WO2023077847A1 - 一种llc谐振变换电路、充电设备、储能设备和用电设备 - Google Patents

一种llc谐振变换电路、充电设备、储能设备和用电设备 Download PDF

Info

Publication number
WO2023077847A1
WO2023077847A1 PCT/CN2022/103844 CN2022103844W WO2023077847A1 WO 2023077847 A1 WO2023077847 A1 WO 2023077847A1 CN 2022103844 W CN2022103844 W CN 2022103844W WO 2023077847 A1 WO2023077847 A1 WO 2023077847A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transformer
electrically connected
transformers
harmonic
Prior art date
Application number
PCT/CN2022/103844
Other languages
English (en)
French (fr)
Inventor
陈建生
刘洋
李永发
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP22888882.2A priority Critical patent/EP4407854A1/en
Publication of WO2023077847A1 publication Critical patent/WO2023077847A1/zh
Priority to US18/654,559 priority patent/US20240291389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0074Plural converter units whose inputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to the technical field of power electronics, in particular to an LLC resonant conversion circuit, charging equipment, energy storage equipment and electrical equipment.
  • the charging speed of the battery is one of the main factors restricting the development of electric vehicles.
  • the power core unit of the charging pile is a charging module.
  • the traditional charging module is generally implemented by AC/DC (alternating current/direct current, AC/DC) rectification unit, DC/DC (direct current/direct current, DC/DC) rectification unit and other circuits, but with the current conversion efficiency
  • AC/DC alternating current/direct current, AC/DC
  • DC/DC direct current/direct current, DC/DC
  • LLC is the abbreviation of Lr, Lm and Cr, where Lr is the resonant inductance, Lm is the excitation inductance, and Cr is the resonant capacitor
  • resonant converter has high switching frequency, low turn-off loss, high conversion efficiency, and low electromagnetic interference noise. , Switch stress is small and so on, so it is widely used in charging piles.
  • the output power of the LLC resonant converter is limited, and it is generally suitable for low and medium power products. In order to allow the charging module to obtain higher output power, it can be achieved by using two or more LLC resonant converters connected in parallel or in series. However, if multiple LLC resonant converters are connected in parallel, each LLC resonant converter needs to be current-shared, and if multiple LLC resonant converters are connected in series, each LLC resonant converter needs to be voltage-balanced.
  • an LLC resonant conversion circuit a charging device, an energy storage device, and an electrical device are provided in an embodiment of the present application.
  • an LLC resonant conversion circuit including: N harmonic circuits, where N is a positive integer greater than or equal to 2; each harmonic circuit includes a switch circuit, an LC resonance circuit, a transformer circuit, and a rectifier circuit; the transformer circuit includes at least three transformers, and each transformer includes a first winding and a second winding; wherein, the first of the at least two transformers in the transformer circuit in the first harmonic circuit One end of the winding is electrically connected to the LC resonant circuit in the first harmonic circuit, and the other end is electrically connected to each other, and is electrically connected to one end of the first winding of a transformer in the transformer circuit in the other harmonic circuit, so
  • the other harmonic circuits are harmonic circuits other than the first harmonic circuit in the N harmonic circuits; or the second windings of at least two transformers in the transformer circuit in the first harmonic circuit One end is electrically connected to the rectifier circuit in the first harmonic circuit, and the other end is electrically connected to each other,
  • this embodiment is composed of multiple harmonic circuits, and multiple transformers in each harmonic circuit are electrically connected to each other, and are electrically connected to a transformer in other harmonic circuits, so that the harmonic circuits cross each other, which can
  • the electrical signal in one harmonic circuit is shunted or divided into another harmonic circuit, and when each harmonic circuit is connected in parallel, the electrical signal in each harmonic circuit
  • the current value is the same, and when the harmonic circuits are connected in series, the voltage value of the electrical signal in each harmonic circuit is the same, which effectively reduces the complexity of the control strategy of the entire LLC resonant conversion circuit, and reduces the complexity of the LLC resonant conversion circuit. cost.
  • one end of the first windings of at least two transformers in the first transformer circuit is electrically connected to the first LC resonant circuit
  • the The other ends of the first windings of at least two transformers are electrically connected to each other, and are electrically connected to one end of the first winding of the first transformer in the second transformer circuit
  • the other ends of the first windings of the first transformer are electrically connected to the On the first LC resonant circuit
  • one end of the first windings of at least two transformers in the second transformer circuit except the first transformer is electrically connected to the second LC resonant circuit
  • the second transformer The other ends of the first windings of at least two transformers in the circuit other than the first transformer are electrically connected to each other, and are electrically connected to one end of the first winding of the second transformer in the first transformer circuit
  • the second The other end of the first winding of the transformer is electrically connected to the second LC resonant circuit;
  • one end of the primary windings of the two transformers in the transformer circuit in one harmonic circuit is electrically connected to the LC resonant circuit, and the other ends are electrically connected to each other, and It is electrically connected with the primary winding of a transformer in the transformer circuit in other harmonic circuits, so that the current value of the two transformers in the harmonic circuit is equal to the current value of a transformer in other harmonic circuits, and then each Accumulation of the current value of each transformer in each harmonic circuit, the output current value of the rectifier circuit in each harmonic circuit is the same, and the autonomy of the electrical signal in each harmonic circuit is realized without adding any devices. shunt.
  • one end of the second windings of at least three transformers in the first transformer circuit is electrically connected to the first rectifier circuit, and the other ends of the second windings of the at least three transformers are electrically connected to each other;
  • One end of the second windings of at least three transformers in the second transformer circuit is electrically connected to the second rectifier circuit, and the other ends of the second windings of the at least three transformers are electrically connected to each other;
  • the first harmonic The wave circuit includes the first rectification circuit
  • the second harmonic circuit includes the second rectification circuit.
  • the current value output by each transformer is the same, so as to avoid that the currents on the secondary windings of each transformer are out of phase.
  • the current on the primary winding is not the same, thus affecting the autonomous shunting of the entire circuit.
  • the rectifier circuits in each harmonic circuit are connected in series or in parallel.
  • the current value of the entire LLC resonant conversion circuit can be increased by connecting the rectifier circuits in parallel, and the current value of the entire LLC resonant conversion circuit can be increased by connecting the rectifier circuits in series. Voltage value.
  • one end of the second windings of at least two transformers in the first transformer circuit is electrically connected to the first rectifier circuit, so The other end of the second winding of the at least two transformers is electrically connected to each other, and is electrically connected to one end of the second winding of the first transformer in the second transformer circuit; the other end of the second winding of the first transformer is electrically connected On the first rectifier circuit; one end of the second windings of at least two transformers in the second transformer circuit except the first transformer is electrically connected to the second rectifier circuit, and the second transformer circuit The other ends of the second windings of at least two transformers in the circuit except the first transformer are electrically connected to each other, and are electrically connected to one end of the second winding of the second transformer in the first transformer circuit; the second transformer The other end of the second winding is electrically connected to the second rectifier circuit; wherein, the first harmonic circuit includes the first transformer circuit and the first rectifier circuit, and
  • one end of the secondary windings of the two transformers in the transformer circuit in one harmonic circuit is electrically connected to the rectifier circuit, and the other end is electrically connected to each other, and is connected to the The secondary windings of a transformer in the transformer circuit in other harmonic circuits are electrically connected so that the current value of the two transformers in the harmonic circuit is equal to the current value of a transformer in each other harmonic circuit, and then each The accumulation of the current value of each transformer in the harmonic circuit results in the same output current value of the rectifier circuit in each harmonic circuit, realizing the autonomous shunting of the electrical signal in each harmonic circuit without adding any devices .
  • one end of the secondary windings of the two transformers in the transformer circuit in one harmonic circuit is electrically connected to the rectifier circuit, and the other end is electrically connected to each other, and is connected to the other end of the harmonic circuit.
  • the secondary winding of a transformer in the transformer circuit is electrically connected so that the voltage value across the two transformers in the harmonic circuit is equal to the voltage value across a transformer in each other harmonic circuit, and then each harmonic circuit.
  • the accumulation of the voltage values of each transformer results in the same output voltage value of the rectifier circuit in each harmonic circuit, realizing independent voltage division of the electrical signal in each harmonic circuit without adding any devices.
  • one end of the first windings of at least three transformers in the first transformer circuit is electrically connected to the first LC resonant circuit, and the other ends of the first windings of the at least three transformers are electrically connected to each other ;
  • One end of the first windings of at least three transformers in the second transformer circuit is electrically connected to the second LC resonant circuit, and the other ends of the first windings of the at least three transformers are electrically connected to each other; wherein, the first A harmonic circuit includes the first LC resonant circuit, and the second harmonic circuit includes the second LC resonant circuit.
  • the current value and voltage value input to the second winding by each transformer are the same, avoiding when each When the current or voltage on the first winding of the transformer is different, the current or voltage on the second winding is not the same, thereby affecting the autonomous current or voltage division of the entire circuit.
  • the rectification circuits in each harmonic circuit are connected in parallel.
  • the individual transformers in each transformer circuit are identical.
  • the at least three transformers in each transformer circuit share one iron core.
  • an embodiment of the present application provides a two-way three-phase LLC resonant conversion circuit, including: a first harmonic circuit and a second harmonic circuit, and the first harmonic circuit includes first switches electrically connected in sequence circuit, a first LC resonant circuit, a first transformer circuit and a first rectifier circuit; the second harmonic circuit includes a second switch circuit, a second LC resonant circuit, a second transformer circuit and a second rectifier circuit electrically connected in sequence ; Wherein, the first switch circuit and the second switch circuit are connected in series; each switch circuit includes three output ports, each LC resonant circuit includes three resonant inductors and three resonant capacitors, each resonant inductor and Each resonant capacitor is connected in series, each transformer circuit includes three transformers, each transformer includes a first winding and a second winding, and each rectifier circuit includes three input ports; wherein, the three output ports of the first switch circuit respectively connected in series with three resonant inductors and three re
  • One end of the first winding of one of the three transformers is electrically connected; one end of the first winding of the other of the three transformers in the first transformer circuit is connected to three of the second LC resonant circuits.
  • One resonant capacitor of the resonant capacitor is electrically connected, and the other end of the first winding of the other transformer in the three transformers in the first transformer circuit is connected to the other two transformers in the three transformers in the second transformer circuit.
  • One end of the first winding of the first transformer circuit is electrically connected; one end of the second winding of the three transformers in the first transformer circuit is respectively electrically connected to the three input ports of the first rectifier circuit, and the first transformer circuit in the The other ends of the second windings of the three transformers are electrically connected to each other; the three output ports of the second switch circuit are respectively connected in series with the three resonant inductors and the three resonant capacitors in the second LC resonant circuit; The other two resonant capacitors of the three resonant capacitors in the second LC resonant circuit are respectively electrically connected to the other ends of the first windings of the other two transformers in the three transformers in the second transformer circuit; One ends of the second windings of the three transformers in the second transformer circuit are respectively electrically connected to the three input ports of the second rectifier circuit, and the other ends of the second windings of the three transformers in the second transformer circuit are electrically connected to each other. connect.
  • an embodiment of the present application provides a two-way three-phase LLC resonant conversion circuit, including: a first harmonic circuit and a second harmonic circuit, and the first harmonic circuit includes first switches electrically connected in sequence circuit, a first LC resonant circuit, a first transformer circuit and a first rectifier circuit; the second harmonic circuit includes a second switch circuit, a second LC resonant circuit, a second transformer circuit and a second rectifier circuit electrically connected in sequence ;
  • Each switch circuit includes three output ports, each LC resonant circuit includes three resonant inductors and three resonant capacitors, each resonant inductor is connected in series with each resonant capacitor, each transformer circuit includes three transformers, and each transformer Including a first winding and a second winding, each rectifier circuit includes three input ports; wherein, the three output ports of the first switching circuit are respectively connected with the three resonant inductors and the three in the first LC resonant circuit
  • the resonant capacitors
  • an embodiment of the present application provides a charging device, including: at least one LLC resonant conversion circuit as may be implemented in each of the first aspect.
  • an embodiment of the present application provides an energy storage device, including: a battery; at least one LLC resonant conversion circuit as may be implemented in the first aspect, wherein the LLC resonant conversion circuit is electrically connected to the battery , for processing the electrical signal input into the battery and inputting it into the battery.
  • an embodiment of the present application provides an electric device, which is characterized in that it includes: at least one electric device; at least one LLC resonant conversion circuit as may be realized in the first aspect, wherein the at least one LLC The resonant conversion circuit is electrically connected to the at least one electrical device, and is used for processing the electrical signal input into the at least one electrical device, and inputting the electrical signal into the at least one electrical device.
  • FIG. 1 is a schematic structural diagram of an LLC resonant conversion circuit provided in an embodiment of the present application
  • FIG. 2 is a schematic circuit diagram of parallel connection of switching circuits in the first two-way three-phase LLC resonant conversion circuit provided in the embodiment of the present application;
