WO2023077860A1 - 一种复合式坐标测量仪 - Google Patents

一种复合式坐标测量仪 Download PDF

Info

Publication number
WO2023077860A1
WO2023077860A1 PCT/CN2022/105589 CN2022105589W WO2023077860A1 WO 2023077860 A1 WO2023077860 A1 WO 2023077860A1 CN 2022105589 W CN2022105589 W CN 2022105589W WO 2023077860 A1 WO2023077860 A1 WO 2023077860A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
assembly
light source
bottom light
mobile platform
Prior art date
Application number
PCT/CN2022/105589
Other languages
English (en)
French (fr)
Inventor
王志伟
曹葵康
周健
朱怡
杨聪
黄沄
蔡雄飞
徐一华
Original Assignee
苏州天准科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州天准科技股份有限公司 filed Critical 苏州天准科技股份有限公司
Publication of WO2023077860A1 publication Critical patent/WO2023077860A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • G01B11/007Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines feeler heads therefor

Definitions

  • the invention belongs to the field of high-precision measurement, and in particular relates to a composite coordinate measuring instrument.
  • Coordinate measurement machine (coordinate measurement machine, CMM) is a commonly used geometric dimension measuring instrument, which has a wide range of applications in manufacturing.
  • CMM Coordinate measurement machine
  • machining accuracy of the workpiece is increasing, the geometric shape is becoming more and more complex, and the requirements for production efficiency are getting higher and higher.
  • a general-purpose high-precision compound coordinate measuring machine has emerged, which integrates various probes such as contact probes, image probes, and optical distance probes on one coordinate measuring machine to achieve high-precision and rapid measurement of workpieces with complex geometries. Measurement.
  • the object of the present invention is to provide a compound coordinate measuring instrument, which can solve the above problems.
  • a composite coordinate measuring instrument includes a granite base with feet, a gantry side column, a Y-axis mobile platform assembly, an X-axis mobile platform assembly, a Z-axis mobile platform assembly, a composite probe assembly and a console
  • the Y-axis mobile platform assembly is installed on the upper part of the granite base and is arranged between two gantry side columns, and the lower parts of both ends of the X-axis mobile platform assembly are supported on the top of the two gantry side columns
  • the Z-axis moving table assembly is inserted in the middle of the X-axis moving table assembly and moves laterally therewith
  • the compound measuring head assembly is installed at the lower end of the Z-axis moving table assembly and moves vertically thereupon
  • the The measuring instrument also includes a bottom light source assembly, the upper end of the bottom light source assembly is connected to the X-axis moving stage assembly and moves laterally therewith, the lower end of the bottom light source assembly is connected to the inside of the Y-axis moving stage assembly, and
  • the Y-axis mobile platform assembly includes two left and right Y-axis guide rails arranged at intervals on the granite base, and a Y-axis linear motor stator and a Y-axis linear motor motor are arranged in the Y direction between the two Y-axis guide rails.
  • a plurality of Y-direction magnetic pressure steel sheets and magnet seats are installed, and an upper floating slide plate passes through the magnet seats and Y-direction magnetic pressure steel sheets.
  • the straddle is installed on two Y-axis guide rails; a detection stage and a stage glass plate are arranged above the upper floating slide plate.
  • the X-axis mobile platform assembly includes an X-axis beam, an X-direction air bearing slide group, an X-direction magnetic steel bar, an X-axis linear motor stator, and an X-axis linear motor mover;
  • the X-axis beam spans the The tops of the two gantry side columns are fixedly arranged, the multiple air-floating skateboards of the X-direction air-floating skateboard group are arranged on the top surface and the side of the X-axis crossbeam, and the X-direction magnetic pressure steel strips are arranged on the X-axis
  • the two sides of the beam are arranged side by side with the air-floating skateboards arranged adjacent to each other, and the stator of the X-axis linear motor is fixed to the X-direction magnetic pressure steel bar on one side and the outer surface of the air-floating skateboard, and the mover of the X-axis linear motor It is matched with the stator of the X-
  • the Z-axis mobile station assembly includes a device including a Z-axis bracket, a Z-axis main body, a Z-axis motor unit, a lock control unit, a limit unit, a balance unit and a Z-axis grating unit; wherein, the Z-axis main body, the Z-axis The motor unit, the lock control unit and the limit unit are connected to the Z-axis bracket, and are fixed to the X-axis moving table assembly by the Z-axis bracket; the Z-axis motor unit drives the Z-axis main body vertically To move controllably, the lock control unit and the balance unit are used to lock the Z-axis and stop it in an abnormal state, and the limit unit is arranged on the Z-axis main body and limits the movement of the Z-axis main body to a limit travel threshold Inside.
  • the compound measuring head assembly includes a touch probe, an image measuring head and a spectral confocal measuring head, and the fused and calibrated compound measuring head assembly moves vertically along the Z axis under the control of the Z-axis moving stage assembly , and independently or all participate in coordinate measurement.
  • the measuring instrument also includes an error compensation unit, and the error compensation unit includes temperature sensors arranged at the grating units of the Y-axis moving stage assembly, the X-axis moving stage assembly, and the Z-axis moving stage assembly, for real-time measurement Temperature data is compensated for temperature errors.
  • the measuring instrument also includes an air control system, which includes an air source, a pre-atmospheric valve, a three-stage filter valve group, a one-stage diverter valve, a three-axis pressure regulating valve, a three-axis electromagnetic switch, A three-axis diverter valve, a brake shoe pressure regulating valve and a locking solenoid valve, the three-axis diverter valve is connected with the Y-axis moving table assembly, the X-axis moving table assembly, and the Z-axis moving table assembly; the brake shoe pressure regulating valve is connected with the Z-axis moving table assembly The balance cylinder brake shoe provided by the axis moving table assembly is connected to realize the shutdown emergency response to abnormal air pressure; the locking solenoid valve is connected to the lock control unit of the Z-axis moving table assembly to deal with the locking emergency response to abnormal speed and acceleration.
  • an air control system which includes an air source, a pre-atmospheric valve, a three-stage filter valve group, a one-stage diverter valve,
  • the beneficial effect of the present invention is that: the composite measuring instrument of the present invention is equipped with three different measuring heads, and the accuracy and accuracy of the measuring instrument are improved by setting temperature compensation, response to abnormal air pressure, and abnormal control of speed and acceleration. Measurement and control efficiency, measurement accuracy can reach sub-micron or even sub-nanometer level, and can be widely used in the field of industrial measurement.
