WO2023074152A1 - Base film for semiconductor manufacturing tape - Google Patents

Base film for semiconductor manufacturing tape Download PDF

Info

Publication number
WO2023074152A1
WO2023074152A1 PCT/JP2022/034036 JP2022034036W WO2023074152A1 WO 2023074152 A1 WO2023074152 A1 WO 2023074152A1 JP 2022034036 W JP2022034036 W JP 2022034036W WO 2023074152 A1 WO2023074152 A1 WO 2023074152A1
Authority
WO
WIPO (PCT)
Prior art keywords
base film
stress
elongation
density polyethylene
low
Prior art date
Application number
PCT/JP2022/034036
Other languages
French (fr)
Japanese (ja)
Inventor
享之 石本
陽介 味口
Original Assignee
タキロンシーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タキロンシーアイ株式会社 filed Critical タキロンシーアイ株式会社
Publication of WO2023074152A1 publication Critical patent/WO2023074152A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to a base film for semiconductor manufacturing tapes (hereinafter sometimes simply referred to as "base film”).
  • a wafer circuit in which a circuit is formed on a substantially disk-shaped semiconductor wafer is divided by dicing on a semiconductor manufacturing tape for wafers (dicing tape), and then divided into individual pieces.
  • dicing tape is widely used to obtain semiconductor devices of After dicing, for example, the dicing tape is stretched to form a gap between the semiconductor devices (that is, expanded), and then each semiconductor device is picked up by a robot or the like.
  • a dicing die attach film in which an adhesive layer is laminated on the adhesive layer of the dicing tape described above is used, and a wafer circuit is diced on the dicing die attach film. After splitting, the dicing die attach film is stretched to form a gap between the semiconductor devices, then the adhesive layer is photo-cured, and the semiconductor devices are peeled off from the adhesive layer and picked up while the adhesive layer is attached. be.
  • Dicing tapes and dicing die attach films are generally composed of an adhesive layer for fixing a wafer and a base film containing polyolefin or the like.
  • the base film contains propylene and/or 1-butene components.
  • a random copolymer of propylene and ethylene and/or an ⁇ -olefin having 4 to 8 carbon atoms wherein the content of ethylene and/or ⁇ -olefin having 4 to 8 carbon atoms is 6% by weight or more
  • the content of ethylene and / or ⁇ -olefin having 4 to 8 carbon atoms is less than that of the surface layer and the surface layer is composed of a high density propylene-based random copolymer ( ⁇ ) as a main component.
  • a substrate film has been proposed (see, for example, Patent Document 3).
  • JP-A-11-323273 Japanese Patent Application Laid-Open No. 2001-232683 JP 2018-65327 A
  • an object of the present invention is to provide a base film for a semiconductor manufacturing tape that is excellent in uniform stretchability, rigidity and processing stability.
  • a base film for a semiconductor manufacturing tape that is excellent in uniform extensibility, rigidity, and processing stability.
  • FIG. 5 is an MD SS curve (stress-strain curve) of the base film of Example 1.
  • FIG. 1 is an SS curve (stress-strain curve) of TD in the base film of Example 1.
  • the base film for semiconductor manufacturing tape of the present invention will be specifically described below.
  • the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
  • the base film of the present invention is a film formed of a polyolefin resin and contains a 1-butene homopolymer and a low-density polyethylene having a density of 0.93 g/cm 3 or less.
  • ⁇ Homopolymer of 1-butene> a homopolymer obtained by polymerizing 1-butene alone is used as polybutene.
  • This homopolymer of 1-butene has a high molecular weight and a bulky side chain. As in the case of , the uniform elongation of the base film can be improved.
  • the 1-butene homopolymer used in this embodiment can have a weight average molecular weight (Mw) of about 500,000 to 1,500,000.
  • the "weight-average molecular weight” mentioned above is calculated according to JIS K 7252-1:2016.
  • the 1-butene homopolymer used in the present invention has a high molecular weight, it has low surface tackiness and can be used as a surface layer. In the manufacturing process of the base film, it is possible to provide a base film having high rigidity that allows the base to be unwound.
  • the homopolymer of 1-butene used in the present invention has a high molecular weight, it can be molded with a general-purpose extruder. Adhesion to the transport roll when transporting the film can be suppressed, blocking when winding the base film, and draw resonance when forming the base film can be suppressed. The processing stability of the material film can be improved.
  • the density of low-density polyethylene is 0.930 g/cm 3 or less.
  • the density of the low-density polyethylene is 0.930 g/cm 3 or less, an excessive increase in crystallinity is suppressed and the flexibility is improved, so that the isotropy of the base film can be improved.
  • the density of the low-density polyethylene is higher than 0.930 g/cm 3 , the degree of crystallinity increases excessively, which may reduce the isotropy. The pick-up property of the device may deteriorate, and the semiconductor device may be damaged.
  • the density of the low-density polyethylene is preferably 0.860 g/cm 3 or more, more preferably 0.880 g/cm 3 or more.
  • linear low-density polyethylene has side chain branches in the linear structure of high-density polyethylene, the degree of crystallinity does not become too high compared to high-density polyethylene, and it has excellent flexibility.
  • linear low-density polyethylene produced using a metallocene catalyst or a Ziegler catalyst may be used.
  • melt mass flow rate (MFR) of linear low-density polyethylene is preferably 0.5 to 7.5 g/10 minutes, more preferably 1.0 to 6.0 g/10 minutes, and 2.0 ⁇ 5.0 g/10 minutes is more preferred.
  • MFR melt mass flow rate
  • the melt mass flow rate (MFR) of the linear low-density polyethylene is 0.5 g/10 minutes or more, the molecular weight is not too large, and flexibility and workability can be improved. This is because when the melt mass flow rate (MFR) of the density polyethylene is 7.5 g/10 minutes or less, the molecular weight is not too small and the processing stability can be improved.
  • the above melt mass flow rate can be obtained by measuring in accordance with JIS K7210:1999.
  • the flexibility and isotropy of the base film can be improved.
  • the ratio of stress (at 40% elongation) to stress (at 20% elongation) in the direction perpendicular to (hereinafter referred to as "TD") i.e., the elongation rate of the base film
  • TD machine axis (longitudinal) direction
  • the ratio of stress (at 40% elongation) to stress (at 20% elongation) in the direction perpendicular to (hereinafter referred to as "TD") i.e., the elongation rate of the base film
  • the elongation rate of the base film is 1 or more and 2 or less is preferred, 1.05 to 1.8 is more preferred, and 1.1 to 1.7 is even more preferred.
  • the elongation rate of the base film is greater than 2, it may become difficult to hold the expanding ring due to excessive stress increase, and if the elongation rate of the base film is less than 1,
