WO2023074295A1 - 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ - Google Patents

光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ Download PDF

Info

Publication number
WO2023074295A1
WO2023074295A1 PCT/JP2022/037342 JP2022037342W WO2023074295A1 WO 2023074295 A1 WO2023074295 A1 WO 2023074295A1 JP 2022037342 W JP2022037342 W JP 2022037342W WO 2023074295 A1 WO2023074295 A1 WO 2023074295A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
resin layer
resin composition
optical fiber
Prior art date
Application number
PCT/JP2022/037342
Other languages
English (en)
French (fr)
Inventor
勝史 浜窪
矩章 岩口
未歩 池川
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2023074295A1 publication Critical patent/WO2023074295A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the present disclosure relates to resin compositions for coating optical fibers, colored coating materials for optical fibers, and optical fibers.
  • This application claims priority based on Japanese application No. 2021-174345 filed on October 26, 2021, and incorporates all the descriptions described in the Japanese application.
  • an optical fiber has a coating resin layer to protect the glass fiber, which is an optical transmission medium.
  • the coating resin layer has, for example, a primary resin layer and a secondary resin layer.
  • the outermost layer of the coating resin layer is composed of a colored resin layer for identifying the optical fiber (see, for example, Patent Documents 1 and 2).
  • a resin composition for optical fiber coating according to an aspect of the present disclosure contains a photopolymerizable compound and a photopolymerization initiator, wherein the photopolymerizable compound is an epoxy di(meth)acrylate having a bisphenol skeleton, It contains an alkylene oxide-modified di(meth)acrylate having a bisphenol skeleton, and the mass ratio of the content of the alkylene oxide-modified di(meth)acrylate to the content of the epoxy di(meth)acrylate is 0.3 or more and 8.0 or less. .
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical fiber according to this embodiment.
  • FIG. 2 is a schematic cross-sectional view showing an example of the optical fiber according to this embodiment.
  • An object of the present disclosure is to provide a resin composition capable of forming a resin layer having excellent mineral oil resistance, a colored coating material for an optical fiber, and an optical fiber in which an increase in transmission loss is reduced.
  • a resin composition for optical fiber coating according to one aspect of the present disclosure contains a photopolymerizable compound and a photopolymerization initiator, and the photopolymerizable compound has an epoxy di(meth) It contains acrylate and an alkylene oxide-modified di(meth)acrylate having a bisphenol skeleton, and the mass ratio of the content of the alkylene oxide-modified di(meth)acrylate to the content of the epoxy di(meth)acrylate is 0.3 or more and 8.0. It is below.
  • Such a resin composition forms a resin layer with excellent resistance to mineral oil by using a (meth)acrylate compound having a specific structure as a photopolymerizable compound instead of a commonly used urethane (meth)acrylate. can do.
  • the alkylene oxide-modified di(meth)acrylate has at least one selected from the group consisting of ethylene oxide chains and propylene oxide chains. good too.
  • the resin composition according to the present embodiment may further contain titanium oxide.
  • the titanium oxide may be surface-treated titanium oxide from the viewpoint of improving the dispersibility in the resin composition.
  • the resin composition is cured with an integrated light amount of 900 mJ/cm 2 or more and 1100 mJ/cm 2 or less.
  • the resin film may have an elongation at break of 7% or more and 50% or less at 23°C, and a Young's modulus of 700 MPa or more and 2000 MPa or less at 23°C.
  • a colored coating material for an optical fiber according to one aspect of the present disclosure includes the resin composition according to any one of (1) to (5) above.
  • the resin composition according to the present embodiment for the colored resin layer it is possible to form a coating resin layer capable of reducing an increase in transmission loss of an optical fiber.
  • An optical fiber according to an aspect of the present disclosure includes a glass fiber including a core and a clad, a primary resin layer that is in contact with the glass fiber and covers the glass fiber, a secondary resin layer that covers the primary resin layer, and a colored resin layer covering the secondary resin layer, wherein the colored resin layer contains a cured product of the resin composition according to any one of (1) to (5) above.
  • An optical fiber according to an aspect of the present disclosure includes a glass fiber including a core and a clad, a primary resin layer that is in contact with the glass fiber and coats the glass fiber, a secondary resin layer that coats the primary resin layer, and the secondary resin layer contains a cured product of the resin composition according to any one of (1) to (5) above.
  • the resin composition according to the present embodiment contains a photopolymerizable compound and a photopolymerization initiator, and the photopolymerizable compound is epoxy di(meth)acrylate having a bisphenol skeleton and alkylene oxide-modified having a bisphenol skeleton. It contains a di(meth)acrylate, and the mass ratio of the content of the alkylene oxide-modified di(meth)acrylate to the content of the epoxy di(meth)acrylate is 0.3 or more and 8.0 or less.
  • epoxy (dimeth)acrylate As the epoxy (dimeth)acrylate according to the present embodiment, a reaction product of a diglycidyl ether compound having a bisphenol skeleton and a compound having a (meth)acryloyl group such as (meth)acrylic acid can be used.
  • epoxy di(meth)acrylates examples include (meth)acrylic acid adducts of bisphenol A diglycidyl ether, (meth)acrylic acid adducts of bisphenol AF diglycidyl ether, and (meth)acrylic acid additions of bisphenol F diglycidyl ether. things are mentioned.
  • the content of the epoxy di(meth)acrylate is 10% by mass or more and 70% by mass or less, 20% by mass or more and 60% by mass or less, or 30% by mass based on the total amount of the photopolymerizable compound. It may be more than or equal to 50% by mass or less.
  • the alkylene oxide-modified di(meth)acrylate according to the present embodiment has at least one selected from the group consisting of ethylene oxide (EO) chains and propylene oxide (PO) chains from the viewpoint of adjusting the Young's modulus of the resin layer. is preferred.
  • An ethylene oxide chain can be represented as "(EO)n” and a propylene oxide chain as "(PO)n".
  • n is an integer of 1 or more, may be 2 or more or 3 or more, and may be 40 or less, 35 or less, or 30 or less.
  • alkylene oxide-modified di(meth)acrylate examples include EO-modified di(meth)acrylate of bisphenol A, PO-modified di(meth)acrylate of bisphenol A, and EO/PO-modified di(meth)acrylate of bisphenol A. .
  • the mass ratio of the content of the alkylene oxide-modified di(meth)acrylate to the content of the epoxy di(meth)acrylate is 0.3 or more and 8.0 or less, a resin layer having excellent mineral oil resistance can be formed. can.
  • the mass ratio of the content of alkylene oxide-modified di(meth)acrylate to the content of epoxy di(meth)acrylate is 0.4 or more, 0.5 or more, or 1.0 or more. may be 7.0 or less, 6.0 or less, or 5.0 or less.
  • the photopolymerizable compound according to the present embodiment includes a photopolymerizable compound (hereinafter referred to as "monomer") other than epoxy di(meth)acrylate having a bisphenol skeleton and alkylene oxide-modified di(meth)acrylate having a bisphenol skeleton. be able to.