  • Fig. 1 is the composite coordinate measuring instrument schematic diagram of band protective cover of the present invention
  • Fig. 2 is the schematic diagram of the composite coordinate measuring instrument with protective cover removed;
  • FIG. 3 is an exploded schematic view of the Y-axis mobile station assembly
  • Figure 4 is a schematic diagram of the air circuit of the air control system.
  • Y-axis moving table assembly 401, Y-axis guide rail; 402, Y-axis linear motor stator; 403, Y-axis linear motor mover; 404, Y-side air bearing slide; 405, Y-axis grating unit; 406, Y-direction Magnetic pressing steel sheet; 407, magnet seat; 408, upper floating slide plate; 409, detection carrier; 4091, bottom light source cavity; 410, carrier glass plate; Chain; 414, Y-axis side cover plate; 415, Y-axis organ cover;
  • X-axis moving table assembly 501, X-axis beam; 502, X-direction air bearing slide group; 503, X-direction magnetic pressure steel bar; 504, X-axis linear motor stator; 505, X-axis linear motor mover; 506 , X-axis grating unit; 507, X-axis side cover plate; 508, X-axis organ cover;
  • Z-axis moving table assembly 601, Z-axis bracket; 602, Z-axis main body; 603, Z-axis motor unit; 604, lock control unit; 605, limit unit; 606, balance unit; 607, Z-axis shield ;
  • Bottom light source assembly 801. Bottom light source linear motor; 802. Bottom light source adapter plate; 803. Bottom light source L-shaped adapter frame; 804. Bottom light source body;
  • Air control system 901. Air source; 902. Pre-atmospheric pressure valve; 903. Three-stage filter valve group; 904. One-stage diverter valve; 905. Three-axis pressure regulating valve; 906. Three-axis electromagnetic switch; 907 , Three-axis diverter valve; 908, brake shoe pressure regulating valve; 909, locking solenoid valve.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • a composite coordinate measuring instrument see Figures 1-3, the measuring instrument includes a granite base 2 with a foot 1, a gantry side column 3, a Y-axis moving table assembly 4, an X-axis moving table assembly 5, and a Z-axis Mobile platform assembly 6, composite measuring head assembly 7, bottom light source assembly 8 and console.
  • the Y-axis mobile platform assembly 4 is installed on the upper part of the granite base 2 and is set between the two gantry side columns 3, and the lower parts of the two ends of the X-axis mobile platform assembly 5 are supported on the two gantry On the top of the side column 3, the Z-axis moving table assembly 6 is plugged into the middle of the X-axis moving table assembly 5 and moves laterally therewith, and the composite measuring head assembly 7 is installed at the lower end of the Z-axis moving table assembly 6 And move vertically thereupon, the measuring instrument also includes a bottom light source assembly 8, the upper end of the bottom light source assembly 8 is connected to the described X-axis moving stage assembly 5 and moves laterally thereupon, the bottom light source assembly 8 The lower end is connected to the inside of the Y-axis moving stage assembly 4 and provides bottom light upwards.
  • the Y-axis moving stage assembly 4, the X-axis moving stage assembly 5, the Z-axis moving stage assembly 6 and the compound probe assembly 7 are all Telecommunications connection with said console
  • the Y-axis mobile platform assembly 4 includes two left and right Y-axis guide rails 401 arranged at intervals on the granite base 2, and a Y-axis linear motor stator 402, Y-axis linear motor stator 402, Y Axis linear motor mover 403, Y-side air bearing slide 404 and Y-axis grating unit 405, a plurality of Y-direction magnetic pressure steel sheets 406 and magnet seats 407 are installed on the two Y-axis guide rails 401, and an upper floating slide 408 passes through The magnet base 407 and the Y-direction magnetic pressure steel sheet 406 are installed across the two Y-axis guide rails 401 ; a detection stage 409 and a stage glass plate 410 are arranged above the upper floating slide plate 408 .
  • the Y-axis moving table assembly 4 also includes a Y-axis anti-off block 411 and a buffer unit 412 arranged on the outer side of the Y-axis guide rail 401 , and a drag chain 413 is arranged on the outer side of one Y-axis guide rail 401 .
  • stage glass plate 410 is arranged on the top surface of the detection stage 409, and a bottom light source cavity 4091 is provided in the middle of the detection stage 409, and the lower end of the bottom light source assembly 8 is controllable on the top surface of the detection stage 409.
  • the bottom light source chamber 4091 moves laterally, and provides bottom light upward through the stage glass plate 410 .
  • the Y-axis moving table assembly 4 also includes a Y-axis side cover plate 414 disposed on the outer periphery of the Y-axis guide rail 401, and a Y-axis bellows cover 415 is arranged on the top surface of the Y-axis guide rail 401 to cover the uncovered part of the detection carrier 409. cover.
  • the X-axis mobile platform assembly 5 includes an X-axis beam 501, an X-direction air bearing slide group 502, an X-direction magnetic pressure steel bar 503, an X-axis linear motor stator 504, and an X-axis linear motor mover 505;
  • the axial beam 501 is fixedly arranged across the tops of the two gantry side columns 3, and the multiple air bearing skateboards of the X-direction air bearing slide group 502 are arranged on the top and side surfaces of the X-axis beam 501, and the X-direction magnetic Pressed steel strips 503 are arranged on both sides of the X-axis beam 501 and adjacent to the air-floating slides arranged on the side.
  • the X-axis linear motor stator 504 is fixed to the X-direction magnetic pressed steel strips 503 on one side and the air-floated slides.
  • the X-axis linear motor mover 505 is matched with the X-axis linear motor stator 504; a Z-direction opening is set in the middle of the X-axis beam 501 for installing the Z-axis moving table assembly 6 , and an X-axis grating unit 506 is arranged at the bottom surface of the X-axis beam 501 near the lateral edge of the Z-direction opening.
  • the X-axis moving table assembly 5 also includes an X-axis side cover plate 507 arranged on the outer periphery of the X-axis beam 501, and an X-axis organ cover 508 is arranged on the top surface of the X-axis side cover plate 507 to make the X-axis moving table assembly 5
  • the uncovered part of the top surface is covered to prevent dust and protect it.
  • the Z-axis mobile station assembly 6 includes devices including a Z-axis support 601, a Z-axis main body 602, a Z-axis motor unit 603, a lock control unit 604, a limit unit 605, a balance unit 606 and a Z-axis grating unit, wherein:
  • the Z-axis main body 602, the Z-axis motor unit 603, the lock control unit 604, the limit unit 605 and the balance unit 606 are connected to the Z-axis bracket 601, and are fixed to the X-axis mobile platform by the Z-axis bracket 601 on component 5.
  • the Z-axis motor unit 603 drives the Z-axis main body 602 to move vertically and controllably, the lock control unit 604 is used to lock the Z-axis and stop it in an abnormal state, and the limit unit 605 is set on the Z-axis The movement of the Z-axis body 602 is limited within a defined travel threshold.
