WO2023072310A1 - 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 - Google Patents
一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 Download PDFInfo
- Publication number
- WO2023072310A1 WO2023072310A1 PCT/CN2022/140280 CN2022140280W WO2023072310A1 WO 2023072310 A1 WO2023072310 A1 WO 2023072310A1 CN 2022140280 W CN2022140280 W CN 2022140280W WO 2023072310 A1 WO2023072310 A1 WO 2023072310A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- strain
- waste
- leaching
- acidomyces
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 239000010949 copper Substances 0.000 title claims abstract description 79
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 79
- 239000002699 waste material Substances 0.000 title claims abstract description 57
- 238000002386 leaching Methods 0.000 title claims abstract description 48
- 241001365413 Acidomyces acidothermus Species 0.000 title claims abstract description 29
- 239000003344 environmental pollutant Substances 0.000 title claims abstract description 14
- 231100000719 pollutant Toxicity 0.000 title claims abstract description 14
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000001580 bacterial effect Effects 0.000 claims description 44
- 230000000813 microbial effect Effects 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000009629 microbiological culture Methods 0.000 claims description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 abstract description 26
- 229910001431 copper ion Inorganic materials 0.000 abstract description 26
- 230000002378 acidificating effect Effects 0.000 abstract description 13
- 239000010802 sludge Substances 0.000 abstract description 10
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 9
- 239000010865 sewage Substances 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 32
- 239000000843 powder Substances 0.000 description 24
- 239000002609 medium Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002351 wastewater Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000007865 diluting Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 239000002957 persistent organic pollutant Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FRXSZNDVFUDTIR-UHFFFAOYSA-N 6-methoxy-1,2,3,4-tetrahydroquinoline Chemical compound N1CCCC2=CC(OC)=CC=C21 FRXSZNDVFUDTIR-UHFFFAOYSA-N 0.000 description 2
- 241000186046 Actinomyces Species 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 241000607720 Serratia Species 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- 241000605118 Thiobacillus Species 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 241000605222 Acidithiobacillus ferrooxidans Species 0.000 description 1
- 241001023576 Acidomyces Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 1
- 108090000365 Cytochrome-c oxidases Proteins 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108091023242 Internal transcribed spacer Proteins 0.000 description 1
- 241000237852 Mollusca Species 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011942 biocatalyst Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 230000006799 invasive growth in response to glucose limitation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
- C02F3/347—Use of yeasts or fungi
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/145—Fungal isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0065—Leaching or slurrying
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/16—Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/645—Fungi ; Processes using fungi
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to an acidophilic Acidomyces acidothermus strain and its application in leaching copper-containing pollutants from waste circuit boards, and belongs to the technical field of biological leaching.
- Copper is an essential trace element for all living organisms as it is a major component of the respiratory enzyme complex cytochrome c oxidase. Copper is a component of the blood pigment hemocyanin in molluscs and crustaceans, which is replaced by iron-complexing hemoglobin in fish and other vertebrates. In humans, copper is found primarily in the liver, muscles and bones. The adult body contains 1.4 to 2.1 milligrams of copper per kilogram of body weight. When a large amount of heavy metal copper remains in the human body, it is easy to cause a burden on the organs in the body, especially the liver and gallbladder. When these two organs have problems, the metabolism that maintains the human body will be disturbed.
- Waste circuit boards contain a large amount of heavy metals, and if they are discarded without treatment, they will have a serious impact on the environment.
- the leaching of heavy metal copper mainly adopts water leaching, ammonia leaching, and acid leaching.
- Acid leaching is mainly divided into inorganic acid and organic acid leaching. The method of leaching heavy metals in sludge by inorganic acid leaching not only consumes a lot of acid, but also produces a lot of malodorous gas and foam, which affects the operating environment.
- the ammonia method can solve the high acid consumption problem of acid leaching and the production cost of the ammonia leaching method is lower, but the ammonia leaching process still has disadvantages such as ammonia is easy to volatilize, the requirements for the airtightness of the instrument are high, and there is a certain potential harm to the environment.
- the microbial leaching of copper is related to the leaching of heavy metal copper in ores by Thiobacillus ferrooxidans.
- the research on heavy metal copper in bioleaching ores is still in the exploratory stage, and further research on leaching efficiency is needed. efficient strains.
- the present invention extracts a strain of Acidomyces acidothermus from the sludge of Changzhou Sewage Treatment Plant, which can be used for leaching metallic copper and provides an effective biological treatment method for metallic copper.
- the first object of the present invention is to provide a strain of Acidomyces acidothermus, which has been preserved in the China Type Culture Collection Center on May 25, 2021, with the preservation number CCTCC No.22431, and the preservation address is China. Beijing. Chinese Academy of Sciences Microbiology graduate School.
