WO2023075482A1 - 고흡수성 수지 조성물 및 이의 제조 방법 - Google Patents

고흡수성 수지 조성물 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023075482A1
WO2023075482A1 PCT/KR2022/016642 KR2022016642W WO2023075482A1 WO 2023075482 A1 WO2023075482 A1 WO 2023075482A1 KR 2022016642 W KR2022016642 W KR 2022016642W WO 2023075482 A1 WO2023075482 A1 WO 2023075482A1
Authority
WO
WIPO (PCT)
Prior art keywords
superabsorbent polymer
formula
polymer composition
polymer
additive
Prior art date
Application number
PCT/KR2022/016642
Other languages
English (en)
French (fr)
Inventor
김유진
전재문
윤기열
김기철
정의석
한상원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220140642A external-priority patent/KR20230062423A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP22887677.7A priority Critical patent/EP4393991A1/en
Priority to CN202280067241.0A priority patent/CN118055969A/zh
Publication of WO2023075482A1 publication Critical patent/WO2023075482A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a superabsorbent polymer composition and a method for preparing the same. More specifically, it relates to a method for preparing a superabsorbent polymer composition capable of suppressing aggregation of a water-containing gel polymer and improving pulverization processability in a pulverization process by including an additive having a specific structure.
  • Super Absorbent Polymer is a synthetic high-molecular substance that has the ability to absorb moisture 500 to 1,000 times its own weight. Material), etc., are named by different names.
  • the superabsorbent polymer as described above has begun to be put into practical use as a sanitary tool, and is currently widely used as a material for gardening soil remediation agents, civil engineering and construction waterstop materials, seedling sheets, freshness retainers in the field of food distribution, and steaming. .
  • the super absorbent polymer is included in a relatively high ratio, so that the super absorbent polymer particles are inevitably included in multiple layers in the sanitary material.
  • the superabsorbent polymer In order for the entire superabsorbent polymer particles included in multiple layers to more efficiently absorb a large amount of liquid such as urine, the superabsorbent polymer basically needs to exhibit high absorption performance as well as a fast absorption rate.
  • such superabsorbent polymers are generally prepared by polymerizing monomers to prepare a water-containing gel polymer containing a large amount of water, and coarsely pulverizing and drying the water-containing gel polymer, and then pulverizing the water-containing gel polymer into resin particles having a desired particle size. are manufactured
  • coarsely pulverizing the hydrogel polymer there has been a problem that the pulverization is not easily performed because the coarsely pulverized hydrogel polymers agglomerate or agglomerate with each other.
  • the absorption rate of the superabsorbent polymer is continuously requested.
  • the present invention relates to a method for preparing a superabsorbent polymer composition capable of suppressing aggregation of a water-containing gel polymer and improving pulverization processability in a pulverization process by including an additive having a specific structure.
  • superabsorbent polymer particles comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent;
  • a superabsorbent polymer composition including an additive represented by Formula 1 below:
  • a 1 , A 2 and A 3 are each independently a single bond, carbonyl; , or , with the proviso that at least one of these is carbonyl or , wherein m1, m2, and m3 are each independently an integer from 1 to 8, are each connected to an adjacent oxygen atom, are each connected to adjacent R 1 , R 2 and R 3 ,
  • R 1 , R 2 and R 3 are each independently hydrogen, straight or branched chain alkyl having 6 to 18 carbon atoms or straight or branched chain alkenyl having 6 to 18 carbon atoms;
  • n is an integer from 1 to 9;
  • step 1 crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having an acidic group in the presence of an internal crosslinking agent and a polymerization initiator to form a polymer (step 1);
  • step 3 preparing base resin particles by atomizing the polymer in the presence of an additive represented by Formula 1 below (step 3);
  • a method for preparing a superabsorbent polymer composition is provided:
  • a 1 , A 2 and A 3 are each independently a single bond, carbonyl; , or , with the proviso that at least one of these is carbonyl or , wherein m1, m2, and m3 are each independently an integer from 1 to 8, are each connected to an adjacent oxygen atom, are each connected to adjacent R 1 , R 2 and R 3 ,
  • R 1 , R 2 and R 3 are each independently hydrogen, straight or branched chain alkyl having 6 to 18 carbon atoms or straight or branched chain alkenyl having 6 to 18 carbon atoms;
  • n is an integer from 1 to 9;
  • an additive having a specific structure is added during the hydrogel polymer pulverization process to suppress aggregation of the hydrogel polymer particles, thereby improving the pulverization processability of the superabsorbent polymer.
  • the absorption performance and absorption rate of the can be improved.
  • 1 is a flowchart of a conventional manufacturing method of superabsorbent polymer.
  • FIG. 2 is a photograph showing examples of evaluation items in particle aggregation property evaluation.
  • polymer or “polymer” used in the specification of the present invention means a state in which water-soluble ethylenically unsaturated monomers are polymerized, and may cover all moisture content ranges or particle size ranges.
  • polymers in a state after polymerization and before drying and having a moisture content (moisture content) of about 40% by weight or more may be referred to as hydrogel polymers, and particles obtained by pulverizing and drying such hydrogel polymers may be referred to as crosslinked polymers. there is.
  • the term “superabsorbent polymer particles” refers to a particulate material including a crosslinked polymer obtained by polymerizing a water-soluble ethylenically unsaturated monomer having an acidic group and at least partially neutralizing the acidic group and crosslinking by an internal crosslinking agent.
  • the term “superabsorbent polymer”, depending on the context, refers to a crosslinked polymer in which a water-soluble ethylenically unsaturated monomer containing an acidic group and at least a portion of which is neutralized is polymerized, or a powder made of superabsorbent polymer particles in which the crosslinked polymer is pulverized (Powder) type base resin, or a product suitable for commercialization through additional processes such as surface crosslinking, fine powder reassembly, drying, pulverization, classification, etc. to the crosslinked polymer or the base resin It is used to cover all. Accordingly, the term "super absorbent polymer composition” may be interpreted as a composition including a super absorbent polymer, that is, a plurality of super absorbent polymer particles.
  • fine powder refers to particles having a particle diameter of less than 150 ⁇ m among the superabsorbent polymer particles.
  • the particle diameter of these resin particles may be measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • chopping refers to cutting a water-containing gel polymer into small pieces of a millimeter unit in order to increase drying efficiency, and is used separately from pulverization to a level of micrometers or normal particles.
  • micronizing refers to pulverizing a water-containing gel polymer to a particle size of several tens to hundreds of micrometers, and is used separately from “chopping”.
  • conventional super absorbent polymers are formed by cross-linking polymerization of water-soluble ethylenically unsaturated monomers having at least partially neutralized acidic groups in the presence of an internal cross-linking agent and polymerization initiator to form a water-containing gel polymer, drying the water-containing gel polymer formed in this way, and then forming a desired particle size.
  • a chopping process of cutting the water-containing gel polymer into particles of several millimeters in size is usually carried out before the drying process to facilitate drying of the water-containing gel polymer and increase the efficiency of the grinding process. .
  • the hydrogel polymer cannot be pulverized to the level of micro-sized particles and becomes an aggregated gel.
  • the water-gel polymer in the form of an aggregated gel is dried, a plate-shaped dry body is formed, and in order to grind it to the level of micro-sized particles, it must go through a multi-stage grinding process, so there has been a problem that many fine particles are generated in this process. .
  • FIG. 1 is a flowchart of a conventional method for manufacturing a superabsorbent polymer.
  • conventional superabsorbent polymers have been manufactured by including the following steps.
  • the chopped water-containing gel polymer has an aggregated gel form with a size of about 1 cm to 10 cm. dried by hot air. Since the polymer dried by the drying method exhibits a plate shape rather than a particle shape, the step of classifying after grinding is coarsely pulverized and classified so that the particles to be produced become normal particles, that is, particles having a particle diameter of 150 ⁇ m to 850 ⁇ m It has been carried out in the step of classifying after pulverization again. Since the amount of the fine powder separated in the final classification step by this manufacturing method is about 10% to about 20% by weight based on the total weight of the finally manufactured superabsorbent polymer, the separated fine powder is mixed with an appropriate amount of water to recycle the fine powder. After assembly, it was reused by putting it in the chopping step or the step before drying.
  • the present inventors have found that the amount of fine powder generated in the conventional manufacturing method has a great influence in the crushing process, and in the process of chopping it (atomization process), the present inventors add a surfactant to grind them more finely than before, while at the same time preventing aggregation.
  • the present inventors add a surfactant to grind them more finely than before, while at the same time preventing aggregation.
  • the amount of fine powder generated during the process can be significantly reduced.
  • the hydrophobic functional group included in the additive imparts hydrophobicity to the surface of the pulverized superabsorbent polymer particles to relieve the frictional force between the particles.
  • the hydrophilic functional group included in the additive is also bonded to the superabsorbent polymer particles so that the surface tension of the polymer is not lowered. Accordingly, the superabsorbent polymer prepared according to the above-described manufacturing method may have a high apparent density value while exhibiting an equivalent level of surface tension compared to a resin without using such an additive.
  • the water-soluble component Since the water-soluble component has a property of being easily eluted when the superabsorbent polymer comes into contact with a liquid, when the content of the water-soluble component is high, most of the eluted water-soluble component remains on the surface of the superabsorbent polymer and makes the superabsorbent polymer sticky. This causes the permeability to decrease. Therefore, it is important to keep the content of water-soluble components low in terms of liquid permeability.
  • the inventors of the present invention confirmed that, when the polymer is pulverized by mixing an additive having a specific structure represented by the following formula (1), aggregation of the pulverized water-containing gel polymer particles is suppressed, thereby improving the pulverization processability, thereby completing the present invention.
  • the particles included in the superabsorbent polymer composition prepared according to the above manufacturing method are characterized in that they exhibit an improved absorption rate compared to the case where the additive is not used.
  • a 1 , A 2 and A 3 are each independently a single bond, carbonyl; , or , with the proviso that at least one of these is carbonyl or , wherein m1, m2, and m3 are each independently an integer from 1 to 8, are each connected to an adjacent oxygen atom, are each connected to adjacent R 1 , R 2 and R 3 ,
  • R 1 , R 2 and R 3 are each independently hydrogen, straight or branched chain alkyl having 6 to 18 carbon atoms or straight or branched chain alkenyl having 6 to 18 carbon atoms;
  • n is an integer from 1 to 9;
  • the additive represented by Chemical Formula 1 has a hydrophobic functional group and a hydrophilic functional group at the same time.
  • the water-soluble ethylenically unsaturated monomer contains an acidic group (-COOH) and/or a neutralized acidic group ( -COO- )
  • the surface of the polymer produced by polymerization has an acidic group (- COOH) and/or a large amount of hydrophilic moieties by neutralized acidic groups ( -COO- ).
  • the hydrophilic functional group of the additive is adsorbed to at least some of the hydrophilic portions present on the surface of the polymer, and the surface of the polymer to which the additive is adsorbed has a hydrophobic surface located at the other end of the additive. Hydrophobicity is indicated by the functional group. Accordingly, aggregation between the pulverized water-containing gel polymer particles may be suppressed.
  • the superabsorbent polymer particles comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent; And a superabsorbent polymer composition comprising an additive represented by Formula 1 is provided:
  • a 1 , A 2 and A 3 are each independently a single bond, carbonyl; , or , with the proviso that at least one of these is carbonyl or , wherein m1, m2, and m3 are each independently an integer from 1 to 8, are each connected to an adjacent oxygen atom, are each connected to adjacent R 1 , R 2 and R 3 ,
  • R 1 , R 2 and R 3 are each independently hydrogen, straight or branched chain alkyl having 6 to 18 carbon atoms or straight or branched chain alkenyl having 6 to 18 carbon atoms;
  • n is an integer from 1 to 9;
  • the superabsorbent polymer composition of one embodiment includes superabsorbent polymer particles including a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent.
  • the crosslinked polymer is obtained by crosslinking polymerization of the water-soluble ethylenically unsaturated monomer having an acidic group in the presence of an internal crosslinking agent, and has a three-dimensional network structure in which main chains formed by polymerization of the monomers are crosslinked by the internal crosslinking agent.
  • the superabsorbent polymer composition of one embodiment includes superabsorbent polymer particles including a crosslinked polymer between a water-soluble ethylenically unsaturated monomer having an acidic group and an internal crosslinking agent.
  • the crosslinked polymer has a three-dimensional network structure in which the main chains formed by polymerization of the monomers are crosslinked by the internal crosslinking agent, compared to a case where the crosslinked polymer has a two-dimensional linear structure not additionally crosslinked by the internal crosslinking agent.
  • the water retention capacity and absorbency under pressure, which are all physical properties of the superabsorbent polymer can be remarkably improved.
  • the water-soluble ethylenically unsaturated monomer may be any monomer commonly used in the preparation of super absorbent polymers.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by Formula 2 below:
  • R is an alkyl group having 2 to 5 carbon atoms including an unsaturated bond
  • M' is a hydrogen atom, a monovalent or divalent metal, an ammonium group, or an organic amine salt.
  • the monomer may be at least one selected from the group consisting of (meth)acrylic acid and monovalent (alkali) metal salts, divalent metal salts, ammonium salts, and organic amine salts of these acids.
  • the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid or 2-(meth)acryloylethanesulfonic acid.
  • the water-soluble ethylenically unsaturated monomer has acidic groups, and at least some of the acidic groups are neutralized by a neutralizing agent in a neutralization step to be described later.
  • a neutralizing agent basic materials such as sodium hydroxide, potassium hydroxide, and ammonium hydroxide capable of neutralizing acidic groups may be used, which will be described in detail in the manufacturing method section to be described later.
  • the term 'internal cross-linking agent' used herein is a term used to distinguish it from the surface cross-linking agent for cross-linking the surface of the superabsorbent polymer particles described later, and polymerization by cross-linking the unsaturated bonds of the above-described water-soluble ethylenically unsaturated monomers play a role in Crosslinking in this step proceeds regardless of surface or internal crosslinking, but when the surface crosslinking process of the superabsorbent polymer particles described later proceeds, the surface of the finally prepared superabsorbent polymer particles has a structure crosslinked by a surface crosslinking agent, The inside is made up of a cross-linked structure by the internal cross-linking agent.
  • the internal crosslinking agent any compound may be used as long as it enables the introduction of crosslinking bonds during polymerization of the water-soluble ethylenically unsaturated monomer.
  • the internal crosslinking agent is N, N'-methylenebisacrylamide, trimethylolpropane tri(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, polyethylene glycol di( Meth)acrylate, propylene glycol di(meth)acrylate, polypropylene glycol (meth)acrylate, butanediol di(meth)acrylate, butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate Hexanediol di(meth)acrylate, triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythritol
  • cross-linking polymerization of the water-soluble ethylenically unsaturated monomer in the presence of such an internal cross-linking agent may be carried out by thermal polymerization, photo-polymerization or co-polymerization in the presence of a polymerization initiator and, if necessary, a thickener, a plasticizer, a storage stabilizer, an antioxidant, and the like.
  • a polymerization initiator e.g., ethylene glycol dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethyl dimethymerization graft copolymer, graft copoly
  • the superabsorbent polymer particles may have a particle size of about 150 to about 850 ⁇ m, and this particle size may be measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • EDANA European Disposables and Nonwovens Association
  • the superabsorbent polymer composition includes an additive represented by Formula 1.
  • the additive is mixed with the polymer and added so that the atomization (chopping) step can be easily performed without agglomeration.
  • the additive represented by Chemical Formula 1 is a nonionic surfactant and has excellent surface adsorption performance by hydrogen bonding even with an unneutralized polymer, and thus is suitable for realizing a desired aggregation control effect.
  • anionic surfactants other than nonionic surfactants when mixed with polymers neutralized with neutralizing agents such as NaOH and Na 2 SO 4 , they are adsorbed via Na+ ions ionized at the carboxyl substituents of the polymers, When mixed with an unneutralized polymer, there is a problem in that adsorption efficiency for the polymer is relatively lowered due to competition with the anion of the carboxyl substituent of the polymer.
  • the hydrophobic functional group is a terminal functional group R 1 , R 2 , R 3 (if not hydrogen)
  • the hydrophilic functional group is a glycerol-derived part in the chain and a terminal hydroxyl group (A n is a single bond, and at the same time
  • the glycerol-derived moiety and the terminal hydroxyl group serve to improve adsorption performance to the polymer surface as a hydrophilic functional group. Accordingly, aggregation of the superabsorbent polymer particles can be effectively suppressed.
  • the hydrophobic functional groups R 1 , R 2 , and R 3 moieties are each independently a straight-chain or branched-chain alkyl having 6 to 18 carbon atoms or a straight-chain or branched-chain having 6 to 18 carbon atoms. It is alkenyl.
  • R 1 , R 2 , R 3 moieties (if not hydrogen) are alkyl or alkenyl having less than 6 carbon atoms
  • the chain length is short and the aggregation control of the pulverized particles is not effectively achieved
  • R 1 , R 2 , R 3 When the moiety (if not hydrogen) is alkyl or alkenyl having more than 18 carbon atoms, the mobility of the additive is reduced and may not be effectively mixed with the polymer, and the cost of the additive increases. There may be a problem of increasing unit price.
  • R 1 , R 2 , R 3 are hydrogen or, in the case of straight-chain or branched-chain alkyl having 6 to 18 carbon atoms, 2-methylhexyl, n-heptyl, 2-methylheptyl, n-octyl, n -nonyl, n-decanyl, n-undecanyl, n-dodecanyl, n-tridecanyl, n-tetradecanyl, n-pentadecanyl, n-hexadecanyl, n-heptadecanyl, or n - May be octadecanyl, or in the case of straight or branched chain alkenyl having 6 to 18 carbon atoms, 2-hexenyl, 2-heptenyl, 2-octenyl, 2-nonenyl, n-decenyl, 2- undekenyl, 2-dodekenyl, 2-
  • the additive may be selected from compounds represented by Formulas 1-1 to 1-14 below:
  • the additive may be included in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. If the total content of the additives compared to the monomers in the composition is too low, the effect of controlling aggregation by the additives is low, and superabsorbent polymer particles that are not pulverized to a desired particle diameter may be included, and if the total content of the additives is too high, high The balance between water retention capacity and absorbency under pressure, which are various physical properties of the absorbent polymer, may deteriorate.
  • the content of the additive in the super absorbent polymer composition was firstly added to 1 ml of distilled water, followed by sufficient mixing for 1 hour until swelling, then filtering to extract only the solution portion, and then HPLC analysis. It can be measured by analyzing the amount of additives dissolved in the solution portion.
  • the additive is 0.01 parts by weight or more, 0.02 parts by weight or more, 0.05 parts by weight or more, 0.1 parts by weight or more, or 0.5 parts by weight or more, 10 parts by weight or less, 8 parts by weight of 100 parts by weight of the water-soluble ethylenically unsaturated monomer. Or less, 5 parts by weight or less, 3 parts by weight or less, or 2 parts by weight or less may be included.
  • each of the additives may be physically or chemically adsorbed on the surface of the superabsorbent polymer. More specifically, the hydrophilic functional group of each of the additives may be physically adsorbed to the hydrophilic portion of the surface of the superabsorbent polymer by an intermolecular force such as dipole-dipole interaction.
  • each of the additives is physically adsorbed on the surface of the superabsorbent polymer particle and covers the surface, and the hydrophobic part of each additive is not adsorbed on the surface of the resin particle, forming a kind of micelle structure.
  • Each additive may be coated on the surface of the resin particle.
  • the high Aggregation between the pulverized particles during the manufacturing process of the water absorbent polymer composition can be more effectively suppressed.
  • the superabsorbent polymer composition including the additives may have an improved absorption rate compared to a composition not including the additives.
  • the super absorbent polymer composition does not further include a surface crosslinking layer described later, a plurality of super absorbent polymer particles, the additive, and a hydrolyzate of the additive produced by hydrolysis of the additive during the manufacturing process of the super absorbent polymer.
  • Other hydrophilic additives may not be included.
  • the superabsorbent polymer composition of one embodiment may not include a compound having a plurality of hydroxyl group-containing glucose units in a molecule, such as microcrystalline cellulose.
  • a compound having a plurality of hydroxyl group-containing glucose units in a molecule such as microcrystalline cellulose.
  • the superabsorbent polymer composition includes microcrystalline cellulose having an average particle diameter of 1 to 10 ⁇ m, such as AVICEL ® PH-101 represented by Formula 3 available from FMC, a plurality of hydroxy Aggregation between the superabsorbent polymer particles may not be suppressed due to the groups, and thus the effects of the above-described additives may not be effectively expressed.
  • the superabsorbent polymer composition of one embodiment includes polyethylene glycol, polypropylene glycol, poly(ethylene glycol)-poly(propylene glycol) copolymer, polyoxyethylene lauryl ether carboxylic acid, sodium polyoxyethylene lauryl ether carboxyl It may not contain hydrophilic additives such as lauryl, lauryl sulfate, sodium lauryl sulfate, and the like. Such additives have a problem in that they are not sufficiently adsorbed on the surface of the crosslinked polymer, and thus aggregation between the superabsorbent polymer particles is not effectively suppressed.
  • the super absorbent polymer composition includes the hydrophilic additive as described above instead of the additive of Formula 1, aggregation between particles is not suppressed after pulverization of the crosslinked polymer, so that the super absorbent polymer composition includes a large amount of fine powder, It exhibits low water holding capacity and low bulk density.
  • the superabsorbent polymer composition may further include a surface crosslinking layer formed by additionally crosslinking the crosslinked polymer on at least a portion of the surface of the superabsorbent polymer particle via a surface crosslinking agent. This is to increase the surface cross-linking density of the super-absorbent polymer particles.
  • the super-absorbent polymer particles when the super-absorbent polymer particles further include a surface cross-linking layer, they have a structure in which the external cross-linking density is higher than the internal ones.
  • the surface crosslinking agent any surface crosslinking agent conventionally used in the preparation of the superabsorbent polymer may be used without particular limitation.
  • the surface crosslinking agent is ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,2-hexanediol, 1,3-hexanediol, 2- 1 selected from the group consisting of methyl-1,3-propanediol, 2,5-hexanediol, 2-methyl-1,3-pentanediol, 2-methyl-2,4-pentanediol, tripropylene glycol and glycerol more than one polyol; At least one carbonate-based compound selected from the group consisting of ethylene carbonate, propylene carbonate and glycerol carbonate; epoxy compounds such as ethylene glycol diglycidyl ether; oxazoline compounds such