  • the locking control unit 604 includes a locking cylinder, a locking pressure plate, a spring and a braking column (not shown in the figure), and the distance between the two braking columns is shortened by the action of the locking cylinder to shorten the distance between the two.
  • the Z-axis main body 602 is locked and positioned.
  • the balance unit 606 includes a balance cylinder, a cylinder piston rod and a brake shoe (not shown) located on the outer periphery of the piston rod, the top end of the piston rod is mechanically fixedly connected to the Z-axis main body 602; the brake shoe is pushed by the air control system to move the piston The rod is locked and positioned to realize the air pressure balance control of the Z-axis main body 602.
  • the Z-axis moving platform assembly 6 also includes a Z-axis shield 607 sleeved on its outer periphery for protection against collisions and dust.
  • the composite probe assembly 7 includes a contact probe 701, an image probe 702 and a spectral confocal probe 703, and the composite probe assembly 7 after fusion calibration moves along the Z-axis under the control of the Z-axis moving stage assembly 6. Move vertically and participate in coordinate surveys individually or collectively.
  • the bottom light source assembly 8 is arranged under the composite measuring head assembly 7 and can move laterally under control, and the bottom light source assembly 8 includes an X-direction air bearing slide assembly 502 installed on the X-axis moving table assembly 5
  • the bottom light source linear motor 801 on the top, a bottom light source adapter plate 802 is installed on the mover of the bottom light source linear motor 801 and moves laterally in a controllable manner accordingly, and the two ends of a bottom light source L-shaped adapter frame 803 are respectively Connect the bottom light source adapter plate 802 and a bottom light source body 804 , and place the bottom light source body 804 in the bottom light source cavity 4091 of the detection stage 409 through the bottom light source L-shaped adapter frame 803 .
  • the measuring instrument also includes an error compensation unit, and the error compensation unit includes temperature sensors arranged at the grating units of the Y-axis moving stage assembly 4, the X-axis moving stage assembly 5, and the Z-axis moving stage assembly 6. Perform temperature error compensation on real-time measurement of temperature data.
  • the measuring instrument also includes an air control system 9, which includes an air source 901, a pre-atmospheric valve 902, a three-stage filter valve group 903, a one-stage diverter valve 904, a three-axis pressure regulating valve 905, Three-axis electromagnetic switch 906, three-axis diverter valve 907, brake shoe pressure regulating valve 908 and locking solenoid valve 909, the three-axis diverter valve 907 is connected with the Y-axis moving table assembly 4, the X-axis moving table assembly 5, and the Z-axis moving table The component 6 is connected; the brake shoe pressure regulating valve 908 is connected with the balance cylinder brake shoe provided by the Z-axis mobile platform component 6, so as to realize the shutdown emergency response to abnormal air pressure; the locking solenoid valve 909 is connected with the Z-axis mobile platform component 6 The locking control unit 604 is connected to deal with abnormal speed and acceleration locking emergency response.
  • an air control system 9 which includes an air source 901, a pre-atmospheric valve 902, a three-
  • the composite probe assembly 7 (hereinafter referred to as the probe) is installed at the lower end of the Z-axis moving table assembly 6 (hereinafter referred to as the Z-axis). If the Z-axis is out of balance or the speed and acceleration are too fast, the probe may be damaged. . In order to protect the safety of the measuring head and the Z-axis, it is necessary to monitor the state of the Z-axis. Once the composite measuring instrument is in an abnormal state, an emergency braking signal is sent immediately to lock the Z-axis. Specifically: after the lock control unit 604 receives the lock command , control the locking cylinder to lock and position the Z-axis to achieve braking.
  • the balance cylinder of the balance unit 606 is used to make the Z-axis in a dynamic balance state, and the Z-axis is mechanically connected to the cylinder piston.
  • the piston moves up and down, and the compressed air is pressed into the cylinder or released from the cylinder through the pressure reducing valve.
  • a lock cylinder and a spring compression device of a lock control unit 604 are installed on the top of the balance cylinder.
  • the locking cylinder pushes the locking pressure plate; if the pressure is lower than the set threshold, the locking cylinder cuts off the air, and the locking pressure plate is under the action of the spring to hold the Z-axis tightly to prevent the Z-axis from falling by itself, as shown in Figure 6 .
  • a disc brake shoe is installed on the balance cylinder top of the balance unit 606. If the cylinder pressure is normal, the brake shoe will open; if the pressure is lower than the set threshold, the brake shoe will be locked immediately, and the piston rod will be tightly held to prevent the Z-axis from falling by itself.
  • the locking solenoid valve 909 When the air supply pressure of the air source 901 reaches the lower limit of the pressure, the locking solenoid valve 909 is opened, and the locking cylinder is released; when the air source pressure reaches the lower limit of the pressure setting of the triaxial pressure regulating valve 905, the triaxial electromagnetic switch 906 is opened for ventilation;
  • the pressure switch at the brake shoe pressure regulating valve 908 of the Z-axis balance cylinder or the XYZ three-axis module corresponds to the three-axis pressure regulating valve 905, when the air supply pressure is lower than the set air pressure 0.03MP, the signal of the pressure switch is fed back through the I/O port Give the ACS controller an emergency stop of the linear motor, and simultaneously cut off the locking cylinder of the locking control unit 604 and the three-axis electromagnetic switch 906 and locking solenoid valve 909 for air supply to the XYZ module, so that the XYZ three-axis module is tightly held.
  • Temperature sensors are attached to both ends of the grating assembly of each axis, and the average value of the two temperature sensors is taken as the temperature ts of the grating ruler of the axis, and another temperature sensor tp is set on the tested part to calculate the measurement result L
  • the correction amount ⁇ L is used to compensate the temperature error in real time.
  • ⁇ p is the linear expansion coefficient (1/°C) of the tested part
  • ⁇ t p is the deviation of the temperature of the tested part relative to 20°C (°C)
  • ⁇ s is the linear expansion coefficient of the grating ruler
  • ⁇ t s is the deviation of the grating scale temperature relative to 20°C.
  • the grating ruler Since ⁇ L is only related to the temperature and linear expansion coefficient of the grating ruler, the measured object, but not to the temperature and linear expansion coefficient of the machine frame, the grating ruler is installed with one end fixed and one end floating to avoid linear expansion of the scale when both ends are fixed. The coefficients are affected by the frame.