- a second object of the present invention is to provide a product containing the strain Acidomyces acidothermus.
- the product includes, but is not limited to, a microbial agent, a sewage treatment agent, a biocatalyst, or an oxidant.
- the product is prepared from the strain Acidomyces acidothermus, or a product prepared from the fermentation broth of the strain Acidomyces acidothermus.
- the product also contains one or more of Pseudomonas, Bacillus, Streptococcus, Serratia, Thiobacillus, Actinomyces, and Aspergillus strain.
- a third object of the present invention is to provide a method for leaching copper by adding said bacterial strain Acidomyces acidothermus or said product to copper-containing systems, copper-containing pollutants and/or copper-containing wastes, Leach copper from pollutants or waste.
- the copper-containing pollutants include waste circuit boards, waste copper etching solutions, copper-containing sludge and/or copper-containing organic pollutants.
- the strain Acidomyces acidothermus is cultivated to a bacterial solution with an OD 600 of 0.1-1.5, and then reacted in an amount of 10-100 mL of bacterial solution per gram of pollutant, or added per gram of copper simple substance. React with 25-250mL of bacterial solution to leach copper from waste circuit boards.
- the strain Acidomyces acidothermus is cultured at a pH of 2.5-3.5, 140-180 rpm, and 30-35°C until the OD 600 is 0.4-1.5; preferably, the OD 600 is 0.8.
- the reaction is performed at 25-35° C. and 0-250 rpm; preferably, the reaction is performed at 140-180 rpm and 30-35° C. environment.
- the reaction time is not less than 1 hour; preferably, the reaction time is 1-8 hours.
- the fourth object of the present invention is to provide the application of the strain Acidomyces acidothermus or the product containing the strain Acidomyces acidothermus in the treatment of copper-containing pollutants or wastes containing copper.
- the copper-containing pollutants or copper-containing wastes include copper-containing wastewater from waste circuit boards, copper-containing powder, waste copper-etching liquid, copper-containing sludge and/or copper-containing organic pollutants.
- the present invention obtains a bacterial strain Acidomyces acidothermus from the sludge of Changzhou sewage treatment plant, and this bacterial strain can grow normally under acidic conditions, and it is added in the waste or pollutant containing heavy metal copper,
- the copper contained in the system can be leached in the form of copper ions, and the metal copper in waste or pollutants can be effectively treated.
- the treatment process is simple, with low requirements on the environment and technology, and the waste liquid obtained from the treatment does not contain high-concentration chemical reagents, which is convenient for subsequent treatment of the waste liquid.
- the strain provided by the present invention named Acidomyces acidothermus taxonomically, has been preserved in the General Microbiology Center of the China Microbiological Culture Collection Management Committee on May 25, 2021, with the preservation number CGMCC No.22431, and the preservation address is Beichen, Chaoyang District, Beijing No. 3, No. 1 West Road, Institute of Microbiology, Chinese Academy of Sciences.
- Figure 1 shows the colony morphology and cell morphology of Acidomyces acidothermus.
- Figure 2 is the electrophoresis image of Acidomyces acidothermus bacteria; A is the gel image of the product amplified using the ITS primer pair, and B is the gel image of the product amplified using the NS primer pair.
- LB liquid medium yeast powder 5g ⁇ L -1 , tryptone 10g ⁇ L -1 , sodium chloride 10g ⁇ L -1 , 1000mL distilled water.
- LB solid medium yeast powder 5g ⁇ L -1 , tryptone 10g ⁇ L -1 , sodium chloride 10g ⁇ L -1 , 1000mL distilled water, agar 20g.
- the acidic LB solid medium or acidic LB medium described in the following examples is prepared by adjusting the pH of the LB solid medium to 3.
- C concentration of copper ions
- A dilution factor
- V volume of bacterial solution
- m initial mass of copper in waste circuit board copper-containing wastewater.
- the initial mass of copper in the circuit board wastewater was determined to be 40% of the mass of the waste circuit board powder (1g of the waste circuit board powder contains 0.4g of copper).
- Sludge The term "sludge” was taken from Changzhou Sewage Treatment Plant, with a density of 0.027 g ⁇ mL -1 and a pH of 7.66.
- Copper-containing system copper exists in the form of simple substance in the system.
- Copper Containing Contaminants Includes high concentrations of organic pollutants produced during the printed circuit board process, which contain high concentrations of copper.
- Copper-containing waste including waste copper etching solution and copper-containing sludge in the circuit board production process.