  • FIG. 3 is a schematic circuit diagram of parallel connection of switching circuits in the second two-way three-phase LLC resonant conversion circuit provided in the embodiment of the present application;
  • FIG. 4 is a schematic circuit diagram of parallel connection of switching circuits in the third two-way three-phase LLC resonant conversion circuit provided in the embodiment of the present application;
  • FIG. 5 is a schematic circuit diagram of parallel connection of switching circuits in an N-way three-phase LLC resonant conversion circuit provided in an embodiment of the present application;
  • FIG. 6 is a schematic circuit diagram of a switch circuit connected in series in a two-way three-phase LLC resonant conversion circuit provided in an embodiment of the present application;
  • FIG. 7 is a schematic circuit diagram of a switch circuit connected in series in an N-channel three-phase LLC resonant conversion circuit provided in an embodiment of the present application.
  • first and second and the like in the specification and claims herein are used to distinguish different objects, not to describe a specific order of objects.
  • first response message and the second response message are used to distinguish different response messages, rather than describing a specific order of the response messages.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • multiple means two or more, for example, multiple processing units refer to two or more processing units, etc.; multiple A component refers to two or more components or the like.
  • FIG. 1 is a schematic structural diagram of an LLC resonant conversion circuit provided in an embodiment of the present application.
  • the LLC resonant conversion circuit protected by the present application may include N harmonic circuits (100, 200, . . . , N00), where N is a positive integer greater than or equal to 2.
  • each harmonic circuit (100, 200, ..., N00) includes a switch circuit (101, 201, ..., N-1), an LC resonant circuit (102, 202, ..., N-2), a transformer circuit (103 , 203,..., N-3) and rectification circuit (104, 204,..., N-4).
  • each harmonic circuit (100, 200, ..., N00)
  • the switch circuit, LC resonant circuit, transformer circuit and rectifier circuit are electrically connected in sequence, so that the electrical signal input by the external circuit passes through the switch circuit, LC resonant circuit, and transformer circuit in turn.
  • the current value or voltage value of the input electrical signal is increased, so as to increase the power of the input electrical signal.
  • Each harmonic circuit (100, 200, ..., N00) can be connected in parallel or in series, specifically: the switching circuit (101, 201, ..., N00) in each harmonic circuit (100, 200, ..., N00) -1), the positive poles of each switching circuit can be electrically connected together, and the negative poles of each switching circuit can be electrically connected together to realize the parallel connection between each harmonic circuit; it is also possible to connect the The positive pole of the switch circuit is electrically connected to the negative pole of the switching circuit on one side, and the negative pole of the switching circuit is electrically connected to the positive pole of the switching circuit on the other side.
  • each harmonic circuit is connected in series. .
  • the switch circuit (101, 201, ..., N-1) generally establishes a communication connection with the external controller, and controls whether the electrical signal input to the harmonic circuit is turned on by receiving the control command sent by the controller, and the input
  • the direct current signal is converted into a square wave electric signal.
  • the switch circuit 101 is a three-phase switch circuit, which may include a first switch tube Q 11 , a second switch tube Q 12 , a third switch tube Q 13 , a fourth switch tube Q 14 , and a second switch tube Q 14 .
  • the fifth switching tube Q 15 and the sixth switching tube Q 16 and the input capacitor C 11 .
  • the first switching tube Q11 and the second switching tube Q12 are connected in series, and an output port P11 is electrically connected between the first switching tube Q11 and the second switching tube Q12 , which can resonate with LC
  • the circuit 102 is electrically connected; the third switching tube Q13 and the fourth switching tube Q14 are connected in series, and an output port P12 is electrically connected between the third switching tube Q13 and the fourth switching tube Q14 , which can It is electrically connected to the LC resonant circuit 102; the fifth switching tube Q15 and the sixth switching tube Q16 are connected in series, and an output port P is electrically connected between the fifth switching tube Q15 and the sixth switching tube Q16 13 , which can be electrically connected with the LC resonant circuit 102 .
  • Each group of switch tubes is connected in parallel with the input capacitor C11 .
  • the input capacitor C11 filters the electrical signal input from the outside, and then controls the upper switch tube and the lower switch tube in each group of switch tubes. They are alternately conducted to convert the filtered direct current signal into a square wave electric signal, so that the three output ports P can output three square wave electric signals.
  • the switch tube in the switch circuit can be made of one or more metal- oxide-semiconductor field-effect transistors (metal-oxide-semiconductor field-effect transistor, MOS), and the controller communicates with the gate of each MOS Connect to control whether the gate of each MOS is energized, so that the switch tube is in the on state or off state.
  • MOS metal-oxide-semiconductor field-effect transistor
  • the switching circuit 101 is only a three-phase switching circuit as an example, and it can also be a two-phase switching circuit according to actual product requirements, which is not limited in this application.
  • the circuit structure of other switch circuits (201, ..., N-1) is generally the same as the circuit structure of the switch circuit 101, and of course it can be different from the circuit structure of the switch circuit 101 according to actual product requirements. Applications are not limited here either.
  • the LC resonance circuit (102, 202, ..., N-2) can be connected in series with the transformer circuit (103, 203, ..., N-3) to form an LLC resonance.
  • the primary winding of at least one transformer of each transformer circuit (referring to the coil winding on the side electrically connected to the LC resonant circuit) can be electrically cross-connected with the primary winding of at least one transformer of other transformer circuits, or each The secondary winding of at least one transformer of a transformer circuit (referring to the coil winding on the side electrically connected to the rectifier circuit) can be electrically cross-connected with the secondary winding of at least one transformer of other transformer circuits, so that in a harmonic circuit
  • the electrical signal can be shunted to another or more harmonic circuits, and when each harmonic circuit is connected in parallel, the electrical signal in each harmonic circuit is current-balanced, and each harmonic circuit is connected in series When , the electrical signal in each harmonic circuit is voltage-balanced.
  • the LC resonant circuit 102 includes three resonant inductors (L 11 , L 12 , L 13 ) and three resonant capacitors (C 12 , C 13 , C 14 ), and the transformer circuit 103 Three transformers (T 11 , T 12 , T 13 ) are included.
  • the resonant inductor L 11 is connected in series with the resonant capacitor C 12 , and the other end of the resonant inductor L 11 is electrically connected with the output port P 11 , forming a group of LC resonance;
  • the resonant inductor L 12 is connected in series with the resonant capacitor C 13 , and the resonant inductor L
  • the other end of 12 is electrically connected to the output port P12 to form a set of LC resonance;
  • the resonant inductor L13 is connected in series with the resonant capacitor C14 , and the other end of the resonant inductor L13 is electrically connected to the output port P13 to form a set of LC resonance .
  • each transformer T in the transformer circuit 103 can be connected in series with the resonant capacitor C in the LC resonant circuit 102, or can be connected in series with the resonant capacitor C in other harmonic circuits (202, ..., N02), forming LLC resonance.
  • the circuit in which each group of resonant inductance L and resonant capacitor C in series in the harmonic circuit can be connected in series with the primary windings of transformers in different harmonic circuits, so that when each switching circuit is connected in parallel, the The current is evenly distributed to different harmonic circuits, so that the current value of the electrical signal output by each harmonic circuit is the same.
  • the secondary winding of each transformer T in each transformer circuit may be connected in series with the rectifier circuit in the corresponding harmonic circuit.
  • each transformer T in the transformer circuit 103 can be connected in series with the rectifier circuit 104, and can also be connected in series with other rectifier circuits (204, ..., N04), so that when each switch circuit is connected in parallel, each harmonic
  • the current in the circuit is evenly divided into different harmonic circuits, so that the current value of the electrical signal output by each harmonic circuit is the same; when each switching circuit is connected in series, the voltage on each harmonic circuit is divided into different harmonics On the circuit, the voltage values at both ends of each transformer circuit are the same.
  • the primary winding of each transformer T in each transformer circuit may be connected in series with the LC resonant circuit in the corresponding harmonic circuit.
  • each harmonic circuit (100, 200, ..., N00)
  • the number of LC resonance groups in the LC resonance circuit is the same as the input port P in the switch circuit
  • the number of transformers in the transformer circuit is the same as the LC resonance
  • the number of groups of LC resonances in the circuit is the same.
  • Each transformer in the transformer circuit generally uses the same transformer, that is, a transformer with the same impedance and the same number of turns of the primary and secondary windings.
  • a transformer it is not limited to the structure shown in Figure 2, that is, the relationship between the number of primary windings and secondary windings is 1:1, and can also be 1:x, or x:1 or x:
  • the relationship between x and y is a positive integer greater than or equal to 1, which is not limited in this application.
  • the rectifier circuit (104, 204, ..., N-4) is connected in series with the transformer circuit to convert the AC signal input by the transformer circuit into a DC signal.
  • the rectifier circuit 104 includes a first diode D 11 , a second diode D 12 , a third diode D 13 , a fourth diode D 14 , a fifth and second diode Diode D 15 and diode D 16 , and output capacitor C 16 .
  • first diode D 11 and the second diode D 12 are connected in series, and an input port P 14 is electrically connected between the first diode D 11 and the second diode D 12 , which can It is electrically connected to the secondary winding of one or more transformers; the third diode D 13 and the fourth diode D 14 are connected in series, and between the third diode D 13 and the fourth diode D 14 An input port P 15 is electrically connected between them, which can be electrically connected to the secondary winding of one or more transformers; the fifth diode D 15 and the diode D 16 are connected in series, and the fifth diode D 15 and the diode The D 16 is electrically connected to an input port P 16 , which can be electrically connected to the secondary winding of one or more transformers.
  • Each group of diodes and the output capacitor C16 are connected together in parallel.
  • the AC signal is input into each group of diodes through the three output ports P, the AC signal passes through the upper part of each group of diodes.
  • the diode or the lower diode flows out to convert the AC signal into a DC signal, and then filter through the input capacitor C11 to obtain a filtered DC signal.
  • the rectifier circuits (104, 204, ..., N-4) can be connected together in parallel, and the current value of the output electrical signal can be increased by converging the current value of the electrical signal in each rectifier circuit
  • the rectifier circuits in each harmonic circuit can also be connected together in series, and the voltage value of the output electrical signal can be increased by connecting the voltage values of the electrical signals in each rectifier circuit in series.
  • each harmonic circuit (100, 200, .
  • the LLC resonant conversion circuit to be protected in the embodiment of the present application is composed of multiple harmonic circuits, and multiple transformers in each harmonic circuit are electrically connected to each other, and are electrically connected to a transformer in other harmonic circuits, so that the harmonic The circuits are intersected with each other, and the electrical signal in one harmonic circuit can be shunted or divided into another harmonic circuit.
  • each harmonic circuit when each harmonic circuit is connected in parallel, each harmonic The current value of the electrical signal in the harmonic circuit is the same, and when the harmonic circuits are connected in series, the voltage value of the electrical signal in each harmonic circuit is the same, which effectively reduces the complexity of the control strategy of the entire LLC resonant conversion circuit, and The cost of the LLC resonant conversion circuit is reduced.
  • the circuit includes a first harmonic circuit 100 and a second harmonic circuit 200
  • the first harmonic circuit 100 includes a first switch circuit 101, a first LC
  • the resonant circuit 102 includes the first transformer circuit 103 and the first rectifier circuit 104
  • the second harmonic circuit 200 includes the second switch circuit 201 , the second LC resonant circuit 202 , the second transformer circuit 203 and the second rectifier circuit 204 .
  • the first switch circuit 101 and the second switch circuit 201 are connected in parallel
  • the first rectifier circuit 104 and the second rectifier circuit 204 are connected in parallel.
  • the voltage values of the electrical signals input to the first harmonic circuit 100 and the second harmonic circuit 200 are the same, but the voltage values flowing through the first harmonic circuit 100 and the second harmonic circuit 200 are the same.
  • the current value of the electrical signal of the second harmonic circuit 200 may be different, so that there is a difference in the resonance parameters between the electrical signals output by the first rectifier circuit 104 and the second rectifier circuit 204, resulting in the output of the two-way three-phase LLC resonant conversion circuit The electrical signal cannot provide electrical signals for electrical equipment.
  • the two LC resonant circuits and the primary windings of each transformer in the two transformer circuits can be The specific connection method is as follows:
  • One end of the transformer T11 in the first transformer circuit 103 is connected in series with the harmonic capacitor C12 in the first LC resonance circuit 102, and one end of the transformer T12 is connected in series with the harmonic capacitor C13 in the first LC resonance circuit 102 , the other end of the transformer T 11 is electrically connected to the other end of the transformer T 12 , and is electrically connected to one end of the transformer T 23 in the second transformer circuit 203;
  • the wave capacitor C 24 is connected in series, and the other end is electrically connected to one end of the transformer T 21 and one end of the transformer T 22 in the second transformer circuit 203 .
  • the other end of the transformer T 21 in the second transformer circuit 203 is connected in series with the harmonic capacitor C 22 in the second LC resonance circuit 202, and the other end of the transformer T 22 is connected in series with the harmonic capacitor C 23 in the second LC resonance circuit 202 connected in series.
  • connection mode between the two rectifier circuits and the secondary windings of each transformer in the two transformer circuits can be:
  • One end of the transformer T 11 in the first transformer circuit 103 is connected in series with the input port P 14 in the first rectification circuit 104, one end of the transformer T 12 is connected in series with the input port P 15 in the first rectification circuit 104, and the transformer T 13 One end of is connected in series with the input port P16 in the first rectifier circuit 104, the other end of the transformer T11 , the other end of the transformer T12 and the other end of the transformer T13 are electrically connected to each other; the transformer T in the second transformer circuit 203 One end of 21 is connected in series with the input port P 24 in the second rectification circuit 204, one end of the transformer T 22 is connected in series with the input port P 25 in the second rectification circuit 204, and one end of the transformer T 23 is connected in series with the input port P 25 in the second rectification circuit 204.
