WO2023071983A1 - 网元之间协商网络编码的方法和通信装置 - Google Patents

网元之间协商网络编码的方法和通信装置 Download PDF

Info

Publication number
WO2023071983A1
WO2023071983A1 PCT/CN2022/127028 CN2022127028W WO2023071983A1 WO 2023071983 A1 WO2023071983 A1 WO 2023071983A1 CN 2022127028 W CN2022127028 W CN 2022127028W WO 2023071983 A1 WO2023071983 A1 WO 2023071983A1
Authority
WO
WIPO (PCT)
Prior art keywords
granularity
identifier
network element
message
parameters
Prior art date
Application number
PCT/CN2022/127028
Other languages
English (en)
French (fr)
Inventor
孙飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071983A1 publication Critical patent/WO2023071983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present application relates to the field of network coding, and more specifically, to a method and a communication device for negotiating network coding between network elements.
  • HARQ hybrid automatic repeat request
  • ARQ automatic repeat request
  • this kind of feedback-based retransmission mechanism generally has relatively long delays. For example, air interface transmission delays, data processing delays at the receiving end, and feedback delays for ACK and NACK information are relatively large, resulting in system spectrum low efficiency.
  • the network coding technology can be used to perform network coding on the data packets, and the time delay and spectrum efficiency can be considered by transmitting the network coding packets.
  • the present application provides a method for negotiating network coding between network elements and a communication device, which can realize the negotiation of flexible network coding configuration between network elements.
  • a method for negotiating network coding between network elements includes:
  • the first network element receives the first message, the first message is used to request the protocol data unit PDU session of the user equipment UE, the first message includes the quality of service QoS information of the PDU session, or the first message is used to request the multicast multicast MBS session, the first message includes the QoS information of the MBS session;
  • the first network element sends a second message to the second network element based on the first message, the second message includes the network coding NC parameter corresponding to the PDU session, or the second message includes the NC parameter corresponding to the MBS session,
  • the NC parameters include NC position indication information and NC granularity
  • the NC position indication information is used to indicate the first position where NC is executed
  • the NC granularity is used to indicate the range of data where NC is executed at the first position.
  • the first network element receives the first message from the network side, the first message is used to request the UE's PDU session or MBS session, and the first message contains the QoS of the PDU session or MBS session information.
  • the first network element sends a second message to the second network element according to the QoS information of the PDU session or the QoS information of the MBS session.
  • the NC parameter in the message performs network coding on the data of the corresponding data range (specifically, the data range corresponding to the NC granularity) between the first network element and the second network element, realizing the realization of the first network element and the second network element Negotiation of flexible network coding between.
  • flexible network coding can be used for the interactive data to improve the performance of data transmission, for example, to improve the reliability of data transmission and reduce the delay (May include air interface transmission delay and receiving end processing delay, etc.), and spectrum utilization efficiency of the system, etc.
  • the first message is used to request a PDU session of the UE, and the first message includes QoS information of the PDU session;
  • the method further includes:
  • the first network element determines the NC parameters corresponding to the PDU session according to the QoS information of the PDU session.
  • the first network element determines appropriate NC parameters based on the QoS information of different PDU sessions, and can implement flexible network coding based on the QoS requirements of the PDU sessions themselves. For example, network coding is performed at a suitable location and at a suitable granularity to improve the performance gain of network coding.
  • the first message is used to request an MBS session, and the first message includes QoS information of the MBS session;
  • the method further includes:
  • the first network element determines the NC parameters corresponding to the MBS session according to the QoS information of the MBS session.
  • the first network element determines appropriate NC parameters based on the QoS information of different MBS sessions, and can implement flexible network coding based on the QoS requirements of the MBS sessions themselves. For example, network coding is performed at a suitable location and at a suitable granularity to improve the performance gain of network coding.
  • the method further includes:
  • the first network element receives a feedback message from the second network element, where the feedback message includes NC activation indication information and first time information, and/or, NC deactivation indication information and second time information,
  • the NC activation indication information and the first time information are used to indicate that the NC function of the PDU session or the MBS session is activated at the first time indicated by the first time information;
  • the NC deactivation indication information and the second time information are used to indicate that the NC function of the PDU session or the MBS session is deactivated at the second time indicated by the second time information.
  • the second network element notifies the first network element of the activation or deactivation of the NC function and the time of activation or deactivation through a feedback message, realizing the communication between the first network element and the second network element.
  • the NC parameters also include one or more of the following:
  • NC type size of system data packets, number of system data packets, number of redundant data packets, coding coefficient, size of coding block, number of coded data packets or code rate, convolution depth, limited number of NC operations
  • size of the domain and the maximum number of data packets that can participate in NC The size of the domain and the maximum number of data packets that can participate in NC.
  • the first network element can flexibly interact with the second network element about configurations related to NC functions (or in other words, NC parameters).
  • a method for negotiating network coding between network elements includes:
  • the second network element receives the second message from the first network element, the second message includes the network coding NC parameter corresponding to the PDU session, or the second message includes the NC parameter corresponding to the MBS session,
  • the NC parameters include NC position indication information and NC granularity
  • the NC position indication information is used to indicate the first position where the NC is executed
  • the NC granularity is used to indicate the range of data for executing the NC at the first position
  • the second network element receives the data from the first network element, or sends the data to the first network element, wherein the data is network coded by using the NC parameter.
  • the method further includes:
  • the second network element sends a feedback message to the first network element, the feedback message includes NC activation indication information and first time information, and/or, NC deactivation indication information and second time information,
  • the NC activation indication information and the first time information are used to indicate that the NC function of the PDU session or the MBS session is activated at the first time indicated by the first time information;
  • the NC deactivation indication information and the second time information are used to indicate that the NC function of the PDU session or the MBS session is deactivated at the second time indicated by the second time information.
  • the NC parameters corresponding to the PDU session include NC granularity
  • the NC granularity is UE granularity
  • the second message includes the UE identifier and NC parameters of the UE, wherein the UE granularity indicates that NC is performed on the data of the UE at the first position; or,
  • the NC granularity is the PDU session granularity
  • the second message includes the UE identifier of the UE, the identifier of the PDU session, and the NC parameters, wherein the PDU session granularity indicates that the NC is performed at the first position for the data of the PDU session of the UE; or,
  • the NC granularity is the DRB granularity
  • the second message includes the UE identifier of the UE, the identifier of the PDU session, the DRB identifier, and the NC parameters, wherein the DRB granularity indicates that the UE is mapped to the DRB identifier identified by the DRB identifier at the first position.
  • the data of a DRB executes NC; or,
  • the NC granularity is the QFI granularity, the UE identifier of the UE, the identifier of the PDU session, the QFI identifier, the DRB identifier and the NC parameter contained in the second message, wherein, the QFI granularity indicates that the QFI identifier for the UE is identified at the first position
  • the data of the QoS flow performs NC.
  • the first network element configures different NC granularities and/or NC locations. For example, some data has high requirements on delay, and the location of NC functions may need to be closer to the bottom layer. For example, Located at the RLC layer or the MAC layer, or between the RLC layer and the MAC layer. Some data may be transmitted in a dual connectivity scenario, and the location of the NC function may be more suitable at the anchor PDCP layer or SDAP layer, or between the PDCP layer and SDAP layer. Therefore, for different UEs, different PDU sessions of different UEs, different bearers of different UEs, and different QoS flows of different UEs, different positions may be used for flexible network coding to improve the performance gain of network coding.
  • the NC parameters corresponding to the MBS session include NC granularity
  • the NC granularity is the MBS session granularity
  • the second message includes the identifier and NC parameters of the MBS session, wherein the MBS session granularity indicates that NC is performed on the data of the MBS session at the first position; or,
  • the NC granularity is DRB granularity
  • the second message includes the identifier of the MBS session, the DRB identifier, and the NC parameters, wherein the DRB granularity indicates that the MBS session is mapped to the DRB identifier at the first position.
  • the data of the identified first DRB performs NC; or,
  • the NC granularity is QFI granularity
  • the second message includes the identifier of the MBS session, the QFI identifier, the DRB identifier and the NC parameters, wherein the QFI granularity indicates the QFI identifier for the MBS session at the first position
  • the data of the identified QoS flow performs NC.
  • the first network element configures different NC granularities and/or NC locations. For example, some data has high requirements on delay, and the location of NC functions may need to be closer to the bottom layer. For example, Located at the RLC layer or the MAC layer, or between the RLC layer and the MAC layer. Some data may be transmitted in a dual connectivity scenario, and the location of the NC function may be more suitable at the anchor PDCP layer or SDAP layer, or between the PDCP layer and SDAP layer. Therefore, for different UEs, different PDU sessions of different UEs, different bearers of different UEs, and different QoS flows of different UEs, different positions may be used for flexible network coding to improve the performance gain of network coding.
  • the first network element and the second network element are separate functions of one communication device.
  • This solution can realize the interaction of related configurations of flexible network coding between different functions (or functional units) of a communication device under a separate architecture of the communication device.
  • the communication device is a wireless access network device
  • the first network element is a centralized unit CU of the wireless access network device
  • the second network element is a wireless access network element.
  • the distributed unit DU of the network device, and the NC location indication information is used to indicate one or more location identifiers, and the location corresponding to the one or more location identifiers belongs to the location where the DU can perform network coding; or,
  • the first network element is the control plane CU-CP of the centralized unit of the radio access network equipment
  • the second network element is the user plane CU-UP of the centralized unit of the radio access network equipment
  • the NC location indication information is used to indicate a or a plurality of location identifiers, the location corresponding to the one or more location identifiers belongs to the location where the CU-UP unit can perform network coding; or,
  • the first network element is the control plane CU-CP of the centralized unit of the radio access network equipment
  • the second network element is the distributed unit DU of the radio access network equipment and the user plane CU-UP of the centralized unit
  • the position indication of the NC The information is used to indicate one or more location identifiers, some of the locations corresponding to the one or more location identifiers belong to the location where the DU can perform network coding, and the rest of the locations corresponding to the one or more location identifiers belong to the CU -UP
  • the location of the executable network encoding is used to indicate one or more location identifiers, some of the locations corresponding to the one or more location identifiers belong to the location where the DU can perform network coding, and the rest of the locations corresponding to the one or more location identifiers belong to the CU -UP The location of the executable network encoding.
  • the first network element and the second network element may be separate functions of a radio access network device (for example, a base station).
  • a radio access network device for example, a base station.
  • the first network element is a CU
  • the second network element is a DU
  • parameter interaction of the flexible network coding of the F1 interface can be realized.
  • the first network element is a CU-CP
  • the second network element is a CU-UP, so that parameter interaction of the flexible network coding of the E1 interface can be realized.
  • the NC parameters also include one or more of the following:
  • NC activation indication information and first time information where the NC activation indication information and first time information are used to indicate that the NC is activated at the first time indicated by the first time information; and/or,
  • the NC deactivation indication information and the second time information, the NC deactivation indication information and the second time information are used to indicate that the NC is deactivated at the second time indicated by the second time information.
  • the NC parameters include the activation or deactivation indication information of the NC function, as well as the activation time or deactivation time, which realizes the flexible interaction between the first network element and the second network element for turning on or off the NC function .
  • a communication device in a third aspect, has a function of implementing the method in the first aspect or any possible implementation manner of the first aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device in a fourth aspect, has a function of implementing the method in the second aspect or any possible implementation manner of the second aspect.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to invoke and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the first aspect or any possible implementation manner of the first aspect.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the second aspect or any possible implementation manner of the second aspect.
  • a communication device including a processor and a communication interface, the communication interface is used to receive data and/or information, and transmit the received data and/or information to the processor, and the processing
  • the processor processes the data and/or information
  • the communication interface is also used to output the data and/or information processed by the processor, so that as in the first aspect, or in any possible implementation of the first aspect method is executed.
  • a communication device including a processor and a communication interface, the communication interface is used to receive data and/or information, and transmit the received data and/or information to the processor, and the processing
  • the processor processes the data and/or information
  • the communication interface is also used to output the data and/or information processed by the processor, so that as in the second aspect, or in any possible implementation of the second aspect method is executed.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the computer instructions are run on a computer, the first aspect, or any possible The method in the implementation is executed.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the computer instructions are run on a computer, the second aspect, or any possible The method in the implementation is executed.
  • a computer program product includes computer program code, when the computer program code is run on a computer, the first aspect, or any possible implementation of the first aspect The method in the method is executed.
  • a computer program product includes computer program code, when the computer program code runs on a computer, the second aspect, or any possible implementation of the second aspect The method in the method is executed.
  • FIG. 1 is a schematic diagram of a communication system architecture applicable to the present application.
  • FIG. 1 is a separation architecture of a network device (for example, a base station) applicable to this application.
  • a network device for example, a base station
  • (a) of FIG. 2 is the control plane protocol stack of the CU-DU separation architecture.
  • (b) of FIG. 2 is the user plane protocol stack of the CU-DU separation architecture.
  • FIG. 3 is a schematic diagram of a CU-CP and CU-UP separation architecture.
  • FIG. 4 is a schematic diagram of a unicast-multicast hybrid mechanism.
  • Fig. 5 is a schematic diagram of NC functions in different positions of the protocol stack.
  • Fig. 6 is a schematic flowchart of a method for negotiating network coding provided by the present application.
  • Fig. 7 is an example of the method for negotiating network coding provided by this application.
  • Fig. 8 is another example of the method for negotiating network coding provided by this application.
  • Fig. 9 is another example of the method for negotiating network coding provided by the present application.
  • FIG. 10 is a schematic diagram of the negotiation process of the NC for common services provided by the present application.
  • FIG. 11 is a schematic diagram of the NC negotiation process for the MBS service provided by the present application.
  • Fig. 12 is a schematic block diagram of a communication device provided by the present application.
  • Fig. 13 is a schematic structural diagram of a communication device provided in the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, including but not limited to: the fifth generation (the 5th generation, 5G) system or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) ) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • MTC machine type communication
  • IoT Internet of Things
  • the network device mentioned in this application may be a device with wireless transceiver function, and the network device may be a device that provides wireless communication function services, usually located on the network side, including but not limited to the fifth generation (5th generation, 5G) communication system
  • the next generation base station (gNodeB, gNB) the base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the wireless fidelity (wireless fidelity, WiFi) system etc.
  • Evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB) and base station controller in long term evolution (LTE) system (base station controller, BSC), home base station (for example, home evolved NodeB, or home Node B, HNB), base band unit (base band unit, BBU), transmission reception point (transmission reception point, TRP), transmission point (transmitting point, TP), base transceiver station (base transceiver station, BTS), etc.
  • the network device may also be a wireless controller, a relay station, a vehicle-mounted device, and a wearable device in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • cloud radio access network cloud radio access network, CRAN
  • a base station may be a macro base station, a micro base station, a relay node, a donor node, or a combination thereof.
  • a base station may also refer to a communication module, a modem or a chip configured in the aforementioned equipment or device.
  • the base station can also be a mobile switching center, a device that assumes the function of a base station in D2D, V2X, and M2M communications, a network-side device in a 6G network, and a device that assumes the function of a base station in a future communication system.
  • the base station can support networks with the same or different access technologies, without limitation.
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system or a chip, and the device may be installed in the network device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communication system includes at least one network device 110 .
  • the communication system may further include one or more terminal devices served by the network device 110 , for example, the terminal device 120 and the terminal device 130 .