Abstract

一种复合式坐标测量仪,属于高精测量领域,测量仪包括带地脚(1)的花岗石底座(2)、龙门侧立柱(3)、Y轴移动台组件(4)、X轴移动台组件(5)、Z轴移动台组件(6)、复合式测头组件(7)、误差补偿单元、气控系统(9)和控制台,复合式测量仪具备三种不同测量头,通过设置温度补偿、气压异常应对、速度及加速度异常控制提高了测量仪的精度和测控效率,测量精度能够达到亚微米甚至亚纳米级别,在工业测量领域可以广泛应用。

Description

一种复合式坐标测量仪 技术领域
本发明属于高精测量领域,具体涉及一种复合式坐标测量仪。
背景技术
坐标测量机(coordinate measurement machine,CMM)是一种常用的几何尺寸测量仪器,在制造业中有着广泛的应用。随着制造业的不断发展,工件的加工精度日益提高、几何形状日趋复杂、对生产效率的要求越来越高,传统的接触式坐标测量机越来越难以满足制造业发展需求。为此,出现了通用型高精度复合式坐标测量机,将接触式探针、影像测头、光学距离测头等多种测头集成在一台坐标测量机上,实现复杂几何形状工件的高精度快速测量。
然而,现有的方案中,如接触式探针和激光传感器-锥光全息传感器-X射线传感器的多传感器三维复合测量,其测量精度仍达不到高精度的亚微米甚至纳米级。因此,需要设计一种新型的具有对异常速度、气压、稳定感应和应急处理的复合式的测量仪。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种复合式坐标测量仪,其能解决上述问题。
一种复合式坐标测量仪,测量仪包括带地脚的花岗石底座、龙门侧立柱、Y轴移动台组件、X轴移动台组件、Z轴移动台组件、复合式测头组件和控制台,所述Y轴移动台组件安装于所述花岗石底座的上部并位于两根龙门侧立柱之间设置,所述X轴移动台组件、的两端下部支撑在两根龙门侧立柱的顶部, 所述Z轴移动台组件插接在所述X轴移动台组件中部并随之横向移动,所述复合式测头组件安装于Z轴移动台组件的下端并随之竖向移动,所述测量仪还包括一个底光源组件,所述底光源组件的上端连接至所述X轴移动台组件并随之横向移动,所述底光源组件的下端连接至所述Y轴移动台组件内部,并向上方提供底光,所述Y轴移动台组件、X轴移动台组件、Z轴移动台组件和复合式测头组件均与所述控制台电讯连接。
进一步的,所述Y轴移动台组件包括安装在花岗石底座上间隔设置的左右两个Y轴导轨,在两个Y轴导轨之间Y向设置Y轴直线电机定子、Y轴直线电机动子、Y侧气浮滑板和Y轴光栅单元,在两个所述Y轴导轨上安装多个Y向磁压钢片和磁铁座,一个上浮滑板通过所述磁铁座和Y向磁压钢片横跨的安装在两个Y轴导轨上;在所述上浮滑板上方设置检测载台和载台玻璃板。
进一步的,所述X轴移动台组件包括X轴横梁、X向气浮滑板组、X向磁压钢条、X轴直线电机定子、X轴直线电机动子;所述X轴横梁横跨在两根龙门侧立柱顶端固定设置,所述X向气浮滑板组的多个气浮滑板设置在所述X轴横梁的顶面和侧面,所述X向磁压钢条设置在所述X轴横梁的两侧面并于侧面设置的气浮滑板并排临近设置,所述X轴直线电机定子固定至一个侧面上的X向磁压钢条和气浮滑板外表面上,所述X轴直线电机动子配套的连接至所述X轴直线电机定子上;在所述X轴横梁中部设置Z向开口,用于安装Z轴移动台组件,并在所述X轴横梁底面临近所述Z向开口的横向边处设置X轴光栅单元。
进一步的,所述Z轴移动台组件包括装置包括Z轴支架、Z轴主体、Z轴电机组、锁控单元、限位单元、平衡单元和Z轴光栅单元;其中,Z轴主体、Z轴电机组、锁控单元和限位单元连接至所述Z轴支架上,并由所述Z轴支架固定至所述X轴移动台组件上;所述Z轴电机组驱动所述Z轴主体竖向可控的 移动,所述锁控单元和平衡单元用于在异常状态下锁定Z轴并停机,所述限位单元设置在所述Z轴主体上并限制Z轴主体的运动在限定行程阈值内。
进一步的,所述复合式测头组件包括接触式探针、影像测头和光谱共焦测头,融合标定后的复合式测头组件在Z轴移动台组件控制下沿着Z轴竖向移动,并独立或全部参与坐标测量。
进一步的,所述测量仪还包括误差补偿单元,所述误差补偿单元包括设置在Y轴移动台组件、X轴移动台组件、Z轴移动台组件的光栅单元处的温度传感器,用于实时测量温度数据进行温度误差补偿。
进一步的,所述测量仪还包括气控系统,所述气控系统包括气源、前置常压阀、三级过滤阀组、一级分流阀、三轴调压阀、三轴电磁开关、三轴分流阀、闸瓦调压阀和锁定电磁阀,所述三轴分流阀与Y轴移动台组件、X轴移动台组件、Z轴移动台组件连通;所述闸瓦调压阀与Z轴移动台组件设置的平衡气缸闸瓦连接,以实现对异常气压的停机应急反应;所述锁定电磁阀与Z轴移动台组件的锁控单元连接,以应对异常速度和加速度的锁定应急反应。
相比现有技术,本发明的有益效果在于:通过本发明的复合式测量仪,具备三种不同测量头,通过设置温度补偿、气压异常应对、速度及加速度异常控制提高了测量仪的精度和测控效率,测量精度能够达到亚微米甚至亚纳米级别,在工业测量领域可以广泛应用。
附图说明
图1为本发明带防护罩的复合式坐标测量仪示意图;
图2为去除防护罩的复合式坐标测量仪的示意图;
图3为Y轴移动台组件的分解示意图;
图4为气控系统的气路示意图。
图中:
1、地脚;
2、花岗石底座;
3、龙门侧立柱;