  • the stress in MD and TD (at 25% elongation) is preferably 5 MPa or more and 20 MPa or less, more preferably 6 MPa or more and 15 MPa or less, and even more preferably 7 MPa or more and 13 MPa or less. If the stress in MD and TD is greater than 20 MPa, the rigidity becomes too large, and the pick-up property of the semiconductor device may deteriorate and the semiconductor device may be damaged. If the stress in MD and TD is less than 5 MPa. Since the rigidity is low, unwinding of the substrate becomes difficult in the production process of the substrate film, and the coatability of the pressure-sensitive adhesive may deteriorate.
  • the ratio of the stress in MD (at 25% elongation) to the stress in TD (at 25% elongation) is preferably 0.8 or more and 1.3 or less, more preferably 0.85 or more and 1.15 or less, and even more preferably 0.9 or more and 1.1 or less.
  • stress refers to stress measured in accordance with JIS K7161-2:2014.
  • the thickness of the base film is preferably 50-300 ⁇ m, more preferably 80-150 ⁇ m. If the thickness of the base film is 50 ⁇ m or more, the handleability can be improved, and if the thickness of the base film is 300 ⁇ m or less, the flexibility (expandability) can be improved. In the case of a substrate film for wafers, the thickness of the substrate film is preferably 50-150 ⁇ m, more preferably 70-100 ⁇ m.
  • the base film of the present invention is produced by using a resin material containing the above-mentioned 1-butene homopolymer and low-density polyethylene having a density of 0.93 g/cm 3 or less, for example, using an extruder equipped with a T-die. is manufactured by extruding and molding the resin material at a predetermined temperature.
  • the base film of the present invention may contain various additives.
  • additives known additives that are commonly used in semiconductor manufacturing tapes can be used. coloring agents and the like.
  • these additives may be used individually by 1 type, and may use 2 or more types together.
  • the cross-linking aid examples include triallyl isocyanurate and the like.
  • the content of the cross-linking aid in the base film is It is preferably 0.05 to 5 parts by mass, more preferably 1 to 3 parts by mass, based on 100 parts by mass of the resin.
  • LLDPE-1 linear low density polyethylene, melting point: 120° C., density: 0.913 g/cm 3 , MFR: 2.0 g/10 min
  • LLDPE-2 linear low density polyethylene, Melting point: 108°C, density: 0.921 g/cm 3 , MFR: 2.5 g/10 min
  • LLDPE-3 linear low density polyethylene, melting point: 93°C, density: 0.903 g/cm 3 , MFR: 2.0 g/10 min
  • LLDPE-4 linear low density polyethylene, melting point: 124° C., density: 0.936 g/cm 3 , MFR: 2.0 g/10 min
  • LLDPE-5 Linear low-density polyethylene, density: 0.923 g/cm 3 , MFR: 0.5 g/10 min (manufactured by Primpolymer, trade name: ULTZEX (registered trademark) 2005HC)
  • Example 1 ⁇ Preparation of base film> First, each material shown in Table 1 was blended to prepare a resin material of Example 1 having the composition (parts by mass) shown in Table 1. Next, this resin material is extruded with a T-die using a three-kind three-layer co-extruder under the conditions of a die temperature of 180 to 200 ° C. and a chill roll temperature of 40 ° C., thereby having the thickness shown in Table 1. A base film was obtained.
  • the MD and TD SS curves (stress-strain curves) of the base film of this example are shown in FIGS. As shown in FIGS. 1 and 2, in the MD and TD SS curves (stress-strain curves), it can be seen that there is no yield point during elongation from 0% to 100%. .
  • ⁇ Measurement of stress in MD and TD> Using the produced base film, a sample for measurement was obtained in accordance with JIS K7161-2:2014. Next, the obtained measurement sample is set in a tensile tester (manufactured by Shimadzu Corporation, product name: AG-5000A) so that the distance between the grips is 40 mm, and is set in accordance with JIS K7161-2: 2014. , a temperature of 23° C. and a relative humidity of 40%, and a tensile test was performed at a tensile speed of 300 mm/min.
  • a tensile tester manufactured by Shimadzu Corporation, product name: AG-5000A
  • the stress at 20% elongation (20% stress) and the stress at 40% elongation (40% stress) were measured, and the stress in MD (20%
  • the ratio of stress (at 40% elongation) to stress (at 40% elongation) in MD i.e., the elongation of the substrate film in MD
  • the ratio of stress (at 40% elongation) to stress (at 20% elongation) in TD was calculated. Table 1 shows the above results.
  • Processing stability was evaluated using the produced base film. More specifically, it is possible to suppress adhesion to the transport roll when transporting the base film, blocking when winding the base film, and draw resonance when forming the base film. The case where it is possible to prevent thickness fluctuation due to The case where the transport and winding of the substrate film was difficult, or the case where the variation in thickness due to draw resonance during molding of the substrate film was large was evaluated as x (poor processing stability of the substrate film). Table 1 shows the above results.
  • Examples 2-9, Comparative Examples 1-3 A base film having a thickness shown in Tables 1 and 2 was produced in the same manner as in Example 1 above, except that the composition of the resin component was changed to the composition (parts by mass) shown in Tables 1 and 2.
  • each material shown in Table 3 was blended to prepare a resin material for forming a surface layer and a resin material for forming an intermediate layer having the composition (parts by weight) shown in Table 3.
  • the resin material for forming the surface layer and the resin material for forming the intermediate layer are simultaneously extruded under conditions of 180 to 200°C and a chill roll temperature of 40°C.
  • the substrate has the thickness shown in Table 3 (that is, the ratio of the intermediate layer to the entire substrate film is 80%) and has a three-layer structure in which the surface layer/intermediate layer/surface layer are laminated in this order. A material film was obtained.
  • a 1-butene homopolymer and a low-density polyethylene having a density of 0.93 g/cm 3 or less are included, and the mass ratio of the 1-butene homopolymer to the low-density polyethylene is 1-
  • the density of the low-density polyethylene is greater than 0.93 g/cm 3 (0.936 g/cm 3 ), so the yield point is confirmed.
  • the ratio of stress (at 40% elongation) to stress (at 20% elongation) is less than 1, indicating poor uniform elongation.
  • the base film of Comparative Example 5 did not contain a 1-butene homopolymer, and the stress in TD (at 25% elongation) was less than 5 MPa. In the manufacturing process of the base film, unwinding of the base material becomes unstable and the rigidity is poor.
  • the base film of Comparative Example 6 did not contain a 1-butene homopolymer, and in MD and TD, the stress (40% Since the ratio of (during elongation) is less than 1, the yield point is confirmed and it can be seen that the uniform elongation is poor.
  • the stress in MD and TD (at 25% elongation) is less than 5 MPa, unwinding of the substrate becomes unstable in the manufacturing process of the substrate film, and the stiffness is poor.
  • the surface of the film is highly tacky, the base film sticks to the transport roll when the base film is transported, making it difficult to transport and wind the base film, resulting in poor processing stability. I understand.
  • the present invention is suitable for a base film for semiconductor manufacturing tapes.