  • the input ports P 26 of are connected in series, and the other end of the transformer T 21 , the other end of the transformer T 22 and the other end of the transformer T 23 are electrically connected to each other. Since the connection between the rectifier circuit and the secondary winding of the transformer is stretched, it is in a "Y" shape, and this connection method can be called a Y-type connection method.
  • the current of the primary winding of the transformer T 11 is I AT11 (the current value is a vector, the same below), the current of the secondary winding of the transformer T 11 is I BT11 ; the current of the primary winding of the transformer T 12 is I AT12 , and the secondary winding of the transformer T 12 is I AT12
  • the current of the side winding is I BT12 ; the current of the primary winding of the transformer T 13 is I AT13 , the current of the secondary winding of the transformer T 13 is I BT13 ; the current of the primary winding of the transformer T 21 is I AT21 , and the secondary winding of the transformer T 21
  • the current of the primary winding of the transformer T 22 is I AT22 , the current of the secondary winding of the transformer T 22 is I BT22 ; the current of the primary winding of the transformer T 23 is I AT23 , and the current of the secondary winding of the transformer T 23 for I BT23 .
  • the phases between I AT11 , I AT12 and I AT13 are different, and the phases between I AT11 and I BT11 are the same; the relationship between other currents, and so on.
  • the phase difference among I AT11 , I AT12 and I AT13 is 120°.
  • the phases among I AT11 , I AT12 and I AT23 are different, and the phases between I AT21 , I AT22 and I AT13 are also different.
  • the two transformers in the first transformer circuit are electrically connected to each other, and then electrically connected to one transformer in the second transformer circuit, so that the current of the two transformers in the first transformer circuit is equal to that of the second transformer circuit.
  • the two transformers in the second transformer circuit are electrically connected to each other, and then electrically connected to a transformer in the first transformer circuit, so that the current of the two transformers in the second transformer circuit is equal to the current of the first transformer circuit
  • the current of one transformer in the first transformer circuit, so that the current of the first transformer circuit is equal to the current of the second transformer circuit, realizing the independent current sharing of each circuit in the two-way three-phase LLC resonant conversion circuit.
  • connection mode between the two rectifier circuits and the secondary windings of each transformer in the two transformer circuits may also be:
  • One end of the transformer T11 , one end of the transformer T12 and one end of the transformer T13 in the first transformer circuit 103 are electrically connected to each other, and the other end of the transformer T11 is electrically connected to the input port P14 in the first rectifier circuit 104,
  • the other end of the transformer T 12 is electrically connected to the input port P 15 in the first rectifier circuit 104, and the other end of the transformer T 13 is electrically connected to the input port P 16 in the first rectifier circuit 104;
  • the second transformer circuit 203 One end of the transformer T21 , one end of the transformer T22 and one end of the transformer T23 are connected in parallel, the other end of the transformer T21 is electrically connected to the input port P24 in the second rectifier circuit 204, and the other end of the transformer T22 One end is electrically connected to the input port P 25 of the second rectification circuit 204 , and the other end of the transformer T 23 is electrically connected to the input port P 26 of the second rectification circuit 204 . Since the connection between
  • the two rectifier circuits and the secondary windings of each transformer in the two transformer circuits can be made.
  • the specific connection method is as follows:
  • One end of the transformer T 11 in the first transformer circuit 103 is electrically connected to the input port P 14 in the first rectification circuit 104, and one end of the transformer T 12 is electrically connected to the input port P 15 in the first rectification circuit 104.
  • the other end of T11 is electrically connected with the other end of transformer T12 , and is electrically connected with one end of transformer T23 in the second transformer circuit 203;
  • One end of transformer T13 is electrically connected to the input port in the second rectifier circuit 204
  • the other end is electrically connected to one end of the transformer T 21 and one end of the transformer T 22 in the second transformer circuit 203 .
  • the other end of the transformer T 21 in the second transformer circuit 203 is electrically connected to the input port P 24 in the second rectifying circuit 204, and the other end of the transformer T 22 is electrically connected to the input port P 25 in the second rectifying circuit 204 .
  • connection between the two rectifier circuits and the primary windings of each transformer in the two transformer circuits can be a Y-type connection, specifically:
  • each harmonic circuit is the same, and the independent current sharing of each harmonic circuit in the two-way three-phase LLC resonant conversion circuit can be realized.
  • the phases among I BT11 , I BT12 and I BT23 are different, and the phases between I BT21 , I BT22 and I BT13 are also different.
  • connection between the rectifier circuit and the secondary winding of the transformer in Figure 4 is an example of a Y-type connection, or a ⁇ -type connection.
  • This application does not limit it here, and its specific connection structure can be Referring to FIG. 3 and the technical solutions corresponding to FIG. 3 , the present application will not repeat them here.
  • the circuit includes N harmonic circuits (100, 200, . . . , N00).
  • N harmonic circuits 100, 200, . . . , N00.
  • One end of the transformer T11 in the first transformer circuit 103 is connected in series with the harmonic capacitor C12 in the first LC resonance circuit 102, and one end of the transformer T12 is connected in series with the harmonic capacitor C13 in the first LC resonance circuit 102 , the other end of the transformer T 11 is electrically connected to the other end of the transformer T 12 , and then in turn electrically connected to one end of the transformer T 23 in the second transformer circuit 203, ..., one end of the transformer T N3 in the Nth transformer circuit N03 , so that each harmonic circuit includes current I BT11 +I BT12 ; after the two ends of the transformer T 13 in the first transformer circuit 103 are electrically connected to the transformer T 21 and the transformer T 22 in the second transformer circuit 203 respectively Nodes of ..., transformer T N1 and transformer T N2 in the Nth transformer circuit N03 are electrically connected to each other, so that each harmonic circuit includes current I BT21 + I BT22 + ...
  • connection between the rectifier circuit and the secondary winding of the transformer in Figure 5 is an example of a Y-type connection, or a ⁇ -type connection.
  • This application does not limit it here, and its specific connection structure can be Referring to FIG. 3 and the technical solutions corresponding to FIG. 3 , the present application will not repeat them here.
  • Fig. 5 is an example of the cross-connection mode between the LC resonant circuit and the primary windings of each transformer in the transformer circuit to realize the same current value of the electrical signal flowing through each harmonic circuit, and the rectifier circuit can also be used It is realized by cross-connection with the secondary windings of each transformer in the transformer circuit.
  • the specific connection structure can refer to the technical solutions corresponding to Fig. 4 and Fig. 4, and this application will not repeat them here. up.
  • each rectifier circuit due to the cross-connection between each rectifier circuit and the secondary winding of each transformer, the effect of autonomous current sharing of each harmonic circuit is realized. If each rectifier circuit is connected in series, each transformer and each The rectifier circuits are equipotential, so each rectifier circuit is cross-connected with the secondary winding of each transformer, and the independent current sharing effect of each harmonic circuit cannot be realized. Therefore, for the solution in FIG. 4 , the rectifier circuits cannot be electrically connected in series.
  • the circuit includes a first harmonic circuit 100 and a second harmonic circuit 200
  • the first harmonic circuit 100 includes a first switch circuit 101, a first LC
  • the resonant circuit 102 includes the first transformer circuit 103 and the first rectifier circuit 104
  • the second harmonic circuit 200 includes the second switch circuit 201 , the second LC resonant circuit 202 , the second transformer circuit 203 and the second rectifier circuit 204 .
  • the first switch circuit 101 and the second switch circuit 201 are connected in series, and the first rectifier circuit 104 and the second rectifier circuit 204 are connected in parallel.
  • the current value of the electric signal flowing through the first harmonic circuit 100 and the second harmonic circuit 200 is the same, but input to the first harmonic circuit 100 and the second harmonic circuit 200
  • the voltage values of the electrical signals in the second harmonic circuit 200 may be different, so that there is a difference in the resonance parameters between the electrical signals output by the first rectifier circuit 104 and the second rectifier circuit 204, resulting in the output of the two-way three-phase LLC resonant conversion circuit
  • the electrical signal cannot provide electrical signals for electrical equipment.
  • the two rectifier circuits and the secondary windings of each transformer in the two transformer circuits can be Cross connection, the specific connection method is:
  • One end of the transformer T 11 in the first transformer circuit 103 is electrically connected to the input port P 14 in the first rectification circuit 104, and one end of the transformer T 12 is electrically connected to the input port P 15 in the first rectification circuit 104.
  • the other end of T11 and the other end of transformer T12 are electrically connected to each other, and are electrically connected to one end of transformer T21 in the second transformer circuit 203; one end of transformer T13 is electrically connected to the input port in the second rectifier circuit 204 P 24 on.
  • the other end of the transformer T 21 in the second transformer circuit 203 is electrically connected to the input port P 16 in the first rectification circuit 104, and one end of the transformer T 22 is electrically connected to the input port P 25 in the second rectification circuit 204, One end of the transformer T 23 is electrically connected to the output port P 23 in the second rectifier circuit 204; the other end of the transformer T 22 is electrically connected to the other end of the transformer T 23 , and is connected to the transformer T 13 in the first transformer circuit 103 The other end is electrically connected.
  • connection between the two rectifier circuits and the primary windings of each transformer in the two transformer circuits can be a Y-type connection, specifically:
  • the voltage of the primary winding of transformer T 11 is V AT11
  • the voltage of the secondary winding of transformer T 11 is V BT11
  • the voltage of the primary winding of transformer T 12 is V AT12
  • the voltage of the secondary winding of transformer T 12 is V BT12
  • the voltage of the primary winding of T 13 is V AT13
  • the voltage of the secondary winding of transformer T 13 is V BT13
  • the voltage of the primary winding of transformer T 21 is V AT21
  • the voltage of the secondary winding of transformer T 21 is V BT21
  • the voltage of transformer T 22 The voltage of the primary winding is V AT22
  • the voltage of the secondary winding of the transformer T 22 is V BT22
  • the voltage of the primary winding of the transformer T 23 is V AT23
  • the voltage of the secondary winding of the transformer T 23 is V BT23 .
  • the phases between V AT11 , V AT12 and V AT13 are different, and the phases between V AT11 and V BT11 are the same; the relationship between other currents, and so on.
  • the phase difference among V AT11 , V AT12 and V AT13 is 120°.
  • the transformer T11 is electrically connected to the transformer T12 and is electrically connected to the transformer T21 , the output voltage of the first harmonic circuit 104 Similarly, the transformer T22 and the transformer T23 are electrically connected to each other, and are electrically connected to the transformer T13 , so the output voltage of the second harmonic circuit 204
  • the voltage value V1 of the first harmonic circuit 100 is the same as the voltage value V2 of the second harmonic circuit 200 , realizing independent voltage equalization of each harmonic circuit in the two-way three-phase LLC resonant conversion circuit.
  • the N-way three-phase LLC resonant conversion circuit includes N harmonic circuits (100, 200, . . . , N00).
  • N harmonic circuits 100, 200, . . . , N00.
  • One end of the transformer T 11 in the first transformer circuit 103 is electrically connected to the input port P 14 in the first rectification circuit 104, and one end of the transformer T 12 is electrically connected to the input port P 15 in the first rectification circuit 104, and then The other end of the transformer T11 and the other end of the transformer T12 are electrically connected to each other, and then are sequentially electrically connected to one end of the transformer T21 in the second transformer circuit 203, ..., one end of the transformer T N1 in the Nth transformer circuit N03, Make the voltage in the first harmonic circuit 100 be
  • One end of the transformer T 22 in the second transformer circuit 203 is electrically connected on the input port P 25 in the second rectifying circuit 204, and one end of the transformer T 23 is electrically connected on the input port P 26 in the second rectifying circuit 204, and then The other end of the transformer T 22 is electrically connected to the other end of the transformer T 23 , and is then electrically connected to one end of the transformer T 13 in the first transformer circuit 103, ...
  • connection between the LC resonant circuit and the primary winding of the transformer in Figure 6 and Figure 7 is an example of a Y-type connection, or a ⁇ -type connection, which is not limited in this application.
  • connection structure reference may be made to FIG. 3 and the technical solution corresponding to FIG. 3 , which will not be repeated in this application.
  • An embodiment of the present application provides a charging device, the charging device includes an LLC resonant conversion circuit, wherein the LLC resonant conversion circuit can be the LLC resonant conversion circuit as shown in Figure 1- Figure 7 and the corresponding protection scheme described above, because the charging device Including the LLC resonant conversion circuit, the charging device package has all or at least part of the advantages of the LLC resonant conversion circuit.
  • the charging device may be a charging pile, a charger and other devices.
  • An embodiment of the present application provides an energy storage device, the energy storage device includes an LLC resonant conversion circuit and a battery, wherein the LLC resonant conversion circuit is used to process electrical signals input into the battery by being electrically connected to the battery, and input into the battery.
  • the LLC resonant conversion circuit can be the LLC resonant conversion circuit as shown in Figures 1-7 and the above corresponding protection schemes. Since the energy storage device includes the LLC resonant conversion circuit, the energy storage device includes the LLC resonant conversion circuit. All or at least some of the advantages. Wherein, the energy storage device may be a lithium battery, a battery or the like.
  • An embodiment of the present application provides an electrical device, the electrical equipment includes an LLC resonant conversion circuit and at least one electrical device, wherein the LLC resonant conversion circuit is connected to at least one electrical device, and is used to input to at least one The electrical signal in the electrical device is processed and input to at least one electrical device.
  • the LLC resonant conversion circuit can be the LLC resonant conversion circuit as shown in Figures 1-7 and the above corresponding protection schemes. Since the electrical equipment includes the LLC resonant conversion circuit, the electrical equipment includes the LLC resonant conversion circuit. All or at least some of the advantages.
  • the electric device may be an electric vehicle, a base station, a communication device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种LLC谐振变换电路、充电设备、储能设备和用电设备,涉及电力电子技术领域。其中,该LLC谐振变换电路是由多个谐波电路构成,每个谐波电路中多个变压器相互电连接,并与其它谐波电路中的一个变压器电连接,使得谐波电路之间相互交叉,可以将一个谐波电路中的电信号分流或分压到另一个谐波电路中,在不增加任何器件的前提下,使得各个谐波电路之间并联时,每个谐波电路中的电信号的电流值相同,以及谐波电路之间串联时,每个谐波电路中的电信号的电压值相同,有效降低了整个LLC谐振变换电路的控制策略的复杂度,以及减低了LLC谐振变换电路的成本。

