WO2023071684A1 - 一种探测装置及扫描器 - Google Patents

一种探测装置及扫描器 Download PDF

Info

Publication number
WO2023071684A1
WO2023071684A1 PCT/CN2022/122159 CN2022122159W WO2023071684A1 WO 2023071684 A1 WO2023071684 A1 WO 2023071684A1 CN 2022122159 W CN2022122159 W CN 2022122159W WO 2023071684 A1 WO2023071684 A1 WO 2023071684A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
receiving
module
echo signal
reflectivity
Prior art date
Application number
PCT/CN2022/122159
Other languages
English (en)
French (fr)
Inventor
邱孙杰
安凯
郭家兴
韩伟
章浩亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023071684A1 publication Critical patent/WO2023071684A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the solution relates to radar technology, which is applied in the fields of automatic driving, intelligent driving, surveying and mapping, smart home or intelligent manufacturing, and especially relates to a detection device and a scanner.
  • the radar can emit light signals and obtain the echo signals of the light signals on the surface of the detected target object, so as to obtain the spatial distance of the target object according to the frequency change or flight time of the echo signal. Due to the high detection efficiency and distance resolution capability of radar, it is widely used in many fields such as deep space detection, traffic travel and disaster relief, and plays an important role in many fields.
  • Embodiments of the present application provide a detection device and a scanner.
  • the detection device includes: a transmitting module, a first scanning module, a second scanning module and a receiving module, wherein: the transmitting module is used to transmit optical signals; the first scanning module includes a The first reflective area and the second reflective area, both of the first reflective area and the second reflective area are used to reflect the optical signal emitted by the transmitting module; the second scanning module includes the first receiving area and the second rotating axis rotating Two receiving areas; the first receiving area is used to reflect the first echo signal of the optical signal reflected by the first reflecting area to the receiving module; the second receiving area is used to reflect the first echo signal of the optical signal reflected by the second reflecting area The two echo signals are reflected to the receiving module; the product of the reflectivity of the first reflecting region and the reflectivity of the first receiving region is less than the product of the reflectivity of the second reflecting region and the reflectivity of the second receiving region; the receiving module, Used to receive the first echo signal and the second echo signal.
  • the embodiments of the present application can effectively reduce abnormal echo signals.
  • the embodiment of the present application discloses a detection device, the detection device includes: a transmitting module, a first scanning module, a second scanning module and a receiving module, wherein:
  • the transmitting module is used to transmit optical signals
  • the first scanning module includes a first reflection area and a second reflection area that rotate around the first rotation axis, and both the first reflection area and the second reflection area are used to reflect the optical signal emitted by the transmission module;
  • the second scanning module includes a first receiving area and a second receiving area that rotate around the second rotation axis; the first receiving area is used to reflect the first echo signal of the optical signal reflected by the first reflecting area to the receiving module ; The second receiving area is used to reflect the second echo signal of the optical signal reflected by the second reflecting area to the receiving module; the product of the reflectivity of the first reflecting area and the reflecting rate of the first receiving area is less than the second reflecting the product of the reflectivity of the region and the reflectivity of the second receiving region;
  • the receiving module is used for receiving the first echo signal and the second echo signal.
  • the optical signal transmitted by the transmitting module is The energy of the ghost signal obtained after passing through the first reflection area and the first receiving area is much lower than that of the ghost signal obtained after passing through the second reflection area and the second receiving area.
  • This method can reduce the influence of ghost signal while ensuring the detection distance.
  • the reflectivity of the first reflection area and the second reflection area are equal, and the reflectivity of the first receiving area is lower than that of the second receiving area.
  • the reduction of the signal-to-noise ratio can be avoided.
  • an included angle between a normal vector of the first reflection area and a normal vector of the first receiving area is an angle greater than 0°.
  • the first scanning module and the second scanning module are integrated, the first rotation axis and the second rotation axis are the same axis; the first reflection area and the first The receiving area is coplanar, and the second reflecting area is coplanar with the second receiving area.
  • the first scanning module and the second scanning module can be integrated.
  • the first reflection area and the first receiving area can be formed by coating on the same substrate, which can avoid the precision caused by separate coating. The difference can simplify the manufacturing process at the time of manufacture.
  • the first reflective area is used to scan the first area
  • the second reflective area is used to scan the second area
  • the maximum distance between the second area and the detection device is greater than that between the first area and the detection device. The maximum distance of the detection device
  • the detecting device further includes a controller, and the controller is configured to: remove the echo signal corresponding to the first region from the second echo signal to obtain a third echo signal; generate the first echo signal based on the third echo signal and the first echo signal point cloud data.
  • the controller is also used to:
  • the preset threshold is less than the first threshold and greater than the second threshold
  • the first threshold is the light signal reflected by the first reflection area Detect the energy of the echo signal of the first object at the first position after being reflected by the first receiving area; the first position is the farthest position that the optical signal of the first reflecting area can detect; the second threshold is the first reflection When the light signal reflected by the area detects the second position, the energy after the echo signal generated by the window and the second object is reflected by the second receiving area; the second position is the shortest position that the light signal of the first reflection area can detect;
  • the controller is used for generating point cloud data based on the third echo signal and the first echo signal, including: generating second point cloud data based on the third echo signal and the fourth echo signal.
  • the detection device may further include a controller, and the controller is configured to further filter ghost signals from the echo signals obtained by the detection device.
  • the receiving module includes a first receiving module and a second receiving module; the first reflection area and the second reflection area are the same area;
  • the first receiving area is specifically used to reflect the first echo signal of the optical signal reflected by the first reflecting area to the first receiving module;
  • the second receiving area is specifically used for reflecting the second echo signal of the optical signal reflected by the first reflecting area to the second receiving module.
  • the detection device can simultaneously receive the first echo signal and the second echo signal through two receiving modules, thereby improving detection efficiency.
  • the embodiment of the present application discloses a scanner, the scanner includes a first scanning module and a second scanning module, wherein:
  • the first scanning module includes a first reflection area and a second reflection area that rotate around the first rotation axis, and both the first reflection area and the second reflection area are used to reflect the optical signal emitted by the transmission module;
  • the second scanning module includes a first receiving area and a second receiving area that rotate around the second rotation axis; the first receiving area is used to reflect the first echo signal of the optical signal reflected by the first reflecting area to the receiving module ; The second receiving area is used to reflect the second echo signal of the optical signal reflected by the second reflecting area to the receiving module; the product of the reflectivity of the first reflecting area and the reflecting rate of the first receiving area is less than the second reflecting The product of the reflectivity of the region and the reflectivity of the second receiving region.
  • the reflectance of the first reflection area and the second reflection area are equal, and the reflectance of the first receiving area is lower than the reflectance of the second receiving area.
  • the included angle between the normal vector of the first reflection area and the normal vector of the first receiving area is greater than 0°.
  • the first scanning module and the second scanning module are integrated, the first rotation axis and the second rotation axis are the same axis; the first reflection area and the first The receiving area is coplanar, and the second reflecting area is coplanar with the second receiving area.
  • control method including:
  • the first scanning module controls the first scanning module to rotate around the first rotation axis;
  • the first scanning module includes a first reflection area and a second reflection area that rotate around the first rotation axis, and both the first reflection area and the second reflection area are used for reflective emission The optical signal emitted by the module;
  • the second scanning module includes a first receiving area and a second receiving area that rotate around the second axis of rotation; the first receiving area is used to The first echo signal of the optical signal is reflected to the receiving module; the second receiving area is used to reflect the second echo signal of the optical signal reflected by the second reflecting area to the receiving module; the reflectivity of the first reflecting area and The product of the reflectivity of the first receiving region is less than the product of the reflectivity of the second reflecting region and the reflectivity of the second receiving region;
  • the receiving module is controlled to receive the first echo signal and the second echo signal.