Abstract

This base film for a semiconductor manufacturing tape contains a homopolymer of 1-butene and a low-density polyethylene having a density of at most 0.93 g/cm3, wherein the mass ratio of the homopolymer of 1-butene relative to the low-density polyethylene ([homopolymer of 1-butene] : [low-density polyethylene]) is 10:90-70:30.

Description

半導体製造テープ用基材フィルムBase film for semiconductor manufacturing tape
 本発明は、半導体製造テープ用基材フィルム(以下、単に「基材フィルム」という場合がある。)に関する。 The present invention relates to a base film for semiconductor manufacturing tapes (hereinafter sometimes simply referred to as "base film").
 ICチップ等の半導体デバイスの製造方法としては、例えば、略円板形状の半導体ウエハ上に回路が形成されたウエハ回路を、ウエハ用の半導体製造テープ(ダイシングテープ)上でダイシングにより分割し、個々の半導体デバイスを得る方法が広く用いられている。そして、ダイシング後は、例えば、ダイシングテープを引き延ばして半導体デバイス間に隙間を形成した(すなわち、エキスパンド)後、各半導体デバイスがロボット等でピックアップされる。 As a method of manufacturing a semiconductor device such as an IC chip, for example, a wafer circuit in which a circuit is formed on a substantially disk-shaped semiconductor wafer is divided by dicing on a semiconductor manufacturing tape for wafers (dicing tape), and then divided into individual pieces. is widely used to obtain semiconductor devices of After dicing, for example, the dicing tape is stretched to form a gap between the semiconductor devices (that is, expanded), and then each semiconductor device is picked up by a robot or the like.
 また、ウエハ用の半導体製造テープとして、上述のダイシングテープの粘着層上に接着層が積層されたダイシング・ダイアタッチフィルム(DDAF)が使用されており、ダイシング・ダイアタッチフィルム上でウエハ回路をダイシングにより分割後、ダイシング・ダイアタッチフィルムを引き延ばして半導体デバイス間に隙間を形成し、その後、粘着層を光硬化させて、接着層が接着された状態で半導体デバイスが粘着層から剥離されてピックアップされる。 In addition, as a semiconductor manufacturing tape for wafers, a dicing die attach film (DDAF) in which an adhesive layer is laminated on the adhesive layer of the dicing tape described above is used, and a wafer circuit is diced on the dicing die attach film. After splitting, the dicing die attach film is stretched to form a gap between the semiconductor devices, then the adhesive layer is photo-cured, and the semiconductor devices are peeled off from the adhesive layer and picked up while the adhesive layer is attached. be.
 ダイシングテープやダイシング・ダイアタッチフィルムは、一般に、ウエハを固定する粘着層とポリオレフィン等を含有する基材フィルムにより構成されており、例えば、基材フィルムが、プロピレン及び/又は1-ブテン成分の含有率が50重量%以上の非晶質ポリオレフィンを30~100重量%と、結晶性ポリプロピレン系樹脂を0~70重量%と、ポリエチレン系樹脂を0~70重量%含有するポリオレフィン層(中間層)と、当該ポリオレフィン層の両面に積層され、低密度ポリエチレンなどのポリエチレン系樹脂により形成されたポリエチレン系樹脂層(表面層)との積層体により構成された基材フィルムを備えたダイシングテープが提案されている(例えば、特許文献1参照)。 Dicing tapes and dicing die attach films are generally composed of an adhesive layer for fixing a wafer and a base film containing polyolefin or the like. For example, the base film contains propylene and/or 1-butene components. A polyolefin layer (intermediate layer) containing 30 to 100% by weight of amorphous polyolefin with a ratio of 50% by weight or more, 0 to 70% by weight of crystalline polypropylene resin, and 0 to 70% by weight of polyethylene resin , a dicing tape provided with a base film laminated on both sides of the polyolefin layer and composed of a laminate with a polyethylene-based resin layer (surface layer) formed of a polyethylene-based resin such as low-density polyethylene. (See Patent Document 1, for example).
 また、エチレン、プロピレン、1-ブテンからなる群から選ばれる少なくとも1成分を40質量%以上含有する非晶質ポリオレフィンを含む中間層と、当該中間層の両面に積層され、結晶性ポリエチレンを主成分とする表面層との積層体により構成された基材フィルムが提案されている(例えば、特許文献2参照)。 Further, an intermediate layer containing amorphous polyolefin containing 40% by mass or more of at least one component selected from the group consisting of ethylene, propylene, and 1-butene, and laminated on both sides of the intermediate layer, the main component being crystalline polyethylene. A substrate film composed of a laminate with a surface layer having
 また、プロピレンとエチレン及び/又は炭素数4~8のα-オレフィンとのランダム共重合体であって、エチレン及び/又は炭素数4~8のα-オレフィンの含有量が6重量%以上、ASTM D1505に準拠して測定される密度が885kg/m以下のプロピレン系ランダム共重合体(β)を主成分とする中間層と、当該中間層の両面に積層され、プロピレン系ランダム共重合体(β)より、エチレン及び/又は炭素数4~8のα-オレフィンの含有量が少なく、密度が高いプロピレン系ランダム共重合体(α)を主成分とする表面層との積層体により構成された基材フィルムが提案されている(例えば、特許文献3参照)。 Further, a random copolymer of propylene and ethylene and/or an α-olefin having 4 to 8 carbon atoms, wherein the content of ethylene and/or α-olefin having 4 to 8 carbon atoms is 6% by weight or more, ASTM An intermediate layer mainly composed of a propylene-based random copolymer (β) having a density of 885 kg/m 3 or less measured according to D1505, and a propylene-based random copolymer (β) laminated on both sides of the intermediate layer. β), the content of ethylene and / or α-olefin having 4 to 8 carbon atoms is less than that of the surface layer and the surface layer is composed of a high density propylene-based random copolymer (α) as a main component. A substrate film has been proposed (see, for example, Patent Document 3).
特開平11-323273号公報JP-A-11-323273 特開2001-232683号公報Japanese Patent Application Laid-Open No. 2001-232683 特開2018-65327号公報JP 2018-65327 A
 しかし、上記特許文献1に記載の基材フィルムにおいては、非晶性のブテンコポリマーに対して、結晶性のランダムポリプロピレンを同量以上添加しているため、基材フィルムを伸長する際にネッキングが発生し、基材フィルムの均一伸長性(均一なエキスパンド性)が不十分であるという問題があった。また、低粘度のブテンコポリマーを使用しているため、基材フィルムを成形する際のドローレゾナンスなどの吐出変動による厚みの変動が大きくなり、基材フィルムの加工安定性が不十分であるという問題があった。 However, in the base film described in Patent Document 1, since the same amount or more of crystalline random polypropylene is added to the amorphous butene copolymer, necking occurs when the base film is stretched. There was a problem that the uniform extensibility (uniform expandability) of the substrate film was insufficient. In addition, since a low-viscosity butene copolymer is used, variations in thickness due to ejection fluctuations such as draw resonance when molding the base film become large, and the processing stability of the base film is insufficient. was there.
 また、上記特許文献2に記載の基材フィルムにおいては、基材フィルムの剛性が不十分であるため、基材フィルムの製造工程において、基材の巻き出しが不安定となるという問題があった。 In addition, in the base film described in Patent Document 2, the rigidity of the base film is insufficient, so there is a problem that unwinding of the base becomes unstable in the manufacturing process of the base film. .
 また、上記特許文献3に記載の基材フィルムにおいては、非晶性ではなく半晶性の樹脂を用いているため、基材フィルムを成形する際にネッキングが発生し、基材フィルムの均一伸長性が不十分であるという問題があった。また、基材フィルムの剛性が不十分であるため、基材フィルムの製造工程において、基材の巻き出しが不安定となるという問題があった。また、基材フィルムの表面が高粘着性であるため、基材フィルムを搬送する際に基材フィルムが搬送ロールへ粘着して、基材フィルムの搬送と巻き取りが困難になるとともに、基材フィルムの巻き取りを行う際のブロッキングが発生し、加工安定性が不十分であるという問題があった。 In addition, in the base film described in Patent Document 3, since a semi-crystalline resin is used instead of an amorphous resin, necking occurs when the base film is molded, resulting in uniform elongation of the base film. There was a problem of insufficient sex. Moreover, since the rigidity of the base film is insufficient, there is a problem that unwinding of the base film becomes unstable in the manufacturing process of the base film. In addition, since the surface of the base film is highly adhesive, the base film sticks to the transfer roll when the base film is conveyed, making it difficult to convey and wind the base film. There was a problem that blocking occurred when the film was wound up, and processing stability was insufficient.