- Waste circuit board powder comes from Changzhou sewage treatment plant. It is a powdery copper-containing substance obtained by crushing waste circuit boards through a crusher. The mass of copper is 40% of the total mass of the powder.
- Embodiment 1 the screening of bacterial strain
- step (2) Take the bacterial liquid in step (1) and inoculate it into a new 100mL LB liquid medium with an inoculum volume ratio of 5-10%, and cultivate it in an environment of 140-180rpm and 30-35°C for 4-6 days;
- step (3) Take the bacterial solution in step (2) and inoculate it into a new 100mL LB liquid medium with an inoculation amount of 5-10% by volume, and cultivate it in an environment of 140-180rpm and 30-35°C for 4-6 days;
- step (3) Take 5 ⁇ L of the bacterial solution in step (3) and add it to the sterilized LB liquid medium, culture it in a shaker at 140-180 rpm and 30-40°C for 4-6 days, and then suck 100 ⁇ L with a pipette tip Liquid, spread on acidic LB solid medium;
- Step (5) is repeated several times until a single strain is obtained in each acidic LB solid medium;
- Embodiment 2 the identification of bacterial strain
- Example 1 Get the bacterial solution obtained in Example 1, and observe the morphological characteristics of the bacterial strain using an optical microscope. The results are shown in Figure 1. The bacterial cell of the strain was fluffy, and the colonies were round and opaque.
- the primers and amplification system are as follows: the amplified bands were detected by electrophoresis. The electropherogram is shown in lane 3 in Figure 2 (the band size is around 950bp). The bands were sequenced, and the sequencing results were compared on BLAST. After comparison, the similarity between the amplified sequence and Acidomyces was 100%, and it was identified as Acidomyces acidothermus, and it was sent to the strain collection center for preservation.
- ITS1 TCCGTAGGTGAACCTGCGG (SEQ ID NO: 1),
- ITS4 TCCTCCGCTTATTGATATGC (SEQ ID NO: 2);
- NS1 GTAGTCATATGCTTGTCTC (SEQ ID NO: 3),
- NS6 GCATCACAGACCTGTTATTGCCTC (SEQ ID NO: 4).
- Embodiment 3 the application of Acidomyces acidothermus bacteria in leaching copper
- step (2) Take 20mL of the bacterial solution obtained in step (1), add 1g of waste circuit board powder to it, stir at a speed of 180r/min on a magnetic stirrer, draw a sample every 4h, and measure the copper in the sample ion concentration;
- step (3) After diluting the leaching solution in step (3) 250 times, utilize ICP to measure when adding 20mL bacterial liquid, the copper ion concentration in the bacterial liquid;
- Table 1 Adds 20mL Acidomyces acidothermus bacteria solution to the concentration of copper ions at different times
- Table 3 adds 40mL Acidomyces acidothermus bacteria solution to the concentration of copper ions at different times
- Table 4 adds 50mL Acidomyces acidothermus bacteria solution to the concentration of copper ions at different times
- Table 5 adds 100mL Acidomyces acidothermus bacteria solution to the concentration of copper ions at different times
- Embodiment 4 a kind of method of leaching copper
- Embodiment 5 Preparation contains the product of Acidomyces acidothermus
- the other bacterial powders are Pseudomonas, Bacillus, and Streptococcus , Serratia, Thiobacillus, Actinomyces, Aspergillus.
- Embodiment 6 leaching copper by acid leaching
- step (2) Absorb the liquid in step (1) for centrifugation, and filter the supernatant after taking the high-speed low-temperature centrifuge to obtain the required clear and transparent leachate.
- the step (3) measures the concentration of copper ions at 1 to 8 o'clock respectively.
- C concentration of copper ions
- A dilution factor
- V volume of sulfuric acid
- m initial mass of copper in 1 g of waste circuit board powder.