  • the reflectivity of the first reflection area and the second reflection area are equal, and the reflectivity of the first receiving area is lower than that of the second receiving area.
  • an included angle between a normal vector of the first reflection area and a normal vector of the first receiving area is an angle greater than 0°.
  • the first scanning module and the second scanning module are integrated, the first rotation axis and the second rotation axis are the same axis; the first reflection area and the first The receiving area is coplanar, and the second reflecting area is coplanar with the second receiving area.
  • the first reflective area is used to scan the first area
  • the second reflective area is used to scan the second area
  • the maximum distance between the second area and the detection device is greater than that between the first area and the detection device. the maximum distance of the detection device; the detection device also includes a controller, the method comprising:
  • the controller removes the echo signal corresponding to the first area from the second echo signal to obtain the third echo signal; based on the third echo signal and the first echo signal, the first point cloud data is generated.
  • the method includes:
  • the fourth echo signal is obtained by removing the echo signal whose energy is lower than the preset threshold value in the first echo signal by the controller; the preset threshold value is less than the first threshold value and greater than the second threshold value, and the first threshold value is reflected by the first reflection area
  • the optical signal detects the energy of the echo signal of the first object at the first position after being reflected by the first receiving area; the first position is the farthest position that the optical signal of the first reflecting area can detect; the second threshold is The light signal reflected by the first reflective area detects the energy after the echo signal generated by the window and the second object is reflected by the second receiving area when it is located at the second position; the second position is the closest that the optical signal of the first reflective area can detect distance position;
  • the second point cloud data is generated by the controller based on the third echo signal and the fourth echo signal.
  • the receiving module includes a first receiving module and a second receiving module; the first reflecting area and the second reflecting area are the same area; the first receiving area is specifically used to The first echo signal of the optical signal reflected by the first reflection area is reflected to the first receiving module; the second receiving area is specifically used to reflect the second echo signal of the optical signal reflected by the first reflection area to the second receiving module .
  • the embodiment of the present application discloses a control device, including at least one processor and a communication interface, the communication interface is used to provide input and/or output for at least one processor, and the processor is used to execute a computer program to realize the third Aspect or the method described in any possible implementation manner of the third aspect.
  • the embodiment of the present application discloses a radar, the radar includes the first aspect and any one of the possible implementations of the first aspect, or the second aspect and any one of the possible implementations of the second aspect. device described.
  • the embodiment of the present application discloses a terminal, the terminal includes the first aspect and any one of the possible implementations of the first aspect, or the second aspect and any one of the possible implementations of the second aspect Describe the detection device.
  • the above-mentioned terminal may be a vehicle, an unmanned aerial vehicle, a roadside unit, an intersection radar, or a robot, or a vehicle or an intelligent terminal.
  • the embodiment of the present application discloses a computer-readable storage medium, in which a computer program is stored, and when the computer program runs on one or more processors, the third aspect or the third The method described in any possible implementation of the aspect.
  • the embodiment of the present application discloses a computer program product.
  • the computer program product runs on one or more processors, it can implement the third aspect or any one of the possible implementation modes described in the third aspect. method.
  • FIG. 1 is a co-scanning architecture on the same side of sending and receiving provided by an embodiment of the present application;
  • Fig. 2 is a schematic diagram of a detection principle provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a ghost signal generation principle provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a detection device 10 provided by an embodiment of the present application.
  • Figure 5A, Figure 5B and Figure 5C are the product forms of three possible scanners provided by this application;
  • 6A and 6B are schematic diagrams of a scanner 700 provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another detection device 20 provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the operation of a detection device 20 provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another detection device 30 provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the operation of a detection device 30 provided in the embodiment of the present application.
  • the detection device is for example a radar, or a functional part set in the radar, or a larger device including the radar, or an independent device, or it can also be set in addition to the radar Functional parts in other equipment, etc.
  • Radar for example including radar (radar) and/or laser radar (lidar). Radar can also be called a radar device, or a radar detection device or a radar signal transmission device. Its working principle is to detect the corresponding target object by transmitting a signal (or called a detection signal) and receiving the reflected signal reflected by the target object.
  • the signal emitted by the radar can be an electromagnetic wave signal, a laser beam, etc.
  • the received reflection signal reflected by the target object can also be a corresponding electromagnetic wave signal, a laser beam signal, etc.
  • Radar can be used to obtain information such as the distance from the target object to the launch point, the rate of change of distance (radial velocity), azimuth, and height.
  • the radar can emit light signals and obtain the echo signals of the light signals on the surface of the detected target object, so as to obtain the spatial distance of the target object according to the frequency change or flight time of the echo signal.
  • the echo signal carries information such as azimuth and distance.
  • Radar can be divided into two categories, mechanical radar and solid-state radar.
  • the mechanical radar adopts a mechanical rotating part as a way to realize optical signal scanning, and the mechanical rotating part may also be called a scanner. If the radar scans the laser signal according to a certain trajectory, and records the reflected laser point information while scanning, because the scanning is extremely fine, a large number of laser points can be obtained, and point cloud data can be generated.
  • Each point cloud data contains
  • the three-dimensional coordinate information also includes color information, reflection intensity information and echo number information, etc.
  • a mechanical radar can consist of a transmitter module, a receiver module, a scanner, and a window.
  • the transmitting module is used to transmit the optical signal to the detection space;
  • the receiving module is used to receive the echo signal of the optical signal;
  • the scanner is used to transmit the optical signal emitted by the transmitting module to the detection space and reflect the echo signal to the receiving space.
  • the window is the window for the radar to enter and exit the light, the light signal is transmitted to the detection space through the window, and the echo signal enters the inside of the radar through the window. It can be understood that the window can be used to isolate the influence of the external environment on the inside of the radar.
  • the system architecture in which the transmitting module and the receiving module are on the same side of the scanner is called the same-side co-scanning architecture.
  • FIG. 1 shows a co-scanning radar on the same side as transmitting and receiving. It can be seen from Figure 1 that both the transmitting module and the receiving module are located on the same side of the scanner, and this architecture is the same-side co-scanning architecture. It should be noted that the co-scanning architecture on the same sending and receiving side may also include other parts, which are not limited here.
  • the radar When there is a strong reflective target in the detection space, the radar will detect abnormal point cloud data, which will cause ghosting.
  • the strongly reflective target refers to an object whose reflectivity is higher than a preset threshold or an object capable of causing an optical signal transmitted to the object to return along the original path.
  • a strong emission target can be an object with a reflectivity higher than 90%.
  • the object after the laser is emitted to an object, it is reflected in the direction opposite to the direction in which the laser is emitted to the object, then the object is a strong reflection target.
  • an object whose reflectivity is higher than a preset threshold may also be called a high reflectivity object, and an object capable of returning an optical signal emitted to the object along the original path may also be called an anti-angle object.
  • FIG 2 shows a schematic diagram of the detection principle.
  • an ordinary target represents a non-strong reflection target, that is, the ordinary target will not cause an abnormal echo signal of the radar;
  • the transmitting module and the receiving module are represented by a transceiver module.
  • the transceiver module emits an optical signal to the scanner and reflects it to the window; the optical signal is transmitted through the window and irradiates on the common target, and is reflected on the common target to generate an echo signal; the echo signal is transmitted through the window To the scanner, reflected by the scanner to the transceiver module.
  • the optical signal is reflected by the scanner and then penetrates through the window to the detection space.
  • the transmittance of the window cannot reach 100%, the reflectivity cannot be reduced to zero, so when the optical signal passes through the window, part of the optical signal will be reflected to the scanner through the window, and then reflected to the detection space through the scanner , resulting in an abnormal echo signal.