 そこで、本発明は、上記問題を鑑みてなされたものであり、均一伸長性と剛性と加工安定性に優れた半導体製造テープ用基材フィルムを提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a base film for a semiconductor manufacturing tape that is excellent in uniform stretchability, rigidity and processing stability.
 上記目的を達成するために、本発明の半導体製造テープ用基材フィルムは、1-ブテンのホモポリマーと、密度が0.93g/cm以下である低密度ポリエチレンを含み、1-ブテンのホモポリマーと低密度ポリエチレンとの質量比が、1-ブテンのホモポリマー:低密度ポリエチレン=10:90~70:30であることを特徴とする。 In order to achieve the above object, the present invention provides a base film for a semiconductor manufacturing tape containing a homopolymer of 1-butene and a low-density polyethylene having a density of 0.93 g/cm 3 or less. It is characterized in that the mass ratio of the polymer and the low-density polyethylene is 1-butene homopolymer:low-density polyethylene=10:90 to 70:30.
 本発明によれば、均一伸長性と剛性と加工安定性に優れた半導体製造テープ用基材フィルムを提供することが可能になる。 According to the present invention, it is possible to provide a base film for a semiconductor manufacturing tape that is excellent in uniform extensibility, rigidity, and processing stability.
実施例1の基材フィルムにおけるMDのS-Sカーブ(応力-歪曲線)である。5 is an MD SS curve (stress-strain curve) of the base film of Example 1. FIG. 実施例1の基材フィルムにおけるTDのS-Sカーブ(応力-歪曲線)である。1 is an SS curve (stress-strain curve) of TD in the base film of Example 1. FIG.
 以下、本発明の半導体製造テープ用基材フィルムについて具体的に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において、適宜変更して適用することができる。 The base film for semiconductor manufacturing tape of the present invention will be specifically described below. In addition, the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
 本発明の基材フィルムは、ポリオレフィン系樹脂により形成されたフィルムであり、1-ブテンのホモポリマーと、密度が0.93g/cm以下である低密度ポリエチレンを含んでいる。 The base film of the present invention is a film formed of a polyolefin resin and contains a 1-butene homopolymer and a low-density polyethylene having a density of 0.93 g/cm 3 or less.
 <1-ブテンのホモポリマー>
 本発明においては、ポリブテンとして、1-ブテンを単独で重合したホモポリマーが使用される。この1-ブテンのホモポリマーは、高分子量であって嵩高い側鎖を有しており、この嵩高い側鎖による強い分子間力により、結晶性高分子であるにも関わらず、非晶性の場合と同様に、基材フィルムの均一伸長性を向上させることができる。
<Homopolymer of 1-butene>
In the present invention, a homopolymer obtained by polymerizing 1-butene alone is used as polybutene. This homopolymer of 1-butene has a high molecular weight and a bulky side chain. As in the case of , the uniform elongation of the base film can be improved.
 また、本実施形態で使用する1-ブテンのホモポリマーは、重量平均分子量(Mw)が約50万~150万のものを使用することができる。 In addition, the 1-butene homopolymer used in this embodiment can have a weight average molecular weight (Mw) of about 500,000 to 1,500,000.
 なお、上記「重量平均分子量」とは、JIS K 7252-1:2016に準拠して算出されるものを言う。 The "weight-average molecular weight" mentioned above is calculated according to JIS K 7252-1:2016.
 そして、本発明で使用する1-ブテンのホモポリマーは高分子量であるため、表面粘着性が低く、表面層として使用することができ、また、非晶性ポリオレフィンに比し、剛性が高いため、基材フィルムの製造工程において、基材の巻き出しが可能な高い剛性を有する基材フィルムを提供することができる。 Since the 1-butene homopolymer used in the present invention has a high molecular weight, it has low surface tackiness and can be used as a surface layer. In the manufacturing process of the base film, it is possible to provide a base film having high rigidity that allows the base to be unwound.
 また、本発明で使用する1-ブテンのホモポリマーは、高分子量であるにも関わらず、汎用の押出機で成形が可能であり、高分子量成分によりフィルムの表面粘着性が低いため、基材フィルムを搬送する際の搬送ロールへの粘着を抑制することができるとともに、基材フィルムの巻き取りを行う際のブロッキング、及び基材フィルムを成形する際のドローレゾナンスを抑制することができ、基材フィルムの加工安定性を向上させることができる。 In addition, although the homopolymer of 1-butene used in the present invention has a high molecular weight, it can be molded with a general-purpose extruder. Adhesion to the transport roll when transporting the film can be suppressed, blocking when winding the base film, and draw resonance when forming the base film can be suppressed. The processing stability of the material film can be improved.
 以上より、基材フィルムを形成する樹脂として、1-ブテンのホモポリマーを使用することにより、基材フィルムの均一伸長性と剛性と加工安定性を向上させることができる。 As described above, by using a 1-butene homopolymer as the resin forming the base film, it is possible to improve the uniform extensibility, rigidity, and processing stability of the base film.
 <低密度ポリエチレン>
 本発明においては、低密度ポリエチレンの密度は、0.930g/cm以下である。低密度ポリエチレンの密度が0.930g/cm以下の場合は、結晶化度の過度な上昇を抑制して柔軟性が向上するため、基材フィルムの等方性を向上させることができる。なお、低密度ポリエチレンの密度が0.930g/cmよりも大きい場合は、結晶化度が過度に上昇するため、等方性が低下する場合があり、また、剛性が大きくなり過ぎるため、半導体デバイスのピックアップ性が低下し、半導体デバイスが破損する場合がある。
<Low density polyethylene>
In the present invention, the density of low-density polyethylene is 0.930 g/cm 3 or less. When the density of the low-density polyethylene is 0.930 g/cm 3 or less, an excessive increase in crystallinity is suppressed and the flexibility is improved, so that the isotropy of the base film can be improved. If the density of the low-density polyethylene is higher than 0.930 g/cm 3 , the degree of crystallinity increases excessively, which may reduce the isotropy. The pick-up property of the device may deteriorate, and the semiconductor device may be damaged.
 また、加工安定性を向上させるとの観点から、低密度ポリエチレンの密度は、0.860g/cm以上であることが好ましく、0.880g/cm以上であることがより好ましい。 From the viewpoint of improving processing stability, the density of the low-density polyethylene is preferably 0.860 g/cm 3 or more, more preferably 0.880 g/cm 3 or more.
 また、直鎖状低密度ポリエチレンは、高密度ポリエチレンの直鎖構造に側鎖分岐を有しているため、高密度ポリエチレンと比較して、結晶化度が高くなり過ぎず、柔軟性に優れている。 In addition, since linear low-density polyethylene has side chain branches in the linear structure of high-density polyethylene, the degree of crystallinity does not become too high compared to high-density polyethylene, and it has excellent flexibility. there is
 なお、強度の点から、メタロセン系触媒またはチグラー触媒を用いて製造された直鎖状低密度ポリエチレンを使用してもよい。 From the viewpoint of strength, linear low-density polyethylene produced using a metallocene catalyst or a Ziegler catalyst may be used.
 また、直鎖状低密度ポリエチレンのメルトマスフローレート(MFR)は、0.5~7.5g/10分であることが好ましく、1.0~6.0g/10分がより好ましく、2.0~5.0g/10分がさらに好ましい。直鎖状低密度ポリエチレンのメルトマスフローレート(MFR)が0.5g/10分以上の場合は、分子量が大き過ぎず、柔軟性と加工性を向上させることができるためであり、直鎖状低密度ポリエチレンのメルトマスフローレート(MFR)が7.5g/10分以下の場合は、分子量が小さ過ぎず、加工安定性を向上させることができるためである。 In addition, the melt mass flow rate (MFR) of linear low-density polyethylene is preferably 0.5 to 7.5 g/10 minutes, more preferably 1.0 to 6.0 g/10 minutes, and 2.0 ~5.0 g/10 minutes is more preferred. When the melt mass flow rate (MFR) of the linear low-density polyethylene is 0.5 g/10 minutes or more, the molecular weight is not too large, and flexibility and workability can be improved. This is because when the melt mass flow rate (MFR) of the density polyethylene is 7.5 g/10 minutes or less, the molecular weight is not too small and the processing stability can be improved.
 なお、上記のメルトマスフローレートは、JIS K7210:1999の規定に準拠して測定することで得られる。 The above melt mass flow rate can be obtained by measuring in accordance with JIS K7210:1999.
 以上より、基材フィルムを形成する樹脂として、密度が0.93g/cm以下である低密度ポリエチレンを使用することにより、基材フィルムの柔軟性と等方性を向上させることができる。 As described above, by using low-density polyethylene having a density of 0.93 g/cm 3 or less as the resin forming the base film, the flexibility and isotropy of the base film can be improved.
 <基材フィルム>
