该喇叭口实现导向作用,使部分阻热件120可以在放入导向槽1122后滑动至预定安装位置上,从而降低阻热件120错装概率。进而实现优化阻热件120定位结构,提升阻热件120定位精度,提高支架机构100良品率的技术效果。
如图3、图4、图5和图6所示,在本申请的至少一个实施例中,基座110还包括盲孔,支架机构100还包括:导向件114,设于盲孔中,包括与盲孔的侧壁相对的导向斜面;导向斜面和盲孔围合出导向槽1122。
在该实施例中,对基座110结构做出进一步限定。具体地,基座110朝向阻热件120的表面上设置有盲孔,且盲孔中设置有导向件114,导向件114的周侧形成有导向斜面,导向斜面、盲孔的底壁以及盲孔的侧壁共同围合成导向槽1122。其中,导向斜面相对盲孔的侧壁倾斜,从而形成渐缩的导向槽1122。完成阻热件120的装配后,部分阻热件120嵌入导向槽1122并填充导向槽1122,以精准定位阻热件120,避免阻热件120在工作过程中相对基座110晃动。进而提升膜片210的控制精度,精准掌控液体泵送效率。
在上述任一实施例中,导向件114为棱台,棱台的底面与盲孔的底壁相连。
在该实施例中,承接前述实施例,对导向件114的形状做出限定。具体地,导向件114为棱台,棱台的底面与盲孔的底壁相连接,顶面朝向阻热件120,棱台上的多个侧面即为导向斜面。
其中,导向槽1122和导向件114的截面形状均为正多边形,例如导向槽1122截面形状为等边三角形,导向件114为对应的三棱台、导向槽1122截面形状为正四边形,导向件114为对应的四棱台或导向槽1122截面形状为正八边形,导向件114为对应的八棱台。工作过程中,棱台的周侧面与导向槽1122的侧壁抵靠在一起,以阻止阻热件120相对定位部112转动。对此,该实施例不对导向槽1122和导向件114的形状做硬性限定,满足上述定位需求即可。
在上述任一实施例中,导向件114为六棱台。
在该实施例中,导向槽1122的截面形状为正六边形,对应地导向件114的截面形状为六棱台,将部分阻热件120插接在六棱台和导向槽1122之间即可将阻热件120卡接在定位部112上。其中六棱台中设置有通孔,以供连接件 126连接阻热件120和基座110。
具体地,阻热件120与导向槽1122过盈配合,通过限定该过盈配合关系,可以实现基座110和阻热件120的紧密连接,以提升阻热件120的定位精度,避免阻热件120在工作过程中相对定位部112错位甚至由定位部112上脱出。进而实现提升支架机构100结构稳定性和可靠性的技术效果。
在上述任一实施例中,导向槽1122为N个,N个导向槽1122在基座110上均匀分布;其中,N为大于2的整数。
在该实施例中,基座110上设置有N个定位部112,每个定位部112上设置有一个导向槽1122。在此基础上,对基座110上导向槽1122的分布方式做出了限定。具体地,基座110为环状结构。在基座110上,至少三个导向槽1122在以基座110的轴线为轴的同一个圆上均匀分布,以在基体121上形成环形分布的导向槽1122阵列。通过将多个导向槽1122沿环线均匀分布在基体121上,可以提升基座110作用力分布的均匀性,防止膜片210因受力不均而损坏。进而实现优化基座110结构,延长膜片210使用寿命的技术效果。
在上述任一实施例中,基座110呈环状,N个导向槽1122在以基座110的轴线为轴的同一个圆上均匀分布。
在该实施例中,对基座110上导向槽1122的分布方式做出了限定。具体地,基座110为环状结构。在基座110上,至少三个导向槽1122在以基座110的轴线为轴的同一个圆上均匀分布,以在基体121上形成环形分布的导向槽1122阵列。通过将多个导向槽1122沿环线均匀分布在基体121上,可以提升基座110作用力分布的均匀性,防止膜片210因受力不均而损坏。进而实现优化基座110结构,延长膜片210使用寿命的技术效果。
如图1和图2所示,在上述任一实施例中,阻热件120为N个,N个阻热件120与N个导向槽1122一一对应连接。
在该实施例中,对阻热件120的数目以及阻热件120和导向槽1122的对应关系做出限定。具体地,阻热件120的数量与导向槽1122的数量相同,且N个导向槽1122与N个阻热件120一一对应设置,以在基座110上形成环形分布的N个阻热件120阵列,以通过N个阻热件120共同支撑膜片210。通过对应N个导向槽1122设置N个阻热件120,可以在满足膜片210定位连接需求的基础上减少阻热件120和膜片210间的接触面116积,以避免大面积接 触影响膜片210的动作幅度。进而实现优化支架机构100结构,提升支架机构100泵送性能的技术效果。
如图7、图8、图9和图10所示,在本申请的至少一个实施例中,阻热件120包括:基体121;凸出部124,设于基体121上,凸出部124嵌设于导向槽1122中。
在该实施例中,对阻热件120的结构做出限定,具体地,阻热件120包括基体121和凸出部124,基体121位于导向槽1122外侧,用于承托和连接膜片210,基体121的顶面与膜片210保持接触,在驱动基座110摆动时,基体121推拉膜片210,以使膜片210发生形变,从而通过形变的膜片210改变背离基座110一侧的腔体的大小,以完成液体的抽取和泵出。凸出部124设置在基体121的底面上,凸出部124的形状与导向槽1122的形状相适配,装配过程中先将凸出部124对准导向槽1122,其后通过导向斜面将凸出部124准确推送至导向槽1122内部,以将阻热件120精准定位在基座110上。
其中,定位部112呈柱状结构,阻热件120上设置有形状与定位部112外轮廓相适配的安装槽122。装配过程中,先将定位部112对准安装槽122,其后将定位部112插接在安装槽122内即可完成阻热件120的装配。通过设置安装槽122,可以配合定位部112和导向槽1122形成嵌套式的定位连接结构,从而提升阻热件120的定位精度。同时,该嵌套式连接结构能够提升阻热件120的定位稳定性,避免阻热件120在长时间的往复运动过程中错位甚至脱落。进而实现提升支架机构100的结构稳定性,降低支架机构100故障率的技术效果。
在上述任一实施例中,凸出部124与导向槽1122过盈配合。
在该实施例中,承接前述实施例,凸出部124与导向槽1122过盈配合。具体地,凸出部124朝向基座110的一侧为凸出部124的前端,相对的一侧为凸出部124的末端。装配过程中,在凸出部124对准导向槽1122后,将凸出部124的前端放置在导向斜面上,在导向斜面的作用下凸出部124朝导向槽1122的底部滑动,从而完成阻热件120的预装配。但此时因凸出部124尺寸略大于导向槽1122的尺寸,所以凸出部124未全部没入导向槽1122,其后通过连接件126将凸出部124压入导向槽1122,以使凸出部124的外表面与导向槽1122的内壁面紧密贴合,从而消除凸出部124和导向槽1122之间的间隙, 避免阻热件120在工作过程中错位甚至脱落。进而实现优化阻热件120定位结构,提升阻热件120定位精度,降低支架机构100故障率的技术效果。
如图1、图2和图11所示,在本申请的至少一个实施例中,阻热件120与基座110可拆卸连接。
在该实施例中,阻热件120和基座110间可拆卸连接。通过设置该可拆卸结构,一方面可以实现基座110和阻热件120的模块化设计,为不同泵送效率的基座110设置对应隔热性能的阻热件120。另一方面,通过设置可拆卸的阻热件120,可在某一阻热件120老化或损坏时通过拆卸和更换阻热件120快速完成支架机构100的维护,从而为用户带来便利条件,降低产品维护难度和维护成本。
在上述任一实施例中,支架机构100还包括:连接件126,连接基座110和阻热件120。
在该实施例中,阀芯组件200中还设置有连接件126,在通过导向槽1122完成阻热件120的初定位后,通过连接件126连接阻热件120和基座110,以使基座110可以一同带动阻热件120和膜片210摆动,避免阻热件120和基座110分离。
具体地,连接件126可以为螺钉,当连接件126选用螺钉时,阻热件120上设置有第一螺孔,凸出部124环绕第一螺孔设置,基座110上对应设置有第二螺孔,第二螺孔设置在导向件114上,螺钉贯穿第一螺孔并没入第二螺孔,以连接阻热件120和基座110。对此,该结构仅是连接件126的一种可选择结构,还可以通过设置卡扣卡槽等其他连接结构完成阻热件120和基座110的连接,本申请不对连接件126的结构做硬性限定,满足可靠连接这一需求即可。
如图11所示,本申请的至少一个实施例提供了一种阀芯组件200,阀芯组件200包括:如上述任一实施例中的支架机构100;膜片210,设于阻热件120上,阻热件120位于基座110和膜片210之间。
在该实施例中,限定了一种设置有上述任一实施例中的支架机构100的阀芯组件200,因此该阀芯组件200具备上述任一实施例中的支架机构100的优点,可实现上述任一实施例中的支架机构100所实现的技术效果。
相关技术中,应产品需求,对增压泵300的泵送流量的需求越来越高,市面上的增压泵300的流量正在从600G、800G至0G的大通量方向发展。然而 增大泵送流量的其中一个方式便是加快膜片210的运动频率,但该高速增效方式会在工作过程中产生大量热量,导致基座110以及于基座110相解除的膜片210升温,实际温度可达到70℃上下。然而膜片210多采用橡胶等弹性材质制备,高温对膜片210的性能产生不可逆的影响,导致膜片210快速老化。从而产生了膜片210使用寿命短、故障率高、增压泵300可靠性差的技术问题。
对此,本申请在支架机构100中设置了阻热件120。具体地,阻热件120固定在基座110上,阻热件120用于承托膜片210,完成装配后,阻热件120位于基座110和膜片210之间,且阻热件120与膜片210保持接触,阻热件120随同基座110运动时,与阻热件120保持接触的膜片210发生形变。阻热件120具备优良的隔热性能,可以在基座110和膜片210之间减缓热传递效率。具体地,阻热件120可通过PA6+30GF(尼龙66+30%玻璃纤维)的材质制备而成,还可以通过陶瓷等隔热材料制备而成,对此该实施例中不对该阻热件120的材质做硬性限定,满足隔热需求即可。
通过在基座110和膜片210之间设置阻热件120,能够有效降低基座110至膜片210的热传递效率,从而降低膜片210在工作过程中的温度,避免膜片210高温损毁。从而解决前述相关技术中所存在的技术问题。进而实现优化阀芯组件200结构,在满足高流量泵送需求的基础上延长膜片210的使用寿命,降低阀芯组件200故障率,降低增压泵300故障率的技术效果。
具体地,该实施例中,基座110和阻热件120为分体式结构,通过设置分体式的基座110和阻热件120一方面使基座110可选择强度较高的金属材质,以保证基座110可以长期驱动膜片210高速运动,降低基座110故障率。另一方面,可以通过选择和更换不同材质的阻热件120来调节阻热件120的隔热性能,以根据增压泵300的泵送流量需求选择对应材质的阻热件120,从而在满足隔热需求的基础上压缩阀芯组件200的成本。
在上述任一实施例中,阀芯组件200还包括:压紧件220,设于膜片210上,背离阻热件120,压紧件220与阻热件120连接,用于将膜片210压合在阻热件120上。
在该实施例中,阀芯组件200中还设置有压紧件220,压紧件220设置在膜片210上,连接件126贯穿膜片210并连接压紧件220和阻热件120,以通过压紧件220将膜片210紧压在阻热件120上,使膜片210与阻热件120的顶 面紧密贴合,从而实现膜片210的装夹。其中,膜片210为增压泵300中的主工作部,工作过程中,增压泵300通过带动膜片210运动,使膜片210所分隔出的空间的大小发生改变,从而完成介质的抽取、介质的增压以及介质的排放。设置该连接件126和压紧件220可以将膜片210准确定位在增压泵300中,以降低膜片210在工作过程中错位的可能性。且压紧件220可以使膜片210紧贴在基座110上,从而消除第一定位面和膜片210之间的间隙,从而提升膜片210的运动精度,保证阀芯组件200的泵送效率。