  • the abnormal echo signal will cause a blurred ghost image to appear on the image detected by the radar, this phenomenon is often called a ghost image phenomenon, and the abnormal echo signal is also called a ghost image signal.
  • Fig. 3 shows the schematic diagram of the principle of the ghost phenomenon
  • (A) in Fig. 3 represents the optical signal with the solid line with arrow, and the arrow represents the propagation direction of the optical signal
  • (A) among Fig. 3 represents the optical signal with the solid line with arrow Represents the echo signal of the optical signal, and the arrow represents the propagation direction of the echo signal.
  • the transceiver module sends out optical signals, which are reflected by the scanner to the window; due to the reflection of the window, part of the optical signal will be reflected by the window to the scanner, and then reflected by the scanner to the detector. space.
  • this part of the optical signal will not be reflected back to the radar after being reflected to the detection space due to reasons such as low energy or due to energy If it is screened out by the radar, it will not affect the detection quality of the radar; if there is a strong reflective target as shown in (A) in Figure 3 in the detection space, the optical signal will be reflected by the scanner to the strong reflective target, and then, As shown in (B) in Figure 3, due to the high reflectivity of the strongly reflective target, this part of the optical signal is reflected by the strongly reflective target to the scanner, reflected by the scanner to the window, and then reflected to the scanner by the window.
  • the scanner is reflected to the transceiver module.
  • the radar After receiving and sending the above-mentioned optical signal, the radar generates abnormal point cloud data at the ghost position shown in (B) in FIG. 3 based on the above-mentioned optical signal, resulting in a ghost phenomenon. It can be understood that the ghost is a false target, which does not exist in the actual detection space. Therefore, the abnormal point cloud data is erroneous data caused by the strong reflection target being reflected by the scanner and the window.
  • the embodiment of the present application improves the scanner, which can effectively reduce abnormal point cloud data caused by strongly reflecting objects.
  • FIG. 4 is a schematic diagram of a detection device 10 provided by an embodiment of the present application.
  • the detecting device 10 may include a transmitting module 100 , a scanner 200 , a window 300 and a receiving module 400 , wherein the scanner 200 may include a first scanning module 201 and a second scanning module 202 . in:
  • the transmitting module 100 is used for transmitting optical signals. Specifically, the transmitting module 100 transmits the optical signal to the scanner 200, and is reflected by the scanner 200 to the detection space.
  • the scanner 200 includes a first scanning module and a second scanning module, wherein the first scanning module is used to reflect the optical signal emitted by the transmitting module 100; the second scanning module is used to reflect the received echo signal To the receiving module 400. in:
  • the first scanning module includes at least two reflecting areas, and the second scanning module includes at least two receiving areas.
  • the first scanning module may include a first reflective area and a second reflective area that rotate around the first rotation axis, and both the first reflective area and the second reflective area are used to reflect the optical signal emitted by the transmitting module ;
  • the second scanning module may include a first receiving area and a second receiving area that rotate around a second rotation axis.
  • the first receiving area is used to reflect the first echo signal of the optical signal reflected by the first reflecting area to the receiving module;
  • the second receiving area is used to reflect the second echo signal of the optical signal reflected by the second reflecting area.
  • the wave signal is reflected to the receiving module; the product of the reflectivity of the first reflecting region and the reflectivity of the first receiving region is smaller than the product of the reflectivity of the second reflecting region and the reflectivity of the second receiving region.
  • the energy of the normal echo signal obtained by the optical signal through the first reflecting area and the first receiving area is the first energy
  • the energy of the ghost signal obtained by the optical signal passing through the first reflecting area and the first receiving area is the second energy
  • the energy of the normal echo signal obtained by the optical signal in the second reflection area and the second receiving area is the third energy
  • the ghost signal obtained by the optical signal in the second reflection area and the second receiving area If the energy is the fourth energy, then the gap between the first energy and the third energy is greater than the gap between the second energy and the fourth energy.
  • the first The echo signal is an echo signal in which the energy of the ghost signal is suppressed.
  • the product of the reflectivity of the first reflective region and the reflectivity of the first receiving region is smaller than the product of the reflectivity of the second reflective region and the reflectivity of the second receiving region, the light corresponding to the first echo signal The detection distance of the signal is smaller than the detection distance of the second echo signal.
  • the detection device 10 can work based on a scanner with a smaller product of the reflectivity of the reflective region and the reflectivity of the receiving region. Obtain the first echo signal in which the energy of the ghost signal is suppressed; the detection device 10 can obtain the second echo with a larger detection distance when the scanner with a larger product of the reflectivity of the reflection area and the reflectivity of the reception area is working Therefore, the embodiment of the present application can not only ensure the detection distance, but also suppress the influence of ghost signals.
  • the reflectivity of the first reflective area and the second reflective area of the scanner 200 are equal, and the reflectivity of the first receiving area is lower than that of the second receiving area.
  • the signal-to-noise ratio is the ratio of the energy of the optical signal to the energy of the background light.
  • the optical signal emitted by the transmitting module 100 is affected by the background light after entering the detection space through the scanner and the window 300, and the echo of the optical signal.
  • the signal carries background light into the detection device 10 from the detection space, that is to say, the optical signal will be reflected by the reflection area and the reception area of the scanner, while the background light will only be reflected by the reception area of the scanner.
  • the reflectivity of the reflective area of the scanner decreases, the energy of the optical signal will be lost, but the energy of the background light will not be affected, so the signal-to-noise ratio will decrease, and the influence of the background light on the echo signal will increase, affecting the echo signal.
  • the quality of the signal if the reflectivity of the reflective area of the scanner is not reduced, the product of the reflectivity of the reflective area of the scanner and the reflectivity of the receiving area is reduced by reducing the reflectivity of the receiving area of the scanner, the optical signal and the background light The energy is reduced proportionally, which can avoid the reduction of signal-to-noise ratio.
  • the first scanning module and the second scanning module of the scanner 200 may have an integral structure, the first rotation axis and the second rotation axis are the same axis; the first reflection area is coplanar with the first receiving area, The second reflection area is coplanar with the second receiving area; or, the first scanning module and the second scanning module are separate structures, that is, the first scanning module and the second scanning module can be separate product forms.
  • the first scanning module and the second scanning module are independent product forms, and the first scanning module and the second scanning module rotate around different rotation axes respectively.
  • the first scanning module and the second scanning module are composed of different substrates coated with reflective films.
  • FIG. 5A and FIG. 5B Two possible product forms of the scanner are introduced below with FIG. 5A and FIG. 5B .
  • FIG. 5A exemplarily shows a scanner 501 that can rotate around a rotation axis 51 .
  • the scanner 501 is a cuboid, and the scanner 501 includes four reflective surfaces, the first reflective area and the first receiving area are coplanar, and the plane where the first reflective area and the first receiving area are located is the first reflective surface of the scanner 501 Surface; the second reflective area and the second receiving area are coplanar, and the face where the second reflective area and the second receiving area are located is the second reflective surface of the scanner 501; the opposite face of the first reflective face is opposite to the second reflective face The face of is the other two faces of the scanner 501 .
  • the first reflective area and the first receiving area may be composed of the same substrate, and the same surface of the substrate is coated with a reflective film.
  • FIG. 5B exemplarily shows a scanner 502 .
  • the scanner 502 includes a first scanning module that can rotate around the rotation axis 52 and a second scanning module that can rotate around the rotation axis 53. Both the first scanning module and the second scanning module are cuboids.
  • the first scanning module Both the set and the second scanning mode may include four reflective surfaces.
  • the first reflective area and the second receiving area are not coplanar, that is, the angle between the normal vector of the first reflective area and the normal vector of the first receiving area is greater than 0°.