  • one or more, two or more, or three or more of the aforementioned surface crosslinking agents may be used as the surface crosslinking agent, and for example, propylene glycol, ethylene carbonate, and propylene carbonate may be used.
  • the superabsorbent polymer composition has a vortex time of 30 seconds or less, 27 seconds or less, 25 seconds or less, 20 seconds or less, 15 seconds or less, or 12 seconds or less at 24.0 ° C according to the vortex method at 24.0 ° C. may be below.
  • the absorption rate is excellent as the value is small, and the lower limit of the absorption rate is 0 seconds in theory, but may be, for example, 5 seconds or more, 8 seconds or more, or 10 seconds or more. In this case, a method for measuring the absorption rate of the superabsorbent polymer will be described in more detail in Experimental Examples to be described later.
  • the superabsorbent polymer composition has a centrifugal retention capacity (CRC) of 39 g/g or more, or 40 g/g or more, or 50 g/g or less, or 48 g/g, measured according to WSP 241.3 of the EDANA method. or less, or 45 g/g or less.
  • CRC centrifugal retention capacity
  • the superabsorbent polymer composition has an absorbency under pressure (AUP) of 24.0 g/g or more, 25.0 g/g or more, 26.0 g/g or more, or 24.3 g/g or more at 0.7 psi, measured according to WSP 242.3 of the EDANA method. While, it may be 30 g / g or less, 28.0 g / g or less, or 26.0 g / g or less.
  • AUP absorbency under pressure
  • step 1 crosslinking polymerization of a water-soluble ethylenically unsaturated monomer having an acidic group in the presence of an internal crosslinking agent and a polymerization initiator to form a polymer (step 1);
  • step 3 preparing base resin particles by atomizing the polymer in the presence of an additive represented by Formula 1 below (step 3);
  • a 1 , A 2 and A 3 are each independently a single bond, carbonyl; , or , with the proviso that at least one of these is carbonyl or , wherein m1, m2, and m3 are each independently an integer from 1 to 8, are each connected to an adjacent oxygen atom, are each connected to adjacent R 1 , R 2 and R 3 ,
  • R 1 , R 2 and R 3 are each independently hydrogen, straight or branched chain alkyl having 6 to 18 carbon atoms or straight or branched chain alkenyl having 6 to 18 carbon atoms;
  • n is an integer from 1 to 9;
  • a step of forming a water-containing gel polymer is performed by cross-linking and polymerizing a water-soluble ethylenically unsaturated monomer having an acidic group in the presence of an internal cross-linking agent and a polymerization initiator.
  • the step may include preparing a monomer composition by mixing the water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator, and forming a polymer by thermally or photopolymerizing the monomer composition.
  • the description of the water-soluble ethylenically unsaturated monomer and the internal crosslinking agent refers to the above.
  • the water-soluble ethylenically unsaturated monomer has an acidic group.
  • a water-containing gel polymer is formed by cross-linking polymerization of a monomer in which at least some of the acidic groups are neutralized by a neutralizing agent.
  • a neutralizing agent Specifically, in the step of mixing the water-soluble ethylenically unsaturated monomer having an acidic group, an internal crosslinking agent, a polymerization initiator, and a neutralizing agent, at least some of the acidic groups of the water-soluble ethylenically unsaturated monomer were neutralized.
  • polymerization is first performed in a state where the acidic groups of the water-soluble ethylenically unsaturated monomers are not neutralized to form a polymer.
  • a water-soluble ethylenically unsaturated monomer (eg, acrylic acid) in which the acidic group is not neutralized is in a liquid state at room temperature and has high miscibility with a solvent (water), so it exists as a mixed solution in the monomer composition.
  • the water-soluble ethylenically unsaturated monomer having neutralized acid groups is in a solid state at room temperature and has different solubility depending on the temperature of the solvent (water), and the lower the temperature, the lower the solubility.
  • the water-soluble ethylenically unsaturated monomers in which the acidic groups are not neutralized have higher solubility or miscibility in the solvent (water) than the monomers in which the acidic groups are neutralized, so they do not precipitate even at low temperatures, and are therefore advantageous for long-term polymerization at low temperatures. . Accordingly, it is possible to stably form a polymer having a higher molecular weight and a uniform molecular weight distribution by performing polymerization for a long time using the water-soluble ethylenically unsaturated monomer in which the acidic group is not neutralized.
  • polymerization is first performed in a state in which the acidic group of the monomer is not neutralized to form a polymer, and after neutralization, atomization is performed in the presence of the additive of Formula 1, or atomization is performed in the presence of the additive of Formula 1, followed by neutralization, or atomization.
  • the additive of Chemical Formula 1 is present in a large amount on the surface of the polymer and can sufficiently play a role of lowering the adhesiveness of the polymer.
  • the type of the water-soluble ethylenically unsaturated monomer in the monomer composition is the same as that described in the superabsorbent polymer composition.
  • the concentration of the water-soluble ethylenically unsaturated monomer may be appropriately adjusted in consideration of polymerization time and reaction conditions, and may be about 20 to about 60% by weight, or about 20 to about 40% by weight.
  • the type of the internal crosslinking agent in the monomer composition is applied in the same manner as described in the above-described superabsorbent polymer composition.
  • the amount of the internal crosslinking agent may be 0.01 to 5 parts by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer.
  • the internal crosslinking agent is 0.01 parts by weight or more, 0.05 parts by weight or more, or 0.1 parts by weight or more, based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer, and 5 parts by weight or less, 3 parts by weight or less, 2 parts by weight or less, 1 It may be used in parts by weight or less, or 0.7 parts by weight or less.
  • the content of the upper internal cross-linking agent is too low, cross-linking does not occur sufficiently, making it difficult to realize an appropriate level of strength. If the content of the upper internal cross-linking agent is too high, the internal cross-linking density increases, making it difficult to realize the desired water retention capacity.
  • the polymerization initiator may be appropriately selected according to the polymerization method, a thermal polymerization initiator is used when a thermal polymerization method is used, a photopolymerization initiator is used when a photopolymerization method is used, and a hybrid polymerization method (thermal and photopolymerization initiators) is used. In the case of using both), both a thermal polymerization initiator and a photopolymerization initiator may be used.
  • a thermal polymerization initiator may be additionally used.
  • any compound capable of forming radicals by light such as ultraviolet light may be used without limitation in its configuration.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketal. Ketal), acyl phosphine, and alpha-aminoketone ( ⁇ -aminoketone) may be used at least one selected from the group consisting of.
  • specific examples of acylphosphine include diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl (2,4,6- Trimethylbenzoyl) phenylphosphinate etc. are mentioned. More various photoinitiators are well described in "UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" p115, a book by Reinhold Schwalm, and are not limited to the above examples.
  • thermal polymerization initiator at least one selected from the group consisting of a persulfate-based initiator, an azo-based initiator, hydrogen peroxide, and ascorbic acid may be used.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (K 2 S 2 O 8 ), and ammonium persulfate ((NH 4 ) 2 S 2 O 8 ) and the like
  • examples of the azo-based initiator include 2,2-azobis-(2-amidinopropane) dihydrochloride, 2 ,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carbamoyl azo)isobutyronitrile (2-(carbamoylazo)isobutylonitril), 2,2-azobis[
  • the polymerization initiator may be used in an amount of 2 parts by weight or less based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. That is, when the concentration of the polymerization initiator is too low, the polymerization rate may be slowed and a large amount of residual monomer may be extracted into the final product, which is not preferable. Conversely, when the concentration of the polymerization initiator is higher than the above range, the polymer chain constituting the network is shortened, which is not preferable because the physical properties of the resin may be deteriorated, such as an increase in the content of water-soluble components and a decrease in absorbency under pressure.
  • the monomer composition may further include additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • additives such as a thickener, a plasticizer, a storage stabilizer, and an antioxidant, if necessary.
  • the monomer composition including the monomer may be, for example, in a solution state dissolved in a solvent such as water, and the solid content, that is, the concentration of the monomer, the internal crosslinking agent, and the polymerization initiator in the monomer composition in the solution state is determined by polymerization. It may be appropriately adjusted in consideration of time and reaction conditions.
  • the solids content in the monomer composition may be 10 to 80% by weight, or 15 to 60% by weight, or 30 to 50% by weight.
  • the gel effect phenomenon that occurs in the polymerization reaction of a high-concentration aqueous solution is used to eliminate the need to remove unreacted monomers after polymerization, while increasing the pulverization efficiency when pulverizing the polymer, which will be described later. It can be advantageous to adjust.
  • the solvent that can be used at this time can be used without limitation in composition as long as it can dissolve the above-mentioned components.
  • the step of forming a polymer by performing polymerization on the monomer composition may be performed in a batch type reactor.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, and in the case of conventional thermal polymerization, it may be performed in a reactor having an agitation shaft such as a kneader, and photopolymerization may be performed. When proceeding, it may proceed in a reactor with a movable conveyor belt or in a flat-bottomed vessel.
  • a polymer having a wide molecular weight distribution without a high molecular weight is formed according to a relatively short polymerization reaction time (eg, 1 hour or less).
  • a water-containing gel polymer is usually obtained in the form of a sheet having the width of the belt, and the thickness of the polymer sheet is It depends on the concentration of the monomer composition and the injection rate or amount of injection, but is usually obtained in a thickness of about 0.5 to about 5 cm.
  • a new monomer composition is supplied to the reactor while the polymerization product is moved, so that the polymerization is carried out in a continuous manner, so that polymers having different polymerization rates are mixed. Accordingly, the monomer composition It is difficult to achieve uniform polymerization throughout, and overall physical properties may be deteriorated.
  • the polymerization step is performed in a batch reactor having a predetermined volume, and the polymerization reaction is performed for a longer period of time, for example, 3 hours or more, than in the case of continuous polymerization in a reactor equipped with a conveyor belt.
  • the long polymerization reaction time described above since polymerization is performed on unneutralized water-soluble ethylenically unsaturated monomers, monomers are not easily precipitated even when polymerization is performed for a long time, and therefore, it is advantageous to perform polymerization for a long time.
  • the polymerization initiator may be a thermal polymerization initiator among the above-mentioned initiators.
  • polymerization may be initiated by adding the initiator and a reducing agent forming a redox couple together.
  • the initiator and the reducing agent when added to the polymer solution, they react with each other to form radicals.
  • the formed radical reacts with the monomer, and since the oxidation-reduction reaction between the initiator and the reducing agent is highly reactive, polymerization is initiated even when only a small amount of the initiator and the reducing agent are added, and there is no need to increase the process temperature, enabling low-temperature polymerization. , it is possible to minimize the change in physical properties of the polymer solution.
  • the polymerization reaction using the oxidation-reduction reaction may occur smoothly even at a temperature near or below room temperature (25° C.).
  • the polymerization reaction may be carried out at a temperature of 5°C or more and 25°C or less, or 5°C or more and 20°C or less.
  • the reducing agent is sodium metabisulfite (Na 2 S 2 O 5 ); tetramethyl ethylenediamine (TMEDA); a mixture of iron(II) sulfate and EDTA (FeSO 4 /EDTA); sodium formaldehyde sulfoxylate; And one or more selected from the group consisting of disodium 2-hydroxy-2-sulfinoacetate (Disodium 2-hydroxy-2-sulfinoacteate) may be used.
  • potassium persulfate as an initiator and disodium 2-hydroxy-2-sulfinoacetate as a reducing agent
  • Ammonium persulfate is used as an initiator and tetramethylethylenediamine is used as a reducing agent
  • Sodium persulfate can be used as an initiator and sodium formaldehyde sulfoxylate as a reducing agent.
  • the reducing agent when using a hydrogen peroxide-based initiator as the initiator, is ascorbic acid; Sucrose; sodium sulfite (Na 2 SO 3 ) sodium metabisulfite (Na 2 S 2 O 5 ); tetramethyl ethylenediamine (TMEDA); a mixture of iron(II) sulfate and EDTA (FeSO 4 /EDTA); sodium formaldehyde sulfoxylate; Disodium 2-hydroxy-2-sulfinoacteate; And it may be at least one selected from the group consisting of disodium 2-hydroxy-2-sulfoacetate.
  • the polymer obtained in this way is polymerized using an unneutralized ethylenically unsaturated monomer, a polymer having a high molecular weight and a uniform molecular weight distribution can be formed as described above, and the content of water-soluble components can be reduced. there is.
  • the polymer obtained in this way is in the form of a water-containing gel polymer and may have a moisture content of 30 to 80% by weight.
  • the water content of the polymer may be 30 wt% or more, or 45 wt% or more, or 50 wt% or more, and 80 wt% or less, or 70 wt% or less, or 60 wt% or less.
  • the water content of the polymer is too low, it may not be effectively pulverized because it is difficult to secure an appropriate surface area in the subsequent grinding step, and if the water content of the polymer is too high, the pressure applied in the subsequent grinding step may increase, making it difficult to pulverize to the desired particle size. .
  • moisture content throughout the present specification refers to a value obtained by subtracting the weight of the polymer in a dry state from the weight of the polymer as the content of moisture with respect to the total weight of the polymer. Specifically, it is defined as a value calculated by measuring the weight loss due to evaporation of water in the polymer in the process of raising the temperature of the polymer in the crumb state through infrared heating and drying.
  • the drying condition is a method of raising the temperature from room temperature to about 180 ° C and then maintaining it at 180 ° C.
  • the total drying time is set to 40 minutes including 5 minutes of the temperature raising step, and the moisture content is measured.
  • step 2 neutralizing at least some of the acid groups of the polymer (step 2); and preparing base resin particles by atomizing the polymer in the presence of the additive represented by Formula 1 (step 3).
  • a basic material such as sodium hydroxide, potassium hydroxide, or ammonium hydroxide capable of neutralizing an acidic group may be used.
  • the degree of neutralization which refers to the degree of neutralization by the neutralizing agent among the acid groups included in the polymer, is 50 to 90 mol%, or 60 to 85 mol%, or 65 to 85 mol%, or 65 to 75 mol%.
  • the range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the absorption capacity of the superabsorbent polymer may decrease, and the concentration of carboxyl groups on the surface of the particles is too low, making it difficult to properly perform surface crosslinking in the subsequent process. Absorption under pressure or liquid permeability may decrease. Conversely, if the degree of neutralization is too low, not only the absorbency of the polymer is greatly reduced, but also exhibits properties such as elastic rubber that are difficult to handle.
  • step 3 a step (step 3) of preparing base resin particles by atomizing the polymer in the presence of the additive represented by Formula 1 is performed.
  • steps 2 and 3 may be performed sequentially, simultaneously, or alternately. That is, at the same time as step 2, or before or after step 2, in the presence of a surfactant, the step of atomizing the polymer is performed (step 3).
  • the above step is a step of atomizing the polymer in the presence of the additive of Formula 1, and is a step in which the polymer is not chopped to a millimeter size, but chopped to a size of tens to hundreds of micrometers and agglomerated at the same time. That is, it is a step of preparing secondary agglomerated particles in which primary particles cut to a size of several tens to hundreds of micrometers are agglomerated by imparting appropriate adhesiveness to the polymer.
  • the base resin particles, which are secondary agglomerated particles prepared in this step have a normal particle size distribution and greatly increase the surface area, so that the absorption rate can be remarkably improved.
  • the polymer After mixing the polymer and the additive of Chemical Formula 1, the polymer is atomized in the presence of the additive of Chemical Formula 1, and the superabsorbent polymer particles and the surfactant are mixed with the base resin in the form of secondary agglomerated particles that are chopped and agglomerated. particles can be produced.
  • the “base resin particles” are particles having a moisture content (moisture content) of about 30% by weight or more, and since the polymer is chopped and aggregated into particles without a drying process, the moisture content of 30 to 80% by weight, preferably may have a moisture content of 70 to 80% by weight.
  • the additive of Chemical Formula 1 may be used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer used for cross-linking polymerization to prepare the polymer.
  • the additive of Chemical Formula 1 is used too little, it is not evenly adsorbed on the surface of the polymer, and re-agglomeration of the particles after grinding may occur.
  • the surfactant is used too much, physical properties of the finally prepared superabsorbent polymer this may deteriorate.
  • the additive of Formula 1 is 0.01 parts by weight or more, 0.015 parts by weight or more, or 0.1 parts by weight or more, and 5 parts by weight or less, 3 parts by weight or less, 2 parts by weight or less, based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer. or less, or less than 1 part by weight.
  • a method of mixing the additives of Chemical Formula 1 into the polymer is not particularly limited as long as it is a method capable of evenly mixing them into the polymer, and may be appropriately adopted and used.
  • the additive of Chemical Formula 1 may be mixed in a dry method, dissolved in a solvent and then mixed in a solution state, or mixed after melting the additive of Chemical Formula 1.
  • the additive of Chemical Formula 1 may be mixed in a solution state dissolved in a solvent.
  • all kinds of solvents may be used without limitation to inorganic solvents or organic solvents, but water is most appropriate considering the ease of the drying process and the cost of the solvent recovery system.
  • the solution can be used by putting the additive of Formula 1 and the polymer into a reaction tank and mixing them, putting the polymer into a mixer and spraying the solution, or continuously supplying the polymer and the solution to a continuously operated mixer and mixing them.
  • steps 2 and 3 may be performed sequentially, simultaneously, or alternately.
  • adding the additive of Formula 1 to the neutralized polymer to atomize the polymer mixed with the additive, or adding the neutralizer and additive to the polymer at the same time to neutralize and atomize the polymer. can also be performed.
  • the additive may be added first and the neutralizing agent may be added later.
  • the neutralizing agent and the additive may be introduced alternately.
  • the atomization process may be additionally performed by first adding an additive to atomize, then adding a neutralizer to neutralize, and additionally adding additives to the neutralized water-containing gel polymer.
  • At least some to a significant amount of the additives of Chemical Formula 1 may be present on the surface of the base resin particles.
  • the presence of the additive of Chemical Formula 1 on the surface of the base resin particle means that at least a part or a significant amount of the additive of Chemical Formula 1 is adsorbed or bound to the surface of the base resin particle.
  • the additive of Chemical Formula 1 may be physically or chemically adsorbed on the surface of the base resin particle.
  • the hydrophilic functional group of the additive of Chemical Formula 1 may be physically adsorbed to the hydrophilic portion of the surface of the base resin particle by an intermolecular force such as dipole-dipole interaction.
  • the hydrophilic part of the additive of Formula 1 is physically adsorbed on the surface of the base resin particle and covers the surface, and the hydrophobic part of the additive of Formula 1 is not adsorbed on the surface of the base resin particle, so that the base resin particle is a kind of In the form of a micelle structure, the additive of Formula 1 may be coated.
  • the additive of Formula 1 is not added during the polymerization process of the water-soluble ethylenically unsaturated monomer, but added during the atomization step after polymer formation, and the additive of Formula 1 is added during the polymerization process to form the polymer of Formula 1 inside the polymer.
  • it can faithfully perform its role as a surfactant, and pulverization and aggregation occur simultaneously to obtain particles with a large surface area in the form of agglomerated fine particles.
  • the step (step 3) of preparing the base resin particles may be performed using an atomization device.
  • the atomization device may include a body portion including a transport space in which a mixture of a polymer and an additive is transported; a screw member rotatably installed inside the transfer space to move the mixture; a driving motor providing rotational driving force to the screw member; and a cutter member including a perforated plate installed in the body and having a plurality of holes, and pulverizing the mixture while discharging it to the outside of the body.
  • steps 2 and 3 are performed sequentially, simultaneously or alternately, which may be performed using an atomization device.
  • the atomization device further includes a neutralizer injection nozzle installed inside the body, and the neutralizer is injected through the neutralizer injection nozzle, so that steps 2 and 3 are performed sequentially, simultaneously, or alternately.
  • the neutralizer is injected into the body through the neutralizer injection nozzle to neutralize at least some of the acidic groups of polymers having acidic groups in the mixture.
  • a neutralizer is injected into the body through the neutralizer injection nozzle to neutralize at least some of the acid groups of polymers having acid groups in the mixture, and the mixture is discharged to the outside of the body through a perforated plate. being pulverized (atomized).
  • the neutralizing agent pulverized by the neutralizing agent injection nozzle may be sprayed adjacent to the perforated plate, and in this case, when the neutralization process is performed and the mixture is discharged through the hole of the perforated plate, the slip agent in the mixture It is desirable because it can reduce the load of the hall by performing a role.
  • the cutter member of the atomization device includes a perforated plate and a cutting knife disposed adjacent to the perforated plate and disposed on the outlet side of the body, and after the mixture passes through the perforated plate, the mixture is more effectively pulverized by the cutting knife for atomization. do.
  • the cutter member may include a plurality of perforated plates and a plurality of cutting knives.
  • the arrangement order of the plurality of perforated plates and the plurality of cutting knives is not particularly limited, and each may be sequentially disposed, may be disposed crossing each other, a plurality of perforated plates may be disposed in succession, or a plurality of cutting knives may be disposed in succession.
  • a plurality of neutralizer spray nozzles may be disposed adjacent to at least one of the plurality of perforated plates and cutting knives, and the neutralizer spray nozzles are preferably disposed adjacent to the perforated plate in terms of improving slip properties.
  • the hole size formed in the perforated plate may be 0.1 mm to 30 mm. Preferably, it may be 0.5 mm to 25 mm, 1 mm to 20 mm, or 1 mm to 10 mm.
  • base resin particles having a desired particle size may be prepared.
  • the size of holes formed in each of the perforated plates may satisfy the above range, and they may be the same as or different from each other.
  • step 3 may be performed a plurality of times, using a plurality of atomization devices, or using a single atomization device including a plurality of perforated plates and/or a plurality of cutting knives.
  • some of the plurality of atomization devices may include a plurality of perforated plates and/or a plurality of cutting knives.
  • the atomization step may be preferably performed 1 to 6 times or 1 to 4 times.
  • the additive may be additionally introduced a plurality of times.
