WO2023072051A1 - 一种锂离子电池的充电方法、装置、介质和车辆 - Google Patents

一种锂离子电池的充电方法、装置、介质和车辆 Download PDF

Info

Publication number
WO2023072051A1
WO2023072051A1 PCT/CN2022/127312 CN2022127312W WO2023072051A1 WO 2023072051 A1 WO2023072051 A1 WO 2023072051A1 CN 2022127312 W CN2022127312 W CN 2022127312W WO 2023072051 A1 WO2023072051 A1 WO 2023072051A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current
lithium
ion battery
voltage value
Prior art date
Application number
PCT/CN2022/127312
Other languages
English (en)
French (fr)
Inventor
胡景博
王丹
孙焕丽
翟喜民
赵光宇
闫晟睿
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023072051A1 publication Critical patent/WO2023072051A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present application relate to battery charging technologies, for example, to a lithium ion battery charging method, device, medium, and vehicle.
  • the charging method mainly adopted for electric vehicles is that the charging current decreases continuously as the battery voltage increases or the SOC (State of Charge, state of charge) increases.
  • the present application provides a lithium-ion battery charging method, device, medium and vehicle, so as to realize reasonable multi-layer stepwise charging according to different states of the battery, and prevent the battery from overheating and the precipitation of lithium ions.
  • the embodiment of the present application provides a charging method for a lithium-ion battery, including:
  • the real-time charging voltage value reaches the current step voltage value, determine the next step current value associated with the next step voltage value; wherein, the current step voltage value is the same as the current step voltage value Current ladder current value association;
  • next step current value as a new current step current value
  • next step voltage value as a new current step voltage value
  • the embodiment of the present application also provides a charging device for a lithium-ion battery, including:
  • the charging strategy formulation module is configured to determine the target ladder charging strategy adopted by the lithium-ion battery
  • the voltage detection module is configured to detect the real-time charging voltage value of the lithium-ion battery during the charging process of the lithium-ion battery by using the current ladder current value;
  • the current determination module is configured to determine the next step current value associated with the next step voltage value when the real-time charging voltage value reaches the current step voltage value based on the target step charging strategy; wherein, the current step voltage value is associated with the current step current value;
  • the charging module is configured to use the next step current value as a new current step current value and the next step voltage value as a new current step voltage value to continue charging the lithium-ion battery.
  • the embodiment of the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the computer executes the instructions, the computer executes the computer according to any embodiment of the present application.
  • a charging method for a lithium ion battery is provided.
  • the embodiment of the present application also provides a vehicle, including a lithium-ion battery, a memory, a processor, a bus, and a communication interface; the memory is used to store computer-executable instructions, and the processor and the memory pass through the the bus connection;
  • the processor executes the computer-implemented instructions stored in the memory, so that the vehicle executes the lithium-ion battery charging method described in any embodiment of the present application.
  • FIG. 1A is a flowchart of a charging method for a lithium-ion battery in Embodiment 1 of the present application;
  • FIG. 1B is a schematic diagram of a stepped charging strategy in Embodiment 1 of the present application.
  • FIG. 2A is a flowchart of a charging method for a lithium-ion battery in Embodiment 2 of the present application
  • FIG. 2B is a schematic diagram of the first relationship between the state of charge of a battery and the DC impedance of the battery provided in Embodiment 2 of the present application;
  • FIG. 3 is a charging device for a lithium-ion battery in Embodiment 3 of the present application.
  • Fig. 4 is a schematic structural diagram of a vehicle provided in Embodiment 5 of the present application.
  • Figure 1A is a flow chart of a charging method for a lithium-ion battery provided in Embodiment 1 of the present application.
  • the embodiment of the present application is applicable to charging a lithium-ion battery of an electric vehicle, and the method can be composed of a lithium-ion battery charging device to perform.
  • Fig. 1A comprise the following steps:
  • Step 110 determining the target step charging strategy adopted by the lithium-ion battery.
  • Lithium-ion batteries are composed of positive and negative electrodes, a diaphragm, an electrolyte, and a casing.
  • the positive and negative electrodes are immersed in the electrolyte, and lithium ions move between the positive and negative electrodes with the electrolyte as the medium to realize the charge and discharge of the battery.
  • the charging system can determine its own step charging strategy according to the charging requirements and charging characteristics of the lithium-ion battery.
  • the curve relationship determines the relationship between its own step current and the preset step voltage as a step charging strategy.
  • Fig. 1B is a schematic diagram of a step charging strategy provided by Embodiment 1 of the present application. Referring to Fig.
  • each step voltage is associated with a step current.
  • the step current can increase or decrease, and the magnitude of the current change can be different.
  • Step 120 during the process of charging the lithium-ion battery with the current ladder current value, detect the real-time charging voltage value of the lithium-ion battery.
  • the current step current value of the lithium-ion battery during the charging process can be determined according to the actual charging voltage value of the lithium-ion battery.
  • the i-th step voltage is the current ladder voltage value
  • the ladder current associated with the i-th ladder voltage is the current ladder current value.
  • Step 130 Based on the target step charging strategy, when the real-time charging voltage value reaches the current step voltage value, determine the next step current value associated with the next step voltage value; wherein, the current step voltage value Associated with the current ladder current value.
  • the system will determine the charging current value corresponding to the next step voltage value according to the step charging strategy.
  • the detected real-time charging voltage value reaches the current step voltage value, for example, the ith step voltage is reached, the i+1 step voltage is the next step voltage value, and the i+1 step voltage associated The i+1th step current is used as the next step current value.
  • Step 140 using the next step current value as a new current step current value and the next step voltage value as a new current step voltage value, and continue charging the lithium-ion battery.
  • the next ladder current value is used as the new current ladder current value
  • the next ladder voltage value is used as the new current ladder voltage value to continue charging the lithium-ion battery, and the current During the charging process of the lithium-ion battery by the ladder current value, the real-time charging voltage value of the lithium-ion battery is detected.
  • the ladder charging strategy established in the embodiment of the present application is determined according to the charging demand and charging characteristics of the lithium-ion battery. According to the charging demand and characteristics of the battery, an adaptive charging strategy is selected to effectively control the lithium-ion battery during the charging process. Problems, alleviate the heating of the battery and the precipitation of lithium ions.
  • a target step charging strategy is first determined according to the charging requirements and characteristics of the battery. For example, in an actual charging operation, a concept corresponding to a step voltage value and a step current value in a step charging scheme is defined, such as when the battery is charged When the voltage reaches V n , the current I n+1 should be used for charging.
  • the embodiment of the present application uses the mapping relationship between the step voltage value and the step current value during the charging process as a step charging strategy, and according to this strategy, real-time monitoring of charging voltage changes while adaptive Changing the ladder current for charging can effectively control the heating problem of the battery during charging, and at the same time prevent lithium precipitation caused by excessive current, thereby ensuring the service efficiency and life of the battery.
  • Fig. 2A is a flowchart of a charging method for a lithium-ion battery provided in Embodiment 2 of the present application.
  • the embodiment of the present application is applicable to charging a lithium-ion battery of an electric vehicle, and the method can be performed by a lithium-ion battery.
  • charging device to perform including the following steps:
  • Step 210 Determine at least two candidate step charging strategies according to the charging demand model of the lithium-ion battery.