如图12所示,本申请的至少一个实施例提供了一种增压泵300,增压泵300包括:壳体310,包括腔体;如上述任一实施例中的阀芯组件200,设于腔体内,膜片210与壳体310相连接,且膜片210分隔腔体。
在该实施例中,限定了一种设置有上述任一实施例中的阀芯组件200的增压泵300,因此该增压泵300具备上述任一实施例中的阀芯组件200的优点,可实现上述任一实施例中的阀芯组件200所实现的技术效果,为避免重复,此处不再赘述。
具体地,增压泵300包括壳体310,壳体310为增压泵300的外部框架结构,用于围合限定出腔体。基座110和压紧件220设置在腔体中,从而将膜片210定位在壳体310内。其中,膜片210的周侧与壳体310的内壁相连接,以将腔体分隔为两个子腔体,基座110和压紧件220则分别位于膜片210两侧的子腔体中。当基座110带动部分膜片210和压紧件220相对壳体310运动时,连接在壳体310上的膜片210被推拉,从而发生形变。在拉伸过程中,压紧件220所处的子腔体的体积增大,以使增压泵300可以将介质吸入该子腔体内。在膜片210被基座110朝压紧件220所在方向推动时,压紧件220所处的子腔体的体积减小,以使该子腔体内的介质被推出增压泵300。进而实现增压泵300的介质泵送。
在上述任一实施例中,壳体310还包括入口和出口,入口和出口与膜片210背离基座110侧的腔体相连通,增压泵300还包括:驱动组件250,与基座110相连接,用于驱动基座110相对壳体310摆动。
在该实施例中,壳体310上设置有供介质进出的入口和出口。入口和出口均与膜片210一侧的子腔体相连通。基座110和驱动件256设置在背离入口和出口一侧的子腔体中。具体地,驱动组件250固定在壳体310上,基座110连 接驱动组件250和膜片210。增压泵300工作时,驱动组件250带动基座110和压紧件220相对壳体310运动,以通过推拉膜片210实现介质的吸入和排出。
在上述任一实施例中,驱动组件250包括:驱动件256,包括驱动轴252;偏心轮230,套设于驱动轴252上;轴承254,轴承254的内圈套设于偏心轮230上,轴承254的外圈穿设于基座110上。
在该实施例中,对驱动组件250的结构做出限定。具体地,驱动组件250包括驱动件256、偏心轮230和轴承254。偏心轮230以及轴承254为基座110和驱动件256之间的传动结构,轴承254套设在偏心轮230的轴体232上,基座110则套设在轴承254外侧。工作过程中偏心轮230围绕第一轴线转动,而轴体232的轴线和第一轴线之间存在第一夹角,从而使套设在轴体232上的基座110可以一同围绕第一轴线偏心转动。膜片210设置在基座110上,与基座110相连接。膜片210由弹性材料制成,可以在被推拉时发生形变,以改变增压泵300中腔体的体积,例如膜片210被向外拉伸时,腔体的体积随即增大,反之膜片210恢复原状或被向内推送时,腔体的体积随即减小,从而通过推拉实现液体的抽取和泵送。
本申请第四方面提供了一种净水器,净水器包括:如上述任一实施例中的增压泵300。
在该实施例中,限定了一种设置有上述任一实施例中的增压泵300的净水器,因此该净水器具备上述任一实施例中的增压泵300的优点,可实现上述任一实施例中的增压泵300所实现的技术效果,为避免重复,此处不再赘述。
如图11、图3和图7所示,本申请的至少一个实施例提供了一种阀芯组件200,阀芯组件200包括:基座110;阻热件120,设于基座110上;膜片210,与阻热件120接触,阻热件120位于基座110和膜片210之间,且阻热件120能够带动膜片210运动。
本申请限定了一种应用于增压泵300的阀芯组件200,阀芯组件200包括基座110和膜片210。膜片210为增压泵300中的核心部件,基座110用于连接膜片210以及驱动组件250,驱动组件250通过驱动轴252承基座110带动膜片210在增压泵300中运动,运动的膜片210能够改变基座110对侧泵送腔体的空间大小,当运动的膜片210增大泵送腔体时,负压将液体压入泵送腔体。反之运动的膜片210缩小泵送腔体时,先前抽入的液体被压出泵送腔体,从而 满足液体的泵送需求。
相关技术中,应产品需求,对增压泵300的泵送流量的需求越来越高,市面上的增压泵300的流量正在从600G、800G至0G的大通量方向发展。然而增大泵送流量的其中一个方式便是加快膜片210的运动频率,但该高速增效方式会在工作过程中产生大量热量,导致基座110以及于基座110相解除的膜片210升温,实际温度可达到70℃上下。然而膜片210多采用橡胶等弹性材质制备,高温对对膜片210的性能产生不可逆的影响,导致膜片210快速老化。从而产生了膜片210使用寿命短、故障率高、增压泵300可靠性差的技术问题。
对此,本申请在阀芯组件200中设置了阻热件120。具体地,阻热件120固定在基座110上,阻热件120用于承托膜片210,完成装配后,阻热件120位于基座110和膜片210之间,且阻热件120与膜片210保持接触,阻热件120随同基座110运动时,与阻热件120保持接触的膜片210发生形变。阻热件120具备优良的隔热性能,可以在基座110和膜片210之间减缓热传递效率。具体地,阻热件120可通过PA6+30GF(尼龙66+30%玻璃纤维)的材质制备而成,还可以通过陶瓷等隔热材料制备而成,对此该实施例中不对该阻热件120的材质做硬性限定,满足隔热需求即可。
通过在基座110和膜片210之间设置阻热件120,能够有效降低基座110至膜片210的热传递效率,从而降低膜片210在工作过程中的温度,避免膜片210高温损毁。从而解决前述相关技术中所存在的技术问题。进而实现优化阀芯组件200结构,在满足高流量泵送需求的基础上延长膜片210的使用寿命,降低阀芯组件200故障率,降低增压泵300故障率的技术效果。
具体地,该实施例中,基座110和阻热件120为分体式结构,通过设置分体式的基座110和阻热件120一方面使基座110可选择强度较高的金属材质,以保证基座110可以长期驱动膜片210高速运动,降低基座110故障率。另一方面,可以通过选择和更换不同材质的阻热件120来调节阻热件120的隔热性能,以根据增压泵300的泵送流量需求选择对应材质的阻热件120,从而在满足隔热需求的基础上压缩阀芯组件200的成本。
如图1、图2、图3和图4所示,在本申请的至少一个实施例中,阀芯组件200还包括:定位部112,设于基座110上,阻热件120与定位部112连接。
在该实施例中,阀芯组件200上设置有定位部112,定位部112设置在基座110上,且阻热件120与定位部112相连接,以将阻热件120定位在基座110上的预定安装位置上。通过设置定位部112,有助于提升阻热件120在基座110上的定位精度,以避免错位装配的阻热件120影响阀芯组件200的液体泵送性能。同时,通过设置定位部112还能在工作过程中阻止阻热件120相对基座110晃动,从而提升膜片210的运动精度,以精准把控液体泵送效率。进而实现优化阀芯组件200结构,提升阀芯组件200结构稳定性,降低阀芯组件200故障率的技术效果。
具体地,定位部112呈柱形,柱形定位部112的底端与基座110相连接,顶端与阻热件120相连接。通过设置柱形定位柱可以起到有效支撑阻热件120和膜片210的作用,同时柱形定位柱能够增大膜片210和基座110间的距离,避免形变的膜片210与基座110相干涉。进而实现提升膜片210定位精度,降低膜片210故障率的技术效果。
在上述任一实施例中,定位部112为N个,N个定位部112在基座110上均匀分布;其中,N为大于2的整数。
在该实施例中,对定位部112的数目做出限定。具体地,定位部112为N个,N为大于2的整数,即基座110上至少设置三个定位部112。通过设置至少三个定位部112可以保证定位部112对阻热件120以及膜片210承托的稳定性,降低膜片210在阀芯组件200上出现倾斜问题的可能性。通过在基座110上构造出定位部112结构,可以在工作过程中为推拉膜片210提供便利条件,具体可以提升膜片210的形变幅度,并降低推拉膜片210所需要的作用力。进而实现提升应用该阀芯组件200的增压泵300的泵送流量和泵送压力,提升关联产品竞争力的技术效果。通过将N个定位部112均匀分布在基座110上,可以提升阻热件120和膜片210间作用力分布的均匀性,防止膜片210因受力不均而损坏。进而实现延长膜片210使用寿命的技术效果。
其中N个定位部112可以共同定位支撑单个阻热件120,也可以分别支撑多个阻热件120,对此该实施例中不对阻热件120的数目和分布方式做出硬性限定。
在上述任一实施例中,基座110呈环状,N个定位部112以基座110的轴线为轴的同一个圆上均匀分布。
在该实施例中,对基座110上定位部112的分布方式做出了限定。具体地,基座110为环状结构。在基座110上,至少三个定位部112在以基座110的轴线为轴的同一个圆上均匀分布,以在本体上形成环形分布的定位部112阵列。通过将多个定位部112沿环线均匀分布在本体上,可以提升基座110作用力分布的均匀性,防止膜片210因受力不均而损坏。进而实现优化基座110结构,延长膜片210使用寿命的技术效果。
在上述任一实施例中,阻热件120为N个,N个阻热件120与N个定位部112一一对应连接。
在该实施例中,对阻热件120的数目以及阻热件120和定位部112的对应关系做出限定。具体地,阻热件120的数量与定位部112的数量相同,且N个定位部112与N个阻热件120一一对应设置,以在基座110上形成环形分布的N个阻热件120阵列,以通过N个阻热件120共同支撑膜片210。通过对应N个定位部112设置N个阻热件120,可以在满足膜片210定位连接需求的基础上减少阻热件120和膜片210间的接触面116积,以避免大面积接触影响膜片210的动作幅度。进而实现优化阀芯组件200结构,提升阀芯组件200泵送性能的技术效果。
如图3、图7和图8所示,在本申请的至少一个实施例中,阻热件120包括安装槽122,定位部112插接于安装槽122上。
在该实施例中,对阻热件120和定位部112之间的配合连接结构做出限定。具体地,定位部112呈柱状结构,阻热件120上设置有形状与定位部112外轮廓相适配的安装槽122。装配过程中,先将定位部112对准安装槽122,其后将定位部112插接在安装槽122内即可完成阻热件120的装配。通过设置安装槽122一方面可以提升阻热件120的定位精度,保证阻热件120可以工作在预定安装位置上,从而精准控制膜片210的型变量,以实现液体的精确泵送。另一方面,设置安装槽122可以降低阻热件120的装配难度,并降低阻热件120和定位部112之间的结构复杂度。进而实现提升膜片210定位精度,提升阀芯组件200液体泵送可靠性,缩减阀芯组件200成本的技术效果。
在上述任一实施例中,定位部112朝向阻热件120的面上设有导向槽1122,阀芯组件200还包括:凸出部124,设于阻热件120上,位于安装槽122内,且凸出部124插接于导向槽1122中。