  • the network coding negotiation method provided in this application may be applied to communication between a network device and a terminal device, for example, between the network device 110 and the terminal device 120 , or between the network device 110 and the terminal device 130 . This method can also be applied to communication between terminal devices, for example, communication between terminal device 120 and terminal device 130 .
  • the method can also be applied to communication between separate functions of a transmitting end or a receiving end performing wireless communication.
  • the function of the network device is separated into a first network element and a second network element, and this method may be applied to communication between the first network element and the second network element.
  • a network device is used as a base station as an example to illustrate the separation architecture of the base station.
  • (b) of FIG. 1 is a separation architecture of a network device (for example, a base station) applicable to this application.
  • the base station is called gNB or ng-eNB, which mainly includes RRC/SDAP/PDCP/RLC/MAC/PHY protocol layers.
  • gNB is uniformly used to represent a base station.
  • the gNBs are connected through the Xn interface.
  • gNB and 5GC are connected through NG interface.
  • the base station can be composed of a centralized unit (CU) and a distributed unit (DU), that is, the functions of the base station are split, and some functions of the base station are deployed in one CU, and the remaining functions are deployed in the DU.
  • Multiple DUs share one CU, which can save costs and facilitate network expansion.
  • the segmentation of CU and DU can be divided according to the protocol stack.
  • Radio resource control radio resource control
  • service data adaptation protocol service data adaptation protocol, SDAP
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • the radio link control (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer and physical layer (physical, PHY) layer are deployed in the DU.
  • the CU and DU are connected through the F1 interface.
  • CU represents gNB to connect to core network through NG interface
  • CU represents gNB to connect to other gNB through Xn interface
  • CU can also perform dual connection operation on behalf of gNB to connect with other eNB through X2 port.
  • the protocol stacks of the control plane and the user plane may be shown in FIG. 2 .
  • (a) of FIG. 2 is the control plane protocol stack of the CU-DU separation architecture.
  • (b) of FIG. 2 is a user plane protocol stack of the CU-DU separation architecture.
  • the first network element appearing in the following embodiments of the present application may be a CU, and the second network element may be a DU.
  • the centralized unit CU can also be divided into a control plane (CU-CP) and a user plane (CU-UP), as shown in FIG. 3 .
  • CU-CP control plane
  • CU-UP user plane
  • FIG. 3 is a schematic diagram of a CU-CP and CU-UP separation architecture.
  • the CU-CP is responsible for the control plane functions, mainly including RRC and PDCP corresponding to the control plane, that is, PDCP-C.
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP corresponding to the user plane, that is, PDCP-U.
  • the SDAP is mainly responsible for processing core network data and mapping flows to bearers.
  • PDCP-U is mainly responsible for encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • CU-CP and CU-UP are connected through E1 interface.
  • the CU-CP represents the connection between the gNB and the core network through the NG interface, and the connection between the F1-C and the DU through the F1 interface control plane.
  • the CU-UP is connected to the DU through the F1 interface user plane (namely F1-U).
  • F1-U F1 interface user plane
  • Another possible implementation is that PDCP-C is also in CU-UP.
  • CU The central module of gNB, responsible for functions such as RRC/SDAP, PDCP module and mobility management, as well as the user plane and control plane interaction with DU;
  • DU Distributed module of gNB, responsible for RLC/MAC and PHY modules and scheduling functions;
  • CU-UP The control plane module of the CU, which is responsible for the RRC/PDCP module of the control plane, mobility management, and control plane interaction with the DU;
  • CU-UP The user plane module of the CU, which is responsible for the SDAP and PDCP modules of the user plane and the user plane interaction with the DU.
  • the first network element appearing in the following embodiments of the present application may be the CU-CP, and the second network element may be the CU-UP.
  • the LTE system supports Multimedia Broadcast Multicast Service (MBMS), such as the multicast mechanism based on Multicast Broadcast over Single Frequency Network (MBSFN) and single cell point-to-multipoint (Single Cell- Point to Multi-Point, SC-PTM) mechanism.
  • MBSFN Multicast Broadcast over Single Frequency Network
  • SC-PTM single cell point-to-multipoint
  • the MBMS mechanism based on MBSFN is that all cells in an MBSFN area use MBSFN subframes to broadcast/multicast, requiring synchronization between cells.
  • the SC-PTM mechanism has no synchronization requirement and can perform multicast in individual cells.
  • the base station broadcasts in broadcast messages, such as SIB13 broadcast multicast control channel (Multicast Control Channel, MCCH) configuration information, including repetition period, offset offset, modification period, subframe information, etc. Then the base station multicasts the MBSFN area configuration information MBSFNAreaConfiguration in the MCCH channel, such as including public frame number, subframe number, cycle, physical multicast channel information list PMCH-InfoList and other information, wherein PMCH-InfoList contains each PMCH configuration information , each PMCH corresponds to a list of Temporary Mobile Group Identity (TMGI) and Logical Channel Identity (LCID), where LCID, TMGI and Multicast Traffic Channel (Multicast Traffic Channel, MTCH) One to one correspondence.
  • TMGI Temporary Mobile Group Identity
  • LCID Logical Channel Identity
  • the SC-PTM mechanism introduces a single-cell multicast control channel (Single-Cell Multicast Control CHannel, SC-MCCH) and a single-cell multicast traffic channel (Single-Cell Multicast Traffic CHannel, SC-MTCH), and broadcasts SC-MCCH information through SIB20 Configuration information, including repetition period, offset offset, first subframe, duration and other information.
  • SC-MTCH configuration information is multicast on the SC-MCCH channel, such as TMGI, Group Radio Network Temporary Identifier (Group Radio Network Temporary Identifier, G-RNTI), SC-MTCH scheduling information, etc.
  • the TMGI corresponds to the G-RNTI one by one.
  • the UE obtains the mapping relationship between the application APP or Application and the TMGI through the application layer.
  • the UE listens to the multicast message on the PMCH or SC-MTCH corresponding to the TMGI it is interested in.
  • the multicast service data can be sent to UE through unicast point-to-point (PTP) mode, or can be sent to UE through multicast point-to-multipoint (PTM) mode.
  • PTP point-to-point
  • PTM multicast point-to-multipoint
  • the PTP channel has a corresponding PTP RLC entity
  • the PTM channel has a corresponding PTM RLC entity
  • the anchor points of the two are on the same PDCP entity.
  • the UE can respectively identify whether it is unicast PTP or multicast PTM through the unicast identifier C-RNTI and the multicast identifier G-RNTI.
  • FIG. 5 is a schematic diagram of NC functions in different positions of the protocol stack. As shown in Figure 5, the positions of 14 optional NC functions are shown in Figure 5, respectively option 1-option 14 in Figure 5. As some examples, for different QoS requirements, some data requires high delay, and the location of the NC function may need to be closer to the bottom layer, for example, at the RLC layer or the MAC layer, or between the RLC layer and the MAC layer. Some data may be transmitted in a dual connectivity scenario, and the location of the NC function may be more suitable at the anchor PDCP layer or SDAP layer, or between the PDCP layer and SDAP layer. Therefore, for different UEs, different PDU sessions of different UEs, different bearers of different UEs, and different QoS flows of different UEs, different positions may be used for network coding, that is, flexible network coding.
  • the following describes the method for negotiating a specific position of flexible coding between a CU and a DU, or between a CU-CP and a CU-UP provided by this application.
  • FIG. 6 is a schematic flowchart of a method for negotiating network coding provided by the present application.
  • the first network element receives a first message, the first message is used to request the PDU session of the UE, and the first message includes the QoS information of the PDU session; or, the first message is used to request the MBS session, and the first message includes the MBS Session QoS information.
  • the QoS information describes the forwarding and processing mode of the data in the QoS flow.
  • the QoS information may include a resource type (resource type), a priority level (priority level), a packet delay budget (packet delay budget, PDB) and a packet error rate (packet error rate, PER), and an average packet window ( averaging window) etc.
  • resource type resource type
  • priority level priority level
  • PDB packet delay budget
  • PER packet error rate
  • PER packet error rate
  • an average packet window averaging window
  • the resource type which are guaranteed bit rate (guaranteed bit rate, GBR), delay critical (delay critical) GBR, and non-guaranteed bit rate (ie, non-GBR).
  • the priority level is used to indicate the priority of scheduling resources between QoS flows.
  • the PDB indicates the upper limit of the delay time of a packet (packet) between the UE and the UPF.
  • PER defines an upper bound on the percentage of packet loss independent of congestion.
  • the average packet window defines the duration of guaranteed flow bit rate (guaranteed flow bit rate, GFBR) and maximum flow bit rate (maximum flow bit rate, MFBR).
  • the first network element receives the first message from the core network element.
  • the network element of the core network may be an access and mobility management function (access and mobility management function, AMF) network element or a session management function (session management function, SMF) network element.
  • AMF access and mobility management function
  • SMF session management function
  • the first network element receives the first message from the non-core network element.
  • the first network element receives the first message from the network manager, for example, the network manager may be the first message of operation administration and maintenance (OAM).
  • OAM operation administration and maintenance
  • the first network element sends a second message to the second network element based on the first message, where the second message includes the NC parameters corresponding to the PDU session, or the second message includes the NC parameters corresponding to the MBS session.
  • the second message includes NC parameters corresponding to the PDU session. If the first message is used to request an MBS session, the second message includes NC parameters corresponding to the MBS session.
  • the first network element determines the NC parameters corresponding to the PDU session according to the QoS information of the PDU session; or, the first network element determines the NC parameters corresponding to the MBS session according to the QoS information of the MBS session.
  • the first network element and the second network element may be the sending end and receiving end of uplink communication or downlink communication, for example, the first network element is the sending end of uplink communication or downlink communication, and the second network element is the sending end of uplink communication Or the receiving end of downlink communication.
  • the first network element and the second network element may also be a sending end and a receiving end for performing D2D communication, that is, both the first network element and the second network element are terminal devices.
  • first network element and the second network element may also be the separation function of the sending end in the uplink communication or the downlink communication, or the separation function of the receiving end.
  • first network element and the second network element are separate functions of the base station.
  • the NC parameters corresponding to the PDU session or the MBS session may include NC location indication information and NC granularity, wherein the NC location indication information is used to indicate the first location (or called NC location) where the NC is executed, and the NC granularity is used for Indicates the range of data to execute NC at this first location.
  • the first position may be any one or more of options 1-14 shown in FIG. 5 .
  • those skilled in the art may also set the NC positions in other positions based on the NC positions corresponding to options 1 to 14 given in the present application, which is not limited.
  • Each option in Figure 5 corresponds to an NC position.
  • option 1 is located at the upper layer of the SDAP layer
  • option 2 is located at the SDAP layer, specifically between the QoS flow-to-DRB mapping function of the SDAP layer and the function of adding SDAP headers
  • option 3 is located between the SDAP layer and the PDCP layer
  • Options 4 to 8 are located at the PDCP layer, and so on.
  • the NC positions corresponding to other options can be specifically referred to as shown in FIG. 5 , and details are not described here.
  • the NC granularity can also have various choices.
  • the NC granularity may be UE granularity, PDU session granularity, DRB granularity or QFI granularity.
  • the NC granularity may be MBS session granularity, QFI granularity (or QoS flow granularity), and DRB granularity.
  • the NC granularity specifically indicates that the data range of the NC executed at the NC location is the data of the UE, or in other words, the NC granularity indicates that the NC is executed at the NC location for all data of the UE. .
  • the NC granularity specifically indicates that the data scope of the NC performed at the NC location is the data of a certain PDU session or some PDU sessions of the UE.
  • the NC granularity is QFI granularity
  • the NC granularity specifically indicates that a certain QoS flow of a certain PDU session of the UE is executed at the NC location.
  • NC position is indicated by the NC position indication information in the NC parameter.
  • the NC position may be fixed, that is, for the PDU session of the UE, all DRBs use the same NC position.
  • the NC position may be determined as the position corresponding to option 2 at UE granularity or PDU session granularity.
  • the NC positions may be different, but they are all one of the positions corresponding to options 1-8 shown in FIG. 5 .
  • the NC position is the position corresponding to option 1
  • the NC position is the position corresponding to option 3.
  • the NC positions are the positions corresponding to option 3.
  • QFI granularity is the same.
  • NC location and NC granularity With multiple possibilities for both NC location and NC granularity, the combination of NC location and NC granularity will be very flexible.
  • different NC positions may correspond to different NC granularities, or the same NC position may correspond to different NC granularities, or the same NC position may be fixed to a certain NC granularity, etc., which are not limited.
  • the NC location indication information indicates that the first location is specifically the location corresponding to option 2, and meanwhile, the NC granularity is the PDU session granularity.
  • the UE will perform network coding on the data of all PDU sessions of the UE at the position corresponding to option 2.
  • the NC position indication information For another example, assume that there are two first positions indicated by the NC position indication information, specifically the position corresponding to option 2 (denoted as position 2) and the position corresponding to option 3 (denoted as position 3).
  • the NC granularity is PDU session granularity, and PDU session 1 uses position 2, and PDU session 2 uses position 3.
  • the UE will perform network coding on the data of PDU session 1 at position 2, and perform network coding on the data of PDU session 1 at position 3.
  • the NC location indication information indicates that the first location is the location corresponding to option 2 (that is, location 2), and at the same time, the NC granularity is the QFI granularity.
  • the base station will be in In the position corresponding to option 2, network coding is performed on the data of a certain QoS flow of the UE.
  • the NC granularity may be MBS session granularity, QFI granularity (or QoS flow granularity), and DRB granularity.
  • the NC granularity is the MBS session granularity
  • the NC granularity is specifically used to indicate that the NC is executed at the NC position for the data of the MBS session;
  • the data of a QoS flow performs NC;
  • the NC granularity is DRB granularity
  • the NC granularity is specifically used to indicate the NC location to perform NC for the data mapped to one or some DRBs of the MBS session.
  • the NC parameters also include one or more of the following parameters:
  • NC type size of system data packets, number of system data packets, number of redundant data packets, coding coefficient, size of coding block, number of coded data packets or code rate, convolution depth, limited number of NC operations
  • size of the domain and the maximum number of data packets that can participate in NC The size of the domain and the maximum number of data packets that can participate in NC.
  • the NC type may be a fountain code, a block code, or a convolutional code, or the like
  • the network coding type may be a fountain code, a block code, or a convolutional code, or the like.
  • the NC parameter may further include NC activation indication information and first time information, and/or, NC deactivation indication information and second time information.
  • the NC activation instruction information and the first time information are used to indicate that the NC is activated at the first time indicated by the first time information
  • the NC deactivation indication information and the second time information, the NC deactivation indication information and the second time information are used to indicate that the NC is deactivated at the second time indicated by the second time information.
  • the NC parameter in the second message sent by the first network element to the second network element does not include the NC activation indication information and the first time information, and/or, the NC deactivation indication information and the first time information Two time information, but the second network element sends a feedback message to the first network element after receiving the second message, the feedback message includes NC activation indication information and first time information, and/or, NC deactivation indication information and second time information, as in step 240.
  • the first network element receives a feedback message from the second network element, where the feedback message includes NC activation indication information and first time information, and/or NC deactivation indication information and second time information.
  • the second network element notifies the first network element of the activation or deactivation of the NC function and the time of activation or deactivation.
  • the method 200 further includes step 250 .
  • the second network element and the first network element perform data communication according to the NC parameter.
  • the data transmitted between the first network element and the second network element is network coded according to the NC parameters.