4、Y轴移动台组件;401、Y轴导轨;402、Y轴直线电机定子;403、Y轴直线电机动子;404、Y侧气浮滑板;405、Y轴光栅单元;406、Y向磁压钢片;407、磁铁座;408、上浮滑板;409、检测载台;4091、底光源腔;410、载台玻璃板;411、Y轴防脱块;412、缓冲单元;413、拖链;414、Y轴侧罩板;415、Y轴风琴罩;
5、X轴移动台组件;501、X轴横梁;502、X向气浮滑板组;503、X向磁压钢条;504、X轴直线电机定子;505、X轴直线电机动子;506、X轴光栅单元;507、X轴侧罩板;508、X轴风琴罩;
6、Z轴移动台组件;601、Z轴支架;602、Z轴主体;603、Z轴电机组;604、锁控单元;605、限位单元;606、平衡单元;607、Z轴护罩;
7、复合式测头组件;701、接触式探针;702、影像测头;703、光谱共焦测头;
8、底光源组件;801、底光源直线电机;802、底光源转接板;803、底光源L形转接架;804、底光源本体;
9、气控系统;901、气源;902、前置常压阀;903、三级过滤阀组;904、一级分流阀;905、三轴调压阀;906、三轴电磁开关;907、三轴分流阀;908、闸瓦调压阀;909、锁定电磁阀。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,本说明书中所使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
一种复合式坐标测量仪,参见图1-图3,测量仪包括带地脚1的花岗石底座2、龙门侧立柱3、Y轴移动台组件4、X轴移动台组件5、Z轴移动台组件6、复合式测头组件7、底光源组件8和控制台。
整体布置:Y轴移动台组件4安装于所述花岗石底座2的上部并位于两根龙门侧立柱3之间设置,所述X轴移动台组件5、的两端下部支撑在两根龙门侧立柱3的顶部,所述Z轴移动台组件6插接在所述X轴移动台组件5中部并随之横向移动,所述复合式测头组件7安装于Z轴移动台组件6的下端并随之 竖向移动,所述测量仪还包括一个底光源组件8,所述底光源组件8的上端连接至所述X轴移动台组件5并随之横向移动,所述底光源组件8的下端连接至所述Y轴移动台组件4内部,并向上方提供底光,所述Y轴移动台组件4、X轴移动台组件5、Z轴移动台组件6和复合式测头组件7均与所述控制台电讯连接。
其中,所述Y轴移动台组件4包括安装在花岗石底座2上间隔设置的左右两个Y轴导轨401,在两个Y轴导轨401之间Y向设置Y轴直线电机定子402、Y轴直线电机动子403、Y侧气浮滑板404和Y轴光栅单元405,在两个所述Y轴导轨401上安装多个Y向磁压钢片406和磁铁座407,一个上浮滑板408通过所述磁铁座407和Y向磁压钢片406横跨的安装在两个Y轴导轨401上;在所述上浮滑板408上方设置检测载台409和载台玻璃板410。
进一步的,所述Y轴移动台组件4还包括设置在Y轴导轨401外侧边的Y轴防脱块411和缓冲单元412,并在一个Y轴导轨401的外侧设置拖链413。
进一步的,所述载台玻璃板410设置在所述检测载台409的顶面,在所述检测载台409的中部开设底光源腔4091,所述底光源组件8的下端可控的在所述底光源腔4091内横向移动,并透过所述载台玻璃板410向上方提供底光。
进一步的,所述Y轴移动台组件4还包括设置在Y轴导轨401外周包覆Y轴侧罩板414,Y轴导轨401顶面设置Y轴风琴罩415将检测载台409未覆盖处包覆。
其中,所述X轴移动台组件5包括X轴横梁501、X向气浮滑板组502、X向磁压钢条503、X轴直线电机定子504、X轴直线电机动子505;所述X轴横梁501横跨在两根龙门侧立柱3顶端固定设置,所述X向气浮滑板组502的多个气浮滑板设置在所述X轴横梁501的顶面和侧面,所述X向磁压钢条503设 置在所述X轴横梁501的两侧面并于侧面设置的气浮滑板并排临近设置,所述X轴直线电机定子504固定至一个侧面上的X向磁压钢条503和气浮滑板外表面上,所述X轴直线电机动子505配套的连接至所述X轴直线电机定子504上;在所述X轴横梁501中部设置Z向开口,用于安装Z轴移动台组件6,并在所述X轴横梁501底面临近所述Z向开口的横向边处设置X轴光栅单元506。
进一步的,所述X轴移动台组件5还包括设置在X轴横梁501外周的X轴侧罩板507,X轴侧罩板507顶面设置X轴风琴罩508将X轴移动台组件5的顶面未覆盖处包覆,起到防尘和保护作用。
其中,所述Z轴移动台组件6包括装置包括Z轴支架601、Z轴主体602、Z轴电机组603、锁控单元604、限位单元605、平衡单元606和Z轴光栅单元,其中:
Z轴主体602、Z轴电机组603、锁控单元604、限位单元605和平衡单元606连接至所述Z轴支架601上,并由所述Z轴支架601固定至所述X轴移动台组件5上。
所述Z轴电机组603驱动所述Z轴主体602竖向可控的移动,所述锁控单元604用于在异常状态下锁定Z轴并停机,所述限位单元605设置在所述Z轴主体602上并限制Z轴主体602的运动在限定行程阈值内。
进一步的,所述锁控单元604包括锁定气缸、锁定压板、弹簧和制动柱(图未示),通过锁定气缸动作将两个制动柱之间的距离缩短,以将两者之间的Z轴主体602锁紧定位。
进一步的,所述平衡单元606包括平衡气缸、气缸活塞杆和位于活塞杆外周的闸瓦(图未示),活塞杆顶端与Z轴主体602机械固定连接;通过气控系统推动闸瓦将活塞杆锁紧定位,实现Z轴主体602的气压平衡控制。
进一步的,Z轴移动台组件6还包括Z轴护罩607套接在其外周,进行碰撞、灰尘等的抵御防护。