在该实施例中,承接前述实施例,进一步限定定位部112和阻热件120之间的配合结构。具体地,定位部112朝向阻热件120的面上设置有导向槽1122,即柱状定位部112的前端面上设置有导向槽1122,该导向槽1122在装配过程中需插接至安装槽122内。对应地,安装槽122内设置有凸出部124,凸出部124的形状与导向槽1122的形状相适配。在将定位部112插入安装槽122的过程中,凸出部124逐步插入安装槽122内,以配合定位部112和安装槽122形成嵌套式的定位连接结构,从而提升阻热件120的定位精度。同时,该嵌套式连接结构能够提升阻热件120的定位稳定性,避免阻热件120在长时间的往复运动过程中错位甚至脱落。进而实现提升阀芯组件200结构稳定性,降低阀芯组件200故障率的技术效果。
在上述任一实施例中,用垂直于导向槽1122深度方向的平面截取定位部112,在截面上,导向槽1122呈多边形;凸出部124填充导向槽1122。
在该实施例中,对凸出部124以及导向槽1122的形状做出限定。具体地,导向槽1122开设在柱状定位部112的端面上,导向槽1122的深度方向与柱状定位部112的轴线方向一致。在此基础上,通过垂直于该深度方向的平面截取定位部112,在所得截面上导向槽1122呈多边形。对应地,凸出部124的形状与导向槽1122的形状相同,以使插接在导向槽1122内的凸出部124呢挂钩填充导向槽1122。通过将导向槽1122和凸出部124的截面形状对应设置为多边形,使插接在一起的凸出部124和导向槽1122能够通过形体配合关系阻止阻热件120相对定位部112转动,从而保证阻热件120以及膜片210的定位精度,避免阻热件120和膜片210在工作过程中错位。同时,通过设置截面形状为多边形的导向槽1122和凸出部124,能够在装配过程中辅助定位阻热件120,降低阻热件120方位错装的概率。进而实现提升阻热件120定位精度和定位可靠性,降低阻热件120装配难度,提升阻热件120装配精度,提升良品率的技术效果。
具体地,导向槽1122和凸出部124的截面形状为正多边形,例如导向槽1122截面形状为等边三角形,凸出部124为对应的三棱柱、导向槽1122截面形状为正四边形,凸出部124为对应的四棱柱或导向槽1122截面形状为正八边形,凸出部124为对应的八棱柱。工作过程中,棱柱的周侧面与导向槽1122的侧壁抵靠在一起,以阻止阻热件120相对定位部112转动。对此,该实施例 不对导向槽1122和凸出部124的形状做硬性限定,满足上述定位需求即可。
在上述任一实施例中,在截面上,导向槽1122呈正六边形。
在该实施例中,导向槽1122的截面形状为正六边形,对应地凸出部124的截面形状为六棱柱,将六棱柱插接于导向槽1122即可将阻热件120卡接在定位部112上。其中六棱柱中设置有通孔,以供连接件126贯穿阻热件120并连接基座110。
具体地,导向槽1122和凸出部124过盈配合,通过设置过盈配合的导向槽1122和凸出部124,可以实现定位部112和阻热件120的紧密连接,以提升阻热件120的定位精度,避免阻热件120在工作过程中相对定位部112错位甚至由定位部112上脱出。进而实现提升阀芯组件200结构稳定性和可靠性的技术效果。
如图11、图1、图3和图7所示,在本申请的至少一个实施例中,在上述任一实施例中,阻热件120与基座110可拆卸连接。
在该实施例中,阻热件120和基座110间可拆卸连接。通过设置该可拆卸结构,一方面可以实现基座110和阻热件120的模块化设计,为不同泵送效率的基座110设置对应隔热性能的阻热件120。另一方面,通过设置可拆卸的阻热件120,可在某一阻热件120老化或损坏时通过拆卸和更换阻热件120快速完成阀芯组件200的维护,从而为用户带来便利条件,降低产品维护难度和维护成本。
在上述任一实施例中,阀芯组件200还包括:压紧件220,设于膜片210上,背离阻热件120;连接件126,贯穿膜片210,且连接压紧件220和阻热件120。
在该实施例中,阀芯组件200中还设置有压紧件220和连接件126,压紧件220设置在膜片210上,连接件126贯穿膜片210并连接压紧件220和阻热件120,以通过压紧件220将膜片210紧压在阻热件120上,使膜片210与阻热件120的顶面紧密贴合,从而实现膜片210的装夹。其中,膜片210为增压泵300中的主工作部,工作过程中,增压泵300通过带动膜片210运动,使膜片210所分隔出的空间的大小发生改变,从而完成介质的抽取、介质的增压以及介质的排放。设置该连接件126和压紧件220可以将膜片210准确定位在增压泵300中,以降低膜片210在工作过程中错位的可能性。且压紧件220可以 使膜片210紧贴在基座110上,从而消除第一定位面和膜片210之间的间隙,从而提升膜片210的运动精度,保证阀芯组件200的泵送效率。
具体地,连接件126由压紧件220的一侧穿过压紧件220和膜片210,并与基座110相连接。通过设置该连接件126,使压紧件220可以通过连接件126紧压在膜片210上,以避免基座110和膜片210间出现缝隙。同时,设置连接件126可以提升阀芯组件200的结构稳定性。相较于设置限位结构压迫压紧件220的实施例来说,设置贯穿的连接件126可以提升膜片210定位的稳定性和可靠性,降低膜片210错位甚至脱落的可能性。
如图11和图12所示,本申请的至少一个实施例提供了一种增压泵300,增压泵300包括:壳体310,包括腔体;如上述任一实施例中的阀芯组件200,设于腔体内,膜片210与壳体310相连接,且膜片210分隔腔体。
在该实施例中,限定了一种设置有上述任一实施例中的阀芯组件200的增压泵300,因此该增压泵300具备上述任一实施例中的阀芯组件200的优点,可实现上述任一实施例中的阀芯组件200所实现的技术效果,为避免重复,此处不再赘述。
具体地,增压泵300包括壳体310,壳体310为增压泵300的外部框架结构,用于围合限定出腔体。基座110和压紧件220设置在腔体中,从而将膜片210定位在壳体310内。其中,膜片210的周侧与壳体310的内壁相连接,以将腔体分隔为两个子腔体,基座110和压紧件220则分别位于膜片210两侧的子腔体中。当基座110带动部分膜片210和压紧件220相对壳体310运动时,连接在壳体310上的膜片210被推拉,从而发生形变。在拉伸过程中,压紧件220所处的子腔体的体积增大,以使增压泵300可以将介质吸入该子腔体内。在膜片210被基座110朝压紧件220所在方向推动时,压紧件220所处的子腔体的体积减小,以使该子腔体内的介质被推出增压泵300。进而实现增压泵300的介质泵送。
在上述任一实施例中,壳体310还包括入口和出口,入口和出口与膜片210背离基座110侧的腔体相连通,增压泵300还包括:驱动组件250,与基座110相连接,用于驱动基座110相对壳体310摆动。
在该实施例中,壳体310上设置有供介质进出的入口和出口。入口和出口均与膜片210一侧的子腔体相连通。基座110和驱动件256设置在背离入口和 出口一侧的子腔体中。具体地,驱动组件250固定在壳体310上,基座110连接驱动组件250和膜片210。增压泵300工作时,驱动组件250带动基座110和压紧件220相对壳体310运动,以通过推拉膜片210实现介质的吸入和排出。
在上述任一实施例中,驱动组件250包括:驱动件256,包括驱动轴252;偏心轮230,套设于驱动轴252上;轴承254,轴承254的内圈套设于偏心轮230上,轴承254的外圈穿设于基座110上。
在该实施例中,对驱动组件250的结构做出限定。具体地,驱动组件250包括驱动件256、偏心轮230和轴承254。偏心轮230以及轴承254为基座110和驱动件256之间的传动结构,轴承254套设在偏心轮230的轴体232上,基座110则套设在轴承254外侧。工作过程中偏心轮230围绕第一轴线转动,而轴体232的轴线和第一轴线之间存在第一夹角,从而使套设在轴体232上的基座110可以一同围绕第一轴线偏心转动。膜片210设置在基座110上,与基座110相连接。膜片210由弹性材料制成,可以在被推拉时发生形变,以改变增压泵300中腔体的体积,例如膜片210被向外拉伸时,腔体的体积随即增大,反之膜片210恢复原状或被向内推送时,腔体的体积随即减小,从而通过推拉实现液体的抽取和泵送。
本申请的至少一个实施例提供了一种净水器,净水器包括:如上述任一实施例中的增压泵300。
在该实施例中,限定了一种设置有上述任一实施例中的增压泵300的净水器,因此该净水器具备上述任一实施例中的增压泵300的优点,可实现上述任一实施例中的增压泵300所实现的技术效果,为避免重复,此处不再赘述。
如图13、图14、图15和图16所示,本申请的至少一个实施例提供了一种阀芯组件200,阀芯组件200包括偏心轮230,能够以第一轴线为轴转动,包括轴体232,轴体232的轴线和第一轴线间存在第一夹角;支架机构100,套设于轴体232上;膜片210,与支架机构100相连;其中,支架机构100上与膜片210相接的面为接触面116,在轴体232由外至内的径向方向上,接触面116朝远离膜片210的方向延伸。
本申请所提出的阀芯组件200可应用于增压泵300中,工作过程中阀芯组件200的运动转化为增压泵300中腔体的体积变化,以在腔体体积增大时液体可以被负压压入腔体内,反之在腔体体积缩小时,液体被排出腔体。阀芯组件 200包括偏心轮230、支架机构100和膜片210,支架机构100为阀芯组件200中的框架结构,用于定位和支撑阀芯组件200上的其他工作结构。偏心轮230为支架机构100和驱动件256之间的传动结构,支架机构100套设在偏心轮230的轴体232上。工作过程中偏心轮230围绕第一轴线转动,而轴体232的轴线和第一轴线之间存在第一夹角,从而是套设在轴体232上的支架机构100可以一同围绕第一轴线偏心转动。膜片210设置在支架机构100上,与支架机构100相连接。膜片210由弹性材料制成,可以在被推拉时发生形变,以改变增压泵300中腔体的体积,例如膜片210被向外拉伸时,腔体的体积随即增大,反之膜片210恢复原状或被向内推送时,腔体的体积随即减小,从而通过推拉实现液体的抽取和泵送。其中,至少部分支架机构100环形,此部分环形支架机构100结构的轴线即为支架机构100的轴线。工作过程中,支架机构100在偏心轮230的带动下围绕阀芯组件200中预设的第一轴线转动,且第一轴线和支架机构100的轴线之间存在夹角,以形成支架机构100的偏心转动。偏心转动过程中,支架机构100的外表面能够在第一轴线所在方向上往复运动,从而带动与支架机构100相连接的部分膜片210在第一轴线所在方向上往复运动。因膜片210具备可拉伸性,在部分膜片210被支架机构100推拉的过程中,膜片210的形状发生规律变化,以通过形变的膜片210完成液体的抽取和推送。其中,第一夹角的角度越大,则该阀芯组件200的液体泵送能力越强,反映在增压泵300上则是泵送流量越大,但对应地运动的阀芯组件200在第一轴线方向上所受到的动载荷便越大,因支架机构100偏心转动,该动载荷主要为径向载荷,该径向指的是垂直于第一轴线的径向方向。在支架机构100的一个往复运动周期中,支架机构100在运动路径上的端点处所到的径向载荷最大。
其中,图15中竖直点画线即为第一轴线,相对第一轴线倾斜的点画线为轴体232的轴线,α1为第一夹角。
相关技术中,增压泵300中的阀芯在通过偏心转动实现液体泵送的过程中,偏心转动的阀芯会因径向载荷产生振动。这一振动趋势则会产生影响用户体验的噪声。其中,增压泵300的泵送流量越大以及泵送压力越大,则上述径向载荷越大,以至于高功率高流速的增压泵300会在工作过程中产生较为明显的振动,过大的振动会降低阀芯以及增压泵300的使用寿命,而且该振动趋势若传递至增压泵300的应用产品,则会产生较大的噪声,破坏用户的使用体验。