  • the first network element receives the first message from the network side, the first message is used to request the PDU session or MBS session of the UE, the first message Contains the QoS information of the PDU session or MBS session.
  • the first network element sends a second message to the second network element according to the QoS information of the PDU session or the QoS information of the MBS session.
  • the NC parameter in the message performs network coding on the data in the corresponding data range (specifically, the data range corresponding to the NC granularity) between the first network element and the second network element, so as to realize the network coding between the first network element and the second network element.
  • FIG. 7 is an example of a method for negotiating network coding provided by the present application.
  • the first network element may be a core network (core network, CN) network element
  • the second network element may be a UE.
  • NC parameters (or considered as NC-related configurations) are negotiated between the core network and the UE through NAS messages.
  • the CN sends a NAS message to the UE, where the NAS message is used to notify uplink and/or downlink NC parameters.
  • the NAS message may be a PDU session establishment accept (PDU session establishment accept) message.
  • the NAS message is an example of the above-mentioned first message.
  • the NAS message is used to notify uplink and/or downlink NC configuration, and the NC configuration includes NC parameters.
  • the NC parameters include at least NC location indication information and NC granularity.
  • the NC location indication information is used to indicate the first location where the NC is executed
  • the NC granularity is used to indicate the range of data where the NC is executed at the first location.
  • the NC parameters may also include other parameters related to the NC, such as NC type, size of system data packets, number of system data packets, number of redundant data packets, encoding coefficient, size of encoding block, encoding One or more of the number of data packets or code rate, convolution depth, finite field size of NC operation, and the maximum number of data packets that can participate in NC is not limited.
  • NC configuration acknowledgment (NC configuration acknowledgment, ACK) message to the network element of the core network according to the NAS message.
  • NC configuration confirmation message is an example of the second message above.
  • the UE receives downlink data or sends uplink data by using the NC parameter notified in the first message.
  • the UE receives downlink data from the network side according to the NC parameter. Specifically, the UE decodes the received downlink data according to the first position indicated by the NC parameter (or called the NC position) and the NC granularity. If the process shown in Figure 7 is applied to the uplink, the UE sends uplink data to the network side according to the NC parameters. Specifically, according to the NC position and NC granularity indicated by the NC parameter, the UE performs network coding on the uplink data to be sent to the network side, and sends the coded uplink data.
  • FIG. 8 is another example of the method for negotiating network coding provided by the present application.
  • the gNB sends an RRC message to the UE, and the RRC message is used to notify uplink and/or downlink NC parameters.
  • the RRC message is an example of the above-mentioned first message.
  • the gNB may broadcast NC parameters.
  • the NC parameters include at least NC location indication information and NC granularity.
  • the NC parameters may also include other NC-related parameters.
  • reference may be made to the description in step 310, and details are not repeated here.
  • the UE replies an NC configuration confirmation message to the gNB, as in step 420 .
  • the UE sends an NC configuration confirmation message to the gNB.
  • NC configuration confirmation message is an example of the above-mentioned second message.
  • the UE does not need to reply to the gNB.
  • the UE receives downlink data or sends uplink data by using the NC parameters notified in the first message.
  • the UE decodes the received downlink data from the gNB according to the NC location and NC granularity indicated by the NC parameter. Or, according to the NC position and NC granularity indicated by the NC parameter, the UE performs network coding on the uplink data to be sent to the network side, and sends the coded uplink data.
  • the network side notifies the UE of the NC parameters used in uplink and/or downlink.
  • the UE may also notify the network side of the NC configuration adopted by the PDU session (or all PDU sessions) to be established, which will be described below with reference to FIG. 9 .
  • FIG. 9 is another example of the method for negotiating network coding provided by the present application.
  • the UE sends an RRC message to the gNB, where the RRC message is used to notify the UE of NC parameters of one or more PDU sessions.
  • the RRC message may contain one or more PDU session identifiers, and the one or more PDU session identifiers are used to indicate a PDU session using network coding.
  • the NC parameters at least include NC position and NC granularity.
  • the NC parameters may also include other NC-related parameters.
  • the gNB replies an NC configuration confirmation message to the UE, as in step 520 .
  • the gNB sends an NC configuration confirmation message to the UE.
  • the gNB sends downlink data to the UE or receives uplink data from the UE according to the NC parameter.
  • the uplink data or downlink data is network coded using the NC parameters.
  • the method for negotiating network coding in the present application may also be applicable to related configurations of negotiating network coding between separation functions of network side devices.
  • the following will describe in detail with reference to FIG. 10 and FIG. 11 .
  • the base station refers to the gNB-CU.
  • the base station refers to gNB-CU-CP. The details will not be repeated in the following embodiments.
  • FIG. 10 is a schematic diagram of the negotiation process of the NC for common services provided by the present application.
  • the UE sends a NAS message to the AMF of the core network through the base station, and the NAS message is used to request establishment of a PDU session.
  • the NAS message may be a PDU session establishment request (PDU session establishment request) message.
  • the base station includes the UE's NAS message in the NG interface message and sends it to the AMF.
  • the NG interface message may be an uplink NAS transport (uplinkNAS transport) message of the NG interface.
  • the AMF After the AMF obtains the relevant parameters of the PDU session, it sends the NG interface application protocol (NG application protocol, NGAP) message to the base station through the NG interface, and the NGAP message includes the identifier of the UE on the NG interface, the PDU session identifier, the QFI identifier, and the corresponding QoS parameters etc.
  • NG application protocol NG application protocol, NGAP
  • the NGAP message may specifically be a PDU session resource establishment request message.
  • the base station determines NC parameters according to the information obtained from the AMF.
  • the base station determines the mapping relationship between QFI and DRB, the granularity of the NC to be executed, the NC location, and other NC parameters according to the information obtained from the AMF.
  • the NC granularity may be UE granularity, PDU session granularity, QFI granularity or DRB granularity.
  • the position of the NC may be any one or more of options 1-14 in Fig. 5, and may also be other positions.
  • the NC position is located in gNB-CU-UP, specifically, the position corresponding to options 1-8 in FIG. 5 .
  • the NC granularity may be UE granularity, PDU session granularity, DRB granularity or QFI granularity.
  • the gNB-CU-CP sends an E1 interface bearer context setup request (bearer context setup request) message to the gNB-CU-UP, where the bearer context setup request message includes the UE identifier, the PDU session identifier, the DRB identifier, the QFI identifier, and NC parameters.
  • the bearer context establishment request message includes the UE identifier and corresponding NC parameters.
  • the UE ID is used to indicate UE#1, it indicates that network coding is performed on the data of UE#1 according to the NC parameter.
  • the bearer context establishment request message includes UE identifier, PDU session identifier and corresponding NC parameters.
  • the UE identifier is used to indicate UE#2
  • the PDU session identifier is used to indicate PDU session #1, which means that the data of PDU session #1 of UE#2 is network coded according to the NC parameter.
  • the bearer context establishment request message includes UE ID, PDU session ID, DRB ID and corresponding NC parameters.
  • the UE identifier is used to indicate UE#3
  • the PDU session identifier is used to indicate PDU session #1
  • the DRB identifier is used to indicate DRB#1, which means that the PDU session #1 of UE#3 is mapped to DRB# according to the NC parameter. 1 for network coding.
  • the bearer context establishment request message includes UE ID, PDU session ID, DRB ID, QFI ID and corresponding NC parameters.
  • the UE identifier is used to indicate UE#4
  • the PDU session identifier is used to indicate PDU session #2
  • the DRB identifier is used to indicate DRB#1
  • the QFI identifier is used to indicate QoS flow #1, which means that UE#4 is
  • the data of PDU session #2 mapped to QoS flow #1 of DRB #1 is network encoded.
  • the gNB-CU-UP sends a bearer context establishment request confirmation message to the gNB-CU-CP.
  • a UE context is established between the gNB-CU-UP and the gNB-CU-CP.
  • the NC position is located in the gNB-DU, specifically, the position corresponding to option 9-14 in FIG. 5 .
  • the gNB-CU-CP and the gNB-CU-UP establish a bearer context.
  • gNB-CU-CP and gNB-CU-UP establish a bearer context through a bearer context setup request (bearer context setup request) message and a bearer context setup response (bearer context setup response) message.
  • the gNB-CU-CP sends a UE context setup request (for example, UE context setup request) message to the gNB-CU-UP.
  • UE context setup request for example, UE context setup request
  • the UE context establishment request message includes UE identifier, PDU session identifier, DRB identifier or QFI identifier and corresponding NC parameters.
  • the UE identifier here can be, for example, gNB-CU UE F1AP ID or gNB-DU UE F1AP ID.
  • F1AP represents the F1 interface application protocol (F1 application protocol).
  • the gNB-CU-UP sends a UE context establishment request confirmation (for example, UE context setup response) message to the gNB-CU-CP.
  • UE context establishment request confirmation for example, UE context setup response
  • the NC location of some UE data is located in gNB-CU-UP, and the NC location of some data is located in gNB-DU.
  • case 3 is applicable to DRB granularity or QFI granularity.
  • the gNB-CU-CP sends a bearer context establishment request message to the gNB-CU-UP.
  • the gNB-CU-UP sends a bearer context establishment request confirmation message to the gNB-CU-CP.
  • the gNB-CU-CP sends a UE context establishment request message to the gNB-CU-UP.
  • the gNB-CU-UP sends a UE context establishment request confirmation message to the gNB-CU-CP.
  • steps 610-611 reference may be made to the aforementioned steps 604-605, and for steps 612-613, reference may be made to the aforementioned steps 608-609, which will not be repeated here.
  • the gNB-CU-CP replies an NGAP message to the AMF, and the NGAP message may be, for example, a PDU session resource establishment request response message.
  • the NC negotiation process corresponding to Case 2 may be used.
  • the negotiation process corresponding to case 3 can be adopted.
  • the process provided in Figure 10 can realize the NC negotiation between gNB-CU-CP and gNB-CU-UP, or gNB-CU and gNB-DU, and then realize different granularities and different locations of UE data.
  • Flexible NC can realize the NC negotiation between gNB-CU-CP and gNB-CU-UP, or gNB-CU and gNB-DU, and then realize different granularities and different locations of UE data.
  • FIG. 11 is a schematic diagram of the NC negotiation process for the MBS service provided by the present application.
  • the AMF sends an NG interface message to the base station (gNB-CU or gNB-CU-CP), where the NG interface message is used to request establishment of an MBS session.
  • the base station gNB-CU or gNB-CU-CP
  • the NG interface message may be an MBS session setup request (MBS session setup request) message.
  • MBS session setup request MBS session setup request
  • the NG interface message includes the MBS session identifier, corresponding user plane transport network layer (transport network layer, TNL) information, corresponding QoS parameters, and the like.
  • the MBS session identifier may be a temporary mobile group identity (TMGI), or an MBS session ID, or a TMGI+MBS session ID.
  • TMGI temporary mobile group identity
  • the TNL information includes a transport layer address, that is, an (internet protocol, IP) address and a user plane tunneling protocol endpoint identifier (GPRS tunneling protocol tunnel endpoint identifier, GTP-TEID).
  • GPRS means general packet radio service (general packet radio service).
  • the base station determines the NC parameter of the MBS session according to the QoS parameter of the MBS session.
  • the NC parameters of the MBS session include NC granularity and NC location, and other NC parameters.
  • the NC granularity may be MBS session granularity, QoS flow granularity, or DRB granularity.
  • the position of the NC may be any one or more of options 1-14 in Fig. 5, and may also be other positions.
  • the NC position is located in gNB-CU-UP, specifically, the position corresponding to options 1-8 in FIG. 5 .
  • the gNB-CU-CP sends the first E1AP message to the gNB-CU-UP.
  • the first E1AP message may be an MBS session establishment request message.
  • the first E1AP message includes the MBS session identifier and corresponding NC parameters. In addition, it also includes TNL information on the gNB-CU-CP side.
  • the gNB-CU-UP sends the second E1AP message to the gNB-CU-CP.
  • the second E1AP message may be an MBS session setup response (MBS session setup response) message.
  • MBS session setup response MBS session setup response
  • the second E1AP message includes the MBS session identifier. In addition, it also contains TNL information on the gNB-CU-UP side.
  • An MBS session is established between the gNB-CU-UP and the gNB-CU-CP.
  • the gNB-CU-CP sends an MBS session establishment request message to the gNB-DU, and the MBS session establishment request message includes the MBS session identifier and the TNL information on the gNB-CU-CP side.
  • the gNB-DU sends an MBS session establishment reply message to the gNB-CU-CP, and the MBS session establishment reply message includes the MBS session identifier and the TNL information on the gNB-DU side.
  • the NC position is located in the gNB-DU, specifically, the position corresponding to options 9-14 in FIG. 7 .
  • the gNB-CU-CP and the gNB-CU-UP establish an MBS session.
  • step 706 reference may be made to the description in step 605, and details are not repeated here.
  • the gNB-CU-CP sends the first F1 interface message to the gNB-CU-UP.
  • the first F1 interface message may be an MBS session establishment request message, which includes an MBS session identifier and corresponding NC parameters.
  • MBS session identifier an MBS session identifier and corresponding NC parameters.
  • it also includes TNL information on the gNB-CU-CP side.
  • the gNB-CU-UP sends a second F1 interface message to the gNB-CU-CP.
  • the second F1 interface message may be an MBS session establishment request reply message.
  • the NC location of part of the data of the MBS session is located in gNB-CU-UP, and the NC location of part of the data is located in gNB-DU.
  • the gNB-CU-CP sends a first E1AP message to the gNB-CU-UP, where the first E1AP message may be an MBS session establishment request message.
  • the gNB-CU-UP sends a second E1AP message to the gNB-CU-CP, where the second E1AP message may be an MBS session establishment request response message.
  • the gNB-CU-CP sends the first F1AP message to the gNB-CU-UP.
  • the gNB-CU-UP sends the second F1AP message to the gNB-CU-CP.
  • steps 709-710 reference may be made to the aforementioned steps 703-704, and for steps 711-712, reference may be made to the aforementioned steps 707-708, which will not be repeated here.
  • the gNB-CU-CP replies an NGAP message to the AMF, and the NGAP message may be, for example, an MBS session establishment request response message.
  • the process provided in Figure 11 can realize NC negotiation of E1 interface and F1 interface, and then realize flexible NCs for different granularities and different locations of MBS sessions.
  • FIG. 12 is a schematic block diagram of a communication device provided by the present application.
  • the communication device 1000 includes a processing unit 1100 , a receiving unit 1200 and a sending unit 1300 .
  • the communication device 1000 may correspond to the first network element in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a first message, the first message is used to request the PDU session of the user equipment UE, the first message includes the QoS information of the PDU session, or the first message is used to request For an MBS session, the first message includes QoS information of the MBS session;
  • the sending unit 1300 is configured to send a second message to a second network element based on the first message, the second message includes the network coding NC parameter corresponding to the PDU session, or the second message includes the NC parameters corresponding to the MBS session,
  • the NC parameters include NC position indication information and NC granularity
  • the NC position indication information is used to indicate the first position where the NC is executed
  • the NC granularity is used to indicate the data range of the NC execution at the first position .
  • the processing unit 1100 is configured to determine the NC parameter corresponding to the PDU session according to the QoS information of the PDU session.
  • the processing unit 1100 is configured to determine the NC parameter corresponding to the MBS session according to the QoS information of the MBS session.