  • the charging demand model can be determined according to the battery characteristics of the lithium-ion battery, and can also be determined by integrating the heat production of the lithium-ion battery and the precipitation of lithium ions.
  • the candidate stage charging strategy associated with the working temperature can be determined according to the heat production of the lithium-ion battery, the precipitation of lithium ions, and the battery characteristics of the lithium-ion battery at the working temperature.
  • a step-up charging current can be adopted according to the step-down characteristic of the DCR, and the mapping relationship between the DCR and the charging current is a charging demand model.
  • the candidate step charging strategy is the alternative step charging scheme. Therefore, according to the mathematical model about battery characteristics obtained through derivation and calculation, at least two stepwise charging schemes are selected as alternatives.
  • the determining at least two candidate ladder charging strategies according to the charging demand model of the lithium-ion battery includes:
  • the second relationship determines the relationship between the step current value and the step voltage value in the candidate step charging strategy. relationship between.
  • the corresponding relationship between the battery SOC and DCR is determined, which can be expressed as a functional form of the SOC-DCR relationship.
  • the lithium ion current refers to the maximum charging current that the battery can accept during the charging process. Exceeding this current value during charging will lead to the precipitation of lithium ions inside the battery. According to the charging demand model of the lithium-ion battery, determine the corresponding relationship between the SOC of the battery and the lithium analysis current, which can be expressed as a functional form of the SOC-I relationship.
  • the correlation between the step current value and the step voltage value in the candidate step charging strategy can be understood as the mapping between the step current value and the step voltage value, that is, each step voltage value has one and only one step current value with it correspond.
  • the mapping relationship between the DC impedance DCR and the voltage U can be obtained, and the relationship between the step voltage and the step current can be calculated by combining the SOC-I relationship and the heat generation relationship.
  • the establishment of the charging demand model is not only determined according to the charging demand and characteristics of the lithium-ion battery, but also can be determined by integrating the heat production of the lithium-ion battery and the precipitation of lithium ions.
  • the magnitude of the current during the charging process is controlled in stages to achieve the purpose of protecting the battery.
  • Step 220 detecting the actual temperature value of the lithium-ion battery, and selecting a target step charging strategy from the at least two candidate step charging strategies according to the actual temperature value.
  • Each candidate step charging strategy is associated with a specific operating temperature value.
  • the system detects the current actual temperature of the lithium-ion battery, and matches the actual temperature with the temperature values associated with all candidate step charging strategies. When the match is successful, the The successfully matched candidate ladder charging strategy is used as the target ladder charging strategy.
  • Step 230 during the process of charging the lithium-ion battery with the current ladder current value, detect the real-time charging voltage value of the lithium-ion battery.
  • Step 240 Based on the target step charging strategy, when the real-time charging voltage value reaches the current step voltage value, determine the next step current value associated with the next step voltage value; wherein, the current step voltage value Associated with the current ladder current value.
  • Step 250 using the next step current value as a new current step current value and the next step voltage value as a new current step voltage value, and continue charging the lithium-ion battery.
  • the first relationship is U-shaped, wherein:
  • the next step current value is greater than the current step current value
  • the next step current value is smaller than the current step current value
  • the next step current value is smaller than the current step current value.
  • the low charge range is low SOC, which is the state of low power in the battery. If the current step voltage value during charging is low SOC, then after the charging voltage reaches the next step voltage value, the next step current value for switching charging should be greater than the current step current value.
  • Fig. 2B is a schematic diagram of the first relationship between the state of charge of the battery and the DC impedance of the battery provided in Embodiment 2 of the present application.
  • the first relationship is U-shaped, that is, the DC impedance of the battery
  • charge when the battery is low. If it is detected that the current charging voltage belongs to the voltage range of the low battery, when the charging voltage reaches the next step voltage value , increase the charging current to continue charging, and the increased step current value should correspond to the step voltage value, that is, it conforms to the mapping relationship between the step voltage value and the step current value during charging.
  • the medium charge range is the medium SOC, which is the state of medium power in the battery. If the current step voltage value during charging belongs to the middle SOC, after the charging voltage reaches the next step voltage value, the next step current value for switching charging should be smaller than the current step current value.
  • charging is performed when the battery power is medium. If it is detected that the current charging voltage belongs to the voltage range of the medium power condition, when the charging voltage reaches the next step voltage value, the charging current is reduced to continue charging, and the reduced
  • the step current value should correspond to the step voltage value, that is, it conforms to the mapping relationship between the step voltage value and the step current value during charging.
  • High charging range means high SOC, which is the state of high power in the battery. If the current step voltage value during charging is high SOC, after the charging voltage reaches the next step voltage value, the next step current value for switching charging should be smaller than the current step current value.
  • charging is carried out when the battery power is high. If it is detected that the current charging voltage belongs to the voltage range under high power conditions, when the charging voltage reaches the next step voltage value, the charging current is reduced to continue charging, and the reduced
  • the step current value should correspond to the step voltage value, that is, it conforms to the mapping relationship between the step voltage value and the step current value during charging.
  • the model when the battery is produced, the model is named according to different battery characteristics; during actual charging, the system will determine the charging demand model of the lithium-ion battery according to the model of the lithium-ion battery; through the state of charge of the battery and the impedance relationship, During the charging process, the relationship between DC impedance and current, the relationship between charge state and charging voltage, and the relationship between heat generation, find out at least two step-by-step charging schemes for use. Then, the current temperature of the battery is measured by the temperature detector of the charging device, and a suitable stepped charging scheme is selected according to the battery temperature.
  • the current charging voltage of the battery is detected in real time. If the voltage value reaches the next step, the system will switch the current value corresponding to the step for charging.
  • the first relationship between the state of charge of the battery and the DC impedance of the battery may be U-shaped, or other changes other than U-shaped, for example, it may also be W-shaped, still combined and the second relationship determine the relationship between the charging current and the charging voltage, and determine the next step voltage value and current value according to the real-time charging voltage value.
  • the embodiment of the present application is based on the charging characteristics of the battery, establishes the mapping relationship between the step voltage value and the step current value during the charging process according to the charging demand model, and formulates a multi-step change charging scheme according to the charging conditions of the battery under different states of charge. .
  • the embodiments of the present application control the charging current up and down in multiple steps and levels, effectively controlling the battery charging process caused by the charging strategy in the prior art that the more the power is, the smaller the current is. At the same time, it prevents lithium ions from being precipitated inside the battery due to excessive current, thereby ensuring the efficiency and life of the battery.
  • Fig. 3 is a schematic structural diagram of a lithium-ion battery charging device provided in Embodiment 3 of the present application.