对此,本申请对支架机构100的形状做出改进。具体地,膜片210定位在支架机构100的前端,在支架机构100上与膜片210相接触的表面即为接触面116,接触面116可以是单个环面,也可以是多个平面。其中,在轴体232由外至内的径向方向上,接触面116朝远离膜片210的方向延伸。该径向方向即是轴体232以及环状支架机构100的径向方向,由外至内是由支架机构100的外周侧向支架机构100的轴线延伸的方向,从而在由外至内的径向方向上形成外侧高内侧低的接触面116。通过设置外高内低的接触面116,使该接触面116可以在一定程度上补偿偏心转动的支架机构100的偏心角,也就是第一夹角。从而通过降低支架机构100在往复运动过程中所受到的径向载荷,来减小阀芯组件200在工作过程中所产生的振动,以解决上述振动噪声较大,可靠性较差的技术问题。进而实现优化阀芯组件200结构,提升阀芯组件200工作稳定性和结构可靠性,降低产品工作噪声,延长产品使用寿命,提升用户使用体验的技术效果。
如图14、图15和图16所示,在本申请的至少一个实施例中,接触面116为平面,与支架机构100的轴线相垂直的平面为基准面;基准面和接触面116间存在第二夹角β1。
在该实施例中,对接触面116做出进一步说明。具体地,接触面116为平面,在支架机构100由外至内的径向方向上,接触面116的高度逐渐降低,以在支架机构100上形成向支架机构100中心区域倾斜的平面接触面116。在此情况下,以垂直于支架机构100的轴线某一平面作为基准面,该基准面和接触面116之间的夹角为第二夹角,该第二夹角便是第一夹角的结构补偿角,通过调整第二夹角的角度便可调整支架机构100在往复运动过程中所受到的径向载荷。相较于设置不规则的接触面116补偿第一夹角的实施例来说,将接触面116设置为平面,一方面可以提升结构补偿效率,有助于降低支架机构100所受到的径向载荷。另一方面有助于提升膜片210的受力均匀性,有助于延长膜片210使用寿命。进而实现优化支架机构100结构,提升支架机构100工作稳定性,降低产品振动噪声,延长产品使用寿命的技术效果。
其中,在图16中,竖直的点画线为支架机构100的轴线,与竖直的点画线垂直的点画线用于示出基准面,β为第二夹角。
在上述任一实施例中,第一夹角的角度为第一角度,第二夹角的角度为第 二角度;其中,第二角度为N和第一角度的乘积,0.5≤N≤1.5。
在该实施例中,对第一夹角和第二夹角的关系做出了限定。具体地,第一夹角的角度为第一角度,第二夹角的角度为第二角度。第二夹角=N×第一夹角。其中,N的取值范围为大于等于0.5,且小于等于1.5。通过限定第二角度大于等于0.5倍的第一夹角,可以确保径向应力补偿的有效性,避免因第二夹角过小而丧失补偿效果。相应地,通过限定第二角度小于等于1.5倍的第一夹角,可以防止倾斜设置的接触面116过度补偿径向载荷,避免支架机构100上出现与原径向载荷方向相反的径向载荷。同时,通过限定第一角度和第二角度的大小关系可以在支架机构100往复运动的行程端点,也就是最大压力点处减小支架机构100在径向方向上的分力,从而抑制支架机构100的振动趋势。进而实现优化支架机构100结构,提升支架机构100转动平稳性,降低产品振动噪声,延长阀芯组件200使用寿命的技术效果。
如图13、图15和图16所示,在本申请的至少一个实施例中,阀芯组件200还包括:偏心轮230,与支架机构100相连,偏心轮230的轴线与转轴的轴线重合;轴孔234,设于偏心轮230上,轴孔234的轴线与第一轴线重合。
在该实施例中,偏心轮230包括柱状的轴体232,以及设置在轴体232内部的轴孔234,该轴体232的轴线即为偏心轮230的轴线。支架机构100套设在偏心轮230上,且支架机构100的轴线与偏心轮230的轴线相重合。工作过程中,偏心轮230以轴孔234的轴线为轴转动,在形体配合关系下,偏心轮230带动支架机构100一同绕轴孔234的轴线也就是第一轴线转动,以便于通过支架机构100的偏心转动推拉膜片210。通过设置偏心轮230可以通过嵌套结构间的接触配合形成支架机构100的偏心转动,且该配合结构的紧凑度较高、可靠性较强,有助于缩减结构缝隙所造成的转动误差,且有利于降低阀芯组件200的振动噪声。且该结构所占用的空间较小,可以降低阀芯组件200在增压泵300内部的布局难度,有利于增压泵300的轻量化设计和小型化设计。同时,该结构的拆装难度较低,在支架机构100或偏心轮230出现故障时,用户可以较为便捷的通过拆装完成结构维护和更换。进而实现了提升阀芯组件200结构紧凑度,缩减阀芯组件200尺寸,提升阀芯组件200工作稳定性和可靠性的技术效果。
在上述任一实施例中,阀芯组件200还包括:轴承254,套设于偏心轮230 上,支架机构100套设于轴承254上。
在该实施例中,阀芯组件200中还设置有轴承254。具体地,轴承254套设在偏心轮230的轴体232上,支架机构100套设在轴承254上,形成由内至外依次嵌套设置的偏心轮230、轴承254和支架机构100。通过在支架机构100和偏心轮230之间设置轴承254,可以实现支架机构100和偏心轮230间的转动连接。从而在保留支架机构100径向运动的基础上消除支架机构100和膜片210间的相对转动趋势。通过设置轴承254有助于减小偏心轮230和支架机构100间的摩擦力,从而减小支架机构100施加在膜片210上的扭矩,避免膜片210被支架机构100扭转撕裂。同时,设置轴承254还可以提升偏心轮230和支架机构100间的传动平稳性和可靠性,可以在一定程度上抑制阀芯组件200的振动,并减小阀芯组件200的工作噪声。进而实现优化阀芯组件200结构,提升阀芯组件200工作稳定性,降低阀芯组件200故障率的技术效果。
在上述任一实施例中,阀芯组件200还包括:第一凸筋118,设于支架机构100上;第二凸筋236,设于偏心轮230上,轴承254的两个端面分别与第一凸筋118和第二凸筋236抵接。
在该实施例中,承接前述实施例,对轴承254的定位结构做出了限定。具体地,支架机构100的内环面上设置有第一凸筋118,轴体232的周侧面上设置有第二凸筋236。完成装配后,轴承254上的其中一个端面抵靠在第一凸筋118上,相对的另一个端面抵靠在第二凸筋236上,以将轴承254限定在支架机构100和偏心轮230之间。装配过程中,先将轴承254套接在轴体232上,直至轴体232的下端面与第二凸筋236相抵靠,其后将支架机构100套接在轴承254外侧,直至第一凸筋118与轴承254的上端面相抵靠。通过设置第一凸筋118和第二凸筋236,可以阻止轴承254在支架机构100和偏心轮230之间跳动,以降低阀芯组件200在工作过程中所产生的振动和噪声。进而实现优化支架机构100传动结构,提升支架机构100偏心转动平稳性和可靠性,降低产品振动噪声的技术效果。
在上述任一实施例中,阀芯组件200还包括:驱动轴252,穿设于轴孔234中;驱动件256,与驱动轴252相连。
在该实施例中,阀芯组件200中还设置有驱动轴252和驱动件256。驱动件256可以为电机,驱动件256的动力输出轴通过联轴器与驱动轴252的一端 相连接,以带动驱动轴252转动。驱动轴252的另一端穿设在偏心轮230的轴孔234中,与偏心轮230相连接。具体地,可以通过定位键和键槽连接驱动轴252和偏心轮230,还可以通过设置截面形状为多边形的轴孔234和驱动轴252来完成驱动轴252和偏心轮230的轴向连接,具体连接方式此处不作限定,能满足驱动轴252带动偏心轮230同步转动即可。工作过程中,驱动件256所输出的动力经由驱动轴252和偏心轮230、轴承254传递至支架机构100上,以使支架机构100围绕驱动轴252的轴线也就是第一轴线偏心转动,偏心转动的支架机构100推拉膜片210,以完成液体的泵送。
如图13、图16和图17所示,在本申请的至少一个实施例中,支架机构100包括:基座110,基座110呈环状;至少三个定位部112,设于基座110上,膜片210与定位部112的端面相连。
在该实施例中,对支架机构100的结构做出了展开说明。具体地,支架机构100包括基座110和定位部112。基座110为支架机构100的主体框架结构,用于定位和支撑设置在基座110上的定位部112。定位部112设置在基座110上,且第一定位面位于定位部112的端面上。装配膜片210时,将膜片210放置在定位部112上,其后将膜片210连接在定位部112上即可完成装配,其中定位部112上与膜片210相接触的表面即为接触面116,在接触面116为平面时,每个定位部112上的接触面116朝基座110所在方向倾斜,以形成外高内低的接触面116阵列。轴承254穿设在基座110中,周层的侧壁与基座110的内环面相对设置,第一凸筋118设置在基座110上,位于基座110的下端面和定位部112之间。其中,定位部112至少为三个,以保证定位部112对膜片210承托的稳定性,降低膜片210在阀芯组件200上出现倾斜问题的可能性。通过在支架机构100上构造出定位部112结构,可以在工作过程中为推拉膜片210提供便利条件,具体可以提升膜片210的形变幅度,并降低推拉膜片210所需要的作用力。进而实现优化支架机构100结构,提升应用该阀芯组件200的增压泵300的泵送流量和泵送压力,提升关联产品竞争力的技术效果。
在上述任一实施例中,至少三个定位部112上的接触面116交汇在同一交点上,交点位于基座110的轴线上。
在该实施例中,承接前述实施例,接触面116为平面,且每个定位部112上的接触面116均朝基座110所在方向倾斜。在此基础上,通过限定至少三个 定位部112上的接触面116交汇于同一个交点,并限定该交点位于基座110的轴线上,在定位部112上形成设置方式统一的多个接触面116阵列。从而优化膜片210和支架机构100间的相互作用力方向,有助于减小支架机构100在垂直于第一轴线的径向方向上的合力,从而提升倾斜的接触面116对支架机构100偏心转动的补偿效果,降低支架机构100所受到的径向载荷。进而实现优化支架机构100结构,提升支架机构100转动稳定性,降低产品振动噪声,提升用户使用体验的技术效果。
在上述任一实施例中,至少三个定位部112在以基座110的轴线为轴的同一个圆上均匀分布。
在该实施例中,对支架机构100上定位部112的分布方式做出了限定。具体地,基座110为环状结构。在基座110上,至少三个定位部112在以基座110的轴线为轴的同一个圆上均匀分布,以在基座110上形成环形分布的定位部112阵列。通过将多个定位部112沿环线均匀分布在基座110上,可以提升支架机构100和膜片210间作用力分布的均匀性,防止膜片210因受力不均而损坏。进而实现优化基座110结构,延长膜片210使用寿命的技术效果。
在上述任一实施例中,阀芯组件200还包括:压紧件220,设于膜片210背离定位部112的一侧,抵接在膜片210上,用于将膜片210压合在定位部112上。
在该实施例中,阀芯组件200中还设置有压紧件220,压紧件220设置在膜片210上。完成装配后,压紧件220抵靠在膜片210上,以使膜片210被紧压在支架机构100和压紧件220之间,从而实现膜片210的装夹。其中,膜片210为增压泵300中的主工作部,工作过程中,增压泵300通过带动膜片210运动,使膜片210所分隔出的空间的大小发生改变,从而完成介质的抽取、介质的增压以及介质的排放。设置该支架机构100和压紧件220可以将膜片210准确定位在增压泵300中,以降低膜片210在工作过程中错位的可能性。且压紧件220可以使膜片210紧贴在支架机构100上,从而消除第一定位面和膜片210之间的间隙。
在上述任一实施例中,压紧件220的数目与定位部112的数目相同,压紧件220与定位部112一一对应设置。