  • the step (step 3) of preparing base resin particles by atomizing the polymer may be atomized such that the average particle diameter of the base resin particles is 50 ⁇ m to 600 ⁇ m, preferably, 100 ⁇ m to 500 ⁇ m, 150 ⁇ m to 450 ⁇ m It can be atomized so that it may become ⁇ m, or 200 ⁇ m to 400 ⁇ m.
  • the amount of fine powder generated during the process can be significantly reduced as the polymer is prepared as secondary particles in which the primary particles are aggregated and then the pulverization and drying process proceeds under milder conditions.
  • the average particle diameter “Dn” means the particle size or particle diameter at the n% point of the cumulative distribution of the number of particles according to the particle size. That is, D50 represents the particle size at the 50% point of the cumulative distribution of the number of particles according to the particle size, D90 represents the particle size at the 90% point of the cumulative distribution of the number of particles according to the particle size, and D10 represents the particle size at the point of the cumulative distribution of the number of particles according to the particle size. The particle size at the 10% point of the particle number cumulative distribution is shown.
  • the Dn can be measured using a laser diffraction method or the like.
  • a laser diffraction particle size measuring device e.g. Microtrac S3500
  • D10, D50 and D90 can be measured by calculating the particle size at the point where it becomes 10%, 50% and 90% of the particle number cumulative distribution according to the particle size in the measuring device.
  • step 4 a step of drying the base resin particles is included.
  • a super absorbent polymer composition including the super absorbent polymer particles and the additive represented by Chemical Formula 1 may be prepared.
  • the drying may be performed so that the moisture content of each of the plurality of super absorbent polymer particles included in the prepared super absorbent polymer composition is about 10% by weight or less, specifically, about 0.1 to about 10% by weight.
  • drying of the pulverized material may be performed in a moving type.
  • This moving type drying is distinguished from fixed-bed type drying by the presence/absence of material flow during drying.
  • the drying step is generally performed until the moisture content of the super absorbent polymer particles is less than 10% by weight.
  • aggregation is controlled by performing the atomization step in the presence of an acid additive of Chemical Formula 1, so that the moisture content of the superabsorbent polymer particles to be dried is 10% to 20% by weight, preferably 10% to 25% by weight. It is performed by drying to become.
  • the present invention is not limited thereto. Accordingly, there is an advantage in that generation of fine powder can be fundamentally prevented by exhibiting a high moisture content. In addition, it is preferable because it can improve the absorption rate of the final superabsorbent polymer composition.
  • the drying step is performed in a method of drying in a moving type at a relatively low temperature.
  • This moving type drying is distinguished from fixed-bed type drying by the presence/absence of material flow during drying, and the phenomenon of aggregation between the chopped water-containing superabsorbent polymer particles in the pulverized material to be dried. It is preferable because it can prevent and complete drying within a short time.
  • the drying step is performed in a method of drying in a moving type at a relatively low temperature.
  • This moving type drying is distinguished from fixed-bed type drying by the presence/absence of material flow during drying, and prevents aggregation between the chopped base resin particles in the pulverized material to be dried. And, it is preferable because it can complete drying within a short time.
  • the moving type drying refers to a method of drying the drying body while mechanically stirring it.
  • the direction in which the hot air passes through the material may be the same as or different from the circulation direction of the material.
  • the material may be circulated inside the dryer and the material may be dried by passing a heat exchanger fluid (heat oil) through a separate pipe outside the dryer.
  • heat exchanger fluid heat oil
  • fixed-bed type drying refers to a method in which hot air passes through the material from the bottom to the top in a state in which the material to be dried is suspended on the floor such as a perforated iron plate through which air can flow.
  • a generally used liquid dryer may be used without particular limitation, for example, a horizontal-type mixer, a rotary kiln, a paddle dryer (Paddle Dryer) or steam tube dryer (Steam tube dryer) can be carried out using a fluid dryer.
  • the drying step (step 4) may be performed at a relatively low temperature of 150 ° C or less, and preferably may be performed at 100 ° C to 150 ° C, 100 ° C to 130 ° C, 105 ° C to 115 ° C, Even if it is performed at a low temperature as described above, it is possible to prepare superabsorbent polymer particles having a desired particle size and physical properties without desired aggregation.
  • the drying temperature may be an internal driving temperature at which dry matter of the fluid type drying device is input, which may be adjusted by passing a heat exchanger fluid (heat oil) through a separate pipe pipe outside the dryer, but is limited thereto. it is not going to be
  • the drying step may be performed for 30 minutes to 80 minutes, 30 minutes to 60 minutes, or 40 minutes to 50 minutes, and between the chopped polymer resin particles in the pulverized material to be dried. Even if the drying step is performed for a short time at a relatively low temperature due to low aggregation, it is possible to prepare superabsorbent polymer particles having a desired particle size and physical properties.
  • the method for preparing a super absorbent polymer composition according to an embodiment of the present invention may further include pulverizing and classifying the super absorbent polymer particles, if necessary.
  • the pulverizing step may be performed to pulverize the dry super absorbent polymer particles to have a normal particle size, that is, a particle size of 150 ⁇ m to 850 ⁇ m.
  • the grinder used for this purpose is specifically a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, a cutter mill, It may be a disc mill, a shred crusher, a crusher, a chopper, or a disc cutter, but is not limited to the above examples.
  • a pin mill hammer mill, screw mill, roll mill, disc mill, or jog mill
  • a pin mill hammer mill, screw mill, roll mill, disc mill, or jog mill
  • the manufacturing method of the present invention in the atomization step, superabsorbent polymer particles with a smaller particle size distribution than in the conventional chopping step can be implemented, and when moving type drying is performed, the moisture content after drying is 10% by weight or more, which is relatively Since it is maintained at a high level, superabsorbent polymer having a very high normal particle size content of 150 ⁇ m to 850 ⁇ m can be formed even when grinding is performed under mild conditions with less grinding force, and the fine powder generation rate can be greatly reduced.
  • the super absorbent polymer particles prepared as described above contain 80% by weight or more, 85% by weight or more, 89% by weight or more, or 90% by weight of superabsorbent polymer particles having a particle size of 150 ⁇ m to 850 ⁇ m relative to the total weight, that is, normal particles. or more, 92% by weight or more, 93% by weight or more, 94% by weight or more, or 95% by weight or more.
  • the particle diameter of these resin particles may be measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.3 method.
  • the superabsorbent polymer particles contain less than about 20% by weight, less than about 18% by weight, less than about 15% by weight, less than about 13% by weight, less than about 10% by weight of fine powder having a particle size of less than 150 ⁇ m relative to the total weight , Specifically less than about 5% by weight, more specifically less than about 3%. This is in contrast to having a fine powder of greater than about 20% by weight to about 30% by weight when the superabsorbent polymer is prepared according to a conventional manufacturing method.
  • the method for preparing super absorbent polymer according to an embodiment of the present invention may include preparing super absorbent polymer particles by thermally crosslinking the surface of the base resin powder in the presence of surface crosslinking.
  • the surface crosslinking step is to induce a crosslinking reaction on the surface of the base resin powder in the presence of a surface crosslinking agent, and the unsaturated bonds of the water-soluble ethylenically unsaturated monomers remaining on the surface without crosslinking are crosslinked by the surface crosslinking agent, A superabsorbent polymer with high crosslinking density is formed.
  • a surface crosslinking layer may be formed by a heat treatment process due to the presence of a surface crosslinking agent, and the heat treatment process increases the surface crosslinking density, that is, the external crosslinking density, while the internal crosslinking density does not change, resulting in a surface crosslinking layer.
  • the formed superabsorbent polymer has a structure in which the crosslinking density is higher on the outside than on the inside.
  • the surface crosslinking process may be performed at a temperature of about 80 °C to about 250 °C. More specifically, the surface crosslinking process may be performed at a temperature of about 100 ° C to about 220 ° C, or about 120 ° C to about 200 ° C, for about 20 minutes to about 2 hours, or about 40 minutes to about 80 minutes. . When the above-described surface crosslinking process conditions are satisfied, the surface of the superabsorbent polymer particle is sufficiently crosslinked to increase absorbency under pressure.
  • the means for raising the temperature for the surface crosslinking reaction is not particularly limited. It can be heated by supplying a heat medium or directly supplying a heat source.
  • a heat medium As the type of heat medium that can be used, steam, hot air, heated fluids such as hot oil, etc. can be used, but are not limited thereto, and the temperature of the heat medium supplied depends on the means of the heat medium, the heating rate, and the target temperature of the heating medium. can be selected appropriately.
  • the directly supplied heat source heating through electricity or heating through gas may be mentioned, but is not limited to the above example.
  • the surface cross-linking agent included in the surface cross-linking agent composition any surface cross-linking agent conventionally used in the preparation of the superabsorbent polymer may be used without particular limitation.
  • the surface crosslinking agent is ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,2-hexanediol, 1,3-hexanediol, 2- 1 selected from the group consisting of methyl-1,3-propanediol, 2,5-hexanediol, 2-methyl-1,3-pentanediol, 2-methyl-2,4-pentanediol, tripropylene glycol and glycerol more than one polyol; At least one carbonate-based compound selected from the group consisting of ethylene carbonate and propylene carbonate; epoxy compounds such as ethylene glycol diglycidyl ether;
  • a surface cross-linking agent composition containing an alcohol-based solvent and water may be used in addition to the surface cross-linking agent.
  • the surface crosslinking agent may be used in an amount of 0.001 to 2 parts by weight based on 100 parts by weight of the superabsorbent polymer particles. Preferably, it is 0.005 parts by weight or more, 0.01 parts by weight or more, or 0.02 parts by weight or more, and may be used in an amount of 0.5 parts by weight or less and 0.3 parts by weight or less.
  • the surface crosslinking agent is added to the superabsorbent polymer particles in the form of a surface crosslinking agent composition containing the surface crosslinking agent composition, but there is no particular limitation on the composition of the method for adding the surface crosslinking agent composition.
  • the surface cross-linking agent composition and super-absorbent polymer particles are mixed in a reaction tank, or the surface cross-linking agent composition is sprayed on the super-absorbent polymer particles, and the super-absorbent polymer particles and the surface cross-linking agent composition are continuously mixed in a continuously operated mixer.
  • a method of supplying and mixing can be used.
  • the surface crosslinking agent composition may further include water and/or a hydrophilic organic solvent as a medium.
  • water and/or a hydrophilic organic solvent as a medium.
  • the content of water and the hydrophilic organic solvent is 100 parts by weight of superabsorbent polymer particles for the purpose of inducing uniform dissolution/dispersion of the surface crosslinking agent, preventing aggregation of the base resin powder, and at the same time optimizing the surface penetration depth of the surface crosslinking agent It can be applied by adjusting the addition ratio for
  • aluminum salts such as aluminum sulfate salts and other various polyvalent metal salts may be further used to further improve liquid permeability and the like during surface crosslinking.
  • a polyvalent metal salt may be included on the surface crosslinking layer of the finally prepared superabsorbent polymer.
  • a cooling step of cooling the super-absorbent polymer particle on which the surface cross-linked layer is formed the surface cross-linked layer It may be performed by further including at least one step of a hydrolysis step of injecting water into the formed superabsorbent polymer particles and a post-treatment step of injecting an additive into the superabsorbent polymer particles on which the surface crosslinking layer is formed.
  • the cooling step, the adding step, and the post-treatment step may be performed sequentially or simultaneously.
  • Additives introduced in the post-treatment step may include a liquid permeability improver, an anti-caking agent, a fluidity improver, and an antioxidant, but the present invention is not limited thereto.
  • the moisture content of the final super absorbent polymer can be improved and a higher quality super absorbent polymer product can be manufactured.
  • a superabsorbent polymer composition prepared by the above manufacturing method is provided.
  • the super absorbent polymer composition prepared by the above manufacturing method has a high water content without a separate additional hydrolysis process or an additive input process, so the fine powder content is low, and water retention capacity (CRC), which is overall absorption property, compared to the super absorbent polymer prepared by the conventional method
  • a superabsorbent polymer with excellent absorbency under load (AUP) at the same level or higher and at the same time with a lower water-soluble component (EC) content can provide a superabsorbent polymer with excellent absorption rate and the like.
  • Step 1 In a 5L glass container equipped with a stirrer and a thermometer, 1,000 g of acrylic acid, 3.5 g of pentaerythritol triallyl ether as an internal crosslinking agent, and 2,260 g of water were mixed and stirred while maintaining at 5°C. 1,000 cc/min of nitrogen was introduced into the glass container containing the mixture for 1 hour to replace the mixture with nitrogen conditions.
  • Step 2 and Step 3 1.19 g of compound A-1 of Table 1 as an additive of Formula 1 was dispersed in 52.27 g of water (preparation of 2 wt% aqueous dispersion), and then mixed with 1,000 g of the polymer obtained in Step 1. did
  • a primary atomization process was performed by passing the mixture once through a first atomization device equipped with a perforated plate having a plurality of holes having a hole size of 6 mm.
  • the second, third, and fourth atomization processes were performed by repeating the injection three times in a second atomization apparatus equipped with a perforated plate having a plurality of holes having a hole size of 4 mm.
  • the atomization process was performed without adding a neutralizer or surfactant to obtain base resin particles.
  • the degree of neutralization of the base resin particles was 70 mol%.
  • Step 4 After that, 1,000 g of the base resin particles were put into a rotary mixer fluid dryer rotating at 100 rpm. Drying was performed for 60 minutes while maintaining the internal temperature of the dryer at 105° C. to obtain superabsorbent polymer particles. The moisture content of the superabsorbent polymer particles was 11wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-2 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 11 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-3 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 11 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-4 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 11 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-5 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 14 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-6 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 14 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-7 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 11 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-8 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 12 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-9 of Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 13 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-10 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 11 wt%.
  • Step 1 In a 5L glass container equipped with a stirrer and a thermometer, 1,000 g of acrylic acid, 3.5 g of pentaerythritol triallyl ether as an internal crosslinking agent, and 2,260 g of water were mixed and stirred while maintaining at 5°C. 1,000 cc/min of nitrogen was introduced into the glass container containing the mixture for 1 hour to replace the mixture with nitrogen conditions.
  • Step 2 and Step 3 After dispersing 0.595 g of A-1 compound of Table 1 as an additive of Formula 1 in 52.27 g of water (preparation of 2 wt% aqueous dispersion), this was mixed with 1,000 g of the polymer obtained in Step 1. mixed.
  • a primary atomization process was performed by passing the mixture once through a first atomization device equipped with a perforated plate having a plurality of holes having a hole size of 6 mm.
  • the second, third, and fourth atomization processes were performed by repeating the injection three times in a second atomization apparatus equipped with a perforated plate having a plurality of holes having a hole size of 4 mm.
  • Step 4 After that, 1,000 g of the base resin particles were put into a rotary mixer fluid dryer rotating at 100 rpm. Drying was performed for 60 minutes while maintaining the internal temperature of the dryer at 105° C. to obtain superabsorbent polymer particles.
  • the water content of the final superabsorbent polymer particles was 12 wt%.
  • Example 11 Compound A-1 was used as the additive of Formula 1 in the first atomization step, except that Compound A-2 of Table 1 was used instead of Compound A-11 as the additive of Formula 1 in the fourth atomization step. Then, a superabsorbent polymer composition was prepared using the same method as in Example 11.
  • the water content of the final superabsorbent polymer particles was 10 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-12 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 14 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that Compound A-13 in Table 1 was used instead of Compound A-1 as the additive of Formula 1 in Example 1.
  • the water content of the final superabsorbent polymer particles was 14 wt%.
  • Example 14 0.595 g of compound A-12 used in Example 13 and 0.595 g of compound A-13 used in Example 14 were mixed as additives of Formula 1, and the same method as in Example 1 was used, except that a total of 1.19 g of additives was used.
  • a superabsorbent polymer composition was prepared using
  • the water content of the final superabsorbent polymer particles was 13 wt%.
  • a super absorbent polymer composition was prepared in the same manner as in Example 13, except that the amount of A-12 was increased to 2.38 g as the additive of Formula 1 in Example 13.
  • the water content of the final superabsorbent polymer particles was 12 wt%.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that the additive of Formula 1 was not used.
  • a superabsorbent polymer composition was prepared in the same manner as in Example 1, except that the additives of Formula 1 were used as shown in Table 1 below.
  • the monomer composition was supplied at a speed of 500 to 2000 mL/min on a conveyor belt in which a belt having a width of 10 cm and a length of 2 m rotated at a speed of 50 cm/min. And, simultaneously with the supply of the monomer composition, UV light having an intensity of 10 mW/cm 2 was irradiated to conduct a polymerization reaction for 60 seconds, thereby obtaining a water-containing gel polymer having a moisture content of about 55% by weight.
  • the water-containing gel polymer obtained through the polymerization reaction was pulverized using a meat chopper without additives. At this time, the moisture content of the water-containing superabsorbent polymer particles included in the final pulverized material was 55 wt%.
  • the pulverized material is dried by flowing hot air at 185 ° C. from bottom to top for 20 minutes using a convection oven capable of transferring air volume up and down, and then flowing from top to bottom for 20 minutes. After drying, A super absorbent polymer having a moisture content of 25 wt% of the final super absorbent polymer particles was prepared.
  • Example 1 (A-1) Example 2 (A-2) Example 3 (A-3) Example 4 (A-4) Example 5 (A-5) Example 6 (A-6) Example 7 (A-7) Example 8 (A-8) Example 9 (A-9) Example 10 (A-10) Example 11 (A-1: 1st atomization)+ (A-11: 4th atomization) Example 12 (A-1: 1st atomization) + (A-2: 4th atomization) Example 13 (A-12) Example 14 (A-13) Example 15 (A-12: 1st atomization) + (A-13: 1st atomization) Example 16 (A-12) Comparative Example 1 Use of additives X Comparative Example 2 Monobutyl Maleate Comparative Example 3 Monolauryl Glutarate Comparative Example 4 Dodecanoic Acid Comparative Example 5 Stearic Acid Comparative Example 6 Pluronic L35 Comparative Example 7 Use of additives X (pre-neutralization process) Comparative Example 8 laureth-3-adipate Comparative Example 9 Polyethyleneglycol
  • Step 2 The additives in Step 2 or the comparative compounds corresponding thereto were mixed in the form of an aqueous solution according to the type and content used in each Example and Comparative Example.
  • the discharge time means the time (seconds) it takes for 200 g of the pulverized material to be discharged from the mincer, and the discharge time is shortened as aggregation is alleviated.
  • the discharge amount means the ratio (wt%) of the content discharged through the discharge port with respect to the injected 300g of the mixture after the step 2 is completed, and as the aggregation is relieved, the amount of lumps remaining inside the grinder decreases and the discharge amount increases .
  • evaluation standard X More than 80% of the ejected material is ejected in the shape of a strand of 1 cm or more (see Fig. 2 (a)). Due to the high adhesion to the blade, the polymer is crushed during chopping, and the surface of the grain is bumpy, and the high cohesive force makes the ejected material More than 80% have a strand shape of 1 cm or more ⁇ More than 80% of the ejected material is ejected in the form of particles less than 1 cm (see Fig. 2 (b)). The adhesion and cohesive force to the blade are greatly alleviated, so the surface of the grains after chopping is smooth, and more than 80% of the ejected material is less than 1 cm. has a shape close to a sphere
  • CRC (g/g) ⁇ [W 2 (g) - W 1 (g)]/W 0 (g) ⁇ - 1
  • a stainless steel 400 mesh wire mesh was attached to the bottom of a plastic cylinder having an inner diameter of 25 mm.
  • Absorbent resin composition W 0 (g) (0.16 g) is uniformly sprayed on a wire mesh under conditions of room temperature and 50% humidity, and a piston capable of further uniformly applying a load of 0.7 psi thereon has an outer diameter slightly greater than 25 mm It is small and has no gaps with the inner wall of the cylinder, so that up and down movement is not hindered.
  • the weight W 3 (g) of the device was measured.
  • a glass filter having a diameter of 90 mm and a thickness of 5 mm was placed inside a petro dish having a diameter of 150 mm, and physiological saline solution composed of 0.9% by weight sodium chloride was leveled with the top surface of the glass filter.
  • One sheet of filter paper having a diameter of 90 mm was placed thereon.
  • the measuring device was placed on a filter paper, and the liquid was absorbed for 1 hour under a load. After 1 hour, the measuring device was lifted up and its weight W 4 (g) was measured.
  • AUP(g/g) [W 4 (g) - W 3 (g)]/W 0 (g)
  • 100 g of the super absorbent polymer composition of Examples and Comparative Examples was poured through an orifice of a standard fluidity measuring device, received in a container having a volume of 100 ml, and the super absorbent polymer composition was shaved horizontally to obtain a volume of 100 ml. After adjusting, the weight of only the superabsorbent polymer composition excluding the container was measured. In addition, the apparent density corresponding to the weight of the super absorbent polymer composition per unit volume was obtained by dividing the weight of the super absorbent polymer composition alone by the volume of the super absorbent polymer composition, 100 ml.
  • the amount of fine powder generated in the super absorbent polymer compositions of Examples and Comparative Examples was less than 150 ⁇ m relative to the total weight after passing the prepared super absorbent polymer composition through a coarse grinder (2800 rpm, 0.4 mm clearance, 1 mm lower mesh condition) once. It was calculated as a ratio of the weight of the resin having a particle size, and the results are shown in Table 4.
  • a magnetic bar (diameter 8 mm, length 30 mm) was placed in the beaker.
  • the stirrer was operated so that the magnetic bar was stirred at 600 rpm, and the lowest part of the vortex generated by the stirring was brought into contact with the top of the magnetic bar.
  • the superabsorbent polymer composition of this example has a significantly faster absorption rate than that of the comparative example, and has water retention capacity and absorbency under pressure equal to or higher than that of the comparative example, and at the same time, exhibits a high bulk density without a decrease in surface tension. there is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 고흡수성 수지 조성물 및 이의 제조 방법에 관한 것이다. 보다 구체적으로, 특정 구조의 첨가제를 포함하여 분쇄 공정에서 함수겔 중합체의 응집 억제 및 분쇄 공정성을 개선할 수 있는 고흡수성 수지 조성물의 제조 방법에 관한 것이다. [대표도] 도 2