  • the embodiment of the present application is applicable to charging lithium-ion batteries of electric vehicles.
  • the device can be controlled by software and/or hardware It can be implemented in a vehicle and can be configured in a vehicle. As shown in Figure 3, the device may include:
  • the charging strategy formulation module 310 is configured to determine the target ladder charging strategy adopted by the lithium-ion battery
  • the voltage detection module 320 is configured to detect the real-time charging voltage value of the lithium-ion battery during the process of charging the lithium-ion battery with the current ladder current value;
  • the current determination module 330 is configured to determine the next step current value associated with the next step voltage value when the real-time charging voltage value reaches the current step voltage value based on the target step charging strategy; wherein, the The current ladder voltage value is associated with the current ladder current value;
  • the charging module 340 is configured to use the next step current value as a new current step current value and the next step voltage value as a new current step voltage value to continue charging the lithium-ion battery.
  • the charging strategy formulation module 310 includes:
  • the charging strategy candidate unit is configured to determine at least two candidate ladder charging strategies according to the charging demand model of the lithium-ion battery
  • the charging strategy selection unit is configured to detect an actual temperature value of the lithium-ion battery, and select a target step charging strategy from the at least two candidate step charging strategies according to the actual temperature value.
  • the charging strategy candidate unit includes:
  • the first relationship determination subunit is configured to determine the first relationship between the state of charge of the battery and the DC impedance of the battery based on the charging demand model of the lithium-ion battery;
  • the second relationship determination subunit is configured to determine the second relationship between the state of charge of the battery and the lithium analysis current based on the charging demand model of the lithium-ion battery;
  • the association relationship determination subunit is configured to determine, according to the first relationship, the second relationship, the conversion relationship between the battery state of charge and the battery voltage value, and the battery heat generation relationship, in the candidate step charging strategy The correlation between the ladder current value and the ladder voltage value.
  • the charging device for a lithium-ion battery further includes:
  • the next step current value is greater than the current step current value
  • the next step current value is smaller than the current step current value
  • the next step current value is smaller than the current step current value.
  • a lithium-ion battery charging device provided in an embodiment of the present application can implement a lithium-ion battery charging method provided in any embodiment of the present application, and has corresponding functional modules and beneficial functions for performing a lithium-ion battery charging method. Effect.
  • Embodiment 4 of the present application also provides a storage medium containing computer-executable instructions, the computer-executable instructions are used to execute a lithium-ion battery charging method when executed by a computer processor, the method comprising:
  • the real-time charging voltage value reaches the current step voltage value, determine the next step current value associated with the next step voltage value; wherein, the current step voltage value is the same as the current step voltage value Current ladder current value association;
  • next step current value as a new current step current value
  • next step voltage value as a new current step voltage value
  • a storage medium refers to any of various types of memory electronics or storage electronics.
  • the term "storage medium” is intended to include: installation media, such as Compact Disc Read-Only Memory (CD-ROM), floppy disks, or tape drives; computer system memory or random access memory, such as dynamic random access memory (DRAM) Dynamic Random Access Memory, DRAM), double speed synchronous random access memory (Double Data Rate Random Access Memory, DDR RAM), static random access memory (Static Random-Access Memory, SRAM), extended data output (Extended Data Output, EDO) RAM, Rambus (Rambus) RAM, etc.; non-volatile memory, such as flash memory, magnetic media (such as hard disk or optical storage); registers or other similar types of memory elements, etc.
  • installation media such as Compact Disc Read-Only Memory (CD-ROM), floppy disks, or tape drives
  • computer system memory or random access memory such as dynamic random access memory (DRAM) Dynamic Random Access Memory, DRAM), double speed synchronous random access memory (Double Data Rate
  • the storage medium may also include other types of memory or combinations thereof. Also, the storage medium may be located in a computer system in which the program is executed, or may be located in a different second computer system connected to the computer system through a network such as the Internet. The second computer system may provide program instructions to the computer for execution.
  • the term "storage medium" may include two or more storage media that may reside in different locations, such as in different computer systems connected by a network.
  • the storage medium may store program instructions (eg embodied as computer programs) executable by one or more processors.
  • the embodiment of the present application provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions can also execute a battery provided by any embodiment of the present application. Relevant operations in a charging method for a lithium-ion battery.
  • the lithium-ion battery charging device provided in the above embodiments can execute a lithium-ion battery charging method provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • a charging method for a lithium-ion battery provided in any embodiment of the present application.
  • Embodiment 5 of the present application provides a vehicle, which can be integrated with a lithium-ion battery charging device provided in the embodiment of the present application, and the vehicle can be a device that performs part or all of the functions in the system.
  • Fig. 4 is a schematic structural diagram of a vehicle provided in Embodiment 5 of the present application.
  • the present embodiment provides a vehicle 400, which includes: a lithium-ion battery; one or more processors 420; a storage device 410 for storing one or more programs, when the one One or more programs are executed by the one or more processors 420, so that the one or more processors 420 implement a method for charging a lithium-ion battery provided in the embodiment of the present application, the method comprising:
  • the real-time charging voltage value reaches the current step voltage value, determine the next step current value associated with the next step voltage value; wherein, the current step voltage value is the same as the current step voltage value Current ladder current value association;
  • next step current value as a new current step current value
  • next step voltage value as a new current step voltage value
  • processor 420 also implements the technical solution of a lithium-ion battery charging method provided in any embodiment of the present application.
  • Vehicle 400 shown in FIG. 4 is only one example.
  • the vehicle 400 includes a processor 420, a storage device 410, an input device 430, and an output device 440; wherein the number of processors 420 may be one or more, and one processor 420 is taken as an example in FIG. 4;
  • the processor 420 , the storage device 410 , the input device 430 and the output device 440 may be connected via a bus or in other ways. In FIG. 4 , the connection via the bus 450 is taken as an example.
  • the storage device 410 can be used to store software programs, computer-executable programs, and module units, such as program instructions corresponding to a lithium-ion battery charging method in the embodiment of the present application.
  • the storage device 410 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the storage device 410 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 410 may include memory located remotely from the processor 420, and these remote memories may be connected through a network. Examples of such networks include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 430 can be used to receive input numbers, character information or voice information, and generate key signal input related to user settings and function control of the electronic device.
  • the output device 440 may include electronic equipment such as a display screen and a speaker.
  • a vehicle provided in the above embodiments can implement a lithium-ion battery charging method and device provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for performing the method.
  • a method and device for charging a lithium ion battery provided in any embodiment of the present application please refer to a method and device for charging a lithium ion battery provided in any embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例公开了一种锂离子电池的充电方法、装置、介质及车辆。其中,确定锂离子电池采用的目标阶梯充电策略;在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,并返回在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值的步骤。