在该实施例中,对压紧件220的结构做出了展开说明。具体地,每个阀芯 组件200中设置有多个压紧件220,且压紧件220的数目与基座110上定位部112的数目相同。装配过程中,现将膜片210对准并放置在至少三个定位部112上。其后,在膜片210背离支架机构100的一侧,针对每个定位部112对应设置一个压紧件220,并将压紧件220紧压在膜片210上,以使膜片210被压紧件220紧压在定位部112上。通过限定上述结构,一方面可以通过设置多个压紧件220提升阀芯组件200对膜片210的定位稳定性,降低膜片210在支架机构100和压紧件220之间出现错位的可能性。另一方面,该结构可以在工作过程中为阀芯组件200推拉膜片210提供便利条件,具体可以提升膜片210的形变幅度,并降低推拉膜片210所需要的作用力。进而实现优化阀芯组件200结构,提升应用该阀芯组件200的增压泵300的泵送流量和泵送压力,提升关联产品竞争力的技术效果。
如图18所示,本申请的至少一个实施例提供了一种增压泵300,增压泵300包括:壳体310,包括腔体;上述任一实施例中的阀芯组件200,设于腔体内,膜片210与壳体310相连接,且分隔腔体。
在该实施例中,限定了一种设置有上述任一实施例中的阀芯组件200的增压泵300,因此该增压泵300具备上述任一实施例中的阀芯组件200的优点,可实现上述任一实施例中的阀芯组件200所实现的技术效果,为避免重复,此处不再赘述。具体地,增压泵300包括壳体310,壳体310为增压泵300的外部框架结构,用于围合限定出腔体。支架机构100和压紧件220设置在腔体中,从而将膜片210定位在壳体310内。其中,膜片210的周侧与壳体310的内壁相连接,以将腔体分隔为两个子腔体,支架机构100和压紧件220则分别位于膜片210两侧的子腔体中。当支架机构100带动部分膜片210和压紧件220相对壳体310运动时,连接在壳体310上的膜片210被推拉,从而发生形变。在拉伸过程中,压紧件220所处的子腔体的体积增大,以使增压泵300可以将介质吸入该子腔体内。在膜片210被支架机构100朝压紧件220所在方向推动时,压紧件220所处的子腔体的体积减小,以使该子腔体内的介质被推出增压泵300。进而实现增压泵300的介质泵送。
在上述任一实施例中,壳体310包括入口和出口,入口和出口与膜片210背离支架机构100一侧的腔体相连通。
在该实施例中,壳体310上设置有供介质进出的入口和出口。入口和出口 均与膜片210一侧的子腔体相连通。支架机构100和驱动件256设置在背离入口和出口一侧的子腔体中。具体地,驱动件256固定在壳体310上,支架机构100连接驱动件256和膜片210。增压泵300工作时,驱动件256带动支架机构100和压紧件220相对壳体310运动,以通过推拉膜片210实现介质的吸入和排出。
本申请的至少一个实施例,提供了一种净水器,净水器包括:如上述任一实施例中的增压泵300。
在该实施例中,限定了一种设置有上述任一实施例中的增压泵300的净水器,因此该净水器具备上述任一实施例中的增压泵300的优点,可实现上述任一实施例中的增压泵300所实现的技术效果,为避免重复,此处不再赘述。
如图19、图20和图22所示,本申请的至少一个实施例提供了一种阀芯组件200,阀芯组件200包括:偏心轮230,能够以第一轴线为轴转动,包括轴体232,轴体232的轴线和第一轴线间存在第三夹角,图19和图21中,α2示出了第三夹角;支架机构100,套设于轴体232上;膜片210,与支架机构100相连;其中,第一轴线和轴体232的轴线的交点为第一交点,图19、图20和图21中,C示出了第一交点;第一交点位于膜片210的表面上,或第一交点位于膜片210内。
本申请所提出的阀芯组件200可应用于增压泵300中,工作过程中阀芯组件200的运动转化为增压泵300中腔体的体积变化,以在腔体体积增大时液体可以被负压压入腔体内,反之在腔体体积缩小时,液体被排出腔体。阀芯组件200包括偏心轮230、支架机构100和膜片210,支架机构100为阀芯组件200中的框架结构,用于定位和支撑阀芯组件200上的其他工作结构。偏心轮230为支架机构100和驱动件256之间的传动结构,支架机构100套设在偏心轮230的轴体232上。工作过程中偏心轮230围绕第一轴线转动,而轴体232的轴线和第一轴线之间存在第三夹角,从而是套设在轴体232上的支架机构100可以一同围绕第一轴线偏心转动。膜片210设置在支架机构100上,与支架机构100相连接。膜片210由弹性材料制成,可以在被推拉时发生形变,以改变增压泵300中腔体的体积,例如膜片210被向外拉伸时,腔体的体积随即增大,反之膜片210恢复原状或被向内推送时,腔体的体积随即减小,从而通过推拉实现液体的抽取和泵送。其中,至少部分支架机构100环形,此部分环形支架 机构100结构的轴线即为支架机构100的轴线。工作过程中,支架机构100在偏心轮230的带动下围绕阀芯组件200中预设的第一轴线转动,且第一轴线和支架机构100的轴线之间存在夹角,以形成支架机构100的偏心转动。
偏心转动过程中,支架机构100的外表面能够在第一轴线所在方向上往复运动,从而带动与支架机构100相连接的部分膜片210在第一轴线所在方向上往复运动。因膜片210具备可拉伸性,在部分膜片210被支架机构100推拉的过程中,膜片210的形状发生规律变化,以通过形变的膜片210完成液体的抽取和推送。其中,第三夹角的角度越大,则该阀芯组件200的液体泵送能力越强,反映在增压泵300上则是泵送流量越大。相应地膜片210所受到的作用力越大,其中在支架机构100的一个往复运动周期中,支架机构100在运动路径上的端点位置时,膜片210所受到的作用力最大。
相关技术中,增压泵300中的阀芯在通过偏心转动实现液体泵送的过程中,会反复推拉膜片210,在这一反复推拉过程中,形变的膜片210中会受到较大的作用力,该作用力超出阈值则会加速膜片210的老化速度,或直接撕裂膜片210。若膜片210失效,则增压泵300会失去液体泵送能力,以至于增压泵300的可靠性降低,导致增压泵300的寿命受到影响。
对此,本申请对偏心轮230和膜片210之间的配合位置关系做出了限定。具体地,第一轴线和轴体232的轴线间的交点为第一交点。因支架机构100以及支架机构100上所设置的膜片210均以第一轴线为轴做偏心转动,因此第一交点与支架机构100以及膜片210的相对位置不会在偏心转动过程中相对膜片210和支架机构100移动。在此基础上,第一交点落在膜片210的两个端面上,或第一交点位于膜片210的两个端面之间。实际工作过程中,若选取偏心角度较大的偏心轮230驱动支架机构100,虽然可以增大阀芯组件200的泵送能力,但也会相应增大膜片210所受到的作用力,本申请限定该第一交点和膜片210间的位置关系可以使偏心轮230的偏心角度和膜片210的厚度相适配,确保所安装的膜片210可以承受当前偏心轮230所驱动的支架机构100的反复推拉,避免膜片210受到超出自身承受能力范围外的作用力。从而延长膜片210的使用寿命,降低膜片210被支架机构100撕裂的可能性,以解决上述技术问题。进而实现优化阀芯组件200结构,提升阀芯组件200可靠性,延长阀芯组件200使用寿命的技术效果。
如图21、图22和图17所示,在本申请的至少一个实施例中,支架机构100上与膜片210相接的表面为接触面116;接触面116为平面,在轴体232由外至内的径向方向上,接触面116朝远离膜片210的方向倾斜。
在该实施例中,膜片210定位在支架机构100的前端,在支架机构100上与膜片210相接触的表面即为接触面116。其中,在轴体232由外至内的径向方向上,接触面116朝远离膜片210的方向倾斜。该径向方向即是轴体232以及环状支架机构100的径向方向,由外至内是由支架机构100的外周侧向支架机构100的轴线延伸的方向,从而在由外至内的径向方向上形成外侧高内侧低的接触面116。设置上述倾斜的接触面116有助于增大该接触面116的面积,从而环节膜片210上的应力集中效应,以进一步减缓膜片210老化速率,降低膜片210损坏概率。
另外,增压泵300中的阀芯在通过偏心转动实现液体泵送的过程中,偏心转动的阀芯会因径向载荷产生振动。这一振动趋势则会产生影响用户体验的噪声。其中,增压泵300的泵送流量越大以及泵送压力越大,则上述径向载荷越大,以至于高功率高流速的增压泵300会在工作过程中产生较为明显的振动,过大的振动会降低阀芯以及增压泵300的使用寿命,而且该振动趋势若传递至增压泵300的应用产品,则会产生较大的噪声,破坏用户的使用体验。
对此,通过设置外高内低的接触面116,使该接触面116可以在一定程度上补偿偏心转动的支架机构100的偏心角,也就是第三夹角。从而通过降低支架机构100在往复运动过程中所受到的径向载荷,来减小阀芯组件200在工作过程中所产生的振动,以解决上述振动噪声较大,可靠性较差的技术问题。进而实现优化阀芯组件200结构,提升阀芯组件200工作稳定性和结构可靠性,降低产品工作噪声,延长产品使用寿命,提升用户使用体验的技术效果。
在上述任一实施例中,与轴体232的轴线相垂直的平面为基准面,基准面和接触面116间存在第四夹角。图22中,β2示出了第四夹角;第三夹角的角度为第一角度,第四夹角的角度为第二角度;其中,第二角度为N和第一角度的乘积,0.5≤N≤1.5。
在该实施例中,对接触面116做出进一步说明。以垂直于支架机构100的轴线某一平面作为基准面,该基准面和接触面116之间的夹角为第四夹角,该第四夹角便是第三夹角的结构补偿角。通过调整第二角度一方面可以调节膜片 210的形变幅度,以调节膜片210内部所受到的应力大小。另一方面调节第二角度可调整支架机构100在往复运动过程中所受到的径向载荷。
在此基础上,对第三夹角和第四夹角的关系做出了限定。具体地,第三夹角的角度为第一角度,第四夹角的角度为第二角度。第四夹角=N×第三夹角。其中,N的取值范围为大于等于0.5,且小于等于1.5。通过限定第二角度大于等于0.5倍的第三夹角,可以确保径向应力补偿的有效性,避免因第四夹角过小而丧失补偿效果。相应地,通过限定第二角度小于等于1.5倍的第三夹角,可以防止倾斜设置的接触面116过度补偿径向载荷,避免支架机构100上出现与原径向载荷方向相反的径向载荷。同时,通过限定第一角度和第二角度的大小关系可以在支架机构100往复运动的行程端点,也就是最大压力点处减小支架机构100在径向方向上的分力,从而抑制支架机构100的振动趋势。进而实现优化支架机构100结构,提升支架机构100转动平稳性,降低产品振动噪声,延长阀芯组件200使用寿命的技术效果。
在上述任一实施例中,支架机构100包括:基座110,基座110呈环状,基座110的轴线与轴体232的轴线重合;至少三个定位部112,设于基座110上,膜片210与定位部112的端面相连。
在该实施例中,对支架机构100的结构做出了展开说明。具体地,支架机构100包括基座110和定位部112。基座110为支架机构100的主体框架结构,用于定位和支撑设置在基座110上的定位部112。定位部112设置在基座110上,且第一定位面位于定位部112的端面上。装配膜片210时,将膜片210放置在定位部112上,其后将膜片210连接在定位部112上即可完成装配,其中定位部112上与膜片210相接触的表面即为接触面116,在接触面116为平面时,每个定位部112上的接触面116朝基座110所在方向倾斜,以形成外高内低的接触面116阵列。其中,定位部112至少为三个,以保证定位部112对膜片210承托的稳定性,降低膜片210在阀芯组件200上出现倾斜问题的可能性。通过在支架机构100上构造出定位部112结构,可以在工作过程中为推拉膜片210提供便利条件,具体可以提升膜片210的形变幅度,并降低推拉膜片210所需要的作用力。进而实现优化支架机构100结构,提升应用该阀芯组件200的增压泵300的泵送流量和泵送压力,提升关联产品竞争力的技术效果。