 本発明の基材フィルムにおける1-ブテンのホモポリマーと低密度ポリエチレンとの質量比は、1-ブテンのホモポリマー:低密度ポリエチレン=10:90~70:30の範囲である。そして、1-ブテンのホモポリマーと低密度ポリエチレンとの質量比を、この範囲に設定することにより、基材フィルムを成形する際のネッキングの発生を防止して、均一なエキスパンドが可能になるとともに、基材フィルムの製造工程において、基材の巻き出しが可能になる。さらに、基材フィルムの巻き取りを行う際のブロッキングの発生と、基材フィルムを成形する際のドローレゾナンスによる厚みの変動を防止することが可能になる。従って、均一伸長性と剛性と加工安定性に優れた基材フィルムを提供することが可能になる。
<Base film>
The mass ratio of the 1-butene homopolymer and the low-density polyethylene in the base film of the present invention is in the range of 1-butene homopolymer:low-density polyethylene=10:90 to 70:30. By setting the mass ratio of the 1-butene homopolymer to the low-density polyethylene within this range, necking during molding of the base film can be prevented and uniform expansion can be achieved. , the unwinding of the substrate becomes possible in the manufacturing process of the substrate film. Furthermore, it is possible to prevent the occurrence of blocking during winding of the base film and the variation in thickness due to draw resonance when forming the base film. Therefore, it is possible to provide a substrate film excellent in uniform extensibility, rigidity and processing stability.
 また、本発明の基材フィルムにおいては、基材フィルムの均一伸長性をより一層向上させるとの観点から、基材フィルムの機械軸(長手)方向(以下、「MD」という。)及び、これと直交する方向(以下、「TD」という。)において、応力(20%伸長時)に対する応力(40%伸長時)の比(すなわち、基材フィルムの伸び率)が、1以上2以下であることが好ましく、1.05以上1.8以下がより好ましく、1.1以上1.7以下がさらに好ましい。基材フィルムの伸び率が2よりも大きい場合は、過剰な応力増大に伴い、エキスパンドリングの保持が困難になる場合があり、基材フィルムの伸び率が1未満の場合は、ネッキングが発生して、均一なエキスパンドが困難になる場合がある。 In addition, in the base film of the present invention, from the viewpoint of further improving the uniform stretchability of the base film, the machine axis (longitudinal) direction (hereinafter referred to as “MD”) of the base film and The ratio of stress (at 40% elongation) to stress (at 20% elongation) in the direction perpendicular to (hereinafter referred to as "TD") (i.e., the elongation rate of the base film) is 1 or more and 2 or less is preferred, 1.05 to 1.8 is more preferred, and 1.1 to 1.7 is even more preferred. If the elongation rate of the base film is greater than 2, it may become difficult to hold the expanding ring due to excessive stress increase, and if the elongation rate of the base film is less than 1, necking may occur. uniform expansion may be difficult.
 また、MD、及びTDにおける応力(25%伸長時)が5MPa以上20MPa以下であることが好ましく、6MPa以上15MPa以下がより好ましく、7MPa以上13MPa以下がさらに好ましい。MD、及びTDにおける応力が20MPaよりも大きい場合は、剛性が大きくなり過ぎるため、半導体デバイスのピックアップ性が低下し、半導体デバイスが破損する場合があり、MD、及びTDにおける応力が5MPa未満の場合は、剛性が低くなるため、基材フィルムの製造工程において、基材の巻き出しが困難になるとともに、粘着剤の塗工性が低下する場合がある。 In addition, the stress in MD and TD (at 25% elongation) is preferably 5 MPa or more and 20 MPa or less, more preferably 6 MPa or more and 15 MPa or less, and even more preferably 7 MPa or more and 13 MPa or less. If the stress in MD and TD is greater than 20 MPa, the rigidity becomes too large, and the pick-up property of the semiconductor device may deteriorate and the semiconductor device may be damaged. If the stress in MD and TD is less than 5 MPa. Since the rigidity is low, unwinding of the substrate becomes difficult in the production process of the substrate film, and the coatability of the pressure-sensitive adhesive may deteriorate.
 また、エキスパンド時における基材フィルムの等方性により、弛みの発生を抑制するとの観点から、TDにおける応力(25%伸長時)に対するMDにおける応力(25%伸長時)の比(すなわち、25%伸長時における基材フィルムの応力比)が、0.8以上1.3以下であることが好ましく、0.85以上1.15以下がより好ましく、0.9以上1.1以下がさらに好ましい。 In addition, from the viewpoint of suppressing the occurrence of slack due to the isotropy of the base film during expansion, the ratio of the stress in MD (at 25% elongation) to the stress in TD (at 25% elongation) (i.e., 25% The stress ratio of the base film during stretching) is preferably 0.8 or more and 1.3 or less, more preferably 0.85 or more and 1.15 or less, and even more preferably 0.9 or more and 1.1 or less.
 なお、上記「応力」とは、JIS K7161-2:2014に準拠して測定される応力のことを言う。 The above "stress" refers to stress measured in accordance with JIS K7161-2:2014.
 基材フィルムの厚みは、50~300μmが好ましく、80~150μmがより好ましい。基材フィルムの厚みが50μm以上であれば、ハンドリング性が向上し、基材フィルムの厚みが300μm以下であれば、柔軟性(エキスパンド性)を向上させることができる。なお、ウエハ用の基材フィルムの場合は、基材フィルムの厚みが50~150μmが好ましく、70~100μmがより好ましい。 The thickness of the base film is preferably 50-300 μm, more preferably 80-150 μm. If the thickness of the base film is 50 μm or more, the handleability can be improved, and if the thickness of the base film is 300 μm or less, the flexibility (expandability) can be improved. In the case of a substrate film for wafers, the thickness of the substrate film is preferably 50-150 μm, more preferably 70-100 μm.
 <製造方法>
 本発明の基材フィルムは、上述の1-ブテンのホモポリマーと、密度が0.93g/cm以下である低密度ポリエチレンとを含有する樹脂材料を用いて、例えば、Tダイを備える押出機により、所定の温度で上記樹脂材料を押し出して成形することにより製造される。なお、公知のカレンダー法やインフレーション法により、本発明の基材フィルムを製造してもよい。
<Manufacturing method>
The base film of the present invention is produced by using a resin material containing the above-mentioned 1-butene homopolymer and low-density polyethylene having a density of 0.93 g/cm 3 or less, for example, using an extruder equipped with a T-die. is manufactured by extruding and molding the resin material at a predetermined temperature. In addition, you may manufacture the base film of this invention by a well-known calendering method or an inflation method.
 <他の形態>
 本発明の基材フィルムには、各種添加剤が含有されていてもよい。添加剤としては、半導体製造テープに通常用いられる公知の添加剤を用いることができ、例えば、架橋助剤、帯電防止剤、熱安定剤、酸化防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、着色剤等が挙げられる。なお、これらの添加剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
<Other forms>
The base film of the present invention may contain various additives. As additives, known additives that are commonly used in semiconductor manufacturing tapes can be used. coloring agents and the like. In addition, these additives may be used individually by 1 type, and may use 2 or more types together.
 また、架橋助剤としては、例えば、トリアリルイソシアヌレート等が挙げられ、基材フィルムが架橋助剤を含有する場合、基材フィルム中の架橋助剤の含有量は、基材フィルムを形成する樹脂100質量部に対して、0.05~5質量部が好ましく、1~3質量部がより好ましい。 Examples of the cross-linking aid include triallyl isocyanurate and the like. When the base film contains the cross-linking aid, the content of the cross-linking aid in the base film is It is preferably 0.05 to 5 parts by mass, more preferably 1 to 3 parts by mass, based on 100 parts by mass of the resin.
 以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。 The present invention will be described below based on examples. In addition, the present invention is not limited to these examples, and these examples can be modified and changed based on the spirit of the present invention, and they are excluded from the scope of the present invention. isn't it.
 基材フィルムの作製に使用した材料を以下に示す。
(1)LLDPE-1:直鎖状低密度ポリエチレン、融点:120℃、密度:0.913g/cm、MFR:2.0g/10分
(2)LLDPE-2:直鎖状低密度ポリエチレン、融点:108℃、密度:0.921g/cm、MFR:2.5g/10分
(3)LLDPE-3:直鎖状低密度ポリエチレン、融点:93℃、密度:0.903g/cm、MFR:2.0g/10分
(4)LLDPE-4:直鎖状低密度ポリエチレン、融点:124℃、密度:0.936g/cm、MFR:2.0g/10分
(5)LLDPE-5:直鎖状低密度ポリエチレン、密度:0.923g/cm、MFR:0.5g/10分(プリムポリマー社製、商品名:ウルトゼックス(登録商標) 2005HC)
(6)LDPE-1:低密度ポリエチレン、融点:108℃、密度:0.918g/cm、MFR:7.5g/10分(宇部丸善PE社製、商品名:UBEポリエチレン L719)
(7)LDPE-2:低密度ポリエチレン、融点:110℃、密度:0.922g/cm、MFR:5.0g/10分(宇部丸善PE社製、商品名:UBEポリエチレン F522N)
(8)PPエラストマー1:プロピレン系エラストマー、密度:0.889g/cm、MFR:8.0g/10分(230℃)、ポリエチレン含有率4%(エクソン社製、商品名:ビスタマックス(登録商標) 3588FL)
(9)PPエラストマー2:プロピレン系エラストマー、密度:0.862g/cm、MFR:3.0g/10分(230℃)、ポリエチレン含有率:16%(エクソン社製、商品名:ビスタマックス(登録商標) 6102FL)