Description

一种LLC谐振变换电路、充电设备、储能设备和用电设备
本申请要求于2021年11月04日提交中国国家知识产权局、申请号为202111300517.9、申请名称为“一种LLC谐振变换电路、充电设备、储能设备和用电设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力电子技术领域,尤其涉及一种LLC谐振变换电路、充电设备、储能设备和用电设备。
背景技术
随着电动汽车行业的发展,电池的充电速度是目前制约电动汽车的发展主要因素之一。为了提高电动汽车的充电速度,可以通过配置更大功率的直流充电桩来实现,而充电桩的功率核心单元则是充电模块。传统的充电模块一般采用交流/直流(alternating current/direct current,AC/DC)整流单元、直流/直流(direct current/direct current,DC/DC)整流单元等电路来实现,但是随着电流变换效率和散热性能的要求越来越高,现有的整流电路无法满足要求。由于LLC(是Lr、Lm和Cr的缩写,其中,Lr为谐振电感,Lm为励磁电感,Cr为谐振电容)谐振变换器具有开关频率高、关断损耗小、转换效率高、电磁干扰噪声小、开关应力小等优点,因而被广泛的应用在充电桩中。
然而,LLC谐振变换器的输出功率是有限的,一般适用于中低功率产品中。为了让充电模块获取更高的输出功率,可以采用两路或两路以上的LLC谐振变换器并联或串联来实现。但是,如果多个LLC谐振变换器进行并联,需要对每个LLC谐振变换器均流,如果多个LLC谐振变换器进行串联,需要对每个LLC谐振变换器均压。为了解决每个LLC谐振变换器并联时电流不相同、串联时电压不相同,导致输出的电信号的谐振参数不同,一般需要在多个LLC谐振变换器组成的电路上增加均流或均压的控制电路,这无疑增加整个电路的成本,且导致整个电路的控制策略比较复杂。
发明内容
为了解决上述的问题,本申请的实施例中提供了一种LLC谐振变换电路、充电设备、储能设备和用电设备,通过让LLC谐振变换电路中的每个谐振电路中的变压器相互交叉,可以让整个LLC谐振变换电路在串联时进行自主均压,在并联时进行自主均流,无需增加额外控制电路,从而有效降低了整个LLC谐振变换电路的控制策略的复杂度,以及减低了LLC谐振变换电路的成本。
为此,本申请的实施例中采用如下技术方案:
第一方面,本申请实施例中提供一种LLC谐振变换电路,包括:N个谐波电路,N为大于等于2的正整数;每个谐波电路均包括依次电连接的开关电路、LC谐振电路、变压器电路和整流电路;所述变压器电路包括至少三个变压器,每个变压器包括第一绕组和第二绕组;其中,第一谐波电路中的变压器电路中的至少两个变压器的第一绕组的一端,与所述第一谐波电路中的LC谐振电路电连接,另一端相互电连接,并与其它谐波电路中的变压器电路中的一个变压器的第一绕组的一端电连接,所述其它谐波电路为所述N个谐波电路中除所述第一谐波电 路以外的谐波电路;或所述第一谐波电路中的变压器电路中的至少两个变压器的第二绕组的一端,与所述第一谐波电路中的整流电路电连接,另一端相互电连接,并与其它谐波电路中的变压器电路中的一个变压器的第二绕组的一端电连接。
在该实施方式中,由多个谐波电路构成,每个谐波电路中多个变压器相互电连接,并与其它谐波电路中的一个变压器电连接,使得谐波电路之间相互交叉,可以将一个谐波电路中的电信号分流或分压到另一个谐波电路中,在不增加任何器件的前提下,使得各个谐波电路之间并联时,每个谐波电路中的电信号的电流值相同,以及谐波电路之间串联时,每个谐波电路中的电信号的电压值相同,有效降低了整个LLC谐振变换电路的控制策略的复杂度,以及减低了LLC谐振变换电路的成本。
在一种实施方式中,当每个谐波电路中的开关电路之间并联连接时,第一变压器电路中至少两个变压器的第一绕组的一端电连接在第一LC谐振电路上,所述至少两个变压器的第一绕组的另一端相互电连接,并与第二变压器电路中的第一变压器的第一绕组的一端电连接;所述第一变压器的第一绕组的另一端电连接在所述第一LC谐振电路上;所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第一绕组的一端电连接在第二LC谐振电路上,所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第一绕组的另一端相互电连接,并与第一变压器电路中的第二变压器的第一绕组的一端电连接;所述第二变压器的第一绕组的另一端电连接在所述第二LC谐振电路上;其中,所述第一谐波电路包括所述第一LC谐振电路和所述第一变压器电路,所述第二变压器为所述第一变压器电路中除所述至少两个变压器以外的一个变压器,所述其它谐波电路包括所述第二谐波电路,所述第二谐波电路包括所述第二LC谐振电路和所述第二变压器电路。
在该实施方式中,当N个谐波电路中开关电路并联时,让一个谐波电路中变压器电路中两个变压器的原边绕组的一端与LC谐振电路电连接,另一端相互电连接,并与其它谐波电路中的变压器电路中的一个变压器的原边绕组电连接,使得该谐波电路中两个变压器的电流值等于其它各个谐波电路中的一个变压器的电流值,然后再将每个谐波电路各个变压器的电流值的累加,得到的每个谐波电路中的整流电路输出的电流值相同,实现在不增加任何器件的前提下,每个谐波电路中的电信号的自主分流。
在一种实施方式中,所述第一变压器电路中至少三个变压器的第二绕组的一端电连接在第一整流电路上,所述至少三个变压器的第二绕组的另一端相互电连接;所述第二变压器电路中至少三个变压器的第二绕组的一端电连接在第二整流电路上,所述至少三个变压器的第二绕组的另一端相互电连接;其中,所述第一谐波电路包括所述第一整流电路,所述第二谐波电路包括所述第二整流电路。
在该实施方式中,通过让每个变压器的第二绕组之间以并联的方式连接到整流电路中,让每个变压器输出的电流值相同,避免当每个变压器的副边绕组上电流不相同时,导致原边绕组上电流不相同,从而影响整个电路的自主分流。
在一种实施方式中,每个谐波电路中的整流电路之间串联或并联连接。
在该实施方式中,通过让各个整流电路之间以并联的方式连接,可以提高整个LLC谐振变换电路的电流值,让各个整流电路之间以串联的方式连接,可以提高整个LLC谐振变换电路的电压值。
在一种实施方式中,当每个谐波电路中的开关电路之间串联或并联连接时,第一变压器电路中至少两个变压器的第二绕组的一端电连接在第一整流电路上,所述至少两个变压器的第二绕组的另一端相互电连接,并与第二变压器电路中的第一变压器的第二绕组的一端电连 接;所述第一变压器的第二绕组的另一端电连接在所述第一整流电路上;所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第二绕组的一端电连接在第二整流电路上,所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第二绕组的另一端相互电连接,并与第一变压器电路中的第二变压器的第二绕组的一端电连接;所述第二变压器的第二绕组的另一端电连接在所述第二整流电路上;其中,所述第一谐波电路包括所述第一变压器电路和所述第一整流电路,所述第二变压器为所述第一变压器电路中除所述至少两个变压器以外的一个变压器,所述其它谐波电路包括所述第二谐波电路,所述第二谐波电路包括所述第二变压器电路和所述第二整流电路。
在该实施方式中,当N个谐波电路中开关电路并联时,让一个谐波电路中变压器电路中两个变压器的副边绕组的一端与整流电路电连接,另一端相互电连接,并与其它谐波电路中的变压器电路中的一个变压器的副边绕组电连接,使得该谐波电路中两个变压器的电流值等于其它各个谐波电路中的一个变压器的电流值,然后再将每个谐波电路各个变压器的电流值的累加,得到的每个谐波电路中的整流电路输出的电流值相同,实现在不增加任何器件的前提下,每个谐波电路中的电信号的自主分流。
当N个谐波电路中开关电路串联时,让一个谐波电路中变压器电路中两个变压器的副边绕组的一端与整流电路电连接,另一端相互电连接,并与其它谐波电路中的变压器电路中的一个变压器的副边绕组电连接,使得该谐波电路中的两个变压器两端的电压值等于其它各个谐波电路中的一个变压器两端的电压值,然后再将每个谐波电路各个变压器的电压值的累加,得到的每个谐波电路中的整流电路输出的电压值相同,实现在不增加任何器件的前提下,每个谐波电路中的电信号的自主分压。
在一种实施方式中,所述第一变压器电路中至少三个变压器的第一绕组的一端电连接在第一LC谐振电路上,所述至少三个变压器的第一绕组的另一端相互电连接;所述第二变压器电路中至少三个变压器的第一绕组的一端电连接在第二LC谐振电路上,所述至少三个变压器的第一绕组的另一端相互电连接;其中,所述第一谐波电路包括所述第一LC谐振电路,所述第二谐波电路包括所述第二LC谐振电路。
在该实施方式中,通过让每个变压器的第一绕组之间以并联的方式连接到LC谐振电路中,让每个变压器输入到第二绕组上的电流值和电压值相同,避免当每个变压器的第一绕组上电流或电压不相同时,导致第二绕组上电流或电压不相同,从而影响整个电路的自主分流或自主分压。
在一种实施方式中,每个谐波电路中的整流电路之间并联连接。
在该实施方式中,通过让各个整流电路之间以并联的方式连接,可以提高整个LLC谐振变换电路的电流值。
在一种实施方式中,每个变压器电路中的各个变压器相同。
在该实施方式中,通过让每个变压器电路中的变压器相同,保证每个变压器输入到副边的电压值和电流值之间相同。
在一种实施方式中,每个变压器电路中的所述至少三个变压器共用一个铁芯。
在该实施方式中,通过让每个变压器共用一个铁芯,避免不同变压器的铁芯阻抗不相同,导致每个变压器输入到副边的电压值和电流值之间相同。
第二方面,本申请实施例中提供一种两路三相LLC谐振变换电路,包括:第一谐波电路和第二谐波电路,所述第一谐波电路包括依次电连接的第一开关电路、第一LC谐振电路、第一变压器电路和第一整流电路;所述第二谐波电路包括依次电连接的第二开关电路、第二LC 谐振电路、第二变压器电路和第二整流电路;其中,所述第一开关电路和所述第二开关电路串联连接;每个开关电路包括三个输出端口,每个LC谐振电路包括三个谐振电感和三个谐振电容,每个谐振电感与每个谐振电容串联,每个变压器电路包括三个变压器,每个变压器包括第一绕组和第二绕组,每个整流电路包括三个输入端口;其中,所述第一开关电路的三个输出端口分别与所述第一LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述三个谐振电容中的两个谐振电容分别与所述第一变压器电路中的三个变压器中的两个变压器的第一绕组的一端电连接,所述第一变压器电路中的三个变压器中的两个变压器的第一绕组的另一端相互电连接,并与所述第二变压器电路中的三个变压器中的一个变压器的第一绕组的一端电连接;所述第一变压器电路中的三个变压器中的另一个变压器的第一绕组的一端与所述第二LC谐振电路中的三个谐振电容的一个谐振电容电连接,所述第一变压器电路中的三个变压器中的另一个变压器的第一绕组的另一端与所述第二变压器电路中的三个变压器中的另外两个变压器的第一绕组的一端电连接;所述第一变压器电路中的三个变压器的第二绕组的一端分别与所述第一整流电路的三个输入端口电连接,所述第一变压器电路中的三个变压器的第二绕组的另一端相互电连接;所述第二开关电路的三个输出端口分别与所述第二LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述第二LC谐振电路中的三个谐振电容的另外两个谐振电容分别与所述第二变压器电路中的三个变压器中的另外两个变压器的第一绕组的另一端电连接;所述第二变压器电路中的三个变压器的第二绕组的一端分别与所述第二整流电路的三个输入端口电连接,所述第二变压器电路中的三个变压器的第二绕组的另一端相互电连接。