  • the NC parameter corresponding to the PDU session includes the NC granularity
  • the NC granularity is UE granularity
  • the second message includes the UE identifier of the UE and the NC parameters, wherein the UE granularity indicates that NC is performed on the data of the UE at the first position; or ,
  • the NC granularity is a PDU session granularity
  • the second message includes the UE identifier of the UE, the identifier of the PDU session, and the NC parameters, wherein the PDU session granularity indicates that at the first position, the The data of the PDU session of the UE performs NC; or,
  • the NC granularity is DRB granularity
  • the second message includes the UE identifier of the UE, the identifier of the PDU session, the DRB identifier, and the NC parameters, wherein the DRB granularity indicates that in the first position performing NC for the UE's data mapped to the first DRB identified by the DRB identifier; or,
  • the NC granularity is QFI granularity, the UE identifier of the UE, the identifier of the PDU session, the QFI identifier, the DRB identifier and the NC parameters contained in the second message, wherein the QFI granularity is represented in the The first position performs NC for the data of the QoS flow identified by the QFI of the UE.
  • the NC parameters corresponding to the MBS session include NC granularity
  • the NC granularity is MBS session granularity
  • the second message includes the identifier of the MBS session and the NC parameters, wherein the MBS session granularity indicates that data execution for the MBS session at the first position NC; or,
  • the NC granularity is DRB granularity
  • the second message includes the identifier of the MBS session, the DRB identifier and the NC parameters, wherein the DRB granularity represents the mapping for the MBS session at the first location Perform NC on data to the first DRB identified by the DRB identifier; or,
  • the NC granularity is QFI granularity
  • the second message includes the identifier of the MBS session, the QFI identifier, the DRB identifier, and the NC parameters, wherein the QFI granularity indicates that the MBS session at the first location
  • the NC parameters also include one or more of the following:
  • NC activation indication information and first time information are used to indicate that the NC is activated at the first time indicated by the first time information; and/or,
  • NC deactivation indication information and second time information where the NC deactivation indication information and the second time information are used to indicate that the NC is deactivated at the second time indicated by the second time information.
  • the receiving unit 1200 is further configured to receive a feedback message from the second network element, where the feedback message includes NC activation indication information and first time information, and/or, NC deactivation indication information and second time information, wherein,
  • the NC activation indication information and the first time information are used to indicate that the NC function of the PDU session or MBS session is activated at the first time indicated by the first time information;
  • the NC deactivation indication information and the second time information are used to indicate that the NC function of the PDU session or the MBS session is deactivated at the second time indicated by the second time information.
  • the NC parameters also include one or more of the following:
  • NC type size of system data packets, number of system data packets, number of redundant data packets, coding coefficient, size of coding block, number of coded data packets or code rate, convolution depth, limited number of NC operations
  • size of the domain and the maximum number of data packets that can participate in NC The size of the domain and the maximum number of data packets that can participate in NC.
  • the receiving unit 1200 and the sending unit 1300 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the first network element except for sending and receiving actions.
  • the receiving unit 1200 is configured to perform an action of receiving
  • the sending unit 1300 is configured to perform an action of sending.
  • the processing unit 1100 performs step 230
  • the receiving unit 1200 performs the receiving operation of step 210 and step 240 (optional steps)
  • the sending unit 1300 performs the sending operation of step 220 .
  • the communication device 1000 may correspond to the second network element in this embodiment of the present application.
  • each unit of the communication device 1000 is used to realize the following functions:
  • the receiving unit 1200 is configured to receive a second message from the first network element, the second message includes the network coding NC parameter corresponding to the PDU session, or the second message includes the NC parameter corresponding to the MBS session parameter,
  • the NC parameters include NC position indication information and NC granularity
  • the NC position indication information is used to indicate the first position where the NC is executed
  • the NC granularity is used to indicate the data range of the NC execution at the first position .
  • the processing unit 1100 is configured to receive data from the first network element or send data to the first network element according to the second message, the data is network coded by using the NC parameters.
  • the sending unit 1300 is further configured to send a feedback message to the first network element, where the feedback message includes NC activation indication information and first time information, and/or, the NC deactivation indication information and second time information, wherein the NC activation indication information and the first time information are used to indicate that the NC function of the PDU session or MBS session is activated at the first time indicated by the first time information ;
  • the NC deactivation indication information and the second time information are used to indicate that the NC function of the PDU session or the MBS session is deactivated at the second time indicated by the second time information.
  • the NC parameter corresponding to the PDU session includes the NC granularity
  • the NC granularity is UE granularity
  • the second message includes the UE identifier of the UE and the NC parameters, wherein the UE granularity indicates that NC is performed on the data of the UE at the first position; or ,
  • the NC granularity is a PDU session granularity
  • the second message includes the UE identifier of the UE, the identifier of the PDU session, and the NC parameters, wherein the PDU session granularity indicates that at the first position, the The data of the PDU session of the UE performs NC; or,
  • the NC granularity is DRB granularity
  • the second message includes the UE identifier of the UE, the identifier of the PDU session, the DRB identifier, and the NC parameters, wherein the DRB granularity indicates that in the first position performing NC for the UE's data mapped to the first DRB identified by the DRB identifier; or,
  • the NC granularity is QFI granularity, the UE identifier of the UE, the identifier of the PDU session, the QFI identifier, the DRB identifier and the NC parameters contained in the second message, wherein the QFI granularity is represented in the The first position performs NC for the data of the QoS flow identified by the QFI of the UE.
  • the NC parameters corresponding to the MBS session include NC granularity
  • the NC granularity is MBS session granularity
  • the second message includes the identifier of the MBS session and the NC parameters, wherein the MBS session granularity indicates that data execution for the MBS session at the first position NC; or,
  • the NC granularity is DRB granularity
  • the second message includes the identifier of the MBS session, the DRB identifier and the NC parameters, wherein the DRB granularity represents the mapping for the MBS session at the first location Perform NC on data to the first DRB identified by the DRB identifier; or,
  • the NC granularity is QFI granularity
  • the second message includes the identifier of the MBS session, the QFI identifier, the DRB identifier and the NC parameters, wherein the QFI granularity indicates that the MBS session at the first location
  • the NC parameters also include one or more of the following:
  • NC type size of system data packets, number of system data packets, number of redundant data packets, coding coefficient, size of coding block, number of coded data packets or code rate, convolution depth, limited number of NC operations
  • size of the domain and the maximum number of data packets that can participate in NC The size of the domain and the maximum number of data packets that can participate in NC.
  • the receiving unit 1200 and the sending unit 1300 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the processing unit 1100 is configured to perform processing and/or operations implemented internally by the second network element except for sending and receiving actions.
  • the receiving unit 1200 is configured to perform an action of receiving
  • the sending unit 1300 is configured to perform an action of sending.
  • the receiving unit 1200 performs the receiving operation in step 220
  • the sending unit 1300 performs the sending operation in step 240 (optional step).
  • FIG. 13 is a schematic structural diagram of a communication device provided by the present application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the communication device 10 executes the method described in each method embodiment of the present application. Processing performed by the first network element or the second network element.
  • the processor 11 may have the functions of the processing unit 1100 shown in FIG. 12
  • the communication interface 13 may have the functions of the receiving unit 1200 and/or the sending unit 1300 shown in FIG. 12 .
  • the processor 11 may be used to perform processing or operations internally performed by the communication device, and the communication interface 13 is used to perform sending and/or receiving operations by the communication device.
  • the communication device 10 may be the first network element in the method embodiment.
  • the communication interface 13 may be a transceiver. Transceivers may include receivers and/or transmitters.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in the first network element.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • the communication device 10 may be the second network element in the method embodiment.
  • the communication interface 13 may be a transceiver. Transceivers may include receivers and/or transmitters.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication device 10 may be a chip (or chip system) installed in the second network element.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • the dotted box behind the device indicates that there may be more than one device.
  • the foregoing first network element and the second network element are separate functions of a communication device (for example, a radio access network device).
  • the first network element is a centralized unit CU of the radio access network device
  • the second network element is a distributed unit DU of the radio access network device
  • the first network element is the control plane CU-CP of the centralized unit of the radio access network equipment
  • the second network element is the user plane CU-UP of the centralized unit of the radio access network equipment
  • the first network element is the control plane CU-CP of the centralized unit of the radio access network equipment
  • the second network element is the distributed unit DU of the radio access network equipment and the user plane CU-UP of the centralized unit.
  • the method for negotiating network coding between network elements of the present application is also applicable to the W1 interface of the CU-DU separation architecture of the LTE system.
  • the memory and the processor in the foregoing apparatus embodiments may be physically independent units, or the memory and the processor may also be integrated together, which is not limited herein.
  • the present application also provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on the computer, the method embodiments of the present application are executed by the first network element The operations and/or processing are performed.
  • the present application also provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on the computer, the operations performed by the second network element in each method embodiment of the present application are and/or processing is performed.
  • the present application also provides a computer program product, the computer program product includes computer program codes or instructions, and when the computer program codes or instructions are run on the computer, the operations performed by the first network element in each method embodiment of the present application and/or processing is performed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions. When the computer program codes or instructions are run on the computer, the operations performed by the second network element in each method embodiment of the present application and/or or processing is performed.
  • the present application also provides a chip, the chip includes a processor, a memory for storing computer programs is provided independently of the chip, and the processor is used for executing the computer programs stored in the memory, so that the device installed with the chip executes The operation and/or processing performed by the first network element in any one method embodiment.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may further include the memory.
  • the present application also provides a chip, the chip includes a processor, the memory for storing computer programs is set independently of the chip, the processor is used for executing the computer programs stored in the memory, so that the device installed with the chip executes any Operations and/or processing performed by the second network element in the method embodiment.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface, or an interface circuit or the like.
  • the chip may further include the memory.
  • processors there may be one or more processors, one or more memories, and one or more memories.
  • the present application also provides a communication device (for example, it may be a chip or a chip system), including a processor and a communication interface, the communication interface is used to receive (or be referred to as input) data and/or information, and will receive The received data and/or information are transmitted to the processor, and the processor processes the data and/or information, and the communication interface is also used to output (or be referred to as output) the data and/or processed by the processor or information, so that the operation and/or processing performed by the first network element in any one method embodiment is performed.
  • a communication device for example, it may be a chip or a chip system
  • the communication interface is used to receive (or be referred to as input) data and/or information, and will receive The received data and/or information are transmitted to the processor, and the processor processes the data and/or information, and the communication interface is also used to output (or be referred to as output) the data and/or processed by the processor or information, so that the operation and/or processing performed by the first network element in any one
  • the present application also provides a communication device (for example, it may be a chip or a chip system), including a processor and a communication interface, the communication interface is used to receive (or be referred to as input) data and/or information, and the received The data and/or information are transmitted to the processor, and the processor processes the data and/or information, and the communication interface is also used to output (or be referred to as output) the data and/or information processed by the processor , so that the operation and/or processing performed by the second network element in any one method embodiment is performed.
  • a communication device for example, it may be a chip or a chip system
  • the communication interface is used to receive (or be referred to as input) data and/or information, and the received
  • the data and/or information are transmitted to the processor, and the processor processes the data and/or information
  • the communication interface is also used to output (or be referred to as output) the data and/or information processed by the processor , so that the operation and/or processing performed by the second network element in any one
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is configured to execute computer programs or instructions stored in the at least one memory, The communication device is made to perform the operation and/or processing performed by the first network element in any one method embodiment.