(10)非晶質ポリオレフィン+結晶性ポリプロピレン(1-ブテン・プロピレン共重合体:結晶性ポリプロピレン=50:50):密度:0.880g/cm、MFR:11.7g/10分(大日精化社製、商品名:ペリコン CAP350S)
(11)1-Bu:1-ブテンのホモポリマー、融点:128℃、密度:0.920g/cm、MFR:0.5g/10分
Materials used to prepare the base film are shown below.
(1) LLDPE-1: linear low density polyethylene, melting point: 120° C., density: 0.913 g/cm 3 , MFR: 2.0 g/10 min (2) LLDPE-2: linear low density polyethylene, Melting point: 108°C, density: 0.921 g/cm 3 , MFR: 2.5 g/10 min (3) LLDPE-3: linear low density polyethylene, melting point: 93°C, density: 0.903 g/cm 3 , MFR: 2.0 g/10 min (4) LLDPE-4: linear low density polyethylene, melting point: 124° C., density: 0.936 g/cm 3 , MFR: 2.0 g/10 min (5) LLDPE-5 : Linear low-density polyethylene, density: 0.923 g/cm 3 , MFR: 0.5 g/10 min (manufactured by Primpolymer, trade name: ULTZEX (registered trademark) 2005HC)
(6) LDPE-1: low-density polyethylene, melting point: 108°C, density: 0.918 g/cm 3 , MFR: 7.5 g/10 min (manufactured by Ube Maruzen PE, trade name: UBE polyethylene L719)
(7) LDPE-2: low-density polyethylene, melting point: 110°C, density: 0.922 g/cm 3 , MFR: 5.0 g/10 min (manufactured by Ube Maruzen PE, trade name: UBE polyethylene F522N)
(8) PP elastomer 1: propylene elastomer, density: 0.889 g/cm 3 , MFR: 8.0 g/10 min (230°C), polyethylene content 4% (manufactured by Exxon, trade name: Vistamax (registered Trademark) 3588FL)
(9) PP elastomer 2: propylene elastomer, density: 0.862 g/cm 3 , MFR: 3.0 g/10 min (230°C), polyethylene content: 16% (manufactured by Exxon, trade name: Vistamax ( Registered Trademark) 6102FL)
(10) Amorphous polyolefin + crystalline polypropylene (1-butene/propylene copolymer: crystalline polypropylene = 50:50): density: 0.880 g/cm 3 , MFR: 11.7 g/10 min (Dainichisei Kasha, trade name: Pericon CAP350S)
(11) 1-Bu: homopolymer of 1-butene, melting point: 128° C., density: 0.920 g/cm 3 , MFR: 0.5 g/10 minutes
 (実施例1)
 <基材フィルムの作製>
 まず、表1に示す各材料をブレンドして、表1に示す組成(質量部)を有する実施例1の樹脂材料を用意した。次に、この樹脂材料を、三種三層の共押出機を用いて、Tダイスにより、ダイス温度が180~200℃、チルロール温度が40℃の条件で押出すことにより、表1の厚みを有する基材フィルムを得た。
(Example 1)
<Preparation of base film>
First, each material shown in Table 1 was blended to prepare a resin material of Example 1 having the composition (parts by mass) shown in Table 1. Next, this resin material is extruded with a T-die using a three-kind three-layer co-extruder under the conditions of a die temperature of 180 to 200 ° C. and a chill roll temperature of 40 ° C., thereby having the thickness shown in Table 1. A base film was obtained.
 <降伏点の有無の評価>
 作製した基材フィルムを用いて、JIS K7161-2:2014に準拠して、測定用のサンプルを得た。次に、得られた測定用サンプルを、つかみ具間が40mmとなるように引張試験機(島津製作所社製,商品名:AG-5000A)にセットし、JIS K7161-2:2014に準拠して、温度が23℃、相対湿度が40%の環境下において、300mm/分の引張速度で引張試験を行った。
<Evaluation of presence/absence of yield point>
Using the produced base film, a sample for measurement was obtained in accordance with JIS K7161-2:2014. Next, the obtained measurement sample is set in a tensile tester (manufactured by Shimadzu Corporation, product name: AG-5000A) so that the distance between the grips is 40 mm, and is set in accordance with JIS K7161-2: 2014. , a temperature of 23° C. and a relative humidity of 40%, and a tensile test was performed at a tensile speed of 300 mm/min.
 そして、MD,及びTDのS-Sカーブ(応力-歪曲線)において、伸長割合が0%から100%まで伸長する間に降伏点が確認されなかったもの(ネッキングが発生せず、均一なエキスパンドが可能なもの)を〇とし、降伏点が確認されたもの(ネッキングが発生し、均一なエキスパンドが不可能なもの)を×とした。以上の結果を表1に示す。 Then, in the SS curves (stress-strain curves) of MD and TD, those in which the yield point was not confirmed during elongation from 0% to 100% (uniform expansion without necking) The case where the yield point was confirmed (the case where necking occurred and uniform expansion was impossible) was given as x. Table 1 shows the above results.
 なお、本実施例の基材フィルムにおけるMD及びTDのS-Sカーブ(応力-歪曲線)を図1~図2に示す。図1~図2に示すように、MD、及びTDのS-Sカーブ(応力-歪曲線)において、伸長割合が0%から100%まで伸長する間に降伏点を有していないことが分かる。 The MD and TD SS curves (stress-strain curves) of the base film of this example are shown in FIGS. As shown in FIGS. 1 and 2, in the MD and TD SS curves (stress-strain curves), it can be seen that there is no yield point during elongation from 0% to 100%. .
 <MD、及びTDにおける応力の測定>
 作製した基材フィルムを用いて、JIS K7161-2:2014に準拠して、測定用のサンプルを得た。次に、得られた測定用サンプルを、つかみ具間が40mmとなるように引張試験機(島津製作所社製,商品名:AG-5000A)にセットし、JIS K7161-2:2014に準拠して、温度が23℃、相対湿度が40%の環境下において、引張速度300mm/分にて引張試験を行った。
<Measurement of stress in MD and TD>
Using the produced base film, a sample for measurement was obtained in accordance with JIS K7161-2:2014. Next, the obtained measurement sample is set in a tensile tester (manufactured by Shimadzu Corporation, product name: AG-5000A) so that the distance between the grips is 40 mm, and is set in accordance with JIS K7161-2: 2014. , a temperature of 23° C. and a relative humidity of 40%, and a tensile test was performed at a tensile speed of 300 mm/min.
 そして、基材フィルムのMD、及びTDにおける、25%伸長時の応力(25%応力)を測定するとともに、TDにおける応力(25%伸長時)に対するMDにおける応力(25%伸長時)の比(すなわち、25%伸長時における基材フィルムの応力比)を算出した。以上の結果を表1に示す。 Then, in the MD and TD of the base film, the stress at 25% elongation (25% stress) was measured, and the ratio of the stress in MD (at 25% elongation) to the stress in TD (at 25% elongation) ( That is, the stress ratio of the base film at 25% elongation) was calculated. Table 1 shows the above results.
 また、同様に、基材フィルムのMD、及びTDにおける、20%伸長時の応力(20%応力)と40%伸長時の応力(40%応力)を測定するとともに、MDにおける、応力(20%伸長時)に対する応力(40%伸長時)の比(すなわち、MDにおける基材フィルムの伸び率)と、TDにおける、応力(20%伸長時)に対する応力(40%伸長時)の比(すなわち、TDにおける基材フィルムの伸び率)を算出した。以上の結果を表1に示す。 Similarly, in the MD and TD of the base film, the stress at 20% elongation (20% stress) and the stress at 40% elongation (40% stress) were measured, and the stress in MD (20% The ratio of stress (at 40% elongation) to stress (at 40% elongation) in MD (i.e., the elongation of the substrate film in MD) and the ratio of stress (at 40% elongation) to stress (at 20% elongation) in TD (i.e., Elongation rate of the base film in TD) was calculated. Table 1 shows the above results.
 <剛性評価>
 作製した基材フィルムを用いて、剛性を評価した。より具体的には、基材フィルムの製造工程において、基材の巻き出しが可能な場合を〇(基材フィルムの剛性が優れている)とし、基材フィルムの製造工程において、基材の巻き出しが不安定な場合を×(基材フィルムの剛性が乏しい)とした。以上の結果を表1に示す。
<Rigidity evaluation>
Rigidity was evaluated using the produced base film. More specifically, in the manufacturing process of the base film, the case where the base material can be unwound is marked as ◯ (the rigidity of the base film is excellent), and the winding of the base material in the base film manufacturing process The case where the ejection was unstable was rated as x (poor rigidity of the base film). Table 1 shows the above results.
 <加工安定性評価>
 作製した基材フィルムを用いて、加工安定性を評価した。より具体的には、基材フィルムを搬送する際の搬送ロールへの粘着を抑制することができるとともに、基材フィルムの巻き取りを行う際のブロッキング、及び基材フィルムを成形する際のドローレゾナンスによる厚みの変動を防止することが可能な場合を〇(基材フィルムの加工安定性が優れている)とし、基材フィルムを搬送する際に基材フィルムが搬送ロールへ粘着し、基材フィルムの搬送と巻き取りが困難な場合、または基材フィルムを成形する際のドローレゾナンスによる厚みの変動が大きい場合を×(基材フィルムの加工安定性が乏しい)とした。以上の結果を表1に示す。
<Processing stability evaluation>