  • monomer a photopolymerizable compound other than epoxy di(meth)acrylate having a bisphenol skeleton and alkylene oxide-modified di(meth)acrylate having a bisphenol skeleton.
  • a monofunctional monomer having one polymerizable group and a polyfunctional monomer having two or more polymerizable groups can be used. You may use a monomer in mixture of 2 or more types.
  • Examples of monofunctional monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth)acrylate, n-pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, isoamyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, 2-phenoxyethyl (meth)acrylate, 3-phenoxybenzyl acrylate, phenoxyd
  • polyfunctional monomers include ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, Tetraethylene glycol di(meth)acrylate, neopentyl glycol hydroxypivalate di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonane Diol di(meth)acrylate, 1,12-dodecanediol di(meth)acrylate, 1,14-tetradecanediol di(meth)acrylate, 1,16-hexadecanediol di(meth)acrylate, 1,20-eicosandiol Di(meth)acrylate, isopentyldiol di
  • the photopolymerization initiator can be appropriately selected from known radical photopolymerization initiators and used.
  • photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone (Omnirad 184, manufactured by IGM Resins), 2,2-dimethoxy-2-phenylacetophenone, 1-(4-isopropylphenyl)-2-hydroxy-2- Methylpropan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane-1 -one (Omnirad 907, manufactured by IGM Resins), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO, manufactured by IGM Resins), and bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (Omnirad 819, manufactured
  • the content of the photopolymerization initiator is 0.2% by mass or more and 10% by mass or less, 0.4% by mass or more and 8% by mass or less, or 0.6% by mass or more and 6% by mass, based on the total amount of the photopolymerizable compound. % or less. That is, the content of the photopolymerization initiator is 0.2 parts by mass or more and 10 parts by mass or less, 0.4 parts by mass or more and 8 parts by mass or less, or 0.6 parts by mass with respect to the total amount of 100 parts by mass of the photopolymerizable compound. It may be more than 6 parts by mass and less than 6 parts by mass.
  • the resin composition may further contain silane coupling agents, leveling agents, antifoaming agents, antioxidants, sensitizers, and the like.
  • the silane coupling agent is not particularly limited as long as it does not interfere with curing of the resin composition.
  • Silane coupling agents such as tetramethylsilicate, tetraethylsilicate, mercaptopropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxy-ethoxy)silane, ⁇ -(3,4-epoxycyclohexyl) -ethyltrimethoxysilane, dimethoxydimethylsilane, diethoxydimethylsilane, 3-acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyl trimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysi
  • the resin composition according to the present embodiment can further contain titanium oxide particles.
  • Surface-treated titanium oxide particles may be used as the titanium oxide particles.
  • the surface-treated titanium oxide particles are particles obtained by surface-treating titanium oxide with an inorganic substance, and are excellent in dispersibility in the resin composition.
  • Inorganic substances used for surface treatment include, for example, aluminum oxide, silicon dioxide, and zirconium dioxide.
  • the surface-treated titanium oxide particles have a surface-treated layer containing at least one selected from the group consisting of aluminum oxide, silicon dioxide, and zirconium dioxide, the dispersibility can be further improved.
  • the surface treatment layer may be formed on at least a portion of the surface of titanium oxide, or may be formed on the entire surface of titanium oxide.
  • the surface treatment layer is formed by surface treatment of titanium oxide.
  • the amount of the surface-treated layer in the surface-treated titanium oxide particles may be 1% by mass or more, 1.5% by mass or more, or 2% by mass or more from the viewpoint of improving dispersibility, and from the viewpoint of increasing hiding power. , 10% by mass or less, 9% by mass or less, or 8% by mass or less.
  • the amount of the surface-treated layer can be calculated by measuring the amounts of the titanium element and inorganic elements other than titanium contained in the surface-treated titanium oxide particles using inductively coupled mass spectrometry (ICP-MS).
  • the average primary particle diameter of the surface-treated titanium oxide particles may be 300 nm or less, 295 nm or less, or 290 nm or less from the viewpoint of further improving the lateral pressure resistance of the coating resin layer. From the viewpoint of increasing hiding power, the average primary particle size of the surface-treated titanium oxide particles may be 100 nm or more, 150 nm or more, or 200 nm or more, preferably 200 nm or more and 300 nm or less.
  • the average primary particle size can be measured, for example, by image analysis of electron micrographs, light scattering method, BET method, and the like.
  • the content of the surface-treated titanium oxide particles is 0.6% by mass or more, 0.8% by mass or more, 1% by mass or more, based on the total amount of the resin composition. It may be 5% by mass or more, 2% by mass or more, or 3% by mass or more. From the viewpoint of enhancing the curability of the resin composition, the content of the surface-treated titanium oxide particles is less than 25% by mass, 24% by mass or less, 20% by mass or less, or 18% by mass or less, or It may be 10% by mass or less.
  • the breaking elongation of the resin film obtained by curing the resin composition according to the present embodiment with an integrated amount of light of 900 mJ/cm 2 or more and 1100 mJ/cm 2 or less is 6% or more and 50% or less at 23 ° C.
  • Resin excellent in toughness Layers can be formed.
  • the elongation at break of the resin film may be 6.5% or more, 7% or more, or 10% or more, and may be 45% or less, 40% or less, or 30% or less.
  • the Young's modulus of the resin film When the Young's modulus of the resin film is 700 MPa or more and 2000 MPa or less at 23°C, a resin layer having excellent toughness can be formed.
  • the Young's modulus of the resin film may be 750 MPa or more, 800 MPa or more, or 850 MPa or more, and may be 1950 MPa or less, 1900 MPa or less, or 1850 MPa or less.
  • the resin composition according to this embodiment can be suitably used as a colored coating material for optical fibers.
  • a colored coating material for optical fibers By forming the outermost layer of the coating resin layer using the colored coating material containing the resin composition according to the present embodiment, it is possible to reduce an increase in transmission loss of the optical fiber.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of an optical fiber according to one embodiment.
  • the optical fiber 1 of this embodiment includes a glass fiber 10 and a coating resin layer 20 that is in contact with the glass fiber 10 and covers the outer periphery of the glass fiber 10 .
  • the glass fiber 10 is a light-guiding optical transmission body that transmits light introduced into the optical fiber 1 .
  • the glass fiber 10 is a member made of glass, and is configured using, for example, silica (SiO 2 ) glass as a base material (main component).
  • a glass fiber 10 has a core 12 and a clad 14 covering the core 12 .
  • the glass fiber 10 transmits light introduced into the optical fiber 1 .
  • the core 12 is provided, for example, in a region including the central axis of the glass fiber 10 .