Description

一种锂离子电池的充电方法、装置、介质和车辆
本申请要求在2021年10月28日提交中国专利局、申请号为202111265661.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池充电技术,例如涉及一种锂离子电池的充电方法、装置、介质和车辆。
背景技术
随着新能源汽车的发展,在环保宣传的影响下,越来越多的用户选择购买并使用电动汽车,这一情况导致电动汽车的电池的生产变得愈发重要。
相关技术中,电动汽车主要采取的充电方法是随着电池电压升高或者SOC(State of Charge,荷电状态)的升高充电电流不断减小。
但是在不同的SOC阶梯电池的直流阻抗一般不同,导致发热情况不同,采用这种充电方式会导致电池温度在整个充电过程中产生比较显著的上升,长期保持这种充电方式会造成电池寿命的衰减,影响客户长期使用体验。
发明内容
本申请提供一种锂离子电池充电方法、装置、介质和车辆,以实现针对电池的不同状态进行合理的多层阶梯式充电,防止电池过热和锂离子的析出。
第一方面,本申请实施例提供了一种锂离子电池的充电方法,包括:
确定锂离子电池采用的目标阶梯充电策略;
在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电,并返回在采用当前阶 梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值的步骤。
第二方面,本申请实施例还提供了一种锂离子电池的充电装置,包括:
充电策略制定模块,被设置为确定锂离子电池采用的目标阶梯充电策略;
电压检测模块,被设置为在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
电流确定模块,被设置为基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
充电模块,被设置为将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电。
第三方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当计算机执行所述指令时,使得所述计算机执行如本申请任意实施例提供的一种锂离子电池的充电方法。
第四方面,本申请实施例还提供了一种车辆,包括锂离子电池、存储器、处理器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接;
当所述车辆运行时,处理器执行所述存储器存储的所述计算机执行指令,以使所述车辆执行如本申请任意实施例所述的锂离子电池的充电方法。
附图说明
图1A为本申请实施例一中的一种锂离子电池的充电方法的流程图;
图1B为本申请实施例一中的一种阶梯充电策略的示意图;
图2A是本申请实施例二中的一种锂离子电池的充电方法的流程图;
图2B为本申请实施例二提供的一种电池的荷电状态与电池直流阻抗之间的第一关系的示意图;
图3是本申请实施例三中的一种锂离子电池的充电装置。
图4是本申请实施例五提供的一种车辆的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
实施例一
图1A为本申请实施例一提供的一种锂离子电池的充电方法的流程图,本申请实施例可适用于为电动汽车的锂离子电池充电的情况,该方法可以由一种锂离子电池的充电装置来执行。参考图1A,包括如下步骤:
步骤110、确定锂离子电池采用的目标阶梯充电策略。
锂离子电池由正负极、隔膜、电解液及外壳组成,正负极浸入在电解液中,锂离子以电解液为介质在正负极之间运动,实现电池的充放电。充电系统可以根据锂离子电池的充电需求、充电特性确定自身的阶梯充电策略,例如可以根据在工作温度下荷电状态(State of Charge,SOC)与直流阻抗(Direct Current Resistance,DCR)之间的曲线关系确定自身阶梯电流与预设阶梯电压之间的关系,作为阶梯充电策略。图1B为本申请实施例一提供的一种阶梯充电策略的示意图,参考图1B,可以预设有多个逐步递增的阶梯电压,相邻阶梯电压之间的电压差值(即电压增幅)可以不同,每个阶梯电压关联有阶梯电流。随着阶梯电压不断增加,阶梯电流可以增加也可以降低,并且电流变化幅度可以不同。
步骤120、在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值。
本实施例中,锂离子电池在充电过程中所处的当前阶梯电流值可以根据锂离子电池的实际充电电压值确定。可选的,在锂离子电池的实际充电电压值小于目标阶梯充电策略中的第i个阶梯电压,且大于目标阶梯充电策略中的第i-1个阶梯电压的情况下,第i个阶梯电压为当前阶梯电压值,与第i个阶梯电压所关联的阶梯电流为当前阶梯电流值。在采用当前阶梯电流值对锂离子电池进行充电过程中,实时检测锂离子电池的充电电压值,得到实时充电电压值。
步骤130、基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联。
当实时检测的充电电压达到了当前充电电流对应的阶梯电压值,系统会根据阶梯充电策略确定下一个阶梯电压值对应的充电电流值。在检测到的实时充电电压值达到当前阶梯电压值的情况下,例如达到第i个阶梯电压,则第i+1个阶梯电压为下一阶梯电压值,与第i+1个阶梯电压关联的第i+1个阶梯电流作为 下一阶梯电流值。
步骤140、将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电。
在一实施例中,将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电,并在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值。
本申请实施例建立的阶梯充电策略是根据锂离子电池的充电需求和充电特性来确定的,根据电池的充电需求和特性,选择适应的充电策略,有效控制了锂离子电池在充电过程中的不良问题,缓解了电池的发热和锂离子析出。
在一实施方式中,首先根据电池的充电需求与特性确定一个目标阶梯充电策略,例如,在实际充电操作中,定义一个阶梯充电方案中阶梯电压值和阶梯电流值对应的概念,如当电池充电电压达到V n时,此时应使用电流I n+1进行充电。可选的,选取如图1B所示的阶梯充电策略:V 1=3.55V时,I 1=0.5C,其中单位V是伏特,单位C表示电池标称容量;V 2=3.65V时,I 2=0.8C;V 3=3.70V时,I 3=1.2C;V 4=3.75V时,I 4=1.4C;V 5=3.85V时,I 5=1.1C;V 6=3.95V时,I 6=0.85C;V 7=4.10V时,I 7=0.33C。在充电过程中实时检测电池当前的充电电压,在发现电压值到达下一阶梯的情况下,系统将切换该阶梯对应的电流值进行充电。例如,当前使用I 3=1.2C的阶梯电流进行充电,系统实时监测电压值时发现当前充电电压达到了V 3=3.70V,于是切换V 4对应的阶梯电流I 4=1.4C继续对电池进行充电。
本申请实施例基于锂离子电池的充电需求和特性,将充电过程中阶梯电压值和阶梯电流值之间的映射关系作为阶梯充电策略,并根据此策略在实时监测充电电压变化的同时适应性的改变阶梯电流进行充电,有效的控制了电池在充电过程中的发热问题,同时防止电流过大导致的析锂,进而保障了电池的使用效率和寿命。
实施例二
图2A为本申请实施例二提供的一种锂离子电池的充电方法的流程图,本申请实施例可适用于为电动汽车的锂离子电池充电的情况,该方法可以由一种锂离子电池的充电装置来执行,包括如下步骤:
步骤210、根据锂离子电池的充电需求模型,确定至少两个候选阶梯充电策略。
充电需求模型可以根据锂离子电池的电池特性确定,还可以融合锂离子电池的产热情况、锂离子析出情况等确定。针对锂离子电池的每一工作温度,可以根据锂离子电池的产热情况、锂离子析出情况、该工作温度下锂离子电池的电池特性,确定该工作温度关联的候选阶段充电策略。
例如,可以根据DCR的阶梯升降的特性采用阶梯升降的充电电流,则DCR和充电电流之间的映射关系即为一种充电需求模型。候选阶梯充电策略即备选的阶梯式充电方案。因此,根据经过推导计算得出的关于电池特性的数学模型,选择出至少两种阶梯式的充电方案作为备选。
在一个可选的实施方式中,所述根据锂离子电池的充电需求模型,确定至少两个候选阶梯充电策略,包括:
基于锂离子电池的充电需求模型,确定电池的荷电状态与电池直流阻抗之间的第一关系;
基于锂离子电池的充电需求模型,确定电池的荷电状态与析锂电流之间的第二关系;
根据所述第一关系,所述第二关系,电池的荷电状态和电池电压值之间的转换关系,以及电池发热关系,确定所述候选阶梯充电策略中的阶梯电流值与阶梯电压值之间的关联关系。
根据锂离子电池的充电需求模型,确定此电池SOC和DCR之间的对应关系,可以表示为SOC-DCR关系的函数形式。
析锂电流是指在充电过程中电池可以接受的最大充电电流,充电时超过这个电流值会导致电池内部的锂离子析出。根据锂离子电池的充电需求模型,确定此电池SOC和析锂电流之间的对应关系,可以表示为SOC-I关系的函数形式。
充电期间SOC与电池电压之间的转换关系SOC-U是固定的,电池的发热关系可以根据焦耳定律对发热功率P=I 2R推导。候选阶梯充电策略中的阶梯电流值与阶梯电压值之间的关联关系可以理解为阶梯电流值和阶梯电压值之间的映射,即每个阶梯电压值都有且仅有一个阶梯电流值与之对应。
可选的,根据SOC-DCR关系和SOC-U关系可以得出直流阻抗DCR和电压U之间的映射关系,以此结合SOC-I关系和发热关系可以推导计算出阶梯电压与阶梯电流之间的映射关系。也就是说,充电电流与电池电压之间满足如下关系:
Figure PCTCN2022127312-appb-000001
其中,R=F[g(U)],SOC=g(U),为了避免电池发热问题,P取值可以预设为固定功率值;并且,为了避免析锂现象,电池充电电流小于析锂电流,电池的荷电状态g(U)与析锂电流之间还具有单调关系,随着电池的荷电状态g(U)增加,析锂电流不断降低。综上,可以推导计算出阶梯电压与阶梯电 流之间的映射关系。
充电需求模型的确立,不止根据锂离子电池的充电需求和特性确定,还可以融合锂离子电池的产热情况、锂离子析出情况等确定。为了控制电池的发热,减少能量损耗,同时为了控制锂离子的析出,对充电过程中的电流大小进行阶段性的控制,达到了保护电池的目的。
步骤220、检测锂离子电池的实际温度值,并根据所述实际温度值从所述至少两个候选阶梯充电策略中选择目标阶梯充电策略。
每一个候选阶梯充电策略都关联有一个特定的工作温度值,充电时系统检测锂离子电池的当前实际温度,将实际温度与所有候选阶梯充电策略关联的温度值进行匹配,匹配成功时,将该匹配成功的候选阶梯充电策略作为目标阶梯充电策略。
步骤230、在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值。
步骤240、基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联。
步骤250、将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电。
在一种可选的实施方式中,所述第一关系呈U型,其中:
在所述实时充电电压值属于低荷电范围的情况下,所述下一阶梯电流值大于所述当前阶梯电流值;
在所述实时充电电压值属于中荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值;
在所述实时充电电压值属于高荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值。
低荷电范围即低SOC,是电池内低电量的状态。如果充电时的当前阶梯电压值属于低SOC,则在充电电压到达下一阶梯电压值后,切换充电用的下一阶梯电流值应大于当前阶梯电流值。
图2B为本申请实施例二提供的一种电池的荷电状态与电池直流阻抗之间的第一关系的示意图,参考图2B,在第一关系呈U型的情况下,即在电池直流阻抗与电池的荷电状态之间关系呈U型的情况下,在电池电量低时进行充电,如果检测到当前充电的电压值属于低电量情况下的电压范围,在充电电压到达下 一阶梯电压值时,提高充电电流继续充电,且提高后的阶梯电流值应与阶梯电压值对应,即符合充电时的阶梯电压值与阶梯电流值的映射关系。
中荷电范围即中SOC,是电池内电量中等的状态。如果充电时的当前阶梯电压值属于中SOC,则在充电电压到达下一阶梯电压值后,切换充电用的下一阶梯电流值应小于当前阶梯电流值。
可选的,在电池电量中等时进行充电,如果检测到当前充电的电压值属于中等电量情况下的电压范围,在充电电压到达下一阶梯电压值时,降低充电电流继续充电,且降低后的阶梯电流值应与阶梯电压值对应,即符合充电时的阶梯电压值与阶梯电流值的映射关系。
高荷电范围即高SOC,是电池内高电量的状态。如果充电时的当前阶梯电压值属于高SOC,则在充电电压到达下一阶梯电压值后,切换充电用的下一阶梯电流值应小于当前阶梯电流值。
可选的,在电池电量高时进行充电,如果检测到当前充电的电压值属于高电量情况下的电压范围,在充电电压到达下一阶梯电压值时,降低充电电流继续充电,且降低后的阶梯电流值应与阶梯电压值对应,即符合充电时的阶梯电压值与阶梯电流值的映射关系。
在一个实施方式中,生产电池时根据不同的电池特性进行型号的命名;在实际充电时,系统会根据锂离子电池的型号确定锂离子电池的充电需求模型;通过电池的电荷状态和阻抗关系、充电过程中的直流阻抗和电流关系、电荷状态和充电电压关系以及发热关系,找出至少两种阶梯式的充电方案待用。然后通过充电设备的温度检测器对当前电池的温度进行测量,根据电池温度筛选出合适的阶梯式充电方案。例如系统进行温度测量后选择如图1A所示的阶梯式充电方案为:V 1=3.55V时,I 1=0.5C,其中单位V是伏特,单位C表示电池标称容量;V 2=3.65V时,I 2=0.8C;V 3=3.70V时,I 3=1.2C;V 4=3.75V时,I 4=1.4C;V 5=3.85V时,I 5=1.1C;V 6=3.95V时,I 6=0.85C;V 7=4.10V时,I 7=0.33C。在充电过程中实时检测电池当前的充电电压,如果发现电压值到达下一阶梯,系统将切换该阶梯对应的电流值进行充电。例如,当前使用I 3=1.2C的阶梯电流进行充电,系统实时监测电压值时发现当前充电电压达到了V 3=3.70V,于是切换V 4对应的阶梯电流I 4=1.4C继续对电池进行充电。其中,充电电压随荷电量的增加而增加。
需要说明的是,本申请实施例对电池的荷电状态与电池直流阻抗之间的第一关系可以呈U型变化,也可以为呈U型之外的其他变化,例如也可以呈W型,仍然结合
Figure PCTCN2022127312-appb-000002
和第二关系确定充电电流与充电电压之间的关系,并根据实时充电电压值确定下一阶梯电压值与电流值。
本申请实施例基于电池的充电特性,根据充电需求模型建立充电过程中阶梯电压值和阶梯电流值之间的映射关系,根据电池不同荷电状态下的充电情况,制定了多阶梯变化充电的方案。本申请实施例针对不同的荷电状态,将充电电流进行分多阶梯分级别的升降控制,有效的控制了现有技术中依照的电量越多电流越小的充电策略而导致的电池充电过程中的发热问题,同时防止电流过大导致电池内部锂离子析出,进而保证了电池的使用效率和寿命。