Processing stability was evaluated using the produced base film. More specifically, it is possible to suppress adhesion to the transport roll when transporting the base film, blocking when winding the base film, and draw resonance when forming the base film. The case where it is possible to prevent thickness fluctuation due to The case where the transport and winding of the substrate film was difficult, or the case where the variation in thickness due to draw resonance during molding of the substrate film was large was evaluated as x (poor processing stability of the substrate film). Table 1 shows the above results.
 (実施例2~9、比較例1~3)
 樹脂成分の組成を表1~2に示す組成(質量部)に変更したこと以外は、上述の実施例1と同様にして、表1~2に示す厚みを有する基材フィルムを作製した。
(Examples 2-9, Comparative Examples 1-3)
A base film having a thickness shown in Tables 1 and 2 was produced in the same manner as in Example 1 above, except that the composition of the resin component was changed to the composition (parts by mass) shown in Tables 1 and 2.
 そして、上述の実施例1と同様にして、降伏点の有無の評価、MD、及びTDにおける応力の測定、剛性評価、及び加工安定性評価を行った。以上の結果を表1~2に示す。 Then, in the same manner as in Example 1 described above, evaluation of the presence or absence of a yield point, measurement of stress in MD and TD, rigidity evaluation, and processing stability evaluation were performed. The above results are shown in Tables 1 and 2.
 (比較例4~6)
 まず、各比較例において、表3に示す各材料をブレンドして、表3に示す組成(質量部)を有する表面層形成用の樹脂材料と中間層形成用の樹脂材料とを用意した。
(Comparative Examples 4-6)
First, in each comparative example, each material shown in Table 3 was blended to prepare a resin material for forming a surface layer and a resin material for forming an intermediate layer having the composition (parts by weight) shown in Table 3.
 次に、Tダイを備える三種三層用の共押出機を用い、表面層形成用の樹脂材料および中間層形成用の樹脂材料を180~200℃、チルロール温度が40℃の条件で同時に押し出して成形することにより、表3の厚みを有する(すなわち、基材フィルム全体に対する中間層の比率が80%である)とともに、表面層/中間層/表面層の順に積層された3層構造を有する基材フィルムを得た。 Next, using a three-kind three-layer co-extruder equipped with a T-die, the resin material for forming the surface layer and the resin material for forming the intermediate layer are simultaneously extruded under conditions of 180 to 200°C and a chill roll temperature of 40°C. By molding, the substrate has the thickness shown in Table 3 (that is, the ratio of the intermediate layer to the entire substrate film is 80%) and has a three-layer structure in which the surface layer/intermediate layer/surface layer are laminated in this order. A material film was obtained.
 そして、上述の実施例1と同様にして、降伏点の有無の評価、MD、及びTDにおける応力の測定、剛性評価、及び加工安定性評価を行った。以上の結果を表3に示す。 Then, in the same manner as in Example 1 described above, evaluation of the presence or absence of a yield point, measurement of stress in MD and TD, rigidity evaluation, and processing stability evaluation were performed. Table 3 shows the above results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、1-ブテンのホモポリマーと、密度が0.93g/cm以下である低密度ポリエチレンを含み、1-ブテンのホモポリマーと低密度ポリエチレンとの質量比が、1-ブテンのホモポリマー:低密度ポリエチレン=10:90~70:30である実施例1~9の基材フィルムにおいては、降伏点が確認されておらず、均一伸長性に優れるとともに、剛性と加工安定性に優れていることが分かる。 As shown in Table 1, a 1-butene homopolymer and a low-density polyethylene having a density of 0.93 g/cm 3 or less are included, and the mass ratio of the 1-butene homopolymer to the low-density polyethylene is 1- In the substrate films of Examples 1 to 9 in which the homopolymer of butene:low density polyethylene = 10:90 to 70:30, no yield point was confirmed, excellent uniform elongation, rigidity and processing stability. It can be seen that it is superior in quality.
 一方、表2に示すように、比較例1の基材フィルムにおいては、1-ブテンのホモポリマーと低密度ポリエチレンとの質量比が、1-ブテンのホモポリマー:低密度ポリエチレン=80:20であり、1-ブテンホモポリマーの含有量が多いため、降伏点が確認されるとともに、TDにおいて、応力(20%伸長時)に対する応力(40%伸長時)の比が1未満であり、均一伸長性に乏しいことが分かる。 On the other hand, as shown in Table 2, in the base film of Comparative Example 1, the mass ratio of the 1-butene homopolymer and the low-density polyethylene was 1-butene homopolymer:low-density polyethylene=80:20. There is a high content of 1-butene homopolymer, so the yield point is confirmed, and in TD, the ratio of stress (at 40% elongation) to stress (at 20% elongation) is less than 1, uniform elongation I know it's sexless.
 また、表2に示すように、比較例2の基材フィルムにおいては、1-ブテンのホモポリマーが含まれていないため、降伏点が確認され、均一伸長性に乏しく、また、加工安定性も乏しいことが分かる。  In addition, as shown in Table 2, since the base film of Comparative Example 2 does not contain a 1-butene homopolymer, a yield point is confirmed, uniform elongation is poor, and processing stability is also poor. I know you are poor. 
 また、表2に示すように、比較例3の基材フィルムにおいては、低密度ポリエチレンの密度が0.93g/cmよりも大きい(0.936g/cmである)ため、降伏点が確認されるとともに、TDにおいて、応力(20%伸長時)に対する応力(40%伸長時)の比が1未満であり、均一伸長性に乏しいことが分かる。 In addition, as shown in Table 2, in the base film of Comparative Example 3, the density of the low-density polyethylene is greater than 0.93 g/cm 3 (0.936 g/cm 3 ), so the yield point is confirmed. In addition, in TD, the ratio of stress (at 40% elongation) to stress (at 20% elongation) is less than 1, indicating poor uniform elongation.
 また、表3に示すように、比較例4の基材フィルムにおいては、1-ブテンのホモポリマーが含まれていないため、降伏点が確認され、均一伸長性に乏しいことが分かる。また、TDにおける応力(25%伸長時)に対するMDにおける応力(25%伸長時)の比が1.3よりも大きいため、等方性に乏しいことが分かる。また、低粘度のブテンコポリマーを使用しているため、基材フィルムを成形する際にドローレゾナンスによる厚みの変動が大きくなり、加工安定性に乏しいことが分かる。 In addition, as shown in Table 3, since the base film of Comparative Example 4 does not contain a 1-butene homopolymer, a yield point was confirmed, indicating poor uniform elongation. Moreover, since the ratio of the stress in MD (at 25% elongation) to the stress in TD (at 25% elongation) is greater than 1.3, it can be seen that the isotropy is poor. In addition, since a low-viscosity butene copolymer is used, the variation in thickness due to draw resonance increases during molding of the base film, indicating poor processing stability.
 また、表3に示すように、比較例5の基材フィルムにおいては、1-ブテンのホモポリマーが含まれておらず、また、TDにおける応力(25%伸長時)が5MPa未満であるため、基材フィルムの製造工程において、基材の巻き出しが不安定となり、剛性に乏しいことが分かる。 Further, as shown in Table 3, the base film of Comparative Example 5 did not contain a 1-butene homopolymer, and the stress in TD (at 25% elongation) was less than 5 MPa. In the manufacturing process of the base film, unwinding of the base material becomes unstable and the rigidity is poor.
 また、表3に示すように、比較例6の基材フィルムにおいては、1-ブテンのホモポリマーが含まれておらず、MD、及びTDにおいて、応力(20%伸長時)に対する応力(40%伸長時)の比が1未満であるため、降伏点が確認され、均一伸長性に乏しいことが分かる。また、MD、及びTDにおける応力(25%伸長時)が5MPa未満であるため、基材フィルムの製造工程において、基材の巻き出しが不安定となり、剛性に乏しいことが分かる。また、フィルムの表面が高粘着性であるため、基材フィルムを搬送する際に基材フィルムが搬送ロールへ粘着し、基材フィルムの搬送と巻き取りが困難になり、加工安定性に乏しいことが分かる。 Further, as shown in Table 3, the base film of Comparative Example 6 did not contain a 1-butene homopolymer, and in MD and TD, the stress (40% Since the ratio of (during elongation) is less than 1, the yield point is confirmed and it can be seen that the uniform elongation is poor. In addition, since the stress in MD and TD (at 25% elongation) is less than 5 MPa, unwinding of the substrate becomes unstable in the manufacturing process of the substrate film, and the stiffness is poor. In addition, since the surface of the film is highly tacky, the base film sticks to the transport roll when the base film is transported, making it difficult to transport and wind the base film, resulting in poor processing stability. I understand.
 以上説明したように、本発明は、半導体製造テープ用基材フィルムに適している。
 