第三方面,本申请实施例中提供一种两路三相LLC谐振变换电路,包括:第一谐波电路和第二谐波电路,所述第一谐波电路包括依次电连接的第一开关电路、第一LC谐振电路、第一变压器电路和第一整流电路;所述第二谐波电路包括依次电连接的第二开关电路、第二LC谐振电路、第二变压器电路和第二整流电路;每个开关电路包括三个输出端口,每个LC谐振电路包括三个谐振电感和三个谐振电容,每个谐振电感与每个谐振电容串联,每个变压器电路包括三个变压器,每个变压器包括第一绕组和第二绕组,每个整流电路包括三个输入端口;其中,所述第一开关电路的三个输出端口分别与所述第一LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述三个谐振电容分别与所述第一变压器电路中的三个变压器的第一绕组的一端电连接,所述第一变压器电路中的三个变压器的第一绕组的另一端相互电连接;所述第一变压器电路中的三个变压器两个变压器的第二绕组的一端分别与所述第一整流电路中的三个输入端口中的两个输入端口电连接,所述第一变压器电路中的三个变压器两个变压器的第二绕组的另一端相互电连接,并与所述第二变压器电路中的三个变压器一个变压器的第二绕组的一端电连接;所述第一变压器电路中的三个变压器另一个变压器的第二绕组的一端与所述第二整流电路中三个输入端口中的一个输入端口电连接,所述第一变压器电路中的三个变压器另一个变压器的第二绕组的另一端与所述第二变压器电路中的三个变压器另外两个变压器的第二绕组的一端电连接;其中,所述第二开关电路的三个输出端口分别与所述第二LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述三个谐振电容分别与所述第二变压器电路中的三个变压器的第一绕组的一端电连接,所述第二变压器电路中的三个变压器的第一绕组的另一端相互电连接;所述第二变压器电路中的三个变压器一个变压器的第二绕组的另一端与所述第一整流电路中的三个输入端口中的一个输入端口电连接,所述第二变压器电路中的三个变压器另外两个变压器的第二绕组的另一端分别与所述第二整流电路中三个输入端口中的另外两个输入端口电连接。
第四方面,本申请实施例中提供一种充电设备,包括:至少一个如第一方面各个可能实现的LLC谐振变换电路。
第五方面,本申请实施例中提供一种储能设备,包括:电池;至少一个如第一方面各个可能实现的LLC谐振变换电路,其中,所述LLC谐振变换电路通过与所述电池电连接,用于对被输入到所述电池内的电信号进行处理,并输入所述电池中。
第六方面,本申请实施例中提供一种用电设备,其特征在于,包括:至少一个用电器件;至少一个如第一方面各个可能实现的LLC谐振变换电路,其中,所述至少一个LLC谐振变换电路通过与所述至少一个用电器件电连接,用于对被输入到至少一个用电器件内的电信号进行处理,并输入到至少一个用电器件中。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1为本申请实施例中提供的一种LLC谐振变换电路的架构示意图;
图2为本申请实施例中提供的第一种两路三相LLC谐振变换电路中开关电路并联的电路示意图;
图3为本申请实施例中提供的第二种两路三相LLC谐振变换电路中开关电路并联的电路示意图;
图4为本申请实施例中提供的第三种两路三相LLC谐振变换电路中开关电路并联的电路示意图;
图5为本申请实施例中提供的一种N路三相LLC谐振变换电路中开关电路并联的电路示意图;
图6为本申请实施例中提供的一种两路三相LLC谐振变换电路中开关电路串联的电路示意图;
图7为本申请实施例中提供的一种N路三相LLC谐振变换电路中开关电路串联的电路示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本文中的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一响应消息和第二响应消息等是用于区别不同的响应消息,而不是用于描述响应消息的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个处理单元是指两个或者两个以上的处理单元等;多个元件是指两个或者两个以上的元件等。
图1为本申请实施例中提供的一种LLC谐振变换电路的架构示意图。如图1所示,本申请保护的LLC谐振变换电路可以包括N个谐波电路(100,200,…,N00),N为大于等于2的正整数。其中,每个谐波电路(100,200,…,N00)包括开关电路(101,201,…,N-1)、LC谐振电路(102,202,…,N-2)、变压器电路(103,203,…,N-3)和整流电路(104,204,…,N-4)。
每个谐波电路(100,200,…,N00)中,开关电路、LC谐振电路、变压器电路和整流电路依次电连接,使得外部电路输入的电信号依次通过开关电路、LC谐振电路、变压器电路和整流电路后,增大了输入电信号的电流值或电压值,从而实现增大输入电信号的功率。
每个谐波电路(100,200,…,N00)之间可以并联或串联,具体为:每个谐波电路(100,200,…,N00)中的开关电路(101,201,…,N-1),可以将每个开关电路的正极电连接在一起,每个开关电路的负极电连接在一起,实现各个谐波电路之间以并联的方式连接在一起;也可以将一个开关电路中的正极与一侧的开关电路中的负极电连接,该开关电路中的负极与另一侧的开关电路的正极电连接,以此类推,实现各个谐波电路之间以串联的方式连接在一起。
开关电路(101,201,…,N-1)一般与外界的控制器建立通信连接,通过接收控制器发送的控制指令,控制输入到谐波电路中的电信号是否导通,以及将输入的直流电信号转换成方波电信号。示例性地,如图2所示,开关电路101为三相开关电路,可以包括第一开关管Q 11、第二开关管Q 12、第三开关管Q 13、第四开关管Q 14、第五开关管Q 15和第六开关管Q 16,以及输入电容C 11。其中,第一开关管Q 11和第二开关管Q 12之间串联连接,并在第一开关管Q 11和第二开关管Q 12之间电连接出一个输出端口P 11,可以与LC谐振电路102电连接;第三开关管Q 13和第四开关管Q 14之间串联连接,并在第三开关管Q 13和第四开关管Q 14之间电连接出一个输出端口P 12,可以与LC谐振电路102电连接;第五开关管Q 15和第六开关管Q 16之间串联连接,并在第五开关管Q 15和第六开关管Q 16之间电连接出一个输出端口P 13,可以与LC谐振电路102电连接。每一组开关管和输入电容C 11之间以并联的方式连接在一起,输入电容C 11对外界输入的电信号进行滤波,然后通过控制每一组开关管中的上部开关管和下部开关管之间交替导通,将滤波后的直流电信号转换成方波电信号,使得三个输出端口P可以输出三个方波电信号。
可选地,开关电路中的开关管可以是由一个或多个金属- 氧化物半导体场效应 晶体管(metal-oxide-semiconductor field-effect transistor,MOS)构成,控制器通过与每个MOS的栅极连接,控制每个MOS的栅极是否通电,实现开关管处于导通状态或关闭状态。
本申请中,开关电路101仅以三相开关电路为例,还可以根据实际产品需求,可以为二相开关电路等等,本申请在此不做限定。另外,对于其它的开关电路(201,…,N-1)的电路结构,一般与开关电路101的电路结构相同,当然也可以根据实际产品需求,可以与开关电路101的电路结构不相同,本申请在此也不做限定。
LC谐振电路(102,202,…,N-2)可以与变压器电路(103,203,…,N-3)之间串联连接,构成LLC谐振。其中,每个变压器电路的至少一个变压器的原边绕组(是指与LC谐振电路电连接一侧的线圈绕组)可以与其它变压器电路的至少一个变压器的原边绕组之间交叉电连接,或每个变压器电路的至少一个变压器的副边绕组(是指与整流电路电连接一侧的线圈绕组)可以与其它变压器电路的至少一个变压器的副边绕组之间交叉电连接,让一个谐波电路中的电信号可以分流到另一个或多个谐波电路中,实现每个谐波电路之间并联时,对每个谐波电路中的电信号进行均流,以及每个谐波电路之间串联时,对每个谐波电路中的电信号进行均压。
示例性地,结合图2所示,LC谐振电路102中包括三个谐振电感(L 11,L 12,L 13)和三个谐振电容(C 12,C 13,C 14),变压器电路103中包括三个变压器(T 11,T 12,T 13)。其中,谐振电感L 11与谐振电容C 12串联,且谐振电感L 11的另一端与输出端口P 11电连接,构成一组LC谐振;谐振电感L 12与谐振电容C 13串联,且谐振电感L 12的另一端与输出端口P 12电连接,构成一组LC谐振;谐振电感L 13与谐振电容C 14串联,且谐振电感L 13的另一端与输出端口P 13电连接,构成一组LC谐振。
变压器电路103中每个变压器T的原边绕组可以与LC谐振电路102中的谐振电容C串联连接,也可以与其它的谐波电路(202,…,N02)中的谐振电容C串联连接,构成LLC谐振。谐波电路中的每组谐振电感L与谐振电容C串联的电路,可以通过与不同谐波电路中的变压器的原边绕组串联,实现当各个开关电路并联时,将每个谐波电路中的电流均分到不同的谐波电路上,使得各个谐波电路输出的电信号的电流值相同。其中,每个变压器电路中每个变压器T的副边绕组的可以与对应谐波电路中的整流电路串联连接。
变压器电路103中每个变压器T的副边绕组可以与整流电路104串联连接,也可以与其它的整流电路(204,…,N04)串联连接,实现当各个开关电路并联时,将每个谐波电路中的电流均分到不同的谐波电路上,使得各个谐波电路输出的电信号的电流值相同;当各个开关电路串联时,将每个谐波电路上的电压分到不同的谐波电路上,使得各个变压器电路两端的电压值相同。其中,每个变压器电路中每个变压器T的原边绕组的可以与对应谐波电路中的LC谐振电路串联连接。
本申请中,每一个谐波电路(100,200,…,N00)中,LC谐振电路中LC谐振的组数,与开关电路中的输入端口P相同,变压器电路中的变压器的数量与LC谐振电路中的LC谐振的组数相同。
变压器电路中各个变压器一般选用相同变压器,也即阻抗相同、原副边绕组的匝数相同的变压器。可选地,对于一个变压器,不仅限于图2中所示的结构,也即原边绕组与副边绕组的数量为1:1的关系,还可以为1:x、或x:1或x:y的关系,x和y为大于等于1的正整数,本申请在此不做限定。