  • the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is used to execute the computer program or instruction stored in the at least one memory, so that the The communication device executes the operation and/or processing performed by the second network element in any one method embodiment.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the methods provided in the foregoing embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product may comprise one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种网元之间协商网络编码的方法和通信装置,在该方法中,第一网元基于来自于网络侧的第一消息中携带的PDU会话或MBS会话的QoS信息,向第二网元发送第二消息,第二消息用于指示该PDU会话或MBS会话的网络编码参数。网络编码参数至少包含了执行网络编码的位置和粒度,从而可以实现网元之间灵活的网络编码的协商,例如,针对PDU会话或MBS会话实现不同位置、不同粒度的灵活的网络编码。

Description

网元之间协商网络编码的方法和通信装置
本申请要求于2021年10月29日提交中国专利局、申请号为202111274092.9、申请名称为“网元之间协商网络编码的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及网络编码领域,更具体地,涉及一种网元之间协商网络编码的方法和通信装置。
背景技术
在现有的无线通信系统中,业务的可靠性可以通过混合自动重传请求(hybrid automatic repeat request,HARQ)和自动重传请求(automatic repeat request,ARQ)来保证。但是,这种基于反馈的重传机制,一般时延都比较大,例如,空口传输时延、接收端的数据处理时延,以及ACK和NACK信息的反馈时延等都比较大,从而导致系统频谱效率很低。针对上述问题,可以采用网络编码技术对数据包进行网络编码,并通过传输网络编码包来兼顾时延和频谱效率。
由于发送端和接收端之间传输的数据的不同服务质量(quality of service,QoS)需求,可以考虑采用灵活的网络编码,也即,针对不同QoS需求的数据,网络编码功能可以在发送端或接收端中灵活配置。
在这种灵活网络编码的机制下,发送端和接收端之间如何协商网络编码的相关配置,是一个亟需考虑的问题。
发明内容
本申请提供一种网元之间协商网络编码的方法和通信装置,可以实现网元之间灵活网络编码的配置的协商。
第一方面,提供了一种网元之间协商网络编码的方法,该方法包括:
第一网元接收第一消息,第一消息用于请求用户设备UE的协议数据单元PDU会话,第一消息包含PDU会话的服务质量QoS信息,或者,第一消息用于请求多播组播MBS会话,第一消息包含MBS会话的QoS信息;
第一网元基于第一消息,向第二网元发送第二消息,第二消息包括该PDU会话对应的网络编码NC参数,或者,第二消息包括该MBS会话对应的NC参数,
其中,NC参数包含NC位置指示信息和NC粒度,NC位置指示信息用于指示执行NC的第一位置,NC粒度用于指示在第一位置执行NC的数据的范围。
在本申请的技术方案中,第一网元在接收到来自于网络侧的第一消息,第一消息用于请求UE的PDU会话或MBS会话,第一消息中包含PDU会话或MBS会话的QoS信息。 第一网元根据PDU会话的QoS信息或者MBS会话的QoS信息,向第二网元发送第二消息,第二消息中包含PDU会话或MBS会话的NC参数,以使第二网元根据第二消息中的NC参数,对第一网元和第二网元之间的相应数据范围(具体是指NC粒度对应的数据范围)的数据进行网络编码,实现了第一网元和第二网元之间的灵活网络编码的协商。
第一网元和第二网元在可以实现灵活网络编码的协商的情况下,可以对交互的数据采用灵活网络编码,以提高数据传输的性能,例如,提高数据传输的可靠性、降低时延(可以包括空口传输时延以及接收端的处理时延等),以及系统的频谱利用效率等。
结合第一方面,在第一方面的某些实现方式中,第一消息用于请求UE的PDU会话,第一消息包含该PDU会话的QoS信息;
第一网元基于第一消息,向第二网元发送第二消息之前,该方法还包括:
第一网元根据该PDU会话的QoS信息,确定该PDU会话对应的NC参数。
在该方案中,第一网元基于不同PDU会话的QoS信息来确定合适的NC参数,可以基于PDU会话自身的QoS需求,实现灵活网络编码。例如,在合适的位置,以合适的粒度进行网络编码,以提升网络编码的性能增益。
结合第一方面,在第一方面的某些实现方式中,第一消息用于请求MBS会话,第一消息包含该MBS会话的QoS信息;
第一网元基于第一消息,向第二网元发送第二消息之前,该方法还包括:
第一网元根据该MBS会话的QoS信息,确定该MBS会话对应的NC参数。
在该方案中,第一网元基于不同MBS会话的QoS信息来确定合适的NC参数,可以基于MBS会话自身的QoS需求,实现灵活网络编码。例如,在合适的位置,以合适的粒度进行网络编码,以提升网络编码的性能增益。
结合第一方面,在第一方面的某些实现方式中,第一网元基于第一消息,向第二网元发送第二消息之后,该方法还包括:
第一网元接收来自于第二网元的反馈消息,反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,
其中,NC激活指示信息和第一时间信息用于指示该PDU会话或该MBS会话的NC功能在第一时间信息所指示的第一时间被激活;
NC去激活指示信息和第二时间信息用于指示该PDU会话或该MBS会话的NC功能在第二时间信息所指示的第二时间去激活。
在该方案中,第二网元通过反馈消息,向第一网元通知NC功能的激活或去激活,以及激活的时间或去激活的时间,实现了第一网元和第二网元之间对于NC功能开启或关闭的灵活交互。
结合第一方面,在第一方面的某些实现方式中,NC参数还包括如下一项或多项:
NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数。
在该方案中,第一网元通过在第二消息中携带NC参数,可以和第二网元之间灵活交互关于NC功能的相关配置(或者说,NC参数)。
第二方面,提供了一种网元之间协商网络编码的方法,该方法包括:
第二网元接收来自于第一网元的第二消息,第二消息包括PDU会话对应的网络编码NC参数,或者,第二消息包括MBS会话对应的NC参数,
其中,所述NC参数包含NC位置指示信息和NC粒度,NC位置指示信息用于指示执行NC的第一位置,NC粒度用于指示在第一位置执行NC的数据的范围;
第二网元基于第二消息,接收来自于第一网元的数据,或者,向第一网元发送数据,其中,所述数据是采用该NC参数进行网络编码的。
结合第二方面,在第二方面的某些实现方式中第二网元接收来自于第一网元的第一消息之后,该方法还包括:
第二网元向第一网元发送反馈消息,反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,
其中,NC激活指示信息和第一时间信息用于指示该PDU会话或该MBS会话的NC功能在第一时间信息所指示的第一时间被激活;
NC去激活指示信息和第二时间信息用于指示该PDU会话或该MBS会话的NC功能在第二时间信息所指示的第二时间去激活。
上述第二方面的方法或其某个实现方式的方案的技术效果,可以参考第一方面中的说明,这里不予赘述。
在上述第一方面或第二方面的某些实现方式中,该PDU会话对应的NC参数包括NC粒度;
NC粒度为UE粒度,第二消息中包括该UE的UE标识和NC参数,其中,UE粒度表示在第一位置针对该UE的数据执行NC;或者,
NC粒度为PDU会话粒度,第二消息中包含该UE的UE标识、PDU会话的标识和NC参数,其中,PDU会话粒度表示在第一位置针对该UE的该PDU会话的数据执行NC;或者,
NC粒度为DRB粒度,第二消息中包含该UE的UE标识、PDU会话的标识、DRB标识和NC参数,其中,DRB粒度表示在第一位置针对该UE的映射到该DRB标识所标识的第一DRB的数据执行NC;或者,
NC粒度为QFI粒度,第二消息中包含的该UE的UE标识、该PDU会话的标识、QFI标识、DRB标识和NC参数,其中,QFI粒度表示在第一位置针对该UE的该QFI所标识的QoS流的数据执行NC。
在该方案中,针对不同数据的不同QoS需求,第一网元配置不同的NC粒度和/或NC位置,例如,有些数据对时延要求高,NC功能的位置可能需要更靠近底层,例如,位于RLC层或MAC层,或者位于RLC层和MAC层之间。有些数据可能是在双连接场景下传输的,NC功能的位置可能更适合位于锚点PDCP层或SDAP层,或者位于PDCP层和SDAP层之间。由此,针对不同的UE,不同UE的不同PDU会话,不同UE的不同承载,不同UE的不同QoS流,就可能分别采用不同位置进行灵活的网络编码,以提升网络编码的性能增益。
在上述第一方面或第二方面的某些实现方式中,所述MBS会话对应的NC参数包括NC粒度,
NC粒度为MBS会话粒度,第二消息中包含该MBS会话的标识和NC参数,其中, 所述MBS会话粒度表示在第一位置针对所述MBS会话的数据执行NC;或者,
NC粒度为DRB粒度,第二消息中包含所述MBS会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在第一位置针对所述MBS会话的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
NC粒度为QFI粒度,第二消息中包含所述MBS会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在第一位置针对所述MBS会话的所述QFI标识所标识的QoS流的数据执行NC。
在该方案中,针对不同数据的不同QoS需求,第一网元配置不同的NC粒度和/或NC位置,例如,有些数据对时延要求高,NC功能的位置可能需要更靠近底层,例如,位于RLC层或MAC层,或者位于RLC层和MAC层之间。有些数据可能是在双连接场景下传输的,NC功能的位置可能更适合位于锚点PDCP层或SDAP层,或者位于PDCP层和SDAP层之间。由此,针对不同的UE,不同UE的不同PDU会话,不同UE的不同承载,不同UE的不同QoS流,就可能分别采用不同位置进行灵活的网络编码,以提升网络编码的性能增益。
在上述第一方面或第二方面的某些实现方式中,第一网元和第二网元为一个通信设备的分离功能。
该方案可以实现在一个通信设备的分离架构下,该通信设备的不同功能(或者说,功能单元)之间进行灵活网络编码的相关配置的交互。
在上述第一方面或第二方面的某些实现方式中,该通信设备为无线接入网设备,第一网元为无线接入网设备的集中式单元CU,第二网元为无线接入网设备的分布式单元DU,以及,NC位置指示信息用于指示一个或多个位置标识,该一个或多个位置标识对应的位置属于DU可执行网络编码的位置;或者,
第一网元为无线接入网设备的集中式单元的控制面CU-CP,第二网元为无线接入网设备的集中式单元的用户面CU-UP,NC位置指示信息用于指示一个或多个位置标识,该一个或多个位置标识对应的位置属于CU-UP单元可执行网络编码的位置;或者,
第一网元为无线接入网设备的集中式单元的控制面CU-CP,第二网元为无线接入网设备的分布式单元DU和集中式单元的用户面CU-UP,NC位置指示信息用于指示一个或多个位置标识,该一个或多个位置标识对应的位置中的部分位置属于DU可执行网络编码的位置,该一个或多个位置标识对应的位置中的剩余位置属于CU-UP可执行网络编码的位置。
在该方案中,第一网元和第二网元可以为无线接入网设备(例如,基站)的分离功能。例如,第一网元为CU,第二网元为DU,由此可以实现F1接口的灵活网络编码的参数交互。又例如,第一网元为CU-CP,第二网元为CU-UP,由此可以实现E1接口的灵活网络编码的参数交互。
在上述第一方面或第二方面的某些实现方式中,NC参数还包括如下一项或多项:
NC激活指示信息和第一时间信息,NC激活指示信息和第一时间信息用于指示在第一时间信息所指示的第一时间激活所述NC;和/或,
NC去激活指示信息和第二时间信息,NC去激活指示信息和第二时间信息用于指示在第二时间信息所指示的第二时间去激活所述NC。
在该方案中,NC参数包括NC功能的激活或去激活指示信息,以及激活的时间或去激活的时间,实现了第一网元和第二网元之间对于NC功能开启或关闭的灵活交互。
第三方面,提供一种通信装置,所述通信装置具有实现第一方面,或第一方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供一种通信装置,所述通信装置具有实现第二方面,或第二方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面或第一方面的任一可能的实现方式中的方法。
第六方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第二方面或第二方面的任一可能的实现方式中的方法。
第七方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第一方面,或第一方面的任一可能的实现方式中的方法被执行。
第八方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第二方面,或第二方面的任一可能的实现方式中的方法被执行。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面,或第一方面的任一可能的实现方式中的方法被执行。
第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第二方面,或第二方面的任一可能的实现方式中的方法被执行。
第十一方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面,或第一方面的任一可能的实现方式中的方法被执行。
第十二方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第二方面,或第二方面的任一可能的实现方式中的方法被执行。
附图说明
图1的(a)为适用于本申请的一种通信系统架构的示意图。
图1的(b)为适用于本申请的一种网络设备(例如,基站)的分离架构。
图2的(a)为CU-DU分离架构的控制面协议栈。
图2的(b)为CU-DU分离架构的用户面协议栈。
图3为CU-CP和CU-UP分离架构的示意图。
图4为单播组播混合机制的示意图。
图5为NC功能在协议栈的不同位置的示意图。
图6为本申请提供的协商网络编码的方法的示意性流程图。
图7为本申请提供的协商网络编码的方法的一个示例。
图8为本申请提供的协商网络编码的方法的另一个示例。
图9为本申请提供的协商网络编码的方法的又一个示例。
图10为本申请提供的针对普通业务的NC的协商过程示意图。
图11为本申请提供的针对MBS业务的NC的协商过程示意图。
图12为本申请提供的通信装置的示意性框图。
图13为本申请提供的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,包括但不限于:第五代(the 5th generation,5G)系统或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,例如第六代移动通信系统。此外,还可以应用于设备到设备(device to device,D2D)通信,车辆外联(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其它通信系统,等。
本申请中提及的网络设备可以是具有无线收发功能的设备,该网络设备可以是提供无线通信功能服务的设备,通常位于网络侧,包括但不限于第五代(5th generation,5G)通信系统中的下一代基站(gNodeB,gNB)、第六代(6th generation,6G)移动通信系统中的基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等,长期演进(long term evolution,LTE)系统中的演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),传输接收点(transmission reception point,TRP)、发射点(transmitting point,TP)、基站收发台(base transceiver station,BTS)等。或者,网络设备还可以为云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、中继站、车载设备以及可穿戴设备等。此外,基站可以是宏基站、微基站、中继节点、施主节点,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及D2D、V2X、M2M通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不 同接入技术的网络,不作限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在网络设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
参见图1的(a),图1的(a)为适用于本申请的一种通信系统架构的示意图。如图1的(a),该通信系统至少包括一个网络设备110。可选地,该通信系统还可以包括网络设备110所服务的一个或多个终端设备,例如,终端设备120和终端设备130。可选地,本申请提供的协商网络编码的方法可以应用于网络设备和终端设备之间的通信,例如,网络设备110和终端设备120之间,或者网络设备110与终端设备130之间。该方法也可以应用于终端设备之间的通信,例如,终端设备120和终端设备130之间的通信。此外,该方法还可以应用于进行无线通信的发送端或接收端的分离功能之间的通信。例如,网络设备的功能分离为第一网元和第二网元,该方法可以应用于第一网元和第二网元之间的通信。
下面以网络设备为基站为例,说明基站的分离架构。
参见图1的(b),图1的(b)为适用于本申请的一种网络设备(例如,基站)的分离架构。具体地,在5G系统中,基站被称为gNB或ng-eNB,主要包含RRC/SDAP/PDCP/RLC/MAC/PHY协议层。下文中统一用gNB代表基站。
如图1,gNB之间通过Xn接口连接。gNB和5GC通过NG接口连接。基站可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成,即对基站的功能进行拆分,将基站的部分功能部署在一个CU,将剩余功能部署在DU,多个DU共用一个CU,可以节省成本,以及易于网络扩展。CU和DU的切分可以按照协议栈切分。其中一种可能的方式是将无线资源控制(radio resource control,RRC),服务数据适应协议(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(Radio Link Control,RLC)层、介质访问控制(Media Access Control,MAC)层以及物理层(physical,PHY)部署在DU。CU和DU之间通过F1接口连接。CU代表gNB通过NG接口和核心网连接,CU代表gNB通过Xn接口和其他gNB连接,CU还可以代表gNB通过X2口和其他eNB连接执行双连接操作。
在CU-DU分离架构中,控制面和用户面协议栈可以如图2所示。
参见图2的(a),图2的(a)为CU-DU分离架构的控制面协议栈。其中,UE和gNB-DU之间具有Uu空口的RLC/MAC/PHY层,gNB-DU和gNB-CU之间建立了F1接口控制面,gNB-DU通过F1AP帮助UE和gNB-CU交互经过Uu空口PDCP封装的RRC消息。
参见图2的(b),图2的(b)为CU-DU分离架构的用户面协议栈。UE和gNB-DU之间具有Uu空口的RLC/MAC/PHY层,gNB-DU和gNB-CU之间建立F1接口用户面,gNB-DU通过F1接口的用户面GTP-U隧道帮助UE和gNB-CU交互经过Uu空口PDCP/SDAP封装的数据包。
在基站的CU和DU分离的架构下,本申请以下各实施例中出现的第一网元可以为CU,第二网元可以为DU。
进一步地,集中式单元CU还可以划分为控制面(CU-CP)和用户面(CU-UP),如图3所示。
参见图3,图3为CU-CP和CU-UP分离架构的示意图。
如图3,CU-CP负责控制面功能,主要包含RRC和控制面对应的PDCP即PDCP-C。PDCP-C主要负责控制面数据的加解密、完整性保护和数据传输等。CU-UP负责用户面功能,主要包含SDAP和用户面对应的PDCP即PDCP-U。其中,SDAP主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U主要负责数据面的加解密、完整性保护、头压缩、序列号维护和数据传输等。其中,CU-CP和CU-UP通过E1接口连接。CU-CP代表gNB通过NG接口和核心网连接,通过F1接口控制面即F1-C和DU连接。CU-UP通过F1接口用户面(即F1-U)和DU连接。还有一种可能的实现是PDCP-C也在CU-UP。
CU:gNB的中央模块,负责RRC/SDAP、PDCP模块以及移动性管理等功能,以及和DU之间的用户面和控制面交互;
DU:gNB的分布式模块,负责RLC/MAC和PHY模块以及调度等功能;
CU-UP:CU的控制面模块,负责控制面的RRC/PDCP模块,移动性管理,以和DU之间的控制面交互等功能;
CU-UP:CU的用户面模块,负责用户面的SDAP、PDCP模块以及和DU之间的用户面交互等功能。
在基站的CU进一步分离为CU-CP和CU-UP的架构下,本申请以下各实施例中出现的第一网元可以为CU-CP,第二网元可以为CU-UP。
下面介绍本申请中涉及到的多播组播业务。
LTE系统支持多媒体广播组播业务(Multimedia Broadcast Multicast Service,MBMS),比如基于多播广播同频网络(Multicast Broadcast over Single Frequency Network,MBSFN)的组播机制以及单小区点对多点(Single Cell-Point to Multi-Point,SC-PTM)机制。其中基于MBSFN的MBMS机制是一个MBSFN area内的所有小区利用MBSFN子帧进行广播/组播,要求小区间同步。SC-PTM机制没有同步要求,可以在个别小区进行组播。
基于MBSFN的MBMS机制中基站在广播消息中广播,例如SIB13广播组播控制信道(Multicast Control Channel,MCCH)的配置信息,包含重复周期,偏置offset,修改周期,子帧信息等。接着基站在MCCH信道中组播MBSFN区域配置信息MBSFNAreaConfiguration,例如包含公共的帧号、子帧号、周期,物理组播信道信息列表PMCH-InfoList等信息,其中PMCH-InfoList中包含每个PMCH配置信息,每个PMCH对应一组临时移动组标识(Temporary Mobile Group Identity,TMGI)和逻辑信道标识(Logical Channel Identity,LCID)的列表,其中LCID,TMGI和组播业务信道(Multicast Traffic Channel,MTCH)一一对应。SC-PTM机制引入单小区组播控制信道(Single-Cell Multicast Control CHannel,SC-MCCH)和单小区组播业务信道(Single-Cell Multicast Traffic CHannel,SC-MTCH),通过SIB20广播SC-MCCH的配置信息,包含重复周期,偏置offset,首子帧,持续时间duration等信息。接着在SC-MCCH信道中组播SC-MTCH的配置信息,例如TMGI,组无线网络临时标识(Group Radio Network Temporary Identifier,G-RNTI),SC-MTCH的调度信息等。其中TMGI和G-RNTI一一对应。
UE通过应用层获取应用APP或Application和TMGI之间的映射关系。UE收听自己感兴趣的TMGI对应的PMCH或SC-MTCH上收听组播消息。
标准上,3GPP R17将讨论组播单播混合机制,参见图4,图4为单播组播混合机制 的示意图。
如图4,组播业务数据可以通过单播点对点(point to point,PTP)方式发给UE,也可以通过组播点对多点(point to multipoint,PTM)方式发给UE。无论是单播PTP还是组播PTM方式,PTP通道有对应的PTP RLC实体,PTM通道有对应的PTM RLC实体,两者的锚点在相同的PDCP实体上。UE可以通过单播标识C-RNTI和组播标识G-RNTI分别识别是单播PTP还是组播PTM。
在本申请中,涉及将网络编码的功能(或简称为NC功能)配置在用户面协议栈的不同位置,下面结合图5,对NC功能在协议栈的不同位置进行说明。
参见图5,图5为NC功能在协议栈的不同位置的示意图。如图5,图5中示出了14个可选的NC功能的位置,分别如图5中的选项1-选项14。作为一些示例,针对不同的QoS要求,有些数据对时延要求高,NC功能的位置可能需要更靠近底层,例如,位于RLC层或MAC层,或者位于RLC层和MAC层之间。有些数据可能是在双连接场景下传输的,NC功能的位置可能更适合位于锚点PDCP层或SDAP层,或者位于PDCP层和SDAP层之间。由此,针对不同的UE,不同UE的不同PDU会话,不同UE的不同承载,不同UE的不同QoS流,就可能分别采用不同位置进行网络编码,也即,灵活网络编码。
在这种灵活网络编码的机制下,在前面提及的CU-DU分离架构下,CU和DU之间如何交互获知灵活网络编码的位置,或者在CU-CP和CU-UP的分离架构下,CU-CP和CU-UP之间如何交互获知网络编码的位置,是本申请主要关注的问题。
下面介绍本申请提供的CU和DU之间,或者CU-CP和CU-UP之间协商灵活编码具体位置的方法。
参见图6,图6为本申请提供的协商网络编码的方法的示意性流程图。
210、第一网元接收第一消息,第一消息用于请求UE的PDU会话,第一消息中包含PDU会话的QoS信息;或者,第一消息用于请求MBS会话,第一消息中包含MBS会话的QoS信息。
QoS信息描述了QoS流中的数据的转发处理方式。示例性地,QoS信息可以包括资源类型(resource type)、优先级水平(priority level)、分组延迟预算(packet delay budget,PDB)以及分组错误率(packet error rate,PER),以及平均包窗(averaging window)等。其中,资源类型可以有三种选择,分别为保证比特率(guaranteed bit rate,GBR)、延迟苟刻(delay critical)GBR和非保证比特率(即,non-GBR)。优先级水平用于指示在QoS流之间调度资源的优先级。PDB表示分组(packet)在UE和UPF之间延迟时间的上限。PER定义了和拥塞无关的丢包比例的上限。平均包窗定义了保证流比特速率(guaranteed flow bit rate,GFBR)和最大流比特率(maximum flow bit rate,MFBR)的持续时间。
可选地,第一网元接收来自于核心网网元的第一消息。示例性地,核心网网元可以为接入和移动性管理功能(access and mobility management function,AMF)网元或会话管理功能(session management function,SMF)网元。或者,第一网元接收来自于非核心网网元的第一消息。示例性地,第一网元接收来自于网管的第一消息,例如,该网管可以为操作维护管理(operation administration and maintenance,OAM)的第一消息。
220、第一网元基于第一消息,向第二网元发送第二消息,第二消息包含PDU会话对应的NC参数,或者,第二消息包含MBS会话对应的NC参数。
应理解,如果第一消息用于请求PDU会话,则第二消息包含PDU会话对应的NC参数。如果第一消息用于请求MBS会话,则第二消息包含MBS会话对应的NC参数。
230、可选地,第一网元根据PDU会话的QoS信息,确定PDU会话对应的NC参数;或者,第一网元根据MBS会话的QoS信息,确定MBS会话对应的NC参数。
可选地,第一网元和第二网元可以为上行通信或下行通信的发送端和接收端,例如,第一网元为上行通信或下行通信的发送端,第二网元为上行通信或下行通信的接收端。或者,第一网元和第二网元还可以为进行D2D通信的发送端和接收端,也即,第一网元和第二网元均为终端设备。
进一步可选地,第一网元和第二网元还可以为上行通信或下行通信中的发送端的分离功能,或者接收端的分离功能。例如,第一网元和第二网元为基站的分离功能。
可选地,PDU会话或MBS会话对应的NC参数可以包括NC位置指示信息和NC粒度,其中,NC位置指示信息用于指示执行NC的第一位置(或称为NC位置),NC粒度用于指示在该第一位置执行NC的数据的范围。
需要理解的是,第一位置可以为一个或多个。
示例性地,第一位置可以为图5中所示的选项1-14中的任一项或多项。此外,本领域技术人员基于本申请给出的选项1~14对应的NC位置,还可以将NC位置设置在其它的位置,不作限定。
图5中的每一个选项都对应一个NC位置。例如,选项1位于SDAP层的上层;选项2位于SDAP层,具体位于SDAP层的QoS flow到DRB的映射功能与添加SDAP头功能之间;选项3位于SDAP层和PDCP层之间;再例如,选项4~选项8位于PDCP层,等。其它各选项对应的NC位置可以具体参见图5中所示,这里不予赘述。
可选地,NC粒度也可以有多种选择。
以上行通信或下行通信的PDU会话为例,NC粒度可以为UE粒度,PDU会话粒度,DRB粒度或者QFI粒度。以MBS会话为例,NC粒度可以为MBS会话粒度、QFI粒度(或者说,QoS流粒度)、DRB粒度。
以PDU会话为例,若NC粒度为UE粒度,NC粒度具体指示了在NC位置执行NC的数据范围为该UE的数据,或者说,NC粒度指示了在NC位置针对该UE的全部数据执行NC。若NC粒度为PDU会话粒度,NC粒度具体指示了在NC位置执行NC的数据范围为该UE的某个PDU会话或某些PDU会话的数据。若NC粒度为QFI粒度,NC粒度具体指示了在NC位置执行NC的数据范围为该UE的某个PDU会话的某个QoS流。
应理解,NC位置是通过NC参数中的NC位置指示信息来指示的。
示例性地,对于UE粒度或者PDU会话粒度,NC位置可以固定,也即,针对该UE的该PDU会话,所有DRB都采用相同的NC位置。例如,对于UE的PDU会话1,UE粒度或者PDU会话粒度,NC位置可以均确定为选项2对应的位置。
示例性地,对于DRB粒度或者QFI粒度,NC位置可以不一样,但是均为图5中所示的选项1-8对应的位置中的一个。例如,针对DRB1,NC位置为选项1对应的位置,针对DRB2,NC位置为选项3对应的位置。或者,针对DRB1和DRB2,NC位置均为选项3对应的位置。对于QFI粒度也是类似的。
在NC位置和NC粒度都有多种可能的情况下,NC位置和NC粒度的组合将是非常 灵活的。示例性地,不同NC位置可以对应不同的NC粒度,或者,同一个NC位置对应不同的NC粒度,或者,同一个NC位置固定为某个NC粒度等,不作限定。
例如,以PDU会话为例,假设NC位置指示信息指示第一位置具体为选项2对应的位置,同时,NC粒度为PDU会话粒度。以上行通信为例,在一种可能的实现中,UE将在选项2对应的位置,针对UE的所有PDU会话的数据进行网络编码。
又例如,假设NC位置指示信息指示的第一位置有2个,具体为选项2对应的位置(记作位置2)和选项3对应的位置(记作位置3),同时,NC粒度为PDU会话粒度,且PDU会话1采用位置2,PDU会话2采用位置3。以上行通信为例,UE将在位置2对PDU会话1的数据进行网络编码,在位置3对PDU会话1的数据进行网络编码。
再例如,假设NC位置指示信息指示第一位置为选项2对应的位置(即,位置2),同时,NC粒度为QFI粒度,以下行通信为例,在一种可能的实现中,基站将在选项2对应的位置,对该UE的某个QoS流的数据进行网络编码。
在以MBS会话为例,NC粒度可以为MBS会话粒度、QFI粒度(或者说,QoS流粒度)、DRB粒度。
例如,若NC粒度为MBS会话粒度,NC粒度具体用于指示在NC位置针对该MBS会话的数据执行NC;若NC粒度为QFI粒度,NC粒度具体用于指示在NC位置针对该MBS会话的某个QoS流的数据执行NC;若NC粒度为DRB粒度,则NC粒度具体用于指示NC位置针对该MBS会话的映射到某个或某些DRB的数据执行NC。
可选地,NC参数还包括如下参数的一项或多项:
NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数。
示例性地,NC类型可以为喷泉码、分组码或卷积码等,也即,网络编码的类型为喷泉码、分组码或卷积码等。
可选地,在一种实现方式中,NC参数还可以包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息。
其中,NC激活指示信息和第一时间信息用于指示在第一时间信息所指示的第一时间激活NC;
以及,NC去激活指示信息和第二时间信息,NC去激活指示信息和第二时间信息用于指示在第二时间信息所指示的第二时间去激活NC。
在另一种可能的实现中,第一网元向第二网元发送的第二消息中的NC参数不包含NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,而是由第二网元在接收到第二消息之后,向第一网元发送反馈消息,反馈消息中包含NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,如步骤240。
240、第一网元接收来自于第二网元的反馈消息,反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息。
通过这样的方式,第二网元向第一网元通知NC功能的激活或去激活,以及激活或去激活的时间。
可选地,方法200还包括步骤250。
250、第二网元和第一网元根据所述NC参数,进行数据通信。
具体地,第一网元和第二网元之间的传输的数据是根据所述NC参数进行网络编码的。
根据上述流程可知,在本申请提供的协商网络编码的方法中,第一网元在接收到来自于网络侧的第一消息,第一消息用于请求UE的PDU会话或MBS会话,第一消息中包含PDU会话或MBS会话的QoS信息。第一网元根据PDU会话的QoS信息或者MBS会话的QoS信息,向第二网元发送第二消息,第二消息中包含PDU会话或MBS会话的NC参数,以使第二网元根据第二消息中的NC参数,对第一网元和第二网元之间的相应数据范围(具体是指NC粒度对应的数据范围)的数据进行网络编码,实现第一网元和第二网元之间的灵活网络编码的协商。
下面对本申请提供的网元之间协商网络编码的方法进行示例说明。
参见图7,图7为本申请提供的协商网络编码的方法的一个示例。
在图7的示例中,第一网元可以为核心网(core network,CN)网元,第二网元可以为UE。核心网和UE之间通过NAS消息协商NC参数(或认为是NC相关配置)。
310、CN向UE发送NAS消息,NAS消息用于通知上行和/或下行的NC参数。
示例性地,该NAS消息可以为PDU会话建立接受(PDU session establishment accept)消息。换句话说,NAS消息为上述第一消息的一个示例。
可选地,NAS消息用于通知上行和/或下行的NC配置,NC配置包含NC参数。
可选地,NC参数至少包含NC位置指示信息和NC粒度。其中,NC位置指示信息用于指示执行NC的第一位置,NC粒度用于指示在第一位置执行NC的数据的范围。
可选地,NC参数还可以包含NC相关的其它参数,例如,NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数中的一项或多项,不作限定。
320、UE根据NAS消息,向核心网网元回复NC配置确认(NC configuration acknowledgement,ACK)消息。
应理解,该NC配置确认消息为上述第二消息的一个示例。
330、UE采用第一消息中通知的NC参数,接收下行数据,或者发送上行数据。
可选地,如果图7所示的流程应用于上行,UE根据NC参数接收来自于网络侧的下行数据。具体地,UE根据NC参数所指示的第一位置(或称NC位置)和NC粒度,对接收到的下行数据进行解码。如果图7所示流程应用于上行,UE根据NC参数向网络侧发送上行数据。具体地,UE根据NC参数所指示的NC位置和NC粒度,对需要发送给网络侧的上行数据进行网络编码,并发送编码后的上行数据。
参见图8,图8为本申请提供的协商网络编码的方法的另一个示例。
410、gNB向UE发送RRC消息,RRC消息用于通知上行和/或下行的NC参数。
其中,该RRC消息为上述第一消息的一个示例。
可选地,针对MBS会话,gNB可以广播NC参数。
可选地,NC参数至少包含NC位置指示信息和NC粒度。此外,NC参数还可以包含NC相关的其它参数。关于NC参数的说明可以参考步310中的说明,不予赘述。
可选地,UE向gNB回复NC配置确认消息,如步骤420。
420、UE向gNB发送NC配置确认消息。
其中,该NC配置确认消息为上述第二消息的一个示例。
需要说明的是,在gNB广播NC参数的场景下,UE不需要向gNB回复。
430、UE采用第一消息中通知的NC参数,接收下行数据,或者发送上行数据。
具体地,UE根据NC参数所指示的NC位置和NC粒度,对接收到的来自于gNB的下行数据进行解码。或者,UE根据NC参数所指示的NC位置和NC粒度,对需要发送给网络侧的上行数据进行网络编码,并发送编码后的上行数据。
在图7或图8所示的流程中,网络侧通知UE上行和/或下行采用的NC参数。在另一种实现中,UE也可以通知网络侧自己待建立的PDU会话(或者全部的PDU会话)所采用的NC配置,下面结合图9进行说明。
参见图9,图9为本申请提供的协商网络编码的方法的又一个示例。
510、UE向gNB发送RRC消息,RRC消息用于通知UE的一个或多个PDU会话的NC参数。
其中,RRC消息中可以包含一个或多个PDU会话标识,该一个或多个PDU会话标识用于指示采用网络编码的PDU会话。
可选地,NC参数至少包含NC位置和NC粒度。此外,NC参数还可以包含NC相关的其它参数。关于NC参数的说明可以参考步310中的说明,不予赘述。
可选地,gNB向UE回复NC配置确认消息,如步骤520。
520、gNB向UE发送NC配置确认消息。
530、可选地,gNB根据NC参数,向UE发送下行数据或接收来自于UE的上行数据。换句话说,上行数据或下行数据是采用该NC参数进行网络编码的。
以上图7-图9给出了终端设备和网络侧之间协商网络编码的方法的示例性流程。
可选地,如上文所述,本申请的协商网络编码的方法,也可以适用于网络侧设备的分离功能之间协商网络编码的相关配置。下面结合图10和图11进行详细说明。
在本申请以下各实施例中,针对CU-DU分离架构,基站是指gNB-CU。针对CP-UP分离架构,基站是指gNB-CU-CP。以下各实施例中不再赘述。
参见图10,图10为本申请提供的针对普通业务的NC的协商过程示意图。
601、UE通过基站向核心网的AMF发送NAS消息,NAS消息用于请求建立PDU会话。
示例性地,该NAS消息可以为PDU会话建立请求(PDU session establishment request)消息。
基站将UE的NAS消息包含在NG接口消息上发送给AMF。示例性地,该NG接口消息可以为NG接口的上行NAS传输(uplinkNAS transport)消息。
602、AMF获得PDU会话相关参数之后,通过NG接口向基站发送NG接口应用协议(NG application protocol,NGAP)消息,该NGAP消息包含UE在NG接口的标识、PDU会话标识、QFI标识以及对应的QoS参数等。
示例性地,该NGAP消息具体可以为PDU会话资源建立请求消息。
603、基站根据从AMF获取到的信息,确定NC参数。
具体地,基站根据从AMF获取的到信息,确定QFI和DRB的映射关系、执行何种 粒度的NC,以及NC位置,以及其它的NC参数。
可选地,NC粒度可以为UE粒度,PDU会话粒度,QFI粒度或者DRB粒度。
可选地,NC位置可以为图5中的选项1-14中的任一项或多项,还可以为其它位置。
根据NC的位置和NC粒度,可能存在下面3种情况:
情况1
NC位置位于gNB-CU-UP,具体地,如图5中的选项1-8对应的位置。
此时,NC粒度可以为UE粒度,PDU会话粒度,DRB粒度或者QFI粒度。
604、gNB-CU-CP向gNB-CU-UP发送E1接口承载上下文建立请求(bearer context setup request)消息,其中,承载上下文建立请求消息中包含UE标识、PDU会话标识、DRB标识、QFI标识以及NC参数。
上述信元的组合形式,针对不同的NC粒度,形式不同,下面给出几个示例。
(1)UE粒度
承载上下文建立请求消息中包含UE标识和对应的NC参数。
例如,UE标识用于指示UE#1,则表示按照NC参数针对UE#1的数据进行网络编码。
(2)PDU会话粒度
承载上下文建立请求消息中包含UE标识,PDU会话标识和对应的NC参数。
例如,UE标识用于指示UE#2,PDU会话标识用于指示PDU会话#1,则表示按照NC参数对UE#2的PDU会话#1的数据进行网络编码。
(3)DRB粒度
承载上下文建立请求消息中包含UE标识,PDU会话标识,DRB标识和对应的NC参数。
例如,UE标识用于指示UE#3,PDU会话标识用于指示PDU会话#1,DRB标识用于指示DRB#1,则表示按照NC参数对UE#3的PDU会话#1的映射到DRB#1的数据进行网络编码。
(4)QFI粒度
承载上下文建立请求消息中包含UE标识,PDU会话标识,DRB标识,QFI标识和对应的NC参数。
例如,UE标识用于指示UE#4,PDU会话标识用于指示PDU会话#2,DRB标识用于指示DRB#1,QFI标识用于指示QoS流#1,则表示按照NC参数对UE#4的PDU会话#2的映射到DRB#1的QoS流#1的数据进行网络编码。
605、gNB-CU-UP向gNB-CU-CP发送承载上下文建立请求确认消息。
606、gNB-CU-UP和gNB-CU-CP之间建立UE上下文。
情况2
NC位置位于gNB-DU,具体地,如图5中的选项9-14对应的位置。
NC粒度可以参见情况1中的说明,不予赘述。
607、gNB-CU-CP和gNB-CU-UP建立承载上下文。
示例性地,gNB-CU-CP和gNB-CU-UP通过承载上下文建立请求(bearer context setup request)消息和承载上下文建立响应(bearer context setup response)消息建立承载上下文。
608、gNB-CU-CP向gNB-CU-UP发送UE上下文建立请求(例如,UE context setup  request)消息。
其中,UE上下文建立请求消息包含UE标识、PDU会话标识、DRB标识或QFI标识以及对应的NC参数。
与上述情况1中不同,这里的UE标识例如可以为gNB-CU UE F1AP ID或者gNB-DU UE F1AP ID。其中F1AP表示F1接口应用协议(F1application protocol)。
609、gNB-CU-UP向gNB-CU-CP发送UE上下文建立请求确认(例如,UE context setup response)消息。
情况3
UE的部分数据的NC位置位于gNB-CU-UP,以及部分数据的NC位置位于gNB-DU。
需要说明的是,情况3适用于DRB粒度或者QFI粒度。
610、gNB-CU-CP向gNB-CU-UP发送承载上下文建立请求消息。
611、gNB-CU-UP向gNB-CU-CP发送承载上下文建立请求确认消息。
612、gNB-CU-CP向gNB-CU-UP发送UE上下文建立请求消息。
613、gNB-CU-UP向gNB-CU-CP发送UE上下文建立请求确认消息。
其中,步骤610-611可以参考前述步骤604-605,步骤612-613可以参考前述步骤608-609,这里不再赘述。
614、gNB-CU-CP向AMF回复NGAP消息,该NGAP消息例如可以为PDU会话资源建立请求响应消息。
示例性地,针对CU-DU分离架构,可以采用情况2对应的NC协商流程。针对CU-CP和CU-UP分离架构,可以采用情况3对应的协商流程。
如上所述,图10提供的流程,可以实现gNB-CU-CP与gNB-CU-UP,或者gNB-CU与gNB-DU之间的NC协商,进而对UE的数据实现不同粒度以及不同位置的灵活NC。
参见图11,图11为本申请提供的针对MBS业务的NC的协商过程示意图。
701、AMF向基站(gNB-CU或gNB-CU-CP)发送NG接口消息,NG接口消息用于请求建立MBS会话。
示例性地,该NG接口消息可以为MBS会话建立请求(MBSsession setup request)消息。
其中,NG接口消息包含MBS会话标识、对应的用户面传输网络层(transport network layer,TNL)信息以及对应的QoS参数等。
示例性地,MBS会话标识可以为临时移动组标识(temporary mobile group identity,TMGI),或者MBS session ID,或者TMGI+MBS session ID。
TNL信息包含传输层地址,即(internet protocol,IP)地址和用户面隧道协议端点标识(GPRS tunneling protocoltunnel endpoint identifier,GTP-TEID)。其中,GPRS表示通用无线分组业务(general packet radio service)。
702、基站根据MBS会话的QoS参数,确定MBS会话的NC参数。
示例性地,MBS会话的NC参数包括NC粒度和NC位置,以及其它的NC参数。
可选地,NC粒度可以为MBS会话粒度、QoS流粒度、DRB粒度。
可选地,NC位置可以为图5中的选项1-14中的任一项或多项,还可以为其它位置。
根据NC粒度和NC位置,可能存在下面3种情况:
情况1
NC位置位于gNB-CU-UP,具体地,如图5中的选项1-8对应的位置。
703、gNB-CU-CP向gNB-CU-UP发送第一E1AP消息。
示例性地,第一E1AP消息可以为MBS会话建立请求消息。
其中,第一E1AP消息中包含MBS会话标识以及对应的NC参数。此外,还包含gNB-CU-CP侧的TNL信息。
704、gNB-CU-UP向gNB-CU-CP发送第二E1AP消息。
示例性地,第二E1AP消息可以为MBS会话建立回复(MBS session setup response)消息。
其中,第二E1AP消息中包含MBS会话标识。此外,还包含gNB-CU-UP侧的TNL信息。
705、gNB-CU-UP和gNB-CU-CP之间建立MBS会话。
例如,gNB-CU-CP向gNB-DU发送MBS会话建立请求消息,该MBS会话建立请求消息中包含MBS会话标识和gNB-CU-CP侧的TNL信息。gNB-DU向gNB-CU-CP发送MBS会话建立回复消息,该MBS会话建立回复消息中包含MBS会话标识和gNB-DU侧的TNL信息。
情况2
NC位置位于gNB-DU,具体地,如图7中的选项9-14对应的位置。
706、gNB-CU-CP和gNB-CU-UP建立MBS会话。
步骤706可以参考步骤605中的说明,不再赘述。
707、gNB-CU-CP向gNB-CU-UP发送第一F1接口消息。
示例性地,第一F1接口消息可以为MBS会话建立请求消息,其中包含MBS会话标识以及对应的NC参数。此外,还包含gNB-CU-CP侧的TNL信息。
708、gNB-CU-UP向gNB-CU-CP发送第二F1接口消息。
示例性地,第二F1接口消息可以为MBS会话建立请求回复消息。
情况3
MBS会话的部分数据的NC位置位于gNB-CU-UP,以及部分数据的NC位置位于gNB-DU。
709、gNB-CU-CP向gNB-CU-UP发送第一E1AP消息,该第一E1AP消息可以为MBS会话建立请求消息。
710、gNB-CU-UP向gNB-CU-CP发送第二E1AP消息,该第二E1AP消息可以为MBS会话建立请求响应消息。
711、gNB-CU-CP向gNB-CU-UP发送第一F1AP消息。
712、gNB-CU-UP向gNB-CU-CP发送第二F1AP消息。
其中,步骤709-710可以参考前述步骤703-704,步骤711-712可以参考前述步骤707-708,这里不再赘述。
713、gNB-CU-CP向AMF回复NGAP消息,该NGAP消息例如可以为MBS会话建立请求响应消息。
如上所述,图11提供的流程,可以实现E1接口和F1接口的NC协商,进而实现针 对MBS会话的不同粒度以及不同位置的灵活NC。
以上对本申请提供的网元之间协商网络编码的方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图12,图12为本申请提供的通信装置的示意性框图。如图12,通信装置1000包括处理单元1100、接收单元1200和发送单元1300。
可选地,通信装置1000可以对应本申请实施例中的第一网元。
在这些实施例中,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收第一消息,所述第一消息用于请求用户设备UE的PDU会话,所述第一消息包含所述PDU会话的QoS信息,或者,所述第一消息用于请求MBS会话,所述第一消息包含所述MBS会话的QoS信息;
发送单元1300,用于基于所述第一消息,向第二网元发送第二消息,所述第二消息包括所述PDU会话对应的网络编码NC参数,或者,所述第二消息包括所述MBS会话对应的NC参数,
其中,所述NC参数包含NC位置指示信息和NC粒度,所述NC位置指示信息用于指示执行NC的第一位置,所述NC粒度用于指示在所述第一位置执行NC的数据的范围。
可选地,在一个实施例中,处理单元1100,用于根据所述PDU会话的所述QoS信息,确定所述PDU会话对应的NC参数。
可选地,在一个实施例中,处理单元1100,用于根据所述MBS会话的所述QoS信息,确定所述MBS会话对应的NC参数。
可选地,在一个实施例中,所述PDU会话对应的NC参数包括所述NC粒度;
所述NC粒度为UE粒度,所述第二消息中包括所述UE的UE标识和所述NC参数,其中,所述UE粒度表示在所述第一位置针对所述UE的数据执行NC;或者,
所述NC粒度为PDU会话粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识和所述NC参数,其中,所述PDU会话粒度表示在所述第一位置针对所述UE的所述PDU会话的数据执行NC;或者,
所述NC粒度为DRB粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述UE的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
所述NC粒度为QFI粒度,所述第二消息中包含的所述UE的UE标识、所述PDU会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述UE的所述QFI所标识的QoS流的数据执行NC。
可选地,在一个实施例中,所述MBS会话对应的NC参数包括NC粒度,
所述NC粒度为MBS会话粒度,所述第二消息中包含所述MBS会话的标识和所述NC参数,其中,所述MBS会话粒度表示在所述第一位置针对所述MBS会话的数据执行NC;或者,
所述NC粒度为DRB粒度,所述第二消息中包含所述MBS会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述MBS会话的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
所述NC粒度为QFI粒度,所述第二消息中包含所述MBS会话的标识、QFI标识、 DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述MBS会话的所述QFI标识所标识的QoS流的数据执行NC。
可选地,在一个实施例中,所述NC参数还包括如下一项或多项:
NC激活指示信息和第一时间信息,所述NC激活指示信息和所述第一时间信息用于指示在所述第一时间信息所指示的第一时间激活所述NC;和/或,
NC去激活指示信息和第二时间信息,所述NC去激活指示信息和所述第二时间信息用于指示在所述第二时间信息所指示的第二时间去激活所述NC。
可选地,在一个实施例中,接收单元1200,还用于接收来自于所述第二网元的反馈消息,所述反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,其中,
所述NC激活指示信息和所述第一时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第一时间信息所指示的第一时间被激活;
所述NC去激活指示信息和第二时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第二时间信息所指示的第二时间去激活。
可选地,在一个实施例中,所述NC参数还包括如下一项或多项:
NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数。
在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在通信装置1000对应第一网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由第一网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
例如,在图6中,处理单元1100执行步骤230,接收单元1200执行步骤210和步骤240(可选步骤)的接收的操作,发送单元1300执行步骤220的发送的操作。
可选地,通信装置1000可以对应本申请实施例中的第二网元。
在这些实施例中,通信装置1000的各单元用于实现如下功能:
接收单元1200,用于接收来自于第一网元的第二消息,所述第二消息包括所述PDU会话对应的网络编码NC参数,或者,所述第二消息包括所述MBS会话对应的NC参数,
其中,所述NC参数包含NC位置指示信息和NC粒度,所述NC位置指示信息用于指示执行NC的第一位置,所述NC粒度用于指示在所述第一位置执行NC的数据的范围。
处理单元1100,用于根据所述第二消息,接收来自于第一网元的数据,或者向第一网元发送数据,所述数据是采用所述NC参数进行网络编码的。
可选地,在一个实施例中,发送单元1300,还用于向第一网元发送反馈消息,所述反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,其中,所述NC激活指示信息和所述第一时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第一时间信息所指示的第一时间被激活;
所述NC去激活指示信息和第二时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第二时间信息所指示的第二时间去激活。
可选地,在一个实施例中,所述PDU会话对应的NC参数包括所述NC粒度;
所述NC粒度为UE粒度,所述第二消息中包括所述UE的UE标识和所述NC参数,其中,所述UE粒度表示在所述第一位置针对所述UE的数据执行NC;或者,
所述NC粒度为PDU会话粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识和所述NC参数,其中,所述PDU会话粒度表示在所述第一位置针对所述UE的所述PDU会话的数据执行NC;或者,
所述NC粒度为DRB粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述UE的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
所述NC粒度为QFI粒度,所述第二消息中包含的所述UE的UE标识、所述PDU会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述UE的所述QFI所标识的QoS流的数据执行NC。
可选地,在一个实施例中,所述MBS会话对应的NC参数包括NC粒度,
所述NC粒度为MBS会话粒度,所述第二消息中包含所述MBS会话的标识和所述NC参数,其中,所述MBS会话粒度表示在所述第一位置针对所述MBS会话的数据执行NC;或者,
所述NC粒度为DRB粒度,所述第二消息中包含所述MBS会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述MBS会话的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
所述NC粒度为QFI粒度,所述第二消息中包含所述MBS会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述MBS会话的所述QFI标识所标识的QoS流的数据执行NC。
可选地,在一个实施例中,所述NC参数还包括如下一项或多项:
NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数。
在以上各实现方式中,接收单元1200和发送单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在通信装置1000对应第二网元的各实施例中,处理单元1100用于执行除了发送和接收的动作之外由第二网元内部实现的处理和/或操作。接收单元1200用于执行接收的动作,发送单元1300用于执行发送的动作。
例如,在图6中,接收单元1200执行步骤220的接收的操作,发送单元1300执行步骤240的发送的操作(可选步骤)。
参见图13,图13为本申请提供的通信装置的示意性结构图。如图13,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得通信装置10执行本申请各方法实施例中由第一网元或第二网元执行的处理。
例如,处理器11可以具有图12中所示的处理单元1100的功能,通信接口13可以具 有图12中所示的接收单元1200和/或发送单元1300的功能。具体地,处理器11可以用于执行由通信装置内部执行的处理或操作,通信接口13用于执行由通信装置的发送和/或接收的操作。
在一种实现方式中,通信装置10可以为方法实施例中的第一网元。在这种实现方式中,通信接口13可以为收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在第一网元中的芯片(或芯片系统)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
在一种实现方式中,通信装置10可以为方法实施例中的第二网元。在这种实现方式中,通信接口13可以为收发器。收发器可以包括接收器和/或发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在第二网元中的芯片(或芯片系统)。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
其中,图13中器件(例如,处理器、存储器或通信接口)后面的虚线框表示该器件可以为一个以上。
可选地,上述第一网元和第二网元为通信设备(例如,无线接入网设备)的分离功能。
示例性地,第一网元为无线接入网设备的集中式单元CU,第二网元为所述无线接入网设备的分布式单元DU;或者,
第一网元为无线接入网设备的集中式单元的控制面CU-CP,第二网元为无线接入网设备的集中式单元的用户面CU-UP;或者,
第一网元为无线接入网设备的集中式单元的控制面CU-CP,第二网元为无线接入网设备的分布式单元DU和集中式单元的用户面CU-UP。
此外,本申请的网元之间协商网络编码的方法还适用于LTE系统的CU-DU分离架构的W1接口。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不作限定。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由第一网元执行的操作和/或处理被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由第二网元执行的操作和/或处理被执行。
此外,本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由第一网元执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由第二网元执行的操作和/或处理被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器 独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的装置执行任意一个方法实施例中由第一网元执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
本申请还提供一种芯片,所述芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,使得安装有所述芯片的装置执行任意一个方法实施例中由第二网元执行的操作和/或处理。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
可选地,上述处理器可以为一个或多个,所述存储器可以为一个或多个,所述存储器可以为一个或多个。
此外,本申请还提供一种通信装置(例如,可以为芯片或芯片系统),包括处理器和通信接口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由第一网元执行的操作和/或处理被执行。
本申请还提供一种通信装置(例如,可以为芯片或芯片系统),包括处理器和通信接口,所述通信接口用于接收(或称为输入)数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出(或称为输出)经处理器处理之后的数据和/或信息,以使得任意一个方法实施例中由第二网元执行的操作和/或处理被执行。
此外,本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由第一网元执行的操作和/或处理。
本申请还提供一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得所述通信装置执行任意一个方法实施例中由第二网元执行的操作和/或处理。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存 储器旨在包括但不限于这些和任意其它适合类型的存储器。
上述实施例所提供的方法,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品可以包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等编号对功能和作用基本相同的相同项或相似项进行区分。例如,第一网元和第二网元仅仅是为了区分不同的网元,并不对其作任何其它限定。本领域技术人员可以理解,“第一”、“第二”等编号并不对数量进行限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不予赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种协商网络编码的方法,其特征在于,包括:
    第一网元接收第一消息,所述第一消息用于请求用户设备UE的协议数据单元PDU会话,所述第一消息包含所述PDU会话的服务质量QoS信息,或者,所述第一消息用于请求多播组播MBS会话,所述第一消息包含所述MBS会话的QoS信息;
    所述第一网元基于所述第一消息,向第二网元发送第二消息,所述第二消息包括所述PDU会话对应的网络编码NC参数,或者,所述第二消息包括所述MBS会话对应的NC参数,
    其中,所述NC参数包含NC位置指示信息和NC粒度,所述NC位置指示信息用于指示执行NC的第一位置,所述NC粒度用于指示在所述第一位置执行NC的数据的范围。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息用于请求所述UE的PDU会话,所述第一消息包含所述PDU会话的QoS信息;
    所述第一网元基于所述第一消息,向第二网元发送第二消息之前,所述方法还包括:
    所述第一网元根据所述PDU会话的所述QoS信息,确定所述PDU会话对应的NC参数。
  3. 根据权利要求1所述的方法,其特征在于,所述第一消息用于请求所述MBS会话,所述第一消息包含所述MBS会话的QoS信息;
    所述第一网元基于所述第一消息,向第二网元发送第二消息之前,所述方法还包括:
    所述第一网元根据所述MBS会话的所述QoS信息,确定所述MBS会话对应的NC参数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述PDU会话对应的NC参数包括所述NC粒度;
    所述NC粒度为UE粒度,所述第二消息中包括所述UE的UE标识和所述NC参数,其中,所述UE粒度表示在所述第一位置针对所述UE的数据执行NC;或者,
    所述NC粒度为PDU会话粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识和所述NC参数,其中,所述PDU会话粒度表示在所述第一位置针对所述UE的所述PDU会话的数据执行NC;或者,
    所述NC粒度为DRB粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述UE的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
    所述NC粒度为QFI粒度,所述第二消息中包含的所述UE的UE标识、所述PDU会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述UE的所述QFI所标识的QoS流的数据执行NC。
  5. 根据权利要求1或3所述的方法,其特征在于,所述MBS会话对应的NC参数包括NC粒度,
    所述NC粒度为MBS会话粒度,所述第二消息中包含所述MBS会话的标识和所述NC参数,其中,所述MBS会话粒度表示在所述第一位置针对所述MBS会话的数据执行 NC;或者,
    所述NC粒度为DRB粒度,所述第二消息中包含所述MBS会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述MBS会话的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
    所述NC粒度为QFI粒度,所述第二消息中包含所述MBS会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述MBS会话的所述QFI标识所标识的QoS流的数据执行NC。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一网元和所述第二网元为一个通信设备的分离功能。
  7. 根据权利要求6所述的方法,其特征在于,所述通信设备为无线接入网设备,所述第一网元为所述无线接入网设备的集中式单元CU,所述第二网元为所述无线接入网设备的分布式单元DU,以及,所述NC位置指示信息用于指示一个或多个位置标识,所述一个或多个位置标识对应的位置属于所述DU可执行网络编码的位置;或者,
    所述第一网元为所述无线接入网设备的集中式单元的控制面CU-CP,所述第二网元为所述无线接入网设备的集中式单元的用户面CU-UP,所述NC位置指示信息用于指示一个或多个位置标识,所述一个或多个位置标识对应的位置属于所述CU-UP单元可执行网络编码的位置;或者,
    所述第一网元为所述无线接入网设备的集中式单元的控制面CU-CP,所述第二网元为所述无线接入网设备的分布式单元DU和集中式单元的用户面CU-UP,所述NC位置指示信息用于指示一个或多个位置标识,所述一个或多个位置标识对应的位置中的部分位置属于所述DU可执行网络编码的位置,所述一个或多个位置标识对应的位置中的剩余位置属于所述CU-UP可执行网络编码的位置。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述NC参数还包括如下一项或多项:
    NC激活指示信息和第一时间信息,所述NC激活指示信息和所述第一时间信息用于指示在所述第一时间信息所指示的第一时间激活所述NC;和/或,
    NC去激活指示信息和第二时间信息,所述NC去激活指示信息和所述第二时间信息用于指示在所述第二时间信息所指示的第二时间去激活所述NC。
  9. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一网元基于所述第一消息,向第二网元发送第二消息之后,所述方法还包括:
    所述第一网元接收来自于所述第二网元的反馈消息,所述反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,
    其中,所述NC激活指示信息和所述第一时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第一时间信息所指示的第一时间被激活;
    所述NC去激活指示信息和第二时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第二时间信息所指示的第二时间去激活。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述NC参数还包括如下一项或多项:
    NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、 编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数。
  11. 一种协商网络编码的方法,其特征在于,包括:
    第二网元接收来自于第一网元的第二消息,所述第二消息包括用户设备UE的所述PDU会话对应的网络编码NC参数,或者,所述第二消息包括所述MBS会话对应的NC参数,
    其中,所述NC参数包含NC位置指示信息和NC粒度,所述NC位置指示信息用于指示执行NC的第一位置,所述NC粒度用于指示在所述第一位置执行NC的数据的范围;
    所述第二网元基于所述第二消息,接收来自于所述第一网元的数据,或者,向所述第一网元发送数据,其中,所述数据是采用所述NC参数进行网络编码的。
  12. 根据权利要求11所述的方法,其特征在于,所述PDU会话对应的NC参数包括所述NC粒度;
    所述NC粒度为UE粒度,所述第二消息中包括所述UE的UE标识和所述NC参数,其中,所述UE粒度表示在所述第一位置针对所述UE的数据执行NC;或者,
    所述NC粒度为PDU会话粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识和所述NC参数,其中,所述PDU会话粒度表示在所述第一位置针对所述UE的所述PDU会话的数据执行NC;或者,
    所述NC粒度为DRB粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述UE的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
    所述NC粒度为QFI粒度,所述第二消息中包含所述UE的UE标识、所述PDU会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述UE的所述QFI所标识的QoS流的数据执行NC。
  13. 根据权利要求11所述的方法,其特征在于,所述MBS会话对应的NC参数包括所述NC粒度,
    所述NC粒度为MBS会话粒度,所述第二消息中包含所述MBS会话的标识和所述NC参数,其中,所述MBS会话粒度表示在所述第一位置针对所述MBS会话的数据执行NC;
    或者,
    所述NC粒度为DRB粒度,所述第二消息中包含所述MBS会话的标识、DRB标识和所述NC参数,其中,所述DRB粒度表示在所述第一位置针对所述MBS会话的映射到所述DRB标识所标识的第一DRB的数据执行NC;或者,
    所述NC粒度为QFI粒度,所述第二消息中包含所述MBS会话的标识、QFI标识、DRB标识和所述NC参数,其中,所述QFI粒度表示在所述第一位置针对所述MBS会话的所述QFI标识所标识的QoS流的数据执行NC。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,所述NC参数还包括如下一项或多项:
    NC激活指示信息和第一时间信息,所述NC激活指示信息和所述第一时间信息用于指示在所述第一时间信息所指示的第一时间激活所述NC;和/或,
    NC去激活指示信息和第二时间信息,所述NC去激活指示信息和所述第二时间信息用于指示在所述第二时间信息所指示的第二时间去激活所述NC。
  15. 根据权利要求11-13中任一项所述的方法,其特征在于,所述第二网元接收来自于第一网元的第一消息之后,所述方法还包括:
    所述第二网元向所述第一网元发送反馈消息,所述反馈消息中包括NC激活指示信息和第一时间信息,和/或,NC去激活指示信息和第二时间信息,
    其中,所述NC激活指示信息和所述第一时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第一时间信息所指示的第一时间被激活;
    所述NC去激活指示信息和第二时间信息用于指示所述PDU会话或MBS会话的NC功能在所述第二时间信息所指示的第二时间去激活。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,所述NC参数还包括如下一项或多项:
    NC类型、系统数据包的大小、系统数据包的个数、冗余数据包的个数、编码系数、编码块的尺寸、编码数据包的个数或码率、卷积深度、NC运算的有限域的大小,以及可参与NC的数据包的最大个数。
  17. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-10中任一项所述的方法,或者如权利要求11-16中任一项所述的方法。
  18. 一种芯片,其特征在于,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以执行如权利要求1-10中任一项所述的方法,或者如权利要求11-16中任一项所述的方法被实现。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如权利要求1-10中任一项所述的方法,或者如权利要求11-16中任一项所述的方法被实现。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如权利要求1-10中任一项所述的方法,或者如权利要求11-16中任一项所述的方法被实现。
  21. 一种通信系统,其特征在于,包括执行如权利要求1-10中任一项所述的方法的通信装置,和/或,执行如权利要求11-16中任一项所述的方法的通信装置。
PCT/CN2022/127028 2021-10-29 2022-10-24 网元之间协商网络编码的方法和通信装置 WO2023071983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111274092.9A CN116074759A (zh) 2021-10-29 2021-10-29 网元之间协商网络编码的方法和通信装置
CN202111274092.9 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071983A1 true WO2023071983A1 (zh) 2023-05-04

Family

ID=86160349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127028 WO2023071983A1 (zh) 2021-10-29 2022-10-24 网元之间协商网络编码的方法和通信装置

Country Status (2)

Country Link
CN (1) CN116074759A (zh)
WO (1) WO2023071983A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114410A (zh) * 2020-01-10 2021-07-13 维沃移动通信有限公司 数据处理方法、配置方法及通信设备
CN113271176A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 网络编码方法和通信装置
US20210329644A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Methods and apparatus for signaling of network coding information to facilitate feedback processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113114410A (zh) * 2020-01-10 2021-07-13 维沃移动通信有限公司 数据处理方法、配置方法及通信设备
CN113271176A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 网络编码方法和通信装置
US20210329644A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Methods and apparatus for signaling of network coding information to facilitate feedback processing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA UNICOM: "Discussion on the application of Network Coding for efficient", 3GPP DRAFT; R3-194503-DISCUSSION ON THE APPLICATION OF NETWORK CODING FOR EFFICIENT PDCP DUPLICATION WITH MORE THAN 2 COPIES-REV, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS, vol. RAN WG3, no. Ljubljana, Slovenia; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051761805 *

Also Published As

Publication number Publication date
CN116074759A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
US10548024B2 (en) Cloud communication center system and method for processing data in a cloud communication system
US11265892B2 (en) Data transmission method and device
CN113853808B (zh) 一种多播传输控制方法以及相关设备
JP2016220260A (ja) 複数のキャリアを支援する移動通信システムで信号送受信方法及び装置
US11418925B2 (en) Communication method and apparatus
WO2022085717A1 (ja) 通信制御方法
WO2021063215A1 (zh) 一种网络切片的组播方法及装置
WO2022239690A1 (ja) 通信制御方法及びユーザ装置
WO2021174377A1 (zh) 切换方法和通信装置
JP2023100957A (ja) 通信制御方法、ユーザ装置及びプロセッサ
WO2023071983A1 (zh) 网元之间协商网络编码的方法和通信装置
WO2021163832A1 (zh) 数据传输的方法和装置
WO2023097665A1 (zh) 一种数据接收方法及装置、终端设备
WO2022080230A1 (ja) 通信制御方法
WO2023272619A1 (zh) 一种传输方式的确定方法及装置、终端设备、网络设备
WO2023102833A1 (zh) 一种反馈状态的指示方法及装置、终端设备、网络设备
WO2023056641A1 (zh) 一种头压缩方法及装置、终端设备、网络设备
WO2023071699A1 (zh) 组播业务的数据传输方法、通信装置及存储介质
WO2023102898A1 (zh) 重传方式的确定方法及定时器的控制方法、装置
WO2023097613A1 (zh) 一种信息确定方法及装置、终端设备
WO2023115559A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022030518A1 (ja) 通信制御方法
WO2022085646A1 (ja) 通信制御方法
WO2023050185A1 (zh) 一种变量的维护方法及装置、终端设备
WO2022198415A1 (zh) 提高mbs业务可靠性的方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885860

Country of ref document: EP

Kind code of ref document: A1