实施例三
图3是本申请实施例三提供的一种锂离子电池的充电装置的结构示意图,本申请实施例可适用于为电动汽车的锂离子电池充电的情况,该装置可以由软件和/或硬件的方式来实现,可配置于一种车辆中。如图3所示,该装置可以包括:
充电策略制定模块310,被设置为确定锂离子电池采用的目标阶梯充电策略;
电压检测模块320,被设置为在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
电流确定模块330,被设置为基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
充电模块340,被设置为将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电。
在一种可选实施方式中,所述充电策略制定模块310包括:
充电策略候选单元,被设置为根据锂离子电池的充电需求模型,确定至少两个候选阶梯充电策略;
充电策略选择单元,被设置为检测锂离子电池的实际温度值,并根据所述实际温度值从所述至少两个候选阶梯充电策略中选择目标阶梯充电策略。
在一种可选实施方式中,所述充电策略候选单元包括:
第一关系确定子单元,被设置为基于锂离子电池的充电需求模型,确定电池的荷电状态与电池直流阻抗之间的第一关系;
第二关系确定子单元,被设置为基于锂离子电池的充电需求模型,确定电池的荷电状态与析锂电流之间的第二关系;
关联关系确定子单元,被设置为根据所述第一关系,所述第二关系,电池的荷电状态和电池电压值之间的转换关系,以及电池发热关系,确定所述候选 阶梯充电策略中的阶梯电流值与阶梯电压值之间的关联关系。
在一种可选实施方式中,所述一种锂离子电池的充电装置还包括:
在所述实时充电电压值属于低荷电范围的情况下,所述下一阶梯电流值大于所述当前阶梯电流值;
在所述实时充电电压值属于中荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值;
在所述实时充电电压值属于高荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值。
本申请实施例所提供的一种锂离子电池的充电装置可执行本申请任意实施例所提供的一种锂离子电池的充电方法,具备执行一种锂离子电池的充电方法相应的功能模块和有益效果。
实施例四
本申请实施例四还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种锂离子电池的充电方法,该方法包括:
确定锂离子电池采用的目标阶梯充电策略;
在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电,并返回在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值的步骤。
存储介质是指任何的各种类型的存储器电子设备或存储电子设备。术语“存储介质”旨在包括:安装介质,例如只读光盘(Compact Disc Read-Only Memory,CD-ROM)、软盘或磁带装置;计算机系统存储器或随机存取存储器,诸如动态随机存取存储器(Dynamic Random Access Memory,DRAM)、双倍速同步随机存取存储器(Double Data Rate Random Access Memory,DDR RAM)、静态随机存取存储器(Static Random-Access Memory,SRAM)、扩展数据输出 (Extended Data Output,EDO)RAM,兰巴斯(Rambus)RAM等;非易失性存储器,诸如闪存、磁介质(例如硬盘或光存储);寄存器或其它相似类型的存储器元件等。存储介质可以还包括其它类型的存储器或其组合。另外,存储介质可以位于程序在其中被执行的计算机系统中,或者可以位于不同的第二计算机系统中,第二计算机系统通过网络(诸如因特网)连接到计算机系统。第二计算机系统可以提供程序指令给计算机用于执行。术语“存储介质”可以包括可以驻留在不同位置中(例如在通过网络连接的不同计算机系统中)的两个或更多存储介质。存储介质可以存储可由一个或多个处理器执行的程序指令(例如具体实现为计算机程序)。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令除了执行如上所述的一种锂离子电池的充电操作,还可以执行本申请任意实施例所提供的一种锂离子电池的充电方法中的相关操作。
上述实施例中提供的一种锂离子电池的充电装置可执行本申请任意实施例所提供的一种锂离子电池的充电方法,具备执行该方法相应的功能模块和有益效果。未在上述实施例中详尽描述的细节,可参见本申请任意实施例所提供的一种锂离子电池的充电方法。
实施例五
本申请实施例五提供了一种车辆,该车辆中可集成本申请实施例提供的一种锂离子电池的充电装置,该车辆可以是执行系统内的部分或者全部功能的设备。图4是本申请实施例五提供的一种车辆的结构示意图。如图4所示,本实施例提供了一种车辆400,该车辆400包括:锂离子电池;一个或多个处理器420;存储装置410,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器420执行,使得所述一个或多个处理器420实现本申请实施例所提供的一种锂离子电池的充电方法,该方法包括:
确定锂离子电池采用的目标阶梯充电策略;
在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电,并返回在采用当前阶 梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值的步骤。
需要说明的是,处理器420还实现本申请任意实施例所提供的一种锂离子电池的充电方法的技术方案。
图4显示的车辆400仅仅是一个示例。
如图4所示,该车辆400包括处理器420、存储装置410、输入装置430和输出装置440;其中处理器420的数量可以是一个或多个,图4中以一个处理器420为例;处理器420、存储装置410、输入装置430和输出装置440可以通过总线或其他方式连接,图4中以通过总线450连接为例。
存储装置410作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块单元,如本申请实施例中的一种锂离子电池的充电方法对应的程序指令。
存储装置410可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储装置410可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置410可包括相对于处理器420远程设置的存储器,这些远程存储器可以通过网络连接。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可用于接收输入的数字、字符信息或语音信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏、扬声器等电子设备。
上述实施例中提供的一种车辆可执行本申请任意实施例所提供的一种锂离子电池的充电方法和装置,具备执行该方法相应的功能模块和有益效果。未在上述实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的一种锂离子电池的充电方法和装置。