- Table 6 adds 20mL sulfuric acid to the concentration of copper ions at different times
- Table 7 adds 50mL sulfuric acid to the concentration of copper ions at different times
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Tropical Medicine & Parasitology (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mycology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Botany (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Treatment Of Sludge (AREA)
Abstract
本发明公开了一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用,属于生物浸出技术领域。本发明从常州污水处理厂的污泥中分离得到一株菌株Acidomyces acidothermus,该菌株可以在酸性条件下正常生长,将其添加至含有重金属铜的废弃物或污染物中,可以将体系中含有的铜以铜离子的形式浸出,有效处理废弃物或污染物中的金属铜。处理过程简单,对环境、工艺的要求低,处理得到的废液中不含有高浓度的化学试剂,便于后续对废液的处理,适用于工业化的应用。
Description
本发明涉及一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用,属于生物浸出技术领域。
铜是所有生物必需的微量元素,因为它是呼吸酶复合物细胞色素c氧化酶的主要组成部分。铜在软体动物和甲壳类动物中是血液色素血青苷的组成部分,由鱼类和其他脊椎动物中的铁络合血红蛋白所代替。在人类身上,铜主要存在于肝脏、肌肉和骨骼中。成人身体每公斤体重中含有1.4至2.1毫克铜。当人体内残存了大量的重金属铜之后,急易对身体内的脏器造成负担,特别是肝和胆,当这两种器官出现问题后,维持人体内的新陈代谢就会出现紊乱。
废电路板中含有大量的重金属,若不经处理直接丢弃会对环境造成严重的影响。目前,重金属铜的浸出主要采用水浸法、氨浸法、酸浸法。酸浸出法主要分为无机酸和有机酸浸出。采用无机酸浸提的方法浸出污泥中重金属,不但存在耗酸量大,而且有大量恶臭气体和泡沫产生,影响操作环境。氨法可以解决酸浸的高耗酸问题且氨浸出法生产成本较低,但氨浸出工艺仍存在氨易挥发、仪器密闭性要求高、对环境有一定的潜在危害等缺点。
目前微生物法浸出铜相关的有:氧化亚铁硫杆菌浸出矿石中重金属铜,但是目前对生物浸出矿石中重金属铜的研究还处于探索试验阶段,还需要进一步研究浸出效率,培养出能够适应工业化生产的高效菌种。
发明内容
目前在浸出重金属铜的领域,主要是采用化学方法处理含有铜的废弃物,这些方法成本较高、处理难度较大,处理后的废渣、废液还需要进一步对其中的高浓度化学物质进一步处理,若处理不当,会对环境产生不利的影响。
鉴于当前所存在的问题,本发明从常州污水处理厂的污泥中提取了一株Acidomyces acidothermus菌,该菌株可用于浸出金属铜,为处理金属铜提供一种有效的生物处理法。
本发明的第一个目的是提供一株菌株Acidomyces acidothermus,已于2021年5月25日保藏于中国典型培养物保藏中心,保藏编号为CCTCC No.22431,保藏地址为中国.北京.中国科学院微生物研究所。
本发明的第二个目的是提供一种产品,所述产品中含有菌株Acidomyces acidothermus。
在一种实施方式中,所述产品包括但不限于微生物制剂、污水处理剂、生物催化剂或氧 化剂。
在一种实施方式中,所述产品是由菌株Acidomyces acidothermus制备得到的,或是由菌株Acidomyces acidothermus的发酵液制备得到的产品。
在一种实施方式中,所述产品中还含有假单胞菌属、芽孢杆菌属、链球菌属、沙雷氏菌属、硫杆菌属、放线菌属、曲霉属中一种或多种菌株。
本发明的第三个目的是提供一种浸出铜的方法,所述方法是向含有铜的体系、含有铜的污染物和/或含铜废弃物中添加所述菌株Acidomyces acidothermus或所述产品,浸出污染物或废弃物中的铜。
在一种实施方式中,所述含有铜的污染物包括废电路板、废蚀铜液、含铜污泥和/或含铜有机污染物。
在一种实施方式中,将所述菌株Acidomyces acidothermus培养至OD
600为0.1~1.5的菌液,然后按照每克污染物中添加10~100mL菌液的量进行反应,或按照每克铜单质添加25~250mL菌液的量进行反应,浸出废电路板中的铜。
在一种实施方式中,将所述菌株Acidomyces acidothermus在pH为2.5~3.5、140~180rpm、30~35℃中培养至OD
600为0.4~1.5;优选的,OD
600为0.8。
在一种实施方式中,在25~35℃、0~250rpm的条件下反应;优选的,在140~180rpm、30~35℃环境中反应。
在一种实施方式中,反应时间不少于1h;优选的,反应时间为1~8h。
本发明的第四个目的是提供所述菌株Acidomyces acidothermus或所述含有所述菌株Acidomyces acidothermus的产品在处理含铜污染物或含铜废弃物中的应用。
在一种实施方式中,所述含铜污染物或含铜废弃物包括废电路板含铜废水、含铜粉末、废蚀铜液、含铜污泥和/或含铜有机污染物。