如图20、图21和图22所示,在本申请的至少一个实施例中,至少三 个定位部112上的接触面116交汇在第二交点。图20和图22中,D示出了第二交点上,第二交点位于基座110的轴线上。
在该实施例中,承接前述实施例,接触面116为平面,且每个定位部112上的接触面116均朝基座110所在方向倾斜。在此基础上,通过限定至少三个定位部112上的接触面116交汇于同一个交点第二交点,并限定第二交点位于基座110的轴线上,可以在定位部112上形成设置方式统一的多个接触面116阵列。从而优化膜片210和支架机构100间的相互作用力方向,有助于减小支架机构100在垂直于第一轴线的径向方向上的合力,从而一方面降低膜片210内部的应力,另一方面提升倾斜的接触面116对支架机构100偏心转动的补偿效果,降低支架机构100所受到的径向载荷。进而实现优化支架机构100结构,提升支架机构100转动稳定性,降低产品振动噪声,延长膜片210寿命,提升用户使用体验的技术效果。
在上述任一实施例中,第一交点和第二交点在第一轴线所在方向上的间距为第一距离值;膜片210在第一轴线所在方向上的长度为第二距离值;第一距离值小于等于第二距离值。
在该实施例中,承接前述实施例,对第一交点和第二交点之间的位置关系做出了限定。第二交点位于支架机构100和轴体232的轴线上,第一交点位于第一轴线上。第一交点和第二交点可重合,也可以在支架机构100的轴线方向上相间隔。在此基础上,在第一轴线所在的方向上,第一交点和第二交点间的距离值为第一距离值,当第一交点和第二交点重合时,该第一距离值为0。当第一交点和第二交点间隔时,该第一距离值可通过二者间的间隔与第三夹角计算得出,此处不作展开说明。同时,在第一轴线所在方向上,膜片210的长度第一轴线方向上的厚度为第二距离值。其中,第一距离值越大则膜片210上的应力集中效应越强,通过限定第一距离值小于等于第二距离值,可以将膜片210所受到的作用力与膜片210在第一轴线方向上的厚度相关联,从而进一步提升膜片210和偏心轮230之间的匹配度。使偏心轮230的偏心角度和膜片210的厚度相适配,确保所安装的膜片210可以承受当前偏心轮230所驱动的支架机构100的反复推拉,避免膜片210受到超出自身承受能力范围外的作用力。从而延长膜片210的使用寿命,降低膜片210被支架机构100撕裂的可能性,以解决上述技术问题。进而实现优化阀芯组件200结构,提升阀芯组件 200可靠性,延长阀芯组件200使用寿命的技术效果。
如图19、图21和图22所示,在本申请的至少一个实施例中,偏心轮230还包括:轴孔234,设于偏心轮230上,轴孔234的轴线与第一轴线重合。
在该实施例中,偏心轮230包括柱状的轴体232,以及设置在轴体232内部的轴孔234,该轴体232的轴线即为偏心轮230的轴线。支架机构100套设在偏心轮230上,且支架机构100的轴线与偏心轮230的轴线相重合。工作过程中,偏心轮230以轴孔234的轴线为轴转动,在形体配合关系下,偏心轮230带动支架机构100一同绕轴孔234的轴线也就是第一轴线转动,以便于通过支架机构100的偏心转动推拉膜片210。通过设置偏心轮230可以通过嵌套结构间的接触配合形成支架机构100的偏心转动,且该配合结构的紧凑度较高、可靠性较强,有助于缩减结构缝隙所造成的转动误差,且有利于降低阀芯组件200的振动噪声。且该结构所占用的空间较小,可以降低阀芯组件200在增压泵300内部的布局难度,有利于增压泵300的轻量化设计和小型化设计。同时,该结构的拆装难度较低,在支架机构100或偏心轮230出现故障时,用户可以较为便捷的通过拆装完成结构维护和更换。进而实现了提升阀芯组件200结构紧凑度,缩减阀芯组件200尺寸,提升阀芯组件200工作稳定性和可靠性的技术效果。
在上述任一实施例中,阀芯组件200还包括:轴承254,套设于偏心轮230上,支架机构100套设于轴承254上。
在该实施例中,阀芯组件200中还设置有轴承254。具体地,轴承254套设在偏心轮230的轴体232上,支架机构100套设在轴承254上,形成由内至外依次嵌套设置的偏心轮230、轴承254和支架机构100。通过在支架机构100和偏心轮230之间设置轴承254,可以实现支架机构100和偏心轮230间的转动连接。从而在保留支架机构100径向运动的基础上消除支架机构100和膜片210间的相对转动趋势。通过设置轴承254有助于减小偏心轮230和支架机构100间的摩擦力,从而减小支架机构100施加在膜片210上的扭矩,避免膜片210被支架机构100扭转撕裂。同时,设置轴承254还可以提升偏心轮230和支架机构100间的传动平稳性和可靠性,可以在一定程度上抑制阀芯组件200的振动,并减小阀芯组件200的工作噪声。进而实现优化阀芯组件200结构,提升阀芯组件200工作稳定性,降低阀芯组件200故障率的技术效果。
在上述任一实施例中,阀芯组件200还包括:第一凸筋118,设于支架机构100上;第二凸筋236,设于偏心轮230上,轴承254的两个端面分别与第一凸筋118和第二凸筋236抵接。
在该实施例中,承接前述实施例,对轴承254的定位结构做出了限定。具体地,支架机构100的内环面上设置有第一凸筋118,轴体232的周侧面上设置有第二凸筋236。完成装配后,轴承254上的其中一个端面抵靠在第一凸筋118上,相对的另一个端面抵靠在第二凸筋236上,以将轴承254限定在支架机构100和偏心轮230之间。装配过程中,先将轴承254套接在轴体232上,直至轴体232的下端面与第二凸筋236相抵靠,其后将支架机构100套接在轴承254外侧,直至第一凸筋118与轴承254的上端面相抵靠。通过设置第一凸筋118和第二凸筋236,可以阻止轴承254在支架机构100和偏心轮230之间跳动,以降低阀芯组件200在工作过程中所产生的振动和噪声。进而实现优化支架机构100传动结构,提升支架机构100偏心转动平稳性和可靠性,降低产品振动噪声的技术效果。
在上述任一实施例中,阀芯组件200还包括:驱动轴252,穿设于轴孔234中;驱动件256,与驱动轴252相连。
在该实施例中,阀芯组件200中还设置有驱动轴252和驱动件256。驱动件256可以为电机,驱动件256的动力输出轴通过联轴器与驱动轴252的一端相连接,以带动驱动轴252转动。驱动轴252的另一端穿设在偏心轮230的轴孔234中,与偏心轮230相连接。具体地,可以通过定位键和键槽连接驱动轴252和偏心轮230,还可以通过设置截面形状为多边形的轴孔234和驱动轴252来完成驱动轴252和偏心轮230的轴向连接,具体连接方式此处不作限定,能满足驱动轴252带动偏心轮230同步转动即可。工作过程中,驱动件256所输出的动力经由驱动轴252和偏心轮230、轴承254传递至支架机构100上,以使支架机构100围绕驱动轴252的轴线也就是第一轴线偏心转动,偏心转动的支架机构100推拉膜片210,以完成液体的泵送。
在上述任一实施例中,阀芯组件200还包括:压紧件220,设于膜片210背离定位部112的一侧,抵接在膜片210上,用于将膜片210压合在定位部112上。
在该实施例中,阀芯组件200中还设置有压紧件220,压紧件220设置在 膜片210上。完成装配后,压紧件220抵靠在膜片210上,以使膜片210被紧压在支架机构100和压紧件220之间,从而实现膜片210的装夹。其中,膜片210为增压泵300中的主工作部,工作过程中,增压泵300通过带动膜片210运动,使膜片210所分隔出的空间的大小发生改变,从而完成介质的抽取、介质的增压以及介质的排放。设置该支架机构100和压紧件220可以将膜片210准确定位在增压泵300中,以降低膜片210在工作过程中错位的可能性。且压紧件220可以使膜片210紧贴在支架机构100上,从而消除第一定位面和膜片210之间的间隙。
在上述任一实施例中,压紧件220的数目与定位部112的数目相同,压紧件220与定位部112一一对应设置。
在该实施例中,对压紧件220的结构做出了展开说明。具体地,每个阀芯组件200中设置有多个压紧件220,且压紧件220的数目与基座110上定位部112的数目相同。装配过程中,现将膜片210对准并放置在至少三个定位部112上。其后,在膜片210背离支架机构100的一侧,针对每个定位部112对应设置一个压紧件220,并将压紧件220紧压在膜片210上,以使膜片210被压紧件220紧压在定位部112上。通过限定上述结构,一方面可以通过设置多个压紧件220提升阀芯组件200对膜片210的定位稳定性,降低膜片210在支架机构100和压紧件220之间出现错位的可能性。另一方面,该结构可以在工作过程中为阀芯组件200推拉膜片210提供便利条件,具体可以提升膜片210的形变幅度,并降低推拉膜片210所需要的作用力。进而实现优化阀芯组件200结构,提升应用该阀芯组件200的增压泵300的泵送流量和泵送压力,提升关联产品竞争力的技术效果。
如图18所示,本申请的至少一个实施例提供了一种增压泵300,增压泵300包括:壳体310,包括腔体;上述任一实施例中的阀芯组件200,设于腔体内,膜片210与壳体310相连接,且分隔腔体。
在该实施例中,限定了一种设置有上述任一实施例中的阀芯组件200的增压泵300,因此该增压泵300具备上述任一实施例中的阀芯组件200的优点,可实现上述任一实施例中的阀芯组件200所实现的技术效果,为避免重复,此处不再赘述。具体地,增压泵300包括壳体310,壳体310为增压泵300的外部框架结构,用于围合限定出腔体。支架机构100和压紧件220设置在腔体中, 从而将膜片210定位在壳体310内。其中,膜片210的周侧与壳体310的内壁相连接,以将腔体分隔为两个子腔体,支架机构100和压紧件220则分别位于膜片210两侧的子腔体中。当支架机构100带动部分膜片210和压紧件220相对壳体310运动时,连接在壳体310上的膜片210被推拉,从而发生形变。在拉伸过程中,压紧件220所处的子腔体的体积增大,以使增压泵300可以将介质吸入该子腔体内。在膜片210被支架机构100朝压紧件220所在方向推动时,压紧件220所处的子腔体的体积减小,以使该子腔体内的介质被推出增压泵300。进而实现增压泵300的介质泵送。
在上述任一实施例中,壳体310包括入口和出口,入口和出口与膜片210背离支架机构100一侧的腔体相连通。
在该实施例中,壳体310上设置有供介质进出的入口和出口。入口和出口均与膜片210一侧的子腔体相连通。支架机构100和驱动件256设置在背离入口和出口一侧的子腔体中。具体地,驱动件256固定在壳体310上,支架机构100连接驱动件256和膜片210。增压泵300工作时,驱动件256带动支架机构100和压紧件220相对壳体310运动,以通过推拉膜片210实现介质的吸入和排出。
本申请的至少一个实施例提供了一种净水器,净水器包括:如上述任一实施例中的增压泵300。
在该实施例中,限定了一种设置有上述任一实施例中的增压泵300的净水器,因此该净水器具备上述任一实施例中的增压泵300的优点,可实现上述任一实施例中的增压泵300所实现的技术效果,为避免重复,此处不再赘述。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述申请开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例” 等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (62)