  • FIG. 5C is another scanner 503 provided by the embodiment of the present application. As shown in FIG. 5C , both the first scanning module and the second scanning module are cuboids, and the reflecting area of the first scanning module and the receiving area of the second scanning module are not in the same plane.
  • reflection of the optical signal on the reflection surface of the first scanning module and the reflection of the echo signal on the reflection surface of the second scanning module follow the law of reflection.
  • the viewing window 300 is a window through which light enters and exits the detection device 10 .
  • the optical signal is transmitted to the detection space through the window 300 , and the echo signal generated by the optical signal in the detection space enters the detection device 10 through the window 300 .
  • the range of the detection space is represented by a dotted line in FIG. 4
  • the optical signal transmitted to the detection space through the window 300 can detect the detection area as shown in FIG. 4 .
  • the window 300 can be used to isolate the influence of the external environment on the interior of the radar.
  • the receiving module 400 is used for receiving echo signals, specifically for receiving echo signals reflected from the scanner 200 .
  • the receiving module can be used to receive echo signals reflected from the first receiving area and the second receiving area.
  • the receiving module 400 can also be used to send the received echo signal to the controller 500 .
  • the detection device 10 further includes a controller 500, and the controller 500 is used to process the echo signals received by the receiving module 400.
  • the controller 500 can combine the first echo signal and the second echo signal above The signal is synthesized, or the ghost signal in the echo signal is further filtered out.
  • the controller 500 may synthesize the above first echo signal and the second echo signal. Specifically, the first reflective area is used to scan the first area, the second reflective area is used to scan the second area, and the product of the reflectivity of the first reflective area and the reflectivity of the first receiving area is smaller than the reflectivity of the second reflective area and the reflectivity of the second receiving area, the maximum distance between the second area and the detection device 10 is greater than the maximum distance between the first area and the detection device 10 . Then, the controller 500 can be used to: remove the echo signal corresponding to the first area in the second echo signal to obtain the third echo signal; and then generate the first point based on the third echo signal and the first echo signal cloud data.
  • the controller 500 may first filter the ghost signal in the first echo signal, and then synthesize the filtered first echo signal and the second echo signal. Specifically, the controller 500 is also used to remove echo signals whose energy is lower than a preset threshold in the first echo signal to obtain a fourth echo signal; the preset threshold is less than the first threshold and greater than the second threshold, and the first threshold
  • the light signal reflected by the first reflective area detects the energy of the echo signal of the first object located at the first position; the first position is the farthest position that the optical signal of the first reflective area can detect; the second threshold is the first The light signal reflected by a reflective area detects the second position due to the energy of the echo signal of the window and the second object; the second position is the shortest position that can be detected by the light signal of the first reflective area; then based on the above third round wave signal and the fourth echo signal to generate the second point cloud data.
  • the second object is a strong reflective target
  • a strong reflective target refers to an object whose reflectivity is higher than a preset threshold or an object that can make the optical signal transmitted to the object return along the original path
  • the second threshold is the optical signal caused by the window and the second threshold.
  • the first object may be the object with the lowest reflectivity at present.
  • the first threshold obtained by the detection device to detect the first object is The normal echo signal with the lowest energy that the detection device can detect within the detection range;
  • the second object can be the object with the highest current reflectivity, when the second object is located at the closest position that the detection device can detect (ie the second position) , the ghost signal received by the detection device when it detects the second position is the ghost signal with the highest energy that the detection device can detect within the detection range, wherein the detection range is from the first position to the second position, and the first object
  • the selection of the second object and the second object can be determined according to the actual situation, for example, the first object can be a black vehicle, etc., which is not limited here.
  • the controller can filter out the ghost signal. It should be noted that if the first threshold is smaller than the second threshold, the reflectivity of the scanner and/or parameters of other components of the detection device may be adjusted to make the first threshold larger than the second threshold.
  • the device further includes a driving circuit 600, which is used to drive the first scanning module and the second scanning module to rotate around the rotation axis or the same rotation axis.
  • the rotation rate is not limited here.
  • the detection device 10 provided in the present application can also be applied to various possible scenarios, for example, the detection device 10 can also be installed on a vehicle. Alternatively, it can also be installed on a UAV as an airborne radar.
  • the detection device 10 can be installed on an automatic guided vehicle (AGV), wherein the AGV is equipped with an automatic navigation device such as electromagnetic or optical, can drive along a prescribed navigation path, and has safety protection and various functions.
  • a transport vehicle with a transfer function can also be applied to scenarios such as telemedicine, remote training, multiplayer games, and multiplayer training.
  • the detection device 10 can also be applied to unmanned driving, automatic driving, assisted driving, intelligent driving, networked vehicles, security monitoring, remote interaction, surveying and mapping or artificial intelligence and other fields.
  • a scanner 700 provided in the embodiment of the present application is introduced with reference to FIG. 6A and FIG. 6B .
  • the scanner includes a first scanning module 701 , a connecting body 702 and a second scanning module 703 , and the scanner can rotate around a rotation axis. in:
  • the first scanning module 701 is a cuboid, and the surface of the first scanning module 701 connected to the connecting body 702 and the opposite surface of the connecting surface of the first scanning module 701 and the connecting body 702 are not reflective areas. , the other four surfaces are reflective areas, and the reflective area is used to transmit the optical signal emitted by the transmitting module to the detection space; the second scanning module 703 is a cuboid, and the surface of the second scanning module 703 connected to the connecting body 702 1.
  • the opposite side of the surface where the second scanning module 703 connects with the connecting body 702 is not a receiving area, and the other four surfaces are receiving areas, and the receiving surface is used to reflect the echo signal to the receiving module; the connecting body 702 is a cylinder body to reduce the effects of stray light.
  • the first reflection area is coplanar with the first receiving area
  • the second reflection area is coplanar with the second receiving area. Therefore, the first reflective area and the first receiving area can be referred to as the first surface of the scanner 700, the second reflective area and the second receiving area can be referred to as the second surface of the scanner 700, and the surface opposite to the first surface is the third surface of the scanner 700 , and the surface opposite to the second surface is the fourth surface of the scanner 700 .
  • the scanner 700 has at least one surface where the product of the reflectivity of the transmitting area and the reflectivity of the receiving area is lower than the product of the reflectivity of the transmitting area and the reflectivity of the receiving area of other surfaces.
  • the product of the reflectivity of the emission area and the reflectivity of the receiving area of the first surface of the scanner 700 is more than half lower than the product of the reflectivity of the emission area of the other surfaces and the reflectivity of the receiving area, then the receiving module receives the first surface of the scanner 700.
  • the energy of the optical signal on the first surface of the scanner 700 is lower than half of the echo signal of the other surface, and the energy of the ghost signal received by the receiving module on the first surface of the scanner 700 will be less than 1/4 of the ghost signal received by the other surface, that is The energy of the ghost signal decays faster.
  • the energy of the ghost signal is lower than the energy of the light signal, it can be filtered out by the algorithm, thus solving the problem of false ghost images.
  • the face of the scanner 700 with a low product of the transmit area reflectance and the receive area reflectance may be used for close-range detection, and the face of the scanner 700 with a high product of the transmit area reflectance and the receive area reflectance may be used for close-range detection.
  • the detection device 20 shown in FIG. 7 and the detection device 30 shown in FIG. 9 can be obtained.
  • the detecting device 20 includes a transmitting module, a receiving module and a scanner, and the transmitting module and the receiving module are located on the same side of the scanner.
  • Figure 8 exemplarily shows a working state of the detection device 20, as shown in Figure 8, the hatched area is used to represent the optical signal or the echo signal, and the transmitting module can send the reflection area to the first surface of the scanner The optical signal is sent, and the echo signal of the optical signal is reflected to the receiving module through the receiving area of the first surface.