本发明的有益效果:本发明从常州污水处理厂的污泥中分离得到一株菌株Acidomyces acidothermus,该菌株可以在酸性条件下正常生长,将其添加至含有重金属铜的废弃物或污染物中,可以将体系中含有的铜以铜离子的形式浸出,有效处理废弃物或污染物中的金属铜。处理过程简单,对环境、工艺的要求低,处理得到的废液中不含有高浓度的化学试剂,便于后续对废液的处理。
生物材料保藏
本发明所提供菌株,分类学命名为Acidomyces acidothermus,已于2021年5月25日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.22431,保藏 地址为北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所。
图1为Acidomyces acidothermus菌落形态及细胞形态图。
图2为Acidomyces acidothermus菌电泳图;A为利用ITS引物对扩增得到的产物胶图,B为利用NS引物对扩增得到的产物胶图。
下述实施例中所涉及的培养基如下:
LB液体培养基:酵母粉5g·L
-1、胰蛋白胨10g·L
-1、氯化钠10g·L
-1、1000mL蒸馏水。
LB固体培养基:酵母粉5g·L
-1、胰蛋白胨10g·L
-1、氯化钠10g·L
-1、1000mL蒸馏水,琼脂20g。
下述实施例中所述的酸性LB固体培养基或酸性LB培养基为在配制时将LB固体培养基的pH调节为3。
下述实施例中所涉及的浸出率计算:
计算铜的浸出率:
浸出率=(C*A*V)/m。
C:铜离子的浓度;A:稀释倍数;V:菌液的体积;m:废电路板含铜废水中铜的初始质量。
利用分光光度法,测定电路板废水中铜的初始质量,为废电路板粉末质量的40%(1g废电路板粉末中含有0.4g铜)。
技术术语:
污泥:术语“污泥”取自常州污水处理厂,密度为0.027g·mL
-1,pH为7.66。
含有铜的体系:所述体系中铜以单质的形式存在。
含铜污染物:包括印制电路板过程中产生的高浓度有机污染物,其中含有高浓度的铜。
含铜废弃物:包括线路板生产过程中的废蚀铜液和含铜污泥。
废电路板粉末:术语“废电路板粉末”来自于常州污水处理厂,是废电路板通过破碎机破碎方式得到的粉末状含铜物质,铜的质量为粉末总质量的40%。
下面结合实施例对本发明作进一步的描述,但本发明的实施方式不限于此。
实施例1:菌株的筛选
(1)取从常州污水处理厂取得的密度为0.027g·mL
-1的污泥10mL放入90mL的LB液体培养基,于140~180rpm、30~35℃环境中培养4~6d;
(2)取步骤(1)中的菌液以体积比5~10%的接种量接种至新100mL LB液体培养基中于140~180rpm、30~35℃环境中培养4~6d;
(3)取步骤(2)中的菌液以体积比5~10%的接种量接种至新100mL LB液体培养基中于140~180rpm、30~35℃环境中培养4~6d;
(4)取步骤(3)中的菌液5μL加入到灭过菌的LB液体培养基中,在140~180rpm、30~40℃下的摇床中培养4~6d后,用枪头吸取100μL液体,涂布于酸性LB固体培养基上;
(5)将涂布有菌液的酸性LB固体培养基放在37℃的培养箱中培养1~2d,观察菌落的形态,在每个菌落上挑取少量菌种分别接种于酸性LB液体培养基中,培养4~6d后,将菌液涂布于酸性LB固体培养基上;
(6)将步骤(5)重复多次,直至每个酸性LB固体培养基中都获得单一的菌种;
(7)从长出单一菌种的培养基中挑取单菌种接种新100mL酸性LB液体培养基中于140~180rpm、30~35℃环境中培养4~6d,测量菌液的OD
600值达到0.8得到所需菌液。
实施例2:菌株的鉴定
(1)取实施例1得到的菌液,利用光学显微镜观菌株形态特征。结果如图1所示,菌株菌体呈绒状,菌落呈圆形、菌落不透明。
(2)将菌株送至上海生工生物工程股份有限公司利用16SrDNA方法进行菌种鉴定。
使用ITS、NS通用引物扩增后,引物及扩增体系如下:将扩增得到的条带进行电泳检测。电泳图如图2中泳道3所示(条带大小在950bp左右)。条带进行测序,将测序结果在BLAST上比对,经比对,扩增得到的序列与Acidomyces的相似性为100%,鉴定为Acidomyces acidothermus菌,并送至菌株保藏中心保藏。
①所用引物:
ITS1:TCCGTAGGTGAACCTGCGG(SEQ ID NO:1),
ITS4:TCCTCCGCTTATTGATATGC(SEQ ID NO:2);
NS1:GTAGTCATATGCTTGTCTC(SEQ ID NO:3),
NS6:GCATCACAGACCTGTTATTGCCTC(SEQ ID NO:4)。
②PCR扩增反应体系:
③PCR反应条件:
实施例3:Acidomyces acidothermus菌在浸出铜中的应用
添加不同量的菌液对铜浸出效果的影响
1、20mL菌液对浸出效果的影响
(1)将上述筛选到的菌株接种至酸性LB液体培养基中,在140~180rpm、30~35℃下培养,至菌液OD
600值为0.8;
(2)取步骤(1)中得到的菌液20mL,向其中加入1g废电路板粉末,在磁力搅拌器上以180r/min的速度搅拌,每隔4h吸取一次样品,并测定样品中的铜离子浓度;
(3)将样品液体进行离心操作,取高速低温离心机后的上清液过滤,得到需要的澄清透明浸出液;
(4)将步骤(3)中的浸出液稀释250倍后利用ICP测出加入20mL菌液时,菌液中的铜离子浓度;
(5)计算铜的浸出率,结果如表1所示,菌株对于废电路板中的铜离子有很好的浸出效果,在处理4h时,铜的浸出率可达到1.3161%。
表1加入20mL Acidomyces acidothermus菌液在不同时间下铜离子的浓度
2、30mL菌液对浸出效果的影响