  1. 一种支架机构,其中,包括:
    基座,包括导向槽;
    阻热件,设于所述基座上,所述阻热件部分嵌设于所述导向槽中,所述阻热件用于承托膜片,且所述阻热件用于带动所述膜片运动;
    其中,在所述导向槽的深度方向上,所述导向槽的截面积逐渐缩小。
  2. 根据权利要求1所述的支架机构,其中,所述基座还包括盲孔,所述支架机构还包括:
    导向件,设于所述盲孔中,包括与所述盲孔的侧壁相对的导向斜面;
    所述导向斜面和所述盲孔围合出所述导向槽。
  3. 根据权利要求2所述的支架机构,其中,所述导向件为棱台,所述棱台的底面与所述盲孔的底壁相连。
  4. 根据权利要求3所述的支架机构,其中,所述导向件为六棱台。
  5. 根据权利要求1所述的支架机构,其中,
    所述导向槽为N个,N个所述导向槽在所述基座上均匀分布;
    其中,N为大于2的整数。
  6. 根据权利要求5所述的支架机构,其中,所述基座呈环状,N个所述导向槽在以所述基座的轴线为轴的同一个圆上均匀分布。
  7. 根据权利要求5所述的支架机构,其中,所述阻热件为N个,N个所述阻热件与N个所述导向槽一一对应连接。
  8. 根据权利要求1至7中任一项所述的支架机构,其中,所述阻热件包括:
    本体;
    凸出部,设于所述本体上,所述凸出部嵌设于所述导向槽中。
  9. 根据权利要求8所述的支架机构,其中,所述凸出部与所述导向槽过盈配合。
  10. 根据权利要求1至7中任一项所述的支架机构,其中,所述阻热件与所述基座可拆卸连接。
  11. 根据权利要求1至7中任一项所述的支架机构,其中,还包括:
    连接件,连接所述基座和所述阻热件。
  12. 一种阀芯组件,其中,包括:
    如权利要求1至11中任一项所述的支架机构;
    膜片,设于所述阻热件上,所述阻热件位于所述基座和所述膜片之间。
  13. 根据权利要求12所述的阀芯组件,其中,还包括:
    压紧件,设于所述膜片上,背离所述阻热件,所述压紧件与所述阻热件连接,用于将所述膜片压合在所述阻热件上。
  14. 一种增压泵,其中,包括:
    壳体,包括腔体;
    如权利要求12或13所述的阀芯组件,设于所述腔体内,所述膜片与所述壳体相连接,且所述膜片分隔所述腔体。
  15. 根据权利要求14所述的增压泵,其中,所述壳体还包括入口和出口,所述入口和所述出口与所述膜片背离所述基座侧的所述腔体相连通,所述增压泵还包括:
    驱动组件,与所述基座相连接,用于驱动所述基座相对所述壳体摆动。
  16. 根据权利要求15所述的增压泵,其中,所述驱动组件包括:
    驱动件,包括驱动轴;
    偏心轮,套设于所述驱动轴上;
    轴承,所述轴承的内圈套设于所述偏心轮上,所述轴承的外圈穿设于所述基座上。
  17. 一种净水器,其中,包括:
    如权利要求14至16中任一项所述的增压泵。
  18. 一种阀芯组件,其中,包括:
    基座;
    阻热件,设于所述基座上;
    膜片,与所述阻热件接触,所述阻热件位于所述基座和所述膜片之间,且所述阻热件能够带动所述膜片运动。
  19. 根据权利要求18所述的阀芯组件,其中,还包括:
    定位部,设于所述基座上,所述阻热件与所述定位部连接。
  20. 根据权利要求19所述的阀芯组件,其中,
    所述定位部为M个,M个所述定位部在所述基座上均匀分布;
    其中,M为大于2的整数。
  21. 根据权利要求20所述的阀芯组件,其中,所述基座呈环状,M个所述定位部以所述基座的轴线为轴的同一个圆上均匀分布。
  22. 根据权利要求20所述的阀芯组件,其中,所述阻热件为M个,M个所述阻热件与M个所述定位部一一对应连接。
  23. 根据权利要求19所述的阀芯组件,其中,所述阻热件包括安装槽,所述定位部插接于所述安装槽上。
  24. 根据权利要求23所述的阀芯组件,其中,所述定位部朝向所述阻热件的面上设有导向槽,所述阀芯组件还包括:
    凸出部,设于所述阻热件上,位于所述安装槽内,且所述凸出部插接于所述导向槽中。
  25. 根据权利要求24所述的阀芯组件,其中,
    用垂直于所述导向槽深度方向的平面截取所述定位部,在截面上,所述导向槽呈多边形;
    所述凸出部填充所述导向槽。
  26. 根据权利要求25所述的阀芯组件,其中,在所述截面上,所述导向槽呈正六边形。
  27. 根据权利要求18至26中任一项所述的阀芯组件,其中,所述阻热件与所述基座可拆卸连接。
  28. 根据权利要求18至26中任一项所述的阀芯组件,其中,还包括:
    压紧件,设于所述膜片上,背离所述阻热件;
    连接件,贯穿所述膜片,且连接所述压紧件和所述阻热件。
  29. 一种增压泵,其中,包括:
    壳体,包括腔体;
    如权利要求18至28中任一项所述的阀芯组件,设于所述腔体内,所述膜片与所述壳体相连接,且所述膜片分隔所述腔体。
  30. 根据权利要求29所述的增压泵,其中,所述壳体还包括入口和出口,所述入口和所述出口与所述膜片背离所述基座侧的所述腔体相连通,所述膜片泵还包括:
    驱动组件,与所述基座相连接,用于驱动所述基座相对所述壳体摆动。
  31. 根据权利要求30所述的增压泵,其中,所述驱动组件包括:
    驱动件,包括驱动轴;
    偏心轮,套设于所述驱动轴上;
    轴承,所述轴承的内圈套设于所述偏心轮上,所述轴承的外圈穿设于所述基座上。
  32. 一种净水器,其中,包括:
    如权利要求29至31中任一项所述的增压泵。
  33. 一种阀芯组件,其中,包括:
    偏心轮,能够以第一轴线为轴转动,包括轴体,所述轴体的轴线和所述第一轴线间存在第一夹角;
    支架机构,套设于所述轴体上;
    膜片,与所述支架机构相连;
    其中,所述支架机构上与所述膜片相接的面为接触面,在所述轴体由外至内的径向方向上,所述接触面朝远离所述膜片的方向延伸。
  34. 根据权利要求33所述的阀芯组件,其中,
    所述接触面为平面,与所述轴体的轴线相垂直的平面为基准面;
    所述基准面和所述接触面间存在第二夹角。
  35. 根据权利要求34所述的阀芯组件,其中,
    所述第一夹角的角度为第一角度,所述第二夹角的角度为第二角度;
    其中,第二角度为X和所述第一角度的乘积,0.5≤X≤1.5。
  36. 根据权利要求33所述的阀芯组件,其中,所述偏心轮还包括:
    轴孔,设于所述偏心轮上,所述轴孔的轴线与所述第一轴线重合。
  37. 根据权利要求36所述的阀芯组件,其中,还包括:
    轴承,套设于所述偏心轮上,所述支架机构套设于所述轴承上。
  38. 根据权利要求37所述的阀芯组件,其中,还包括:
    第一凸筋,设于所述支架机构上;
    第二凸筋,设于所述偏心轮上,所述轴承的两个端面分别与所述第一凸筋和所述第二凸筋抵接。
  39. 根据权利要求36所述的阀芯组件,其中,还包括:
    驱动轴,穿设于所述轴孔中;
    驱动件,与所述驱动轴相连。
  40. 根据权利要求34至39中任一项所述的阀芯组件,其中,所述支架机构包括:
    基座,所述基座呈环状,所述基座的轴线与所述轴体的轴线重合;
    至少三个定位部,设于所述基座上,所述膜片与所述定位部的端面相连。
  41. 根据权利要求40所述的阀芯组件,其中,至少三个所述定位部上的所述接触面交汇在同一交点上,所述交点位于所述基座的轴线上。
  42. 根据权利要求40所述的阀芯组件,其中,所述至少三个定位部在以所述基座的轴线为轴的同一个圆上均匀分布。
  43. 根据权利要求40所述的阀芯组件,其中,还包括:
    压紧件,设于所述膜片背离所述定位部的一侧,抵接在所述膜片上,用于将所述膜片压合在所述定位部上。
  44. 根据权利要求43所述的阀芯组件,其中,所述压紧件的数目与所述定位部的数目相同,所述压紧件与所述定位部一一对应设置。
  45. 一种增压泵,其中,包括:
    壳体,包括腔体;
    如权利要求33至44中任一项所述的阀芯组件,设于所述腔体内,所述膜片与所述壳体相连接,且分隔所述腔体。
  46. 根据权利要求45所述的增压泵,其中,所述壳体包括入口和出口,所述入口和所述出口与所述膜片背离所述支架机构一侧的所述腔体相连通。
  47. 一种净水器,其中,包括:
    如权利要求45或46所述的增压泵。
  48. 一种阀芯组件,其中,包括:
    偏心轮,能够以第一轴线为轴转动,包括轴体,所述轴体的轴线和所述第一轴线间存在第三夹角;
    支架机构,套设于所述轴体上;
    膜片,与所述支架机构相连;
    其中,所述第一轴线和所述轴体的轴线的交点为第一交点;
    所述第一交点位于所述膜片的表面上,或所述第一交点位于所述膜片内。
  49. 根据权利要求48所述的阀芯组件,其中,所述支架机构上与所述膜片相接的表面为接触面;
    所述接触面为平面,在所述轴体由外至内的径向方向上,所述接触面朝远离所述膜片的方向倾斜。
  50. 根据权利要求49所述的阀芯组件,其中,与所述轴体的轴线相垂直的平面为基准面,所述基准面和所述接触面间存在第四夹角;
    所述第三夹角的角度为第一角度,所述第四夹角的角度为第二角度;
    其中,第二角度为X和所述第一角度的乘积,0.5≤X≤1.5。
  51. 根据权利要求49所述的阀芯组件,其中,所述支架机构包括:
    基座,所述基座呈环状,所述基座的轴线与所述轴体的轴线重合;
    至少三个定位部,设于所述基座上,所述膜片与所述定位部的端面相连。
  52. 根据权利要求51所述的阀芯组件,其中,至少三个所述定位部上的所述接触面交汇在第二交点上,所述第二交点位于所述基座的轴线上。
  53. 根据权利要求52所述的阀芯组件,其中,
    所述第一交点和所述第二交点在所述第一轴线所在方向上的间距为第一距离值;
    所述膜片在所述第一轴线所在方向上的长度为第二距离值;
    所述第一距离值小于等于所述第二距离值。
  54. 根据权利要求48至53中任一项所述的阀芯组件,其中,所述偏心轮还包括:
    轴孔,设于所述偏心轮上,所述轴孔的轴线与所述第一轴线重合。
  55. 根据权利要求54所述的阀芯组件,其中,还包括:
    轴承,套设于所述偏心轮上,所述支架机构套设于所述轴承上。
  56. 根据权利要求55所述的阀芯组件,其中,还包括:
    第一凸筋,设于所述支架机构上;
    第二凸筋,设于所述偏心轮上,所述轴承的两个端面分别与所述第一凸筋和所述第二凸筋抵接。
  57. 根据权利要求54所述的阀芯组件,其中,还包括:
    驱动轴,穿设于所述轴孔中;
    驱动件,与所述驱动轴相连。
  58. 根据权利要求51所述的阀芯组件,其中,还包括:
    压紧件,设于所述膜片背离所述定位部的一侧,抵接在所述膜片上,用于将所述膜片压合在所述定位部上。
  59. 根据权利要求58所述的阀芯组件,其中,所述压紧件的数目与所述定位部的数目相同,所述压紧件与所述定位部一一对应设置。
  60. 一种增压泵,其中,包括:
    壳体,包括腔体;
    如权利要求48至59中任一项所述的阀芯组件,设于所述腔体内,所述膜片与所述壳体相连接,且分隔所述腔体。
  61. 根据权利要求60所述的增压泵,其中,所述壳体包括入口和出口,所述入口和所述出口与所述膜片背离所述支架机构一侧的所述腔体相连通。
  62. 一种净水器,其中,包括:
    如权利要求60或61所述的增压泵。
PCT/CN2022/128494 2021-11-08 2022-10-31 支架机构、阀芯组件、增压泵和净水器 WO2023078192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22889217.0A EP4332378A1 (en) 2021-11-08 2022-10-31 Support mechanism, valve core assembly, booster pump, and water purifier