整流电路(104,204,…,N-4)通过与变压器电路串联连接,将变压器电路输入的交流电信号转换成直流电信号。示例性地,结合图2所示,整流电路104中包括第一二极管D 11、第二二极管D 12、第三二极管D 13、第四二极管D 14、第五二极管D 15和二极管D 16,以及输出电容C 16。其中,第一二极管D 11与第二二极管D 12之间串联,并在第一二极管D 11与第二二极管D 12之间电连接出一个输入端口P 14,可以与一个或多个变压器的副边绕组电连接;第三二极管D 13和第四二极管D 14之间串联,并在第三二极管D 13和第四二极管D 14之间电连接出一个输入端口P 15,可以与一个或多个变压器的副边绕组电连接;第五二极管D 15和二极管D 16之间串联,并在第五二极管D 15和二极管D 16之间电连接出一个输入端口P 16,可以与一个或多个变压器的副边绕组电连接。每一组二极管和输出电容C 16之间以并联的方式连接在一起,当交流电信号分别通过三个输出端口P输入到每一组二极管中,交流电信号分别通过每一组二极管中的上部二极管或下部二极管流出,实现将交流电信号转换成直流电信号,然后再通过输入电容C 11进行滤波,得到滤波后的直流电信号。
本申请中,整流电路(104,204,…,N-4)之间可以以并联的方式连接在一起,通过汇聚各个整流电路中的电信号的电流值,实现增大输出电信号的电流值;每个谐波电路中的整流电路之间也可以以串联的方式连接在一起,通过串联各个整流电路中的电信号的电压值,实现增大输出电信号的电压值。
本申请中,每一个谐波电路(100,200,…,N00)中,整流电路中并联二极管的组数,与开关电路中的输入端口P相同,与变压器电路中的变压器的数量也相同。
本申请实施例所要保护的LLC谐振变换电路中,由多个谐波电路构成,每个谐波电路中多个变压器相互电连接,并与其它谐波电路中的一个变压器电连接,使得谐波电路之间相互交叉,可以将一个谐波电路中的电信号分流或分压到另一个谐波电路中,在不增加任何器件的前提下,使得各个谐波电路之间并联时,每个谐波电路中的电信号的电流值相同,以及谐波电路之间串联时,每个谐波电路中的电信号的电压值相同,有效降低了整个LLC谐振变换电路的控制策略的复杂度,以及减低了LLC谐振变换电路的成本。
下面根据具体不同的LLC谐振变换电路,来介绍本申请保护的技术方案。
结合图2所示的两路三相LLC谐振变换电路,该电路中包括第一谐波电路100和第二谐波电路200,第一谐波电路100中包括第一开关电路101、第一LC谐振电路102、第一变压器电路103和第一整流电路104,第二谐波电路200中包括第二开关电路201、第二LC谐振电路202、第二变压器电路203和第二整流电路204。其中,第一开关电路101与第二开关电路201之间以并联方式连接,第一整流电路104与第二整流电路204之间以并联方式连接。
当第一开关电路101与第二开关电路201之间并联,输入到第一谐波电路100与第二谐波电路200中的电信号的电压值相同,但是流经第一谐波电路100与第二谐波电路200的电信号的电流值可能不相同,使得第一整流电路104和第二整流电路204输出的电信号之间的谐振参数存在差异,导致两路三相LLC谐振变换电路输出的电信号无法为用电设备提供电信号。
本申请中,为了使流经第一谐波电路100与第二谐波电路200的电信号的电流值相同,可以让两个LC谐振电路与两个变压器电路中的各个变压器的原边绕组之间交叉连接,具体连接方式为:
第一变压器电路103中的变压器T 11的一端与第一LC谐振电路102中的谐波电容C 12串联连接,变压器T 12的一端与第一LC谐振电路102中的谐波电容C 13串联连接,变压器T 11的另一端与变压器T 12的另一端相互电连接,并与第二变压器电路203中的变压器T 23的一端电连接;变压器T 13的一端与第二LC谐振电路202中的谐波电容C 24串联连接,另一端与第二变压器电路203中的变压器T 21的一端和变压器T 22的一端电连接。第二变压器电路203中的变压器T 21的另一端与第二LC谐振电路202中的谐波电容C 22串联连接,变压器T 22的另一端与第二LC谐振电路202中的谐波电容C 23串联连接。
两个整流电路与两个变压器电路中的各个变压器的副边绕组之间的连接方式,可以为:
第一变压器电路103中的变压器T 11的一端与第一整流电路104中的输入端口P 14串联连接,变压器T 12的一端与第一整流电路104中的输入端口P 15串联连接,变压器T 13的一端与第一整流电路104中的输入端口P 16串联连接,变压器T 11的另一端、变压器T 12的另一端和变压器T 13的另一端相互电连接;第二变压器电路203中的变压器T 21的一端与第二整流电路204中的输入端口P 24串联连接,变压器T 22的一端与第二整流电路204中的输入端口P 25串联连接,变压器T 23的一端与第二整流电路204中的输入端口P 26串联连接,变压器T 21的另一端、变压器T 22的另一端和变压器T 23的另一端相互电连接。由于整流电路与变压器的副边绕组之间的连线拉伸之后,呈“Y”型,可以将这种连接方式称之为Y型连接方式。
记变压器T 11原边绕组的电流为I AT11(电流值为矢量,下同),变压器T 11副边绕组的电流为I BT11;变压器T 12原边绕组的电流为I AT12,变压器T 12副边绕组的电流为I BT12;变压器T 13原边绕组的电流为I AT13,变压器T 13副边绕组的电流为I BT13;变压器T 21原边绕组的电流为I AT21,变压 器T 21副边绕组的电流为I BT21;变压器T 22原边绕组的电流为I AT22,变压器T 22副边绕组的电流为I BT22;变压器T 23原边绕组的电流为I AT23,变压器T 23副边绕组的电流为I BT23。其中,I AT11、I AT12和I AT13之间的相位不相同,I AT11和I BT11之间的相位相同;其它电流之间的关系,以此类推。可选地,I AT11、I AT12和I AT13之间的相位相差120°。
在两个变压器电路原边绕组中,变压器T 11与变压器T 12相互电连接,并与变压器T 23电连接,所以I AT11+I AT12=I AT23。变压器T 21与变压器T 22相互电连接,并与变压器T 13电连接,所以I AT21+I AT22=I AT13。其中,I AT11、I AT12和I AT23之间的相位不相同,I AT21、I AT22和I AT13之间的相位也不相同。
在第一变压器电路103中的各个变压器的副边绕组中,变压器T 11、变压器T 12和变压器T 13相互电连接,所以第一谐波电路100中的总电流I 1=I BT11+I BT12+I BT13=n·I AT11+n·I AT12+n·I AT13;同理,在第二变压器电路203中的各个变压器的副边绕组中,第二谐波电路200中的总电流I 2=I BT21+I BT22+I BT223=n·I AT21+n·I AT22+n·I AT23。当各个变压器的原边绕组和副边绕组的线圈匝数相同,I 1=I 2,第一谐波电路100与第二谐波电路200中电流值相同,实现两路三相LLC谐振变换电路中各个谐波电路的自主均流。
本申请实施例中,将第一变压器电路中的两个变压器相互电连接,再与第二变压器电路中的一个变压器电连接,使得第一变压器电路中的两个变压器的电流等于第二变压器电路中的一个变压器的电流;同理,第二变压器电路中的两个变压器相互电连接,再与第一变压器电路中的一个变压器电连接,使得第二变压器电路中的两个变压器的电流等于第一变压器电路中的一个变压器的电流,从而让第一变压器电路的电流等于第二变压器电路的电流,实现两路三相LLC谐振变换电路中各个电路的自主均流。
示例性地,结合图3所示,两个整流电路与两个变压器电路中的各个变压器的副边绕组之间的连接方式,还可以为:
第一变压器电路103中的变压器T 11的一端、变压器T 12的一端和变压器T 13的一端相互电连接,变压器T 11的另一端电连接在第一整流电路104中的输入端口P 14上,变压器T 12的另一端电连接在第一整流电路104中的输入端口P 15上,变压器T 13的另一端电连接在第一整流电路104中的输入端口P 16上;第二变压器电路203中的变压器T 21的一端、变压器T 22的一端和变压器T 23的一端之间并联连接,变压器T 21的另一端电连接在第二整流电路204中的输入端口P 24上,变压器T 22的另一端电连接在第二整流电路204中的输入端口P 25上,变压器T 23的另一端电连接在第二整流电路204中的输入端口P 26上。由于LC谐振电路与变压器的之间的连线拉伸之后,呈“△”型,可以将这种连接方式称之为△型连接方式。
在第一变压器电路103中的各个变压器的副边绕组中,变压器T 11、变压器T 12和变压器T 13相互电连接,所以第一谐波电路100中的总电流I 1=I BT11+I BT12+I BT13=n·I AT11+n·I AT12+n·I AT13;同理,在第二变压器电路203中的各个变压器的副边绕组中,第二谐波电路200中的总电流I 2=I BT21+I BT22+I BT223=n·I AT21+n·I AT22+n·I AT23。当各个变压器的原边绕组和副边绕组的线圈匝数相同,I 1=I 2,每个谐波电路中的电流值相同,可以实现两路三相LLC谐振变换电路中各个谐波电路的自主均流。
结合图4所示,为了使流经第一谐波电路100与第二谐波电路200的电信号的电流值相同,可以让两个整流电路与两个变压器电路中的各个变压器的副边绕组之间交叉连接,具体连接方式为:
第一变压器电路103中的变压器T 11的一端电连接到第一整流电路104中的输入端口P 14上,变压器T 12的一端电连接到第一整流电路104中的输入端口P 15上,变压器T 11的另一端与变压器 T 12的另一端相互电连接,并与第二变压器电路203中的变压器T 23的一端电连接;变压器T 13的一端电连接到第二整流电路204中的输入端口P 26上,另一端与第二变压器电路203中的变压器T 21的一端和变压器T 22的一端电连接。第二变压器电路203中的变压器T 21的另一端电连接到第二整流电路204中的输入端口P 24上,变压器T 22的另一端电连接到第二整流电路204中的输入端口P 25上。
两个整流电路与两个变压器电路中的各个变压器的原边绕组之间的连接方式,可以为Y型连接方式,具体为:
第一变压器电路103中的变压器T 11的一端与第一LC谐振电路102中的谐波电容C 12串联连接,变压器T 12的一端与第一LC谐振电路102中的谐波电容C 13串联连接,变压器T 13的一端与第一LC谐振电路102中的谐波电容C 14串联连接,变压器T 11的另一端、变压器T 12的另一端和变压器T 13的另一端相互电连接;第二变压器电路203中的变压器T 21的一端与第二LC谐振电路202中的谐波电容C 22串联连接,变压器T 22的一端与第二LC谐振电路202中的谐波电容C 23串联连接,变压器T 23的一端与第二LC谐振电路202中的谐波电容C 24串联连接,变压器T 21的另一端、变压器T 22的另一端和变压器T 23的另一端相互电连接。
在两个变压器电路副边绕组中,变压器T 11与变压器T 12相互电连接,并与变压器T 23电连接,所以I BT11+I BT12=I BT23。变压器T 21与变压器T 22相互电连接,并与变压器T 13电连接,所以I BT21+I BT22=I BT13。由于第一谐波电路100中的总电流I 1=I BT11+I BT12+I BT13,第二谐波电路200中的总电流I 2=I BT21+I BT22+I BT223,所以I 1=I 2,每个谐波电路中的电流值相同,可以实现两路三相LLC谐振变换电路中各个谐波电路的自主均流。其中,I BT11、I BT12和I BT23之间的相位不相同,I BT21、I BT22和I BT13之间的相位也不相同。