  • the core 12 is made of, for example, pure SiO 2 glass, or SiO 2 glass containing GeO 2 , elemental fluorine, or the like.
  • a clad 14 is provided in a region surrounding the core 12 .
  • Cladding 14 has a refractive index lower than that of core 12 .
  • the clad 14 is made of, for example, pure SiO 2 glass or SiO 2 glass doped with elemental fluorine.
  • the outer diameter of the glass fiber 10 is approximately 100 ⁇ m to 125 ⁇ m, and the diameter of the core 12 constituting the glass fiber 10 is approximately 7 ⁇ m to 15 ⁇ m.
  • the coating resin layer 20 is an ultraviolet curable resin layer that covers the clad 14 .
  • the coating resin layer 20 includes a primary resin layer 22 that covers the outer circumference of the glass fiber 10 and a secondary resin layer 24 that covers the outer circumference of the primary resin layer 22 .
  • the primary resin layer 22 is in contact with the outer peripheral surface of the clad 14 and covers the entire clad 14 .
  • the secondary resin layer 24 is in contact with the outer peripheral surface of the primary resin layer 22 and covers the entire primary resin layer 22 .
  • the thickness of the primary resin layer 22 is, for example, 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the secondary resin layer 24 is, for example, 10 ⁇ m or more and 40 ⁇ m or less.
  • the resin composition according to this embodiment can be applied to the secondary resin layer 24 .
  • the secondary resin layer 24 can be formed by curing the resin composition. Since the secondary resin layer 24 contains the cured product of the resin composition according to the present embodiment, the surface of the secondary resin layer is damaged when the large bobbin is rewound to the small bobbin. It can prevent the layer from being destroyed.
  • the coating resin layer 20 may further include a colored resin layer 26 that covers the outer circumference of the secondary resin layer 24 .
  • FIG. 2 is a schematic cross-sectional view showing the configuration of an optical fiber according to one embodiment.
  • the optical fiber 1A of this embodiment includes a glass fiber 10 and a coating resin layer 20 that is in contact with the glass fiber 10 and covers the outer periphery of the glass fiber 10.
  • the coating resin layer 20 includes a primary resin layer 22 , a secondary resin layer 24 and a colored resin layer 26 .
  • the thickness of the colored resin layer 26 is, for example, 3 ⁇ m or more and 10 ⁇ m or less.
  • the resin composition according to this embodiment can be applied to the colored resin layer 26.
  • the colored resin layer 26 can be formed by curing the resin composition.
  • the colored resin layer 26 can improve the lateral pressure characteristics of the optical fiber by including the cured product of the resin composition according to the present embodiment.
  • the secondary resin layer 24 in the optical fiber 1A may not contain titanium particles, and may be formed by curing a resin composition containing urethane (meth)acrylate, a monomer, and a photopolymerization initiator, for example.
  • a conventionally known technique can be used for the resin composition for the secondary resin layer in this case.
  • the primary resin layer 22 can be formed, for example, by curing a resin composition containing urethane (meth)acrylate, a monomer, a photopolymerization initiator and a silane coupling agent.
  • a conventionally known technique can be used for the resin composition for the primary resin layer.
  • epoxy acrylate (EA) which is an acrylic acid adduct of bisphenol A diglycidyl ether
  • EA-modified di(meth)acrylate of bisphenol A shown in Table 1 were prepared.
  • titanium oxide particles surface-treated titanium oxide particles having a surface treatment layer containing aluminum oxide (Al 2 O 3 ) were prepared.
  • the average primary particle size of the surface-treated titanium oxide particles was 200 to 300 nm, and the amount of Al 2 O 3 calculated by ICP-MS measurement was 2.5% by mass.
  • Test Examples 1 to 10 correspond to Examples, and Test Examples 11 and 12 correspond to Comparative Examples.
  • the resin film is punched into a dumbbell shape of JIS K 7127 type 5, and under the conditions of 23 ⁇ 2 ° C and 50 ⁇ 10% RH, using a tensile tester at a tensile speed of 1 mm / min and a gauge line distance of 25 mm Tensile and stress-strain curves were obtained. Young's modulus was determined by the 2.5% secant line.
  • a resin layer having a thickness of 50 ⁇ 5 ⁇ m was formed on the PET film by the same operation as in the preparation of the resin film.
  • the resin layer was peeled off from the PET film to obtain a resin film.
  • the resin film was punched into a dumbbell shape of JIS Z 6251 Type 3, and pulled at a speed of 1 mm/min under the conditions of 23 ⁇ 2° C. and 50 ⁇ 10% RH using a material testing machine 5985 manufactured by INSTRON. .
  • the elongation at break was measured with a high-precision video extensometer AVE manufactured by INSTRON.
  • Resin composition for primary resin layer A urethane acrylate obtained by reacting polypropylene glycol having a molecular weight of 4000, isophorone diisocyanate, hydroxyethyl acrylate, and methanol was prepared. 75 parts by mass of this urethane acrylate, 12 parts by mass of nonylphenol EO-modified acrylate, 6 parts by mass of N-vinylcaprolactam, 2 parts by mass of 1,6-hexanediol diacrylate, 1 part by mass of Omnirad TPO, and 3-mercapto A resin composition P was prepared by mixing 1 part by mass of propyltrimethoxysilane.
  • Resin composition for secondary resin layer Polypropylene glycol having a molecular weight of 600, 40 parts by mass of urethane acrylate which is a reaction product of 2,4-tolylene diisocyanate and 2-hydroxyethyl acrylate, 35 parts by mass of isobornyl acrylate, and an acrylic acid adduct of bisphenol A diglycidyl ether Resin composition S was prepared by mixing 24 parts by mass of epoxy acrylate, 1 part by mass of Omnirad TPO, and 1 part by mass of Omnirad 184.
  • a primary resin layer having a thickness of 17.5 ⁇ m is formed using the resin composition P on the outer periphery of a glass fiber having a diameter of 125 ⁇ m composed of a core and a clad.
  • a resin layer was formed to produce an optical fiber.
  • the colored resin layer having a thickness of 5 ⁇ m was formed on the outer circumference of the secondary resin layer using the resin compositions of Test Examples 1 to 12 while feeding the optical fiber again with a coloring machine.
  • An optical fiber having a diameter of 200 ⁇ m and having a colored resin layer (hereinafter referred to as “colored optical fiber”) was produced.
  • the line speed for forming each resin layer was 1500 m/min.
  • the Young's modulus of the primary resin layer was measured by the Pullout Modulus (POM) method at 23°C.
  • Two locations of the optical fiber are fixed with two chuck devices, the coating resin layer (primary resin layer and secondary resin layer) portion between the two chuck devices is removed, one chuck device is fixed, and the other chuck device is removed.
  • the chucking device was gently moved in the opposite direction of the fixed chucking device.
  • L is the length of the portion sandwiched between the moving chuck devices in the optical fiber
  • Z is the movement amount of the chuck
  • Dp is the outer diameter of the primary resin layer
  • Df is the outer diameter of the glass fiber
  • Df is the Poisson's ratio of the primary resin layer.
  • the Young's modulus of the primary resin layer was obtained from the following formula, where n and the load during movement of the chuck device were W.
  • the Young's modulus of the primary resin layer was 0.2 MPa.
  • Young's modulus (MPa) ((1 + n) W / ⁇ LZ) ⁇ ln (Dp / Df)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