Claims (10)

  1. 一种锂离子电池的充电方法,包括:
    确定锂离子电池采用的目标阶梯充电策略;
    在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
    基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
    将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电,并返回在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值的步骤。
  2. 根据权利要求1所述的方法,其中,确定锂离子电池采用的目标阶梯充电策略,包括:
    根据锂离子电池的充电需求模型,确定至少两个候选阶梯充电策略;
    检测锂离子电池的实际温度值,并根据所述实际温度值从所述至少两个候选阶梯充电策略中选择目标阶梯充电策略。
  3. 根据权利要求2所述的方法,其中,根据锂离子电池的充电需求模型,确定至少两个候选阶梯充电策略,包括:
    基于锂离子电池的充电需求模型,确定电池的荷电状态与电池直流阻抗之间的第一关系;
    基于锂离子电池的充电需求模型,确定电池的荷电状态与析锂电流之间的第二关系;
    根据所述第一关系,所述第二关系,电池的荷电状态和电池电压值之间的转换关系,以及电池发热关系,确定所述候选阶梯充电策略中的阶梯电流值与阶梯电压值之间的关联关系。
  4. 根据权利要求3所述的方法,其中,所述第一关系呈U型;
    在所述实时充电电压值属于低荷电范围的情况下,所述下一阶梯电流值大于所述当前阶梯电流值;
    在所述实时充电电压值属于中荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值;
    在所述实时充电电压值属于高荷电范围的情况下,所述下一阶梯电流值小 于所述当前阶梯电流值。
  5. 一种锂离子电池的充电装置,包括:
    充电策略制定模块,被设置为确定锂离子电池采用的目标阶梯充电策略;
    电压检测模块,被设置为在采用当前阶梯电流值对锂离子电池进行充电过程中,检测锂离子电池的实时充电电压值;
    电流确定模块,被设置为基于所述目标阶梯充电策略,在所述实时充电电压值达到当前阶梯电压值的情况下,确定与下一阶梯电压值关联的下一阶梯电流值;其中,所述当前阶梯电压值与所述当前阶梯电流值关联;
    充电模块,被设置为将所述下一阶梯电流值作为新的当前阶梯电流值,将所述下一阶梯电压值作为新的当前阶梯电压值,继续对锂离子电池进行充电。
  6. 根据权利要求5所述的装置,其中,所述充电策略制定模块包括:
    充电策略候选单元,被设置为根据锂离子电池的充电需求模型,确定至少两个候选阶梯充电策略;
    充电策略选择单元,被设置为检测锂离子电池的实际温度值,并根据所述实际温度值从所述至少两个候选阶梯充电策略中选择目标阶梯充电策略。
  7. 根据权利要求6所述的装置,其中,所述充电策略候选单元包括:
    第一关系确定子单元,被设置为基于锂离子电池的充电需求模型,确定电池的荷电状态与电池直流阻抗之间的第一关系;
    第二关系确定子单元,被设置为基于锂离子电池的充电需求模型,确定电池的荷电状态与析锂电流之间的第二关系;
    关联关系确定子单元,被设置为根据所述第一关系,所述第二关系,电池的荷电状态和电池电压值之间的转换关系,以及电池发热关系,确定所述候选阶梯充电策略中的阶梯电流值与阶梯电压值之间的关联关系。
  8. 根据权利要求7中所述的装置,其中,
    所述第一关系呈U型;
    在所述实时充电电压值属于低荷电范围的情况下,所述下一阶梯电流值大于所述当前阶梯电流值;
    在所述实时充电电压值属于中荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值;
    在所述实时充电电压值属于高荷电范围的情况下,所述下一阶梯电流值小于所述当前阶梯电流值。
  9. 一种存储有计算机指令的非瞬时计算机可读存储介质,所述计算机指令用于使所述计算机执行权利要求1-4中任一项所述的方法。
  10. 一种车辆,包括锂离子电池、存储器、处理器、总线和通信接口;所述存储器用于存储计算机执行指令,所述处理器与所述存储器通过所述总线连接;
    当所述车辆运行时,处理器执行所述存储器存储的所述计算机执行指令,以使所述车辆执行如权利要求1-4任意一项所述的锂离子电池的充电方法。
PCT/CN2022/127312 2021-10-28 2022-10-25 一种锂离子电池的充电方法、装置、介质和车辆 WO2023072051A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111265661.3 2021-10-28
CN202111265661.3A CN114006062A (zh) 2021-10-28 2021-10-28 一种锂离子电池的充电方法、装置、介质和车辆