本申请中,图4中整流电路与变压器的副边绕组之间的连接方式,是以Y型连接方式为例,也可以△型连接方式,本申请在此不做限定,其具体连接结构可以参考图3和图3对应的技术方案,本申请在此不再赘述了。
结合图5所示的N路三相LLC谐振变换电路,该电路中包括N个谐波电路(100,200,…,N00)。其中,为了使流经第一谐波电路100与第二谐波电路200的电信号的电流值相同,可以让两个LC谐振电路与两个变压器电路中的各个变压器的原边绕组之间交叉连接,具体连接方式为:
第一变压器电路103中的变压器T 11的一端与第一LC谐振电路102中的谐波电容C 12串联连接,变压器T 12的一端与第一LC谐振电路102中的谐波电容C 13串联连接,变压器T 11的另一端与变压器T 12的另一端相互电连接,然后依次与第二变压器电路203中的变压器T 23的一端、…、第N变压器电路N03中的变压器T N3的一端电连接,使得每个谐波电路中都包括电流I BT11+I BT12;第一变压器电路103中的变压器T 13的两端分别与第二变压器电路203中的变压器T 21和变压器T 22相互电连接后的节点电连接、…、第N变压器电路N03中的变压器T N1和变压器T N2相互电连接后的节点电连接,使得每个谐波电路中都包括电流I BT21+I BT22+…+I BTN1+I BTN2,所以每个谐波电路的电流均为I=I BT11+I BT12+I BT21+I BT22+…+I BTN1+I BTN2,每个谐波电路中的电流值相同,可以实现N路三相LLC谐振变换电路中各个谐波电路的自主均流。
本申请中,图5中整流电路与变压器的副边绕组之间的连接方式,是以Y型连接方式为例,也可以△型连接方式,本申请在此不做限定,其具体连接结构可以参考图3和图3对应的技术方案,本申请在此不再赘述了。
本申请中,图5是以LC谐振电路与变压器电路中的各个变压器的原边绕组之间交叉连接方式为例,实现流经各个谐波电路的电信号的电流值相同,还可以以整流电路与变压器电路 中的各个变压器的副边绕组之间交叉连接方式来实现,本申请在此不做限定,其具体连接结构可以参考图4和图4对应的技术方案,本申请在此不再赘述了。
需要说明的是,本申请实施例中提供的图1-图3和图5,以及图1-图3和图5对应的方案中,整流电路(104,204,…,N-4)之间都是以并联的方式进行电连接,以达到增大输出电信号的电流值。显然,本申请图1-图7对应的方案中,整流电路(104,204,…,N-4)之间还可以串联的方式进行电连接,可以达到增大输出电信号的电压值。
但是,对于图4的方案中,由于各个整流电路与各个变压器的副边绕组之间交叉连接的方式,实现各个谐波电路的自主均流的效果,如果各个整流电路串联时,各个变压器与各个整流电路之间等电位,所以各个整流电路与各个变压器的副边绕组之间交叉连接,并不能实现各个谐波电路的自主均流的效果。因此,对于图4中的方案,整流电路之间不可以串联的方式进行电连接。
结合图6所示的两路三相LLC谐振变换电路,该电路中包括第一谐波电路100和第二谐波电路200,第一谐波电路100中包括第一开关电路101、第一LC谐振电路102、第一变压器电路103和第一整流电路104,第二谐波电路200中包括第二开关电路201、第二LC谐振电路202、第二变压器电路203和第二整流电路204。其中,第一开关电路101与第二开关电路201之间以串联方式连接,第一整流电路104与第二整流电路204之间以并联方式连接。
当第一开关电路101与第二开关电路201之间串联,流经第一谐波电路100与第二谐波电路200的电信号的电流值相同,但是输入到第一谐波电路100与第二谐波电路200中的电信号的电压值可能不相同,使得第一整流电路104和第二整流电路204输出的电信号之间的谐振参数存在差异,导致两路三相LLC谐振变换电路输出的电信号无法为用电设备提供电信号。
本申请中,为了使流经第一谐波电路100与第二谐波电路200的电信号的电压值相同,可以让两个整流电路与两个变压器电路中的各个变压器的副边绕组之间交叉连接,具体连接方式为:
第一变压器电路103中的变压器T 11的一端电连接在第一整流电路104中的输入端口P 14上,变压器T 12的一端电连接在第一整流电路104中的输入端口P 15上,变压器T 11的另一端和变压器T 12的另一端相互电连接,并与第二变压器电路203中的变压器T 21的一端电连接;变压器T 13的一端电连接在第二整流电路204中的输入端口P 24上。
第二变压器电路203中的变压器T 21的另一端电连接在第一整流电路104中的输入端口P 16上,变压器T 22的一端电连接在第二整流电路204中的输入端口P 25上,变压器T 23的一端电连接在第二整流电路204中的输出端口P 23上;变压器T 22的另一端和变压器T 23的另一端相互电连接,并与第一变压器电路103中的变压器T 13的另一端电连接。
两个整流电路与两个变压器电路中的各个变压器的原边绕组之间的连接方式,可以为Y型连接方式,具体为:
第一变压器电路103中的变压器T 11的一端与第一LC谐振电路102中的谐波电容C 12串联连接,变压器T 12的一端与第一LC谐振电路102中的谐波电容C 13串联连接,变压器T 13的一端与第一LC谐振电路102中的谐波电容C 14串联连接,变压器T 11的另一端、变压器T 12的另一端和变压器T 13的另一端相互电连接;第二变压器电路203中的变压器T 21的一端与第二LC谐振电路202中的谐波电容C 22串联连接,变压器T 22的一端与第二LC谐振电路202中的谐波电容C 23串联连接,变压器T 23的一端与第二LC谐振电路202中的谐波电容C 24串联连接,变压器T 21的另一端、变压器T 22的另一端和变压器T 23的另一端相互电连接。
记变压器T 11原边绕组的电压为V AT11,变压器T 11副边绕组的电压为V BT11;变压器T 12原边绕组的电压为V AT12,变压器T 12副边绕组的电压为V BT12;变压器T 13原边绕组的电压为V AT13,变压器T 13副边绕组的电压为V BT13;变压器T 21原边绕组的电压为V AT21,变压器T 21副边绕组的电压为V BT21;变压器T 22原边绕组的电压为V AT22,变压器T 22副边绕组的电压为V BT22;变压器T 23原边绕组的电压为V AT23,变压器T 23副边绕组的电压为V BT23。其中,V AT11、V AT12和V AT13之间的相位不相同,V AT11和V BT11之间的相位相同;其它电流之间的关系,以此类推。可选地,V AT11、V AT12和V AT13之间的相位相差120°。
在两个变压器电路副边绕组中,由于变压器T 11的另一端、变压器T 12的另一端和变压器T 13的另一端相互电连接,所以V AT11=V AT12=V AT13;同理,由于变压器T 21的另一端、变压器T 22的另一端和变压器T 23的另一端相互电连接,所以V AT21=V AT22=V AT23。且V AT11=n·V BT11,V AT12=n·V BT12,V AT13=n·V BT13,V AT21=n·V BT21,V AT22=n·V BT22,V AT23=n·V BT23,当各个变压器的原边绕组和副边绕组的线圈匝数相同,则V BT11=V BT12=V BT13=V B1,V BT21=V BT22=V BT23=V B2
由于变压器T 11与变压器T 12相互电连接,并与变压器T 21电连接,所以第一谐波电路104的输出电压
Figure PCTCN2022103844-appb-000001
同理,变压器T 22与变压器T 23相互电连接,并与变压器T 13电连接,所以第二谐波电路204的输出电压
Figure PCTCN2022103844-appb-000002
第一谐波电路100的电压值V1与第二谐波电路200的电压值V2相同,实现两路三相LLC谐振变换电路中各个谐波电路的自主均压。
结合图7所示,N路三相LLC谐振变换电路中,包括N个谐波电路(100,200,…,N00)。其中,为了使流经第一谐波电路100与第二谐波电路200的电信号的电压值相同,可以让两个整流电路与两个变压器电路中的各个变压器的副边绕组之间交叉连接,具体连接方式为:
第一变压器电路103中的变压器T 11的一端电连接在第一整流电路104中的输入端口P 14上,变压器T 12的一端电连接在第一整流电路104中的输入端口P 15上,然后变压器T 11的另一端与变压器T 12的另一端相互电连接,然后依次与第二变压器电路203中的变压器T 21的一端、…、第N变压器电路N03中的变压器T N1的一端电连接,使得第一谐波电路100中电压为
Figure PCTCN2022103844-appb-000003
第二变压器电路203中的变压器T 22的一端电连接在第二整流电路204中的输入端口P 25上,变压器T 23的一端电连接在第二整流电路204中的输入端口P 26上,然后变压器T 22的另一端与变压器T 23的另一端相互电连接,然后依次与第一变压器电路103中的变压器T 13的一端、…、第N变压器电路N03中的变压器T N3的一端电连接,使得第二谐波电路100中电压为
Figure PCTCN2022103844-appb-000004
以此类推,可以得到V 1=V 2=…=V N,每个谐波电路中的电压值相同,可以实现N路三相LLC谐振变换电路中各个谐波电路的自主均压。
本申请中,图6和图7中LC谐振电路与变压器的原边绕组之间的连接方式,是以Y型连接方式为例,也可以△型连接方式,本申请在此不做限定,其具体连接结构可以参考图3和图3对应的技术方案,本申请在此不再赘述了。
本申请实施例提供一种充电设备,该充电设备包括LLC谐振变换电路,其中,LLC谐振变换电路可以为如图1-图7和上述对应保护方案中记载的LLC谐振变换电路,由于该充电设备包括该LLC谐振变换电路,因此该充电设备包具有该LLC谐振变换电路的所有或至少部分优点。其中,该充电设备可以充电桩、充电器等设备。
本申请实施例提供一种储能设备,该储能设备包括LLC谐振变换电路和电池,其中,LLC谐振变换电路通过与电池电连接,用于对被输入到电池内的电信号进行处理,并输入到电池 中。LLC谐振变换电路可以为如图1-图7和上述对应保护方案中记载的LLC谐振变换电路,由于该储能设备包括该LLC谐振变换电路,因此该储能设备包具有该LLC谐振变换电路的所有或至少部分优点。其中,该储能设备可以为锂电池、蓄电池等等。
本申请实施例提供一种用电设备,该用电设备包括LLC谐振变换电路和至少一个用电器件,其中,LLC谐振变换电路通过与至少一个用电器件连接,用于对被输入到至少一个用电器件内的电信号进行处理,并输入到至少一个用电器件中。LLC谐振变换电路可以为如图1-图7和上述对应保护方案中记载的LLC谐振变换电路,由于该用电设备包括该LLC谐振变换电路,因此该用电设备包具有该LLC谐振变换电路的所有或至少部分优点。其中,用电设备可以为电动汽车、基站、通信设备等等。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例中所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例中技术方案的精神和范围。