其中,复合式测头组件7包括接触式探针701、影像测头702和光谱共焦测头703,融合标定后的复合式测头组件7在Z轴移动台组件6控制下沿着Z轴竖向移动,并独立或全部参与坐标测量。
其中,所述底光源组件8设置在所述复合式测头组件7下方且可控的横向移动,且所述底光源组件8包括安装于X轴移动台组件5的X向气浮滑板组502上的底光源直线电机801,一个底光源转接板802安装于所述底光源直线电机801的动子上并随之可控的横向移动,一个底光源L形转接架803的两端分别连接所述底光源转接板802和一个底光源本体804,通过底光源L形转接架803将底光源本体804置于所述检测载台409的底光源腔4091中。
进一步的,所述测量仪还包括误差补偿单元,所述误差补偿单元包括设置在Y轴移动台组件4、X轴移动台组件5、Z轴移动台组件6的光栅单元处的温度传感器,用于实时测量温度数据进行温度误差补偿。
进一步的,测量仪还包括气控系统9,所述气控系统9包括气源901、前置常压阀902、三级过滤阀组903、一级分流阀904、三轴调压阀905、三轴电磁开关906、三轴分流阀907、闸瓦调压阀908和锁定电磁阀909,所述三轴分流阀907与Y轴移动台组件4、X轴移动台组件5、Z轴移动台组件6连通;所述闸瓦调压阀908与Z轴移动台组件6设置的平衡气缸闸瓦连接,以实现对异常气压的停机应急反应;所述锁定电磁阀909与Z轴移动台组件6的锁控单元604连接,以应对异常速度和加速度的锁定应急反应。
平衡及锁定控制示例说明:
Z轴动平衡:复合式测头组件7(以下简称测头)装在Z轴移动台组件6 (以下简称Z轴)下端,若Z轴失去平衡或速度及加速度过快容易使测头受到损伤。为保护测头及Z轴安全,需对Z轴状态实施监控,一旦复合式测量仪处于非正常状态,立即发出紧急制动信号,使Z轴锁定,具体为:锁控单元604接收锁定指令后,控制锁定气缸将Z轴锁紧定位,实现制动。本方案利用平衡单元606的平衡气缸使Z轴处于动态平衡状态,Z轴与气缸活塞之间用机械连接。当Z轴运动时,活塞随之上下运动,压缩空气经减压阀被压入气缸或从气缸中释放。平衡气缸上部装有一个锁控单元604的锁定气缸和弹簧压紧装置。若平衡气缸压力正常,锁定气缸推开锁定压板;若压力低于设定的阈值,锁定气缸断气,锁定压板在弹簧作用下,将Z轴抱紧,防止Z轴自行下落,如图6所示。
机械运动的保护:若Y轴移动台组件4、X轴移动台组件5、Z轴移动台组件6的气浮导轨或气浮滑板压缩空气压力达不到额定值,气悬浮不能保证,会使机械运动的精度下降,负载增加造成机械部分损坏,测量精度也无法保证。因此,须对气浮导轨或气浮滑板对应的气路压力状态进行监控,在进气主回路中安装一个压力传感器,若气压达不到额定值,传感器输出值低于设定阈值,机械部分处于锁定状态。在测量仪处于运动状态时,若气压突然下降,低于阈值,则传感器发出紧急制动信号,使直线电机停止运动,锁定机械部分。同时,控制软件报警。
具体如下:
利用气缸使Z轴处于动态平衡状态,如图4所示的气路图,防止Z轴失去平衡或速度过快使测头受到损伤。平衡单元606的平衡气缸上部装有一个盘形闸瓦。若气缸压力正常,闸瓦打开;若压力低于设定的阈值,闸瓦立即锁紧,将活塞杆抱紧,防止Z轴自行下落。当气源901供气压力达到压力下限时,锁 定电磁阀909打开,锁定气缸松开;当气源压力达到三轴调压阀905的压力设定下限时,三轴电磁开关906打开通气;当Z轴平衡气缸的闸瓦调压阀908处压力开关或XYZ三轴模组对应三轴调压阀905处供气气压低于设定气压0.03MP时,压力开关的信号通过I/O口反馈给ACS控制器,使直线电机急停,并同时切断锁控单元604的锁定气缸和XYZ模组供气的三轴电磁开关906及锁定电磁阀909,XYZ三轴模组抱紧。
温度补偿:每个轴的光栅组件两端部均贴装温度传感器,取两个温度传感器的均值为该轴光栅尺的温度ts,在被测件上另设置一个温度传感器tp,计算测量结果L的修正量ΔL,对温度误差进行实时补偿。
ΔL=L(α pt pst s)……………………………………式1;
式中:α p为被测件的线膨胀系数(1/℃),
Δt p为被测件温度相对于20℃的偏差(℃),
α s为光栅尺的线膨胀系数,
Δt s为光栅尺温度相对于20℃的偏差。
由于ΔL只与光栅尺、被测件的温度和线膨胀系数有关,而与机器框架的温度和线膨胀系数无关,光栅尺采用一端固定一端浮动安装方式,避免采用两端固定时,标尺线膨胀系数受框架影响。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种复合式坐标测量仪,其特征在于:测量仪包括带地脚(1)的花岗石底座(2)、龙门侧立柱(3)、Y轴移动台组件(4)、X轴移动台组件(5)、Z轴移动台组件(6)、复合式测头组件(7)和控制台,所述Y轴移动台组件(4)安装于所述花岗石底座(2)的上部并位于两根龙门侧立柱(3)之间设置,所述X轴移动台组件(5)、的两端下部支撑在两根龙门侧立柱(3)的顶部,所述Z轴移动台组件(6)插接在所述X轴移动台组件(5)中部并随之横向移动,所述复合式测头组件(7)安装于Z轴移动台组件(6)的下端并随之竖向移动,所述测量仪还包括一个底光源组件(8),所述底光源组件(8)的上端连接至所述X轴移动台组件(5)并随之横向移动,所述底光源组件(8)的下端连接至所述Y轴移动台组件(4)内部,并向上方提供底光,所述Y轴移动台组件(4)、X轴移动台组件(5)、Z轴移动台组件(6)和复合式测头组件(7)均与所述控制台电讯连接。