  • the reflectivity of the emitting area and the reflectivity of the receiving area of the second surface and the fourth surface of the scanner can both be A, and A is a positive number; the emission of the first surface and the third surface of the scanner Both the reflectance of the area and the reflectance of the receiving area may be B, where B is a positive number; wherein, B/A ⁇ 0.707.
  • the detection device 20 detects, compared with the second and fourth surfaces of the scanner, the energy of the ghost signal obtained through the first and third surfaces of the scanner is attenuated by more than twice the energy of the optical signal .
  • the reflectivity of the emitting area and the reflectivity of the receiving area of the second surface and the fourth surface of the scanner are both A, and A is a positive number; the emission of the first surface and the third surface of the scanner The reflectance of the area is A, the reflectance of the receiving area of the first surface and the third surface of the scanner is both B, and B is a positive number; wherein, B/A ⁇ 0.5.
  • the detection device 20 performs detection, compared with the second and fourth surfaces of the scanner, the energy of the background light reflected by the first and third surfaces of the scanner to the receiving module and the energy of the optical signal are reduced by half in the same proportion above, so the received signal-to-noise ratio is not degraded.
  • the detection device 30 includes a transmitting module, two receiving modules and a scanner, the transmitting module and the first receiving module are located on the same side of the scanner, and the second receiving module is located on the other side of the scanner side.
  • Figure 10 exemplarily shows a working state of the detection device 30, as shown in Figure 10, the hatched area is used to represent the optical signal or the echo signal, and the transmitting module can send the reflection area to the first surface of the scanner The optical signal is sent, the echo signal of the optical signal is reflected to the first receiving module through the receiving area of the first surface, and the echo signal of the optical signal is reflected to the second receiving module through the receiving area of the second surface.
  • the reflectivity of the emission area of the second side and the fourth side of the scanner and the reflectivity of the reception area can be A, and A is a positive number; the reflectivity of the emission area of the first side and the third side of the scanner can be equal is A, the reflectances of the receiving areas of the first surface and the third surface of the scanner can both be B, and B is a positive number; wherein, B/A ⁇ 0.5.
  • the detection device 30 can use different receiving modules to receive echo signals at the same time, which can shorten the detection time. For example, when the optical signal of the transmitting module is reflected to the detection space through the reflection area of the first surface, the first echo signal of the optical signal is reflected to the first receiving module through the receiving area of the first surface, and the first echo signal of the optical signal is reflected to the first receiving module through the receiving area of the first surface. The two echo signals are reflected to the second receiving module through the receiving area of the second surface. Since the reflectivity of the receiving area of the second surface is lower than the reflectivity of the receiving area of the first surface, the distance of echo signals that can be received by the second surface is relatively short, and is used for receiving short-distance echo signals. Therefore, the detection device 30 can receive echo signals from far and near at the same time, and the frame rate is doubled compared with that of the detection device 20 .
  • the above detecting device may be an independent device, or the detecting device may be set in other devices, such as terminal devices or network devices, such as network devices including access network devices, such as base stations, etc. , or, the other device may also be a device such as a radar.