光ファイバ被覆用の樹脂組成物は、光重合性化合物と、光重合開始剤と、を含有し、光重合性化合物が、ビスフェノール骨格を有するエポキシジ(メタ)アクリレートと、ビスフェノール骨格を有するアルキレンオキサイド変性ジ(メタ)アクリレートを含み、エポキシジ(メタ)アクリレートの含有量に対するアルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比が、0.3以上8.0以下である。

Description

光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ
 本開示は、光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、および光ファイバに関する。
 本出願は、2021年10月26日出願の日本出願第2021-174345号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 一般に、光ファイバは、光伝送体であるガラスファイバを保護するための被覆樹脂層を有している。被覆樹脂層は、例えば、プライマリ樹脂層およびセカンダリ樹脂層を有している。被覆樹脂層の最外層は、光ファイバの識別のための着色樹脂層から構成される(例えば、特許文献1および2参照。)。
特開平6-242355号公報 国際公開第2016/047002号
 本開示の一態様に係る光ファイバ被覆用の樹脂組成物は、光重合性化合物と、光重合開始剤と、を含有し、光重合性化合物が、ビスフェノール骨格を有するエポキシジ(メタ)アクリレートと、ビスフェノール骨格を有するアルキレンオキサイド変性ジ(メタ)アクリレートを含み、エポキシジ(メタ)アクリレートの含有量に対するアルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比が、0.3以上8.0以下である。
図1は、本実施形態に係る光ファイバの一例を示す概略断面図である。 図2は、本実施形態に係る光ファイバの一例を示す概略断面図である。
[本開示が解決しようとする課題]
 ミネラルオイル等のオイルに光ファイバを浸漬する長期信頼性試験において、被覆樹脂層の靱性が低下し、光ファイバの伝送損失の増加を引き起こすことがある。本開示は、ミネラルオイル耐性に優れる樹脂層を形成できる樹脂組成物および光ファイバの着色被覆材料、ならびに伝送損失の増加を低減した光ファイバを提供することを目的とする。
[本開示の効果]
 本開示によれば、ミネラルオイル耐性に優れる樹脂層を形成できる樹脂組成物および光ファイバの着色被覆材料、ならびに伝送損失の増加を低減した光ファイバを提供することができる。
[本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
(1)本開示の一態様に係る光ファイバ被覆用の樹脂組成物は、光重合性化合物と、光重合開始剤と、を含有し、光重合性化合物が、ビスフェノール骨格を有するエポキシジ(メタ)アクリレートと、ビスフェノール骨格を有するアルキレンオキサイド変性ジ(メタ)アクリレートを含み、エポキシジ(メタ)アクリレートの含有量に対するアルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比が、0.3以上8.0以下である。
 このような樹脂組成物は、光重合性化合物として、一般に用いられるウレタン(メタ)アクリレートに代えて、特定の構造を有する(メタ)アクリレート化合物を用いることで、ミネラルオイル耐性に優れる樹脂層を形成することができる。
 (2)上記(1)において、樹脂層のヤング率を調整する観点から、アルキレンオキサイド変性ジ(メタ)アクリレートは、エチレンオキサイド鎖およびプロピレンオキサイド鎖からなる群より選ばれる少なくとも1種を有してもよい。
 (3)上記(1)または(2)において、樹脂層を着色する観点から、本実施形態に係る樹脂組成物は、酸化チタンを更に含有してもよい。
 (4)上記(3)において、樹脂組成物中の分散性を向上する観点から、酸化チタンは、表面処理酸化チタンであってもよい。
 (5)上記(1)から(4)のいずれかにおいて、光ファイバの伝送損失の増加をより低減する観点から、上記樹脂組成物を900mJ/cm以上1100mJ/cm以下の積算光量で硬化させた樹脂フィルムの破断伸びが23℃で7%以上50%以下であり、ヤング率が23℃で700MPa以上2000MPa以下であってもよい。
 (6)本開示の一態様に係る光ファイバの着色被覆材料は、上記(1)から(5)のいずれかに記載の樹脂組成物を含む。本実施形態に係る樹脂組成物を着色樹脂層に用いることで、光ファイバの伝送損失の増加を低減できる被覆樹脂層を形成することができる。
 (7)本開示の一態様に係る光ファイバは、コアおよびクラッドを含むガラスファイバと、ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、プライマリ樹脂層を被覆するセカンダリ樹脂層と、セカンダリ樹脂層を被覆する着色樹脂層と、を備え、着色樹脂層が、上記(1)から(5)のいずれかに記載の樹脂組成物の硬化物を含む。本実施形態に係る樹脂組成物を着色樹脂層に適用することで、光ファイバの伝送損失の増加を低減することができる。
 (8)本開示の一態様に係る光ファイバは、コアおよびクラッドを含むガラスファイバと、ガラスファイバに接して該ガラスファイバを被覆するプライマリ樹脂層と、プライマリ樹脂層を被覆するセカンダリ樹脂層と、を備え、セカンダリ樹脂層が、上記(1)から(5)のいずれかに記載の樹脂組成物の硬化物を含む。本実施形態に係る樹脂組成物をセカンダリ樹脂層に適用することで、光ファイバの伝送損失の増加を低減することができる。
[本開示の実施形態の詳細]
 本開示の実施形態に係る樹脂組成物および光ファイバの具体例を、必要により図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されず、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。以下の説明では、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本明細書における(メタ)アクリレートとは、アクリレートまたはそれに対応するメタクリレートを意味する。(メタ)アクリロイル等の他の類似表現についても同様である。
(樹脂組成物)
 本実施形態に係る樹脂組成物は、光重合性化合物と、光重合開始剤と、を含有し、光重合性化合物が、ビスフェノール骨格を有するエポキシジ(メタ)アクリレートと、ビスフェノール骨格を有するアルキレンオキサイド変性ジ(メタ)アクリレートを含み、エポキシジ(メタ)アクリレートの含有量に対するアルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比が、0.3以上8.0以下である。
 本実施形態に係るエポキシ(ジメタ)アクリレートとしては、ビスフェノール骨格を有するジグリシジルエーテル化合物と、(メタ)アクリル酸等の(メタ)アクリロイル基を有する化合物との反応物を用いることができる。
 エポキシジ(メタ)アクリレートとして、例えば、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物、ビスフェノールAFジグリシジルエーテルの(メタ)アクリル酸付加物、およびビスフェノールFジグリシジルエーテルの(メタ)アクリル酸付加物が挙げられる。
 樹脂層の強度を高める観点から、エポキシジ(メタ)アクリレートの含有量は、光重合性化合物の総量を基準として10質量%以上70質量%以下、20質量%以上60質量%以下、または30質量%以上50質量%以下であってもよい。
 本実施形態に係るアルキレンオキサイド変性ジ(メタ)アクリレートは、樹脂層のヤング率を調整する観点から、エチレンオキサイド(EO)鎖およびプロピレンオキサイド(PO)鎖からなる群より選ばれる少なくとも1種を有することが好ましい。エチレンオキサイド鎖を「(EO)n」、プロピレンオキサイド鎖を「(PO)n」と表すことができる。nは1以上の整数であり、2以上または3以上であってもよく、40以下、35以下、または30以下であってもよい。
 アルキレンオキサイド変性ジ(メタ)アクリレートとしては、例えば、ビスフェノールAのEO変性ジ(メタ)アクリレート、ビスフェノールAのPO変性ジ(メタ)アクリレート、ビスフェノールAのEO・PO変性ジ(メタ)アクリレートが挙げられる。
 エポキシジ(メタ)アクリレートの含有量に対するアルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比が、0.3以上8.0以下であることで、ミネラルオイル耐性に優れる樹脂層を形成することができる。ミネラルオイル耐性をより向上する観点から、エポキシジ(メタ)アクリレートの含有量に対するアルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比は、0.4以上、0.5以上、または1.0以上であってもよく、7.0以下、6.0以下、または5.0以下であってもよい。