Publications (1)

Publication Number Publication Date
WO2023072051A1 true WO2023072051A1 (zh) 2023-05-04

Family

ID=79924843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127312 WO2023072051A1 (zh) 2021-10-28 2022-10-25 一种锂离子电池的充电方法、装置、介质和车辆

Country Status (2)

Country Link
CN (1) CN114006062A (zh)
WO (1) WO2023072051A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114006062A (zh) * 2021-10-28 2022-02-01 中国第一汽车股份有限公司 一种锂离子电池的充电方法、装置、介质和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779624A (zh) * 2013-12-20 2014-05-07 惠州市亿能电子有限公司 一种钛酸锂电池组充电方法
CN107979119A (zh) * 2016-10-21 2018-05-01 广州市君盘实业股份有限公司 马斯拟合充电曲线的电池充电控制方法和系统
US20190097432A1 (en) * 2017-09-27 2019-03-28 Contemporary Amperex Technology Co., Limited Method, apparatus, and device for charging a battery and storage medium
CN109995105A (zh) * 2019-03-18 2019-07-09 深圳欣旺达智能科技有限公司 阶梯充电方法、系统及计算机设备
CN112448050A (zh) * 2019-08-28 2021-03-05 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
CN114006062A (zh) * 2021-10-28 2022-02-01 中国第一汽车股份有限公司 一种锂离子电池的充电方法、装置、介质和车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106451592B (zh) * 2016-07-29 2019-04-05 北京车和家信息技术有限公司 电池充放电的控制方法、电池充放电的控制设备和电动车
CN106099230B (zh) * 2016-08-09 2019-02-05 清华大学 一种可预防析锂的锂离子电池快速充电方法
CN112713323B (zh) * 2020-12-10 2022-08-09 欣旺达电动汽车电池有限公司 一种锂离子电池快速充电方法和锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779624A (zh) * 2013-12-20 2014-05-07 惠州市亿能电子有限公司 一种钛酸锂电池组充电方法
CN107979119A (zh) * 2016-10-21 2018-05-01 广州市君盘实业股份有限公司 马斯拟合充电曲线的电池充电控制方法和系统
US20190097432A1 (en) * 2017-09-27 2019-03-28 Contemporary Amperex Technology Co., Limited Method, apparatus, and device for charging a battery and storage medium
CN109995105A (zh) * 2019-03-18 2019-07-09 深圳欣旺达智能科技有限公司 阶梯充电方法、系统及计算机设备
CN112448050A (zh) * 2019-08-28 2021-03-05 北京小米移动软件有限公司 锂离子电池的充电方法和锂离子电池的充电装置
CN114006062A (zh) * 2021-10-28 2022-02-01 中国第一汽车股份有限公司 一种锂离子电池的充电方法、装置、介质和车辆

Also Published As

Publication number Publication date
CN114006062A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2020239114A1 (zh) 充电方法及装置、充电系统、电子设备、存储介质
CN112366375B (zh) 一种锂离子动力电池快速充电方法
JP7249754B2 (ja) バッテリ充電方法及び装置
TWI621320B (zh) 充電方法、電源轉換器、行動裝置及充電系統
US20110037439A1 (en) Increasing energy density in rechargeable lithium battery cells
WO2017147741A1 (zh) 锂离子电池充电方法
CN108777339B (zh) 一种锂离子电池脉冲放电自加热方法及装置
CN105870525A (zh) 电池充电的方法及装置
US20170120774A1 (en) Management device for secondary battery
WO2023072051A1 (zh) 一种锂离子电池的充电方法、装置、介质和车辆
US8878489B2 (en) Estimation method for residual discharging time of batteries
WO2022063236A1 (zh) 基于析锂检测的电池充电方法、系统、汽车及介质
CN108336435B (zh) 一种考虑充电能量效率的锂离子电池充电方法
JP2021533371A (ja) バッテリーの退化状態を決定するための装置、方法、バッテリーパック及び電気車両
US20240055872A1 (en) Charging method of energy storage power supply, charging apparatus therefor, device, and medium
JP2020171120A (ja) 二次電池の充電方法
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置
US20230170720A1 (en) Charging Apparatus, Charging Method, and Computer-Readable Storage Medium
WO2017113944A1 (zh) 电池组温度获取方法及装置
TW202032322A (zh) 可攜式電子裝置與其電池電量管理方法
JP6361708B2 (ja) 太陽光発電システム
CN108879867A (zh) 用于调节电池组的充电功率的系统
TW201440378A (zh) 基於電池操作歷程的均充系統及其均充方法
WO2021223470A1 (zh) 一种快慢充电自适应的方法、装置和电子设备
WO2021077274A1 (zh) 充电方法、电子装置以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885928

Country of ref document: EP

Kind code of ref document: A1