  • the detection device described in the embodiments of the present application can be installed in motor vehicles, unmanned aerial vehicles, rail vehicles, bicycles, signal lights, speed measuring devices or network equipment (such as base stations and terminal equipment in various systems) and other equipment.
  • the embodiment of the present application is applicable to detection between vehicles, detection between vehicles and other devices such as drones, or detection between other devices.
  • the detection device can be installed on smart terminals such as smart transportation equipment, smart home equipment, and robots.
  • the embodiment of the present application does not limit the type of the terminal device installed with the detection device, the installation position of the detection device, the function of the detection device, and the like.
  • the embodiment of the present application also provides a radar, and the radar includes a detection device.
  • the detection device may be the detection device described in the foregoing embodiments such as FIG. 4 , FIG. 7 or FIG. 9 .
  • An embodiment of the present application also provides a terminal, where the terminal includes the foregoing detecting device, for example, the detecting device shown in FIG. 4 , FIG. 7 or FIG. 9 .
  • the above-mentioned terminal may be a vehicle, an unmanned aerial vehicle, a roadside unit, an intersection radar or a robot, or other means of transportation or an intelligent terminal.
  • all or part of the functions may be implemented by software, hardware, or a combination of software and hardware.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored on a computer readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, DVD
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Abstract

一种探测装置、扫描器及包含该探测装置的雷达和终端,可以应用于自动驾驶、智能驾驶、测绘、智能家居或者智能制造等领域。该探测装置(10)包括发射模组(100)、第一扫描模组(201)、第二扫描模组(202)和接收模组(400),第一扫描模组(201)包括的第一反射区域和第二反射区域,用于反射发射模组(100)发射的光信号;第二扫描模组(202)包括第一接收区域和第二接收区域;第一接收区域用于将经第一反射区域反射的光信号的第一回波信号反射至接收模组(400);第二接收区域用于将经第二反射区域反射的光信号的第二回波信号反射至接收模组(400);第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积。该探测装置(10)可以有效减少异常的回波信号。

Description

一种探测装置及扫描器
本申请要求于2021年10月26日提交中国专利局、申请号为202111249539.7、申请名称为“一种探测装置及扫描器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本方案涉及雷达技术,应用于自动驾驶、智能驾驶、测绘、智能家居或者智能制造领域,尤其涉及一种探测装置及扫描器。
背景技术
雷达可以发射光信号并获得光信号在探测目标物体表面的回波信号,从而根据回波信号的频率变化或飞行时间获取目标物体的空间距离。由于雷达具有较高的探测效率和距离分辨能力,其广泛地应用于深空探测、交通出行和救灾抢险等诸多领域,在多个领域发挥着重要作用。
在实际应用场景中,雷达在感知周围的环境时,不可避免的会遇到高反射率的物体,例如道路上的指示牌、警示牌、路标牌、道路旁的安全柱、防护栏、转角的凸面镜以及车辆的车牌和车辆上的涂层贴纸等。这些物体会导致雷达得到异常的回波信号,从而导致生成异常点云数据,造成鬼影现象。
目前亟需一种能够减少异常回波信号的探测装置。
发明内容
本申请实施例提供了一种探测装置及扫描器。该探测装置包括:发射模组、第一扫描模组、第二扫描模组和接收模组,其中:发射模组,用于发射光信号;第一扫描模组包括绕第一旋转轴旋转的第一反射区域和第二反射区域,第一反射区域和第二反射区域均用于反射发射模组发射的光信号;第二扫描模组包括绕第二旋转轴旋转的第一接收区域和第二接收区域;第一接收区域用于将经第一反射区域反射的光信号的第一回波信号反射至接收模组;第二接收区域用于将经第二反射区域反射的光信号的第二回波信号反射至接收模组;第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积;接收模组,用于接收第一回波信号和第二回波信号。
本申请实施例可以有效减少异常的回波信号。
第一方面,本申请实施例公开了一种探测装置,该探测装置包括:发射模组、第一扫描模组、第二扫描模组和接收模组,其中:
发射模组,用于发射光信号;
第一扫描模组包括绕第一旋转轴旋转的第一反射区域和第二反射区域,第一反射区域和第二反射区域均用于反射发射模组发射的光信号;
第二扫描模组包括绕第二旋转轴旋转的第一接收区域和第二接收区域;第一接收区域用于将经第一反射区域反射的光信号的第一回波信号反射至接收模组;第二接收区域用于将经第二反射区域反射的光信号的第二回波信号反射至接收模组;第一反射区域的反射率和第一 接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积;
接收模组,用于接收第一回波信号和第二回波信号。
本申请实施例中,由于第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积,发射模块发射的光信号在经第一反射区域和第一接收区域后得到的鬼影信号的能量远低于经第二反射区域和第二接收区域后得到的鬼影信号,探测装置探测近距离区域时的鬼影能量被减弱;发射模块发射的光信号在经第一反射区域和第一接收区域后得到的正常回波信号和鬼影信号的差距远大于经第二反射区域和第二接收区域后得到的鬼影信号,有利于后续鬼影信号的滤除。该方法可以在保证探测距离的同时,又减少了鬼影信号的影响。
结合第一方面,在一种可能的实现方式中,第一反射区域和第二反射区域的反射率相等,第一接收区域的反射率低于第二接收区域的反射率。
本申请实施例中,通过仅降低探测装置中扫描模组接收区域的反射率,而不改变反射区域的反射率,可以避免信噪比降低的情况。
结合第一方面,在一种可能的实现方式中,第一反射区域的法向量与第一接收区域的法向量之间的夹角为大于0°的角度。
本申请实施例中,扫描模组的反射区域和接收区域可以存在一定角度,可以减少鬼影信号。
结合第一方面,在一种可能的实现方式中,第一扫描模组和第二扫描模组为一体结构,第一旋转轴和第二旋转轴为同一个轴;第一反射区域与第一接收区域共面,第二反射区域与第二接收区域共面。
本申请实施例中,第一扫描模组和第二扫描模组可以为一体结构,例如第一反射区域与第一接收区域可以基于同一个基板上镀膜而成,可以避免分别镀膜时造成的精度差异,可以简化制造时的制造工艺。
结合第一方面,在一种可能的实现方式中,第一反射区域用于扫描第一区域,第二反射区域用于扫描第二区域,第二区域与探测装置的最大距离大于第一区域与探测装置的最大距离;
探测装置还包括控制器,控制器用于:去除第二回波信号中对应第一区域的回波信号,得到第三回波信号;基于第三回波信号和第一回波信号,生成第一点云数据。
结合第一方面,在一种可能的实现方式中,控制器还用于:
去除第一回波信号中能量低于预设阈值的回波信号,得到第四回波信号;预设阈值小于第一阈值且大于第二阈值,第一阈值为第一反射区域反射的光信号探测位于第一位置的第一物体的回波信号经第一接收区域反射后的能量;第一位置为第一反射区域的光信号能够探测的最远距离的位置;第二阈值为第一反射区域反射的光信号探测第二位置时因视窗和第二物体产生的回波信号经第二接收区域反射后的能量;第二位置为第一反射区域的光信号能够探测的最近距离的位置;