 本実施形態に係る光重合性化合物は、ビスフェノール骨格を有するエポキシジ(メタ)アクリレートおよびビスフェノール骨格を有するアルキレンオキサイド変性ジ(メタ)アクリレート以外の光重合性化合物(以下、「モノマー」という。)を含むことができる。
 モノマーとしては、重合性基を1つ有する単官能モノマー、重合性基を2つ以上有する多官能モノマーを用いることができる。モノマーは、2種以上を混合して用いてもよい。
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、3-フェノキシベンジルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、4-tert-ブチルシクロヘキサノールアクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ノニルフェノールポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート等の(メタ)アクリレート系モノマー;(メタ)アクリル酸、(メタ)アクリル酸ダイマー、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトン(メタ)アクリレート等のカルボキシ基含有モノマー;N-(メタ)アクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N-(メタ)アクリロイルピペリジン、N-(メタ)アクリロイルピロリジン、3-(3-ピリジン)プロピル(メタ)アクリレート、環状トリメチロールプロパンホルマールアクリレート等の複素環含有モノマー;マレイミド、N-シクロへキシルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド等のアミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸アミノプロピル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸tert-ブチルアミノエチル等の(メタ)アクリル酸アミノアルキル系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマーが挙げられる。
 多官能モノマーとしては、例えば、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,14-テトラデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレート、1,20-エイコサンジオールジ(メタ)アクリレート、イソペンチルジオールジ(メタ)アクリレート、3-エチル-1,8-オクタンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールオクタントリ(メタ)アクリレート、トリメチロールプロパンポリエトキシトリ(メタ)アクリレート、トリメチロールプロパンポリプロポキシトリ(メタ)アクリレート、トリメチロールプロパンポリエトキシポリプロポキシトリ(メタ)アクリレート、トリス[(メタ)アクリロイルオキシエチル]イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールポリエトキシテトラ(メタ)アクリレート、ペンタエリスリトールポリプロポキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、およびカプロラクトン変性トリス[(メタ)アクリロイルオキシエチル]イソシアヌレートが挙げられる。
 光重合開始剤としては、公知のラジカル光重合開始剤の中から適宜選択して使用することができる。光重合開始剤として、例えば、1-ヒドロキシシクロヘキシルフェニルケトン(Omnirad 184、IGM Resins社製)、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オン(Omnirad 907、IGM Resins社製)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO、IGM Resins社製)、およびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(Omnirad 819、IGM Resins社製)が挙げられる。
 光重合開始剤の含有量は、光重合性化合物の総量を基準として、0.2質量%以上10質量%以下、0.4質量%以上8質量%以下、または0.6質量%以上6質量%以下であってもよい。すなわち、光重合開始剤の含有量は、光重合性化合物の総量100質量部に対して、0.2質量部以上10質量部以下、0.4質量部以上8質量部以下、または0.6質量部以上6質量部以下であってもよい。
 樹脂組成物は、シランカップリング剤、レベリング剤、消泡剤、酸化防止剤、増感剤等を更に含有してもよい。
 シランカップリング剤としては、樹脂組成物の硬化の妨げにならなければ、特に限定されない。シランカップリング剤として、例えば、テトラメチルシリケート、テトラエチルシリケート、メルカプトプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、3-アクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、ビス-[3-(トリエトキシシリル)プロピル]テトラスルフィド、ビス-[3-(トリエトキシシリル)プロピル]ジスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドが挙げられる。
 樹脂層を着色する観点から、本実施形態に係る樹脂組成物は、酸化チタン粒子を更に含有することができる。酸化チタン粒子としては、表面処理酸化チタン粒子を用いてもよい。表面処理酸化チタン粒子は、酸化チタンに無機物により表面処理が施された粒子であり、樹脂組成物中の分散性に優れている。
 表面処理に用いる無機物としては、例えば、酸化アルミニウム、二酸化ケイ素、および二酸化ジルコニウムが挙げられる。表面処理酸化チタン粒子が、酸化アルミニウム、二酸化ケイ素、および二酸化ジルコニウムからなる群より選ばれる少なくとも1種を含む表面処理層を有することで、分散性をより向上することができる。表面処理層は、酸化チタンの表面の少なくとも一部に形成されてよく、酸化チタンの全表面に形成されていてもよい。表面処理層は、酸化チタンの表面処理によって形成されたものである。
 表面処理酸化チタン粒子における表面処理層の量は、分散性を向上する観点から、1質量%以上、1.5質量%以上、または2質量%以上であってもよく、隠蔽力を高める観点から、10質量%以下、9質量%以下、または8質量%以下であってもよい。表面処理層の量は、誘導結合質量分析(ICP-MS)を用いて、表面処理酸化チタン粒子に含まれるチタン元素およびチタン以外の無機物の元素の量を測定することで算出することができる。
 表面処理酸化チタン粒子の平均一次粒径は、被覆樹脂層の側圧耐性をより向上する観点から、300nm以下、295nm以下、または290nm以下であってもよい。表面処理酸化チタン粒子の平均一次粒径は、隠蔽力を高める観点から、100nm以上、150nm以上、または200nm以上であってもよく、200nm以上300nm以下が好ましい。平均一次粒径は、例えば、電子顕微鏡写真の画像解析、光散乱法、BET法等によって測定することができる。
 表面処理酸化チタン粒子の含有量は、樹脂層の視認性を向上する観点から、樹脂組成物の総量を基準として0.6質量%以上、0.8質量%以上、1質量%以上、1.5質量%以上、2質量%以上、または3質量%以上であってもよい。表面処理酸化チタン粒子の含有量は、樹脂組成物の硬化性を高める観点から、樹脂組成物の総量を基準として25質量%未満、24質量%以下、20質量%以下、18質量%以下、または10質量%以下であってもよい。
 本実施形態に係る樹脂組成物を900mJ/cm以上1100mJ/cm以下の積算光量で硬化させた樹脂フィルムの破断伸びは、23℃で6%以上50%以下であると、靱性に優れる樹脂層を形成することできる。樹脂フィルムの破断伸びは、6.5%以上、7%以上、または10%以上であってもよく、45%以下、40%以下、または30%以下であってもよい。
 樹脂フィルムのヤング率が、23℃で700MPa以上2000MPa以下であると、靱性に優れる樹脂層を形成することできる。樹脂フィルムのヤング率は、750MPa以上、800MPa以上、または850MPa以上であってもよく、1950MPa以下、1900MPa以下、または1850MPa以下であってもよい。
 本実施形態に係る樹脂組成物は、光ファイバの着色被覆材料として好適に用いることができる。本実施形態に係る樹脂組成物を含む着色被覆材料を用いて被覆樹脂層の最外層を形成することで、光ファイバの伝送損失の増加を低減することができる。
(光ファイバ)
 図1は、一実施形態に係る光ファイバの構成を示す概略断面図である。図1に示されるように、本実施形態の光ファイバ1は、ガラスファイバ10と、ガラスファイバ10に接してガラスファイバ10の外周を覆う被覆樹脂層20とを備えている。
