WO2023071980A1 - 电子设备的压感控制方法、装置、电子设备及介质 - Google Patents

电子设备的压感控制方法、装置、电子设备及介质 Download PDF

Info

Publication number
WO2023071980A1
WO2023071980A1 PCT/CN2022/127011 CN2022127011W WO2023071980A1 WO 2023071980 A1 WO2023071980 A1 WO 2023071980A1 CN 2022127011 W CN2022127011 W CN 2022127011W WO 2023071980 A1 WO2023071980 A1 WO 2023071980A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
module
signal
sensitive
sensing
Prior art date
Application number
PCT/CN2022/127011
Other languages
English (en)
French (fr)
Inventor
贺逸凡
谭琴
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023071980A1 publication Critical patent/WO2023071980A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a pressure-sensitive control method and device for electronic equipment, electronic equipment and media.
  • the pressure-sensing module is used as the design scheme of the hidden button.
  • the pressure-sensing module may be a Wheatstone bridge pressure-sensing module including a deformation resistor, and the pressure received by the pressure-sensing module is converted into a voltage difference output. Therefore, the electronic device can turn on and off the corresponding function of the pressure-sensing module based on the pressure difference output by the pressure-sensing module.
  • the purpose of the embodiment of the present application is to provide a pressure-sensitive control method, device, electronic equipment and medium of an electronic device, which can solve problems such as inaccurate pressing accuracy of the pressure-sensitive module, delayed release of keys, and false triggering.
  • an embodiment of the present application provides a pressure-sensitive control method for an electronic device, the electronic device includes a screen and at least one pressure-sensitive module disposed under the screen, and the method includes: receiving a user's press input on the screen; In response to the pressing input, obtain the predetermined temperature coefficient of the pressing area corresponding to the pressing input, and obtain the pressure sensing signal through the target pressure sensing module corresponding to the pressing area; modify the pressure sensing signal according to the predetermined temperature coefficient; execute according to the corrected pressure sensing signal Press the function corresponding to the input; wherein, the screen includes N areas, N is a positive integer, and each area corresponds to a predetermined temperature coefficient; the pressing area is at least one of the N areas; the target pressure-sensitive module is at least one pressure-sensitive module One or more of the group.
  • an embodiment of the present application provides a pressure-sensitive control device for an electronic device, the electronic device includes a screen and at least one pressure-sensitive module arranged under the screen, and the device includes: a receiving module, an acquisition module, and a correction module , an execution module; a receiving module, configured to receive the user’s pressing input on the screen; an obtaining module, configured to respond to the pressing input received by the receiving module, obtain the predetermined temperature coefficient of the pressing area corresponding to the pressing input, and pass the target corresponding to the pressing area
  • the pressure-sensing module obtains the pressure-sensing signal;
  • the correction module is used to correct the pressure-sensing signal obtained by the obtaining module according to the predetermined temperature coefficient obtained by the obtaining module;
  • the execution module is used to execute the press input corresponding function; wherein, the screen includes N areas, N is a positive integer, and each area corresponds to a predetermined temperature coefficient; the pressing area is at least one of the N areas; the target pressure-sensitive module is at least one of
  • the embodiment of the present application provides an electronic device, the electronic device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor, the The steps of the method of the first aspect.
  • the embodiment of the present application provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, the steps of the method in the first aspect are implemented.
  • the embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, so as to implement the first aspect the method described.
  • the predetermined temperature coefficient of the pressing area corresponding to the pressing input can be obtained, and the pressure sensing signal can be obtained through the target pressure sensing module corresponding to the pressing area, and then according to the predetermined temperature
  • the coefficient corrects the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area to ensure that the corrected pressure-sensing signal is the pressure-sensing signal under the same temperature condition, and performs the function corresponding to the pressing input according to the corrected pressure-sensing signal .
  • the pressure-sensing control device of the electronic device can accurately correct the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, ensuring the pressing accuracy of the target pressure-sensing module, avoiding problems such as delayed release and false triggering, and, due to The temperature coefficient of the pressing area is a predetermined temperature coefficient. Therefore, in the embodiment of the present application, while accurately correcting the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, the power consumption of the electronic device is also saved.
  • FIG. 1 is a schematic structural diagram of a pressure-sensitive module provided in an embodiment of the present application
  • Fig. 2 is the structural representation of the first Wheatstone bridge that the embodiment of the present application provides;
  • Fig. 3 is the structural representation of the second Wheatstone bridge that the embodiment of the present application provides;
  • FIG. 4 is a schematic flowchart of a method for controlling pressure sensitivity of an electronic device provided in an embodiment of the present application
  • FIG. 5 is a schematic diagram of screen area division for an application of a pressure-sensitive control method for an electronic device provided in an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a pressure-sensitive control device for an electronic device provided in an embodiment of the present application.
  • FIG. 7 is one of the hardware schematic diagrams of the electronic device provided by the embodiment of the present application.
  • FIG. 8 is the second schematic diagram of hardware of the electronic device provided by the embodiment of the present application.
  • the pressure-sensitive module regards the heat source of the entire electronic device as a whole, and performs temperature compensation for the influence caused by the whole heat source.
  • the heat source of electronic equipment is not single, and has different effects on pressure-sensitive modules in different positions. Therefore, considering the heat source of the entire electronic device as a whole, the pressure-sensitive module cannot be accurately compensated. Therefore, even a pressure-sensitive module with a temperature compensation function still has the pressure-sensitive module caused by the temperature difference. Inaccurate compression accuracy, delayed release, and false triggering.
  • each area corresponds to a predetermined temperature coefficient
  • the electronic device will correct the pressure-sensing signal of the target pressure-sensing module corresponding to area A based on the predetermined temperature coefficient corresponding to area A, so as to ensure that the corrected pressure-sensing signal is at the same temperature Therefore, the pressure-sensing signal of the target pressure-sensing module corresponding to the area A is accurately corrected to ensure the pressing accuracy of the target pressure-sensing module and avoid problems such as delayed release and false triggering.
  • the execution subject of the pressure-sensing control method of the sub-equipment provided in the embodiment of the present application is the pressure-sensing control device of the electronic equipment equipped with the pressure-sensing module.
  • the apparatus may be an electronic device, and may also be a control module or other functional modules in the electronic device for executing the pressure-sensing control method, which is not limited in this embodiment of the present application.
  • the pressure sensitivity control method, device, electronic device and medium of the electronic device provided in the embodiments of the present application are described below through specific embodiments and application scenarios with reference to the accompanying drawings. Describe in detail. Hereinafter, the method will be illustrated by taking a pressure-sensitive control device whose execution body is an electronic device as an example.
  • the embodiment of the present application provides a pressure-sensitive control method for an electronic device.
  • the electronic device includes a screen and at least one pressure-sensitive module arranged under the screen.
  • the The method may include the following steps 101 to 104.
  • Step 101 receiving a user's pressing input on the screen.
  • Step 102 in response to the pressing input, acquire a predetermined temperature coefficient of the pressing area corresponding to the pressing input, and acquire a pressure sensing signal through a target pressure sensing module corresponding to the pressing area.
  • Step 103 correcting the pressure-sensitive signal according to a predetermined temperature coefficient.
  • Step 104 Execute the function corresponding to the pressing input according to the corrected pressure-sensing signal.
  • the screen includes N areas, N is a positive integer, and each area corresponds to a predetermined temperature coefficient; the pressing area is at least one of the N areas; the target pressure-sensitive module is one of at least one pressure-sensitive module or more.
  • a processing unit is further provided under the screen of the electronic device, and the processing unit includes a circuit board, and the circuit board is provided with a pressure detection circuit and a display module, and the display module corresponds to the above-mentioned screen.
  • the pressure-sensitive module includes: a support plate (such as a steel sheet), and a first Wheatstone bridge based on deformation resistance.
  • the support plate may be parallel to the display module, and the support plate includes a first support portion 31 and a second support portion 32 arranged at intervals.
  • the pressure detection circuit is electrically connected to the first output end of the first Wheatstone bridge.
  • the first Wheatstone bridge includes a first circuit and a second circuit connected in parallel, and the first circuit includes two resistors R1 and R4 connected in series.
  • the second circuit consists of two resistors R2 and R3 connected in series. Wherein, at least some of R1, R2, R3 and R4 are deformation resistors.
  • R1 and R2 are arranged on the first side of the support plate, and the first side is the side of the support plate facing the display module;
  • R3 and R4 are arranged on the second side of the support plate, and the second side
  • the support plate faces away from the side of the display module; at the same time, R1, R2, R3, and R4 are all bridged between the first support portion and the second support portion, so that R1, R2, R3, and R4 are all in a suspended state.
  • the above-mentioned first output terminal includes a sub-output terminal A (ie ANN in FIG. 2 ) between R1 and R4, and a sub-output terminal B (ie, ANN in FIG. 2 ) between R2 and R3.
  • ANP in 2
  • the pressure detection circuit can detect the variation of the voltage division of each resistance in the first Wheatstone bridge, and in the memory module of the above-mentioned circuit board, the pressure-sensitive model can be stored in advance. The corresponding relationship between the magnitude of the pressure received by the group and the variation of the divided voltage of each resistor in the first Wheatstone bridge.
  • the pressure-sensing signal of the pressure-sensing module includes: the voltage-dividing signal of each resistor in the first Wheatstone bridge of the pressure-sensing module (that is, the variation of the voltage division of each resistor), and the pressure corresponding to the voltage-dividing signal Signal.
  • the pressure detection circuit can be based on the change of the voltage division of each resistor in the first Wheatstone bridge, and according to the pressure received by the pressure sensing module and the first Wheatstone bridge.
  • the corresponding relationship between the voltage division changes of each resistor in the Stone bridge determines the pressure on the pressure-sensitive module. That is to say, the pressure-sensing control device of the electronic device can obtain the pressure-sensing signal of the first Wheatstone bridge of the target pressure-sensing module by the target pressure-sensing module.
  • the N areas on the above screen may be any areas on the above screen, and the N areas may be preset areas.
  • N regions may be distributed on the screen in an array or in other forms, and may be set according to specific requirements, which is not limited in this embodiment of the present application.
  • Example 1 as shown in FIG. 5 , the screen of the electronic device is divided into 15 areas, and the 15 areas are arrayed on the screen.
  • the dotted lines on the screen are only for displaying each area. In actual scenarios, these dotted lines may not be displayed.
  • the above-mentioned screen may include a flexible screen.
  • part of the above-mentioned screens may be flexible screens, and the remaining screens may be rigid screens.
  • the above N areas may be located in the flexible screen area of the screen, that is, the screen area corresponding to the above N areas may be a deformable area.
  • each of the above N areas corresponds to at least one function.
  • different areas may correspond to different functions. For example, taking screenshots, turning on the camera, adjusting the volume of electronic devices, turning on the flashlight, etc.
  • each region corresponds to a predetermined temperature coefficient.
  • different regions may correspond to different predetermined temperature coefficients, or multiple regions may correspond to the same predetermined temperature coefficient.
  • the predetermined temperature coefficient may be preset, or may be set in real time based on an actual application scenario.
  • the pressure-sensing signal acquired by the target pressure-sensing module corresponding to the pressing area may be: the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area.
  • the present application can ensure that the corrected pressure-sensing signal is the pressure-sensing signal under the same temperature condition. signal, thereby ensuring the pressing accuracy of the target pressure-sensitive module.
  • the target pressure-sensing module corresponding to the pressing area is: at least one pressure-sensing module that receives the pressing force of the user's pressing input, or at least one of the pressure-sensing modules that receives the user's pressing force A pressure-sensitive module whose input pressing force is greater than or equal to a preset threshold.
  • the pressing area is the area that receives the pressing of the user among the N areas.
  • each area may correspond to one pressure-sensing module, or may correspond to multiple pressure-sensing modules.
  • This embodiment of the present application does not limit it. That is, the number of target pressure-sensitive modules corresponding to the pressing area is at least one.
  • the pressure-sensitive area (that is, the pressure-sensitive area) of at least one pressure-sensitive module can cover N areas, thereby ensuring that when the user performs press input on any one or more areas of the N areas, , can trigger the corresponding pressure-sensing module to detect the above-mentioned pressure-sensing signal.
  • the pressure-sensing signal obtained by the above-mentioned target pressure-sensing module is: the detection result of the above-mentioned pressure-sensing circuit (for example, the pressure received by the pressure-sensing module determined by the pressure-sensing circuit).
  • the embodiment of the present application can obtain the predetermined temperature coefficient of the pressing area corresponding to the pressing input, obtain the pressure-sensing signal through the target pressure-sensing module corresponding to the pressing area, and then correct the pressure-sensing signal according to the predetermined temperature coefficient, so that the correction
  • the last pressure-sensitive signal is the pressure-sensitive signal under the same temperature condition. Further improved the accuracy of pressure detection results.
  • the embodiment of the present application can achieve more precise pressure sensitivity control on the premise of ensuring efficiency and saving power consumption.
  • the pressure-sensing control device of the electronic device may perform the above-mentioned press input correspondence according to the corrected pressure-sensing signal of the target pressure-sensing module (that is, the pressure-sensing signal of the target pressure-sensing module corrected based on a predetermined temperature coefficient). function.
  • the pressure-sensing control device of the electronic device can accurately execute the function corresponding to the pressing input according to the corrected pressure-sensing signal, that is, accurately execute the function corresponding to the pressing area corresponding to the pressing input.
  • Example 3 combined with Example 2, if the user presses area 33 among the 15 areas of the electronic device, that is, the area at the upper left corner in FIG. 5 , if the function corresponding to area 33 is: turn on the camera.
  • the pressure-sensitive control device of the electronic device can then use the predetermined temperature coefficient corresponding to the area 33 , modify the pressure-sensitive signal of the first pressure-sensitive module corresponding to the area 33 to ensure that the corrected first pressure-sensitive signal is a pressure-sensitive signal under the same temperature condition, and the corrected pressure-sensitive signal satisfies the camera opening condition , that is, to turn on the camera accurately. In this way, the pressing accuracy of the first pressure-sensitive module is ensured, problems such as delayed release are avoided, and user needs are met.
  • the pressure sensitivity control method of an electronic device can obtain the predetermined temperature coefficient of the pressing area corresponding to the pressing input after receiving the user's pressing input on the screen, and obtain the pressure sensitivity module through the target pressure sensing module corresponding to the pressing area. Then correct the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area according to the predetermined temperature coefficient to ensure that the corrected pressure-sensing signal is the pressure-sensing signal under the same temperature condition, and according to the corrected pressure-sensing signal , to execute the function corresponding to the press input.
  • the pressure-sensing control device of the electronic device can accurately correct the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, ensuring the pressing accuracy of the target pressure-sensing module, avoiding problems such as delayed release and false triggering, and, due to The temperature coefficient of the pressing area is a predetermined temperature coefficient. Therefore, in the embodiment of the present application, while accurately correcting the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, the power consumption of the electronic device is also saved.
  • the above predetermined temperature coefficient is positively correlated with the working temperature of the region.
  • the higher the working temperature of the region corresponding to the predetermined temperature coefficient the larger the predetermined temperature coefficient is, and the lower the working temperature of the corresponding region, the smaller the predetermined temperature coefficient is.
  • the predetermined temperature coefficient corresponding to the pressing area receiving the pressing input is positively correlated with the working temperature of the pressing area.
  • the aforementioned predetermined temperature coefficient may be determined in real time based on each heat generating device in the electronic device corresponding to the aforementioned screen. That is to say, the working temperature of the area corresponding to the predetermined temperature coefficient is determined in real time according to each heat generating device in the area corresponding to the predetermined temperature coefficient.
  • the predetermined temperature coefficient corresponding to each of the N regions is determined based on the temperatures of all heat-generating devices under the screen and the heat-generating devices in the corresponding region. That is to say, the working temperature of the area corresponding to the predetermined temperature coefficient is determined according to the temperature of all heat generating devices under the screen and the temperature of each heat generating device in the area corresponding to the predetermined temperature coefficient.
  • the predetermined temperature corresponding to area B can be determined based on the temperature of all heat-generating devices under the screen and the temperature of the camera module and battery. Temperature Coefficient. That is, the predetermined temperature coefficient corresponding to area B is positively correlated with the temperature of all heat-generating devices under the screen, the camera module and the battery.
  • all heat generating devices under the screen are: all heat generating devices installed inside the electronic equipment corresponding to the screen.
  • Each area corresponds to the heat generating device under the area, that is: each area corresponds to the heat generating device in the internal area of the electronic device.
  • the electrical components may generate heat during operation, and the heat generated by the electrical components at different positions inside the electronic device is different.
  • the predetermined temperature coefficient corresponding to each area is related to the heat-generating device (ie, the electrical component that generates heat) corresponding to the position of each area in the electronic device, that is to say, the predetermined temperature coefficient corresponding to each area is related to The working temperature corresponding to the position of each area in the electronic device is positively correlated.
  • the predetermined temperature coefficient corresponding to each area may also be determined based on a preset temperature detection element.
  • the preset temperature detection element may be a temperature detection element in an electronic device.
  • the predetermined temperature coefficient corresponding to the area can be determined according to the preset temperature detection element.
  • the predetermined temperature coefficient corresponding to area B can be determined based on the temperature of camera module and battery.
  • the "acquire the predetermined temperature coefficient of the pressing area corresponding to the pressing input, and obtain the pressure sensing signal through the target pressure sensing module corresponding to the pressing area" in the above step 102 includes Step 102a to step 102c.
  • Step 102a determining a position signal corresponding to the pressing area of the pressing input.
  • the location signals are different if the regions receiving the pressing input are different. That is: different pressing areas correspond to different position signals.
  • Step 102b Obtain a predetermined temperature coefficient of the pressing area corresponding to the pressing input according to the position signal.
  • the predetermined temperature coefficient of the pressing area corresponding to the pressing input can be acquired according to the position signal.
  • Step 102c acquiring the pressure-sensing signal of the target pressure-sensing module through the position signal.
  • the pressure-sensing signal includes the pressure signal of the target pressure-sensing module.
  • the target pressure-sensitive module is: the pressure-sensitive module corresponding to the position signal corresponding to the pressed area.
  • obtaining the pressure-sensing signal of the target pressure-sensing module through the position signal means obtaining the pressure-sensing signal of the target pressure-sensing module through the target pressure-sensing module corresponding to the pressing area.
  • the pressure signal of the target pressure-sensing module is the pressure signal of the first Wheatstone bridge corresponding to the target pressure-sensing module.
  • the above-mentioned pressure detection circuit can be based on the change of the divided voltage of each resistor in the first Wheatstone bridge in the target pressure-sensing module, and according to the pressure received by the target pressure-sensing module size, and the corresponding relationship between the voltage division changes of the resistors in the first Wheatstone bridge in the target pressure-sensing module to determine the pressure signal of the target pressure-sensing module, and then, the target pressure-sensing module can be obtained pressure signal.
  • the pressure-sensing signal including the pressure signal may be corrected according to the predetermined temperature coefficient of the pressing area corresponding to the pressing input, so that the corrected pressure-sensing signal is a pressure-sensing signal under the same temperature condition. Further improved the accuracy of pressure detection results.
  • the above-mentioned pressure sensing module includes a temperature detection unit, the temperature detection unit is a temperature detection unit based on a Wheatstone bridge, and the temperature detection unit includes at least one deformation resistor.
  • the above method further includes step 102a1.
  • Step 102a1 acquiring the temperature signal detected by the temperature detection unit of the target pressure-sensing module corresponding to the pressing area according to the position signal.
  • the above step 103 includes step 103a.
  • Step 103a correcting the pressure-sensitive signal according to the predetermined temperature coefficient and the temperature signal.
  • the temperature detection unit includes a temperature detection circuit and a second Wheatstone bridge.
  • the temperature detection circuit is electrically connected to the second output terminal of the second Wheatstone bridge to detect the temperature difference between the first side and the second side.
  • the second Wheatstone bridge includes a third circuit and a fourth circuit connected in parallel, and the third circuit includes two resistors r1 and r4 connected in series.
  • the second circuit includes two resistors r2 and r3 connected in series. Wherein, at least one of r1, r2, r3 and r4 is the above-mentioned deformation resistance.
  • r1 and r3 are respectively located on opposite sides of the first support portion (ie, the first side and the second side), and r2 and r4 are respectively located on opposite sides of the second support portion (ie, the first side and second side).
  • the above-mentioned second output terminal includes a sub-output terminal C (that is, the ANN in FIG. 3 ) between r1 and r4, and a sub-output terminal D (that is, the ANN in FIG. 3 ) between r2 and r3. ANP in 3).
  • the storage module of the above-mentioned circuit board can store in advance, the corresponding relationship between the temperature difference between the first side and the second side, and the voltage difference between the sub-output terminal C and the sub-output terminal D, so that the temperature detection circuit can According to the voltage difference between the sub-output terminal C and the sub-output terminal D, determine the size of the temperature difference between the first side and the second side, wherein the temperature signal detected by the temperature detection unit is: the first side and the second side The temperature difference between corresponds to the temperature signal.
  • the pressure-sensing control device of the electronic device may acquire the temperature signal detected by the temperature detection unit of the target pressure-sensing module according to the position signal corresponding to the pressed area.
  • deformation resistors in the second Wheatstone bridge and the deformation resistors in the first Wheatstone bridge may be deformation resistors made of the same material.
  • the second Wheatstone bridge may be used to perform temperature compensation on the first Wheatstone bridge.
  • the above-mentioned pressure-sensitive signal (for example, the pressure-sensitive signal including the above-mentioned pressure signal) can be corrected according to the temperature signal to obtain the first correction parameter, and then the first correction parameter can be corrected according to the predetermined temperature coefficient.
  • the problem of inability to accurately perform temperature compensation due to the heat source of the entire electronic device being considered as a whole is avoided.
  • the temperature difference between the first side and the second side is further reduced, the accuracy of temperature compensation is improved, and the pressing accuracy of the first Wheatstone bridge is improved.
  • the resistance value of a resistor usually changes with temperature, that is, the resistance value of the same resistor at different temperatures is usually different. Since various electrical components inside the electronic device may generate heat during operation, there may be a temperature difference between the first side and the second side of the support plate, which may cause the resistance value of the deformation resistor to change, resulting in An error occurs in the voltage difference between the sub-output terminal A and the sub-output terminal B, which leads to an inaccurate pressure detection result.
  • the circuit board can be based on the detection result of the temperature detection circuit (that is, the temperature difference between the first side and the second side, such as the temperature signal detected by the temperature detection unit of the target pressure sensing module corresponding to the above position signal), The detection result of the pressure detection circuit is corrected to obtain the corrected pressure-sensitive signal.
  • the temperature of the first side is used as the reference temperature, and the corresponding relationship between the temperature difference and the resistance variation can be determined in advance. Therefore, when the temperature of the second side is different from that of the first side, based on the temperature difference between the first side and the second side, the amount of resistance change due to the temperature difference can be determined, and the resistance change can be compared to the second side. R3 and R4 on the side compensate.
  • the current resistance value of R3 is M1
  • the current resistance of R4 If the value is M2, after correction, the current resistance value of R3 is (M1-M), and the current resistance value of R4 is (M2-M).
  • the detection result of the pressure detection circuit can be corrected according to the detection result of the temperature detection circuit, avoiding the problem of inaccurate pressure detection results due to the temperature difference between the first side and the second side.
  • the above predetermined temperature coefficient may be multiplied by the first correction parameter to obtain the second correction parameter.
  • the second correction parameter is: a correction parameter obtained after correcting the pressure-sensitive signal according to the predetermined temperature coefficient and the temperature signal.
  • the second correction parameter m is equivalent to the pressure-sensing parameters collected by the deformation resistors of the first Wheatstone bridge in the target pressure-sensing module under the same temperature adjustment, so that the embodiment of the present application can quickly and accurately
  • the pressure-sensing parameters output by the target pressure-sensing module corresponding to the pressing area are corrected to ensure the pressing accuracy of the target pressure-sensing module.
  • step 103 includes step 103b.
  • Step 103b correcting the above-mentioned pressure-sensitive signal according to the above-mentioned predetermined temperature coefficient and the current temperature of the electronic device corresponding to the above-mentioned screen.
  • the current temperature of the electronic device may be the temperature of the whole device of the electronic device, and the temperature of the whole device is generally greatly affected by the external environment. Based on this, the embodiment of the present application takes into account the influence of the predetermined temperature coefficient and the current temperature of the electronic device on the detection result of the target pressure-sensing module, so that the correction result is more accurate.
  • the above-mentioned temperature detection unit includes a thermistor, and the thermistor is arranged at the heating element in the electronic device corresponding to the pressing area.
  • r1, r2, r3 and r4 in the second Wheatstone bridge is the thermistor.
  • a temperature detection element (such as a thermistor) is usually arranged near a heat generating device inside an electronic device to detect the temperature of the corresponding heat generating device.
  • temperature detection elements are usually installed near heat-generating devices such as main boards, batteries, camera modules, and sub-board interfaces in electronic equipment. Therefore, the temperature detected by the temperature detection elements installed near each heating element of the electronic equipment can be directly multiplexed through the second Wheatstone bridge, without adding additional costs or designing redundant structural stacks, and obtaining the heat generation under the corresponding area of each area The temperature of the device saves the installation space inside the electronic equipment.
  • step 102a1 includes step A to step D.
  • Step A Determine the target temperature detection unit of the target pressure-sensing module corresponding to the pressing area according to the position signal.
  • Step B detecting the deformation amount corresponding to the target temperature detection unit.
  • Step C outputting a corresponding first voltage signal according to the deformation amount.
  • Step D acquiring a temperature signal corresponding to the first voltage signal.
  • the pressure sensing control device of the electronic device can determine the target temperature detection unit of the target pressure sensing module corresponding to the pressing area according to the position signal corresponding to the pressing area.
  • the temperature detection unit includes at least one deformation resistor
  • the pressure-sensitive control device of the electronic device can detect the deformation amount corresponding to the target temperature detection unit, and according to the deformation amount , output a corresponding first voltage signal, and then obtain a temperature signal corresponding to the first voltage signal. Furthermore, the temperature signal corresponding to the target temperature detection unit can be acquired.
  • the first voltage signal is the first voltage signal of the target temperature detection unit.
  • the first voltage signal of the target temperature detection unit is: the voltage difference between the sub-output terminal C and the sub-output terminal D of the target temperature detection unit.
  • the pressure-sensitive control device of the electronic device may detect the voltage difference between the sub-output terminal C and the sub-output terminal D of the target temperature detection unit. Therefore, the pressure-sensitive control device of the electronic device can obtain the temperature signal corresponding to the target temperature detection unit through the corresponding relationship stored in the storage module of the circuit board.
  • the corresponding relationship is: the corresponding relationship between the temperature difference between the first side and the second side and the voltage difference between the sub-output terminal C and the sub-output terminal D.
  • the above-mentioned sensing area corresponding to the pressing input includes at least two areas; for example, in step 102, "acquire the predetermined temperature coefficient of the pressing area corresponding to the pressing input, and use the corresponding Before the target pressure-sensing module acquires the pressure-sensing signal", step 101a is included.
  • Step 101a using the target area among the at least two areas as the corresponding pressing area for pressing input.
  • the pressure-sensing signal of the pressure-sensing module corresponding to the target area corresponds to a pressure-sensing parameter greater than or equal to the first threshold.
  • the pressure-sensitive parameter may be: a pressure parameter or a voltage parameter.
  • the pressure parameter is: a parameter corresponding to the pressure signal of the first Wheatstone bridge of the pressure sensing module corresponding to the target area.
  • the voltage parameter is: the parameter corresponding to the voltage signal of the first Wheatstone bridge of the pressure sensing module corresponding to the target area.
  • the voltage signal of the first Wheatstone bridge is: the divided voltage signal of each resistor in the first Wheatstone bridge.
  • the sensing area corresponding to the pressing input is an area capable of triggering a pressure-sensitive response under pressing force.
  • the pressure-sensing module usually includes a deformable support part, when the user presses and inputs the target area in the N areas, under the action of the pressing force, in addition to triggering the target pressure-sensing area corresponding to the target area
  • the module outputs pressure-sensitive signals, and also triggers other pressure-sensitive modules corresponding to other areas close to the target area to output pressure-sensitive signals.
  • the target area and the other areas are the above-mentioned sensing areas.
  • the pressure-sensing parameter corresponding to the pressure-sensing signal output by the target pressure-sensing module corresponding to the target area is generally greater than the pressure-sensing parameter corresponding to the pressure-sensing signal output by other pressure-sensing modules corresponding to the other area.
  • the area where the pressure-sensing parameter corresponding to the pressure-sensing signal output by the corresponding pressure-sensing module in at least two areas is greater than or equal to the first threshold is taken as the above-mentioned target area.
  • the pressure-sensing parameters corresponding to the pressure-sensing signal output by the pressure-sensing module corresponding to the sensing area may be: the above parameters after correcting the detection result of the pressure detection circuit according to the detection result of the temperature detection circuit.
  • N areas include area 1, area 2, area 3, area 4, area 5, and area 6. If the user wants to use the function corresponding to area 1 in the N areas, when the user presses and inputs area 1, Under the action of the pressing force, the pressure-sensitive modules corresponding to areas 1, 2, and 3 respectively output the pressure-sensitive parameters corresponding to the pressure-sensitive signals: a, b, and c, where a is greater than the first threshold, and b and c If it is less than the first threshold, the pressure-sensing control device of the electronic device takes area 1 as the pressing area corresponding to the pressing input, so that the pressure-sensing control device of the electronic device can accurately execute the function corresponding to the pressing input, that is, execute the function corresponding to area 1. functions to meet user needs.
  • the above-mentioned sensing area is: among the N areas, the area corresponding to the pressure-sensing module whose output pressure-sensing signal corresponds to a pressure-sensing parameter greater than 0, or, the above-mentioned sensing area is: N In one area, the area corresponding to the pressure-sensing module whose output pressure-sensing signal corresponds to a pressure-sensing parameter greater than the second threshold.
  • the second threshold is greater than 0, and the second threshold is smaller than the above-mentioned first threshold.
  • the pressure-sensing parameter corresponding to the pressure-sensing signal output by the pressure-sensing module is usually smaller, and the closer to the press-input position, the pressure-sensing parameter corresponding to the pressure-sensing signal output by the pressure-sensing module Usually larger, for this reason, it is necessary to screen out the region whose corresponding pressure-sensitivity parameter is greater than the second threshold in the sensing region. In this way, the above-mentioned target region can be quickly determined, and the power consumption of the electronic device can be saved.
  • the execution body may be the pressure-sensing control device of the electronic device, or the device used to adjust the pressure-sensing parameter in the pressure-sensing control device of the electronic device.
  • method's control module In the embodiment of the present application, the method for adjusting the pressure-sensitive parameter by the pressure-sensitive control device of the electronic device is taken as an example to illustrate the pressure-sensitive control device of the electronic device provided in the embodiment of the present application.
  • an embodiment of the present application provides a pressure-sensitive control device for electronic equipment, which includes: a receiving module 401 , an acquiring module 402 , a correction module 403 , and an execution module 404 .
  • the receiving module 401 is configured to receive a user's pressing input on the screen.
  • the acquiring module 402 is configured to, in response to the pressing input received by the receiving module 401 , acquire a predetermined temperature coefficient of a pressing area corresponding to the pressing input, and acquire a pressure sensing signal through a target pressure sensing module corresponding to the pressing area.
  • the correction module 403 is configured to correct the pressure-sensitive signal acquired by the acquisition module according to the predetermined temperature coefficient acquired by the acquisition module 402 .
  • the executing module 404 is configured to execute the function corresponding to the pressing input according to the pressure-sensitive signal corrected by the correcting module 403 .
  • the screen includes N areas, N is a positive integer, and each area corresponds to a predetermined temperature coefficient; the pressing area is at least one of the N areas; the target pressure-sensitive module is one or more of at least one pressure-sensitive module indivual.
  • the above-mentioned predetermined temperature coefficient is positively correlated with the working temperature of the above-mentioned area.
  • the above device further includes: a determining module.
  • the determining module is configured to determine the position signal corresponding to the pressing area of the pressing input received by the receiving module.
  • the acquiring module is specifically configured to acquire the predetermined temperature coefficient of the pressing area corresponding to the pressing input according to the position signal determined by the determining module.
  • the obtaining module is specifically used to obtain the pressure-sensing signal of the target pressure-sensing module through the position signal determined by the determination signal.
  • the pressure-sensing signal includes the pressure signal of the target pressure-sensing module.
  • the target pressure-sensing module corresponding to the pressing area is: the target pressure-sensing module corresponding to the position signal corresponding to the pressing area.
  • the above-mentioned pressure sensing module includes a temperature detection unit, the temperature detection unit is a temperature detection unit based on a Wheatstone bridge, and the temperature detection unit includes at least one deformation resistor.
  • the acquisition module is further configured to acquire the temperature signal detected by the temperature detection unit of the target pressure-sensing module corresponding to the pressing area according to the position signal determined by the determination module.
  • the correction module is specifically used to correct the pressure-sensitive signal according to the predetermined temperature coefficient obtained by the acquisition module and the temperature signal obtained by the acquisition module.
  • the above-mentioned temperature detection unit includes a thermistor, and the thermistor is arranged at the heating element in the electronic device corresponding to the pressing area.
  • the above device further includes: a detection module and an output module.
  • the determination module is further configured to determine the target temperature detection unit of the target pressure-sensing module corresponding to the pressing area according to the position signal determined by the determination module.
  • the detection module is used to detect the deformation amount corresponding to the target temperature detection unit determined by the determination module.
  • An output module configured to output a corresponding first voltage signal according to the deformation detected by the detection module
  • the acquiring module is further configured to acquire a temperature signal corresponding to the first voltage signal output by the output module.
  • the acquisition module is configured to respond to the press input received by the receiving module and acquire the corresponding information of the press input. Press the predetermined temperature coefficient of the region, and obtain the pressure-sensing signal through the target pressure-sensing module corresponding to the pressing region; then the correction module can correct the pressure-sensing signal obtained by the obtaining module according to the predetermined temperature coefficient obtained by the obtaining module , so as to ensure that the corrected pressure-sensing signal is a pressure-sensing parameter under the same temperature condition; finally, the execution module can execute the function corresponding to the pressing input according to the pressure-sensing signal corrected by the correction module.
  • the pressure-sensing control device of the electronic device can accurately correct the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, ensuring the pressing accuracy of the target pressure-sensing module, avoiding problems such as delayed release and false triggering, and, Since the temperature coefficient of the pressing area is a predetermined temperature coefficient, the embodiment of the present application saves power consumption of the electronic device while accurately correcting the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area.
  • the pressure-sensitive control device of the electronic device in the embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the device may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, tablet computer, notebook computer, palmtop computer, vehicle electronic device, wearable device, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), netbook or personal digital assistant (personal digital assistant).
  • assistant, PDA personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • the pressure-sensitive control device of the electronic device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the pressure-sensing control device for electronic equipment provided in the embodiments of the present application can implement various processes implemented in the foregoing method embodiments, and details are not repeated here to avoid repetition.
  • the embodiment of the present application further provides an electronic device 500, including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501,
  • an electronic device 500 including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501,
  • the program or instruction is executed by the processor 501 , each process of the above-mentioned embodiment of the pressure-sensing control method for an electronic device can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the electronic devices in the embodiments of the present application include the above-mentioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 8 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1000 includes, but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. part.
  • the electronic device 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so that the management of charging, discharging, and function can be realized through the power management system. Consumption management and other functions.
  • a power supply such as a battery
  • the structure of the electronic device shown in FIG. 8 does not constitute a limitation to the electronic device.
  • the electronic device may include more or fewer components than shown in the figure, or combine some components, or arrange different components, and details will not be repeated here. .
  • the processor 1010 is used to receive the user's pressing input on the screen; in response to the pressing input, obtain the predetermined temperature coefficient of the pressing area corresponding to the pressing input, and obtain the pressure sensing signal through the target pressure sensing module corresponding to the pressing area; according to The pressure-sensitive signal is corrected with a predetermined temperature coefficient; and the function corresponding to the press input is executed according to the corrected pressure-sensitive signal.
  • the screen includes N areas, N is a positive integer, and each area corresponds to a predetermined temperature coefficient; the pressing area is at least one of the N areas; the target pressure-sensitive module is one or more of at least one pressure-sensitive module indivual.
  • the electronic device provided in the embodiment of the present application can obtain the predetermined temperature coefficient of the pressing area corresponding to the pressing input after receiving the user's pressing input on the screen, and obtain the pressure sensing signal through the target pressure sensing module corresponding to the pressing area, and then according to The predetermined temperature coefficient corrects the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area to ensure that the corrected pressure-sensing signal is the pressure-sensing signal under the same temperature condition, and performs the corresponding pressing input according to the corrected pressure-sensing signal function.
  • the pressure-sensing control device of the electronic device can accurately correct the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, ensuring the pressing accuracy of the target pressure-sensing module, avoiding problems such as delayed release and false triggering, and, due to The temperature coefficient of the pressing area is a predetermined temperature coefficient. Therefore, in the embodiment of the present application, while accurately correcting the pressure-sensing signal of the target pressure-sensing module corresponding to the pressing area, the power consumption of the electronic device is also saved.
  • the above predetermined temperature coefficient is positively correlated with the working temperature of the region.
  • the above-mentioned processor 1010 is further configured to determine the position signal corresponding to the pressing area of the pressing input; acquire the predetermined temperature coefficient of the pressing area corresponding to the pressing input according to the position signal; acquire the target pressure through the position signal.
  • the pressure sensing signal of the sensing module is further configured to determine the position signal corresponding to the pressing area of the pressing input; acquire the predetermined temperature coefficient of the pressing area corresponding to the pressing input according to the position signal; acquire the target pressure through the position signal.
  • the pressure-sensitive signal includes the pressure signal of the target pressure-sensitive module
  • the target pressure-sensitive module is: the pressure-sensitive module corresponding to the position signal corresponding to the pressed area.
  • the above-mentioned pressure sensing module includes a temperature detection unit, the temperature detection unit is a temperature detection unit based on a Wheatstone bridge, and the temperature detection unit includes at least one deformation resistor.
  • the above-mentioned processor 1010 is also used to obtain the temperature signal detected by the temperature detection unit of the target pressure-sensitive module corresponding to the pressed area according to the position signal; and correct the pressure-sensitive signal according to the predetermined temperature coefficient and the temperature signal.
  • the above-mentioned temperature detection unit includes a thermistor, and the thermistor is arranged at the heating element in the electronic device corresponding to the pressing area.
  • the above-mentioned processor 1010 is also configured to determine the target temperature detection unit of the target pressure-sensing module corresponding to the pressed area according to the position signal; detect the deformation amount corresponding to the target temperature detection unit; according to the deformation amount , outputting a corresponding first voltage signal; acquiring a temperature signal corresponding to the first voltage signal.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the memory 1009 can be used to store software programs as well as various data, including but not limited to application programs and operating systems.
  • Processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes operating systems, user interfaces, and application programs, and the modem processor mainly processes wireless communications. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above embodiment of the pressure sensitivity control method for an electronic device is implemented, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor is the processor in the electronic device described in the above embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to realize the pressure-sensitive control of the above-mentioned electronic equipment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to realize the pressure-sensitive control of the above-mentioned electronic equipment
  • chips mentioned in the embodiments of the present application may also be called system-on-chip, system-on-chip, system-on-a-chip, or system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Position Input By Displaying (AREA)

Abstract

本申请公开了一种电子设备的压感控制方法、装置、电子设备及介质,该电子设备包括屏幕和设置于屏幕下的至少一个压感模组,该方法包括:接收用户对屏幕的按压输入;响应于按压输入,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号;根据预定温度系数修正压感信号;根据修正后的压感信号执行按压输入对应的功能;其中,屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;按压区域为N个区域中的至少一个;目标压感模组为至少一个压感模组中的一个或多个。

Description

电子设备的压感控制方法、装置、电子设备及介质
相关申请的交叉引用
本申请主张在2021年10月29日在中国提交的中国专利申请号202111274504.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种电子设备的压感控制方法、装置、电子设备及介质。
背景技术
随着人们对产品外观的要求越来越高,隐藏式按键的设计越来越多的出现在电子设备上,其中比较常见的是以压感模组作为隐藏式按键的设计方案。
以压感模组作为隐藏式按键的设计方案,压感模组可以为包括形变电阻的惠斯通电桥压感模组,该压感模组受到的压力转换为电压差输出。从而,电子设备可以基于压感模组输出的压力差,启闭压感模组所对应的功能。
然而,由于形变电阻的电阻率会随着温度发生变化,当电子设备中与压感模组对应的两个侧面存在温度差,从而导致压感模组的按压精度不准确,按键延迟释放以及误触发等问题。
发明内容
本申请实施例的目的是提供一种电子设备的压感控制方法、装置、电子设备及介质,能够解决压感模组的按压精度不准确,按键延迟释放以及误触发等问题。
第一方面,本申请实施例提供了一种电子设备的压感控制方法,该电子设备包括屏幕和设置于屏幕下的至少一个压感模组,该方法包括:接收用户对屏幕的按压输入;响应于按压输入,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号;根据预定温度系数修正压感信号;根据修正后的压感信号执行按压输入对应的功能;其中,屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;按压区域为N个区域中的至少一个;目标压感模组为至少一个压感模组中的一个或多个。
第二方面,本申请实施例提供了一种电子设备的压感控制装置,该电子设备包括屏幕和设置于屏幕下的至少一个压感模组,该装置包括:接收模块,获取模块,修正模块,执行模块;接收模块,用于接收用户对屏幕的按压输入;获取模块,用于响应于接收模块接收的按压输入,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号;修正模块,用于根据获取模块获取的预 定温度系数,修正获取模块获取的压感信号;执行模块,用于根据修正模块修正后的压感信号执行按压输入对应的功能;其中,屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;按压区域为N个区域中的至少一个;目标压感模组为至少一个压感模组中的一个或多个。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如第一方面的方法的步骤。
第四方面,本申请实施例提供了一种可读存储介质,可读存储介质上存储程序或指令,程序或指令被处理器执行时实现如第一方面的方法的步骤。
第五方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
在本申请实施例中,可以在接收用户对屏幕的按压输入之后,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号,然后根据预定温度系数修正按压区域对应的目标压感模组的压感信号,以确保修正后的压感信号为在同一温度条件下的压感信号,并按照修正后的压感信号,执行按压输入对应的功能。如此,电子设备的压感控制装置可以准确地修正按压区域对应的目标压感模组的压感信号,确保了目标压感模组的按压精度,避免延迟释放以及误触发等问题,并且,由于按压区域的温度系数是预定温度系数,从而,本申请实施例在准确修正按压区域对应的目标压感模组的压感信号的同时,还节省了电子设备的功耗。
附图说明
图1为本申请实施例提供的压感模组的结构示意图;
图2为本申请实施例提供的第一惠斯通电桥的结构示意图;
图3为本申请实施例提供的第二惠斯通电桥的结构示意图;
图4为本申请实施例提供的一种电子设备的压感控制方法的流程示意图;
图5为本申请实施例提供的一种电子设备的压感控制方法应用的屏幕区域划分示意图;
图6为本申请实施例提供的电子设备的压感控制装置的结构示意图;
图7为本申请实施例提供的电子设备的硬件示意图之一;
图8为本申请实施例提供的电子设备的硬件示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申 请中的实施例,本领域普通技术人员获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
相关技术中,压感模组是将整个电子设备的热源视为一个整体,对该整体热源造成的影响进行温度补偿。然而,在实际使用场景中,电子设备的热源并不单一,对不同位置的压感模组的影响也不同。从而,将整个电子设备的热源视为一个整体,导致无法准确地对压感模组进行补偿,因此,即使是具有温度补偿功能的压感模组,其依然存在由于温度差导致压感模组的按压精度不准确,延迟释放以及误触发等问题。
为了解决上述问题,在本申请实施例提供的电子设备的压感控制方法、装置、电子设备及介质中,通过将电子设备的屏幕划分为至少一个区域,每个区域对应一个预定温度系数,当用户按压至少一个区域中的区域A时,电子设备会基于区域A对应的预定温度系数,修正区域A对应的目标压感模组的压感信号,以确保修正后的压感信号为在同一温度条件下的压感信号,从而,准确地修正区域A对应的目标压感模组的压感信号,确保了目标压感模组的按压精度,避免延迟释放以及误触发等问题。
本申请实施例提供的子设备的压感控制方法的执行主体为具备压感模组的电子设备的压感控制装置。该装置可以为电子设备,也可以为该电子设备中用于执行压感控制方法的控制模块或其他功能模块,本申请实施例对此不作限定。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的电子设备的压感控制方法、装置、电子设备及介质。进行详细地说明。下面以执行主体为电子设备的压感控制装置为例对该方法进行示例性说明。
如所示,本申请实施例提供一种电子设备的压感控制方法,如图1所示,该电子设备包括屏幕和设置于屏幕下的至少一个压感模组,如图4所示,该方法可以包括下述的步骤101至步骤104。
步骤101、接收用户对所述屏幕的按压输入。
步骤102、响应于按压输入,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号。
步骤103、根据预定温度系数修正压感信号。
步骤104、根据修正后的压感信号执行按压输入对应的功能。
其中,屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;按压区域为所述N个区域中的至少一个;目标压感模组为至少一个压感模组中的一个或多 个。
本申请实施例中,电子设备的屏幕下还设有处理单元,处理单元包括电路板,电路板上设有压力检测电路和显示模组,显示模组与上述屏幕对应。如图1所示,压感模组包括:支撑板(例如钢片),基于形变电阻的第一惠斯通电桥。其中,支撑板可以与显示模组平行,支撑板包括间隔设置的第一支撑部31和第二支撑部32。
一种示例中,关于第一惠斯通电桥:
1)压力检测电路与第一惠斯通电桥的第一输出端电连接。
2)第一惠斯通电桥包括并联的第一电路和第二电路,第一电路包括串联两个电阻R1和R4。第二电路包括串联两个电阻R2和R3。其中,R1、R2、R3、R4中至少部分为形变电阻。
举例说明,如图1所示,R1、R2设于支撑板的第一侧面,第一侧面为支撑板朝向显示模组的侧面;R3、R4、设于支撑板的第二侧面,第二侧面为支撑板背对显示模组的侧面;同时,R1、R2、R3、R4均跨接于第一支撑部和第二支撑部之间,这样,R1、R2、R3、R4均处于悬空状态。
进一步地,如图2所示,上述第一输出端包括位于R1和R4之间的子输出端A(即图2中的ANN),和位于R2和R3之间的子输出端B(即图2中的ANP)。
可以理解的是,当压感模组受到用户的按压时,形变电阻形状发生变化,进而导致形变电阻的电阻值发生变化。形变电阻的形变量与形变电阻的阻值变化量之间存在对应关系。在向第一惠斯通电桥提供固定电压的情况下,压力检测电路可以检测第一惠斯通电桥中各电阻的分压变化情况,并且上述电路板的存储模块中,可以预先存储压感模组接收到的压力大小、与第一惠斯通电桥中各电阻的分压变化情况之间的对应关系。
其中,压感模组的压感信号,包括:压感模组的第一惠斯通电桥中各电阻的分压信号(即各电阻的分压变化情况),与该分压信号对应的压力信号。
如此,当压感模组受到用户的按压力时,压力检测电路可以根据第一惠斯通电桥中各电阻的分压变化情况,并根据压感模组接收到的压力大小、与第一惠斯通电桥中各电阻的分压变化情况之间的对应关系,确定压感模组所受到的压力大小。也就是说,电子设备的压感控制装置可以目标压感模组获取目标压感模组的第一惠斯通电桥的压感信号。
本申请实施例中,上述屏幕中的N个区域可以为上述屏幕中的任意区域,N个区域可以为预设的区域。
需要说明的是,上述N个区域可以阵列分布在屏幕上,或以其他形式分布在上述屏幕上,可以根据具体需求设置,本申请实施例对此不作限定。
示例1,如图5所示,电子设备的屏幕被划分为15个区域,这15个区域阵列分布在屏幕上,屏幕上的虚线仅为展示各个区域,实际场景中,可以不显示这些虚线。
本申请实施例中,上述屏幕可以包括柔性屏。一种示例中,上述屏幕中的部分屏幕可以为柔性屏,剩余屏幕可以为刚性屏。如此,上述N个区域可以位于该屏幕的柔性屏区域,即,上述N个区域对应的屏幕区域可以为:可形变区域。
本申请实施例中,上述N个区域中的每个区域对应至少一个功能。一种示例中,不同区域可以对应不同功能。例如,截屏、开启相机、调整电子设备的音量,开启手电筒等。
可选地,本申请实施例中,每个区域对应一个预定温度系数。一种示例中,不同区域可以对应不同的预定温度系数,或者,多个区域可以对应同一预定温度系数。
可选地,本申请实施例中,预定温度系数,可以是预先设定的,也可以是基于实际应用场景实时设定的。
本申请实施例中,通过按压区域对应的目标压感模组获取的压感信号,可以为:按压区域对应的目标压感模组的压感信号。
需要说明的是,本申请在根据获取的预定温度系数,对按压区域对应的目标压感模组的压感信号进行修正之后,可以确保修正后的压感信号为在同一温度条件下的压感信号,从而,保证了目标压感模组的按压精度。
可以理解的是,按压区域对应的目标压感模组为:至少一个压感模组中接收到用户按压输入的按压力的压感模组,或者,至少一个压感模组中接收到用户按压输入的按压力大于或等于预设阈值的压感模组。
本申请实施例中,按压区域即N个区域中接收到用户按压的区域。
本申请实施例中,可以在接收到用户的按压输入的情况下,轮询N个区域之后,确定按压输入对应的按压区域,进而确定该按压区域对应的预定温度系数。
可选地,本申请实施例中,每个区域可以对应一个压感模组,也可以对应多个压感模组。本申请实施例对此不作限定。即,按压区域对应的目标压感模组的数量为至少一个。
可以理解的是,至少一个压感模组的压感区域(即压力感应区域),可以覆盖N个区域,从而,以确保用户对N个区域中的任一个或多个区域时进行按压输入时,可以触发对应的压感模组检测到上述压感信号。
需要说明的是,上述目标压感模组获取的压感信号,即为:上述压力检测电路的检测结果(例如压力检测电路确定的压感模组所受到的压力大小)。
如此,本申请实施例可以获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号,然后根据该预定温度系数修正该压感信号,以使得修正后的压感信号为在同一温度条件下的压感信号。进一步提高了压力检测结果的准确性。另外,由于按压区域的温度系数是预定温度系数,从而,本申请实施例可以在保证效率与节省功耗的前提下,更为精准的实现压感控制。
可以理解的是,电子设备的压感控制装置可以按照修正后的目标压感模组的压感 信号(即基于预定温度系数修正的目标压感模组的压感信号),执行上述按压输入对应的功能。
也就是说,电子设备的压感控制装置可以按照修正后的压感信号,准确地执行按压输入对应的功能,即准确地执行按压输入对应的按压区域所对应的功能。
示例3,结合示例2,若用户按压电子设备15个区域中的区域33,即图5中位于左上角的区域,若区域33对应的功能为:开启相机。在电子设备的正面和背面存在温度差的情况下,当用户要使用相机时,通过对相机对应的区域33进行按压输入,然后电子设备的压感控制装置可以基于该区域33对应的预定温度系数,修正区域33对应的第一压感模组的压感信号,以确保修正后的第一压感信号为在同一温度条件下的压感信号,并在修正后的压感信号满足相机开启条件的情况下,即准确地开启相机。如此,确保了第一压感模组的按压精度,避免延迟释放等问题,满足了用户需求。
本申请实施例提供的电子设备的压感控制方法,可以在接收用户对屏幕的按压输入之后,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号,然后根据预定温度系数修正按压区域对应的目标压感模组的压感信号,以确保修正后的压感信号为在同一温度条件下的压感信号,并按照修正后的压感信号,执行按压输入对应的功能。如此,电子设备的压感控制装置可以准确地修正按压区域对应的目标压感模组的压感信号,确保了目标压感模组的按压精度,避免延迟释放以及误触发等问题,并且,由于按压区域的温度系数是预定温度系数,从而,本申请实施例在准确修正按压区域对应的目标压感模组的压感信号的同时,还节省了电子设备的功耗。
可选地,本申请实施例中,上述预定温度系数与所述区域的工作温度正相关。
可以理解的是,预定温度系数所对应的区域的工作温度越高,则预定温度系数越大,所对应的区域的工作温度越低,则预定温度系数越小。
也就是说,接收到按压输入的按压区域对应的预定温度系数,与该按压区域的工作温度正相关。
可选地,本申请实施例中,上述预定温度系数可以是基于上述屏幕对应的电子设备中的各发热器件实时确定的。也就是说,预定温度系数所对应的区域的工作温度为:根据预定温度系数所对应的区域中的各发热器件实时确定的。
进一步可选地,本申请实施例中,N个区域中的每个区域对应的预定温度系数是:基于屏幕下的所有发热器件以及对应区域中的发热器件的温度确定的。也就是说,预定温度系数所对应的区域的工作温度为:根据屏幕下的所有发热器件、以及预定温度系数所对应的区域中的各发热器件的温度确定的。
示例性地,若区域B为对应的发热器件为摄像头模组和电池,当用户按压区域B时,则可以基于屏幕下的所有发热器件以及摄像头模组和电池的温度,确定区域B对应的预定温度系数。即,区域B对应的预定温度系数,与屏幕下的所有发热器件以及 摄像头模组和电池的温度正相关。
可以理解的是,屏幕下的所有发热器件,即为:该屏幕对应的电子设备内部设置的所有发热器件。每个区域对应区域下的发热器件,即为:每个区域对应的电子设备内部区域的发热器件。
可以理解的是,由于电子设备内部的不同位置设置了各种电器元件,电器元件在工作过程中可能发热,并且,电子设备内部,不同位置的电器元件的发热量不同。基于此,每个区域对应的预定温度系数,与各个区域在电子设备中所处的位置对应的发热器件(即发热的电器元件)相关,也就是说,每个区域对应的预定温度系数,与各个区域在电子设备中所处的位置对应的工作温度正相关。
进一步可选地,本申请实施例中,每个区域对应的预定温度系数,还可以是基于预设的温度检测元件确定的。
其中,预设的温度检测元件可以为电子设备中的温度检测元件。
可以理解的是,当用户需要开启某个区域对应的功能时,只要区域选定,则该区域对应的预定温度系数即可根据预设的温度检测元件确定。
示例性地,若区域B预设的温度检测元件为摄像头模组和电池,当用户按压区域B时,则可以基于摄像头模组和电池的温度,确定区域B对应的预定温度系数。
可选地,本申请实施例中,上述步骤102中的“获取所述按压输入对应的按压区域的预定温度系数,并通过所述按压区域对应的目标压感模组获取压感信号”,包括步骤102a至步骤102c。
步骤102a、确定按压输入的按压区域对应的位置信号。
可以理解的是,接收按压输入的区域不同,则位置信号不同。即:不同的按压区域,对应不同的位置信号。
步骤102b、根据位置信号获取按压输入对应的按压区域的预定温度系数。
由于位置信号与接收按压输入的按压区域对应,因此,可以根据位置信号,获取按压输入对应的按压区域的预定温度系数。
步骤102c、通过所述位置信号获取所述目标压感模组的压感信号。
其中,上述压感信号包括目标压感模组的压力信号。
目标压感模组为:按压区域对应的位置信号对应的压感模组。
本申请实施例中,通过位置信号获取目标压感模组的压感信号,是指:通过按压区域对应的目标压感模组获取目标压感模组的压感信号。
可以理解的是,目标压感模组的压力信号,即为,目标压感模组对应的第一惠斯通电桥的压力信号。当按压区域接收用户的按压输入时,上述压力检测电路,可以根据目压感模组中的第一惠斯通电桥中各电阻的分压变化情况,并根据目标压感模组接收到的压力大小、与目压感模组中的第一惠斯通电桥中各电阻的分压变化情况之间的对应关系,确定目标压感模组的压力信号,进而,可以获取到目标压感模组的压力信 号。
因此,可以根据按压输入对应的按压区域的预定温度系数,修正包括该压力信号的压感信号,以使得修正后的压感信号为在同一温度条件下的压感信号。进一步提高了压力检测结果的准确性。
可选地,本申请实施例中,上述压感模组包括温度检测单元,温度检测单元为基于惠斯通电桥的温度检测单元,温度检测单元包括至少一个形变电阻。步骤102a之后,上述方法还包括步骤102a1。
步骤102a1、根据位置信号获取按压区域对应的目标压感模组的温度检测单元所检测的温度信号。
上述步骤103包括步骤103a。
步骤103a、根据预定温度系数和温度信号,修正压感信号。
本申请实施例中,上述温度检测单元包括温度检测电路和第二惠斯通电桥。
一种示例中,如图1所示,关于第二惠斯通电桥:
1)上述温度检测电路与第二惠斯通电桥的第二输出端电连接,以检测上述第一侧面与第二侧面之间的温度差。
2)第二惠斯通电桥包括并联的第三电路和第四电路,第三电路包括串联的两个电阻r1和r4。第二电路包括串联的两个电阻r2和r3。其中,r1,r2,r3和r4中至少一个为上述形变电阻。
示例性地,参照图1,r1和r3分别位于第一支撑部相对的两侧(即第一侧面和第二侧面),r2和r4分别位于第二支撑部相对的两侧(即第一侧面和第二侧面)。
进一步地,如图3所示,上述第二输出端包括位于r1和r4之间的子输出端C(即图3中的ANN),和位于r2和r3之间的子输出端D(即图3中的ANP)。
可以理解的是,在向第二惠斯通电桥提供固定电压的情况下,当第三电路或第四电路中的任意一个电阻的阻值发生变化时,第三电路或第四电路中的电阻的分压将随之变化。从而,上述电路板的存储模块中可以预先存储,第一侧面和第二侧面之间的温度差、与子输出端C和子输出端D之间的电压差的对应关系,如此,温度检测电路可以根据子输出端C和子输出端D之间的电压差,确定第一侧面与第二侧面之间的温度差的大小,其中,温度检测单元所检测的温度信号为:第一侧面与第二侧面之间的温度差对应的温度信号。
进而,电子设备的压感控制装置,可以根据按压区域对应的位置信号,获取上述目标压感模组的温度检测单元所检测的温度信号。
需要说明的是,第二惠斯通电桥中的形变电阻和第一惠斯通电桥中的形变电阻可以为相同材质的形变电阻。
关于修正压感信号:
本申请实施例中,第二惠斯通电桥可以用于对第一惠斯通电桥进行温度补偿。
本申请实施例中,可以先根据温度信号修正上述压感信号(例如包括上述压力信号的压感信号),获得第一修正参数,然后再根据预定温度系数,修正第一修正参数。如此,避免了由于将整个电子设备的热源视为一个整体,无法准确的进行温度补偿的问题。进一步减小了第一侧面与第二侧面之间的温度差,提高了温度补偿的准确度,提高了第一惠斯通电桥的按压精度。
以下以压感信号包括压力信号为例,对如何根据温度信号修正上述压感信号的方案进行说明。
一种示例中,关于第二惠斯通电桥与第一惠斯通电桥的关系:
由于电阻的阻值大小通常会随温度的不同而变化,即同一电阻在不同温度下所表现的电阻值通常不同。由于电子设备内部的各种电器元件在工作过程中可能发热,因此,支撑板的第一侧面和第二侧面之间可能存在温度差,该温度差可能导致形变电阻的阻值发生变化,从而导致子输出端A与子输出端B之间的电压差出现误差,进而导致压力检测结果不准确。
基于此,电路板可以根据温度检测电路的检测结果(即第一侧面与第二侧面之间的温度差,例如上述位置信号对应的目标压感模组的温度检测单元所检测的温度信号),对压力检测电路的检测结果进行修正,获得修正后的压感信号。
示例地,以第一侧面的温度为参考温度,并可以预先确定温度差与电阻变化量之间的对应关系。从而,当第二侧面与第一侧面的温度不同时,可以基于第一侧面与第二侧面之间的温度差,确定由于温度差导致的电阻变化量,并通过该电阻变化量对位于第二侧面的R3和R4进行补偿。
例如,由于第一侧面与第二侧面之间的温度差,导致第二侧面的形变电阻的阻值比第一侧面形变阻值大M时,若R3的当前电阻值为M1,R4的当前电阻值为M2,则修正之后,R3的当前电阻值为(M1-M),R4的当前电阻值为(M2-M)。
如此,可以根据温度检测电路的检测结果,对压力检测电路的检测结果进行修正,避免了由于第一侧面与第二侧面之间的温度差,而导致压力检测结果不准确的问题。
以下对如何根据预定温度系数,修正第一修正参数的方案进行说明。
本申请实施例中,可以将上述预定温度系数,与第一修正参数相乘,得到第二修正参数。第二修正参数即为:根据预定温度系数和温度信号,修正上述压感信号之后得到的修正参数。
示例性地,若上述预定温度系数为f,第一修正参数为d,第二修正参数为m,则m=f*d。可以理解的是,第二修正参数m相当于目标压感模组中的第一惠斯通电桥的各个形变电阻在同一温度调节下采集的压感参数,从而本申请实施例可以快速而准确地修正按压区域对应的目标压感模组输出的压感参数,确保了目标压感模组的按压精度。
可选地,本申请实施例中,上述步骤103包括步骤103b。
步骤103b、根据上述预定温度系数,和上述屏幕对应的电子设备的当前温度,修正上述压感信号。
需要说明的是,电子设备的当前温度,可以为电子设备的整机温度,该整机温度通常受外部环境影响较大。基于此,本申请实施例兼顾了预定温度系数和电子设备的当前温度对目标压感模组检测结果的影响,使得修正结果更为精准。
可选地,本申请实施例中,上述温度检测单元包括热敏电阻,热敏电阻设置于按压区域对应的电子设备中的发热器件处。
可以理解的是,上述第二惠斯通电桥中的r1,r2,r3和r4中至少一个为上述热敏电阻。
相关技术中,通常会在电子设备内部的发热器件附近设置温度检测元件(例如热敏电阻),以检测对应的发热器件的温度。例如,电子设备中的主板、电池,摄像头模组,副板接口等发热器件附近,通常会设置温度检测元件。从而,可以通过第二惠斯通电桥直接复用电子设备各个发热器件附近设置的温度检测元件所检测的温度,无需增加额外成本或设计冗余的结构堆叠,获得每个区域对应区域下的发热器件的温度,节省了电子设备内部的安装空间。
可选地,本申请实施例中,上述步骤102a1包括步骤A至步骤D。
步骤A、根据位置信号确定按压区域对应的目标压感模组的目标温度检测单元。
步骤B、检测目标温度检测单元对应的形变量。
步骤C、根据形变量,输出对应的第一电压信号。
步骤D、获取与第一电压信号对应的温度信号。
可以理解的是,不同的位置信号,对应不同的温度检测单元,电子设备的压感控制装置可以根据按压区域对应的位置信号,确定按压区域对应的目标压感模组的目标温度检测单元。
可以理解的是,由于温度检测单元包括至少一个形变电阻,从而,当上述屏幕接收到用户的按压输入时,电子设备的压感控制装置可以检测目标温度检测单元对应的形变量,并根据形变量,输出对应的第一电压信号,然后可以获取与第一电压信号对应的温度信号。进而,能够获取目标温度检测单元对应的温度信号。
可以理解的是,第一电压信号为目标温度检测单元的第一电压信号。目标温度检测单元的第一电压信号为:目标温度检测单元的子输出端C和子输出端D之间的电压差。
示例性地,电子设备在接收到按压输入时,电子设备的压感控制装置可以检测目标温度检测单元的子输出端C和子输出端D之间的电压差。从而,电子设备的压感控制装置可以通过电路板的存储模块中存储的对应关系,获取到目标温度检测单元对应的温度信号。该对应关系为:第一侧面和第二侧面之间的温度差、与子输出端C和子输出端D之间的电压差的对应关系。
可选地,本申请实施例中,上述按压输入对应的感应区域包括至少两个区域;示例性地,步骤102中的“获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号”之前,包括,步骤101a。
步骤101a、将至少两个区域中的目标区域,作为按压输入对应的按压区域。
其中,目标区域对应的压感模组的压感信号对应压感参数大于或等于第一阈值。压感参数可以为:压力参数或电压参数。
示例性地,压力参数为:目标区域对应的压感模组的第一惠斯通电桥的压力信号对应的参数。电压参数为:目标区域对应的压感模组的第一惠斯通电桥的电压信号对应的参数。其中,第一惠斯通电桥的电压信号为:第一惠斯通电桥中各电阻的分压信号。
示例性地,按压输入对应的感应区域为:在按压力作用下,能够触发压感反应的区域。
可以理解的是,由于压感模组通常包括可形变的支撑部,当用户对N个区域中的目标区域进行按压输入时,在按压力的作用下,除了会触发目标区域对应的目标压感模组输出压感信号,还会触发靠近目标区域的其他区域对应的其他压感模组输出压感信号。其中,该目标区域和该其他区域即为上述感应区域。这个情况下,目标区域对应的目标压感模组输出的压感信号对应的压感参数,通常大于该其他区域对应的其他压感模组输出的压感信号对应的压感参数。
基于此,本申请实施例中,将至少两个区域中对应的压感模组输出的压感信号对应的压感参数大于或等于第一阈值的区域,作为上述目标区域。如此,能够准确的在多个感应区域中,确定按压输入对应的按压区域,以便准确的执行按压输入对应的功能,同时,因为并未基于所有感应区域对应的预定温度系数,修正各自的压感参数,因此,在保证准确执行对应功能的同时,还避免了节省了电子设备的功耗。
示例性地,感应区域对应的压感模组输出的压感信号对应的压感参数可以为:上述根据温度检测电路的检测结果,对压力检测电路的检测结果进行修正后的参数。
示例3,N个区域包括区域1、区域2、区域3、区域4、区域5和区域6,若用户要使用N个区域中的区域1对应的功能,用户在对区域1进行按压输入时,在按压力的作用下,区域1、区域2和区域3对应的压感模组分别输出了压感信号对应的压感参数:a、b、c,其中,a大于第一阈值,b和c小于第一阈值,电子设备的压感控制装置将区域1作为按压输入对应的按压区域,从而,电子设备的压感控制装置可以准确地执行按压输入对应的功能,也就是说,执行区域1对应的功能,以满足用户需求。
可选地,本申请实施例中,上述感应区域为:N个区域中,输出的压感信号对应的压感参数大于0的压感模组所对应的区域,或者,上述感应区域为:N个区域中,输出的压感信号对应的压感参数大于第二阈值的压感模组所对应的区域。
其中,第二阈值大于0,并且,第二阈值小于上述第一阈值。
通常,越远离按压输入位置的区域,压感模组输出的压感信号对应的压感参数通常较小,越靠近按压输入位置的区域,压感模组输出的压感信号对应的压感参数通常较大,为此,需要在感应区域中筛选出对应的压感参数大于第二阈值的区域,如此,能够快速确定出上述目标区域,并可以节省电子设备的功耗。
需要说明的是,本申请实施例提供的电子设备的压感控制方法,执行主体可以为电子设备的压感控制装置,或者该电子设备的压感控制装置中的用于执行压感参数调节的方法的控制模块。本申请实施例中是以电子设备的压感控制装置执行压感参数调节的方法为例,说明本申请实施例提供的电子设备的压感控制装置的。
如图6所示,本申请实施例提供一种电子设备的压感控制装置,该装置包括:接收模块401,获取模块402,修正模块403,执行模块404。
接收模块401,用于接收用户对屏幕的按压输入。
获取模块402,用于响应于接收模块401接收的按压输入,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号。
修正模块403,用于根据获取模块402获取的预定温度系数,修正获取模块获取的压感信号。
执行模块404,用于根据修正模块403修正后的压感信号执行按压输入对应的功能。
其中,屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;按压区域为N个区域中的至少一个;目标压感模组为至少一个压感模组中的一个或多个。
可选地,本申请实施例中,上述预定温度系数与上述区域的工作温度正相关。
可选地,本申请实施例中,上述装置还包括:确定模块。
确定模块,用于确定接收模块接收的按压输入的按压区域对应的位置信号。
获取模块,具体用于根据确定模块确定的位置信号获取按压输入对应的按压区域的预定温度系数。
获取模块,具体用于通过确定信号确定的位置信号获取目标压感模组的压感信号。
其中,压感信号包括目标压感模组的压力信号。
按压区域对应的目标压感模组为:按压区域对应的位置信号对应的目标压感模组。
可选地,本申请实施例中,上述述压感模组包括温度检测单元,温度检测单元为基于惠斯通电桥的温度检测单元,温度检测单元包括至少一个形变电阻。
获取模块,还用于根据确定模块确定的位置信号获取按压区域对应的目标压感模组的温度检测单元所检测的温度信号。
修正模块,具体用于根据获取模块获取的预定温度系数和获取模块获取的温度信号,修正压感信号。
可选地,本申请实施例中,上述温度检测单元包括热敏电阻,热敏电阻设置于按压区域对应的电子设备中的发热器件处。
可选地,本申请实施例中,上述装置还包括:检测模块,输出模块。
确定模块,还用于根据确定模块确定的位置信号确定按压区域对应的目标压感模组的目标温度检测单元。
检测模块,用于检测确定模块确定的目标温度检测单元对应的形变量。
输出模块,用于根据检测模块检测的形变量,输出对应的第一电压信号;
获取模块,还用于获取与输出模块输出的第一电压信号对应的温度信号。
本申请实施例提供的电子设备的压感控制装置,接收模块在接收用户对所述屏幕的按压输入之后,获取模块用于响应于所述接收模块接收的按压输入,获取所述按压输入对应的按压区域的预定温度系数,并通过所述按压区域对应的目标压感模组获取压感信号;然后修正模块可以根据所述获取模块获取的预定温度系数,修正所述获取模块获取的压感信号,以确保修正后的压感信号为在同一温度条件下的压感参数;最后执行模块可以根据所述修正模块修正后的所述压感信号执行所述按压输入对应的功能。如此,该电子设备的压感控制装置可以准确地修正按压区域对应的目标压感模组的压感信号,确保了目标压感模组的按压精度,避免延迟释放以及误触发等问题,并且,由于按压区域的温度系数是预定温度系数,从而,本申请实施例在准确修正按压区域对应的目标压感模组的压感信号的同时,还节省了电子设备的功耗。
本申请实施例中的电子设备的压感控制装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性地,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的电子设备的压感控制装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的电子设备的压感控制装置能够实现上述方法实施例实现的各个过程,为避免重复,这里不再赘述。
可选地,如图7所示,本申请实施例还提供一种电子设备500,包括处理器501,存储器502,存储在存储器502上并可在所述处理器501上运行的程序或指令,该程序或指令被处理器501执行时实现上述电子设备的压感控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图8为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等部件。
本领域技术人员可以理解,电子设备1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,处理器1010,用于接收用户对屏幕的按压输入;响应于按压输入,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号;根据预定温度系数修正压感信号;根据修正后的压感信号执行按压输入对应的功能。
其中,屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;按压区域为N个区域中的至少一个;目标压感模组为至少一个压感模组中的一个或多个。
本申请实施例提供的电子设备,可以在接收用户对屏幕的按压输入之后,获取按压输入对应的按压区域的预定温度系数,并通过按压区域对应的目标压感模组获取压感信号,然后根据预定温度系数修正按压区域对应的目标压感模组的压感信号,以确保修正后的压感信号为在同一温度条件下的压感信号,并按照修正后的压感信号,执行按压输入对应的功能。如此,电子设备的压感控制装置可以准确地修正按压区域对应的目标压感模组的压感信号,确保了目标压感模组的按压精度,避免延迟释放以及误触发等问题,并且,由于按压区域的温度系数是预定温度系数,从而,本申请实施例在准确修正按压区域对应的目标压感模组的压感信号的同时,还节省了电子设备的功耗。
可选地,本申请实施例中,上述预定温度系数与区域的工作温度正相关。
可选地,本申请实施例中,上述处理器1010,还用于确定按压输入的按压区域对应的位置信号;根据位置信号获取按压输入对应的按压区域的预定温度系数;通过位置信号获取目标压感模组的压感信号。
其中,压感信号包括目标压感模组的压力信号;
目标压感模组为:按压区域对应的位置信号对应的压感模组。
可选地,本申请实施例中,上述压感模组包括温度检测单元,温度检测单元为基于惠斯通电桥的温度检测单元,温度检测单元包括至少一个形变电阻。
上述处理器1010,还用于根据位置信号获取按压区域对应的目标压感模组的温度检测单元所检测的温度信号;根据预定温度系数和温度信号,修正压感信号。
可选地,本申请实施例中,上述温度检测单元包括热敏电阻,热敏电阻设置于按压区域对应的电子设备中的发热器件处。
可选地,本申请实施例中,上述处理器1010,还用于根据位置信号确定按压区域对应的目标压感模组的目标温度检测单元;检测目标温度检测单元对应的形变量;根据形变量,输出对应的第一电压信号;获取与第一电压信号对应的温度信号。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1009可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述电子设备的压感控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述电子设备的压感控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (14)

  1. 一种电子设备的压感控制方法,所述电子设备包括屏幕和设置于所述屏幕下的至少一个压感模组,所述方法包括:
    接收用户对所述屏幕的按压输入;
    响应于所述按压输入,获取所述按压输入对应的按压区域的预定温度系数,并通过所述按压区域对应的目标压感模组获取压感信号;
    根据所述预定温度系数修正所述压感信号;
    根据修正后的所述压感信号执行所述按压输入对应的功能;
    其中,所述屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;所述按压区域为所述N个区域中的至少一个;所述目标压感模组为所述至少一个压感模组中的一个或多个。
  2. 根据权利要求1所述的方法,其中,所述获取所述按压输入对应的按压区域的预定温度系数,并通过所述按压区域对应的目标压感模组获取压感信号,包括:
    确定所述按压输入的按压区域对应的位置信号;
    根据所述位置信号获取所述按压输入对应的按压区域的预定温度系数;
    通过所述位置信号获取所述目标压感模组的压感信号;
    其中,所述压感信号包括所述目标压感模组的压力信号;
    所述目标压感模组为:所述按压区域对应的位置信号对应的压感模组。
  3. 根据权利要求2所述的方法,其中,
    所述压感模组包括温度检测单元,所述温度检测单元为基于惠斯通电桥的温度检测单元,所述温度检测单元包括至少一个形变电阻;其中,
    所述确定所述按压输入的按压区域对应的位置信号之后;所述方法还包括:根据所述位置信号获取所述按压区域对应的目标压感模组的温度检测单元所检测的温度信号;
    所述根据所述预定温度系数修正所述压感信号,包括:根据所述预定温度系数和所述温度信号,修正所述压感信号。
  4. 根据权利要求3所述的方法,其中,所述温度检测单元包括热敏电阻,所述热敏电阻设置于所述按压区域对应的电子设备中的发热器件处。
  5. 根据权利要求3所述的方法,其中,所述根据所述位置信号获取所述按压区域对应的目标压感模组的温度检测单元所检测的温度信号包括:
    根据所述位置信号确定所述按压区域对应的目标压感模组的目标温度检测单元;
    检测所述目标温度检测单元对应的形变量;
    根据所述形变量,输出对应的第一电压信号;
    获取与所述第一电压信号对应的温度信号。
  6. 根据权利要求1所述的方法,其中,所述预定温度系数与所述区域的工作温度 正相关。
  7. 一种电子设备的压感控制装置,所述电子设备包括屏幕和设置于所述屏幕下的至少一个压感模组,所述装置包括:接收模块,获取模块,修正模块,执行模块;
    所述接收模块,用于接收用户对所述屏幕的按压输入;
    所述获取模块,用于响应于所述接收模块接收的按压输入,获取所述按压输入对应的按压区域的预定温度系数,并通过所述按压区域对应的目标压感模组获取压感信号;
    所述修正模块,用于根据所述获取模块获取的预定温度系数,修正所述获取模块获取的压感信号;
    所述执行模块,用于根据所述修正模块修正后的所述压感信号执行所述按压输入对应的功能;
    其中,所述屏幕包括N个区域,N为正整数,每个区域对应一个预定温度系数;所述按压区域为所述N个区域中的至少一个;所述目标压感模组为所述至少一个压感模组中的一个或多个。
  8. 根据权利要求7所述的装置,其中,所述装置还包括:确定模块;
    所述确定模块,用于确定所述接收模块接收的按压输入的按压区域对应的位置信号;
    所述获取模块,具体用于根据所述确定模块确定的位置信号获取所述按压输入对应的按压区域的预定温度系数;
    所述获取模块,具体用于通过所述确定信号确定的位置信号获取所述目标压感模组的压感信号;
    其中,所述压感信号包括所述目标压感模组的压力信号;
    所述按压区域对应的目标压感模组为:所述按压区域对应的位置信号对应的目标压感模组。
  9. 根据权利要求8所述的装置,其中,
    所述压感模组包括温度检测单元,所述温度检测单元为基于惠斯通电桥的温度检测单元,所述温度检测单元包括至少一个形变电阻;
    所述获取模块,还用于根据所述确定模块确定的位置信号获取所述按压区域对应的目标压感模组的温度检测单元所检测的温度信号;
    所述修正模块,具体用于根据所述获取模块获取的预定温度系数和所述获取模块获取的温度信号,修正所述压感信号。
  10. 根据权利要求9所述的装置,其中,所述温度检测单元包括热敏电阻,所述热敏电阻设置于所述按压区域对应的电子设备中的发热器件处。
  11. 根据权利要求9所述的装置,其中,所述装置还包括:检测模块,输出模块;
    所述确定模块,还用于根据所述确定模块确定的位置信号确定所述按压区域对应 的目标压感模组的目标温度检测单元;
    所述检测模块,用于检测所述确定模块确定的目标温度检测单元对应的形变量;
    所述输出模块,用于根据检测模块检测的所述形变量,输出对应的第一电压信号;
    所述获取模块,还用于获取与所述输出模块输出的第一电压信号对应的温度信号。
  12. 一种电子设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至6任一项所述的电子设备的压感控制方法的步骤。
  13. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至6任一项所述的电子设备的压感控制方法的步骤。
  14. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至6任一项所述的电子设备的压感控制方法。
PCT/CN2022/127011 2021-10-29 2022-10-24 电子设备的压感控制方法、装置、电子设备及介质 WO2023071980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111274504.9A CN114089860A (zh) 2021-10-29 2021-10-29 电子设备的压感控制方法、装置、电子设备及介质
CN202111274504.9 2021-10-29

Publications (1)

Publication Number Publication Date
WO2023071980A1 true WO2023071980A1 (zh) 2023-05-04

Family

ID=80298363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127011 WO2023071980A1 (zh) 2021-10-29 2022-10-24 电子设备的压感控制方法、装置、电子设备及介质

Country Status (2)

Country Link
CN (1) CN114089860A (zh)
WO (1) WO2023071980A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089860A (zh) * 2021-10-29 2022-02-25 维沃移动通信有限公司 电子设备的压感控制方法、装置、电子设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483657A (zh) * 2009-08-26 2012-05-30 全球Oled科技有限责任公司 柔性多点触摸感测电致发光显示器
CN104866134A (zh) * 2014-01-13 2015-08-26 苹果公司 具有柔性层的温度补偿透明力传感器
US20190294275A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Device and method for compensating for temperature change in strain-gauge pressure sensor and method for implementing strain-gauge pressure from touchscreen element
CN110554793A (zh) * 2018-06-04 2019-12-10 华为技术有限公司 终端设备和压力触控方法
CN114089860A (zh) * 2021-10-29 2022-02-25 维沃移动通信有限公司 电子设备的压感控制方法、装置、电子设备及介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194948A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 情報処理装置、入力装置、情報処理方法及びプログラム
KR102380244B1 (ko) * 2017-11-17 2022-03-28 엘지디스플레이 주식회사 터치스크린장치 및 이를 구비한 전자기기
CN110442261B (zh) * 2019-07-22 2023-04-07 维沃移动通信有限公司 电子设备及其触控操作检测方法
CN110764644B (zh) * 2019-10-11 2023-04-11 维沃移动通信有限公司 电子设备及压力补偿方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483657A (zh) * 2009-08-26 2012-05-30 全球Oled科技有限责任公司 柔性多点触摸感测电致发光显示器
CN104866134A (zh) * 2014-01-13 2015-08-26 苹果公司 具有柔性层的温度补偿透明力传感器
US20190294275A1 (en) * 2018-03-23 2019-09-26 Samsung Electronics Co., Ltd. Device and method for compensating for temperature change in strain-gauge pressure sensor and method for implementing strain-gauge pressure from touchscreen element
CN110554793A (zh) * 2018-06-04 2019-12-10 华为技术有限公司 终端设备和压力触控方法
CN114089860A (zh) * 2021-10-29 2022-02-25 维沃移动通信有限公司 电子设备的压感控制方法、装置、电子设备及介质

Also Published As

Publication number Publication date
CN114089860A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
EP2808652B1 (en) Portable electronic device with integrated temperature sensor being compensated by other sensing data
US8345022B2 (en) Linear compensation method of touch panel
US8436804B2 (en) Digital photo frame with power saving function and related power saving method
US9189099B2 (en) Information input unit, information input method, and computer program
JP2012123695A (ja) タッチ式入力パネル装置及びタッチ式入力パネル装置の感度調整方法
KR101973161B1 (ko) 압력 센서를 구비한 터치 입력 장치 및 방법
KR101117841B1 (ko) 터치 감지형 디스플레이를 포함한 포터블 전자 디바이스 및 그 제어 방법
KR20120083788A (ko) 터치 센서 제어기에서의 터치 신호 처리 방법 및 그 장치
WO2023071980A1 (zh) 电子设备的压感控制方法、装置、电子设备及介质
US20120127520A1 (en) Operation panel and image forming apparatus
WO2022267973A1 (zh) 电子设备
US9939945B2 (en) Electronic device
CN112817478A (zh) 压感信号处理方法、装置、电子设备及可读存储介质
CN110764644A (zh) 电子设备及压力补偿方法
TW201528121A (zh) 電子裝置控制方法以及執行此方法的電子裝置
CN107911533B (zh) 一种全面屏下移动终端功能键实现方法
JPH08221203A (ja) 入力時間判定機能付き入力装置
TWI711961B (zh) 觸控裝置的控制方法
CN108984099B (zh) 一种人机交互方法及终端
CN110471808B (zh) 一种压力按键检测方法、装置及移动终端
CN106886351B (zh) 一种终端时间信息的显示方法、装置及计算机设备
EP2808651A1 (en) Portable electronic device with integrated temperature sensor being compensated by other sensing data
CN112416172A (zh) 电子设备控制方法、装置及电子设备
CN108762553B (zh) 触控信息的处理方法、装置、存储介质及电子装置
CN110672262B (zh) 压力按键阈值校准方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885857

Country of ref document: EP

Kind code of ref document: A1