控制器用于基于第三回波信号和第一回波信号,生成点云数据,包括:基于第三回波信号和第四回波信号,生成第二点云数据。
本申请实施例中,该探测装置还可以包括控制器,该控制器用于对该探测装置得到的回波信号进行进一步的滤除鬼影信号。
结合第一方面,在一种可能的实现方式中,接收模组包括第一接收模块和第二接收模块;第一反射区域和第二反射区域为同一区域;
第一接收区域具体用于将经第一反射区域反射的光信号的第一回波信号反射至第一接收模块;
第二接收区域具体用于将经第一反射区域反射的光信号的第二回波信号反射至第二接收模块。
本申请实施例中,该探测装置通过两个接收模块可以实现同时接收第一回波信号和第二回波信号,提高探测效率。
第二方面,本申请实施例公开了一种扫描器,该扫描器包括第一扫描模组和第二扫描模组,其中:
第一扫描模组包括绕第一旋转轴旋转的第一反射区域和第二反射区域,第一反射区域和第二反射区域均用于反射发射模组发射的光信号;
第二扫描模组包括绕第二旋转轴旋转的第一接收区域和第二接收区域;第一接收区域用于将经第一反射区域反射的光信号的第一回波信号反射至接收模组;第二接收区域用于将经第二反射区域反射的光信号的第二回波信号反射至接收模组;第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积。
结合第二方面,在一种可能的实现方式中,第一反射区域和第二反射区域的反射率相等,第一接收区域的反射率低于第二接收区域的反射率。
结合第二方面,在一种可能的实现方式中,第一反射区域的法向量与第一接收区域的法向量之间的夹角为大于0°的角度。
结合第二方面,在一种可能的实现方式中,第一扫描模组和第二扫描模组为一体结构,第一旋转轴和第二旋转轴为同一个轴;第一反射区域与第一接收区域共面,第二反射区域与第二接收区域共面。
第三方面,本申请实施例公开了一种控制方法,包括:
控制发射模组发射光信号;
控制第一扫描模组绕第一旋转轴旋转;第一扫描模组包括绕第一旋转轴旋转的第一反射区域和第二反射区域,第一反射区域和第二反射区域均用于反射发射模组发射的光信号;
控制第二扫描模组绕第二旋转轴旋转;第二扫描模组包括绕第二旋转轴旋转的第一接收区域和第二接收区域;第一接收区域用于将经第一反射区域反射的光信号的第一回波信号反射至接收模组;第二接收区域用于将经第二反射区域反射的光信号的第二回波信号反射至接收模组;第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积;
控制接收模组接收第一回波信号和第二回波信号。
结合第一方面,在一种可能的实现方式中,第一反射区域和第二反射区域的反射率相等,第一接收区域的反射率低于第二接收区域的反射率。
结合第一方面,在一种可能的实现方式中,第一反射区域的法向量与第一接收区域的法向量之间的夹角为大于0°的角度。
结合第一方面,在一种可能的实现方式中,第一扫描模组和第二扫描模组为一体结构,第一旋转轴和第二旋转轴为同一个轴;第一反射区域与第一接收区域共面,第二反射区域与第二接收区域共面。
结合第一方面,在一种可能的实现方式中,第一反射区域用于扫描第一区域,第二反射 区域用于扫描第二区域,第二区域与探测装置的最大距离大于第一区域与探测装置的最大距离;探测装置还包括控制器,该方法包括:
通过控制器去除第二回波信号中对应第一区域的回波信号,得到第三回波信号;基于第三回波信号和第一回波信号,生成第一点云数据。
结合第一方面,在一种可能的实现方式中,该方法包括:
通过控制器去除第一回波信号中能量低于预设阈值的回波信号,得到第四回波信号;预设阈值小于第一阈值且大于第二阈值,第一阈值为第一反射区域反射的光信号探测位于第一位置的第一物体的回波信号经第一接收区域反射后的能量;第一位置为第一反射区域的光信号能够探测的最远距离的位置;第二阈值为第一反射区域反射的光信号探测位于第二位置时因视窗和第二物体产生的回波信号经第二接收区域反射后的能量;第二位置为第一反射区域的光信号能够探测的最近距离的位置;
通过控制器基于第三回波信号和第四回波信号,生成第二点云数据。
结合第一方面,在一种可能的实现方式中,接收模组包括第一接收模块和第二接收模块;第一反射区域和第二反射区域为同一区域;第一接收区域具体用于将经第一反射区域反射的光信号的第一回波信号反射至第一接收模块;第二接收区域具体用于将经第一反射区域反射的光信号的第二回波信号反射至第二接收模块。
第四方面,本申请实施例公开了一种控制装置,包括至少一个处理器和通信接口,通信接口用于为至少一个处理器提供输入和/或输出,处理器用于执行计算机程序以实现第三方面或者第三方面的任意一种可能的实施方式所描述的方法。
第五方面,本申请实施例公开了一种雷达,雷达包含第一方面和第一方面中任意一种可能的实施方式,又或者第二方面和第二方面中任意一种可能的实施方式所描述的装置。
第六方面,本申请实施例公开了一种终端,终端包含第一方面和第一方面中任意一种可能的实施方式,又或者第二方面和第二方面中任意一种可能的实施方式所描述的探测装置。
在第六方面的一种可能的实施方式中,上述终端可以为车辆、无人机、路侧单元、路口雷达或机器人等运输工具或智能终端。
第七方面,本申请实施例公开了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当计算机程序在一个或多个处理器上运行时,实现第三方面或第三方面的任意一种可能的实施方式所描述的方法。
第八方面,本申请实施例公开了一种计算机程序产品,当计算机程序产品在一个或多个处理器上运行时,实现第三方面或第三方面的任意一种可能的实施方式所描述的方法。
需要说明的是,本申请第二方面、第三方面的部分可能实施方式与第一方面的部分实施方式构思一致,其所带来的有益效果可以参考第一方面的有益效果,因此不再赘述。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种收发同侧共扫描架构;
图2是本申请实施例提供的一种探测原理的示意图;
图3是本申请实施例提供的一种鬼影信号生成原理的示意图;
图4是本申请实施例提供的一种探测装置10的示意图;
图5A、图5B和图5C为本申请提供的三种可能的扫描器的产品形态;
图6A和图6B是本申请实施例提供的一种扫描器700的示意图;
图7是本申请实施例提供的另一种探测装置20的示意图;
图8是本申请实施例提供的一种探测装置20工作的示意图;
图9是本申请实施例提供的又一种探测装置30的示意图;
图10是本申请实施例提供的一种探测装置30工作的示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请实施例的限制。如在本申请实施例的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请实施例中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
下面介绍本申请实施例中相关的一些概念。
1、探测装置
(1)探测装置,或者称为探测器,例如为雷达,或者为设置在雷达中的功能部件,或者为包括雷达的较大设备,或者是独立的设备,或者也可以是设置在除了雷达外的其他设备中的功能部件等。
(2)雷达,例如包括雷达(radar)和/或激光雷达(lidar)。雷达也可称为雷达装置,或者称为雷达探测装置或者雷达信号发送装置等。其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。雷达所发射的信号可以是电磁波信号,激光光束等,相应的,所接收的经过目标物体反射的反射信号也可以是相应的电磁波信号,激光光束信号等。可以采用雷达获得目标物体至发射点的距离、距离变化率(径向速度)、方位、高度等信息。
雷达可以发射光信号并获得光信号在探测目标物体表面的回波信号,从而根据回波信号的频率变化或飞行时间获取目标物体的空间距离。其中,回波信号携带方位和距离等信息。
雷达可以分为两大类,分别是机械式雷达和固态雷达。其中,机械式雷达采用机械旋转部件作为光信号扫描的实现方式,该机械旋转部分也可以称为扫描器。若雷达将激光信号按照某种轨迹进行扫描,边扫描边记录到反射的激光点信息,由于扫描极为精细,则可以得到大量的激光点,即可生成点云数据,每一个点云数据包含了三维坐标信息,还包含颜色信息、反射强度信息和回波次数信息等。
2、机械式雷达
机械式雷达可以由发射模组、接收模组、扫描器和视窗组成。其中,发射模组用于向探测空间发射光信号;接收模组用于接收光信号的回波信号;扫描器用于将发射模组发射的光信号发射至探测空间以及将回波信号反射至接收模组;视窗为雷达的出入光的窗口,光信号经视窗发射至探测空间,回波信号经视窗进入雷达内部。可以理解的,视窗可以用于隔离外界环境对雷达内部的影响。
发射模组和接收模组在扫描器的同一侧的系统架构称为收发同侧共扫描架构。
请参见图1,图1示出了一种收发同侧共扫描雷达。由图1可见,发射模组和接收模组均位于扫描器的同一侧,该架构即为收发同侧共扫描架构。需要说明的是,收发同侧共扫描 架构还可以包括其它部分,此处不做限定。
在探测空间内存在强反射目标时,雷达会探测到异常的点云数据,从而造成鬼影现象。其中,强反射目标是指反射率高于预设阈值的物体或能够使发射至物体的光信号沿原路返回的物体。例如,强发射目标可以为反射率高于百分之九十的物体;又例如,激光发射至某物体后,沿激光发射至该物体的方向的逆方向反射,则该物体为强反射目标。需要说明的是,反射率高于预设阈值的物体也可以被称为高反射率物体,能够使发射至物体的光信号沿原路返回的物体也可以被称为角反物体。
图2示出了探测原理的示意图。图2中以普通目标表示非强反射目标,也即是该普通目标不会导致雷达出现异常回波信号;用收发模组代表发射模组和接收模组。如图2所示,收发模组发射光信号至扫描器后反射至视窗;光信号透射视窗后照射在普通目标上,在普通目标上发生反射,产生回波信号;回波信号经视窗透射后至扫描器,经扫描器反射至收发模组。