按照上述步骤,在取菌液30mL,向其中加入1g废电路板粉末,在磁力搅拌器上以180r/min的速度搅拌,每隔4h吸取一次样品;将样品液体进行离心操作,取高速低温离心机后的上清液过滤,得到需要的澄清透明浸出液;将得到的浸出液稀释250倍后利用ICP测出废电路板含铜废水中铜离子的浓度。
结果如表2所示,提升了菌液的量之后,铜离子的浸出效果有显著的提升,废电路板中铜的浸出率达到了3.1693%及以上。
表2加入30mL Acidomyces acidothermus菌液在不同时间下铜离子的浓度
3、40mL菌液对浸出效果的影响
按照上述步骤,在取菌液40mL,向其中加入1g废电路板粉末,在磁力搅拌器上以180r/min的速度搅拌,每隔4h吸取一次样品;将样品液体进行离心操作,取高速低温离心机后的上清液过滤,得到需要的澄清透明浸出液;将得到的浸出液稀释250倍后利用ICP测出废电路板含铜废水中铜离子的浓度。
结果如表3所示,向1g的废电路板粉末中添加40mL的菌液后,培养一段时间,废电路板粉末中的铜离子浸出率进一步得到提升,铜离子浸出率可达到10.6877%。
表3加入40mL Acidomyces acidothermus菌液在不同时间下铜离子的浓度
4、50mL菌液对浸出效果的影响
按照上述步骤,在取菌液50mL,向其中加入1g废电路板粉末,在磁力搅拌器上以180r/min的速度搅拌,每隔4h吸取一次样品;将样品液体进行离心操作,取高速低温离心机后的上清液过滤,得到需要的澄清透明浸出液;将得到的浸出液稀释250倍后利用ICP测出废电路板含铜废水中铜离子的浓度。
结果如表4所示,向50mL废电路板粉末中加入1g废电路板粉末,反应1~8h,铜离子浸出率可达到5.7149%。
表4加入50mL Acidomyces acidothermus菌液在不同时间下铜离子的浓度
5、100mL菌液对浸出效果的影响
按照上述步骤,在取菌液100mL,向其中加入1g废电路板粉末,在磁力搅拌器上以180r/min的速度搅拌,每隔4h吸取一次样品;将样品液体进行离心操作,取高速低温离心机后的上清液过滤,得到需要的澄清透明浸出液;将得到的浸出液稀释250倍后利用ICP测出废电路板含铜废水中铜离子的浓度。
结果如表5所示,向100mL菌液中添加1g废电路板粉末,铜离子的浸出率可达达到18.535%。
表5加入100mL Acidomyces acidothermus菌液在不同时间下铜离子的浓度
实施例4:一种浸出铜的方法
将菌株接种至酸性LB培养基中,在140~180rpm、30~35℃下培养,至菌液OD
600值为0.8;取OD
600为0.8的菌液10~100mL向其中加入1g的废电路板粉末,在磁力搅拌器上以180r/min的速度搅拌0~8h,反应结束后,铜离子的浓度可在0.136~2671.936mg/L之间,铜离子浸出率可达18%。
实施例5:制备含有Acidomyces acidothermus的产品
取200~600μL的Acidomyces acidothermus接种于10~30mL酸性LB液体培养基中,30℃下活化2至3代,待Acidomyces acidothermus达到10
8cfu/mL以上活菌数时,8000rpm下离心15min,去除上清液后,取菌体,将菌体冷冻干燥后,可与其他的菌粉进行混合,制备得到混合菌剂,所述其他的菌粉为假单胞菌属、芽孢杆菌属、链球菌属、沙雷氏菌属、硫杆菌属、放线菌属、曲霉属。
实施例6:利用酸浸出法浸出铜
具体操作步骤:
(1)分别取硫酸20~50mL于1g废电路板粉末含铜废水中,在磁力搅拌器上以180r/min的速度搅拌。
(2)吸取步骤(1)中的液体进行离心操作,取高速低温离心机后的上清液过滤,得到需要的澄清透明浸出液。
(3)通过(2)中的浸出液利用ICP测出加入不同量硫酸时1g废电路板粉末含铜废水中铜离子的浓度。
(4)所述步骤(3)分别在1~8时测铜离子的浓度。
(5)计算铜的浸出率:
浸出率=(C*A*V)/m,
C:铜离子的浓度;A:稀释倍数;V:硫酸的体积;m:1g废电路板粉末中铜的初始质量。
表6加入20mL硫酸在不同时间下铜离子的浓度
表7加入50mL硫酸在不同时间下铜离子的浓度
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
Claims (7)
- 一株菌株Acidomyces acidothermus,已于2021年5月25日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.22431。
- 一种微生物制剂,其特征在于,所述微生物制剂中含有权利要求1所述菌株。
- 一种浸出铜的方法,其特征在于,向含有铜的体系中添加权利要求1所述菌株或权利要求2所述的微生物制剂,浸出体系中的铜;所述含有铜的体系为废电路板。
- 根据权利要求3所述的方法,其特征在于,将权利要求1所述菌株培养至OD 600为0.1~1.5的菌液,然后按照每克污染物中添加10~100mL菌液的量进行反应,或按照每克铜单质添加25~250mL菌液的量进行反应,浸出废电路板中的铜。
- 根据权利要求3或4所述的方法,其特征在于,在25~35℃、0~250rpm的条件下反应。
- 权利要求1所述菌株或权利要求2所述的微生物制剂在处理含铜废弃物中的应用。
- 根据权利要求6所述的应用,其特征在于,所述含铜废弃物为废电路板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/495,183 US20240060153A1 (en) | 2021-10-29 | 2023-10-26 | Acidomyces Acidothermus and Its Application in Leaching Copper-containing Pollutants from Waste Circuit Boards |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111268129.7A CN113801827B (zh) | 2021-10-29 | 2021-10-29 | 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 |