Description

고흡수성 수지 조성물 및 이의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2021년 10월 29일자 한국 특허 출원 제10-2021-0147025호 및 2022년 10월 27일자 한국 특허 출원 제10-2022-0140642호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 고흡수성 수지 조성물 및 이의 제조 방법에 관한 것이다. 보다 구체적으로, 특정 구조의 첨가제를 포함하여 분쇄 공정에서 함수겔 중합체의 응집 억제 및 분쇄 공정성을 개선할 수 있는 고흡수성 수지 조성물의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제 및 찜질용 등의 재료로 널리 사용되고 있다.
이러한 고흡수성 수지는 주로 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 상기 위생재 내에서, 상기 고흡수성 수지는 펄프 내에 퍼진 상태로 포함되는 것이 일반적이다. 그런데, 최근 들어서는, 보다 얇은 두께의 기저귀 등 위생재를 제공하기 위한 노력이 계속되고 있으며, 그 일환으로서 펄프의 함량이 감소되거나, 더 나아가 펄프가 전혀 사용되지 않는 소위 펄프리스(pulpless) 기저귀 등의 개발이 적극적으로 진행되고 있다.
이와 같이, 펄프의 함량이 감소되거나, 펄프가 사용되지 않은 위생재의 경우, 상대적으로 고흡수성 수지가 높은 비율로 포함되어, 고흡수성 수지 입자들이 위생재 내에 불가피하게 다층으로 포함된다. 이렇게 다층으로 포함되는 전체적인 고흡수성 수지 입자들이 보다 효율적으로 많은 양의 소변 등의 액체를 흡수하기 위해서는, 상기 고흡수성 수지가 기본적으로 높은 흡수 성능뿐 아니라 빠른 흡수 속도를 나타낼 필요가 있다.
한편, 이러한 고흡수성 수지는 일반적으로, 단량체를 중합하여 다량의 수분을 함유한 함수겔 중합체를 제조하는 단계 및 이러한 함수겔 중합체를 조분쇄 및 건조 후 원하는 입경을 갖는 수지 입자로 분쇄하는 단계를 거쳐 제조된다. 특히, 함수겔 중합체를 조분쇄하는 과정에서 조분쇄된 함수겔 중합체가 서로 응집되거나 뭉쳐지는 현상이 발생하여 분쇄가 용이하게 이루어지지 않는다는 문제가 있어 왔다.
이에 따라, 고흡수성 수지의 기본적인 흡수력 및 보수력을 나타내는 물성인 보수능(CRC)와 외부의 압력에도 흡수된 액체를 잘 보유하는 특성을 나타내는 가압 흡수능(AUP)의 개선 외에도, 고흡수성 수지의 흡수 속도를 향상시킬 수 있는 기술 및 공정 중 분쇄 공정성을 개선할 수 있는 기술의 개발이 계속적으로 요청되고 있다.
이에 본 발명은 특정 구조를 갖는 첨가제를 포함하여 분쇄 공정에서 함수겔 중합체의 응집 억제 및 분쇄 공정성을 개선할 수 있는 고흡수성 수지 조성물의 제조 방법에 관한 것이다.
상기 과제를 해결하기 위하여, 본 발명은,
산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제의 가교 중합체를 포함하는 고흡수성 수지 입자; 및
하기 화학식 1로 표시되는 첨가제 포함하는, 고흡수성 수지 조성물을 제공한다:
[화학식 1]
Figure PCTKR2022016642-appb-img-000001
상기 화학식 1에서,
A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
Figure PCTKR2022016642-appb-img-000002
,
Figure PCTKR2022016642-appb-img-000003
또는
Figure PCTKR2022016642-appb-img-000004
이고, 단, 이들 중 하나 이상은 카보닐 또는
Figure PCTKR2022016642-appb-img-000005
이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
Figure PCTKR2022016642-appb-img-000006
은 각각 인접한 산소 원자와 연결되고,
Figure PCTKR2022016642-appb-img-000007
은 인접한 R1, R2 및 R3와 각각 연결되고,
R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
n은 1 내지 9의 정수이다.
또한, 본 발명은,
내부 가교제 및 중합 개시제의 존재 하에, 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 중합체를 형성하는 단계(단계 1);
상기 중합체의 적어도 일부의 산성기를 중화시키는 단계(단계 2);
하기 화학식 1로 표시되는 첨가제의 존재 하에, 상기 중합체를 미립화하여 베이스 수지 입자를 제조하는 단계(단계 3); 및
상기 베이스 수지 입자를 건조하는 단계(단계 4)를 포함하는,
고흡수성 수지 조성물의 제조 방법을 제공한다:
[화학식 1]
Figure PCTKR2022016642-appb-img-000008
상기 화학식 1에서,
A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
Figure PCTKR2022016642-appb-img-000009
,
Figure PCTKR2022016642-appb-img-000010
또는
Figure PCTKR2022016642-appb-img-000011
이고, 단, 이들 중 하나 이상은 카보닐 또는
Figure PCTKR2022016642-appb-img-000012
이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
Figure PCTKR2022016642-appb-img-000013
은 각각 인접한 산소 원자와 연결되고,
Figure PCTKR2022016642-appb-img-000014
은 인접한 R1, R2 및 R3와 각각 연결되고,
R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
n은 1 내지 9의 정수이다.
본 발명의 고흡수성 수지 조성물 및 이의 제조 방법에 따르면, 특정 구조를 갖는 첨가제를 함수겔 중합체 분쇄 공정 중에 투입하여 함수겔 중합체 입자의 응집을 억제함으로써 분쇄 공정성이 개선될 수 있고, 이에 따라 고흡수성 수지의 흡수 성능 및 흡수 속도가 향상될 수 있다.
도 1은 종래의 고흡수성 수지의 제조 방법에 관한 흐름도이다.
도 2는 입자 응집 특성 평가에서 평가 항목의 예시를 나타낸 사진이다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지의 제조 방법 및 고흡수성 수지에 대해 보다 상세히 설명하기로 한다.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 발명의 명세서에 사용되는 용어 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율(수분 함량)이 약 40 중량% 이상의 중합체를 함수겔 중합체로 지칭할 수 있고, 이러한 함수겔 중합체가 분쇄 및 건조된 입자를 가교 중합체로 지칭할 수 있다.
또한, 용어 "고흡수성 수지 입자"는 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체가 중합되고 내부 가교제에 의해 가교된 가교 중합체를 포함하는, 입자상의 물질을 일컫는다.
또한, 용어 "고흡수성 수지"는 문맥에 따라 산성기를 포함하고 상기 산성기의 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체가 중합된 가교 중합체, 또는 상기 가교 중합체가 분쇄된 고흡수성 수지 입자로 이루어진 분말(powder) 형태의 베이스 수지를 의미하거나, 또는 상기 가교 중합체나 상기 베이스 수지에 대해 추가의 공정, 예를 들어 표면 가교, 미분 재조립, 건조, 분쇄, 분급 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다. 따라서, 용어 "고흡수성 수지 조성물"은 고흡수성 수지를 포함하는 조성물, 즉, 복수 개의 고흡수성 수지 입자를 포함하는 것으로 해석될 수 있다.
또한, 용어 "미분"은 고흡수성 수지 입자 중 150 ㎛ 미만의 입경을 갖는 입자를 의미한다. 이러한 수지 입자의 입경은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정될 수 있다.
또한, 용어 "쵸핑(chopping)"은 건조 효율을 높이기 위해 함수겔 중합체를 밀리미터 단위의 작은 조각으로 절단하는 것으로, 마이크로 미터 또는 정상 입자 수준까지 분쇄하는 것과는 구분되어 사용된다.
또한, 용어 "미립화(micronizing, micronization)"은 함수겔 중합체를 수십 내지 수백 마이크로 미터의 입경으로 분쇄하는 것으로, “쵸핑”과는 구분되어 사용된다.
한편, 종래 고흡수성 수지는 내부 가교제 및 중합 개시제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔 중합체를 형성하고, 이렇게 형성된 함수겔 중합체를 건조한 다음 원하는 입도까지 분쇄하여 제조되는데, 이때 통상적으로 함수겔 중합체의 건조를 용이하게 하고, 분쇄 공정의 효율성을 높이기 위해 건조 공정 이전에 함수겔 중합체를 수 밀리미터 크기의 입자로 절단하는 쵸핑(chopping) 공정이 진행된다. 그러나 이러한 쵸핑 공정에서 함수겔 중합체의 점착성으로 인하여, 함수겔 중합체는 마이크로 크기의 입자 수준까지 분쇄되지 못하고 응집된 겔 형태가 된다. 이러한 응집된 겔 형태의 함수겔 중합체를 건조하게 되면 판형의 건조체가 형성되게 되고, 이를 마이크로 크기 입자 수준까지 분쇄하기 위해서는 다단의 분쇄 공정을 거쳐야 하므로, 이 과정에서 많은 미분이 발생된다는 문제가 있어 왔다.
구체적으로, 도 1에는 종래의 고흡수성 수지의 제조 방법에 관한 흐름도가 도시되어 있다. 도 1을 참조하면, 종래 고흡수성 수지는 하기와 같은 단계를 포함하여 제조되어 왔다.
(중화) 수용성 에틸렌계 불포화 단량체의 산성기의 적어도 일부를 중화시키는 단계;
(중합) 내부 가교제 및 중합 개시제의 존재 하에, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔 중합체를 형성하는 단계;
(쵸핑) 상기 함수겔 중합체를 쵸핑(chopping)하는 단계;
(건조) 쵸핑된 함수겔 중합체를 건조하는 단계; 및
(분쇄/분급) 상기 건조된 중합체를 분쇄 후 정상 입자 및 미분으로 분급하는 단계;
상술한 바와 같이, 상기 쵸핑된 함수겔 중합체는 약 1 cm 내지 10 cm 크기의 응집된 겔 형태를 갖게 되며, 이러한 쵸핑된 함수겔 중합체는 바닥이 타공판으로 이루어진 벨트 위에 적층되고, 하부 또는 상부에서 공급된 열풍에 의해 건조하게 된다. 상기 건조 방식으로 건조된 중합체는 입자 형태가 아닌 판형을 나타내므로, 분쇄 후 분급하는 단계는, 제조되는 입자들이 정상 입자가 되도록 즉, 150 ㎛ 내지 850 ㎛의 입경을 갖는 입자가 되도록 조분쇄 후 분급한 다음 다시 미분쇄 후 분급하는 단계로 수행되어 왔다. 이와 같은 제조 방법에 의하여 최종 분급 단계에서 분리되는 미분의 양은 최종 제조된 고흡수성 수지 총 중량 대비 약 10 중량% 내지 약 20 중량% 정도로 다량이기 때문에, 분리된 미분을 적당량의 물과 혼합하여 미분 재조립 후 쵸핑 단계 또는 건조 전 단계에 투입하는 방법으로 재사용하였다.
그러나, 이러한 미분의 재사용을 위해 물과 혼합한 미분 재조립체를 분쇄 또는 건조 공정에 재투입 시 장치 부하 및/또는 에너지 사용량의 증가를 야기시키는 등의 문제가 발생해왔으며, 분급되지 못하고 남아있는 미분에 의해 고흡수성 수지의 물성의 저하가 야기되었다.
이에, 본 발명자들은 종래의 제조 방법에서 미분의 발생량은 분쇄 공정에서의 영향이 크다는 점을 파악하고, 이를 쵸핑하는 공정(미립화 공정)에서 계면활성제를 투입하여 종래보다 미세하게 분쇄하면서, 동시에 응집을 제어하여 미세 입자가 응집된 형태의 입자를 제조함에 따라 제조 공정 중 미분 발생량을 현저히 저감시킬 수 있음에 착안하였다.
한편, 중화된 함수겔 중합체에 계면 활성제를 투입하는 경우, 중화된 함수겔 중합체의 높은 함수성으로 인하여 계면 활성제가 함수겔 중합체의 계면에 존재하기 보다는 함수겔 중합체의 내부에 침투하여 계면 활성제가 그 역할을 제대로 수행하지 못하는 문제가 있다.
이를 해결하기 위하여 연구를 거듭한 결과, 통상의 고흡수성 수지의 제조방법처럼 수용성 에틸렌계 불포화 단량체의 산성기를 중화한 상태에서 중합을 수행하지 않고, 산성기가 중화되지 않은 상태에서 중합을 먼저 수행하여 중합체를 형성하고, 계면 활성제의 존재 하에 상기 함수겔 중합체를 미립화한 후 상기 중합체의 산성기를 중화시키거나, 또는 상기 중합체의 산성기를 중화시켜 함수겔 중합체를 형성한 후 계면 활성제의 존재 하에 상기 함수겔 중합체를 미립화하거나, 또는 미립화와 동시에 상기 중합체에 존재하는 산성기를 중화시키면 계면 활성제가 상기 중합체의 표면에 다량 존재하며, 중합체의 높은 점착성을 낮추어 중합체가 과도하게 응집하지 않는 것을 방지하고 원하는 수준으로 응집 상태를 조절할 수 있는 역할을 충분히 수행할 수 있음을 확인하였다.
이에 따라, 중합체를 1차 입자가 응집된 형태의 2차 입자로 제조하여 이후 보다 마일드한 조건에서 분쇄 및 건조 공정이 진행됨에 따라 공정 중 발생하는 미분 발생량이 현저히 줄어들 수 있다.
또한, 중합체를 상기와 같이 화학식 1의 특정 구조를 가지는 첨가제의 존재 하에서 분쇄하는 경우, 첨가제에 포함되어 있는 소수성 작용기 부분이 분쇄된 고흡수성 수지 입자의 표면에 소수성을 부여하여 입자간 마찰력을 완화시켜 고흡수성 수지의 겉보기 밀도를 증가시키면서도, 첨가제에 포함되어 있는 친수성 작용기 부분 또한 고흡수성 수지 입자에 결합되어 수지의 표면 장력이 저하되지 않도록 할 수 있다. 이에 따라, 상술한 제조 방법에 따라 제조된 고흡수성 수지는, 이러한 첨가제를 사용하지 않은 수지에 비하여, 동등 수준의 표면 장력을 나타내면서도 겉보기 밀도 값은 높을 수 있다.
또한, 미중화 상태에서 중합을 먼저 수행하여 중합체를 형성한 후 상기 중합체에 존재하는 산성기를 중화시키면, 보다 긴 체인의 중합체 형성이 가능하여 가교화가 불완전하여 가교화되지 아니한 상태로 존재하는 수가용 성분의 함량이 줄어드는 효과를 달성할 수 있다.
상기 수가용 성분은 고흡수성 수지가 액체와 접촉 시 쉽게 용출되는 성질이 있으므로, 수가용 성분 함량이 높은 경우 용출된 수가용 성분이 대부분 고흡수성 수지 표면에 잔류하게 되고 고흡수성 수지를 끈적끈적하게 하여 통액성이 감소하게 되는 원인이 된다. 따라서, 통액성 측면에서 수가용 성분의 함량을 낮게 유지하는 것이 중요하다.
정리하면, 본 발명자들은 하기 화학식 1로 표시되는 특정 구조를 갖는 첨가제를 혼합하여 중합체를 분쇄하는 경우, 분쇄된 함수겔 중합체 입자들끼리 응집이 억제되어 분쇄 공정성이 개선됨을 확인하고 본 발명을 완성하였다. 특히, 상기 제조 방법에 따라 제조된 고흡수성 수지 조성물에 포함된 입자들은 상기 첨가제를 사용하지 않는 경우에 비하여 향상된 흡수 속도를 나타낸다는 특징이 있다.
[화학식 1]
Figure PCTKR2022016642-appb-img-000015
상기 화학식 1에서,
A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
Figure PCTKR2022016642-appb-img-000016
,
Figure PCTKR2022016642-appb-img-000017
또는
Figure PCTKR2022016642-appb-img-000018
이고, 단, 이들 중 하나 이상은 카보닐 또는
Figure PCTKR2022016642-appb-img-000019
이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
Figure PCTKR2022016642-appb-img-000020
은 각각 인접한 산소 원자와 연결되고,
Figure PCTKR2022016642-appb-img-000021
은 인접한 R1, R2 및 R3와 각각 연결되고,
R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
n은 1 내지 9의 정수이다.
구체적으로, 하기 화학식 1로 표시되는 첨가제는, 소수성 작용기(hydrophobic functional group) 및 친수성 작용기(hydrophilic functional group)를 동시에 갖는다. 한편, 수용성 에틸렌계 불포화 단량체는 산성기(-COOH) 및/또는 중화된 산성기(-COO-)를 포함하므로, 중합에 의해 제조된 중합체의 표면에는 중합에 참여하지 않고 남아있는 산성기(-COOH) 및/또는 중화된 산성기(-COO-)에 의한 친수성 부분이 다량 존재하게 된다. 따라서, 상기 중합체에 상기 첨가제를 혼합하는 경우, 상기 중합체 표면에 존재하는 친수성 부분 중 적어도 일부에 상기 첨가제의 친수성 작용기가 흡착되게 되고, 상기 첨가제가 흡착된 중합체의 표면은 첨가제의 다른 말단에 위치한 소수성 작용기에 의해 소수성을 나타내게 된다. 이에 따라, 분쇄된 함수겔 중합체 입자들간의 응집이 억제될 수 있다.
이하, 일 구현예의 고흡수성 수지 조성물에 대해 각 성분 별로 보다 구체적으로 설명하기로 한다.
(고흡수성 수지 조성물)
발명의 일 구현예에 따르면, 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제의 가교 중합체를 포함하는 고흡수성 수지 입자; 및 하기 화학식 1로 표시되는 첨가제 포함하는, 고흡수성 수지 조성물이 제공된다:
[화학식 1]
Figure PCTKR2022016642-appb-img-000022
상기 화학식 1에서,
A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
Figure PCTKR2022016642-appb-img-000023
,
Figure PCTKR2022016642-appb-img-000024
또는
Figure PCTKR2022016642-appb-img-000025
이고, 단, 이들 중 하나 이상은 카보닐 또는
Figure PCTKR2022016642-appb-img-000026
이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
Figure PCTKR2022016642-appb-img-000027
은 각각 인접한 산소 원자와 연결되고,
Figure PCTKR2022016642-appb-img-000028
은 인접한 R1, R2 및 R3와 각각 연결되고,
R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
n은 1 내지 9의 정수이다.
일 구현예의 고흡수성 수지 조성물은, 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제의 가교 중합체를 포함하는 고흡수성 수지 입자를 포함한다. 이때, 상기 가교 중합체는 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체가 내부 가교제의 존재 하에서 가교 중합된 것으로, 상기 단량체들이 중합되어 형성된 메인 사슬들이 상기 내부 가교제에 의해 가교되는 형태의 3차원 망상 구조를 갖는다.
다시 말하여, 일 구현예의 고흡수성 수지 조성물은, 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제간의 가교 중합체를 포함하는 고흡수성 수지 입자를 포함한다. 이와 같이, 상기 가교 중합체가 상기 단량체들이 중합되어 형성된 메인 사슬들이 상기 내부 가교제에 의해 가교되는 형태의 3차원 망상 구조를 갖는 경우, 내부 가교제에 의해 추가 가교되지 않은 2차원 선형 구조를 갖는 경우에 비하여 고흡수성 수지의 제반 물성인 보수능 및 가압 흡수능이 현저히 향상될 수 있다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 2로 표시되는 화합물일 수 있다:
[화학식 2]
R-COOM'
상기 화학식 2에서,
R은 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M'는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
바람직하게는, 상기 단량체는 (메트)아크릴산, 및 이들 산의 1가 (알칼리) 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
이처럼 수용성 에틸렌계 불포화 단량체로 (메트)아크릴산 및/또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산 또는 2-(메타)아크릴아미드-2-메틸 프로판 술폰산, (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸 (메트)아크릴레이트, 2-히드록시프로필 (메트)아크릴레이트, 메톡시폴리에틸렌글리콜 (메트)아크릴레이트, 폴리에틸렌 글리콜 (메트)아크릴레이트, (N,N)-디메틸아미노에틸 (메트)아크릴레이트, (N,N)-디메틸아미노프로필 (메트)아크릴아미드 등이 사용될 수 있다.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지고, 상기 산성기 중 적어도 일부는 후술하는 중화 단계에서 중화제에 의해 중화된다. 이때, 중화제로는 산성기를 중화시킬 수 있는 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 염기성 물질이 사용될 수 있으며, 이에 대해서는 후술하는 제조 방법 부분에서 보다 상세히 설명하기로 한다.
또한, 본 명세서에서 사용하는 용어 '내부 가교제'는 후술하는 고흡수성 수지 입자의 표면을 가교시키는 위한 표면 가교제와 구분짓기 위해 사용하는 용어로, 상술한 수용성 에틸렌계 불포화 단량체들의 불포화 결합을 가교시켜 중합시키는 역할을 한다. 상기 단계에서의 가교는 표면 또는 내부 구분 없이 진행되나, 후술하는 고흡수성 수지 입자의 표면 가교 공정이 진행되는 경우, 최종 제조된 고흡수성 수지의 입자 표면은 표면 가교제에 의해 가교된 구조로 이루어져 있고, 내부는 상기 내부 가교제에 의해 가교된 구조로 이루어져있게 된다.
상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 내부 가교제는 N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메트)아크릴레이트, 에틸렌글리콜 디(메트)아크릴레이트, 폴리에틸렌글리콜(메트)아크릴레이트, 폴리에틸렌글리콜 디(메트)아크릴레이트, 프로필렌글리콜 디(메트)아크릴레이트, 폴리프로필렌글리콜(메트)아크릴레이트, 부탄다이올디(메트)아크릴레이트, 부틸렌글리콜디(메트)아크릴레이트, 다이에틸렌글리콜 디(메트)아크릴레이트, 헥산다이올디(메트)아크릴레이트, 트리에틸렌글리콜 디(메트)아크릴레이트, 트리프로필렌글리콜 디(메트)아크릴레이트, 테트라에틸렌글리콜 디(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 펜타에리스톨 트리알릴에테르, 에틸렌글리콜 디글리시딜 에테르, 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다. 바람직하게는, 이 중에서 펜타에리스톨 트리알릴에테르가 사용될 수 있다.
이러한 내부 가교제의 존재 하에서의 상기 수용성 에틸렌계 불포화 단량체의 가교 중합은, 중합 개시제, 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 존재 하에 열중합, 광중합 또는 혼성 중합으로 수행될 수 있는데, 구체적인 내용은 후술하기로 한다.
이러한 상기 고흡수성 수지 입자는 약 150 내지 약 850 ㎛의 입경을 가질 수 있고, 이러한 입경은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정될 수 있다.
또한, 상기 고흡수성 수지 조성물은 화학식 1로 표시되는 첨가제를 포함한다. 상기 첨가제는 상술한 바와 같이, 중합체와 혼합되어 미립화(쵸핑) 단계가 응집 현상 없이 용이하게 이루어질 수 있도록 첨가된다.
상기 화학식 1로 표시되는 첨가제는 비이온성의 계면 활성제로 미중화된 중합체와도 수소 결합력에 의한 표면 흡착 성능이 우수하며, 이에 따라 목적하는 응집 제어 효과를 구현하기 적합하다. 반면, 비이온성 계면 활성제가 아닌 음이온성 계면 활성제의 경우, NaOH, Na2SO4 등의 중화제로 중화된 중합체와 혼합되는 경우, 중합체의 카르복실기 치환기에 이온화 되어 있는 Na+ 이온을 매개로 하여 흡착되며, 미중화 중합체에 혼합되는 경우, 중합체의 카르복실기 치환기의 음이온과의 경쟁으로 인해 중합체에 대한 흡착 효율이 상대적으로 저하되는 문제가 있다.
구체적으로, 상기 화학식 1로 표시되는 첨가제에서 소수성 작용기는 말단 작용기인 R1, R2, R3부분(수소가 아닐 경우)이고, 친수성 작용기는 사슬 내의 글리세롤 유래 부분과, 말단의 수산기(An가 단일 결합이고, 동시에 Rn가 수소일 경우, n=1~3)를 더 포함하는 데, 상기 글리세롤 유래 부분과, 말단의 수산기는 친수성 작용기로 중합체 표면에 대한 흡착 성능을 향상시키는 역할을 한다. 이에 따라, 고흡수성 수지 입자의 응집을 효과적으로 억제할 수 있다.
상기 화학식 1에서, 소수성 작용기인 R1, R2, R3부분(수소가 아닐 경우)는 각각 독립적으로, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이다. 이때, R1, R2, R3부분(수소가 아닐 경우)가 탄소수 6 미만의 알킬 또는 알케닐인 경우 사슬 길이가 짧아 분쇄된 입자들의 응집 제어가 효과적으로 이루어지지 못한다는 문제가 있고, R1, R2, R3부분(수소가 아닐 경우)가 탄소수 18 초과의 알킬 또는 알케닐인 경우 상기 첨가제의 이동성(mobility)이 감소되어 중합체와 효과적으로 혼합되지 않을 수 있고, 첨가제의 비용 상승으로 인하여 조성물 단가가 높아지는 문제가 있을 수 있다.