INDUSTRIAL APPLICABILITY As described above, the present invention is suitable for a base film for semiconductor manufacturing tapes.

Claims (4)

  1.  1-ブテンのホモポリマーと、
     密度が0.93g/cm以下である低密度ポリエチレンを含み、
     前記1-ブテンのホモポリマーと前記低密度ポリエチレンとの質量比が、1-ブテンのホモポリマー:低密度ポリエチレン=10:90~70:30であることを特徴とする半導体製造テープ用基材フィルム。
    a homopolymer of 1-butene;
    including low-density polyethylene having a density of 0.93 g/cm 3 or less;
    A base film for a semiconductor manufacturing tape, wherein the mass ratio of the 1-butene homopolymer and the low-density polyethylene is 1-butene homopolymer:low-density polyethylene=10:90 to 70:30. .
  2.  応力(20%伸長時)に対する応力(40%伸長時)の比が、1以上2以下であることを特徴とする請求項1に記載の半導体製造テープ用基材フィルム。 The base film for a semiconductor manufacturing tape according to claim 1, wherein the ratio of stress (at 40% elongation) to stress (at 20% elongation) is 1 or more and 2 or less.
  3.  応力(25%伸長時)が5MPa以上20MPa以下であることを特徴とする請求項1または請求項2に記載の半導体製造テープ用基材フィルム。 The base film for a semiconductor manufacturing tape according to claim 1 or 2, characterized in that the stress (at 25% elongation) is 5 MPa or more and 20 MPa or less.
  4.  TDにおける応力(25%伸長時)に対するMDにおける応力(25%伸長時)の比が、0.8以上1.3以下であることを特徴とする請求項1~請求項3のいずれか1項に記載の半導体製造テープ用基材フィルム。 Any one of claims 1 to 3, wherein the ratio of the stress in MD (at 25% elongation) to the stress in TD (at 25% elongation) is 0.8 or more and 1.3 or less. The base film for a semiconductor manufacturing tape according to .
PCT/JP2022/034036 2021-10-29 2022-09-12 Base film for semiconductor manufacturing tape WO2023074152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021177259A JP2023066585A (en) 2021-10-29 2021-10-29 Base film for semiconductor manufacturing tape
JP2021-177259 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023074152A1 true WO2023074152A1 (en) 2023-05-04

Family

ID=86157781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034036 WO2023074152A1 (en) 2021-10-29 2022-09-12 Base film for semiconductor manufacturing tape

Country Status (3)

Country Link
JP (1) JP2023066585A (en)
TW (1) TW202330661A (en)
WO (1) WO2023074152A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366772A (en) * 1989-08-05 1991-03-22 Furukawa Electric Co Ltd:The Radiation-curing adhesive tape
JP2012222002A (en) * 2011-04-04 2012-11-12 Nitto Denko Corp Dicing die-bonding film and semiconductor device manufacturing method
WO2017170436A1 (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Adhesive sheet for semiconductor processing
JP2019091903A (en) * 2014-03-17 2019-06-13 リンテック株式会社 Dicing sheet and chip manufacturing method using the same
WO2020031928A1 (en) * 2018-08-08 2020-02-13 三井・ダウポリケミカル株式会社 Resin composition for dicing film substrate, dicing film substrate, and dicing film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366772A (en) * 1989-08-05 1991-03-22 Furukawa Electric Co Ltd:The Radiation-curing adhesive tape
JP2012222002A (en) * 2011-04-04 2012-11-12 Nitto Denko Corp Dicing die-bonding film and semiconductor device manufacturing method
JP2019091903A (en) * 2014-03-17 2019-06-13 リンテック株式会社 Dicing sheet and chip manufacturing method using the same
WO2017170436A1 (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Adhesive sheet for semiconductor processing
WO2020031928A1 (en) * 2018-08-08 2020-02-13 三井・ダウポリケミカル株式会社 Resin composition for dicing film substrate, dicing film substrate, and dicing film

Also Published As

Publication number Publication date
TW202330661A (en) 2023-08-01
JP2023066585A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
EP3231604B1 (en) Elastic laminate, article containing same, stretched elastic laminate article, and article containing same
EP1243612A2 (en) Heat-seal films and method of manufacture
TWI823981B (en) Resin composition for dicing film base material, dicing film base material and dicing film
JP6253327B2 (en) Dicing substrate film
CN114868230A (en) Base material film for dicing tape
TWI665283B (en) Base film for dicing sheet and dicing sheet
JP6842879B2 (en) Polyolefin-based film with excellent uniform expandability and resilience
WO2023074152A1 (en) Base film for semiconductor manufacturing tape
WO2023074153A1 (en) Base film for semiconductor manufacturing tape
JP6928730B2 (en) Base film for dicing tape
JP6227494B2 (en) Base film used for adhesive film for semiconductor manufacturing process
US20170121570A1 (en) Base film for dicing sheets and dicing sheet
WO2024084864A1 (en) Base film for semiconductor manufacturing tape
WO2024084863A1 (en) Base film for semiconductor manufacturing tape
JP6354634B2 (en) Peelable laminated film
JP2008036844A (en) Multilayered polyolefinic heat-shrinkable film
JP7296805B2 (en) uniform extensible film
JP2016210898A (en) Substrate film used for adhesive film for semiconductive process
JP6187263B2 (en) Dicing tape base film and dicing tape
JP7245108B2 (en) Base film for dicing
US11707917B2 (en) Multilayer co-extruded films and article containing same
JP2016064654A (en) Biaxial oriented polypropylene film and surface protective film
JP2022093019A (en) Multilayer film, adhesive film, and adhesive film for semiconductor manufacturing process
CN116330787A (en) Packaging film
JP2019181793A (en) Packaging film and packaging member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22886486

Country of ref document: EP

Kind code of ref document: A1