  2. 根据权利要求1所述的复合式坐标测量仪,其特征在于:所述Y轴移动台组件(4)包括安装在花岗石底座(2)上间隔设置的左右两个Y轴导轨(401),在两个Y轴导轨(401)之间Y向设置Y轴直线电机定子(402)、Y轴直线电机动子(403)、Y侧气浮滑板(404)和Y轴光栅单元(405),在两个所述Y轴导轨(401)上安装多个Y向磁压钢片(406)和磁铁座(407),一个上浮滑板(408)通过所述磁铁座(407)和Y向磁压钢片(406)横跨的安装在两个Y轴导轨(401)上;在所述上浮滑板(408)上方设置检测载台(409)和载台玻璃板(410)。
  3. 根据权利要求2所述的复合式坐标测量仪,其特征在于:所述Y轴移动台组件(4)还包括设置在Y轴导轨(401)外侧边的Y轴防脱块(411)和缓冲单元(412),并在一个Y轴导轨(401)的外侧设置拖链(413)。
  4. 根据权利要求2或3所述的复合式坐标测量仪,其特征在于:所述载台玻璃板(410)设置在所述检测载台(409)的顶面,在所述检测载台(409)的中部开设底光源腔(4091),所述底光源组件(8)的下端可控的在所述底光源腔(4091)内横向移动,并透过所述载台玻璃板(410)向上方提供底光。
  5. 根据权利要求2所述的复合式坐标测量仪,其特征在于:所述X轴移动台组件(5)包括X轴横梁(501)、X向气浮滑板组(502)、X向磁压钢条(503)、X轴直线电机定子(504)、X轴直线电机动子(505);所述X轴横梁(501)横跨在两根龙门侧立柱(3)顶端固定设置,所述X向气浮滑板组(502)的多个气浮滑板设置在所述X轴横梁(501)的顶面和侧面,所述X向磁压钢条(503)设置在所述X轴横梁(501)的两侧面并于侧面设置的气浮滑板并排临近设置,所述X轴直线电机定子(504)固定至一个侧面上的X向磁压钢条(503)和气浮滑板外表面上,所述X轴直线电机动子(505)配套的连接至所述X轴直线电机定子(504)上;在所述X轴横梁(501)中部设置Z向开口,用于安装Z轴移动台组件(6),并在所述X轴横梁(501)底面临近所述Z向开口的横向边处设置X轴光栅单元(506)。
  6. 根据权利要求2所述的复合式坐标测量仪,其特征在于:所述Z轴移动台组件(6)包括装置包括Z轴支架(601)、Z轴主体(602)、Z轴电机组(603)、锁控单元(604)、限位单元(605)、平衡单元(606)和Z轴光栅单元,其中,
    Z轴主体(602)、Z轴电机组(603)、锁控单元(604)、限位单元(605)和平衡单元(606)连接至所述Z轴支架(601)上,并由所述Z轴支架(601)固定至所述X轴移动台组件(5)上;
    所述Z轴电机组(603)驱动所述Z轴主体(602)竖向可控的移动,所述 锁控单元(604)和平衡单元(606)用于在异常状态下锁定Z轴并停机,所述限位单元(605)和设置在所述Z轴主体(602)上并限制Z轴主体(602)的运动在限定行程阈值内。
  7. 根据权利要求2所述的复合式坐标测量仪,其特征在于:所述复合式测头组件(7)包括接触式探针(701)、影像测头(702)和光谱共焦测头(703),融合标定后的复合式测头组件(7)在Z轴移动台组件(6)控制下沿着Z轴竖向移动,并独立或全部参与坐标测量。
  8. 根据权利要求6所述的复合式坐标测量仪,其特征在于:所述底光源组件(8)设置在所述复合式测头组件(7)下方且可控的横向移动,且所述底光源组件(8)包括安装于X轴移动台组件(5)的X向气浮滑板组(502)上的底光源直线电机(801),一个底光源转接板(802)安装于所述底光源直线电机(801)的动子上并随之可控的横向移动,一个底光源L形转接架(803)的两端分别连接所述底光源转接板(802)和一个底光源本体(804),通过底光源L形转接架(803)将底光源本体(804)置于所述检测载台(409)的底光源腔(4091)中。
  9. 根据权利要求6所述的复合式坐标测量仪,其特征在于:所述测量仪还包括误差补偿单元,所述误差补偿单元包括设置在Y轴移动台组件(4)、X轴移动台组件(5)、Z轴移动台组件(6)的光栅单元处的温度传感器,用于实时测量温度数据进行温度误差补偿。
  10. 根据权利要求6所述的复合式坐标测量仪,其特征在于:所述测量仪还包括气控系统(9),所述气控系统(9)包括气源(901)、前置常压阀(902)、三级过滤阀组(903)、一级分流阀(904)、三轴调压阀(905)、三轴电磁开关(906)、三轴分流阀(907)、闸瓦调压阀(908)和锁定电磁阀(909), 所述三轴分流阀(907)与Y轴移动台组件(4)、X轴移动台组件(5)、Z轴移动台组件(6)连通;所述闸瓦调压阀(908)与Z轴移动台组件(6)设置的平衡气缸闸瓦连接,以实现对异常气压的停机应急反应;所述锁定电磁阀(909)与Z轴移动台组件(6)的锁控单元(604)连接,以应对异常速度和加速度的锁定应急反应。
PCT/CN2022/105589 2021-11-04 2022-07-14 一种复合式坐标测量仪 WO2023077860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111299508.2 2021-11-04
CN202111299508.2A CN114234798A (zh) 2021-11-04 2021-11-04 一种复合式坐标测量仪