바람직하게는, R1, R2, R3은 수소이거나, 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬인 경우, 2-메틸헥실, n-헵틸, 2-메틸헵틸, n-옥틸, n-노닐, n-데카닐, n-운데카닐, n-도데카닐, n-트리데카닐, n-테트라데카닐, n-펜타데카닐, n-헥사데카닐, n-헵타데카닐, 또는 n-옥타데카닐일 수 있으며, 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐인 경우, 2-헥세닐, 2-헵테닐, 2-옥테닐, 2-노네닐, n-데케닐, 2-운데케닐, 2-도데케닐, 2-트리데케닐, 2-테트라데케닐, 2-펜타데케닐, 2-헥사데케닐, 2-헵타데케닐, 또는 2-옥타데케닐일 수 있다.
상기 첨가제는 하기 화학식 1-1 내지 화학식 1-14로 표시되는 화합물로부터 선택될 수 있다:
[화학식 1-1]
Figure PCTKR2022016642-appb-img-000029
[화학식 1-2]
Figure PCTKR2022016642-appb-img-000030
[화학식 1-3]
Figure PCTKR2022016642-appb-img-000031
[화학식 1-4]
Figure PCTKR2022016642-appb-img-000032
[화학식 1-5]
Figure PCTKR2022016642-appb-img-000033
[화학식 1-6]
Figure PCTKR2022016642-appb-img-000034
[화학식 1-7]
Figure PCTKR2022016642-appb-img-000035
[화학식 1-8]
Figure PCTKR2022016642-appb-img-000036
[화학식 1-9]
Figure PCTKR2022016642-appb-img-000037
[화학식 1-10]
Figure PCTKR2022016642-appb-img-000038
[화학식 1-11]
Figure PCTKR2022016642-appb-img-000039
[화학식 1-12]
Figure PCTKR2022016642-appb-img-000040
[화학식 1-13]
Figure PCTKR2022016642-appb-img-000041
[화학식 1-14]
Figure PCTKR2022016642-appb-img-000042
.
상기 첨가제는 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 내지 10 중량부로 포함될 수 있다. 상기 조성물 내에서 단량체 대비 상기 첨가제의 총 함량이 지나치게 낮은 경우 상기 첨가제에 의한 응집 제어 효과가 적어 원하는 입경까지 분쇄되지 않은 고흡수성 수지 입자를 포함할 수 있고, 상기 첨가제의 총 함량이 지나치게 높은 경우 고흡수성 수지의 제반 물성인 보수능 및 가압 흡수능의 밸런스가 저하될 수 있다.
상기 고흡수성 수지 조성물에서의 첨가제의 함량은 먼저, 고흡수성 수지 조성물 1 g을 증류수 1 ml에 투입한 다음 스웰링될 때까지 1시간 동안 충분히 혼합하고, 이후 필터하여 용액 부분만을 추출한 다음 HPLC 분석을 실시하여, 용액 부분에 용해되어 있는 첨가제 함량을 분석하여 측정할 수 있다.
보다 구체적으로, 상기 첨가제는 상기 수용성 에틸렌계 불포화 단량체 100 중량부 0.01 중량부 이상, 0.02 중량부 이상, 0.05 중량부 이상, 0.1 중량부 이상 또는 0.5 중량부 이상이고, 10 중량부 이하, 8 중량부 이하, 5 중량부 이하, 3 중량부 이하, 또는 2 중량부 이하로 포함될 수 있다.
한편, 이러한 상기 첨가제 중 적어도 일부는 상기 고흡수성 수지 입자의 표면에 존재할 수 있다. 여기서, "상기 첨가제 중 적어도 일부가 고흡수성 수지 입자의 표면에 존재한다"는 의미는, 상기 첨가제 중 적어도 일부가 상기 고흡수성 수지 입자의 표면에 흡착 또는 결합되어 있음을 의미한다. 구체적으로, 상기 첨가제는 각각 상기 고흡수성 수지의 표면에 물리적으로 또는 화학적으로 흡착되어 있을 수 있다. 보다 구체적으로는, 상기 첨가제 각각의 친수성 작용기는 상기 고흡수성 수지 표면의 친수성 부분에 쌍극자-쌍극자 인력(Dipole-dipole interaction)과 같은 분자간 힘에 의해 물리적으로 흡착되어 있을 수 있다. 이와 같이, 상기 첨가제 각각의 친수성 부분은 상기 고흡수성 수지 입자의 표면에 물리적으로 흡착되어 표면을 감싸고, 첨가제 각각의 소수성 부분은 수지 입자의 표면에 흡착되지 않아, 일종의 마이셀(micelle) 구조의 형태로서 각각의 첨가제는 수지 입자의 표면에 코팅되어 있을 수 있다.
따라서, 상기 첨가제 중 적어도 일부가 상기 고흡수성 수지 입자의 표면에 존재하는 경우, 상기 화학식 1의 첨가제 전부가 고흡수성 수지 입자의 내부, 구체적으로, 가교 중합체의 내부에 존재하는 경우에 비해, 상기 고흡수성 수지 조성물의 제조 공정 중 분쇄된 입자들간의 뭉치는 응집 현상이 보다 효과적으로 억제될 수 있다.
또한, 상기 첨가제 중 적어도 일부가 상기 고흡수성 수지 입자의 표면에 존재함에 따라, 상기 첨가제를 포함하는 고흡수성 수지 조성물은 이러한 첨가제를 포함하지 않는 조성물에 비하여, 흡수속도가 향상될 수 있다.
한편, 상기 고흡수성 수지 조성물은 후술하는 표면 가교층을 더 포함하지 않는 경우, 복수 개의 상기 고흡수성 수지 입자, 상기 첨가제 및 상기 첨가제가 고흡수성 수지 제조 과정 중 가수분해되어 생성되는 상기 첨가제의 가수분해물 외 다른 친수성 첨가제는 포함하지 않을 수 있다.
구체적으로, 일 구현예의 고흡수성 수지 조성물은 미세결정질 셀룰로오스(Microcrystalline Cellulose)와 같은 분자 내 다수의 하이드록시기 함유 글루코스 유닛(glucose unit)을 갖는 화합물은 포함하지 않을 수 있다. 예를 들어, 상기 고흡수성 수지 조성물이 FMC 사에서 입수 가능한 하기 화학식 3으로 표시되는 아비셀(AVICEL)® PH-101과 같은 평균 입경이 1 내지 10 ㎛의 미세결정질 셀룰로오스를 포함하는 경우 다수의 하이드록시기로 인하여 고흡수성 수지 입자간의 응집이 억제되지 못하여 상술한 첨가제에 의한 효과가 효과적으로 발현되지 않을 수 있다.
[화학식 3]
Figure PCTKR2022016642-appb-img-000043
또한, 일 구현예의 고흡수성 수지 조성물은 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 폴리(에틸렌글리콜)-폴리(프로필렌글리콜) 공중합체, 폴리옥시에틸렌 라우릴 에테르 카르복실산, 소듐 폴리옥시에틸렌 라우릴 에테르 카르복실레이트, 라우릴 설페이트, 소듐 라우릴 설페이트 등과 같은 친수성 첨가제를 포함하지 않을 수 있다. 이와 같은 첨가제들은 가교 중합체 표면에 충분히 흡착되지 못하여 고흡수성 수지 입자들간의 응집이 효과적으로 억제되지 않는 문제가 있다. 이에 따라, 상기 고흡수성 수지 조성물이 상기 화학식 1의 첨가제 대신 상기와 같은 친수성 첨가제를 포함하는 경우 가교 중합체 분쇄 후 입자들간의 응집이 억제되지 않아, 상기 고흡수성 수지 조성물은 다량의 미분을 포함하면서, 낮은 보수능 및 낮은 겉보기 밀도를 나타내게 된다.
한편, 상기 고흡수성 수지 조성물은, 상기 고흡수성 수지 입자의 표면 중 적어도 일부에, 표면 가교제를 매개로 상기 가교 중합체가 추가 가교되어 형성된 표면 가교층을 더 포함할 수 있다. 이는 고흡수성 수지 입자의 표면 가교 밀도를 높이기 위한 것으로, 상기와 같이 고흡수성 수지 입자가 표면 가교층을 더 포함하는 경우, 내부보다 외부의 가교 밀도가 높은 구조를 갖게 된다.
상기 표면 가교제로는 기존부터 고흡수성 수지의 제조에 사용되던 표면 가교제를 별다른 제한 없이 모두 사용할 수 있다. 예를 들어, 상기 표면 가교제는 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올; 에틸렌 카보네이트, 프로필렌 카보네이트 및 글리세롤 카보네이트로 이루어진 군에서 선택된 1 종 이상의 카보네이트계 화합물; 에틸렌글리콜 디글리시딜 에테르 등의 에폭시 화합물; 옥사졸리디논 등의 옥사졸린 화합물; 폴리아민 화합물; 옥사졸린 화합물; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 또는 환상 우레아 화합물; 등을 포함할 수 있다.
구체적으로, 상기 표면 가교제로 상술한 표면 가교제 중 1종 이상, 또는 2종 이상, 또는 3종 이상이 사용될 수 있는데, 예를 들어, 프로필렌 글리콜, 에틸렌 카보네이트, 및 프로필렌 카보네이트가 사용될 수 있다.
또한, 상기 고흡수성 수지 조성물은 24.0℃에서의 볼텍스법에 따른 24.0℃에서의 흡수 속도(vortex time)가 30초 이하, 27초 이하, 25초 이하, 20초 이하, 15초 이하, 또는 12초 이하일 수 있다. 또한, 상기 흡수 속도는 그 값이 작을수록 우수하여 상기 흡수 속도의 하한은 이론상 0초이나, 일례로 5초 이상, 또는 8초 이상, 또는 10초 이상일 수 있다. 이때 상기 고흡수성 수지의 흡수속도를 측정하는 방법은 후술하는 실험예에서 보다 구체적으로 설명한다.
또한, 상기 고흡수성 수지 조성물은, EDANA 법 WSP 241.3에 따라 측정한 원심분리 보수능(CRC)이 39 g/g 이상 또는 40 g/g 이상이면서, 또는 50 g/g 이하, 또는 48 g/g 이하, 또는 45 g/g 이하의 범위를 가질 수 있다. 상기 보수능을 측정하는 방법은 후술하는 실험예에서 보다 구체적으로 설명한다.
또한, 상기 고흡수성 수지 조성물은, EDANA법 WSP 242.3에 따라 측정한 0.7 psi에서의 가압 흡수능(AUP)이 24.0 g/g 이상, 25.0 g/g 이상, 26.0 g/g 이상 또는 24.3 g/g 이상이면서, 30g/g 이하, 28.0g/g 이하, 또는 26.0g/g 이하일 수 있다. 상기 가압 흡수능을 측정하는 방법은 후술하는 실험예에서 보다 구체적으로 설명한다.
(고흡수성 수지 조성물의 제조 방법)
한편, 상기 고흡수성 수지 조성물은,
내부 가교제 및 중합 개시제의 존재 하에, 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 중합체를 형성하는 단계(단계 1);
상기 중합체의 적어도 일부의 산성기를 중화시키는 단계(단계 2);
하기 화학식 1로 표시되는 첨가제의 존재 하에, 상기 중합체를 미립화하여 베이스 수지 입자를 제조하는 단계(단계 3); 및
상기 베이스 수지 입자를 건조하는 단계(단계 4)를 포함하여 제조될 수 있다:
[화학식 1]
Figure PCTKR2022016642-appb-img-000044
상기 화학식 1에서,
A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
Figure PCTKR2022016642-appb-img-000045
,
Figure PCTKR2022016642-appb-img-000046
또는
Figure PCTKR2022016642-appb-img-000047
이고, 단, 이들 중 하나 이상은 카보닐 또는
Figure PCTKR2022016642-appb-img-000048
이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
Figure PCTKR2022016642-appb-img-000049
은 각각 인접한 산소 원자와 연결되고,
Figure PCTKR2022016642-appb-img-000050
은 인접한 R1, R2 및 R3와 각각 연결되고,
R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
n은 1 내지 9의 정수이다.
이하, 일 구현예의 고흡수성 수지의 제조 방법에 대하여 각 단계별로 보다 구체적으로 설명하기로 한다.
(단계 1)
일 구현예에 따른 고흡수성 수지의 제조 방법에서, 먼저 내부 가교제 및 중합 개시제의 존재 하에, 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 함수겔 중합체를 형성하는 단계를 수행한다.
상기 단계는, 상기 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 혼합하여 단량체 조성물을 준비하는 단계 및 상기 단량체 조성물을 열중합 또는 광중합하여 중합체를 형성하는 단계로 이루어질 수 있다. 이때, 상기 수용성 에틸렌계 불포화 단량체 및 내부 가교제에 대한 설명은 상술한 바를 참조한다.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가진다. 앞서 설명하였듯이 종래의 고흡수성 수지의 제조에서는, 상기 산성기 중 적어도 일부가 중화제에 의해 중화된 단량체를 가교 중합하여 함수겔 중합체를 형성하였다. 구체적으로, 상기 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제, 중합 개시제 및 중화제를 혼합하는 단계에서 상기 수용성 에틸렌계 불포화 단량체의 산성기 중 적어도 일부가 중화되었다.
그러나, 본 발명의 일 구현예에 따르면, 상기 수용성 에틸렌계 불포화 단량체의 산성기가 중화되지 않은 상태에서 중합을 먼저 수행하여 중합체를 형성한다.
산성기가 중화되지 않은 상태의 수용성 에틸렌계 불포화 단량체(예, 아크릴산)는 상온에서 액체 상태이며 용매(물)와 혼화성(miscibility)이 높아 단량체 조성물에서 혼합 용액의 상태로 존재한다. 그러나, 산성기가 중화된 수용성 에틸렌계 불포화 단량체는 상온에서 고체 상태이며 용매(물)의 온도에 따라 다른 용해도를 갖고, 저온일수록 용해도가 낮아지게 된다.
이처럼 산성기가 중화되지 않은 상태의 수용성 에틸렌계 불포화 단량체는, 산성기가 중화된 단량체보다 용매(물)에 대한 용해도 또는 혼화도가 높아 낮은 온도에서도 석출되지 않으며, 따라서 저온에서 장시간 중합을 하기에 유리하다. 이에 따라 상기 산성기가 중화되지 않은 상태의 수용성 에틸렌계 불포화 단량체를 이용하여 장시간 중합을 수행하여 보다 고분자량을 갖고 분자량 분포가 균일한 중합체를 안정적으로 형성할 수 있다.
또한, 보다 긴 체인의 중합체 형성이 가능하여 중합이나 가교화가 불완전하여 가교화되지 아니한 상태로 존재하는 수가용 성분의 함량이 줄어드는 효과를 달성할 수 있다.
또한, 이처럼 단량체의 산성기가 중화되지 않은 상태에서 중합을 먼저 수행하여 중합체를 형성하고, 중화 후 상기 화학식 1의 첨가제의 존재 하에 미립화하거나, 또는 화학식 1의 첨가제의 존재 하에 미립화 후 중화하거나, 또는 미립화와 동시에 상기 중합체에 존재하는 산성기를 중화시키면 상기 화학식 1의 첨가제가 상기 중합체의 표면에 다량 존재하여 중합체의 점착성을 낮추는 역할을 충분히 수행할 수 있다.
상기 단량체 조성물 중 상기 수용성 에틸렌계 불포화 단량체의 종류는 전술한 고흡수성 수지 조성물에서 설명한 내용이 동일하게 적용된다. 또한, 상기 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있으며, 약 20 내지 약 60 중량%, 또는 약 20 내지 약 40 중량%로 할 수 있다.
상기 단량체 조성물 중 상기 내부 가교제의 종류는 전술한 고흡수성 수지 조성물에서 설명한 내용이 동일하게 적용된다. 또한, 상기 내부 가교제의 함량은 상기 수용성 에틸렌계 불포화 단량체 100 중량부에 대하여 0.01 내지 5 중량부로 사용될 수 있다. 예를 들어, 상기 내부 가교제는 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 중량부 이상, 0.05 중량부 이상, 또는 0.1 중량부 이상이고, 5 중량부 이하, 3 중량부 이하, 2 중량부 이하, 1 중량부 이하, 또는 0.7 중량부 이하로 사용될 수 있다. 상부 내부 가교제의 함량이 지나치게 낮을 경우 가교가 충분히 일어나지 않아 적정 수준 이상의 강도 구현이 어려울 수 있고, 상부 내부 가교제의 함량이 지나치게 높을 경우 내부 가교 밀도가 높아져 원하는 보수능의 구현이 어려울 수 있다.
또한, 상기 중합 개시제는 중합 방법에 따라 적절하게 선택될 수 있으며, 열중합 방법을 이용할 경우에는 열중합 개시제를 사용하고, 광중합 방법을 이용할 경우에는 광중합 개시제를 사용하며, 혼성 중합 방법(열 및 광을 모두 사용하는 방법)을 이용할 경우에는 열중합 개시제와 광중합 개시제를 모두 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 광 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 사용할 수도 있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로는 디페닐(2,4,6-트리메틸벤조일)포스핀 옥사이드, 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드, 에틸 (2,4,6-트리메틸벤조일)페닐포스핀에이트 등을 들 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2,2-아조비스-(2-아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
이러한 중합 개시제는 상기 수용성 에틸렌계 불포화 단량체 100 중량부 대비 2 중량부 이하로 사용될 수 있다. 즉, 상기 중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고 최종 제품에 잔존 단량체가 다량으로 추출될 수 있어 바람직하지 않다. 반대로, 상기 중합 개시제의 농도가 상기 범위 보다 높을 경우 네트워크를 이루는 고분자 체인이 짧아져 수가용 성분의 함량이 높아지고 가압 흡수능이 낮아지는 등 수지의 물성이 저하될 수 있어 바람직하지 않다.
상기 단량체 조성물은 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포함할 수 있다.
그리고, 상기 단량체를 포함하는 단량체 조성물은, 예를 들어, 물과 같은 용매에 용해된 용액 상태 일 수 있고, 이러한 용액 상태의 단량체 조성물 중의 고형분 함량, 즉 단량체, 내부 가교제 및 중합 개시제의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 조절될 수 있다. 예를 들어, 상기 단량체 조성물 내의 고형분 함량은 10 내지 80 중량%, 또는 15 내지 60 중량%, 또는 30 내지 50 중량%일 수 있다.
상기 단량체 조성물이 상기와 같은 범위의 고형분 함량을 갖는 경우, 고농도 수용액의 중합 반응에서 나타나는 겔 효과 현상을 이용하여 중합 후 미반응 단량체를 제거할 필요가 없도록 하면서도, 후술할 중합체의 분쇄시 분쇄 효율을 조절하기 위해 유리할 수 있다.
이 때 사용할 수 있는 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1 종 이상을 조합하여 사용할 수 있다.
본 발명의 일 구현예에 따르면, 상기 단량체 조성물에 대하여 중합을 수행하여 중합체를 형성하는 단계는, 배치식 반응기(batch type reactor)에서 수행될 수 있다.
통상의 고흡수성 수지 조성물의 제조 방법에서 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있으며, 광중합을 진행하는 경우 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행되거나, 바닥이 납작한 용기에서 진행될 수 있다.
한편, 상기와 같은 중합 방법은 대체로 짧은 중합 반응 시간(예를 들어, 1시간 이하)에 따라 중합체의 분자량이 크지 않고 넓은 분자량 분포를 갖는 중합체가 형성된다.
한편 이동 가능한 컨베이어 벨트를 구비한 반응기 또는 바닥이 납작한 용기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상의 중합체가 얻어지며, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도 또는 주입량에 따라 달라지나, 통상 약 0.5 내지 약 5 cm의 두께로 수득된다.
그런데, 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 생산성을 위해 시트 상의 중합체 두께를 두껍게 하는 경우에는 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않아 고품질의 중합체 형성이 어렵게 된다.
또한, 상기 컨베이어 벨트를 구비한 반응기 교반축을 가진 반응기에서의 중합은 중합 결과물이 이동하면서 새로운 단량체 조성물이 반응기에 공급되어 연속식으로 중합이 이루어지므로 중합율이 서로 다른 중합체가 섞이게 되며 이에 따라 단량체 조성물 전체에서 고른 중합이 이루어지기 어려워 전체적인 물성 저하가 일어날 수 있다.
그러나 본 발명의 일 구현예에 따르면, 배치식 반응기에서 정치식으로 중합을 진행함에 따라 중합율이 다른 중합체가 섞일 우려가 적고 이에 따라 고른 품질을 갖는 중합체가 수득될 수 있다.
또한, 상기 중합 단계는 소정의 부피를 갖는 배치식 반응기에서 수행되며, 컨베이어 벨트를 구비한 반응기에서 연속식으로 중합을 수행하는 경우보다 장시간, 예를 들어 3시간 이상의 시간 동안 중합 반응을 수행한다. 상기와 같은 장시간의 중합 반응 시간에도 불구하고, 미중화 상태의 수용성 에틸렌계 불포화 단량체에 대하여 중합을 수행하기 때문에 장시간 중합을 수행하여도 단량체가 잘 석출되지 않으며, 따라서 장시간 중합을 하기에 유리하다.
한편 본 발명의 배치식 반응기에서의 중합은 열중합 방법을 이용함에 따라 상기 중합 개시제는 전술한 개시제 중 열중합 개시제를 사용할 수 있다.
한편, 본 발명의 일 구현예에서는 상기 개시제와 레독스(Redox) 커플을 이루는 환원제를 함께 투입하여 중합을 개시할 수 있다.
구체적으로, 상기 개시제와 환원제는 중합체 용액에 투입되었을 때 서로 반응하여 라디칼을 형성한다.
형성된 라디칼은 단량체와 반응하게 되며, 상기 개시제와 환원제간의 산화-환원 반응은 반응성이 매우 높으므로, 미량의 개시제 및 환원제만이 투입되어도 중합이 개시되어 공정 온도를 높일 필요가 없어 저온 중합이 가능하며, 중합체 용액의 물성 변화를 최소화시킬 수 있다.
상기 산화-환원 반응을 이용한 중합 반응은 상온(25℃) 부근 또는 그 이하의 온도에서도 원활히 일어날 수 있다. 일례로 상기 중합 반응은 5℃ 이상 25℃ 이하, 또는 5℃ 이상 20℃ 이하의 온도에서 수행될 수 있다.
본 발명의 일 구현예에서, 상기 개시제로 과황산염계 개시제를 사용하는 경우, 환원제는 메타중아황산나트륨(Na2S2O5); 테트라메틸 에틸렌디아민(TMEDA); 황산철(II)과 EDTA의 혼합물(FeSO4/EDTA); 소듐폼알데하이드 설폭실레이트(Sodium formaldehyde sulfoxylate); 및 디소듐 2-히드록시-2-설피노아세테이트(Disodium 2-hydroxy-2-sulfinoacteate)로 이루어지는 군에서 선택된 1종 이상이 사용될 수 있다.
일례로, 개시제로서 과황산칼륨을 사용하고, 환원제로서 디소듐 2-히드록시-2-설피노아세테이트를 사용하거나; 개시제로서 과황산암모늄을 사용하고, 환원제로서 테트라메틸에틸렌디아민을 사용하거나; 개시제로서 과황산나트륨을 사용하고, 환원제로서 소듐폼알데하이드 설폭실레이트를 사용할 수 있다.
본 발명의 다른 일 구현예에서, 상기 개시제로 과산화수소계 개시제를 사용하는 경우, 환원제는 아스코브산(Ascorbic acid); 수크로오스(Sucrose); 아황산나트륨(Na2SO3) 메타중아황산나트륨(Na2S2O5); 테트라메틸 에틸렌디아민(TMEDA); 황산철(II)과 EDTA의 혼합물(FeSO4/EDTA); 소듐폼알데하이드 설폭실레이트(Sodium formaldehyde sulfoxylate); 디소듐 2-히드록시-2-설피노아세테이트(Disodium 2-hydroxy-2-sulfinoacteate); 및 디소듐 2-히드록시-2-설포아세테이트(Disodium 2-hydroxy-2-sulfoacteate)로 이루어지는 군에서 선택된 1종 이상일 수 있다.
이와 같은 방법으로 얻어진 중합체는, 미중화 상태의 에틸렌계 불포화 단량체를 이용하여 중합함에 따라 앞서 설명한 바와 같이 고분자량을 갖고 분자량 분포가 균일한 중합체를 형성할 수 있으며, 수가용 성분의 함량이 줄어들 수 있다.
이와 같은 방법으로 얻어진 중합체는 함수겔 중합체 상태로, 함수율이 30 내지 80 중량%일 수 있다. 예를 들어, 상기 중합체의 함수율은 30 중량% 이상, 또는 45 중량% 이상, 또는 50 중량% 이상이면서, 80 중량% 이하, 또는 70 중량% 이하, 또는 60 중량% 이하일 수 있다.
상기 중합체의 함수율이 지나치게 낮은 경우 이후 분쇄 단계에서 적절한 표면적을 확보하기 어려워 효과적으로 분쇄되지 않을 수 있고, 상기 중합체의 함수율이 지나치게 높은 경우 이후 분쇄 단계에서 받는 압력이 증가하여 원하는 입도까지 분쇄시키기 어려울 수 있다.
한편, 본 명세서 전체에서 "함수율"은 전체 중합체 중량에 대해 차지하는 수분의 함량으로 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 크럼 상태의 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게 감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 40분으로 설정하여, 함수율을 측정한다.
(단계 2 및 단계 3)