CN202111268129.7 | 2021-10-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/495,183 Continuation US20240060153A1 (en) | 2021-10-29 | 2023-10-26 | Acidomyces Acidothermus and Its Application in Leaching Copper-containing Pollutants from Waste Circuit Boards |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023072310A1 true WO2023072310A1 (zh) | 2023-05-04 |
WO2023072310A8 WO2023072310A8 (zh) | 2024-01-11 |
Family
ID=78898351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/140280 WO2023072310A1 (zh) | 2021-10-29 | 2022-12-20 | 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240060153A1 (zh) |
CN (1) | CN113801827B (zh) |
WO (1) | WO2023072310A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113801827B (zh) * | 2021-10-29 | 2022-10-11 | 江苏理工学院 | 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019119166A1 (es) * | 2017-12-19 | 2019-06-27 | Universidad De Antofagasta | Método para biolixiviar minerales sulfurados de cobre usando un consorcio de microorganismos que comprende bacterias ferrooxidantes y el hongo acidomyces acidophilus he17 en un medio inorgánico libre de sulfato ferroso y ph menor que 2, favoreciendo el crecimiento bacteriano y aumentando la extracción del metal desde el mineral |
CN111334435A (zh) * | 2020-01-22 | 2020-06-26 | 华南师范大学 | 一种具有生物诱导成矿作用的嗜酸真菌的分离与鉴定方法 |
CN113373068A (zh) * | 2021-07-28 | 2021-09-10 | 江苏理工学院 | 一株嗜酸烟曲霉菌浸出pta残渣中钴的方法 |
CN113801827A (zh) * | 2021-10-29 | 2021-12-17 | 江苏理工学院 | 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 |
-
2021
- 2021-10-29 CN CN202111268129.7A patent/CN113801827B/zh active Active
-
2022
- 2022-12-20 WO PCT/CN2022/140280 patent/WO2023072310A1/zh unknown
-
2023
- 2023-10-26 US US18/495,183 patent/US20240060153A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019119166A1 (es) * | 2017-12-19 | 2019-06-27 | Universidad De Antofagasta | Método para biolixiviar minerales sulfurados de cobre usando un consorcio de microorganismos que comprende bacterias ferrooxidantes y el hongo acidomyces acidophilus he17 en un medio inorgánico libre de sulfato ferroso y ph menor que 2, favoreciendo el crecimiento bacteriano y aumentando la extracción del metal desde el mineral |
CN111334435A (zh) * | 2020-01-22 | 2020-06-26 | 华南师范大学 | 一种具有生物诱导成矿作用的嗜酸真菌的分离与鉴定方法 |
CN113373068A (zh) * | 2021-07-28 | 2021-09-10 | 江苏理工学院 | 一株嗜酸烟曲霉菌浸出pta残渣中钴的方法 |