 ガラスファイバ10は、光ファイバ1に導入された光を伝送する導光性の光伝送体である。ガラスファイバ10は、ガラス製の部材であって、例えば、シリカ(SiO)ガラスを基材(主成分)として構成される。ガラスファイバ10は、コア12と、コア12を覆うクラッド14とを備えている。ガラスファイバ10は、光ファイバ1に導入された光を伝送する。コア12は、例えば、ガラスファイバ10の中心軸線を含む領域に設けられている。コア12は、例えば、純SiOガラス、または、SiOガラスにGeO、フッ素元素等が含まれたものからなっている。クラッド14は、コア12を囲む領域に設けられている。クラッド14は、コア12の屈折率より低い屈折率を有している。クラッド14は、例えば、純SiOガラス、またはフッ素元素が添加されたSiOガラスからなっている。ガラスファイバ10の外径は100μmから125μm程度であり、ガラスファイバ10を構成するコア12の直径は、7μmから15μm程度である。
 被覆樹脂層20は、クラッド14を覆う紫外線硬化型の樹脂層である。被覆樹脂層20は、ガラスファイバ10の外周を被覆するプライマリ樹脂層22と、プライマリ樹脂層22の外周を被覆するセカンダリ樹脂層24と、を備えている。プライマリ樹脂層22は、クラッド14の外周面に接しており、クラッド14の全体を被覆している。セカンダリ樹脂層24は、プライマリ樹脂層22の外周面に接しており、プライマリ樹脂層22の全体を被覆している。プライマリ樹脂層22の厚さは、例えば、10μm以上50μm以下である。セカンダリ樹脂層24の厚さは、例えば、10μm以上40μm以下である。
 本実施形態に係る樹脂組成物は、セカンダリ樹脂層24に適用することができる。セカンダリ樹脂層24は、上記樹脂組成物を硬化させて形成することができる。セカンダリ樹脂層24は、本実施形態に係る樹脂組成物の硬化物を含むことにより、大型ボビンから小型ボビンへと巻替作業を行う際に、セカンダリ樹脂層の表面に傷が発生して、樹脂層が破壊されることを防ぐことができる。
 被覆樹脂層20は、セカンダリ樹脂層24の外周を被覆する着色樹脂層26を更に備えていてもよい。図2は、一実施形態に係る光ファイバの構成を示す概略断面図である。図2に示されるように、本実施形態の光ファイバ1Aは、ガラスファイバ10と、ガラスファイバ10に接してガラスファイバ10の外周を覆う被覆樹脂層20とを備えている。被覆樹脂層20は、プライマリ樹脂層22と、セカンダリ樹脂層24と、着色樹脂層26とを備えている。着色樹脂層26の厚さは、例えば3μm以上10μm以下である。
 本実施形態に係る樹脂組成物は、着色樹脂層26に適用することができる。着色樹脂層26は、上記樹脂組成物を硬化させて形成することができる。着色樹脂層26は、本実施形態に係る樹脂組成物の硬化物を含むことにより、光ファイバの側圧特性を向上することができる。光ファイバ1Aにおけるセカンダリ樹脂層24は、チタン粒子を含まなくてよく、例えば、ウレタン(メタ)アクリレート、モノマー、および光重合開始剤を含む樹脂組成物を硬化させて形成することができる。この場合のセカンダリ樹脂層用の樹脂組成物は、従来公知の技術を用いることができる。
 プライマリ樹脂層22は、例えば、ウレタン(メタ)アクリレート、モノマー、光重合開始剤およびシランカップリング剤を含む樹脂組成物を硬化させて形成することができる。プライマリ樹脂層用の樹脂組成物は、従来公知の技術を用いることができる。
 以下、本開示に係る実施例および比較例を用いた評価試験の結果を示し、本開示を更に詳細に説明する。なお、本発明はこれら実施例に限定されない。
[着色樹脂層用の樹脂組成物]
 光重合性化合物として、ビスフェノールAジグリシジルエーテルのアクリル酸付加物であるエポキシアクリレート(EA)、および表1に示すビスフェノールAのEO変性ジ(メタ)アクリレートを準備した。
Figure JPOXMLDOC01-appb-T000001
 光重合開始剤として、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO)および1-ヒドロキシシクロヘキシルフェニルケトン(Omnirad 184)を準備した。
 酸化チタン粒子として、酸化アルミニウム(Al)を含む表面処理層を有する表面処理酸化チタン粒子を準備した。表面処理酸化チタン粒子の平均一次粒径は、200~300nmであり、ICP-MSの測定により算出されるAlの量は、2.5質量%であった。
 表2に示す配合量(質量部)の光重合性化合物および光重合開始剤を混合した後、樹脂組成物中の表面処理酸化チタン粒子の含有量が5質量%となるように混合して、樹脂組成物を調製した。試験例1~10が実施例に相当し、試験例11および12が比較例に相当する。
(ヤング率)
 スピンコータを用いて、樹脂組成物をポリエチレンテレフタレート(PET)フィルムの上に塗布した後、無電極UVランプシステム(ヘレウス製の「VPS600(Dバルブ)」)を用いて、1000±100mJ/cmの条件で硬化させ、PETフィルム上に厚み50±5μmの樹脂層を形成した。樹脂層をPETフィルムから剥がし、樹脂フィルムを得た。
 樹脂フィルムをJIS K 7127 タイプ5号のダンベル形状に打ち抜き、23±2℃、50±10%RHの条件下で、引張試験機を用いて1mm/分の引張速度、標線間25mmの条件で引張り、応力-歪み曲線を得た。2.5%割線によりヤング率を求めた。
(破断伸び)
 上記樹脂フィルムの作製と同様の操作で、PETフィルム上に厚み50±5μmの樹脂層を形成した。樹脂層をPETフィルムから剥がし、樹脂フィルムを得た。樹脂フィルムをJIS Z 6251 タイプ3号のダンベル形状に打ち抜き、23±2℃、50±10%RHの条件下で、INSTRON社製の材料試験機 5985型を用いて1mm/分の速度で引っ張った。INSTRON社製の高精度ビデオ伸び計AVEで破断伸びを測定した。
(プライマリ樹脂層用の樹脂組成物)
 分子量4000のポリプロピレングリコール、イソホロンジイソシアネート、ヒドロキシエチルアクリレート、およびメタノールを反応させることにより得られるウレタンアクリレートを準備した。このウレタンアクリレートを75質量部、ノニルフェノールEO変性アクリレートを12質量部、N-ビニルカプロラクタムを6質量部、1,6-ヘキサンジオールジアクリレートを2質量部、Omnirad TPOを1質量部、および3-メルカプトプロピルトリメトキシシランを1質量部混合して、樹脂組成物Pを調製した。
(セカンダリ樹脂層用の樹脂組成物)
 分子量600のポリプロピレングリコール、2,4-トリレンジイソシアネートおよび2-ヒドロキシエチルアクリレートの反応物であるウレタンアクリレートを40質量部、イソボルニルアクリレートを35質量部、ビスフェノールAジグリシジルエーテルのアクリル酸付加物であるエポキシアクリレートを24質量部、およびOmnirad TPOを1質量部、Omnirad 184を1質量部混合して、樹脂組成物Sを調製した。
[光ファイバの作製]
 コアおよびクラッドから構成される直径125μmのガラスファイバの外周に、樹脂組成物Pを用いて厚さ17.5μmのプライマリ樹脂層を形成し、更にその外周に樹脂組成物Sを用いて15μmのセカンダリ樹脂層を形成して、光ファイバを作製した。次いで、光ファイバを一旦巻き取った後に、着色機で光ファイバを改めて繰り出しながらセカンダリ樹脂層の外周に試験例1~12の樹脂組成物により、厚さ5μmの着色樹脂層を形成することで、着色樹脂層を有する直径200μmの光ファイバ(以下、「着色光ファイバ」という。)を作製した。各樹脂層を形成する際の線速は1500m/分とした。
(ヤング率)
 セカンダリ樹脂層のヤング率は、光ファイバを溶剤(エタノール:アセトン=3:7)に浸してガラスファイバを抜き取って得られるパイプ状の被覆樹脂層(長さ:50mm以上)を用いて23℃での引張試験(標線間距離:25mm)を行い、2.5%割線値から求めた。セカンダリ樹脂層のヤング率は、1100MPaであった。
 プライマリ樹脂層のヤング率は、23℃でのPullout Modulus(POM)法により測定した。光ファイバの2箇所を2つのチャック装置で固定し、2つのチャック装置の間の被覆樹脂層(プライマリ樹脂層およびセカンダリ樹脂層)部分を除去し、次いで、一方のチャック装置を固定し、他方のチャック装置を固定したチャック装置の反対方向に緩やかに移動させた。光ファイバにおける移動させるチャック装置に挟まれている部分の長さをL、チャックの移動量をZ、プライマリ樹脂層の外径をDp、ガラスファイバの外径をDf、プライマリ樹脂層のポアソン比をn、チャック装置の移動時の荷重をWとした場合、下記式からプライマリ樹脂層のヤング率を求めた。プライマリ樹脂層のヤング率は、0.2MPaであった。
 ヤング率(MPa)=((1+n)W/πLZ)×ln(Dp/Df)
(ミネラルオイル試験)
 着色光ファイバの1000m束を、85℃に加熱したミネラルオイルに30日間浸漬した後、1550nmの波長の光の伝送損失を、OTDR法により測定した。ミネラルオイルに浸漬前の伝送損失と浸漬後の伝送損失との差が0.04dB/km以下の場合を「A」、0.04dB/km超の場合を「B」と評価した。
Figure JPOXMLDOC01-appb-T000002
 1,1A 光ファイバ
 10 ガラスファイバ
 12 コア
 14 クラッド
 20 被覆樹脂層
 22 プライマリ樹脂層
 24 セカンダリ樹脂層
 26 着色樹脂層