다음으로, 상기 중합체의 적어도 일부의 산성기를 중화시키는 단계(단계 2); 및 화학식 1로 표시되는 첨가제의 존재 하에, 상기 중합체를 미립화하여 베이스 수지 입자를 제조하는 단계(단계 3);를 수행한다.
먼저, 상기 단계 2에서 사용되는 중화제로는 산성기를 중화시킬 수 있는 수산화나트륨, 수산화칼륨, 수산화암모늄 등과 같은 염기성 물질이 사용될 수 있다.
또한, 상기 중합체에 포함된 산성기 중 상기 중화제에 의해 중화된 정도를 일컫는 중화도는, 50 내지 90 몰%, 또는, 60 내지 85 몰%, 또는 65 내지 85 몰%, 또는 65 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 고흡수성 수지의 흡수능이 감소할 수 있고, 입자 표면의 카르복실기의 농도가 지나치게 낮아 후속 공정에서의 표면 가교가 제대로 수행되기 어려워 가압하 흡수 특성 또는 통액성이 감소할 수 있다. 반대로 중화도가 지나치게 낮으면 고분자의 흡수력이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
다음으로, 화학식 1로 표시되는 첨가제의 존재 하에, 상기 중합체를 미립화하여 베이스 수지 입자를 제조하는 단계(단계 3);를 수행한다.
여기서, 상기 단계 2 및 단계 3은 순차적으로, 동시에, 또는 교차하여 수행될 수 있다. 즉, 상기 단계 2와 동시에, 또는 상기 단계 2 수행 전에 또는 수행 후에 계면 활성제의 존재 하에, 상기 중합체를 미립화하는 단계가 수행된다(단계 3).
상기 단계는 상기 화학식 1의 첨가제의 존재 하에 상기 중합체를 미립화하는 단계로, 상기 중합체를 밀리미터 크기로 쵸핑하는 것이 아닌, 수십 내지 수백 마이크로미터 크기로의 세절과 응집이 동시에 이루어지는 단계이다. 즉, 중합체에 적절한 점착성을 부여함으로써 수십 내지 수백 마이크로미터 크기로 세절된 1차 입자가 응집된 형상의 2차 응집 입자를 제조하는 단계이다. 이러한 단계로 제조된 2차 응집 입자인 베이스 수지 입자는 정상 입도 분포를 가지면서 표면적이 크게 증가하여 흡수 속도가 현저히 개선될 수 있다.
이처럼 상기 중합체와 화학식 1의 첨가제를 혼합한 후에, 상기 화학식 1의 첨가제의 존재 하에 상기 중합체를 미립화하여 고흡수성 수지 입자 및 계면 활성제가 혼합된 상태에서 세절 및 응집된 2차 응집 입자 형태인 베이스 수지 입자를 제조할 수 있다.
상기 화학식 1로 표시되는 첨가제에 대한 설명은 전술한 고흡수성 수지 조성물에서 설명한 내용이 동일하게 적용될 수 있다.
여기서, "베이스 수지 입자"는 수분 함량(함수율)이 약 30 중량% 이상인 입자로, 중합체가 건조 공정 없이 입자 형태로 세절 및 응집된 것이므로, 상기 중합체와 마찬가지로 30 내지 80 중량%의 함수율, 바람직하게는 70 내지 80중량%의 함수율을 가질 수 있다.
한편, 상기 화학식 1의 첨가제는 상기 중합체를 제조하는 가교 중합에 사용되는 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 내지 10 중량부로 사용될 수 있다. 상기 화학식 1의 첨가제가 지나치게 적게 사용되는 경우, 상기 중합체 표면에 골고루 흡착되지 않아 분쇄 후 입자들의 재응집 현상이 발생할 수 있고, 상기 계면 활성제가 지나치게 많이 사용되는 경우 최종 제조된 고흡수성 수지의 제반 물성이 저하될 수 있다. 예를 들어, 상기 화학식 1의 첨가제가 상기 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 중량부 이상, 0.015 중량부 이상, 또는 0.1 중량부 이상이면서, 5 중량부 이하, 3 중량부 이하, 2 중량부 이하, 또는 1 중량부 이하로 사용될 수 있다.
상기 화학식 1의 첨가제를 중합체에 혼합하는 방법은, 상기 중합체에 이들을 고르게 혼합할 수 있는 방법이라면 특별히 한정되지 않고, 적절히 채택하여 사용할 수 있다. 구체적으로, 상기 화학식 1의 첨가제를 건식으로 혼합하거나, 용매에 용해시킨 후 용액 상태로 혼합하거나, 또는 상기 화학식 1의 첨가제를 용융시킨 다음 혼합할 수 있다.
이 중 예를 들어, 상기 화학식 1의 첨가제는 용매에 용해된 용액 상태로 혼합될 수 있다. 이때, 용매로는 무기 용매 또는 유기 용매에 제한없이 모든 종류를 이용할 수 있으나, 건조 과정의 용이성과 용매 회수 시스템의 비용을 생각했을 때 물이 가장 적절하다. 또한, 상기 용액은 상기 화학식 1의 첨가제와 중합체를 반응조에 넣고 혼합하거나, 믹서에 중합체를 넣고 용액을 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 용액을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
한편, 본 발명의 일 구현예에 따르면, 상기 단계 2 및 단계 3은 순차적으로, 동시에, 또는 교차하여 수행될 수 있다.
즉, 중합체에 중화제를 투입하여 산성기를 먼저 중화시킨 후, 중화된 중합체에 화학식 1의 첨가제를 투입하여 첨가제가 혼합된 중합체를 미립화하거나, 중합체에 중화제와 첨가제를 동시에 투입하여 중합체에 대해 중화 및 미립화를 수행할 수도 있다. 또는, 첨가제를 먼저 투입하고 중화제를 이후에 투입할 수도 있다. 또는, 중화제와 첨가제를 교차하여 번갈아 투입할 수도 있다. 또는, 첨가제를 먼저 투입하여 미립화한 뒤, 중화제를 투입하여 중화하고, 중화된 함수겔 중합체에 추가적으로 첨가제를 더 투입하여 미립화 공정을 추가로 수행할 수도 있다.
한편, 중합체 전체에 대한 고른 중화를 위하여 중화제의 투입과 미립화 공정 사이에는 일정한 시간 차를 두는 것이 바람직할 수 있다.
상기 화학식 1의 첨가제 중 적어도 일부 내지 상당량은 상기 베이스 수지 입자의 표면에 존재할 수 있다.
여기서, 상기 화학식 1의 첨가제가 베이스 수지 입자의 표면에 존재한다는 의미는, 상기 화학식 1의 첨가제 중 적어도 일부 또는 상당량이 상기 베이스 수지 입자의 표면에 흡착 또는 결합되어 있음을 의미한다. 구체적으로, 상기 화학식 1의 첨가제는 상기 베이스 수지 입자의 표면에 물리적으로 또는 화학적으로 흡착되어 있을 수 있다. 보다 구체적으로는, 상기 화학식 1의 첨가제의 친수성 작용기는 상기 베이스 수지 입자 표면의 친수성 부분에 쌍극자-쌍극자 인력(Dipole-dipole interaction)과 같은 분자간 힘에 의해 물리적으로 흡착되어 있을 수 있다. 이와 같이, 상기 화학식 1의 첨가제의 친수성 부분은 상기 베이스 수지 입자의 표면에 물리적으로 흡착되어 표면을 감싸고, 화학식 1의 첨가제의 소수성 부분은 베이스 수지 입자의 표면에 흡착되지 않아, 베이스 수지 입자는 일종의 마이셀(micelle) 구조의 형태로서 화학식 1의 첨가제가 코팅되어 있을 수 있다. 이는 상기 화학식 1의 첨가제가 상기 수용성 에틸렌계 불포화 단량체의 중합 공정 중에 투입되는 것이 아니라 중합체 형성 이후 미립화 단계에서 투입되기 때문으로, 상기 화학식 1의 첨가제가 중합 공정 중에 투입되어 중합체 내부에 상기 화학식 1의 첨가제가 존재하는 경우에 비해 계면 활성제로의 역할을 충실히 수행할 수 있으며, 분쇄와 응집이 동시에 일어나 미세 입자가 응집된 형태로 표면적이 큰 입자가 수득될 수 있다.
일 구현예에 따르면, 상기 베이스 수지 입자를 제조하는 단계(단계 3)는, 미립화 장치를 사용하여 수행될 수 있다.
상기 미립화 장치는, 내부에 중합체와 첨가제의 혼합물이 이송되는 이송 공간을 포함하는 바디부; 상기 이송 공간의 내부에 회전 가능하게 설치되어 혼합물을 이동시키는 스크류 부재; 상기 스크류 부재에 회전 구동력을 제공하는 구동모터; 및 상기 바디부에 설치되며 다수의 홀(hole)이 형성된 다공판을 포함하고, 상기 혼합물을 바디부의 외부로 배출하면서 분쇄하는 커터 부재;를 포함한다.
일 구현예에 따르면, 상기 단계 2 및 단계 3은 순차적으로, 동시에, 또는 교차하여 수행되며, 이는 미립화 장치를 사용하여 수행될 수 있다.
이 경우, 상기 미립화 장치는, 상기 바디부 내부에 설치되는 중화제 분사 노즐을 더 포함하여, 상기 중화제 분사 노즐을 통해 중화제가 분사됨으로써, 단계 2 및 단계 3이 순차적으로, 동시에, 또는 교차하여 수행될 수 있게 된다.
구체적으로, 상기 중화제 분사 노즐을 통해 중화제가 바디부 내부로 투입되어, 혼합물 내의 산성기를 갖는 중합체의 적어도 일부의 산성기를 중화하게된다. 구체적으로, 상기 미립화 장치에서, 상기 중화제 분사 노즐을 통해 중화제가 바디부 내부로 투입되어, 혼합물 내의 산성기를 갖는 중합체의 적어도 일부의 산성기를 중화하는 동시에 상기 혼합물이 다공판을 통해 바디부 외부로 배출되면서 분쇄(미립화)된다.
바람직하게는, 상기 중화제 분사 노즐에서 분쇄되는 중화제는, 다공판과 인접하여 분사될 수 있으며, 이 경우, 중화 공정을 수행하는 동시에 혼합물이 다공판의 홀을 통해 배출될 때, 혼합물 내에서 슬립제 역할을 수행하여 홀의 부하를 줄일 수 있어 바람직하다.
바람직하게는, 상기 미립화 장치의 커터 부재는 다공판 및 다공판과 인접하여 바디부의 출구 측에 배치되는 커팅 나이프를 포함하며, 상기 혼합물이 다공판을 통과한 뒤 커팅 나이프에 의해 보다 효과적으로 분쇄되어 미립화된다.
상기 미립화 장치에서, 상기 커터 부재는 복수 개의 다공판 및 복수 개의 커팅 나이프를 포함할 수 있다. 상기 복수 개의 다공판 및 복수 개의 커팅 나이프의 배치 순서는 특별히 한정되지 않으며, 각각 순차적으로 배치되거나, 서로 교차하여 배치되거나, 복수 개의 다공판이 연속하여 배치되거나 또는 복수 개의 커팅 나이프가 연속하여 배치될 수 있다.
상기와 같이 복수 개의 다공판 및 커팅 나이프를 포함함으로써, 단일의 미립화 장치 내에서 복수 회의 미립화가 수행될 수 있다. 한편, 상기 복수 개의 다공판 및 커팅나이프 중 어느 하나 이상에 인접하게 복수 개의 중화제 분사 노즐이 배치될 수 있으며, 슬립성 향상 측면에서 다공판과 인접하게 중화제 분사 노즐이 배치되는 것이 바람직하다.
상기 미립화 장치에서, 상기 다공판에 형성된 홀 크기는 0.1 mm 내지 30 mm일 수 있다. 바람직하게는, 0.5 mm 내지 25 mm, 1mm 내지 20 mm, 1 mm 내지 10 mm일 수 있다. 상기 홀 크기를 가지는 다공판을 사용함으르써, 목적하는 정도의 입경을 가지는 베이스 수지 입자를 제조할 수 있다. 상기와 같이 커터 부재가 복수 개의 다공판을 포함하는 경우, 각각의 다공판에 형성된 홀의 크기는 전술한 범위를 만족할 수 있으며, 이들은 서로 동일하거나 상이할 수 있다.
발명의 일 구현예에 따르면, 상기 단계 3은 복수 회 수행될 수 있으며, 이는 복수 개의 미립화 장치를 사용하여 수행되거나, 복수 개의 다공판 및/또는 복수 개의 커팅 나이프를 포함하는 단일의 미립화 장치를 사용하여 수행되거나, 또는 복수 개의 미립화 장치 중에 일부 장치가 복수 개의 복수 개의 다공판 및/또는 복수 개의 커팅 나이프를 포함하는 것일 수 있다. 상기 미립화 단계는, 바람직하게는 1회 내지 6회 또는 1회 내지 4회 수행될 수 있다. 상기 단계 3이 복수 회로 수행될 경우, 첨가제는 추가로 복수 회 투입될 수 있다.
상기 중합체를 미립화하여 베이스 수지 입자를 제조하는 단계(단계 3)는 베이스 수지 입자의 평균 입경이 50 ㎛ 내지 600 ㎛이 되도록 미립화할 수 있으며, 바람직하게는, 100 ㎛ 내지 500 ㎛, 150 ㎛ 내지 450 ㎛, 또는 200 ㎛ 내지 400 ㎛이 되도록 미립화할 수 있다. 상기 입경 범위를 만족함으로써, 중합체를 1차 입자가 응집된 형태의 2차 입자로 제조하여 이후 보다 마일드한 조건에서 분쇄 및 건조 공정이 진행됨에 따라 공정 중 발생하는 미분 발생량이 현저히 줄어들 수 있다.
본 발명에 있어서, 평균 입경 “Dn”은, 입자 크기에 따른 입자 개수 누적 분포의 n% 지점에서의 입자 크기 또는 입자 직경을 의미한다. 즉, D50은 입자 크기에 따른 입자 개수 누적 분포의 50% 지점에서의 입자 크기를 나타내고, D90은 입자 크기에 따른 입자 개수 누적 분포의 90% 지점에서의 입자 크기를 나타내며, D10은 입자 크기에 따른 입자 개수 누적 분포의 10% 지점에서의 입자 크기를 나타낸다. 상기 Dn은 레이저 회절법(laser diffraction method) 등을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입자 크기 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절 패턴 차이를 측정하여 입자 크기 분포를 산출한다. 측정 장치에 있어서의 입자 크기에 따른 입자 개수 누적 분포의 10%, 50% 및 90%가 되는 지점에서의 입자 크기를 산출함으로써, D10, D50 및 D90을 측정할 수 있다.
(단계 4)
다음으로, 상기 베이스 수지 입자를 건조하는 단계(단계 4)를 포함한다. 이를 통하여, 고흡수성 수지 입자 및 화학식 1로 표시되는 첨가제가 포함된 고흡수성 수지 조성물이 제조될 수 있다.
상기 건조는, 제조된 고흡수성 수지 조성물에 포함되어 있는 복수 개의 고흡수성 수지 입자들 각각의 함수율이 약 10 중량% 이하, 구체적으로, 약 0.1 내지 약 10 중량%가 되도록 수행될 수 있다.
이때, 분쇄물의 건조는 유동식(moving type)으로 수행될 수 있다. 이러한 유동식(moving type) 건조는 정치식(fixed-bed type) 건조와는 건조되는 동안의 물질의 유동 유/무로 구분된다.
통상의 고흡수성 수지의 제조방법에서, 상기 건조 단계는 고흡수성 수지 입자의 함수율이 10 중량% 미만이 될 때까지 수행하는 것이 일반적이다. 그러나, 본 발명은 화학식 1산 첨가제의 존재 하에 미립화 단계를 수행함으로써 응집이 제어되어, 건조되는 고흡수성 수지 입자의 함수율이 10 중량% 내지 20 중량%, 바람직하게는, 10 중량% 내지 25 중량%가 되도록 건조하여 수행된다. 그러나, 본 발명이 이에 한정되는 것은 아니다. 이에 따라, 고함수율을 나타내어 미분 발생을 근본적으로 방지할 수 있다는 장점이 있다. 또한, 최종 고흡수성 수지 조성물의 흡수 속도를 향상시킬 수 있어 바람직하다.
이를 위하여 상기 건조 단계는, 비교적 저온에서 유동식(moving type)으로 건조하는 방식으로 수행된다. 이러한 유동식(moving type) 건조는 정치식(fixed-bed type) 건조와는 건조되는 동안의 물질의 유동 유/무로 구분되며, 건조시키고자 하는 분쇄물 내의 세절된 함수 고흡수성 수지 입자들간의 응집 현상을 방지하고, 빠른 시간 내 건조를 완료할 수 있어 바람직하다.
이를 위하여 상기 건조 단계는, 비교적 저온에서 유동식(moving type)으로 건조하는 방식으로 수행된다. 이러한 유동식(moving type) 건조는 정치식(fixed-bed type) 건조와는 건조되는 동안의 물질의 유동 유/무로 구분되며, 건조시키고자 하는 분쇄물 내의 세절된 베이스 수지 입자들간의 응집 현상을 방지하고, 빠른 시간 내 건조를 완료할 수 있어 바람직하다.
구체적으로, 상기 유동식(moving type) 건조는 건조체를 기계적으로 교반하면서 건조시키는 방식을 일컫는다. 이때, 열풍이 물질을 통과하는 방향은 물질의 순환 방향과 같을 수도 있고, 상이할 수도 있다. 또는, 물질은 건조기 내부에서 순환하고, 건조기 외부의 별도의 파이프관으로 열매개 유체(열매유)를 통과시켜 물질을 건조시킬 수도 있다. 한편, 정치식(fixed-bed type) 건조는 공기가 통할 수 있는 다공 철판과 같은 바닥에 건조시키고자 하는 물질을 정지시킨 상태에서, 아래에서 위로 열풍이 물질을 통과하여 건조시키는 방식을 일컫는다.
상기 베이스 수지 입자를 건조하는 단계(단계 4)는, 일반적으로 사용되는 유동식 건조기가 특별한 제한 없이 사용될 수 있으며, 예를 들어, 횡형 믹서(Horizontal-type Mixer), 로터리 킬른(Rotary kiln), 패들 드라이어(Paddle Dryer) 또는 스팀 튜브 드라이어(Steam tube dryer)의 유동식 건조기를 이용하여 수행될 수 있다.
상기 건조 단계(단계 4)는, 150℃ 이하의 비교적 저온의 온도에서 수행될 수 있으며, 바람직하게는 100℃ 내지 150℃, 100℃ 내지 130℃, 105℃ 내지 115℃에서 수행될 수 있으며, 상기와 같이 저온에서 수행되더라도 목적하는 응집 없이 목적하는 정도의 입경 및 물성을 가지는 고흡수성 수지 입자를 제조할 수 있다.
한편, 상기 건조 온도는 사용되는 유동식 건조 장치의 건조물이 투입되는 내부 구동 온도일 수 있으며, 이는, 건조기 외부의 별도의 파이프관으로 열매개 유체(열매유)를 통과시켜 조절될 수 있으나, 이에 한정되는 것은 아니다.
상기 건조 단계(단계 4)는, 30분 내지 80분 동안 수행될 수 있으며, 30분 내지 60분 또는 40분 내지 50분 동안 수행될 수 있으며, 건조시키고자 하는 분쇄물 내의 세절된 중합체 수지 입자들간의 응집 현상이 적어 상대적으로 낮은 온도에서 짧은 시간 동안 건조 단계가 수행되더라도, 목적하는 목적하는 정도의 입경 및 물성을 가지는 고흡수성 수지 입자를 제조할 수 있다.
(추가 단계)
이후, 발명의 일 구현예에 따른 고흡수성 수지 조성물의 제조 방법은, 필요에 따라 상기 고흡수성 수지 입자를 분쇄 및 분급하는 단계를 더 포함할 수 있다.
구체적으로, 상기 분쇄 단계는 건조 고흡수성 수지 입자를 분쇄하여 정상 입자 수준의 입도, 즉, 150 ㎛ 내지 850 ㎛의 입경을 갖도록 수행될 수 있다.
이를 위해 사용되는 분쇄기는 구체적으로 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 세절기(chopper) 또는 원판식 절단기(Disc cutter) 등일 수 있으며, 상술한 예에 한정되지는 않는다.
또는 분쇄기로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수도 있으나, 상술한 예에 한정되는 것은 아니다.
한편, 본 발명의 제조 방법에서는 미립화 단계에서 종래의 쵸핑 단계에서보다 작은 입도 분포의 고흡수성 수지 입자를 구현할 수 있고, 유동식(moving type) 건조를 수행할 경우 건조 후의 함수율이 10 중량% 이상으로 비교적 높게 유지되기 때문에, 보다 적은 분쇄력으로 마일드한 조건에서 분쇄를 수행하여도 150 ㎛ 내지 850 ㎛의 정상 입도의 함량이 매우 높은 고흡수성 수지를 형성할 수 있고, 미분 생성 비율이 크게 줄어들 수 있다.
상기와 같이 제조된 고흡수성 수지 입자는, 총 중량 대비 150 ㎛ 내지 850 ㎛의 입경을 갖는 고흡수성 수지 입자, 즉 정상 입자를 80 중량% 이상, 85 중량% 이상, 89 중량% 이상, 90 중량% 이상, 92 중량% 이상, 93 중량% 이상, 94 중량% 이상, 또는 95 중량% 이상 포함할 수 있다. 이러한 수지 입자의 입경은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 220.3 방법에 따라 측정될 수 있다.
또한, 상기 고흡수성 수지 입자는, 총 중량 대비 150 ㎛ 미만의 입경을 갖는 미분을 약 20 중량% 미만, 약 18 중량% 미만, 약 15 중량% 미만, 약 13 중량% 미만, 약 10 중량% 미만, 구체적으로는 약 5 중량% 미만, 보다 구체적으로는 약 3% 미만으로 포함할 수 있다. 이는 종래의 제조방법에 따라 고흡수성 수지를 제조하는 경우 약 20 중량% 초과 내지 약 30 중량%의 미분을 갖는 것과는 대조적이다.
다음으로, 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법은, 표면 가교 존재 하에, 상기 베이스 수지 분말의 표면을 열가교하여 고흡수성 수지 입자를 제조하는 단계를 포함할 수 있다.
상기 표면 가교 단계는 표면 가교제의 존재 하에 상기 베이스 수지 분말의 표면에 가교 반응을 유도하는 것으로, 가교되지 않고 표면에 남아 있던 수용성 에틸렌계 불포화 단량체의 불포화 결합이 상기 표면 가교제에 의해 가교되게 되어, 표면 가교 밀도가 높아진 고흡수성 수지가 형성된다.
구체적으로, 표면 가교제의 존재하여 열처리 공정으로 표면 가교층이 형성될 수 있으며, 상기 열처리 공정은 표면 가교 밀도, 즉 외부 가교 밀도는 증가하게 되는 반면 내부 가교 밀도는 변화가 없어, 제조된 표면 가교층이 형성된 고흡수성 수지는 내부보다 외부의 가교 밀도가 높은 구조를 갖게 된다.
상기 표면 가교 공정은 약 80℃ 내지 약 250℃의 온도에서 수행될 수 있다. 보다 구체적으로, 상기 표면 가교 공정은 약 100℃ 내지 약 220℃, 또는 약 120℃ 내지 약 200℃의 온도에서, 약 20 분 내지 약 2 시간, 또는 약 40 분 내지 약 80 분 동안 수행될 수 있다. 상술한 표면 가교 공정 조건의 충족 시 고흡수성 수지 입자의 표면이 충분히 가교되어 가압 흡수능이 증가될 수 있다.
이러한 표면 가교 공정 조건(특히, 승온 조건 및 반응 최고 온도에서의 반응 조건)의 충족에 의해 보다 우수한 흡수 속도 등의 물성을 적절히 충족하는 고흡수성 수지가 제조될 수 있다.
표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
한편, 상기 표면 가교제 조성물에 포함되는 표면 가교제로는 기존부터 고흡수성 수지의 제조에 사용되던 표면 가교제를 별다른 제한 없이 모두 사용할 수 있다. 예를 들어, 상기 표면 가교제는 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올; 에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1 종 이상의 카보네이트계 화합물; 에틸렌글리콜 디글리시딜 에테르 등의 에폭시 화합물; 옥사졸리디논 등의 옥사졸린 화합물; 폴리아민 화합물; 옥사졸린 화합물; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 또는 환상 우레아 화합물; 등을 포함할 수 있다. 바람직하게는 상술한 내부 가교제와 동일한 것이 사용될 수 있고, 예를 들어, 에틸렌글리콜 디글리시딜 에테르 등의 알킬렌글리콜의 디글리시딜 에테르계 화합물이 사용될 수 있다.
상기 표면 가교 단계에서, 표면 가교제 외에 알코올계 용매 및 물을 포함하는 표면 가교제 조성물을 사용할 수 있다.
이러한 표면 가교제는 고흡수성 수지 입자 100 중량부에 대하여 0.001 내지 2 중량부로 사용될 수 있다. 바람직하게는, 0.005 중량부 이상, 0.01 중량부 이상, 또는 0.02 중량부 이상이고, 0.5 중량부 이하, 0.3 중량부 이하의 함량으로 사용될 수 있다. 표면 가교제의 함량 범위를 상술한 범위로 조절하여 우수한 흡수 성능 및 통액성 등 제반 물성을 나타내는 고흡수성 수지를 제조할 수 있다.
한편, 상기 표면 가교제는 이를 포함하는 표면 가교제 조성물 상태로 고흡수성 수지 입자에 첨가되는데, 이러한 표면 가교제 조성물의 첨가 방법에 대해서는 그 구성의 특별한 한정은 없다. 예를 들어, 표면 가교제 조성물과, 고흡수성 수지 입자를 반응조에 넣고 혼합하거나, 고흡수성 수지 입자에 표면 가교제 조성물을 분사하는 방법, 연속적으로 운전되는 믹서에 고흡수성 수지 입자와 표면 가교제 조성물을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
그리고, 상기 표면 가교제 조성물은 매질로서 물 및/또는 친수성 유기 용매를 더 포함할 수 있다. 이로서, 표면 가교제 등이 베이스 수지 분말 상에 골고루 분산될 수 있는 이점이 있다. 이때, 물 및 친수성 유기 용매의 함량은 표면 가교제의 고른 용해/분산을 유도하고 베이스 수지 분말의 뭉침 현상을 방지함과 동시에 표면 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 고흡수성 수지 입자 100 중량부에 대한 첨가 비율을 조절하여 적용할 수 있다.
한편, 발명의 일 구현예에 따른 고흡수성 수지의 제조 방법은 통액성 등의 추가적인 향상을 위해, 표면 가교시 황산알루미늄염 등의 알루미늄염 기타 다양한 다가 금속염을 더 사용할 수 있다. 이러한 다가 금속염은 최종 제조된 고흡수성 수지의 표면 가교층 상에 포함될 수 있다.
본 발명의 일 구현예에 따르면, 상기 고흡수성 수지 입자의 표면 중 적어도 일부에 표면 가교층을 형성하는 단계 이후에, 상기 표면 가교층이 형성된 고흡수성 수지 입자를 냉각하는 냉각 단계, 상기 표면 가교층이 형성된 고흡수성 수지 입자에 물을 투입하는 가수 단계, 및 상기 표면 가교층이 형성된 고흡수성 수지 입자에 첨가제를 투입하는 후처리 단계 중 어느 한 단계 이상을 더 포함하여 수행될 수 있다. 이때 상기 냉각 단계, 가수 단계, 및 후처리 단계는 순차적으로 수행되거나, 또는 동시에 수행될 수 있다.
상기 후처리 단계에서 투입하는 첨가제는 통액성 향상제, 안티-케이킹(anti-caking)제, 유동성 향상제, 및 산화방지제 등이 될 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
상기 냉각 단계, 가수 단계, 및 후처리 단계를 선택적으로 수행함으로써 최종 고흡수성 수지의 함수율을 향상시키고, 보다 고품질의 고흡수성 수지 제품을 제조할 수 있다.
본 발명의 다른 일 구현예에 따르면, 상기 제조 방법으로 제조된 고흡수성 수지를 조성물을 제공한다.
상기 제조 방법으로 제조된 고흡수성 수지 조성물은 별도의 추가 가수 공정이나 첨가제 투입 공정 없이도 고함수율을 구현함으로써, 미분 함량이 낮고, 종래 방법으로 제조한 고흡수성 수지 대비 제반 흡수 물성인 보수능(CRC)과 가압 흡수능(AUP)이 동등 수준 이상이면서 동시에 수가용 성분(EC) 함량이 낮아짐로써 흡수 속도 등이 모두 우수한 고흡수성 수지를 제공할 수 있다.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