Claims (14)

  1. 一种LLC谐振变换电路,其特征在于,包括:
    N个谐波电路,N为大于等于2的正整数;
    每个谐波电路均包括依次电连接的开关电路、LC谐振电路、变压器电路和整流电路;所述变压器电路包括至少三个变压器,每个变压器包括第一绕组和第二绕组;
    其中,第一谐波电路中的变压器电路中的至少两个变压器的第一绕组的一端,与所述第一谐波电路中的LC谐振电路电连接,另一端相互电连接,并与其它谐波电路中的变压器电路中的一个变压器的第一绕组的一端电连接,所述其它谐波电路为所述N个谐波电路中除所述第一谐波电路以外的谐波电路;或
    所述第一谐波电路中的变压器电路中的至少两个变压器的第二绕组的一端,与所述第一谐波电路中的整流电路电连接,另一端相互电连接,并与所述其它谐波电路中的变压器电路中的一个变压器的第二绕组的一端电连接。
  2. 根据权利要求1所述的电路,其特征在于,当每个谐波电路中的开关电路之间并联连接时,
    第一变压器电路中至少两个变压器的第一绕组的一端电连接在第一LC谐振电路上,所述至少两个变压器的第一绕组的另一端相互电连接,并与第二变压器电路中的第一变压器的第一绕组的一端电连接;所述第一变压器的第一绕组的另一端电连接在所述第一LC谐振电路上;
    所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第一绕组的一端电连接在第二LC谐振电路上,所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第一绕组的另一端相互电连接,并与第一变压器电路中的第二变压器的第一绕组的一端电连接;所述第二变压器的第一绕组的另一端电连接在所述第二LC谐振电路上;
    其中,所述第一谐波电路包括所述第一LC谐振电路和所述第一变压器电路,所述第二变压器为所述第一变压器电路中除所述至少两个变压器以外的一个变压器,所述其它谐波电路包括所述第二谐波电路,所述第二谐波电路包括所述第二LC谐振电路和所述第二变压器电路。
  3. 根据权利要求2所述的电路,其特征在于,所述第一变压器电路中至少三个变压器的第二绕组的一端电连接在第一整流电路上,所述至少三个变压器的第二绕组的另一端相互电连接;所述第二变压器电路中至少三个变压器的第二绕组的一端电连接在第二整流电路上,所述至少三个变压器的第二绕组的另一端相互电连接;其中,所述第一谐波电路包括所述第一整流电路,所述第二谐波电路包括所述第二整流电路。
  4. 根据权利要求1-3任意一项所述的电路,其特征在于,每个谐波电路中的整流电路之间串联或并联连接。
  5. 根据权利要求1所述的电路,其特征在于,当每个谐波电路中的开关电路之间串联或并联连接时,
    第一变压器电路中至少两个变压器的第二绕组的一端电连接在第一整流电路上,所述至少两个变压器的第二绕组的另一端相互电连接,并与第二变压器电路中的第一变压器的第二绕组的一端电连接;所述第一变压器的第二绕组的另一端电连接在所述第一整流电路上;
    所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第二绕组的一端电连接在第二整流电路上,所述第二变压器电路中的除所述第一变压器以外的至少两个变压器的第二绕组的另一端相互电连接,并与第一变压器电路中的第二变压器的第二绕组的一端电连接;所述第二变压器的第二绕组的另一端电连接在所述第二整流电路上;
    其中,所述第一谐波电路包括所述第一变压器电路和所述第一整流电路,所述第二变压 器为所述第一变压器电路中除所述至少两个变压器以外的一个变压器,所述其它谐波电路包括所述第二谐波电路,所述第二谐波电路包括所述第二变压器电路和所述第二整流电路。
  6. 根据权利要求5所述的电路,其特征在于,所述第一变压器电路中至少三个变压器的第一绕组的一端电连接在第一LC谐振电路上,所述至少三个变压器的第一绕组的另一端相互电连接;所述第二变压器电路中至少三个变压器的第一绕组的一端电连接在第二LC谐振电路上,所述至少三个变压器的第一绕组的另一端相互电连接;其中,所述第一谐波电路包括所述第一LC谐振电路,所述第二谐波电路包括所述第二LC谐振电路。
  7. 根据权利要求5或6所述的电路,其特征在于,每个谐波电路中的整流电路之间并联连接。
  8. 根据权利要求1-7任意一项所述的电路,其特征在于,每个变压器电路中的各个变压器相同。
  9. 根据权利要求1-8任意一项所述的电路,其特征在于,每个变压器电路中的所述至少三个变压器共用一个铁芯。
  10. 一种两路三相LLC谐振变换电路,其特征在于,包括:
    第一谐波电路和第二谐波电路,
    所述第一谐波电路包括依次电连接的第一开关电路、第一LC谐振电路、第一变压器电路和第一整流电路;所述第二谐波电路包括依次电连接的第二开关电路、第二LC谐振电路、第二变压器电路和第二整流电路;其中,所述第一开关电路和所述第二开关电路串联连接;
    每个开关电路包括三个输出端口,每个LC谐振电路包括三个谐振电感和三个谐振电容,每个谐振电感与每个谐振电容串联,每个变压器电路包括三个变压器,每个变压器包括第一绕组和第二绕组,每个整流电路包括三个输入端口;
    其中,所述第一开关电路的三个输出端口分别与所述第一LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述三个谐振电容中的两个谐振电容分别与所述第一变压器电路中的三个变压器中的两个变压器的第一绕组的一端电连接,所述第一变压器电路中的三个变压器中的两个变压器的第一绕组的另一端相互电连接,并与所述第二变压器电路中的三个变压器中的一个变压器的第一绕组的一端电连接;所述第一变压器电路中的三个变压器中的另一个变压器的第一绕组的一端与所述第二LC谐振电路中的三个谐振电容的一个谐振电容电连接,所述第一变压器电路中的三个变压器中的另一个变压器的第一绕组的另一端与所述第二变压器电路中的三个变压器中的另外两个变压器的第一绕组的一端电连接;
    所述第一变压器电路中的三个变压器的第二绕组的一端分别与所述第一整流电路的三个输入端口电连接,所述第一变压器电路中的三个变压器的第二绕组的另一端相互电连接;
    所述第二开关电路的三个输出端口分别与所述第二LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述第二LC谐振电路中的三个谐振电容的另外两个谐振电容分别与所述第二变压器电路中的三个变压器中的另外两个变压器的第一绕组的另一端电连接;
    所述第二变压器电路中的三个变压器的第二绕组的一端分别与所述第二整流电路的三个输入端口电连接,所述第二变压器电路中的三个变压器的第二绕组的另一端相互电连接。
  11. 一种两路三相LLC谐振变换电路,其特征在于,包括:
    第一谐波电路和第二谐波电路,
    所述第一谐波电路包括依次电连接的第一开关电路、第一LC谐振电路、第一变压器电路和第一整流电路;所述第二谐波电路包括依次电连接的第二开关电路、第二LC谐振电路、第二变压器电路和第二整流电路;
    每个开关电路包括三个输出端口,每个LC谐振电路包括三个谐振电感和三个谐振电容,每个谐振电感与每个谐振电容串联,每个变压器电路包括三个变压器,每个变压器包括第一绕组和第二绕组,每个整流电路包括三个输入端口;
    其中,所述第一开关电路的三个输出端口分别与所述第一LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述三个谐振电容分别与所述第一变压器电路中的三个变压器的第一绕组的一端电连接,所述第一变压器电路中的三个变压器的第一绕组的另一端相互电连接;
    所述第一变压器电路中的三个变压器两个变压器的第二绕组的一端分别与所述第一整流电路中的三个输入端口中的两个输入端口电连接,所述第一变压器电路中的三个变压器两个变压器的第二绕组的另一端相互电连接,并与所述第二变压器电路中的三个变压器一个变压器的第二绕组的一端电连接;所述第一变压器电路中的三个变压器另一个变压器的第二绕组的一端与所述第二整流电路中三个输入端口中的一个输入端口电连接,所述第一变压器电路中的三个变压器另一个变压器的第二绕组的另一端与所述第二变压器电路中的三个变压器另外两个变压器的第二绕组的一端电连接;
    其中,所述第二开关电路的三个输出端口分别与所述第二LC谐振电路中的三个谐振电感和三个谐振电容依次串联连接;所述三个谐振电容分别与所述第二变压器电路中的三个变压器的第一绕组的一端电连接,所述第二变压器电路中的三个变压器的第一绕组的另一端相互电连接;
    所述第二变压器电路中的三个变压器一个变压器的第二绕组的另一端与所述第一整流电路中的三个输入端口中的一个输入端口电连接,所述第二变压器电路中的三个变压器另外两个变压器的第二绕组的另一端分别与所述第二整流电路中三个输入端口中的另外两个输入端口电连接。
  12. 一种充电设备,其特征在于,包括:至少一个如权利要求1-11所述的LLC谐振变换电路。
  13. 一种储能设备,其特征在于,包括:
    电池;
    至少一个如权利要求1-11所述的LLC谐振变换电路,其中,所述LLC谐振变换电路通过与所述电池电连接,用于对被输入到所述电池内的电信号进行处理,并输入所述电池中。
  14. 一种用电设备,其特征在于,包括:
    至少一个用电器件;
    至少一个如权利要求1-11所述的LLC谐振变换电路,其中,所述至少一个LLC谐振变换电路通过与所述至少一个用电器件电连接,用于对被输入到至少一个用电器件内的电信号进行处理,并输入到至少一个用电器件中。
PCT/CN2022/103844 2021-11-04 2022-07-05 一种llc谐振变换电路、充电设备、储能设备和用电设备 WO2023077847A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22888882.2A EP4407854A1 (en) 2021-11-04 2022-07-05 Llc resonant conversion circuit, charging device, energy storage device and electric device
US18/654,559 US20240291389A1 (en) 2021-11-04 2024-05-03 Llc resonant conversion circuit, charging device, energy storage device, and power-consuming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111300517.9 2021-11-04
CN202111300517.9A CN114039491A (zh) 2021-11-04 2021-11-04 一种llc谐振变换电路、充电设备、储能设备和用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/654,559 Continuation US20240291389A1 (en) 2021-11-04 2024-05-03 Llc resonant conversion circuit, charging device, energy storage device, and power-consuming device

Publications (1)

Publication Number Publication Date
WO2023077847A1 true WO2023077847A1 (zh) 2023-05-11

Family

ID=80142821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103844 WO2023077847A1 (zh) 2021-11-04 2022-07-05 一种llc谐振变换电路、充电设备、储能设备和用电设备

Country Status (4)

Country Link
US (1) US20240291389A1 (zh)
EP (1) EP4407854A1 (zh)
CN (2) CN114039491A (zh)
WO (1) WO2023077847A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039491A (zh) * 2021-11-04 2022-02-11 华为数字能源技术有限公司 一种llc谐振变换电路、充电设备、储能设备和用电设备
CN114825962B (zh) * 2022-04-28 2023-03-14 广东首航智慧新能源科技有限公司 多路谐振电路与谐振变换器
CN115720047B (zh) 2022-12-06 2023-06-06 深圳市优优绿能股份有限公司 一种用于三相llc电路的功率拓展装置
CN115882731A (zh) * 2022-12-16 2023-03-31 上海安世博能源科技有限公司 多变压器的dcdc电路及电流均衡系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412416A (zh) * 2017-08-15 2019-03-01 深圳市优优绿能电气有限公司 一种多路并联输入且多路串联输出的功率变换器
CN109672340A (zh) * 2017-10-17 2019-04-23 深圳市优优绿能电气有限公司 一种多路输入并联且多路输出并联的功率变换器
JP6696617B1 (ja) * 2019-08-27 2020-05-20 サンケン電気株式会社 マルチフェーズllcコンバータ
US20200204079A1 (en) * 2018-12-19 2020-06-25 Delta Electronics, Inc. Llc resonant converter system
CN114039491A (zh) * 2021-11-04 2022-02-11 华为数字能源技术有限公司 一种llc谐振变换电路、充电设备、储能设备和用电设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412416A (zh) * 2017-08-15 2019-03-01 深圳市优优绿能电气有限公司 一种多路并联输入且多路串联输出的功率变换器
CN109672340A (zh) * 2017-10-17 2019-04-23 深圳市优优绿能电气有限公司 一种多路输入并联且多路输出并联的功率变换器
US20200204079A1 (en) * 2018-12-19 2020-06-25 Delta Electronics, Inc. Llc resonant converter system
JP6696617B1 (ja) * 2019-08-27 2020-05-20 サンケン電気株式会社 マルチフェーズllcコンバータ
CN114039491A (zh) * 2021-11-04 2022-02-11 华为数字能源技术有限公司 一种llc谐振变换电路、充电设备、储能设备和用电设备

Also Published As

Publication number Publication date
CN115912925A (zh) 2023-04-04
CN114039491A (zh) 2022-02-11
US20240291389A1 (en) 2024-08-29
EP4407854A1 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
WO2023077847A1 (zh) 一种llc谐振变换电路、充电设备、储能设备和用电设备
US10873265B2 (en) Bidirectional three-phase direct current (DC)/DC converters
US9748854B2 (en) Alternating current (AC)-direct current (DC) conversion circuit and control method thereof
US10804812B1 (en) Three phase AC/DC power converter with interleaved LLC converters
US20190052177A1 (en) Power electronic conversion unit and system
WO2019120244A1 (zh) 谐振变换电路及其控制方法
US20190043660A1 (en) Magnetic component and power conversion device using the same
CN103081319B (zh) 共模噪声减少设备和方法
US20190058408A1 (en) Multiunit power conversion system
JP6651618B2 (ja) 双方向共振変換回路および変換器
Hausmann et al. Three-phase DC–AC converter using four-state switching cell
WO2022068530A1 (zh) 一种级联式多端口变换器及三相中压输入系统
WO2018036315A1 (zh) 谐振变换器及电流处理方法
WO2022068531A1 (zh) 一种级联式多端口变换器及三相中压输入系统
CN212969455U (zh) 一种并联交错全桥llc电路
CN108964469A (zh) 一种并串联结构的全桥双llc谐振变换器
CN102723873A (zh) 一种双输入全隔离集成变流器
CN212518795U (zh) 一种基于全耦合电感器的可自动均流的多相并联谐振变换器
CN113437876A (zh) 一种基于全耦合电感器的可自动均流的多相并联谐振变换器
US11587719B2 (en) Magnetic integrated hybrid distribution transformer
CN208337415U (zh) 一种并串联结构的全桥双llc谐振变换器
WO2024125150A1 (zh) 多变压器的dcdc电路及电流均衡系统
WO2021217622A1 (zh) 一种电力电子变压器及供电系统
CN105322796A (zh) 一种多态三电平升压电路
CN105958809A (zh) 带有耦合电感的滤波器及其参数确定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22888882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022888882

Country of ref document: EP

Effective date: 20240426

NENP Non-entry into the national phase

Ref country code: DE