CN113801827A (zh) * | 2021-10-29 | 2021-12-17 | 江苏理工学院 | 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 |
Non-Patent Citations (2)
Title |
---|
HASSAN NOOR, RAFIQ MUHAMMAD, REHMAN MALIHA, SAJJAD WASIM, HASAN FARIHA, ABDULLAH SWAID: "Fungi in acidic fire: A potential source of industrially important enzymes", FUNGAL BIOLOGY REVIEWS, vol. 33, no. 1, 1 January 2019 (2019-01-01), GB , pages 58 - 71, XP093060760, ISSN: 1749-4613, DOI: 10.1016/j.fbr.2018.08.002 * |
STEPNIEWSKA HANNA; UZAROWICZ LUKASZ; BIONSKA EWA; KWASOWSKI WOJCIECH; SLODCZYK ZUZANNA; GALKA DARIA; HEBDA ANNA: "Fungal abundance and diversity as influenced by properties of Technosols developed from mine wastes containing iron sulphides: A case study from abandoned iron sulphide and uranium mine in Rudki, south-central Poland", APPLIED SOIL ECOLOGY, vol. 145, 14 September 2019 (2019-09-14), NL , XP085886411, ISSN: 0929-1393, DOI: 10.1016/j.apsoil.2019.08.011 * |
Also Published As
Publication number | Publication date |
---|---|
US20240060153A1 (en) | 2024-02-22 |
CN113801827A (zh) | 2021-12-17 |
WO2023072310A8 (zh) | 2024-01-11 |
CN113801827B (zh) | 2022-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023072310A1 (zh) | 一株嗜酸Acidomyces acidothermus菌及其在浸出废电路板含铜污染物中的应用 | |
CN106190871A (zh) | 一种以秸秆为碳源的复合丝状真菌生物沥浸处理重金属污染土壤的方法 | |
CN107619806B (zh) | 一株吸附铅且耐受重金属的细菌及其应用 | |
CN109321500B (zh) | 一株解淀粉芽孢杆菌菌株及其在防治油茶炭疽病害中的应用 | |
CN103667131B (zh) | 一种提高金属矿石浸取率的方法及其专用菌株 | |
WO2017035856A1 (zh) | 嗜硒微生物Wautersiella enshiensis YLX-1及其应用 | |
CN111378592B (zh) | 地衣芽孢杆菌及该菌处理恶臭有机废水净化水体的方法 | |
CN115305226B (zh) | 一株降解烟碱并产氢的抗辐射不动杆菌zj-22及其应用 | |
CN105670965B (zh) | 一种具有铁还原能力的菌种及其应用 | |
CN109439586A (zh) | 一种嗜酸铁氧化微生物、菌剂及其用途 | |
CN103540519B (zh) | 一种双层平板及其制备方法 | |
CN113373068A (zh) | 一株嗜酸烟曲霉菌浸出pta残渣中钴的方法 | |
CN111378596B (zh) | 一株耐酸且兼性厌氧的锰氧化细菌及其应用 | |
CN111378597B (zh) | 一株可用于脱锰的锰氧化细菌及其应用 | |
CN113881582A (zh) | 一株去除重金属离子的红酵母mf4、菌剂及其应用 | |
CN113862163A (zh) | 具有除重金属离子作用的青霉、菌剂及其应用 | |
CN102399720B (zh) | 一种海洋硫氧化食烷菌菌株hgms16及其应用 | |
CN107090422B (zh) | 一种含可溶性二硫化钼的微生物菌剂及其应用 | |
CN102399721B (zh) | 一种海洋硫氧化盐硫杆菌菌株hmgs18及其应用 | |
CN114874922B (zh) | 一株嗜酸耐金属菌浸出环境污染物中金属的方法 | |
CN115975881B (zh) | 硒挥发无色杆菌r39及其应用 | |
CN110484475A (zh) | 一株好热黄无氧芽孢菌及其应用 | |
CN108841742A (zh) | 一种耐盐碱芽孢杆菌属菌株zh-1及其制备方法和应用 | |
CN113980829B (zh) | 变黄假单胞菌、其培养方法及其培养物、处理剂以及修复方法 | |
CN107022505A (zh) | 一种用于重金属铜离子去除的柠檬酸杆菌及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22886185 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |