WO2023071944A1 - 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统 - Google Patents

血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统 Download PDF

Info

Publication number
WO2023071944A1
WO2023071944A1 PCT/CN2022/126734 CN2022126734W WO2023071944A1 WO 2023071944 A1 WO2023071944 A1 WO 2023071944A1 CN 2022126734 W CN2022126734 W CN 2022126734W WO 2023071944 A1 WO2023071944 A1 WO 2023071944A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemangioma
expanded
mesh
expansion
occlusion device
Prior art date
Application number
PCT/CN2022/126734
Other languages
English (en)
French (fr)
Inventor
郭爽
常孟琪
郭远益
潘光亮
王亦群
Original Assignee
微创神通医疗科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微创神通医疗科技(上海)有限公司 filed Critical 微创神通医疗科技(上海)有限公司
Publication of WO2023071944A1 publication Critical patent/WO2023071944A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00902Material properties transparent or translucent
    • A61B2017/00915Material properties transparent or translucent for radioactive radiation
    • A61B2017/0092Material properties transparent or translucent for radioactive radiation for X-rays

Definitions

  • the present application relates to the technical field of medical devices, in particular to a hemangioma occlusion device, a hemangioma occlusion treatment device and a hemangioma occlusion system.
  • Saccular aneurysms are the most common type of aneurysm, accounting for 80% to 90% of all intracranial aneurysms, and are the most common cause of nontraumatic subarachnoid hemorrhage (SAH), which, depending on the severity of the bleeding, can lead to Permanent neurological deficit or death.
  • SAH nontraumatic subarachnoid hemorrhage
  • Coil embolization is a minimally invasive procedure in which preformed coils are released from a catheter into the aneurysm sac for filling, resulting in slow and non-laminar blood flow within the aneurysm sac. Disruption of blood flow within the aneurysm sac causes the formation of a clot and excludes further blood flow into the structure, thereby preventing further expansion of the aneurysm.
  • embolization When embolization is successful, the thrombus may eventually be covered by a layer of endothelial cells that reform the inner vessel wall.
  • not all coiling procedures are successful, and coiling may result in recanalization of the aneurysm and may require the implantation of additional devices such as auxiliary stents and flow diverters.
  • the first embolization device is provided, which is a spherical or cylindrical dense mesh device with riveting points at both ends. The whole device is expanded in the aneurysm cavity, and the aneurysm is treated by covering the neck of the aneurysm with the dense mesh at the proximal end.
  • embolization device which consists of a developing wire and a peripheral self-expanding memory alloy to form a three-dimensional network structure, which can be released and recovered through a microcatheter like a spring coil, and can be in a spherical structure when filling the tumor. And then play a disruptive role.
  • a third embolization device is also available, made of a two-layer nitinol braid that works similarly to the first embolization device, but without the riveting point at the distal end of the device.
  • the fourth embolic device is also provided, which is braided by double-layer memory alloy and is disc-shaped without restriction.
  • the design of the riveting point at the proximal end of the first type of embolization device makes the device a symmetrical structure, making it oriented to cover the aneurysm neck. It is mainly used for the treatment of bifurcated wide-diameter aneurysms, and is especially suitable for regular aneurysms.
  • the design of the riveting point at the distal end of the first type of embolization device has an impact on the aneurysm wall, which may easily cause rupture of the aneurysm wall and bleeding of the aneurysm. And in some cases, the proximal riveting point of the first embolization device will be squeezed by the aneurysm wall and herniate into the parent artery, affecting the endothelialization process of the aneurysm neck.
  • the first type of embolization device is usually a single spherical or cylindrical device. Although the contact area is large, the supporting force is insufficient, the long-term stability in the tumor cavity is not good, and the device is easily displaced.
  • the second type of embolization device is shaped into a three-dimensional network structure by multiple sheet-like networks, which is similar to a sphere. Due to the large friction between the three-dimensional network structures and between them and the tumor wall, the forming stability of the device in the tumor Not good, it is not easy to return to the predetermined shape, which affects the filling effect, and it needs to be used with spring coils, which is complicated to operate.
  • the working principle of the third embolization apparatus is basically similar to that of the first embolization apparatus, so there is also the same problem.
  • the proximal riveting point of the fourth type of embolization device is also easily squeezed by the tumor wall and herniated into the parent artery. It is suitable for apical aneurysms, and the position of the device needs to be adjusted repeatedly, otherwise the stability of the device in the tumor will be affected. ,low efficiency.
  • the purpose of this application is to provide a hemangioma occlusion device, a hemangioma occlusion treatment device and a hemangioma occlusion system, which are used to realize the occlusion treatment of hemangiomas, which can be more stable in the tumor positioning, high embolization efficiency, and minimal damage to the tumor wall.
  • a hemangioma occlusion device including:
  • a mesh-like expanded structure having a planar vortex-like expanded state and a compressed state for intravascular delivery to the hemangioma;
  • a positioning guide structure the proximal end of which is connected to the distal end of the mesh expansion structure, the positioning guide structure having a three-dimensional helical expanded state and a compressed state for intravascular delivery to the hemangioma;
  • the hemangioma blocking device is configured such that after expansion, a part of the positioning guide structure is helically arranged in the central lumen of the planar vortex of the reticular expansion structure, and the other part is helically located in the plane of the reticular expansion structure
  • the outside of the vortex, and the helical direction of the positioning guide structure is the same as the helical direction of the mesh expansion structure.
  • the width of the expanded cross-section of the network expansion structure in the direction perpendicular to the planar vortex is greater than the width in other directions.
  • the expanded cross-sectional shape of the expanded network structure is an ellipse, the major axis of the ellipse is perpendicular to the planar vortex, and the short axis of the ellipse is parallel to the planar vortex.
  • the mesh expansion structure includes a proximal portion, a middle portion, and a distal portion that are sequentially connected axially; the distal portion is connected to the positioning guide structure;
  • the expanded cross-sectional area of the middle part is the same, and the width of the expanded cross-section of the middle part in the direction perpendicular to the plane vortex is greater than the width of the other directions; the expanded cross-sectional area of the distal part is from The distal end increases sequentially toward the proximal end, and the expanded cross-sectional area of the proximal portion increases sequentially from the proximal end to the distal end.
  • the area of the expanded cross-section of the mesh expansion structure increases and then decreases repeatedly from the proximal end to the distal end, or the area of the expanded cross-section of the mesh expansion structure increases from the proximal end to the distal end. Towards the distal end, it first increases and then decreases successively.
  • the expanded cross-sectional shape of the expanded mesh structure is a flat shape or a non-flat shape.
  • the expanded outer diameters of the positioning and guiding structures are the same, or the expanded outer diameters of the positioning and guiding structures increase sequentially from the distal end to the proximal end, or the expanded outer diameters of the positioning and guiding structures increase from the distal end to the proximal end. To the proximal end, it increases successively and then decreases successively.
  • the angle between each layer of the expanded helix of the positioning and guiding structure and the cross-section of the positioning and guiding structure is 10°-60°, so that adjacent layers of the positioning and guiding structure can fit together.
  • the mesh expansion structure includes a proximal portion, a middle portion, and a distal portion that are sequentially connected in the axial direction; the distal portion is connected to the positioning guide structure; the expanded cross-sectional area of the middle portion is greater than the cross-sectional area of the proximal portion and the distal portion, and the expanded axial length of the middle portion is not less than 70% of the expanded total length of the mesh expansion structure.
  • the expanded cross-sectional area of the middle part is the same, the expanded cross-sectional area of the distal part increases from the distal end to the proximal end, and the expanded cross-sectional area of the proximal part increases from the proximal end to the proximal end. Increases progressively from end to end.
  • the mesh expansion structure is a braided structure made of braided wires, and the braiding density of the middle part is greater than that of the proximal part and the distal part.
  • the number of braiding wires of the proximal portion and the distal portion is half of the number of braiding wires of the middle portion.
  • the number of helical turns of the expanded positioning guide structure is no more than 5 turns.
  • the expanded helical turns of the positioning and guiding structure are 1.5-3 turns.
  • a section of spring structure is connected to the distal end of the positioning guide structure.
  • the expanded maximum outer diameter of the positioning guide structure is smaller than the expanded maximum outer diameter of the mesh expansion structure.
  • the expanded maximum outer diameter of the positioning guide structure is less than or equal to 1/2 of the expanded maximum outer diameter of the mesh expansion structure.
  • the number of helical turns of the expanded mesh structure is no more than 3 turns.
  • the number of helical turns of the expanded network structure after expansion is 1.1-1.5 turns.
  • the expanded cross-sectional shape of the expanded mesh structure is an ellipse
  • the major axis of the ellipse is perpendicular to the planar vortex
  • the short axis of the ellipse is parallel to the planar vortex
  • the mesh The length of the major axis of the expanded inner helix of the network-like expansion structure is less than the major axis length of the adjacent outer helix
  • the minor axis length of the expanded inner helix of the reticular expansion structure is less than the short axis length of the adjacent outer helix. shaft length.
  • the mesh expansion structure includes a proximal portion, a middle portion, and a distal portion that are sequentially connected in the axial direction; the distal portion is connected to the positioning guide structure, and the cross-sectional area of the middle portion is larger than the The cross-sectional area of the proximal part and the distal part; wherein the length of the major axis of the ellipse of the middle part is not less than 1/3 of the maximum outer diameter of the expanded mesh structure.
  • the net-like expansion structure and the positioning guide structure are integrally braided and formed.
  • At least 1/2 turn is helically arranged in the central lumen of the planar vortex of the mesh expansion structure.
  • the distal end of the mesh expansion structure is fixedly connected to the distal developing ring, and/or, the proximal end of the mesh expanding structure is fixedly connected to the proximal developing ring.
  • the expanded mesh structure is woven from braided wires
  • the material of the braided wires is a shape memory material
  • the diameter of the braided wires is 0.0008in-0.002in
  • the total number of the braided wires is There are 48 to 144 roots
  • the expanded diameter of the reticular expansion structure is 2 to 10 mm
  • the maximum outer diameter of the expanded reticular structure is 3 mm to 25 mm.
  • the expanded mesh structure is braided from developable braided filaments, or the mesh-like expanded structure is braided from a mix of developable braided filaments and non-developable braided filaments.
  • the expanded central axis of the positioning and guiding structure is perpendicular to the expanded planar vortex of the expanded mesh structure, and the expanded central axis of the expanded mesh structure is aligned with the expanded center of the positioning and guiding structure.
  • the axes are coincident or parallel.
  • a hemangioma occlusion treatment device comprising the hemangioma occlusion device as described above and a push rod, the push rod is connected to the hemangioma occlusion proximal end of the device.
  • the push rod extends along a direction tangent to the helix of the planar vortex when the expanded mesh structure is in the expanded state.
  • a hemangioma occlusion system including the hemangioma occlusion device and microcatheter as described above, the mesh expansion structure and the positioning guide structure
  • the inside of the microcatheter is compressed, and can return to an expanded state of a predetermined shape after detaching from the microcatheter.
  • the inner diameter of the microcatheter is 0.017 inch, 0.021 inch or 0.027 inch.
  • the application also provides a method for treating hemangioma, wherein the neck of the hemangioma leads to blood vessels, the method comprising:
  • the method also includes:
  • the proximal end of the net-like expansion structure is parallel to the tumor wall of the hemangioma and does not herniate into the blood vessel.
  • the method also includes:
  • the net-like expansion structure When the net-like expansion structure is released in the hemangioma, the net-like expansion structure can be packed not only on the packing plane of the tumor cavity, but also in a direction perpendicular to the packing plane. This packing method can expand the packing height to accommodate the larger size of the tumor cavity.
  • the hemangioma blocking device, the hemangioma blocking treatment device and the hemangioma blocking system provided by the present application have the following advantages:
  • the hemangioma blocking device of the present application is actually a helical structure composed of a planar vortex and a three-dimensional helix.
  • the three-dimensional helix can play the role of the central axis, making the device more stable during the release process, not easy to turn over, and reducing the impact of the device on the aneurysm. reduce the risk of rupture and bleeding.
  • the planar vortex structure has no orientation, the friction between the inner and outer layers is large, and the neck coverage is high, making the device more stable and difficult to shift.
  • the multi-layer helical composite structure makes the intratumoral formation more stable, and the multi-layer dense mesh structure can increase the embolism density and reduce the number of instruments required for surgery.
  • the hemangioma occlusion device provided by the present application is completely located in the aneurysm, which can avoid the use of dual antiplatelet drugs, and the device increases the internal disturbance while improving the coverage of the aneurysm neck, which can promote the formation of intratumoral thrombus , Accelerate the embolization of aneurysms, the embolization effect is high, and the embolization efficiency is high.
  • the hemangioma blocking device provided by the present application is easy to release, which can reduce the dependence on the doctor's personal experience in aneurysm embolization during the operation, and reduce the operation time.
  • the expanded cross-section of the expanded mesh structure has a width greater than the width in the direction perpendicular to the plane vortex, for example, the expanded mesh structure is elliptical after expansion, and its long axis Vertical to the plane vortex, the short axis is parallel to the plane vortex, in this way not only can increase the friction between the plane vortex, make the whole device more stable after packing, better stability, but also can increase the
  • the filling height is suitable for larger aneurysm cavities, and the application range is wider.
  • Fig. 1 is a top view of the expanded structure of a hemangioma occlusion device according to a preferred embodiment of the present application, wherein the positioning guide structure includes 1.5 turns of helix, and the mesh expansion structure includes 1.5 turns of helix;
  • Fig. 2 is a front view of a hemangioma occlusion device in a preferred embodiment of the present application after expansion, wherein the positioning guide structure includes 1.5 turns of helix, and the mesh expansion structure includes 1.5 turns of helix;
  • Fig. 3 is a schematic diagram of a hemangioma occlusion device in a preferred embodiment of the present application delivered to an aneurysm from the blood vessel through a microcatheter, wherein the positioning guide structure and the mesh expansion structure are compressed into a linear structure in the microcatheter; the linear structure The entire shape of the structure is like a long chain. When this structure is in the expanded state, the network-like expansion structure returns to a plane vortex, and the positioning guide structure returns to a three-dimensional spiral shape, and the whole device can be linear when stretched;
  • Fig. 4 is a state view of a hemangioma occlusion device in a preferred embodiment of the present application that is not fully released in the aneurysm, wherein the positioning guide structure is completely released in the aneurysm, and a part of the mesh expansion structure rotates around the three-dimensional helical structure;
  • Fig. 5 is a state diagram of a hemangioma occlusion device in a preferred embodiment of the present application fully released in the tumor, wherein a part of the positioning guide structure is set in the central cavity of the planar vortex structure, and the rest of the positioning guide structure is set in The exterior of the planar vortex structure;
  • Fig. 6 is a state diagram of a hemangioma occlusion device according to a preferred embodiment of the present application, in which the outer dense mesh of the mesh expansion structure covers the aneurysm neck opening;
  • Fig. 7 is a top view of the expanded structure of the hemangioma occlusion device in another preferred embodiment of the present application, wherein the positioning guide structure includes 2 turns of helix, and the mesh expansion structure includes 1 turn of helix;
  • Fig. 8 is a top view of the expanded structure of the hemangioma occlusion device according to another preferred embodiment of the present application, wherein the positioning guide structure includes 2 turns of the helix, and the mesh expansion structure includes 2 turns of the helix.
  • 10-hemangioma occlusion device 11-reticular expansion structure; 111-proximal end of reticular expansion structure; 112-distal end of reticular expansion structure; 110-outer fine mesh surface of reticular expansion structure; 113-near End part; 114-middle part; 115-distal part;
  • proximal end generally refers to the end near the operator of the device; “distal end” is the end opposite to “proximal end”, and “distal end” generally refers to the end of the device that first enters the body, unless the context clearly states otherwise.
  • the “maximum outer diameter of the expanded network structure” refers to the maximum diameter of the expanded network structure on the projection plane perpendicular to the central axis of the planar vortex;
  • the “maximum outer diameter of the positioning guide structure” refers to , after positioning the guiding structure, the maximum diameter on the projection plane perpendicular to the central axis of the three-dimensional helix.
  • FIG. 1 is a top view of the expanded structure of a hemangioma occlusion device 10 in a preferred embodiment of the present application
  • FIG. 2 is a front view of the expanded hemangioma occlusion device 10 in a preferred embodiment of the present application.
  • this embodiment provides a hemangioma occlusion device 10, which is used to realize the occlusion treatment of hemangiomas.
  • Hemangiomas include but not limited to intracranial aneurysms, and aneurysms can be bifurcations. Aneurysm or lateral wall aneurysm.
  • the hemangioma occlusion device 10 is entirely set in the hemangioma, and the proximal end will not enter the parent artery, and there is no need to take dual anti-platelet drugs for a long time.
  • the embolization efficiency is high, which can reduce the need for doctors' skills and experience. requirements, and does not need to be used in conjunction with other devices, reducing the risk of ischemic complications and reducing operation time.
  • the treatment of side wall aneurysms is mainly used as a schematic illustration to illustrate that the hemangioma occlusion device 10 can easily realize the occlusion treatment of hemangiomas, but those skilled in the art should know that the hemangioma occlusion device 10 can also be applied to Closure of other hemangiomas.
  • the hemangioma occlusion device 10 specifically includes a mesh expansion structure 11 and a positioning guide structure 12 .
  • the mesh expansion structure 11 has a planar spiral expansion state and a compressed state for delivering from the blood vessel to the hemangioma;
  • the positioning guide structure 12 has a three-dimensional helical expansion state and is used for delivering from the blood vessel to the hemangioma.
  • the compressed state of the hemangioma; the helical direction of the expanded three-dimensional helix of the positioning guide structure 12 is the same as the helical direction of the expanded planar vortex of the reticular expansion structure 11 .
  • the helical direction here only means counterclockwise or clockwise, and does not limit the change in the three-dimensional direction of space; and the helical direction is the same, so that the positioning guide structure 12 can effectively drive the helical arrangement of the mesh expansion structure 11 in the tumor cavity, so that the mesh
  • the expansion structure 11 can be evenly arranged in conformity with the shape of the tumor wall, so as to avoid the extrusion deformation of the mesh expansion structure 11 due to rubbing against the tumor wall, resulting in incomplete coverage of the tumor neck.
  • the expanded central axis of the positioning guide structure 12 and the expanded planar vortex of the mesh expanded structure 11 may be perpendicular or non-perpendicular.
  • the expanded central axis of the mesh expansion structure 11 and the expanded central axis of the positioning guide structure 12 may or may not coincide, and may be parallel or non-parallel. That is, it only needs to ensure that a part of the three-dimensional helical structure after expansion of the positioning guide structure 12 is not in the same plane as the planar vortex.
  • the expanded central axis of the positioning guide structure 12 is perpendicular to the expanded plane vortex of the expanded mesh structure 11, and the expanded central axis of the expanded mesh structure 11 is aligned with the expanded positioning guide structure 12.
  • the rear central axes are coincident or parallel.
  • the proximal end of the positioning guide structure 12 is connected to the distal end of the net-like expansion structure 11, and the two are preferably integrally braided.
  • the entire positioning guide structure 12 is arranged outside the distal end of the mesh expansion structure 11, that is to say, the positioning guide structure 12 is not arranged in the part of the mesh body of the mesh expansion structure 11, and the following description
  • a part of the positioning guide structure 12 is spirally arranged in the central cavity of the planar vortex of the reticular expansion structure 11, which means that the grid body of the reticular expansion structure 11 wraps a part of the positioning guide structure 12 during the process of forming the planar vortex. , but it does not mean that part of the positioning guide structure 12 is arranged in the grid body of the mesh expansion structure 11 .
  • the positioning guide structure 12 When the hemangioma occlusion device 10 is expanded, a part of the positioning guide structure 12 is spirally arranged in the center cavity of the planar vortex of the mesh expansion structure 11, while the other part of the positioning guide structure 12 is spirally arranged in the mesh
  • the outside of the planar vortex of the expansion structure 11 is positioned and guided by the positioning and guiding structure 12, and the mesh expansion structure 11 performs support, tumor cavity packing and tumor neck sealing. More specifically, the positioning and guiding structure 12 can make the whole device stable as a whole, and can be stably positioned in the tumor for a long time without being easy to move.
  • the outer dense mesh surface of the mesh expansion structure 11 is distributed along the contour of the tumor cavity while covering the neck of the tumor, so that the packing Simultaneous realization of support and support, good embolization effect and high embolization efficiency.
  • the hemangioma occlusion device 10 of the present application can provide a continuous, high metal coverage and high mesh density coverage at the neck of the aneurysm through the dense mesh of the mesh expansion structure 11, and the occlusion effect is good;
  • the composite structure of vortex and three-dimensional helix can reduce the influence of the distal and proximal ends of the device on the coverage of the aneurysm wall and aneurysm neck, that is, the distal and proximal ends will not damage the aneurysm wall, and the proximal end will not herniate into the parent artery.
  • a dense network with multi-circle distribution inside and outside the tumor cavity is formed to increase the space division of the tumor cavity and improve the embolization efficiency.
  • the hemangioma occlusion device 10 of the present application can increase the coverage rate of the aneurysm neck and at the same time improve the internal disturbance of the aneurysm, promote the formation of intratumoral thrombus, and accelerate the embolization of the aneurysm.
  • the smaller diameter of the three-dimensional helical structure can play a guiding role, and as the device is further released, the three-dimensional helical structure plays the role of a central axis, positioning the device so that the device will not The tumor cavity is reversed to stabilize the packing, and then the planar vortex structure rotates along the central axis constructed by the three-dimensional helical structure, forming a state of releasing the packing along the contour of the tumor cavity, so that the device can be stably shaped.
  • the distal end and the proximal end of the whole device are relatively soft, and the distal end and the proximal end are not in contact with the tumor wall, will not impact the tumor wall, and cause little damage to the tumor wall.
  • the outer dense mesh surface of the planar vortex structure contacts the tumor wall, which is a continuous dense mesh structure, with high coverage of the neck of the tumor, good sealing effect, and the force is dispersed and not easy to shift, which can realize stable Stuffed.
  • the hemangioma occlusion device 10 of the present application is an instrument for vascular interventional therapy, and is delivered in vivo through a microcatheter 40 .
  • the embodiment of the present application also provides a hemangioma occlusion system, including a hemangioma occlusion device 10 and a microcatheter 40 (see FIG. 3 and FIG. 4 ), the mesh expansion structure 11 and the positioning guide structure 12
  • the inside of the microcatheter 40 is compressed, and can return to the expanded state of a predetermined shape after detaching from the microcatheter 40 .
  • the inner diameter of the microcatheter 40 is 0.017 inch, 0.021 inch or 0.027 inch.
  • the present application also provides a hemangioma occlusion treatment device, which includes a hemangioma occlusion device 10 and a push rod 20, and the push rod 20 is connected to the proximal end of the hemangioma occlusion device.
  • the specific operation mode of the hemangioma blocking device 10 can refer to Fig. 3 to Fig. 6:
  • the microcatheter 40 is loaded with the hemangioma occlusion device 10 and delivered intravascularly until the distal end of the microcatheter 40 is positioned at the aneurysm 30;
  • the push rod 20 is used to push the hemangioma occlusion device 10 to the distal end of the microcatheter 40, so that the positioning guide structure 12 is first in the aneurysm 30. Release and shape, and then continue to push the hemangioma occlusion device 10, so that the mesh expansion structure 11 is further rotated and formed on the basis of the positioning guide structure 12;
  • the mesh expansion structure 11 is distributed along the contour of the aneurysm cavity to form a planar vortex and fill the entire aneurysm 30, and a part of the spiral of the positioning guide structure 12 is wrapped by the planar vortex, while the mesh expansion structure
  • the outer dense mesh surface 110 of 11 covers the neck opening 31 of the tumor, as shown in Figure 6;
  • the proximal end 111 of the net-like expansion structure 11 is actually detachably connected with the push rod 20 .
  • the push rod 20 preferably extends along the tangent direction of the helix of the planar vortex when the net-like expansion structure 11 is in an expanded state, so that when the push is released, the outer dense mesh surface 110 of the maximum outer diameter D1 of the net-like expansion structure 11 covers At the aneurysm neck opening 31, that is, the outer dense mesh surface 110 of the mesh expansion structure 11 is set across the neck of the aneurysm 30, thereby improving the coverage of the aneurysm neck opening 31 and preventing the proximal end of the aneurysm occlusion device 10 from 111 is herniated, while ensuring that the proximal end 111 of the hemangioma blocking device 10 is not located in the middle of the aneurysm neck opening 31 to avoid affecting the healing of the aneurysm neck.
  • the detachment method between the push rod 20 and the mesh expansion structure 11 can adopt heating detachment, electrical detachment, mechanical detachment or water detachment, etc. in the prior art, which is not limited.
  • the function of the pushing rod 20 is to push the hemangioma blocking device 10 out of the microcatheter 40 to realize the release of the hemangioma blocking device 10 in the aneurysm 30 .
  • the mesh expansion structure 11 is specifically a braided mesh body woven from braided wires and is pre-shaped as a planar vortex structure.
  • the positioning guide structure 12 is preferably braided and pre-shaped into a three-dimensional helical structure.
  • the network tube can be obtained by weaving the braided wire first, and then the network tube is stretched into an elongated shape and then pre-shaped into a three-dimensional helical structure.
  • the mesh expansion structure 11 and the positioning guide structure 12 are integrally woven, and are respectively shaped into a planar vortex and a three-dimensional helix.
  • the positioning guide structure 12 can serve as the central axis of the planar scroll structure when in use, and a part of the spiral of the positioning guide structure 12 is arranged in the central cavity of the planar scroll structure, that is, the nearest end of the planar scroll structure and the three-dimensional spiral structure. Part of the helix is on the same plane, preferably at least 1/2 turn of the positioning guide structure 12 is set in the central cavity of the planar vortex structure after expansion.
  • FIG. 2 shows that after the expansion of the positioning guide structure 12, one helical turn is arranged in the central cavity of the planar scroll structure.
  • the expanded cross-sectional area of the reticular expansion structure 11 first increases and then decreases sequentially from the proximal end 111 to the distal end 112, or the expanded cross-sectional area of the reticular expansion structure 11 increases from the proximal end to the distal end 112.
  • the distal repetition first increases and then decreases, that is, the repetition becomes larger and smaller.
  • the net-like expansion structure 11 is configured as a shuttle-shaped structure after expansion, that is, the net-like expansion structure 11 is small at both ends and large at the middle.
  • the mesh expansion structure 11 with a change in cross-section can increase the flexibility of the device, reduce the pushing resistance, and reduce the impact on the tumor wall, and it is more convenient to compress, and the compressed size is smaller.
  • the mesh expansion structure 11 includes a proximal portion 113 , a middle portion 114 , and a distal portion 115 that are sequentially connected axially, and the distal portion 115 is connected to the positioning guide structure 12 .
  • the expanded cross-sectional area of the middle portion 114 is greater than the cross-sectional areas of the proximal portion 113 and the distal portion 115 .
  • the cross-sectional area (or diameter) of the distal portion 115 increases sequentially from the distal end 112 to the proximal end 111, and the cross-sectional area (or diameter) of the proximal portion 113 increases from the proximal end 111 to the distal end 1112 increases sequentially, and the cross-sectional area of the middle portion 114 is the same.
  • the distal part 115 whose cross section gradually increases is used to smoothly transition and connect
  • the positioning guide structure 12 ensures a smooth transition between the planar vortex structure and the three-dimensional helical structure, and the proximal portion 113 and the distal portion 114 with varying cross-sections can increase the flexibility of the entire device and reduce damage to the tumor wall.
  • the most proximal braided wire ends of the mesh expansion structure 11 can be gathered into a bundle and welded or fixed by a proximal sleeve, preferably by a proximal sleeve, so as to avoid damage to the tumor wall caused by exposure of the wire ends.
  • the proximal sleeve is preferably a proximal visualization ring that can be visualized under X-ray to locate the proximal end of the entire device.
  • the axial lengths of the proximal portion 113 and the distal portion 115 should not be too long, otherwise the pushing resistance of the entire device will be increased, and the length of the ineffective packing portion will also be increased.
  • the distal part 115 is actually the inner layer of the planar vortex structure and is not in contact with the aneurysm wall, while the proximal part 113 is basically positioned near the neck of the aneurysm without packing, so the proximal part 113 and the distal part
  • the end part 115 is actually an ineffective filling section, and if the length of the two is too long, it will affect the length of the entire device to fill the tumor cavity, and also reduce the pushing performance.
  • the expanded axial length of the middle portion 114 is preferably not less than 70% of the expanded axial length of the mesh expanded structure 11 .
  • the expanded axial length of the middle portion 114 is 70% of the total axial length of the expanded mesh structure 11 . In some embodiments, the expanded axial length of the middle portion 114 is 80% of the total axial length of the entire mesh structure 11 after expansion. In some embodiments, the expanded axial length of the middle portion 114 is 90% of the total axial length of the expanded mesh expansion structure 11 .
  • the proximal portion 113 of the mesh expansion structure 11 is in close contact with the middle portion 114, and the middle portion 114 is in close contact with the distal portion 115, that is, the inside and outside of the planar vortex structure.
  • the layers are spirally fit closely to form a dense network structure closely arranged inside and outside to ensure the embolization effect.
  • each adjacent spiral of the planar vortex-shaped reticular expansion structure 11 closely fits together, for example, the outer wall of the first spiral and the outer wall of the second spiral
  • the inner wall is attached, and the outer wall of the second helix is attached to the inner wall of the third helix, which is applicable to the situation of more helixes, so that the net-like expansion structure 11 can be better formed under the guidance of the positioning guide structure 12 .
  • the first helix of the mesh expansion structure 11 refers to the first helix wound from the most distal end of the mesh expansion structure 11 .
  • the expanded cross-sectional shape of the expanded mesh structure 11 can be in various shapes, such as regular shapes such as circles and ovals, or special-shaped shapes.
  • the width in the direction of the vortex is larger than the width in the remaining directions.
  • the width of the expanded cross-section of the middle part 114 in the direction perpendicular to the plane vortex is larger than the width in the other directions, so as to increase the height of the expanded reticular expansion structure 11 to fill the tumor cavity, so that it can Packing of larger sized cavities.
  • the expanded cross-sectional shape of the expanded mesh structure 11 is an ellipse, the major axis A of the ellipse is perpendicular to the plane vortex P, and the minor axis B is parallel to the plane vortex. p.
  • the cross-sectional area of the middle part 114 remains constant, that is, the middle part 114 is a braided mesh tube of equal diameter.
  • the elliptical middle part 114 can also increase the friction between the inner and outer rings of the planar vortex structure, so that the entire aneurysm sealing device 10 is more stable after filling the aneurysm without causing the planar vortex
  • the displacement between the inner and outer rings of the structure makes the whole hemangioma blocking device more stable.
  • the expanded proximal portion 113 may be conical, as shown in FIG. 1 , and in other In an embodiment, the expanded proximal portion 113 is half of an ellipsoid, as shown in FIG. 7 .
  • the expanded cross-sectional shape of the mesh expansion structure 11 may be a flat shape or a non-flat shape.
  • the expanded cross-sectional shape of the expanded mesh structure 11 is an ellipse, wherein the ratio of the length of the major axis A of the ellipse to the length of the minor axis B is not much different, so as to form a non-flat ellipse, As shown in FIG. 2 , in some other embodiments, the ratio of the length of the major axis A of the ellipse to the length of the minor axis B is quite different to form a flat ellipse, that is, compared to the ellipse shown in FIG. 2 , the major axis A increases, and the minor axis B decreases, as shown in Figure 8 for details.
  • the expanded outer diameter of the positioning guide structure 12 can be the same or the outer diameter increases sequentially from the distal end to the proximal end, or the expanded outer diameter of the positioning guide structure 12 first increases and then decreases sequentially from the distal end to the proximal end.
  • Small, preferably, the expanded maximum outer diameter D2 of the positioning guide structure 12 is smaller than the expanded maximum outer diameter D1 of the mesh expansion structure 11 .
  • the expanded outer diameters of the positioning and guiding structures 12 are the same to reduce manufacturing difficulty.
  • the positioning and guiding structure 12 is slender and soft, and the outer diameter of each helix is preferably the same.
  • the central axis of the entire hemangioma occlusion device 10 is formed by a multi-layer three-dimensional helical structure, and the most distal end of the positioning and guiding structure 12 can be visualized at the distal end.
  • the ring is fixed so that the entire distal end of the hemangioma closure device can also be visualized.
  • the downward angle ⁇ of each helix is 10°-60°, such as 15°, 20°, 30°, etc., so as to reduce the gap between adjacent helices, so that Adjacent layers of spirals can fit closely and have better support.
  • the positioning guide structure 12 acts as a central axis to locate the packing position; the outer dense mesh surface of the outer planar vortex structure is distributed along the tumor cavity and covers the tumor neck, and the fusiform or elliptical shape of the proximal part 113 is covered. Compressed between the mesh body of the middle part 114 and the tumor wall, it will not herniate into the parent tumor artery, and will not cause damage to the tumor wall.
  • the distal end of the positioning and guiding structure 12 is connected to a section of spring structure
  • the spring structure can be helical, its outer diameter is not greater than the maximum outer diameter of the positioning and guiding structure 12, and the number of spiral turns is not greater than that of the positioning and guiding structure 12 number of spiral turns. So configured, the softness of the initial release of the device can be further reduced,
  • the mesh expansion structure 11 is formed by weaving and shaping filaments, the number of braided filaments is preferably 48 to 144, and the diameter of the braided filaments can be 0.0008in to 0.002in, so that a dense mesh with a relatively high grid density can be constructed. The net can effectively block the blood flow in the tumor cavity, promote the formation of thrombus in the tumor, and improve the coverage of the tumor neck.
  • the diameter D of the middle part 114 may be 2 mm to 10 mm, and the maximum outer diameter D1 of the expanded mesh structure 11 is 3 mm to 20 mm.
  • the diameter D here refers to the dimension of the cross-section of the middle portion 114 .
  • the braiding density of the middle part 114 is greater than that of the proximal part 113 and the distal part 115, so as to increase the flexibility of the whole device, reduce damage to the aneurysm wall, and avoid rupture and bleeding of the aneurysm.
  • the number of braided wires of the proximal portion 113 and the distal portion 115 can be reduced to at least half of the number of braided wires of the middle portion 114, so that the distal and proximal ends of the hemangioma occlusion device will be more flexible.
  • the braided wire ends at the proximal end 111 and the distal end 112 of the mesh expansion structure 11 can be fixed by welding or embedded in a sleeve.
  • the expanded total height of the positioning guide structure 12 is preferably no more than the expanded maximum outer diameter D1 of the mesh expanded structure 11, so as to ensure that the planar vortex structure can fully fill the tumor cavity.
  • the number of helical turns of the expanded positioning guide structure 12 is no more than 5 turns, more preferably 1.5 turns to 3 turns.
  • the expanded maximum outer diameter D2 of the positioning guide structure 12 is configured to be wrapped by the central lumen of the mesh expansion structure 11, that is, the expanded maximum outer diameter D2 of the positioning guide structure 12 does not exceed the mesh expansion structure 11 inner diameter.
  • the expanded maximum outer diameter D2 of the positioning guide structure 12 is not greater than 1/2 of the expanded maximum outer diameter D1 of the mesh expansion structure 11, and the helical outer diameter of each turn of the positioning guide structure 12 is equal.
  • the number of helical turns of the expanded net-like expansion structure 11 is preferably no more than 3 turns, so as to avoid increasing the axial length of the entire device, and an increase in the axial length will increase the size of the delivery device. More preferably, the number of helical turns of the expanded mesh expansion structure 11 is 1.1 to 1.5 turns.
  • the outer wall of the inner helix connects with the inner wall of the outer helix after the expansion of the reticular expansion structure 11, and rotates in turn.
  • the cross-sectional shape of the net-like expansion structure 11 is elliptical, especially for the middle part 114, it is preferable that the length of the major axis of the ellipse of the inner helix is smaller than the major axis of the adjacent outer helix The length of the short axis of the inner helix is smaller than that of the adjacent outer helix, so that the cross-sectional size of the largest helix is larger to fully fill the tumor cavity.
  • the expanded maximum outer diameter D1 of the expanded mesh structure 11 is 3 to 25 mm, wherein the length of the major axis A of the ellipse in the middle part 114 is not less than 1/2 of the maximum outer diameter D1 of the expanded mesh structure 11 3.
  • the mesh expansion structure 11 has a compressed state and an expanded state.
  • the mesh expansion structure 11 When the mesh expansion structure 11 is in an expanded state, the mesh expansion structure 11 has a planar spiral shape; when the mesh expansion structure 11 is in a compressed state, it is convenient to pass the mesh expansion structure 11 through the microcatheter 40 Intravascular delivery to hemangiomas. More specifically, when the mesh expansion structure 11 is loaded in the microcatheter 40, it has a compressed state. At this time, the mesh expansion structure 11 is usually in a linear shape to minimize its radial dimension, which is convenient for delivery; After the mesh expansion structure 11 is separated from the microcatheter 40, it expands elastically to have a planar spiral expansion state. Similarly, the positioning guide structure 12 also has a compressed state and an expanded state.
  • the positioning guide structure 12 When the positioning guide structure 12 is in an expanded state, the positioning guide structure 12 recovers as a three-dimensional helical shape as a whole; delivered to the hemangioma.
  • the positioning guide structure 12 when the positioning guide structure 12 is in a compressed state in the microcatheter 40, the positioning guide structure 12 becomes a linear shape with a small radial dimension; when the positioning guide structure 12 breaks away from the microcatheter 40 Afterwards, the self-elastic expansion is used to form an expanded state. In the expanded state, the positioning and guiding structures 12 all return to a three-dimensional helical shape.
  • the expansion of the positioning guide structure 12 includes 1.5 turns of a helix, and the downward angle ⁇ of the helix is 30°. It should be understood that the downward angle ⁇ of the helix is the angle between the helix and the cross-section of the positioning guide structure 12 .
  • the expanded mesh structure 11 includes 1.5 turns of helix after expansion, and the axial length of the middle part 114 accounts for 70% of the total length of the expanded mesh structure 11 after expansion. .
  • Figures 1 and 2 also show that the positioning guide structure 12 and the middle part 114 are smoothly transitioned through the distal part 115 whose cross-section changes sequentially, and the proximal part 113 is shuttle-shaped and short in length, and the proximal part 113 and the distal part The sum of the expanded axial lengths of the portions 115 accounts for 30% of the total expanded length of the expanded mesh structure 11 .
  • Figures 1 and 2 also show that the expanded maximum outer diameter D2 of the positioning guide structure 12 is 1/3 of the expanded maximum outer diameter D1 of the mesh expanded structure 11, and the expanded cross-sectional shape of the middle part 114 is an ellipse shape, the length of the major axis A is 1/2 of the maximum outer diameter D1 of the reticular expanded structure 11.
  • the expansion of the positioning guide structure 12 includes 2 turns of the helix, and the downward angle ⁇ of the helix is 20°.
  • the expansion of the mesh expansion structure 11 includes 1 turn of the helix.
  • the axial length after expansion is 80% of the total length of the expanded mesh expansion structure 11 .
  • Fig. 7 also shows that the positioning guide structure 12 and the middle part 114 are smoothly transitioned through the distal part 115 whose cross-section changes sequentially, but the proximal part 113 is in the shape of an ellipsoid, and the proximal part 113 and the distal part 115 are expanded.
  • the sum of the axial lengths accounts for 20% of the total length of the expanded mesh expansion structure 11 .
  • Figure 7 also shows that the expanded maximum outer diameter D2 of the positioning guide structure 12 is 2/5 of the expanded maximum outer diameter D1 of the mesh expanded structure 11, and the expanded cross-sectional shape of the middle part 114 is elliptical, with a long axis The length A is 3/7 of the maximum outer diameter D1 of the mesh expansion structure 11 .
  • the expansion of the positioning guide structure 12 includes 2 helical turns, and the downward angle ⁇ is 15°.
  • 11 includes a fusiform distal portion 115 , a flat plate middle portion 114 and a fusiform proximal portion 113 , and the flat plate middle portion 114 accounts for 90% of the total expanded length of the mesh expansion structure 11 after expansion.
  • Figure 8 also shows that the expanded maximum outer diameter D2 of the positioning guide structure 12 is 1/2 of the expanded maximum outer diameter D1 of the reticular expanded structure 11, and the long axis length of the expanded middle part 114 of the flat piece is reticulated. 2/3 of the maximum outer diameter of the expanded structure 11 after expansion.
  • the material of the braided wire of the expanded mesh structure 11 includes a shape memory material
  • the shape memory material may be a metal material with a shape memory function, such as nickel-titanium (Ni-Ti) alloy, nickel-titanium-cobalt alloy ( Ni-Ti-Co), double-layer composite metal wire (Ni-Ti@Pt), etc.
  • the material of the braided silk can also be a polymer material with a certain shape recovery ability, such as polydioxanone (PDO), (lactide- ⁇ -caprolactone) copolymer (PLC), polyurethane (PU), polynorbornene amorphous polymer, etc., or a combination of these materials.
  • the braided wire is made of a shape memory metal material or a polymer material with a certain shape recovery ability, so that the mesh has the function of memorizing and restoring its original shape.
  • the mesh expansion structure 11 is braided by developable braided yarns, or the mesh expander structure 11 is braided by a mix of developable braided yarns and non-developable braided yarns.
  • Such a design not only enables the expanded mesh structure 11 to be visualized under X-rays, but also ensures the elasticity of the expanded mesh structure 11, so that the expanded mesh structure 11 has a strong recovery ability and the ability to maintain the original shape.
  • the present application does not specifically limit the developing material of the developable braided silk, for example, platinum (Pt), platinum-iridium (Pt-Ir), Au (gold) and the like can be used.
  • the braided wire is a composite structure, including a sleeve and a core wire, the sleeve covers the core wire, and the material of the core wire includes but is not limited to radiopaque such as platinum, iridium, gold, silver, tantalum, and tungsten.
  • the sleeve has no developability
  • the material of the sleeve includes but is not limited to one or more combinations of nickel-titanium alloy, nitinol, stainless steel, cobalt-chromium alloy, and nickel-cobalt alloy.
  • the braided wires of the middle part 114 can be developed, and the braided wires of the proximal part 113 and the distal part 115 have no development. The visualization is better, improving the safety and accuracy of surgical operation.
  • the present application also provides a method for treating a hemangioma, wherein the neck of the hemangioma leads to a blood vessel, the method comprising:
  • the hemangioma blocking device 10 is placed in the hemangioma, and the positioning and guiding structure is released in the hemangioma first, so that the positioning and guiding structure is rotated in the hemangioma and restored to a three-dimensional helical shape, and then the mesh is further pushed Expand the structure, so that the expanded network structure begins to release, and the expanded network structure continues to rotate and shape with the positioning and guiding structure as the central axis, until the expanded network structure is fully expanded into a planar vortex shape, and the planar vortex of the expanded network structure
  • the central lumen wraps around the helix that is part of the positioning guide structure.
  • the method also includes:
  • the proximal end of the net-like expansion structure is parallel to the tumor wall of the hemangioma without herniating into the blood vessel.
  • the method also includes:
  • the net-like expansion structure When the net-like expansion structure is released in the hemangioma, the net-like expansion structure can be packed not only on the packing plane of the tumor cavity, but also in the direction perpendicular to the packing plane, such as the net-like expansion structure, especially the middle part It is elliptical, the long axis of the ellipse is perpendicular to the packing plane, and the short axis of the ellipse is parallel to the packing plane.
  • the distal positioning and guiding structure can prevent the device from turning over in the tumor cavity to achieve stable packing
  • the proximal mesh expansion structure is along the center of the internal three-dimensional helical structure.
  • the shaft rotates to form a state of releasing packing along the contour of the tumor cavity, so that the device can be stably formed, the shape is stable, and the packing effect is good.
  • the distal and proximal ends of the device will not impact the tumor wall, causing little damage to the tumor wall
  • the outer surface of the external planar vortex structure is in contact with the tumor wall. It is a continuous dense network structure with high coverage of the neck of the tumor, and the force is dispersed to achieve stable support and not easy to shift.
  • the cross-sectional area of the proximal part of the net-like expansion structure increases from the proximal end to the distal end.
  • This structure is easy to compress, and it is attached to the outer wall of the largest helix of the planar vortex structure, reducing the impact on the tumor wall. While impacting, maintain the stability of the device in the tumor cavity.
  • the frictional force between the inner and outer vortices is increased, making the whole device more stable, less prone to displacement and deformation, and also reducing the risk of proximal herniation.
  • the hemangioma occlusion device can provide a continuous dense mesh coverage on the aneurysm neck, which can improve the blood flow into the aneurysm and provide a scaffold for the subsequent endothelialization of the aneurysm neck, especially the internal multi-layer dense mesh structure, which increases the
  • the blood flow resistance in the aneurysm cavity can promote thrombus formation faster, further improve the embolization efficiency of the aneurysm, and then promote the occlusion treatment of the aneurysm.

Abstract

本申请涉及一种血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统;血管瘤封堵装置包括网状扩张结构和定位导向结构,网状扩张结构具有平面涡旋状的扩张状态;定位导向结构具有三维螺旋状的扩张状态,血管瘤封堵装置扩张后,定位导向结构的一部分螺旋设置在平面涡旋的中心腔内,另一部分螺旋位于平面涡旋的外部,从而通过定位导向结构进行定位导向,使装置整体稳固,在瘤内长期稳定定位而不易移动,且通过网状扩张结构可实现对瘤腔的填塞和稳定的支撑。本申请在实现稳定填塞的同时,还具有防止血管瘤破裂,防止血管栓塞,提高瘤颈口的覆盖率,促进瘤内血栓的形成,加速血管瘤的栓塞等优点。

Description

血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统 技术领域
本申请涉及医疗器械技术领域,特别涉及一种血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统。
背景技术
囊状动脉瘤是最常见的动脉瘤类型,占所有颅内动脉瘤的80%至90%,是非创伤性蛛网膜下腔出血(SAH)的最常见原因,根据出血的严重程度,可能会导致永久性神经缺陷或死亡。目前,治疗动脉瘤主要有三种方法:手术夹闭、弹簧圈栓塞术和血流导向装置。其中,弹簧圈栓塞术和血流导向装置为血管内介入治疗,可以避开脑组织,直达病变,微创伤的特性使其成为当前治疗颅内动脉瘤的主流。
弹簧圈栓塞术是一种微创伤手术,其中预成形的弹簧圈从导管释放到动脉瘤囊中进行填充,导致动脉瘤囊内的血流变得缓慢且无层流。动脉瘤囊内的血流破坏引起凝块的形成并排除进入该结构的进一步血流,由此防止动脉瘤的进一步扩张。当栓塞成功时,血栓最终可能被一层内皮细胞覆盖,重新形成内部血管壁。然而,并非所有的弹簧圈栓塞手术都是成功的,弹簧圈栓塞术可能导致动脉瘤再通,还可能需要植入额外的装置,例如辅助支架和血流导向装置。多个装置的使用增加了手术时间,治疗成本和不良事件的可能性。同时,弹簧圈栓塞术对医生的技术和经验积累都有一定要求。近年来血流导向装置的应用显著提高了大型、巨大动脉瘤的长期疗效,且大大减少了弹簧圈的使用。计算机血流动力学模拟分析认为,当金属覆盖率达到30%~50%时,能显著减少动脉瘤腔内血流。但是,血流导向装置的应用使病人长期依赖双重抗血小板治疗,术后有出血性并发症的风险;同时对于分叉部动脉瘤使用血流导向装置有堵塞分支血管的风险。另外,治疗部分大型动脉瘤后有一定迟发破裂风险。
目前还有一些新型的一次栓塞器械,通常由形状记忆材料制备并预制定型成球形、柱形或盘形,通过导管传送,到达特定位置后从鞘管内推出,自膨回复至预制形状,进而达到封堵动脉瘤的目的。例如提供第一种栓塞器械,为一种两端带铆点的球形或柱形密网装置,整个装置在瘤腔内膨开,通过近端密网覆盖瘤颈实现动脉瘤的治疗。另提供有第二种栓塞器械,它由一根显影丝和外周自膨记忆合金共同构成三维网状结构,能够像弹簧圈一样通过微导管释放与回收,在瘤内填塞时可呈球形结构,进而发挥扰流作用。还提供第三种栓塞器械,由双层镍钛合金编织而成,与第一种栓塞器械的工作原理 相似,但装置远端无铆点。还提供第四种栓塞器械,由双层记忆合金编织而成,在无限制下呈盘状,在瘤体内释放时会受到瘤壁的限制而呈郁金香状,能够稳定在瘤体下部并覆盖瘤颈,进而发挥重构血流动力学的作用。但是,第一种栓塞器械在近端的铆点设计使装置为对称结构,使其对瘤颈的覆盖存在取向,主要用于治疗分叉宽径动脉瘤,且对规则动脉瘤尤其适用。而且第一种栓塞器械在远端的铆点设计对瘤壁有冲击作用,容易导致瘤壁破裂,动脉瘤出血。并且部分情况下,第一种栓塞器械的近端铆点会受瘤壁挤压而疝入载瘤动脉,影响瘤颈的内皮化进程。此外,第一种栓塞器械通常为单个球形或柱形,接触面积虽大,但支撑力不足,在瘤腔内的长期稳定性不好,装置容易移位。第二种栓塞器械由多个片状网定型成三维网状结构,类似于球形,由于三维网状结构之间以及其与瘤壁之间的摩擦力较大,装置在瘤内的成型稳定性不好,不容易恢复成预定形状,影响填充效果,而且需配合弹簧圈使用,操作复杂。第三种栓塞器械同第一种栓塞器械的工作原理基本相似,因此也存在同样的问题。而第四种栓塞器械的近端铆点同样易受瘤壁挤压疝入载瘤动脉,适用于顶端动脉瘤,且装置位置需反复调整放置,否则会影响装置在瘤内的稳定性,因此,效率低。
发明内容
为了解决上述技术问题,本申请的目的是提供一种血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统,用于实现血管瘤的封堵治疗,其在瘤内可以更稳定的定位,并且栓塞效率高,对瘤壁的损伤小。
为实现上述目的,根据本申请的第一个方面,提高一种血管瘤封堵装置,包括:
网状扩张结构,具有平面涡旋状的扩张状态和用于从血管内递送到血管瘤的压缩状态;以及,
定位导向结构,近端与所述网状扩张结构的远端连接,所述定位导向结构具有三维螺旋状的扩张状态和用于从血管内递送到血管瘤的压缩状态;
所述血管瘤封堵装置被配置为扩张后,所述定位导向结构的一部分螺旋设置在所述网状扩张结构的平面涡旋的中心腔内,另一部分螺旋位于所述网状扩张结构的平面涡旋的外部,且所述定位导向结构的螺旋方向与所述网状扩张结构的螺旋方向相同。
可选地,所述网状扩张结构扩张后的横截面在垂直于平面涡旋的方向上的宽度大于其余方向的宽度。
可选地,所述网状扩张结构扩张后的横截面形状为椭圆形,所述椭圆形的长轴垂直于平面涡旋,所述椭圆形的短轴平行于平面涡旋。
可选地,所述网状扩张结构包括轴向依次连接的近端部分、中间部分和远端部分;所述远端部分连接所述定位导向结构;
所述中间部分扩张后的横截面面积相同,所述中间部分扩张后的横截面在垂直于平面涡旋的方向上的宽度大于其余方向的宽度;所述远端部分扩张后的横截面面积自远端向近端依次增大,所述近端部分扩张后的横截面面积自近端向远端依次增大。
可选地,所述网状扩张结构扩张后的横截面的面积自近端向远端重复性的先增大再减小,或者所述网状扩张结构扩张后的横截面的面积自近端向远端先依次增大再依次减小。
可选地,所述网状扩张结构扩张后的横截面形状为扁平形状或非扁平形状。
可选地,所述定位导向结构扩张后的外径相同,或者所述定位导向结构扩张后的外径由远端自近端依次递增,或者所述定位导向结构扩张后的外径由远端至近端先依次增大再依次减小。
可选地,所述定位导向结构扩张后的每层螺旋与定位导向结构的横截面之间的夹角为10°~60°,以使所述定位导向结构的相邻层螺旋相贴合。
可选地,所述网状扩张结构包括轴向依次连接的近端部分、中间部分和远端部分;所述远端部分连接所述定位导向结构;所述中间部分扩张后的横截面的面积大于所述近端部分和所述远端部分的横截面面积,且所述中间部分扩张后的轴向长度不小于所述网状扩张结构扩张后的总长度的70%。
可选地,所述中间部分扩张后的横截面面积相同,所述远端部分扩张后的横截面面积自远端向近端依次增大,所述近端部分扩张后的横截面面积自近端向远端依次增大。
可选地,所述网状扩张结构为由编织丝编织而成的编织结构,所述中间部分的编织密度大于所述近端部分和所述远端部分的编织密度。
可选地,所述近端部分和所述远端部分的编织丝的数量为所述中间部分的编织丝的数量的一半。
可选地,所述定位导向结构扩张后的螺旋圈数不超过5圈。
可选地,所述定位导向结构扩张后的螺旋圈数为1.5~3圈。
可选地,所述定位导向结构的远端连接一段弹簧结构。
可选地,所述定位导向结构扩张后的最大外径小于所述网状扩张结构扩张后的最大外径。
可选地,所述定位导向结构扩张后的最大外径小于或等于所述网状扩张结构扩张后的最大外径的1/2。
可选地,所述网状扩张结构扩张后的螺旋圈数不超过3圈。
可选地,所述网状扩张结构扩张后的螺旋圈数为1.1~1.5圈。
可选地,所述网状扩张结构扩张后的横截面形状为椭圆形,所述椭圆形的长轴垂直于平面涡旋,所述椭圆形的短轴平行于平面涡旋,且所述网状扩张结构扩张后的内层螺旋的长轴长度小于与其相邻外层螺旋的长轴长度,所述网状扩张结构扩张后的内层螺旋的短轴长度小于与其相邻外层螺旋的短轴长度。
可选地,所述网状扩张结构包括轴向依次连接的近端部分、中间部分和远端部分;所述远端部分连接所述定位导向结构,所述中间部分的横截面的面积大于所述近端部分和所述远端部分的横截面面积;其中所述中间部分的椭圆形的长轴长度不小于所述网状扩张结构扩张后的最大外径的1/3。
可选地,所述网状扩张结构和所述定位导向结构为一体编织成型结构。
可选地,所述定位导向结构扩张后至少1/2圈螺旋设置在所述网状扩张结构的平面涡旋的中心腔内。
可选地,所述网状扩张结构的远端与远端显影环固定连接,和/或,所述网状扩张结构的近端与近端显影环固定连接。
可选地,所述网状扩张结构由编织丝编织而成,所述编织丝的材料为形状记忆材料,且所述编织丝的直径为0.0008in~0.002in,所述编织丝的总数量为48根~144根,所述网状扩张结构扩张后的直径为2~10mm,所述网状扩张结构扩张后的最大外径为3mm~25mm。
可选地,所述网状扩张结构由可显影的编织丝编织而成,或者,所述网状扩张结构由可显影的编织丝和非显影的编织丝混编而成。
可选地,所述定位导向结构扩张后的中心轴与所述网状扩张结构扩张后的平面涡旋垂直,所述网状扩张结构扩张后的中心轴与所述定位导向结构扩张后的中心轴重合或平行。
为实现上述目的,根据本申请的第二个方面,提供一种血管瘤封堵治疗装置,包括如上所述的血管瘤封堵装置和推送杆,所述推送杆连接于所述血管瘤封堵装置的近端。
可选地,所述推送杆沿所述网状扩张结构呈所述扩张状态时的平面涡旋的螺旋线的切线方向延伸。
为实现上述目的,根据本申请的第三个方面,提供一种血管瘤封堵系统,包括如上所述的血管瘤封堵装置和微导管,所述网状扩张结构和所述定位导向结构在所述微导管内被压缩,并在脱离所述微导管后还能够恢复成预定形状的扩张状态。
可选地,所述微导管的内径为0.017英寸、0.021英寸或0.027英寸。
为实现上述目的,本申请还提供一种用于治疗血管瘤的方法,其中所述 血管瘤的颈部通向血管,所述方法包括:
将如上所述的血管瘤封堵装置放置在所述血管瘤内,并先在所述血管瘤内释放定位导向结构,使所述定位导向结构在所述血管瘤内旋转成型并恢复为三维螺旋形状,然后进一步推送所述网状扩张结构,使所述网状扩张结构开始释放,且所述网状扩张结构以所述定位导向结构为中心轴继续旋转成型,直至所述网状扩张结构完全展开为平面涡旋形状,并使所述网状扩张结构的平面涡旋的中心腔包裹所述定位导向结构的一部分螺旋。
可选地,所述方法还包括:
当所述网状扩张结构在血管瘤内完全展开后,所述网状扩张结构的近端与所述血管瘤的瘤壁平行且不疝入所述血管。
可选地,所述方法还包括:
在所述网状扩张结构在所述血管瘤内释放时,使所述网状扩张结构既在瘤腔的填塞平面上填塞,又在垂直于填塞平面的方向上填塞。这种填塞方式可以扩大填塞高度,以适应瘤腔尺寸更大的情况。
本申请提供的血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统具有以下优点:
本申请的血管瘤封堵装置实际为平面涡旋和三维螺旋复合而成的螺旋结构,三维螺旋可起到中心轴的作用,使装置在释放过程中更稳定,不易翻转,降低装置对动脉瘤的影响,降低破裂出血风险。而平面涡旋结构无取向,内外层之间的摩擦力大,瘤颈覆盖率高的同时使装置更加稳定,不易移位。同时多层螺旋的复合结构使瘤内成型更稳定,且多层密网结构可提高栓塞密度,减少手术需要的器械数量。此外,本申请提供的血管瘤封堵装置完全位于动脉瘤内,可避免双重抗血小板药物的使用,且装置在提高瘤颈覆盖的同时,增加了内部扰流作用,可促进瘤内血栓的形成,加速动脉瘤的栓塞,栓塞效果高,栓塞效率高。另外,本申请提供的血管瘤封堵装置释放简单,可降低手术过程中对医生个人动脉瘤栓塞经验的依赖,减少手术时间。
本申请提供的血管瘤封堵装置中的网状扩张结构扩张后的横截面在垂直于平面涡旋的方向上的宽度大于其余方向的宽度,例如网状扩张结构扩张后椭圆形,其长轴垂直于平面涡旋,短轴平行于平面涡旋,以此方式不仅可以增加平面涡旋之间的摩擦力,使整个装置填塞后更加稳固,稳定性更好,而且还可以增大整个装置的填塞高度,以适应于更大尺寸的瘤腔,使用范围更广。
附图说明
图1是本申请一优选实施例的血管瘤封堵装置扩张后的结构俯视图,其 中定位导向结构包括1.5圈螺旋,网状扩张结构包括1.5圈螺旋;
图2是本申请一优选实施例的血管瘤封堵装置扩张后的正视图,其中定位导向结构包括1.5圈螺旋,网状扩张结构包括1.5圈螺旋;
图3是本申请一优选实施例的血管瘤封堵装置通过微导管从血管内递送至动脉瘤的状态示意图,其中定位导向结构和网状扩张结构在微导管内被压缩为线性结构;线性结构的整个形状犹如一条长链,这种结构在扩张状态下,网状扩张结构恢复平面涡旋,定位导向结构恢复为三维螺旋形状,且整个装置受拉伸时则可呈直线状;
图4是本申请一优选实施例的血管瘤封堵装置在瘤内未完全释放的状态图,其中定位导向结构在动脉瘤内完全释放,网状扩张结构的一部分绕着三维螺旋结构旋转;
图5是本申请一优选实施例的血管瘤封堵装置在瘤内完全释放的状态图,其中,定位导向结构的一部分设置在平面涡旋结构的中心腔内,定位导向结构的其余部分设置在平面涡旋结构的外部;
图6是本申请一优选实施例的血管瘤封堵装置的网状扩张结构的外侧密网覆盖瘤颈口的状态图;
图7是本申请另一优选实施例的血管瘤封堵装置扩张后的结构俯视图,其中定位导向结构包括2圈螺旋,网状扩张结构包括1圈螺旋;
图8是本申请另一优选实施例的血管瘤封堵装置扩张后的结构俯视图,其中定位导向结构包括2圈螺旋,网状扩张结构包括2圈螺旋。
附图标记说明如下:
10-血管瘤封堵装置;11-网状扩张结构;111-网状扩张结构的近端;112-网状扩张结构的远端;110-网状扩张结构的外侧密网面;113-近端部分;114-中间部分;115-远端部分;
12-定位导向结构;
20-推送杆;
30-动脉瘤;31-瘤颈口;
40-微导管;
D1-网状扩张结构扩张后的最大外径;D2-定位导向结构扩张后的最大外径;D-中间部分扩张后的直径;A-椭圆长轴;B-椭圆短轴;P-平面涡旋;α-螺旋下行角度。
具体实施方式
为使本申请的目的、优点和特征更加清楚,以下结合附图对本申请作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的 比例,仅用以方便、明晰地辅助说明本申请实施例的目的。
如在本说明书中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,除非内容另外明确指出外。如在本说明书中所使用的,术语“或”通常是以包括“和/或”的含义而进行使用的,除非内容另外明确指出外。术语“多个”通常是以包括两个或两个以上的含义而进行使用的,除非内容另外明确指出外。术语“若干”通常是以包括数量不确定的含义而进行使用的,除非内容另外明确指出外。术语“近端”通常是指靠近器械操作者的一端;“远端”是与“近端”相对的一端,“远端”通常是指器械首先进入人体的一端,除非内容另外明确指出外。本文中,“网状扩张结构的最大外径”是指,网状扩张结构扩张后,在垂直于平面涡旋中心轴的投影平面上的最大直径;“定位导向结构的最大外径”是指,定位导向结构张后,在垂直于三维螺旋中心轴的投影平面上的最大直径。
图1是本申请一优选实施例的血管瘤封堵装置10扩张后的结构俯视图,图2是本申请一优选实施例的血管瘤封堵装置10扩张后的正视图。
如图1和图2所示,本实施例提供一种血管瘤封堵装置10,用于实现血管瘤的封堵治疗,血管瘤包括但不限于颅内动脉瘤,且动脉瘤可以是分叉动脉瘤或侧壁动脉瘤。在实际应用时,血管瘤封堵装置10整个设置在血管瘤内,且近端不会进入载瘤动脉,而且无需长期服用双重抗血小板药物,同时栓塞效率高,可降低对医生技巧和经验的要求,并且无需与其他器械配合使用,降低了产生缺血并发症的风险,减少了手术时间。
以下描述中,主要以侧壁动脉瘤的治疗为示意来说明血管瘤封堵装置10容易实现血管瘤的封堵治疗,但本领域技术人员应当知晓还可以将该血管瘤封堵装置10应用于其他血管瘤的封堵治疗。
所述血管瘤封堵装置10具体包括网状扩张结构11和定位导向结构12。所述网状扩张结构11具有平面涡旋状的扩张状态和用于从血管内递送到血管瘤的压缩状态;所述定位导向结构12具有三维螺旋状的扩张状态和用于从血管内递送到血管瘤的压缩状态;所述定位导向结构12扩张后的三维螺旋的螺旋方向与网状扩张结构11扩张后的平面涡旋的螺旋方向相同。这里的螺旋方向仅表示逆时针或顺时针方向,不限定空间三维方向上的变化;而且螺旋方向相同,使得定位导向结构12可以有效带动网状扩张结构11在瘤腔内螺旋布置,使网状扩张结构11能够均匀顺应瘤壁形状布置,而避免网状扩张结构11因摩擦瘤壁而发生挤压变形,进而导致瘤颈覆盖不完全的问题。
此外,所述定位导向结构12扩张的中心轴与网状扩张结构11扩张后的平面涡旋可以垂直或不垂直。所述网状扩张结构11扩张后的中心轴与定位导向结构12扩张后的中心轴可以重合或不重合,而且可以平行或不平行。也即, 只要确保定位导向结构12扩张后的一部分三维螺旋结构与平面涡旋不在同一个平面内即可。在一具体实施例中,所述定位导向结构12扩张后的中心轴与网状扩张结构11扩张后的平面涡旋垂直,所述网状扩张结构11扩张后的中心轴与定位导向结构12扩张后的中心轴重合或平行。另外,定位导向结构12的近端与网状扩张结构11的远端连接,优选两者一体编织成型。应理解,整个定位导向结构12设置在网状扩张结构11的远端的外部,也就是说,定位导向结构12并没有设置在网状扩张结构11的网格体内的部分,而下面所描述的定位导向结构12的一部分螺旋设置在网状扩张结构11平面涡旋的中心腔内是指,网状扩张结构11的网格体在形成平面涡旋的过程中包裹了定位导向结构12的一部分结构,但并不是指定位导向结构12的部分结构设置在网状扩张结构11的网格体内。
当所述血管瘤封堵装置10扩张后,所述定位导向结构12的一部分螺旋设置在网状扩张结构11的平面涡旋的中心腔内,同时定位导向结构12的另一部分螺旋设置在网状扩张结构11的平面涡旋的外部,从而由定位导向结构12进行定位导向,网状扩张结构11进行支撑、瘤腔填塞和瘤颈封堵。更具体的,定位导向结构12可以使整个装置整体稳固,能在瘤内长期稳定定位而不易移动,网状扩张结构11的外侧密网面在覆盖瘤颈的同时沿瘤腔轮廓分布,使填塞和支撑同时实现,栓塞效果好,栓塞效率高。
更为详细的,本申请的血管瘤封堵装置10通过网状扩张结构11的密网可在瘤颈处提供连续、高金属覆盖率和高网孔密度的覆盖面,封堵效果好;同时平面涡旋和三维螺旋的复合结构可降低装置的远近端对动脉瘤壁和瘤颈覆盖的影响,即远端和近端不会损伤瘤壁,近端也不会疝入载瘤动脉,而且在瘤腔内形成内外多圈分布的密网,增加瘤腔空间分割,提高栓塞效率。因此,本申请的血管瘤封堵装置10在提高瘤颈覆盖率的同时,可提高动脉瘤内部扰流作用,促进瘤内血栓的形成,加速动脉瘤的栓塞。应理解,在血管瘤内释放初期,三维螺旋结构的直径较小可起到导向作用,且随着装置进一步释放,三维螺旋结构起到中心轴的作用,对装置进行定位,使装置不会在瘤腔内翻转,稳定填塞,随后,平面涡旋结构沿三维螺旋结构所构建的中心轴旋转,形成沿瘤腔轮廓释放填塞的状态,使装置能够稳定成型。除此之外,整个装置的远端和近端都比较柔软,且远端和近端不与瘤壁接触,不会对瘤壁产生冲击,对瘤壁的损伤小。而且释放完成后,平面涡旋结构的外侧密网面接触瘤壁,为连续密网结构,瘤颈口覆盖率高,封堵效果好,且受力分散而不容易移位,能实现稳定的填塞。
本申请的血管瘤封堵装置10为血管介入治疗用的器械,通过微导管40在体内进行输送。为此,本申请实施例还提供一种血管瘤封堵系统,包括血 管瘤封堵装置10和微导管40(参阅图3和图4),所述网状扩张结构11和定位导向结构12在微导管40内被压缩,并在脱离微导管40后还能够恢复成预定形状的扩张状态。可选的,所述微导管40的内径为0.017英寸、0.021英寸或0.027英寸。与此同时,本申请还提供一种血管瘤封堵治疗装置,包括血管瘤封堵装置10和推送杆20,所述推送杆20连接于血管瘤封堵装置的近端。
血管瘤封堵装置10的具体操作方式可参考图3至图6:
如图3所示,微导管40装载血管瘤封堵装置10后在血管内递送,直至微导管40的远端定位在动脉瘤30处;
如图4所示,当微导管40的远端定位在动脉瘤30后,利用推送杆20向微导管40的远端推送血管瘤封堵装置10,使得定位导向结构12首先在动脉瘤30内释放成型,然后继续推送血管瘤封堵装置10,使网状扩张结构11在定位导向结构12的基础上进一步旋转成型;
最终如图5所示,网状扩张结构11沿着瘤腔的轮廓分布形成平面涡旋并填塞整个动脉瘤30,且定位导向结构12的一部分螺旋被平面涡旋所包裹,同时网状扩张结构11的外侧密网面110覆盖瘤颈口31,如图6所示;
当血管瘤封堵装置10完全释放后,再撤离微导管40和推送杆20;其中图5示出了在撤离微导管40和推送杆20后,将血管瘤封堵装置10保留在动脉瘤30内的状态。
所述网状扩张结构11的近端111实际与推送杆20可解脱的连接。所述推送杆20优选沿网状扩张结构11呈扩张状态时的平面涡旋的螺旋线的切线方向延伸,使得推送释放时,网状扩张结构11的最大外径D1的外侧密网面110覆盖在瘤颈口31,也即,网状扩张结构11的外侧密网面110跨越动脉瘤30的颈部设置,从而提高瘤颈口31的覆盖率,并避免血管瘤封堵装置10的近端111疝出,同时确保血管瘤封堵装置10的近端111不位于瘤颈口31的中部而避免影响瘤颈的愈合。所述推送杆20与网状扩张结构11之间的解脱方式可采用现有技术的加热解脱、电解脱、机械方式解脱或水解脱等,对此不限定。所述推送杆20的作用是,推送血管瘤封堵装置10脱离微导管40,实现血管瘤封堵装置10在动脉瘤30内的释放。
所述网状扩张结构11具体为由编织丝编织而成的编织网格体并预定型为平面涡旋结构。所述定位导向结构12优选编织而成并预定型为三维螺旋结构,可先由编织丝编织得到网管,再将网管拉伸为细长形后再预定型为三维螺旋结构。本实施例中,所述网状扩张结构11与定位导向结构12一体编织而成,并分别定型为平面涡旋和三维螺旋。所述定位导向结构12在使用时可充当平面涡旋结构的中心轴,平面涡旋结构的中心腔内设置定位导向结构12的部分螺旋,也即,平面涡旋结构与三维螺旋结构的最近端的部分螺旋在同一平面 上,优选定位导向结构12扩张后至少1/2圈螺旋设置在平面涡旋结构的中心腔内。图2示出了定位导向结构12扩张后1圈螺旋设置在平面涡旋结构的中心腔内。
所述网状扩张结构11优选扩张后的横截面面积自近端111向远端112先依次增大后依次减小,或者所述网状扩张结构11扩张后的横截面的面积自近端向远端重复性的先增大再减小,即重复变大变小。本实施例中,网状扩张结构11扩张后被构造为梭形结构,即两端小、中间大的网状扩张结构11。通过横截面变化的网状扩张结构11可以增加装置的柔性,减少推送阻力,并减小对瘤壁的冲击,而且更方便压缩,压缩尺寸更小。
参阅图1,在一些实施方式中,所述网状扩张结构11包括轴向依次连接的近端部分113、中间部分114和远端部分115,所述远端部分115连接定位导向结构12。其中所述中间部分114扩张后的横截面的面积大于近端部分113和远端部分115的横截面面积。进一步的,所述远端部分115的横截面面积(或者直径)自远端112向近端111依次增大,所述近端部分113的横截面面积(或直径)自近端111向远端1112依次增大,且中间部分114的横截面面积相同。由于定位导向结构12的编织网管尺寸小,而中间部分114的编织网管尺寸大,为使中间部分114与定位导向结构12平滑过渡,则利用横截面逐渐增大的远端部分115来平滑过渡连接定位导向结构12,确保平面涡旋结构和三维螺旋结构之间的平滑过渡,而且横截面变化的近端部分113和远端部分114可增加整个装置的柔性,减小对瘤壁的损伤。
所述网状扩张结构11的最近端的编织丝丝头可聚成一束并焊接或近端套筒固定,优选通过近端套筒固定,避免丝头裸露对瘤壁造成损伤。所述近端套筒优选为近端显影环,近端显影环可在X光下显影而定位整个装置的近端。此外,所述近端部分113和远端部分115的轴向长度不应过长,过长会增加整个装置的推送阻力,也会增加无效填塞部分的长度。所应理解,远端部分115实际上为平面涡旋结构的内层,与瘤壁不接触,而近端部分113基本上定位于瘤颈口附近而不进行填塞,因此近端部分113和远端部分115实际上均为无效填充段,二者如果长度过长,会影响整个装置的填充瘤腔的长度,同时也会降低推送性能。为此,所述中间部分114扩张后的轴向长度优选不小于网状扩张结构11扩张后的轴向总长度的70%。在一些实施例中,所述中间部分114扩张后的轴向长度为网状扩张结构11扩张后的轴向总长度的70%。在一些实施例中,所述中间部分114扩张后的轴向长度为整个网张结构11扩张后的轴向总长度的80%。在一些实施例中,所述中间部分114扩张后的轴向长度为网状扩张结构11扩张后的轴向总长度的90%。
当血管瘤封堵装置10完全扩张后,所述网状扩张结构11的近端部分113 紧贴在中间部分114上,中间部分114紧贴在远端部分115,也即平面涡旋结构的内外层螺旋紧密贴合,形成内外紧密布置的密网结构,确保栓塞效果。其中为了方便控制平面涡旋的尺寸,在实际制作时,优选平面涡旋状的网状扩张结构11的各个相邻螺旋紧密贴合在一起,例如第一个螺旋的外壁与第二个螺旋的内壁贴合,第二个螺旋的外壁与第三个螺旋的内壁贴合,此适用于更多螺旋的情况,以便于网状扩张结构11在定位导向结构12的引导下更好的成型。应理解,所述网状扩张结构11的第一个螺旋是指从网状扩张结构11的最远端开始绕制的第一个螺旋。
所述网状扩张结构11扩张后的横截面形状可以是各种形状,如圆形、椭圆形等规则形状或异形形状,更优选所述网状扩张结构11扩张后的横截面在垂直于平面涡旋的方向上的宽度大于其余方向的宽度。进一步的,所述中间部分114扩张后的横截面在垂直于平面涡旋的方向上的宽度大于其余方向的宽度,以此增大网状扩张结构11扩张后的填塞瘤腔的高度,从而可以填塞更大尺寸的瘤腔。
在一些实施例中,如图2所示,所述网状扩张结构11扩张后的横截面形状为椭圆形,椭圆形的长轴A垂直于平面涡旋P,短轴B平行于平面涡旋P。中间部分114的横截面面积保持不变,即中间部分114为等直径的编织网管。椭圆形的中间部分114除增大填塞高度外,还可以增加平面涡旋结构的内外圈之间的摩擦力,使整个血管瘤封堵装置10填塞动脉瘤后更加稳固,不会使平面涡旋结构的内外圈之间移位,从而使整个血管瘤封堵装置更为稳定。
所述近端部分113扩张后的横截面面积自近端向远端增大时,在一些实施方式中,所述近端部分113扩张后可为圆锥形,如图1所示,在另一些实施方式中,所述近端部分113扩张后为椭球形的一半结构,如图7所示。
进一步的,所述网状扩张结构11扩张后的横截面形状可以为扁平形状或非扁平形状。如在一些实施方式中,所述网状扩张结构11扩张后横截面形状为椭圆形,其中椭圆形的长轴A长度与短轴B长度的比值相差不大,以形成非扁平的椭圆形,如图2所示,在另一些实施方式中,椭圆形的长轴A长度与短轴B长度的比值相差较大,以形成扁平的椭圆形,即相比于图2中示出的椭圆形,长轴A增大,短轴B减小,具体可参考图8所示。
所述定位导向结构12扩张后的外径可以相同或由远端向近端外径依次递增,或者所述定位导向结构12扩张后的外径由远端至近端先依次增大再依次减小,优选的,定位导向结构12扩张后的最大外径D2小于网状扩张结构11扩张后的最大外径D1。本实施例中,所述定位导向结构12扩张后的外径相同,以降低制造难度。所述定位导向结构12细长柔软,每层螺旋的外径优选相同,通过多层三维螺旋结构形成整个血管瘤封堵装置10的中心轴,且定位 导向结构12的最远端可用远端显影环固定,使整个血管瘤封堵装置的远端也可显影。进一步优选的,所述定位导向结构12扩张后,每层螺旋的下行角度α为10°~60°,如15°、20°、30°等,以减小相邻螺旋之间的空隙,使相邻层螺旋可以紧密贴合,支撑性更好。应理解,在填塞动脉瘤过程初期,由于定位导向结构12的最大外径D2远小于动脉瘤直径,与瘤壁之间的摩擦力小,可起到导向作用;随着进一步填塞,中心轴的作用逐步显现,外部平面涡旋结构可沿着该中心轴旋转释放,最后形成沿瘤腔轮廓填塞的状态。填塞完成后,定位导向结构12起到中心轴的作用,定位填塞位置;外部平面涡旋结构的外侧密网面沿瘤腔分布并覆盖瘤颈,其近端部分113的梭形或椭圆形被压紧在中间部分114的网格体和瘤壁之间,不会疝入载瘤动脉,也不会对瘤壁造成损伤。
优选的,所述定位导向结构12的远端连接一段弹簧结构,所述弹簧结构可为螺旋形,其外径不大于定位导向结构12的最大外径,且螺旋圈数不大于定位导向结构12的螺旋圈数。如此配置,可进一步降低装置初始释放时的柔软度,
所述网状扩张结构11由细丝编织定型而成,编织丝的数目优选为48~144根,编织丝的丝径可为0.0008in~0.002in,以此可构造网格密度较大的密网,有效阻挡瘤腔内血流,促进瘤内血栓的形成,并提高瘤颈的覆盖率。进一步的,所述中间部分114的直径D可选为2mm~10mm,网状扩张结构11扩张后的最大外径D1为3mm~20mm。这里的直径D是指中间部分114的横截面的尺寸。进一步的,所述中间部分114的编织密度大于近端部分113和远端部分115的编织密度,以增加整个装置的柔性,减小对瘤壁的损伤,避免动脉瘤破裂出血。所述近端部分113和远端部分115的编织丝的数量最少可减少至中间部分114的编织丝的数量的一半,使得血管瘤封堵装置的远端和近端会更加柔软。所述网状扩张结构11的近端111和远端112处的编织丝丝头可焊接固定或嵌入套筒固定。
所述定位导向结构12扩张后的总高度优选不超过网状扩张结构11扩张后的最大外径D1,以确保平面涡旋结构能够充分填塞瘤腔。在一些实施例中,所述定位导向结构12扩张后的螺旋圈数不超过5圈,更优选为1.5圈~3圈。所述定位导向结构12扩张后的最大外径D2被配置为能够被网状扩张结构11的中心腔所包裹,也即,定位导向结构12扩张后的最大外径D2不超过网状扩张结构11的内径。优选的,所述定位导向结构12扩张后的最大外径D2不大于网状扩张结构11扩张后的最大外径D1的1/2,且定位导向结构12的每圈的螺旋外径相等。
所述网状扩张结构11扩张后的螺旋圈数优选不超过3圈,以避免增加整 个装置的轴向长度,轴向长度增加会增加输送装置的尺寸。更优选所述网状扩张结构11扩张后的螺旋圈数为1.1圈~1.5圈。在动脉瘤内,网状扩张结构11扩张后内层螺旋的外侧壁与外层螺旋的内侧壁相接,依次旋转。在一些实施例中,所述网状扩张结构11的横截面形状为椭圆形,尤其对于中间部分114而言,优选内层螺旋的椭圆形的长轴长度小于与其相邻外层螺旋的长轴的长度,内层螺旋的短轴长度小于与其相邻外层螺旋的短轴长度,使得最大螺旋的截面尺寸更大,以能够充分填塞瘤腔。可选的,所述网状扩张结构11扩张后的最大外径D1为3~25mm,其中中间部分114的椭圆形的长轴A长度不小于网状扩张结构11的最大外径D1的1/3。
如前所述,所述网状扩张结构11具有压缩状态和扩张状态。当所述网状扩张结构11处于扩张状态时,所述网状扩张结构11具有平面涡旋状;当所述网状扩张结构11处于压缩状态时,方便将网状扩张结构11通过微导管40从血管内递送到血管瘤。更具体的,当所述网状扩张结构11装载于微导管40内时而具有压缩状态,此时,所述网状扩张结构11通常成线性形状而使其径向尺寸最小,便于输送;当所述网状扩张结构11脱离微导管40后即利用自身弹性扩张而具有平面涡旋状的扩张状态。同理,所述定位导向结构12也具有压缩状态和扩张状态。当所述定位导向结构12处于扩张状态时,所述定位导向结构12整体恢复成三维螺旋形状;当所述定位导向结构12处于压缩状态时,亦方便将定位导向结构12通过微导管40从血管内递送到血管瘤。更详细地,当所述定位导向结构12在微导管40内时具有压缩状态,此时,所述定位导向结构12成线性形状,径向尺寸小;当所述定位导向结构12脱离微导管40后即利用自身弹性扩张而具有扩张状态,在扩张状态下,所述定位导向结构12全部恢复成三维螺旋形状。
在一示意性实施例中,如图1和图2所示,定位导向结构12扩张后包括1.5圈螺旋,螺旋的下行角度α为30°。应理解,螺旋的下行角度α即为螺旋线与定位导向结构12的横截面之间的夹角。在一些实施例中,如图1和图2所示,网状扩张结构11扩张后包括1.5圈螺旋,中间部分114扩张后的轴向长度占网状扩张结构11扩张后的总长度的70%。图1和图2还示出了定位导向结构12和中间部分114通过截面依次变化的远端部分115平滑过渡连接,且近端部分113为梭形且长度较短,近端部分113和远端部分115扩张后的轴向长度之和占网状扩张结构11扩张后的总长度的30%。图1和图2中还示出了定位导向结构12扩张后的最大外径D2为网状扩张结构11扩张后的最大外径D1的1/3,中间部分114扩张后的横截面形状为椭圆形,长轴A长度为网状扩张结构11的最大外径D1的1/2。
在另一示意性实施例中,如图7所示,定位导向结构12扩张后包括2圈 螺旋,螺旋的下行角度α为20°,网状扩张结构11扩张后包括1圈螺旋,中间部分114扩张后的轴向长度为网状扩张结构11扩张后的总长度的80%。图7还示出了定位导向结构12和中间部分114通过截面依次变化的远端部分115平滑过渡连接,但近端部分113为椭球形状,且近端部分113和远端部分115扩张后的轴向长度之和占网状扩张结构11扩张后的总长度的20%。图7还示出了定位导向结构12扩张后的最大外径D2为网状扩张结构11扩张后的最大外径D1的2/5,中间部分114扩张后的横截面形状为椭圆形,长轴A长度为网状扩张结构11的最大外径D1的3/7。
在又一示意性实施例中,如图8所示,定位导向结构12扩张后包括2圈螺旋,下行角度α为15°,网状扩张结构11扩张后包括2圈螺旋,其中网状扩张结构11包括梭形的远端部分115、扁片的中间部分114和梭形的近端部分113,扁片的中间部分114扩张后占网状扩张结构11扩张后的总长度的90%。图8还示出了定位导向结构12扩张后的最大外径D2为网状扩张结构11扩张后的最大外径D1的1/2,扁片的中间部分114扩张后的长轴长度为网状扩张结构11扩张后的最大外径的2/3。
优选的,所述网状扩张结构11的编织丝的材料包括形状记忆材料,所述形状记忆材料可以是具有形状记忆功能的金属材料,如镍钛(Ni-Ti)合金、镍钛钴合金(Ni-Ti-Co)、双层复合金属丝(Ni-Ti@Pt)等。所述编织丝的材料也可以是具有一定形状恢复能力的聚合物材料,如聚对二氧环己酮(PDO)、(丙交酯-ε-己内酯)共聚物(PLC)、聚氨酯(PU)、聚降冰片烯无定形聚合物等,或者这些材料的组合。这里,编织丝采用形状记忆金属材料或具有一定形状恢复能力的聚合物材料,使网格物具有记忆并恢复原有形状的功能。优选的,所述网状扩张结构11由可显影的编织丝编织而成,或者,所述网状扩张结构11由可显影的编织丝和非显影的编织丝混编而成。这样的设计,既能够使网状扩张结构11在X射线下显影,又保证了网状扩张结构11的弹性,使网状扩张结构11具有较强的恢复能力并保持原有形状的能力。本申请对所述可显影的编织丝的显影材料不作特别的限定,例如可选用铂(Pt)、铂铱(Pt-Ir)、Au(黄金)等。在一些实施例中,编织丝为复合结构,包括套管和芯丝,套管包覆芯丝,芯丝的材料包括但不限于为铂、铱、金、银、钽和钨等不透射线材料中的一种或其合金,套管不具有显影性,套管的材料包括但不限于为镍钛合金、镍钛诺、不锈钢、钴铬合金、镍钴合金的一种或多种组合。优选的,所述中间部分114的编织丝可显影,近端部分113和远端部分115的编织丝无显影,该中间部分114采用显影材料作为编织丝,可以使得网状扩张结构11的X光显影性更好,提高手术操作安全性和准确性。
进一步的,本申请还提供一种用于治疗血管瘤的方法,其中所述血管瘤 的颈部通向血管,所述方法包括:
将血管瘤封堵装置10放置在血管瘤内,并先在血管瘤内释放定位导向结构,使所述定位导向结构在所述血管瘤内旋转成型并恢复为三维螺旋形状,然后进一步推送网状扩张结构,使网状扩张结构开始释放,且网状扩张结构以定位导向结构为中心轴继续旋转成型,直至网状扩张结构完全展开为平面涡旋形状,并使网状扩张结构的平面涡旋的中心腔包裹定位导向结构的一部分螺旋。
可选地,所述方法还包括:
当所述网状扩张结构在血管瘤内完全展开后,所述网状扩张结构的近端与血管瘤的瘤壁平行且不疝入所述血管。
可选地,所述方法还包括:
在网状扩张结构在血管瘤内释放时,使网状扩张结构既在瘤腔的填塞平面上填塞,又在垂直于填塞平面的方向上填塞,如将网状扩张结构,尤其是中间部分构造为椭圆形,椭圆形的长轴垂直于填塞平面,椭圆形的短轴平行于填塞平面。
根据本申请实施例提供的技术方案,通过远端的定位导向结构可使装置不会在瘤腔内翻转,以实现稳定填塞,而且近端的网状扩张结构沿内部三维螺旋结构所构建的中心轴旋转,形成沿瘤腔轮廓释放填塞的状态,使装置能够稳定成型,成型稳定,填塞效果好,同时装置的远端和近端不会对瘤壁产生冲击,对瘤壁的损伤小,而且外部平面涡旋结构的外侧面接触瘤壁,为连续密网结构,瘤颈口覆盖率高,且受力分散而实现稳定的支撑,不容易移位。此外,网状扩张结构的近端部分的横截面面积自近端向远端增大,这种结构便于压缩,并贴附在平面涡旋结构的最大螺旋的外侧壁上,在减少对瘤壁冲击的同时,保持装置在瘤腔内的稳定性。且由于内部三维螺旋结构的存在,使得内外涡旋之间的摩擦力增大,使整个装置更加稳固,不易移位和变形,也减少了近端疝出的风险。另外,血管瘤封堵装置可在瘤颈提供连续的密网覆盖面,可提高在减少血液流入动脉瘤的同时为后续瘤颈口的内皮化提供脚手架,尤其内部为多层密网结构,增加了瘤腔内的血流阻力,能更快的促进血栓形成,进一步提高动脉瘤的栓塞效率,进而促进动脉瘤的封堵治疗。
上述描述仅是对本申请较佳实施例的描述,并非对本申请范围的任何限定,本申请领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本申请的保护范围。

Claims (30)

  1. 一种血管瘤封堵装置,其特征在于,包括:
    网状扩张结构,具有平面涡旋状的扩张状态和用于从血管内递送到血管瘤的压缩状态;以及,
    定位导向结构,其近端与所述网状扩张结构的远端连接,所述定位导向结构具有三维螺旋状的扩张状态和用于从血管内递送到血管瘤的压缩状态;
    所述血管瘤封堵装置被配置为扩张后,所述定位导向结构的一部分螺旋设置在所述网状扩张结构的平面涡旋的中心腔内,另一部分螺旋位于所述网状扩张结构的平面涡旋的外部,且所述定位导向结构的螺旋方向与所述网状扩张结构的螺旋方向相同。
  2. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的横截面在垂直于所述平面涡旋的方向上的宽度大于其余方向的宽度。
  3. 根据权利要求2所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的横截面形状为椭圆形,所述椭圆形的长轴垂直于所述平面涡旋,所述椭圆形的短轴平行于所述平面涡旋。
  4. 根据权利要求2或3所述的血管瘤封堵装置,其特征在于,所述网状扩张结构包括轴向依次连接的近端部分、中间部分和远端部分;所述远端部分连接所述定位导向结构;
    所述中间部分扩张后的横截面面积相同,所述中间部分扩张后的横截面在垂直于所述平面涡旋的方向上的宽度大于其余方向的宽度;所述远端部分扩张后的横截面面积自远端向近端依次增大,所述近端部分扩张后的横截面面积自近端向远端依次增大。
  5. 根据权利要求2或3所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的横截面的面积自近端向远端重复性的先增大再减小,或者所述网状扩张结构扩张后的横截面的面积自近端向远端先依次增大再依次减小。
  6. 根据权利要求3所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的横截面形状为扁平形状或非扁平形状。
  7. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后的外径相同,或者所述定位导向结构扩张后的外径由远端自近端依次递增,或者所述定位导向结构扩张后的外径由远端至近端先依次增大再依次减小。
  8. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结 构扩张后的每层螺旋与所述定位导向结构的横截面之间的夹角为10°~60°,以使所述定位导向结构的相邻层螺旋相贴合。
  9. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构包括轴向依次连接的近端部分、中间部分和远端部分;所述远端部分连接所述定位导向结构;所述中间部分扩张后的横截面的面积大于所述近端部分和所述远端部分的横截面面积,且所述中间部分扩张后的轴向长度不小于所述网状扩张结构扩张后的总长度的70%。
  10. 根据权利要求9所述的血管瘤封堵装置,其特征在于,所述中间部分扩张后的横截面面积相同,所述远端部分扩张后的横截面面积自远端向近端依次增大,所述近端部分扩张后的横截面面积自近端向远端依次增大。
  11. 根据权利要求9或10所述的血管瘤封堵装置,其特征在于,所述网状扩张结构为由编织丝编织而成的编织结构,所述中间部分的编织密度大于所述近端部分和所述远端部分的编织密度。
  12. 根据权利要求11所述的血管瘤封堵装置,其特征在于,所述近端部分和所述远端部分的编织丝的数量为所述中间部分的编织丝的数量的一半。
  13. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后的螺旋圈数不超过5圈。
  14. 根据权利要求13所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后的螺旋圈数为1.5~3圈。
  15. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结构的远端连接一段弹簧结构。
  16. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后的最大外径小于所述网状扩张结构扩张后的最大外径。
  17. 根据权利要求16所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后的最大外径小于或等于所述网状扩张结构扩张后的最大外径的1/2。
  18. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的螺旋圈数不超过3圈。
  19. 根据权利要求18所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的螺旋圈数为1.1~1.5圈。
  20. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构扩张后的横截面形状为椭圆形,所述椭圆形的长轴垂直于所述平面涡旋,所述椭圆形的短轴平行于所述平面涡旋,且所述网状扩张结构扩张后的内层螺旋的长轴长度小于与其相邻外层螺旋的长轴长度,所述网状扩张结构扩张后的内层螺旋的短轴长度小于与其相邻外层螺旋的短轴长度。
  21. 根据权利要求20所述的血管瘤封堵装置,其特征在于,所述网状扩张结构包括轴向依次连接的近端部分、中间部分和远端部分;所述远端部分连接所述定位导向结构,所述中间部分的横截面的面积大于所述近端部分和所述远端部分的横截面面积;其中所述中间部分的椭圆形的长轴长度不小于所述网状扩张结构扩张后的最大外径的1/3。
  22. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构和所述定位导向结构为一体编织成型结构。
  23. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后至少1/2圈螺旋设置在所述网状扩张结构的平面涡旋的中心腔内。
  24. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构的近端与近端显影环固定连接,所述定位导向结构的远端与远端显影环固定连接。
  25. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述网状扩张结构由编织丝编织而成,所述编织丝的材料为形状记忆材料,且所述编织丝的直径为0.0008in~0.002in,所述编织丝的总数量为48根~144根,所述网状扩张结构扩张后的直径为2~10mm,所述网状扩张结构扩张后的最大外径为3mm~25mm。
  26. 根据权利要求25所述的血管瘤封堵装置,其特征在于,所述网状扩张结构由可显影的编织丝编织而成,或者,所述网状扩张结构由可显影的编织丝和非显影的编织丝混编而成。
  27. 根据权利要求1所述的血管瘤封堵装置,其特征在于,所述定位导向结构扩张后的中心轴与所述网状扩张结构扩张后的平面涡旋垂直,所述网状扩张结构扩张后的中心轴与所述定位导向结构扩张后的中心轴重合或平行。
  28. 一种血管瘤封堵治疗装置,其特征在于,包括如权利要求1-27中任一项所述的血管瘤封堵装置和推送杆,所述推送杆连接于所述血管瘤封堵装置的近端。
  29. 根据权利要求28所述的血管瘤封堵治疗装置,其特征在于,所述推送杆沿所述网状扩张结构呈所述扩张状态时的平面涡旋的螺旋线的切线方向延伸。
  30. 一种血管瘤封堵系统,其特征在于,包括如权利要求1-27中任一项所述的血管瘤封堵装置和微导管,所述网状扩张结构和所述定位导向结构在所述微导管内被压缩,并在脱离所述微导管后还能够恢复成预定形状的扩张状态。
PCT/CN2022/126734 2021-10-29 2022-10-21 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统 WO2023071944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111276171.3 2021-10-29
CN202111276171.3A CN113855145B (zh) 2021-10-29 2021-10-29 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统

Publications (1)

Publication Number Publication Date
WO2023071944A1 true WO2023071944A1 (zh) 2023-05-04

Family

ID=78986278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126734 WO2023071944A1 (zh) 2021-10-29 2022-10-21 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统

Country Status (2)

Country Link
CN (1) CN113855145B (zh)
WO (1) WO2023071944A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116687496A (zh) * 2023-08-04 2023-09-05 北京久事神康医疗科技有限公司 一种带网盘的栓塞装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113855145B (zh) * 2021-10-29 2023-06-30 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090054965A1 (en) * 2007-08-21 2009-02-26 Boston Scientific Scimed, Inc. Methods For Producing Embolic Devices
CN106604696A (zh) * 2014-05-28 2017-04-26 斯瑞克欧洲控股有限责任公司 血管闭塞装置和使用方法
CN212415822U (zh) * 2020-08-31 2021-01-29 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
CN212415821U (zh) * 2020-08-31 2021-01-29 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
CN113855145A (zh) * 2021-10-29 2021-12-31 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN114098878A (zh) * 2020-08-31 2022-03-01 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN217285928U (zh) * 2022-03-21 2022-08-26 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375668B1 (en) * 1999-06-02 2002-04-23 Hanson S. Gifford Devices and methods for treating vascular malformations
US20090112251A1 (en) * 2007-07-25 2009-04-30 Aga Medical Corporation Braided occlusion device having repeating expanded volume segments separated by articulation segments
US20160374690A9 (en) * 2010-10-21 2016-12-29 Robert A. Connor Devices and Methods for Occluding a Cerebral Aneurysm
EP2279023B1 (en) * 2008-05-02 2020-12-02 Sequent Medical, Inc. Filamentary devices for treatment of vascular defects
JP5561273B2 (ja) * 2009-04-20 2014-07-30 株式会社カネカ 塞栓コイル
CN201768003U (zh) * 2009-11-13 2011-03-23 却力挥 一种新型动脉血管瘤栓塞簧圈
US20120296362A1 (en) * 2011-05-19 2012-11-22 Tyco Healthcare Group Lp Vascular remodeling device
CN102302377B (zh) * 2011-07-05 2014-06-04 湖南埃普特医疗器械有限公司 网管状栓塞弹簧及其制备方法
US9687245B2 (en) * 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
CN105142545B (zh) * 2013-03-15 2018-04-06 柯惠有限合伙公司 闭塞装置
US10722241B2 (en) * 2014-11-24 2020-07-28 Boston Scientific Scimed, Inc. Nitinol occlusion plug
US10111670B2 (en) * 2015-05-01 2018-10-30 DePuy Synthes Products, Inc. Expandable vascular occlusion device with lead framing coil
US10779980B2 (en) * 2016-04-27 2020-09-22 Synerz Medical, Inc. Intragastric device for treating obesity
US10299799B1 (en) * 2017-07-07 2019-05-28 John S. DeMeritt Micro-macro endovascular occlusion device and methodology
JP6424305B1 (ja) * 2017-10-31 2018-11-14 美佐尾 北川 鼻腔拡張器
WO2019195540A2 (en) * 2018-04-04 2019-10-10 Incumedx, Inc. Embolic device with improved neck coverage
US10905431B2 (en) * 2018-08-03 2021-02-02 DePuy Synthes Products, Inc. Spiral delivery system for embolic braid
CN111671483A (zh) * 2020-07-03 2020-09-18 上海微密医疗科技有限公司 介入封堵治疗的植入物及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090054965A1 (en) * 2007-08-21 2009-02-26 Boston Scientific Scimed, Inc. Methods For Producing Embolic Devices
CN106604696A (zh) * 2014-05-28 2017-04-26 斯瑞克欧洲控股有限责任公司 血管闭塞装置和使用方法
CN212415822U (zh) * 2020-08-31 2021-01-29 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
CN212415821U (zh) * 2020-08-31 2021-01-29 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
CN114098878A (zh) * 2020-08-31 2022-03-01 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN113855145A (zh) * 2021-10-29 2021-12-31 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN217285928U (zh) * 2022-03-21 2022-08-26 微创神通医疗科技(上海)有限公司 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116687496A (zh) * 2023-08-04 2023-09-05 北京久事神康医疗科技有限公司 一种带网盘的栓塞装置

Also Published As

Publication number Publication date
CN113855145B (zh) 2023-06-30
CN113855145A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
US11376012B2 (en) Devices, systems, and methods for treatment of vascular defects
US10617426B2 (en) Devices and methods for the treatment of vascular defects
WO2023071944A1 (zh) 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
US11278292B2 (en) Inverting braided aneurysm treatment system and method
CN212415821U (zh) 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
CN212415822U (zh) 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
JP2021087772A (ja) 高可撓性充填材料を有する嚢内反転編組
WO2022042345A1 (zh) 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
WO2022042347A1 (zh) 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN217285928U (zh) 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN216985012U (zh) 动脉瘤封堵装置
WO2020159522A1 (en) Micro-macro endovascular occlusion device and methodology
WO2022042346A1 (zh) 血管瘤封堵装置、血管瘤封堵治疗装置及血管瘤封堵系统
CN217827977U (zh) 栓塞装置
CN217285929U (zh) 一种医用植入物及医用系统
US20220202425A1 (en) Semispherical braided aneurysm treatment system and method
CN217285931U (zh) 栓塞装置及栓塞系统
CN116035640A (zh) 医用植入物及制备方法
CN116807549A (zh) 栓塞装置及栓塞系统
CN117204898A (zh) 栓塞装置
CN116807547A (zh) 血管瘤封堵装置、血管瘤封堵治疗装置和血管瘤封堵系统
CN116807546A (zh) 一种医用植入物及医用系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885821

Country of ref document: EP

Kind code of ref document: A1