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202122718278.0U CN216198922U (zh) 2021-11-08 2021-11-08 阀芯组件、增压泵和净水器
CN202122718282.7U CN216198923U (zh) 2021-11-08 2021-11-08 阀芯组件、增压泵和净水器
CN202122718282.7 2021-11-08
CN202122718278.0 2021-11-08
CN202123358407.6U CN216477771U (zh) 2021-12-29 2021-12-29 阀芯组件、隔膜泵和净水器
CN202123357215.3U CN216477768U (zh) 2021-12-29 2021-12-29 支架机构、阀芯组件、增压泵和净水器
CN202111635143.6A CN116412108A (zh) 2021-12-29 2021-12-29 阀芯组件、隔膜泵和净水器
CN202123358407.6 2021-12-29
CN202111635120.5A CN116412107A (zh) 2021-12-29 2021-12-29 支架机构、阀芯组件、增压泵和净水器
CN202111635143.6 2021-12-29
CN202123357215.3 2021-12-29
CN202111635120.5 2021-12-29

Publications (1)

Publication Number Publication Date
WO2023078192A1 true WO2023078192A1 (zh) 2023-05-11

Family

ID=86240653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128494 WO2023078192A1 (zh) 2021-11-08 2022-10-31 支架机构、阀芯组件、增压泵和净水器

Country Status (2)

Country Link
EP (1) EP4332378A1 (zh)
WO (1) WO2023078192A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2883721Y (zh) * 2005-10-28 2007-03-28 华泽遂 电动膜片泵
CN203925954U (zh) * 2014-05-29 2014-11-05 罗丽云 一种五缸平面隔膜泵
WO2015062764A1 (de) * 2013-10-31 2015-05-07 Continental Teves Ag & Co. Ohg Vakuumpumpe mit einem deckel
DE102014000627B3 (de) * 2014-01-17 2015-05-21 Thomas Magnete Gmbh Dosierpumpe mit Druckregler für den Saugdruck sowie Verfahren zum Test, zur Einstellung sowie zum Betrieb der Dosierpumpe
CN206071859U (zh) * 2016-10-14 2017-04-05 浙江英驰博达机电科技股份有限公司 延长净水机增压泵膜片寿命的定位结构
CN206206130U (zh) * 2016-09-26 2017-05-31 天津大和机电设备有限公司 一种隔膜泵
CN206889227U (zh) * 2017-05-25 2018-01-16 宁波强生电机有限公司 七腔大通量增压泵
CN112648177A (zh) * 2020-11-18 2021-04-13 佛山市三角洲电器科技有限公司 一种隔膜泵头及包括该隔膜泵头的隔膜增压泵
CN216198922U (zh) * 2021-11-08 2022-04-05 佛山市顺德区美的洗涤电器制造有限公司 阀芯组件、增压泵和净水器
CN216198923U (zh) * 2021-11-08 2022-04-05 佛山市顺德区美的洗涤电器制造有限公司 阀芯组件、增压泵和净水器
CN216477768U (zh) * 2021-12-29 2022-05-10 佛山市顺德区美的洗涤电器制造有限公司 支架机构、阀芯组件、增压泵和净水器
CN216477771U (zh) * 2021-12-29 2022-05-10 佛山市顺德区美的洗涤电器制造有限公司 阀芯组件、隔膜泵和净水器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2883721Y (zh) * 2005-10-28 2007-03-28 华泽遂 电动膜片泵
WO2015062764A1 (de) * 2013-10-31 2015-05-07 Continental Teves Ag & Co. Ohg Vakuumpumpe mit einem deckel
DE102014000627B3 (de) * 2014-01-17 2015-05-21 Thomas Magnete Gmbh Dosierpumpe mit Druckregler für den Saugdruck sowie Verfahren zum Test, zur Einstellung sowie zum Betrieb der Dosierpumpe
CN203925954U (zh) * 2014-05-29 2014-11-05 罗丽云 一种五缸平面隔膜泵
CN206206130U (zh) * 2016-09-26 2017-05-31 天津大和机电设备有限公司 一种隔膜泵
CN206071859U (zh) * 2016-10-14 2017-04-05 浙江英驰博达机电科技股份有限公司 延长净水机增压泵膜片寿命的定位结构
CN206889227U (zh) * 2017-05-25 2018-01-16 宁波强生电机有限公司 七腔大通量增压泵
CN112648177A (zh) * 2020-11-18 2021-04-13 佛山市三角洲电器科技有限公司 一种隔膜泵头及包括该隔膜泵头的隔膜增压泵
CN216198922U (zh) * 2021-11-08 2022-04-05 佛山市顺德区美的洗涤电器制造有限公司 阀芯组件、增压泵和净水器
CN216198923U (zh) * 2021-11-08 2022-04-05 佛山市顺德区美的洗涤电器制造有限公司 阀芯组件、增压泵和净水器
CN216477768U (zh) * 2021-12-29 2022-05-10 佛山市顺德区美的洗涤电器制造有限公司 支架机构、阀芯组件、增压泵和净水器
CN216477771U (zh) * 2021-12-29 2022-05-10 佛山市顺德区美的洗涤电器制造有限公司 阀芯组件、隔膜泵和净水器

Also Published As

Publication number Publication date
EP4332378A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
KR101305404B1 (ko) 막 펌프
EP3660308A1 (en) Two-cavity disc pump
GB2542527A (en) Fluid control device
EP2639455A1 (en) Electromagnetic vibrating diaphragm pump
WO2023078192A1 (zh) 支架机构、阀芯组件、增压泵和净水器
KR20200087844A (ko) 전자 팽창 밸브 및 이를 구비하는 냉동 시스템
KR101174438B1 (ko) 터보차져의 가변노즐장치
US20120128509A1 (en) Reciprocating Compressor
WO2023142222A1 (zh) 阀针组件、电子膨胀阀和制冷设备
CN216477768U (zh) 支架机构、阀芯组件、增压泵和净水器
CN112112952B (zh) 一种由主减齿轮驱动的机械油泵
CN216477771U (zh) 阀芯组件、隔膜泵和净水器
CN112267985B (zh) 多源驱动可控式合成射流泵系统及其控制方法
WO2022237869A1 (zh) 一种换热器
CN216198923U (zh) 阀芯组件、增压泵和净水器
CN221299448U (zh) 一种微型隔膜泵传动装置
CN216198922U (zh) 阀芯组件、增压泵和净水器
TWI732422B (zh) 具消音洩氣結構之微型泵
CN113123945A (zh) 一种用于农业喷灌的基于柔性支撑的音叉式谐振泵
CN214578528U (zh) 振动机构
US11572873B2 (en) Thin profile gas transporting device
CN104806561A (zh) 一种带加宽叶轮出口调节装置的可调泵
CN219654857U (zh) 一种便于精确组装行星齿轮的蠕动泵
WO2023124724A1 (zh) 隔膜泵及净水器
US20200200168A1 (en) Oil pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18563229

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022889217

Country of ref document: EP

Ref document number: 22889217.0

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022889217

Country of ref document: EP

Effective date: 20231127