Claims (8)

  1.  光重合性化合物と、光重合開始剤と、を含有し、
     前記光重合性化合物が、ビスフェノール骨格を有するエポキシジ(メタ)アクリレートと、ビスフェノール骨格を有するアルキレンオキサイド変性ジ(メタ)アクリレートを含み、前記エポキシジ(メタ)アクリレートの含有量に対する前記アルキレンオキサイド変性ジ(メタ)アクリレートの含有量の質量比が、0.3以上8.0以下である、光ファイバ被覆用の樹脂組成物。
  2.  前記アルキレンオキサイド変性ジ(メタ)アクリレートが、エチレンオキサイド鎖およびプロピレンオキサイド鎖からなる群より選ばれる少なくとも1種を有する、請求項1に記載の樹脂組成物。
  3.  酸化チタンを更に含有する、請求項1または請求項2に記載の樹脂組成物。
  4.  前記酸化チタンが、表面処理酸化チタンである、請求項3に記載の樹脂組成物。
  5.  前記樹脂組成物を900mJ/cm以上1100mJ/cm以下の積算光量で硬化させた樹脂フィルムの破断伸びが23℃で6%以上50%以下であり、ヤング率が23℃で700MPa以上2000MPa以下である、請求項1から請求項4のいずれか一項に記載の樹脂組成物。
  6.  請求項1から請求項5のいずれか一項に記載の樹脂組成物を含む、光ファイバの着色被覆材料。
  7.  コアおよびクラッドを含むガラスファイバと、
     前記ガラスファイバに接して前記ガラスファイバを被覆するプライマリ樹脂層と、
     前記プライマリ樹脂層を被覆するセカンダリ樹脂層と、
     前記セカンダリ樹脂層を被覆する着色樹脂層と、を備え、
     前記着色樹脂層が、請求項1から請求項5のいずれか一項に記載の樹脂組成物の硬化物を含む、光ファイバ。
  8.  コアおよびクラッドを含むガラスファイバと、
     前記ガラスファイバに接して前記ガラスファイバを被覆するプライマリ樹脂層と、
     前記プライマリ樹脂層を被覆するセカンダリ樹脂層と、を備え、
     前記セカンダリ樹脂層が、請求項1から請求項5のいずれか一項に記載の樹脂組成物の硬化物を含む、光ファイバ。
PCT/JP2022/037342 2021-10-26 2022-10-05 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ WO2023074295A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-174345 2021-10-26
JP2021174345 2021-10-26