Publications (1)

Publication Number Publication Date
WO2023077860A1 true WO2023077860A1 (zh) 2023-05-11

Family

ID=80743754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105589 WO2023077860A1 (zh) 2021-11-04 2022-07-14 一种复合式坐标测量仪

Country Status (2)

Country Link
CN (1) CN114234798A (zh)
WO (1) WO2023077860A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234798A (zh) * 2021-11-04 2022-03-25 苏州天准科技股份有限公司 一种复合式坐标测量仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292729A (zh) * 2013-05-16 2013-09-11 厦门大学 一种非球面法向误差检测装置
CN103884303A (zh) * 2014-03-31 2014-06-25 青岛麦科三维测量设备有限公司 一种多功能测量机
JP2015092172A (ja) * 2014-12-16 2015-05-14 株式会社東京精密 三次元座標測定機
CN105606046A (zh) * 2015-11-04 2016-05-25 苏州天准科技股份有限公司 一种复合式坐标测量机融合标定器
CN208635724U (zh) * 2018-09-06 2019-03-22 武汉普瑞斯测量技术有限公司 一种复合式影像测头组件以及复合式影像坐标测量仪
CN214591001U (zh) * 2021-08-11 2021-11-02 北京瑞邦精控科技有限公司 大负载精密气浮直线平台
CN114234798A (zh) * 2021-11-04 2022-03-25 苏州天准科技股份有限公司 一种复合式坐标测量仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126618B (zh) * 2007-09-25 2010-06-09 中国航空工业第一集团公司北京航空精密机械研究所 三坐标测量机主轴气动安全保护装置
CN112750712B (zh) * 2019-10-31 2023-06-02 上海微电子装备(集团)股份有限公司 测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103292729A (zh) * 2013-05-16 2013-09-11 厦门大学 一种非球面法向误差检测装置
CN103884303A (zh) * 2014-03-31 2014-06-25 青岛麦科三维测量设备有限公司 一种多功能测量机
JP2015092172A (ja) * 2014-12-16 2015-05-14 株式会社東京精密 三次元座標測定機
CN105606046A (zh) * 2015-11-04 2016-05-25 苏州天准科技股份有限公司 一种复合式坐标测量机融合标定器
CN208635724U (zh) * 2018-09-06 2019-03-22 武汉普瑞斯测量技术有限公司 一种复合式影像测头组件以及复合式影像坐标测量仪
CN214591001U (zh) * 2021-08-11 2021-11-02 北京瑞邦精控科技有限公司 大负载精密气浮直线平台
CN114234798A (zh) * 2021-11-04 2022-03-25 苏州天准科技股份有限公司 一种复合式坐标测量仪

Also Published As

Publication number Publication date
CN114234798A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110142647B (zh) 一种液体静压导轨稳态性能实时测量装置及方法
Bryan Design and construction of an ultraprecision 84 inch diamond turning machine
WO2023077860A1 (zh) 一种复合式坐标测量仪
JP3325077B2 (ja) 電磁式アライメント装置
US9898000B2 (en) Planar positioning system and method of using the same
EP2431826A1 (en) A measurement configuration based on linear scales able to measure to a target also moving perpendicular to the measurement axis
CN103389052A (zh) 一种可补偿轴系误差的立式晶圆形状测量装置
CN101571374A (zh) 微型高精度三坐标测量机误差检定系统
CN102706315A (zh) 平台台面的平面度测量装置及测量方法
JP2012009023A (ja) エンコーダ・フィードバック、誤差マッピング、および空気圧制御を用いた誤差補償システム
CN103234506B (zh) 一种车架总成在线检测机
CN104880911A (zh) 一种光刻机工件台及其垂向位置初始化方法
CN104400763B (zh) 气体润滑与摩擦阻尼复合式高刚度高稳定性二维调整工作台
CN105066939A (zh) 球棒球心距检测装置及其检测方法
TWI501058B (zh) 用以改善站台移動時間之方法、系統及設備
US20070152391A1 (en) Error corrected positioning stage
CN105290915B (zh) 一种大口径超精密磨床集成系统
Gorges et al. Integrated planar 6-DOF nanopositioning system
CN101126631B (zh) 三坐标测量机光栅读数头自适应机构
CN105157661A (zh) 一种大行程亚微米级平面精度测量系统
CN115854908A (zh) 一种非接触式超精密轮廓扫描检测装置
CN210486802U (zh) 一种用于大尺寸晶圆厚度检测平台
CN211682942U (zh) 安全高精高效全自动精密成型机
CN204757963U (zh) 球棒球心距检测装置
CN112676915A (zh) 一种三轴数控机床及三轴数控机床的误差补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888895

Country of ref document: EP

Kind code of ref document: A1