실시예 - 고흡수성 수지 조성물의 제조
실시예 1
(단계 1) 교반기, 온도계를 장착한 5L 유리 용기에 아크릴산 1,000g, 내부 가교제로 펜타에리트리톨 트리알릴 에테르 3.5g, 물 2,260g를 혼합하고, 5℃로 유지하면서 교반하였다. 상기 혼합물이 포함된 유리 용기에 질소 1,000cc/min을 1시간 동안 유입하여 질소 조건으로 치환하였다. 다음으로, 중합 개시제로 0.3% 과산화수소 수용액 13g, 1% 아스코르브산 수용액 15g, 2%의 2,2'-아조비스-(2-아미디노프로판)이염산 수용액 30g을 투입하고, 동시에 환원제로 0.01%의 황산철 수용액 15g을 첨가하여 중합을 개시하였다. 상기 혼합물의 온도가 85℃에 도달한 후, 90±2℃에서 약 3시간 중합함으로써 중합체를 수득하였다. 중합체의 함수율은 약 70 중량% 이었다.
(단계 2 및 단계 3) 화학식 1의 첨가제로 표 1의 A-1 화합물 1.19g를 물 52.27g에 수분산 시킨 뒤(2wt%의 수분산액 제조), 이를 단계 1에서 수득한 중합체 1,000g과 혼합하였다.
상기 혼합물을 홀 사이즈(hole size)가 6 mm인 다수의 홀을 포함하는 다공판이 구비된 제1 미립화 장치에 1회 통과하여 1차 미립화 공정을 수행하였다.
다음으로, 홀 사이즈(hole size) 4 mm인 다수의 홀을 포함하는 다공판이 구비된 제2 미립화 장치에 총 3회 반복하여 투입하여 2차, 3차, 4차 미립화 공정을 수행하였다.
상기 2차 미립화 공정에서, 다공판에 인접하여 배치된 중화제 노즐을 통해 32% NaOH 수용액을 400g 투입하여, 미립화와 함께 중화 공정을 수행하였다.
상기 3차 미립화 공정에서, 다공판에 인접하여 배치된 중화제 노즐을 통해 15%의 Na2SO4 수용액을 37.5g 투입하였으며, 미립화와 함께 중화 공정을 수행하였다.
마지막으로 4차 미립화 공정에서는, 중화제나 계면활성제 첨가 없이 미립화 공정을 수행하여, 베이스 수지 입자를 수득하였다.
상기 베이스 수지 입자의 중화도는 70 mol% 이었다.
(단계 4) 이후, 상기 베이스 수지 입자 1,000g을 100rpm으로 회전하는 로터리 mixer 유동식 건조기에 투입하였다. 상기 건조기 내부 온도는 105℃로 유지하면서 60분 동안 건조를 수행하여 고흡성 수지 입자를 수득하였다. 상기 고흡수성 수지 입자의 함수율은 11wt%이었다.
실시예 2
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-2 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 11 wt%이었다.
실시예 3
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-3 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 11 wt%이었다.
실시예 4
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-4 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 11 wt%이었다.
실시예 5
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-5 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 14 wt%이었다.
실시예 6
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-6 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 14 wt%이었다.
실시예 7
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-7 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 11 wt%이었다.
실시예 8
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-8 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 12 wt%이었다.
실시예 9
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-9 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 13 wt%이었다.
실시예 10
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-10 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 11 wt%이었다.
실시예 11
(단계 1) 교반기, 온도계를 장착한 5L 유리 용기에 아크릴산 1,000g, 내부 가교제로 펜타에리트리톨 트리알릴 에테르 3.5g, 물 2,260g를 혼합하고, 5℃로 유지하면서 교반하였다. 상기 혼합물이 포함된 유리 용기에 질소 1,000cc/min을 1시간 동안 유입하여 질소 조건으로 치환하였다. 다음으로, 중합 개시제로 0.3% 과산화수소 수용액 13g, 1% 아스코르브산 수용액 15g, 2%의 2,2'-아조비스-(2-아미디노프로판)이염산 수용액 30g을 투입하고, 동시에 환원제로 0.01%의 황산철 수용액 15g을 첨가하여 중합을 개시하였다. 상기 혼합물의 온도가 85℃에 도달한 후, 90±2℃에서 약 3시간 중합함으로써 중합체를 수득하였다. 중합체의 함수율은 약 70 중량% 이었다.
(단계 2 및 단계 3) 화학식 1의 첨가제로 표 1의 A-1 화합물 0. 595g를 물 52.27g에 수분산 시킨 뒤(2wt%의 수분산액 제조), 이를 단계 1에서 수득한 중합체 1,000g과 혼합하였다.
상기 혼합물을 홀 사이즈(hole size)가 6 mm인 다수의 홀을 포함하는 다공판이 구비된 제1 미립화 장치에 1회 통과하여 1차 미립화 공정을 수행하였다.
다음으로, 홀 사이즈(hole size) 4 mm인 다수의 홀을 포함하는 다공판이 구비된 제2 미립화 장치에 총 3회 반복하여 투입하여 2차, 3차, 4차 미립화 공정을 수행하였다.
상기 2차 미립화 공정에서, 다공판에 인접하여 배치된 중화제 노즐을 통해 32% NaOH 수용액을 400g 투입하여, 미립화와 함께 중화 공정을 수행하였다.
상기 3차 미립화 공정에서, 다공판에 인접하여 배치된 중화제 노즐을 통해 15%의 Na2SO4 수용액을 37.5g 투입하였으며, 미립화와 함께 중화 공정을 수행하였다.
마지막으로 4차 미립화 공정에서는, 화학식 1의 첨가제로 표 1의 A-11 화합물 0. 595g를 물 52.27g에 수분산 시킨 뒤(2wt%의 수분산액 제조), 이를 3차 미립화를 거친 혼합물을 포함하는 제2 미립화 장치에 투입하여, 4차 미립화 공정을 수행하여 베이스 수지 입자를 제조하였다. 상기 베이스 수지 입자의 중화도는 70 mol% 이었다.
(단계 4) 이후, 상기 베이스 수지 입자 1,000g을 100rpm으로 회전하는 로터리 mixer 유동식 건조기에 투입하였다. 상기 건조기 내부 온도는 105℃로 유지하면서 60분 동안 건조를 수행하여 고흡성 수지 입자를 수득하였다.
상기 단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 12 wt%이었다.
실시예 12
실시예 11에서 1차 미립화 단계에서 화학식 1의 첨가제로 A-1 화합물을 동일하게 사용하고, 4차 미립화 단계에서 화학식 1의 첨가제로 A-11 화합물 대신 표 1의 A-2 화합물을 사용한 것을 제외하고는, 실시예 11과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 10 wt%이었다.
실시예 13
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-12 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 14 wt%이었다.
실시예 14
실시예 1에서 화학식 1의 첨가제로 A-1 화합물 대신 표 1의 A-13 화합물을 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 14 wt%이었다.
실시예 15
화학식 1의 첨가제로 실시예 13에서 사용한 A-12 화합물 0.595 g과 실시예 14에서 사용한 A-13 화합물 0.595g을 혼합하여 총 1.19g의 첨가제를 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 13 wt%이었다.
실시예 16
실시예 13에서 화학식 1의 첨가제로 A-12의 함량을 2.38g으로 증량하여 사용한 것을 제외하고는, 실시예 13과 동일한 방법을 사용하여 고흡수성 수지 조성물을 제조하였다.
단계 4의 건조 이후 최종 고흡수성 수지 입자의 함수율은 12 wt%이었다.
비교예 1
실시예 1에서 화학식 1의 첨가제를 사용하지 않은 것을 제외하고는 동일한 방법으로 고흡수성 수지 조성물을 제조하였다.
비교예 2 내지 6, 8 및 9
실시예 1에서 화학식 1의 첨가제를 하기 표 1에 기재된 첨가제를 사용한 제외하고는 동일한 방법으로 고흡수성 수지 조성물을 제조하였다.
비교예 7
교반기, 온도계를 장착한 3L 유리 용기에 아크릴산 100 g(1.388 mol), 내부 가교제 폴리에틸렌글리콜 디아크릴레이트(Mn= 508) 0.16 g, 광중합 개시제 디페닐(2, 4,6-트리메틸벤조일)포스핀옥사이드 0.008 g, 열중합 개시제 과황산나트륨 0.12 g, 32%의 가성소다 용액 123.5 g을 상온에서 혼합하여, 단량체 조성물을 제조하였다(아크릴산의 중화도: 70 몰%, 고형분 함량: 45 중량%).
이후, 상기 단량체 조성물을 폭 10 cm, 길이 2 m의 벨트가 50 cm/min의 속도로 회전하는 컨베이어 벨트 상에 500 ~ 2000 mL/min의 속도로 공급하였다. 그리고, 상기 단량체 조성물의 공급과 동시에 10 mW/cm2의 세기를 갖는 자외선을 조사하여 60 초 동안 중합 반응을 진행하여, 함수율이 약 55 중량%인 함수겔 중합체를 얻었다.
다음으로, 상기 중합 반응을 통해 얻은 함수겔 중합체를 첨가제 없이 미트 쵸퍼(meat chopper)를 이용하여 분쇄하였다. 이때, 최종 분쇄된 분쇄물에 포함된 함수 고흡수성 수지 입자의 함수율은 55 wt%였다.
이후, 상기 분쇄물을 상하로 풍량 전이가 가능한 컨벡션 오븐을 이용하여 185℃의 핫 에어(hot air)를 20 분간 하방에서 상방으로 흐르게 하고, 다시 20 분간 상방에서 하방으로 흐르게 하여 건조시켜, 건조 이후 최종 고흡수성 수지 입자의 함수율이 25 wt%인 고흡수성 수지를 제조하였다.
구분 단계 3의 첨가제
실시예 1
Figure PCTKR2022016642-appb-img-000051
(A-1)
실시예 2
Figure PCTKR2022016642-appb-img-000052
(A-2)
실시예 3
Figure PCTKR2022016642-appb-img-000053
(A-3)
실시예 4
Figure PCTKR2022016642-appb-img-000054
(A-4)
실시예 5
Figure PCTKR2022016642-appb-img-000055
(A-5)
실시예 6
Figure PCTKR2022016642-appb-img-000056
(A-6)
실시예 7
Figure PCTKR2022016642-appb-img-000057
(A-7)
실시예 8
Figure PCTKR2022016642-appb-img-000058
(A-8)
실시예 9
Figure PCTKR2022016642-appb-img-000059
(A-9)
실시예 10
Figure PCTKR2022016642-appb-img-000060
(A-10)
실시예 11 (A-1: 1차 미립화)+
Figure PCTKR2022016642-appb-img-000061
(A-11: 4차 미립화)
실시예 12 (A-1: 1차 미립화)+(A-2: 4차 미립화)
실시예 13
Figure PCTKR2022016642-appb-img-000062
(A-12)
실시예 14
Figure PCTKR2022016642-appb-img-000063
(A-13)
실시예 15 (A-12: 1차 미립화)+(A-13: 1차 미립화)
실시예 16 (A-12)
비교예 1 첨가제 사용 X
비교예 2 Monobutyl Maleate
비교예 3 Monolauryl Glutarate
비교예 4 Dodecanoic Acid
비교예 5 Stearic Acid
비교예 6 Pluronic L35
비교예 7 첨가제 사용 X (선중화 공정)
비교예 8 laureth-3-adipate
비교예 9 Polyethyleneglycol Monomethacrylate (bisomer PEM6LD)
Figure PCTKR2022016642-appb-img-000064
시험예
상기 실시예 및 비교예에서 제조한 고흡수성 수지 조성물에 대하여, 아래와 같은 방법으로 입자 응집 특성 평가, 원심분리 보수능(CRC), 가압흡수능(AUP), 흡수속도 및 유효 흡수능을 각각 측정하였고, 그 결과를 하기 표 3 및 표 4에 나타내었다. 다르게 표기하지 않는 한, 하기 물성 평가는 모든 과정을 항온항습실(23±2℃, 상대습도 45±10%)에서 진행하였고, 측정 오차를 방지하기 위하여 3 회 측정 평균 값을 측정 데이터로 하였다. 또한, 하기 물성 평가에서 생리식염수 또는 염수는 0.9 중량% 염화나트륨(NaCl) 수용액을 의미한다.
(1) 입자 응집 특성 평가
① 각 실시예 및 비교예에서 제조한 단계 1의 미중화 중합체(함수율 70wt%) 1,000g를 준비하였다.
② 다음으로 화학식 1의 첨가제 또는 이에 대응되는 비교 화합물을 0.36 g를 80℃의 물 17.54 g에 수분산 시킨 뒤(2.04 wt%의 수분산액 제조), 이를 단계 1에서 수득한 중합체 300g과 혼합하였다.
상기 단계 2의 첨가제 또는 이에 대응되는 비교 화합물을 각 실시예 및 비교예에서 사용한 종류 및 함량에 맞추어 수용액 형태로 혼합하였다.
② 상기 혼합물 300g을 3mmΨ hole,두께 5T 다공판을 포함하는 민서(Mincer)에 투입하여 분쇄하였다.
③ 상기 분쇄물에 대하여, 토출 시간, 토출량 및 하기 표 2의 평가 기준에 따른 육안 응집 평가를 진행하고, 그 결과를 표 3에 기재하였다.
이때, 토출 시간은 민서에서 분쇄물 200g이 토출되는데 걸리는 시간(초)를 의미하며, 응집이 완화될수록 토출 시간은 단축된다.
토출량은 상기 ② 단계가 종료된 후, 투입된 300g의 혼합물에 대하여 토출구를 통해 토출된 함량의 비율(wt%)을 의미하며, 응집이 완화될수록 분쇄기 내부에 덩어리가 잔존하는 양이 줄어 토출량이 증가한다.
또한, 육안 응집 평가의 평가 항목 ○ 및 X의 예시가 되는 사진을 각각 도 2의 (a) 및 (b)에 나타내었다.
평가 기준
X 토출물의 80% 이상이 1cm 이상의 strand 형상으로 토출됨(도 2의 (a) 참조)Blade로의 높은 부착력에 따라 중합체가 쵸핑 중 짓이겨지며, 이에 따라 알갱이의 표면이 울퉁불퉁하며, 높은 응집력으로 인해 토출물의 80% 이상이 1cm 이상의 strand 형상을 가짐
토출물의 80% 이상이 1cm 미만의 입자 형상으로 토출됨(도 2의 (b) 참조)Blade로의 부착력 및 응집력이 크게 완화되어 쵸핑 후 알갱이의 표면이 매끄러우며, 토출물의 80% 이상이 1cm 미만의 구형에 가까운 형상을 가짐
첨가제 종류 입자 응집 특성 평가
토출시간(초) 토출량(wt%) 육안 응집 평가
실험예 1-1 A-1 24 97.3
실험예 1-2 A-2 55 95.6
실험예 1-3 A-3 60 93.3
실험예 1-4 A-4 61 92.6
실험예 1-5 A-5 185 68.3
실험예 1-6 A-6 165 71.6
실험예 1-7 A-7 23 99.3
실험예 1-8 A-8 184 72.6
실험예 1-9 A-9 108 79.0
실험예 1-10 A-10 35 97.3
실험예 1-11 A-12 180 69.4
실험예 1-12 A-13 178 70.1
비교 실험예 1-1 첨가제 없음 300초 초과 30.6 X
비교 실험예 1-2 Monobutyl Maleate 300초 초과 34 X
비교 실험예 1-3 Monolauryl Glutarate 300초 초과 34.6 X
비교 실험예 1-4 Dodecanoic Acid 300초 초과 31 X
비교 실험예 1-5 Stearic Acid 300초 초과 30.3 X
비교 실험예 1-6 Pluronic L35 300초 초과 37 X
비교 실험예 1-8 laureth-3-adipate 300초 초과 35 X
비교 실험예 1-9 Polyethyleneglycol Monomethacrylate (bisomer PEM6LD) 300초 초과 25 X
상기 표 3 및 도 2를 참조하면, 미중화 중합체와 본원의 화학식 1의 첨가제를 투입하여 분쇄를 진행하는 경우, 이러한 첨가제를 사용하지 않거나, 구조에 부합하지 않는 화합물을 사용하는 경우에 비해, 분쇄 후 입자들간의 응집이 억제되어, 토출시간이 짧고, 토출량이 뛰어난 것을 확인할 수 있었다. 또한, 본원 화학식 1의 첨가제에 의해 믹서기에 투입되는 혼합물들의 부착력 및 응집력이 완화되어 육안 평가 시에 토출물의 80% 이상이 1cm 입자 형상으로 토출되는 것을 확인할 수 있었다.
(2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity)
각 수지 조성물의 무하중 하 흡수 배율에 의한 보수능을 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 측정하였다.
구체적으로, 실시예 및 비교예를 통해 각각 얻은 고흡수성 수지 조성물에서, #30-50의 체로 분급한 수지를 얻었다. 이러한 수지 W0(g) (약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후, 상온에서 생리식염수(0.9 중량%)에 침수시켰다. 30분 경과 후, 원심 분리기를 이용하여 250G의 조건 하에서 상기 봉투로부터 3분간 물기를 빼고, 봉투의 질량 W2(g)을 측정하였다. 또, 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W1(g)을 측정하였다.
얻어진 각 질량을 이용하여 하기 수학식 1에 따라 CRC(g/g)를 산출하고, 그 결과를 표 4에 기재하였다.
[수학식 1]
CRC (g/g) = {[W2(g) - W1(g)]/W0(g)} - 1
(3) 가압 흡수능 (AUP: Absorbency under Pressure)
상기 실시예 및 비교예의 고흡수성 수지 조성물의 0.7 psi의 가압 흡수능을, EDANA법 WSP 242.3에 따라 측정하였다.
먼저, 가압 흡수능 측정시에는, 상기 CRC 측정시의 수지 분급분을 사용하였다.
구체적으로, 내경 25 mm의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망을 장착시켰다. 상온 및 습도 50%의 조건 하에서 철망 상에 흡수성 수지 조성물 W0(g) (0.16 g)을 균일하게 살포하고, 그 위에 0.7 psi의 하중을 균일하게 더 부여할 수 있는 피스톤은 외경 25 mm 보다 약간 작고 원통의 내벽과 틈이 없고 상하 움직임이 방해받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다.
직경 150 mm의 페트로 접시의 내측에 직경 90mm 및 두께 5mm의 유리 필터를 두고, 0.9 중량% 염화나트륨으로 구성된 생리식염수를 유리 필터의 윗면과 동일 레벨이 되도록 하였다. 그 위에 직경 90mm의 여과지 1장을 실었다. 여과지 위에 상기 측정 장치를 싣고, 액을 하중 하에서 1시간 동안 흡수시켰다. 1시간 후 측정 장치를 들어올리고, 그 중량 W4(g)을 측정하였다.
얻어진 각 질량을 이용하여 하기 수학식 2에 따라 가압 흡수능(g/g)을 산출하고, 그 결과를 표 4에 기재하였다.
[수학식 2]
AUP(g/g) = [W4(g) - W3(g)]/W0(g)
(4) 표면장력(Surface tension: S/T)
상기 실시예 및 비교예의 고흡수성 수지 조성물의 표면장력을 측정하기 위하여, 각각의 고흡수성 수지 조성물 0.5 g을 0.9% 염수 40 mL에 넣고, 350 rpm 속도로 3분간 교반한 다음 교반을 멈춘 후, 팽윤된 고흡수성 수지가 포함된 염수를 얻었다. 상기 염수를 측정시료로 하여, 표면장력측정기(제품명: Force Tensiometer-K100, KRUSS 사 제조)를 이용하여, 각 고흡수성 수지 조성물의 표면장력을 측정하고, 그 결과를 표 4에 기재하였다.
(5) 겉보기 밀도(Bulk density: BD)
표준 유동도 측정장치 오리피스를 통해 상기 실시예 및 비교예의 고흡수성 수지 조성물 100 g을 흘려 체적 100ml 용기에 받고, 상기 고흡수성 수지 조성물이 수평이 되도록 깎아내어, 상기 고흡수성 수지 조성물의 체적을 100 ml로 조절한 후, 용기를 제외한 고흡수성 수지 조성물만의 무게를 측정하였다. 그리고, 상기 고흡수성 수지 조성물만의 무게를 고흡수성 수지 조성물의 체적인 100 ml로 나누어 단위 체적당 고흡수성 수지 조성물의 무게에 해당하는 겉보기 밀도를 구하였다.
(6) 미분 발생량
상기 실시예 및 비교예의 고흡수성 수지 조성물의 미분 발생량은, 제조된 고흡수성 수지 조성물을 조분쇄기(2800rpm, 0.4mm clearance, 1mm 하단 mesh 조건)에 1회 통과시킨 후, 총 중량 대비 150 ㎛ 미만의 입경을 갖는 수지의 중량의 비율로 계산하였으며, 그 결과를 표 4에 기재하였다.
(7) 흡수속도 (Vortex time)
상기 실시예 및 비교예의 고흡수성 수지 조성물의 흡수 속도(vortex time)를 하기와 같은 방법으로 측정하고, 그 결과를 표 4에 기재하였다.
① 먼저, 바닥이 평평한 100 mL의 비커에 100 mL의 Mass Cylinder를 이용하여 50 mL의 0.9% 염수를 넣었다.
② 다음으로, 상기 비커가 마그네틱 교반기 중앙에 오도록 놓은 후, 상기 비커 안에 마그네틱 바(직경 8 mm, 길이 30 mm)를 넣었다.
③ 이후, 상기 마그네틱 바가 600 rpm으로 교반하도록 교반기를 작동시키고, 교반에 의해 생긴 와류(vortex)의 가장 아래 부분이 상기 마그네틱 바의 위에 닿도록 하였다.
④ 비커 내 염수의 온도가 24.0℃가 된 것을 확인한 후 2±0.01 g의 고흡수성 수지 조성물 시료를 투입하면서 동시에 스톱 와치를 작동시키고, 와류가 사라지면서 액 표면이 완전 수평이 될 때까지의 시간을 초 단위로 측정하였고, 이를 흡수 속도로 하였다.
구분 SAP 물성
CRC
(g/g)
AUP
(g/g)
S/T
(mN/m)
BD
(g/ml)
미분 발생량(%) 흡수
속도(초)
실험예 2-1 실시예 1 43.5 27.4 71.5 0.72 1.4 23
실험예 2-2 실시예 2 42.5 27.3 71.1 0.71 2.3 25
실험예 2-3 실시예 3 42.3 26.5 71.2 0.71 2.7 26
실험예 2-4 실시예 4 42.1 27.3 71.3 0.72 4.8 30
실험예 2-5 실시예 5 41.6 27.0 71.2 0.71 3.5 29
실험예 2-6 실시예 6 41.4 26.9 71.3 0.71 3.2 29
실험예 2-7 실시예 7 42.4 27.4 71.4 0.72 4.3 28
실험예 2-8 실시예 8 42.0 27.0 71.0 0.70 5.2 28
실험예 2-9 실시예 9 41.8 26.8 71.1 0.70 3.0 27
실험예 2-10 실시예 10 42.2 27.4 70.9 0.70 1.9 24
실험예 2-11 실시예 11 43.4 27.5 71.2 0.71 1.1 22
실험예 2-12 실시예 12 42.6 26.8 71.0 0.71 1.2 21
실험예 2-13 실시예 13 40.5 24.3 71.0 0.70 4.4 30
실험예 2-14 실시예 14 41.8 25.3 71.1 0.71 2.5 28
실험예 2-15 실시예 15 40.9 24.5 71.1 0.71 4.0 30
실험예 2-16 실시예 16 42.1 25.8 71.1 0.71 3.1 28
비교 실험예 2-1 비교예 1 37.7 25.5 71.1 0.69 14.5 38
비교 실험예 2-2 비교예 2 38.3 25.0 _ _ 15.1 35
비교 실험예 2-3 비교예 3 36.8 25.7 68.9 0.68 16.2 36
비교 실험예 2-4 비교예 4 37.0 25.5 68.1 0.68 16.3 36
비교 실험예 2-5 비교예 5 37.8 25.3 _ _ 14.9 35
비교 실험예 2-6 비교예 6 38.5 25.0 _ _ 11.7 35
비교 실험예 2-7 비교예 7 36.7 24.3 71.3 0.68 15.4 40
비교 실험예 2-8 비교예 8 38.5 25.1 70.5 0.69 13.5 34
비교 실험예 2-9 비교예 9 35.9 24.5 - - 16.7 42
상기 표 4를 참조하면, 미중화 중합체와 본원의 화학식 1의 첨가제를 투입하여 고흡수성 수지 조성물을 제조하는 경우, 이러한 첨가제를 사용하지 않거나, 구조에 부합하지 않는 화합물을 사용하는 경우, 또는 중화된 함수겔 중합체와 혼합하여 사용하는 경우에 비해, 분쇄 후 입자들간의 응집이 억제되어, 건조 후의 추가적인 분쇄 공정 없이도 원하는 입도의 고흡수성 수지 입자를 포함하는 조성물의 제조가 가능하며, 이에 따라 미분 발생량이 저감됨을 알 수 있다. 이에 따라, 본 실시예의 고흡수성 수지 조성물은 비교예 대비 현저히 빠른 흡수 속도를 가지며, 동등 수준 이상의 보수능 및 가압흡수능을 가지면서도 동시에 표면 장력의 저하 없이 높은 겉보기 밀도(bulk density)를 나타냄을 확인할 수 있다.