Publications (1)

Publication Number Publication Date
WO2023074295A1 true WO2023074295A1 (ja) 2023-05-04

Family

ID=86159276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037342 WO2023074295A1 (ja) 2021-10-26 2022-10-05 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ

Country Status (2)

Country Link
TW (1) TW202328240A (ja)
WO (1) WO2023074295A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242355A (ja) 1993-02-17 1994-09-02 Sumitomo Electric Ind Ltd 被覆光ファイバ心線及び被覆光ファイバユニット
JP2012021055A (ja) * 2010-07-13 2012-02-02 Pilot Ink Co Ltd ボールペン用水性インキ組成物及びそれを内蔵したボールペン
JP2015182912A (ja) * 2014-03-24 2015-10-22 住友電気工業株式会社 光ファイバ
WO2016047002A1 (ja) 2014-09-26 2016-03-31 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線
JP2017095531A (ja) * 2015-11-18 2017-06-01 サカタインクス株式会社 光硬化型インクジェット印刷用インク組成物
WO2019064659A1 (ja) * 2017-09-26 2019-04-04 国立大学法人北海道大学 高靭性繊維複合エラストマー
WO2021145102A1 (ja) * 2020-01-14 2021-07-22 住友電気工業株式会社 樹脂組成物、光ファイバ及び光ファイバの製造方法
WO2021145103A1 (ja) * 2020-01-14 2021-07-22 住友電気工業株式会社 樹脂組成物、光ファイバ及び光ファイバの製造方法
WO2021145104A1 (ja) * 2020-01-14 2021-07-22 住友電気工業株式会社 樹脂組成物、光ファイバ及び光ファイバの製造方法
JP2021174345A (ja) 2020-04-28 2021-11-01 株式会社ファーストリテイリング スキャナー、スキャナーの制御方法、プログラム、および、スキャンシステム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242355A (ja) 1993-02-17 1994-09-02 Sumitomo Electric Ind Ltd 被覆光ファイバ心線及び被覆光ファイバユニット
JP2012021055A (ja) * 2010-07-13 2012-02-02 Pilot Ink Co Ltd ボールペン用水性インキ組成物及びそれを内蔵したボールペン
JP2015182912A (ja) * 2014-03-24 2015-10-22 住友電気工業株式会社 光ファイバ
WO2016047002A1 (ja) 2014-09-26 2016-03-31 住友電気工業株式会社 光ファイバ心線及び光ファイバテープ心線
JP2017095531A (ja) * 2015-11-18 2017-06-01 サカタインクス株式会社 光硬化型インクジェット印刷用インク組成物
WO2019064659A1 (ja) * 2017-09-26 2019-04-04 国立大学法人北海道大学 高靭性繊維複合エラストマー
WO2021145102A1 (ja) * 2020-01-14 2021-07-22 住友電気工業株式会社 樹脂組成物、光ファイバ及び光ファイバの製造方法
WO2021145103A1 (ja) * 2020-01-14 2021-07-22 住友電気工業株式会社 樹脂組成物、光ファイバ及び光ファイバの製造方法
WO2021145104A1 (ja) * 2020-01-14 2021-07-22 住友電気工業株式会社 樹脂組成物、光ファイバ及び光ファイバの製造方法
JP2021174345A (ja) 2020-04-28 2021-11-01 株式会社ファーストリテイリング スキャナー、スキャナーの制御方法、プログラム、および、スキャンシステム

Also Published As

Publication number Publication date
TW202328240A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
JP7327405B2 (ja) 光ファイバ
JP7255588B2 (ja) 樹脂組成物、光ファイバのセカンダリ被覆材料及び光ファイバ
US11919804B2 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for manufacturing optical fiber
JP7322874B2 (ja) 光ファイバ
JP7367698B2 (ja) 樹脂組成物及び光ファイバ
KR20200088904A (ko) 수지 조성물 및 광섬유
WO2020250838A1 (ja) 樹脂組成物、光ファイバ及び光ファイバの製造方法
WO2021019908A1 (ja) 光ファイバリボン及び光ファイバケーブル
WO2020255570A1 (ja) 光ファイバ
US20220041501A1 (en) Resin composition, secondary coating material for optical fiber, optical fiber, and method for producing optical fiber
JP7367697B2 (ja) 樹脂組成物、光ファイバ及び光ファイバの製造方法
JP7367696B2 (ja) 樹脂組成物、光ファイバ及び光ファイバの製造方法
KR20210129100A (ko) 광섬유 피복용의 수지 조성물
WO2023195295A1 (ja) 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、光ファイバ、及び光ファイバリボン
KR20210071002A (ko) 수지 조성물 및 광 파이버
WO2023074295A1 (ja) 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ
WO2020255835A1 (ja) 光ファイバ
WO2023195296A1 (ja) 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、光ファイバ、及び光ファイバリボン
WO2023074296A1 (ja) 光ファイバ被覆用の樹脂組成物、光ファイバの着色被覆材料、及び光ファイバ
WO2024043060A1 (ja) 光ファイバ着色被覆用の樹脂組成物、光ファイバ、及び光ファイバリボン
JP7135670B2 (ja) 光ファイバ及び紫外線硬化型樹脂組成物
WO2024043059A1 (ja) 光ファイバ着色被覆用の樹脂組成物、光ファイバ、及び光ファイバリボン
KR20210127958A (ko) 광섬유
WO2020255774A1 (ja) 樹脂組成物、光ファイバ及び光ファイバの製造方法
WO2022130855A1 (ja) 樹脂組成物、光ファイバのセカンダリ被覆材料、光ファイバ及び光ファイバの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023556256

Country of ref document: JP

Kind code of ref document: A