Claims (19)

  1. 산성기를 갖는 수용성 에틸렌계 불포화 단량체 및 내부 가교제의 가교 중합체를 포함하는 고흡수성 수지 입자; 및
    하기 화학식 1로 표시되는 첨가제 포함하는, 고흡수성 수지 조성물:
    [화학식 1]
    Figure PCTKR2022016642-appb-img-000065
    상기 화학식 1에서,
    A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
    Figure PCTKR2022016642-appb-img-000066
    ,
    Figure PCTKR2022016642-appb-img-000067
    또는
    Figure PCTKR2022016642-appb-img-000068
    이고, 단, 이들 중 하나 이상은 카보닐 또는
    Figure PCTKR2022016642-appb-img-000069
    이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
    Figure PCTKR2022016642-appb-img-000070
    은 각각 인접한 산소 원자와 연결되고,
    Figure PCTKR2022016642-appb-img-000071
    은 인접한 R1, R2 및 R3와 각각 연결되고,
    R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
    n은 1 내지 9의 정수이다.
  2. 제1항에 있어서,
    상기 첨가제는 하기 화학식 1-1 내지 화학식 1-14로 표시되는 화합물로부터 선택되는 1종 이상인,
    고흡수성 수지 조성물:
    [화학식 1-1]
    Figure PCTKR2022016642-appb-img-000072
    [화학식 1-2]
    Figure PCTKR2022016642-appb-img-000073
    [화학식 1-3]
    Figure PCTKR2022016642-appb-img-000074
    [화학식 1-4]
    Figure PCTKR2022016642-appb-img-000075
    [화학식 1-5]
    Figure PCTKR2022016642-appb-img-000076
    [화학식 1-6]
    Figure PCTKR2022016642-appb-img-000077
    [화학식 1-7]
    Figure PCTKR2022016642-appb-img-000078
    [화학식 1-8]
    Figure PCTKR2022016642-appb-img-000079
    [화학식 1-9]
    Figure PCTKR2022016642-appb-img-000080
    [화학식 1-10]
    Figure PCTKR2022016642-appb-img-000081
    [화학식 1-11]
    Figure PCTKR2022016642-appb-img-000082
    [화학식 1-12]
    Figure PCTKR2022016642-appb-img-000083
    [화학식 1-13]
    Figure PCTKR2022016642-appb-img-000084
    [화학식 1-14]
    Figure PCTKR2022016642-appb-img-000085
    .
  3. 제1항에 있어서,
    상기 첨가제는 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 내지 10 중량부로 포함되는,
    고흡수성 수지 조성물.
  4. 제1항에 있어서,
    상기 고흡수성 수지 입자의 표면 중 적어도 일부에, 표면 가교제를 매개로 상기 가교 중합체가 추가 가교되어 형성된 표면 가교층을 더 포함하는,
    고흡수성 수지 조성물.
  5. 제1항에 있어서,
    상기 고흡수성 수지 조성물은,
    볼텍스법에 따른 24.0℃에서의 흡수 속도(vortex time)가 30초 이하인,
    고흡수성 수지 조성물.
  6. 제1항에 있어서,
    상기 고흡수성 수지 조성물은,
    EDANA WSP 241.3에 따른 원심분리 보수능(CRC)이 39.0 g/g 이상인,
    고흡수성 수지 조성물.
  7. 제1항에 있어서,
    상기 고흡수성 수지 조성물은,
    EDANA법 WSP 242.3에 따른 0.7 psi의 가압 흡수능(AUP)이 24.0 g/g 이상인,
    고흡수성 수지 조성물.
  8. 내부 가교제 및 중합 개시제의 존재 하에, 산성기를 갖는 수용성 에틸렌계 불포화 단량체를 가교 중합하여 중합체를 형성하는 단계(단계 1);
    상기 중합체의 적어도 일부의 산성기를 중화시키는 단계(단계 2);
    하기 화학식 1로 표시되는 첨가제의 존재 하에, 상기 중합체를 미립화하여 베이스 수지 입자를 제조하는 단계(단계 3); 및
    상기 베이스 수지 입자를 건조하는 단계(단계 4)를 포함하는,
    고흡수성 수지 조성물의 제조 방법:
    [화학식 1]
    Figure PCTKR2022016642-appb-img-000086
    상기 화학식 1에서,
    A1, A2 및 A3는 각각 독립적으로, 단일 결합, 카보닐,
    Figure PCTKR2022016642-appb-img-000087
    ,
    Figure PCTKR2022016642-appb-img-000088
    또는
    Figure PCTKR2022016642-appb-img-000089
    이고, 단, 이들 중 하나 이상은 카보닐 또는
    Figure PCTKR2022016642-appb-img-000090
    이고, 여기서, m1, m2 및 m3는 각각 독립적으로, 1 내지 8의 정수이고,
    Figure PCTKR2022016642-appb-img-000091
    은 각각 인접한 산소 원자와 연결되고,
    Figure PCTKR2022016642-appb-img-000092
    은 인접한 R1, R2 및 R3와 각각 연결되고,
    R1, R2 및 R3는 각각 독립적으로, 수소, 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알킬 또는 탄소수 6 내지 18의 직쇄 또는 분지쇄의 알케닐이고,
    n은 1 내지 9의 정수이다.
  9. 제8항에 있어서,
    상기 중합체를 형성하는 단계(단계 1)는, 배치식 반응기(batch type reactor)에서 수행되는,
    고흡수성 수지 조성물의 제조 방법.
  10. 제8항에 있어서,
    상기 단계 2 및 단계 3은 순차적으로, 동시에, 또는 교차하여 수행되는,
    고흡수성 수지 조성물의 제조 방법.
  11. 제8항에 있어서,
    상기 첨가제는 상기 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 내지 10 중량부로 포함되는,
    고흡수성 수지 조성물의 제조 방법.
  12. 제8항에 있어서,
    상기 베이스 수지 입자를 제조하는 단계(단계 3)는, 미립화 장치를 사용하여 수행되며,
    상기 미립화 장치는,
    내부에 중합체와 첨가제의 혼합물이 이송되는 이송 공간을 포함하는 바디부;
    상기 이송 공간의 내부에 회전 가능하게 설치되어 혼합물을 이동시키는 스크류 부재;
    상기 스크류 부재에 회전 구동력을 제공하는 구동모터; 및
    상기 바디부에 설치되며 다수의 홀(hole)이 형성된 다공판을 포함하고, 상기 혼합물을 바디부의 외부로 배출하면서 분쇄하는 커터 부재;를 포함하는,
    고흡수성 수지 조성물의 제조 방법.
  13. 제8항에 있어서,
    상기 단계 2 및 단계 3은 순차적으로, 동시에, 또는 교차하여 수행되며,
    상기 단계 2 및 단계 3은 미립화 장치를 사용하여 수행되며,
    상기 미립화 장치는,
    내부에 중합체와 첨가제의 혼합물이 이송되는 이송 공간을 포함하는 바디부;
    상기 이송 공간의 내부에 회전 가능하게 설치되어 혼합물을 이동시키는 스크류 부재;
    상기 스크류 부재에 회전 구동력을 제공하는 구동모터;
    상기 바디부에 설치되며 다수의 홀(hole)이 형성된 다공판을 포함하고, 상기 혼합물을 바디부의 외부로 배출하면서 분쇄하는 커터 부재; 및
    상기 바디부 내부에 설치되는 중화제 분사 노즐을 더 포함하는,
    고흡수성 수지 조성물의 제조 방법.
  14. 제13항에 있어서,
    상기 미립화 장치에서,
    상기 중화제 분사 노즐을 통해 중화제가 바디부 내부로 투입되어, 혼합물 내의 산성기를 갖는 중합체의 적어도 일부의 산성기를 중화하는,
    고흡수성 수지 조성물의 제조 방법.
  15. 제12항에 있어서,
    상기 다공판에 형성된 홀 크기는 0.1 mm 내지 30 mm인,
    고흡수성 수지 조성물의 제조 방법.
  16. 제8항에 있어서,
    상기 베이스 수지 입자를 건조하는 단계(단계 4)는 유동식(moving type)으로 수행되는,
    고흡수성 수지 조성물의 제조 방법.
  17. 제8항에 있어서,
    상기 베이스 수지 입자를 건조하는 단계(단계 4)는,
    횡형 믹서(Horizontal-type Mixer), 로터리 킬른(Rotary kiln), 패들 드라이어(Paddle Dryer), 또는 스팀 튜브 드라이어(Steam tube dryer)의 유동식(moving type) 건조기를 이용하여 수행되는,
    고흡수성 수지 조성물의 제조 방법.
  18. 제8항에 있어서,
    상기 베이스 수지 입자를 건조하는 단계(단계 4)에서 수득되는, 고흡수성 수지 입자의 함수율은 10 중량% 내지 20 중량%인,
    고흡수성 수지 조성물의 제조 방법.
  19. 제8항에 있어서,
    표면 가교제의 존재 하에, 상기 단계 4에서 제조된 고흡수성 수지 입자의 표면 중 적어도 일부에 표면 가교층을 형성하는 단계를 더 포함하는,
    고흡수성 수지 조성물의 제조 방법.
PCT/KR2022/016642 2021-10-29 2022-10-28 고흡수성 수지 조성물 및 이의 제조 방법 WO2023075482A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22887677.7A EP4393991A1 (en) 2021-10-29 2022-10-28 Super absorbent polymer composition and preparation method thereof
CN202280067241.0A CN118055969A (zh) 2021-10-29 2022-10-28 超吸收性聚合物组合物及其制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0147025 2021-10-29
KR20210147025 2021-10-29
KR1020220140642A KR20230062423A (ko) 2021-10-29 2022-10-27 고흡수성 수지 조성물 및 이의 제조 방법
KR10-2022-0140642 2022-10-27

Publications (1)

Publication Number Publication Date
WO2023075482A1 true WO2023075482A1 (ko) 2023-05-04

Family

ID=86159601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016642 WO2023075482A1 (ko) 2021-10-29 2022-10-28 고흡수성 수지 조성물 및 이의 제조 방법

Country Status (2)

Country Link
EP (1) EP4393991A1 (ko)
WO (1) WO2023075482A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930826A (ja) * 1982-06-11 1984-02-18 カセラ・アクチエンゲゼルシヤフト 不粘着性または弱粘着性のヒドロゲル重合体粒子の製造方法
KR20130096218A (ko) * 2010-06-14 2013-08-29 바스프 에스이 개선된 색 안정성을 갖는 수분-흡수 중합체 입자
JP2016124901A (ja) * 2014-12-26 2016-07-11 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR20190077541A (ko) * 2016-11-16 2019-07-03 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지 분말의 제조 방법 및 그의 제조 장치
KR20200055648A (ko) * 2018-11-13 2020-05-21 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR20210062459A (ko) * 2019-11-21 2021-05-31 주식회사 엘지화학 고흡수성 함수겔 복합 세절 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930826A (ja) * 1982-06-11 1984-02-18 カセラ・アクチエンゲゼルシヤフト 不粘着性または弱粘着性のヒドロゲル重合体粒子の製造方法
KR20130096218A (ko) * 2010-06-14 2013-08-29 바스프 에스이 개선된 색 안정성을 갖는 수분-흡수 중합체 입자
JP2016124901A (ja) * 2014-12-26 2016-07-11 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR20190077541A (ko) * 2016-11-16 2019-07-03 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지 분말의 제조 방법 및 그의 제조 장치
KR20200055648A (ko) * 2018-11-13 2020-05-21 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
KR20210062459A (ko) * 2019-11-21 2021-05-31 주식회사 엘지화학 고흡수성 함수겔 복합 세절 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", 2007, ELSEVIER, pages: 115

Also Published As

Publication number Publication date
EP4393991A1 (en) 2024-07-03

Similar Documents

Publication Publication Date Title
WO2022065843A1 (ko) 생분해성 고흡수성 수지 및 이의 제조 방법
WO2021125871A1 (ko) 고흡수성 수지 조성물의 제조 방법
WO2021194203A1 (ko) 고흡수성 수지 필름의 제조 방법
WO2021125872A1 (ko) 고흡수성 수지 조성물의 제조 방법
WO2022265466A1 (ko) 고흡수성 수지의 제조 방법
WO2021071246A1 (ko) 고흡수성 수지의 제조 방법
WO2023075482A1 (ko) 고흡수성 수지 조성물 및 이의 제조 방법
WO2022114610A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2016159600A1 (ko) 고 흡수성 수지의 제조방법
WO2022114609A1 (ko) 고흡수성 수지의 제조 방법
WO2021125559A1 (ko) 고흡수성 수지 조성물
WO2022055290A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2022265471A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2022265459A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2022265468A1 (ko) 고흡수성 수지의 제조 방법
WO2024128449A1 (ko) 고흡수성 수지의 제조방법
WO2022265475A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2021150095A1 (ko) 고흡수성 수지의 제조 방법
WO2024128871A1 (ko) 고흡수성 수지의 제조 방법
WO2022265472A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2024135976A1 (ko) 고흡수성 수지의 제조 방법
WO2022124767A1 (ko) 고흡수성 수지의 제조 방법
WO2024005426A1 (ko) 생분해성 고흡수성 수지 및 이의 제조 방법
WO2024128880A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2024136394A1 (ko) 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22887677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 22887677

Country of ref document: EP

Ref document number: 2022887677

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022887677

Country of ref document: EP

Effective date: 20240328

NENP Non-entry into the national phase

Ref country code: DE