可见,光信号由扫描器反射后会经视窗透视至探测空间。但是,由于视窗的透射率无法达到百分百,反射率不可能降为零,所以会出现光信号经过视窗时部分光信号经视窗反射至扫描器上,再经过扫描器反射至探测空间的情况,导致出现异常的回波信号。由于该异常的回波信号会导致雷达探测的画面出现模糊的鬼影,因此,该现象常被称为鬼影现象,该异常回波信号也被称为鬼影信号。
上述异常的回波信号的生成过程,具体请参见图3。
图3示出了鬼影现象的原理示意图,图3中的(A)以带箭头的实线代表光信号,箭头代表光信号的传播方向;图3中的(A)以带箭头的实线代表光信号的回波信号,箭头代表回波信号的传播方向。如图3中的(A)所示,收发模组发出光信号,光信号经扫描器反射至视窗;由于视窗反射,部分光信号会经视窗反射至扫描器上,再经过扫描器反射至探测空间。此时,若探测空间不存在如图3中的(A)所示的强反射目标,则该部分光信号由于能量小等原因,在被反射至探测空间后不会被反射回雷达或由于能量小被雷达筛除,对雷达的探测质量不会造成影响;若探测空间存在如图3中的(A)所示的强反射目标时,光信号经扫描器反射至强反射目标上,进而,如图3中的(B)所示,由于强反射目标的反射率高,该部分光信号经强反射目标反射至扫描器上,经扫描器反射至视窗,又经视窗反射至扫描器,由扫描器反射至收发模组。雷达在接收发到上述光信号后,基于上述光信号在如图3中的(B)所示的鬼影位置生成异常点云数据,造成鬼影现象。可以理解的,该鬼影为虚假目标,在实际探测空间中并不存在该虚假目标,因此,该异常点云数据为由于强反射目标被扫描器和视窗反射造成的错误数据。
本申请实施例对扫描器进行了改进,能够有效的减少因强反射目标造成的异常的点云数据。
请参见图4,图4是本申请实施例提供的一种探测装置10的示意图。如图4所示,该探测装置10可以包括发射模组100、扫描器200、视窗300和接收模组400,其中,扫描器200可以包括第一扫描模组201和第二扫描模组202。其中:
发射模组100用于发射光信号。具体的,发射模组100将光信号发射至扫描器200,经扫描器200反射至探测空间。
扫描器200包括第一扫描模组和第二扫描模组,其中,第一扫描模组用于反射发射模组100发射的光信号;第二扫描模组用于将接收到的回波信号反射至接收模组400。其中:
第一扫描模组包括至少两个反射区域,第二扫描模组包括至少两个接收区域。
在一种实现中,第一扫描模组可以包括绕第一旋转轴旋转的第一反射区域和第二反射区域,第一反射区域和第二反射区域均用于反射发射模组发射的光信号;第二扫描模组可以包括绕第二旋转轴旋转的第一接收区域和第二接收区域。其中,第一接收区域用于将经第一反射区域反射的光信号的第一回波信号反射至接收模组;第二接收区域用于将经第二反射区域反射的光信号的第二回波信号反射至接收模组;第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积。
由图2和图3可知,由于鬼影信号的生成会在扫描器的反射区域发生两次反射和在接收区域发生两次反射,而正常的回波信号的生成只会在扫描器的反射区域发生一次反射和在接收区域发生一次反射,因此,鬼影信号的能量正比于扫描器的反射区域和接收区域的反射率的乘积的平方,而正常的回波信号的能量正比于扫描器的反射区域和接收区域的反射率的乘积。那么,假设光信号在经第一反射区域和第一接收区域得到的正常的回波信号的能量为第一能量,光信号在经第一反射区域和第一接收区域得到的鬼影信号的能量为第二能量,光信号在经第二反射区域和第二接收区域得到的正常的回波信号的能量为第三能量,光信号在经第二反射区域和第二接收区域得到的鬼影信号的能量为第四能量,则,第一能量与第三能量的差距大于第二能量与第四能量的差距。也就是说,在反射区域的反射率和接收区域的反射率的乘积变小时,鬼影信号的能量的衰减大于正常的回波信号的衰减,从而抑制了鬼影信号的影响,因此,第一回波信号为鬼影信号的能量被抑制的回波信号。
可以理解的,由于第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积,则第一回波信号对应的光信号的探测距离小于第二回波信号的探测距离。
可见,本申请实施例通过设置扫描器的反射区域的反射率和接收区域的反射率的乘积,探测装置10基于反射区域的反射率和接收区域的反射率的乘积较小的扫描器工作时可以得到鬼影信号的能量被抑制的第一回波信号;探测装置10基于反射区域的反射率和接收区域的反射率的乘积较大的扫描器工作时可以得到探测距离较大的第二回波信号,因此,本申请实施例既可以保证探测距离,又可以抑制鬼影信号的影响。
进一步的,扫描器200的第一反射区域和第二反射区域的反射率相等,第一接收区域的反射率低于第二接收区域的反射率。需要说明的是,信噪比为光信号的能量与背景光的能量的比值,发射模组100发射的光信号经扫描器和视窗300进入探测空间后受到背景光的影响,光信号的回波信号携带背景光由探测空间进入探测装置10,也就是说,光信号会经过扫描器的反射区域和接收区域的反射,而背景光仅会经过扫描器的接收区域的反射。因此,若扫描器的反射区域的反射率降低,则会损失光信号的能量,而对背景光的能量无影响,从而信噪比降低,背景光对回波信号的影响增大,影响回波信号的质量;若不降低扫描器反射区域的反射率,通过降低扫描器的接收区域的反射率实现降低扫描器的反射区域的反射率和接收区域的反射率的乘积,则光信号和背景光的能量等比例降低,可以避免信噪比降低的情况。
可选地,扫描器200的第一扫描模组和第二扫描模组可以为一体结构,第一旋转轴和第二旋转轴为同一个轴;第一反射区域与第一接收区域共面,第二反射区域与第二接收区域共面;或者,第一扫描模组和第二扫描模组为分体结构,即第一扫描模组和第二扫描模组可以分别为单独的产品形态。第一扫描模组和第二扫描模组为独立的产品形态,第一扫描模组和第二扫描模组分别绕不同的旋转轴旋转。例如,第一扫描模组和第二扫描模组分别由不同的基板上镀反射膜组成。
以下以图5A和图5B介绍扫描器可能的两种产品形态。
如图5A所示,图5A示例性的示出了一种可绕旋转轴51旋转的扫描器501。该扫描器501为长方体,该扫描器501包括四个反射面,第一反射区域和第一接收区域共面,第一反射区域和第一接收区域所在的面为该扫描器501的第一反射面;第二反射区域和第二接收区域共面,第二反射区域和第二接收区域所在的面为该扫描器501的第二反射面;第一反射面相对的面和第二反射面相对的面为扫描器501的其它两个面。例如,第一反射区域与第一接收区域可以由同一块基板组成,基板的同一面上镀有反射膜。
如图5B所示,图5B示例性示出了一种扫描器502。该扫描器502包括可绕旋转轴52旋转的第一扫描模组和可绕旋转轴53旋转的第二扫描模组,第一扫描模组和第二扫描模组均为长方体,第一扫描模组和第二扫描模均可包括四个反射面。
在一些实施例中,第一反射区域和第二接收区域不共面,也即是,第一反射区域的法向量与第一接收区域的法向量之间的夹角为大于0°的角度。请参见图5C,图5C是本申请实施例提供的又一种扫描器503。如图5C所示,第一扫描模组和第二扫描模组均为长方体,第一扫描模组的反射区域和第二扫描模组的接收区域互不共面。
需要说明的是,光信号在第一扫描模组的反射面上的反射、以及回波信号在第二扫描模组的反射面上的反射均遵循反射定律。
视窗300为探测装置10的出入光的窗口。具体的,光信号经视窗300透射至探测空间,光信号在探测空间产生的回波信号经视窗300进入探测装置10。如图4所示,图4中用虚线代表探测空间的范围,经视窗300发射至探测空间的光信号可以探测如图4所示的探测区域。可以理解的,视窗300可以用于隔离外界环境对雷达内部的影响。
接收模组400,用于接收回波信号,具体用于接收来自扫描器200反射的回波信号。例如,接收模组可以用于接收来自第一接收区域和第二接收区域反射的回波信号。接收模组400还可以用于将接收到的回波信号发送至控制器500。
可选地,探测装置10还包括控制器500,控制器500用于对接收模组400接收的回波信号进行处理,例如控制器500可以将上文中的第一回波信号和第二回波信号进行合成,或进一步滤除回波信号中的鬼影信号等。
在一些实施例中,控制器500可以将上文中的第一回波信号和第二回波信号进行合成。具体的,第一反射区域用于扫描第一区域,第二反射区域用于扫描第二区域,第一反射区域的反射率和第一接收区域的反射率的乘积小于第二反射区域的反射率和第二接收区域的反射率的乘积,则第二区域与探测装置10的最大距离大于第一区域与探测装置10的最大距离。那么,控制器500可以用于:去除第二回波信号中对应第一区域的回波信号,得到第三回波信号;再基于第三回波信号和第一回波信号,生成第一点云数据。
在另一些实施例中,控制器500可以先滤除第一回波信号中的鬼影信号,再将滤除后的第一回波信号和第二回波信号进行合成。具体的,控制器500还用于去除第一回波信号中能量低于预设阈值的回波信号,得到第四回波信号;预设阈值小于第一阈值且大于第二阈值,第一阈值为第一反射区域反射的光信号探测位于第一位置的第一物体的回波信号的能量;第一位置为第一反射区域的光信号能够探测的最远距离的位置;第二阈值为第一反射区域反射的光信号探测第二位置时因视窗和第二物体的回波信号的能量;第二位置为第一反射区域的光信号能够探测的最近距离的位置;再基于上述第三回波信号和第四回波信号,生成第二点云数据。其中,第二物体为强反射目标,强反射目标是指反射率高于预设阈值的物体或能够使发射至物体的光信号沿原路返回的物体,第二阈值为光信号因视窗和第二物体在第一反射区域发生两次反射和在第一接收区域发生两次反射后的信号的鬼影信号的能量,该鬼影信号 的能量的生成过程可以参见图3的相关描述,此处不再赘述。
可以理解的,第一物体可以为当前反射率最低的物体,当第一物体位于探测装置能够探测到的最远位置(即第一位置)时,探测装置探测第一物体得到的第一阈值为该探测装置在探测范围内能探测到的能量最低的正常回波信号;第二物体可以为当前反射率最高的物体,当第二物体位于探测装置能够探测到的最近位置(即第二位置)时,探测装置探测第二位置时接收到的鬼影信号为该探测装置在探测范围内能探测到的能量最高的鬼影信号,其中,探测范围为第一位置至第二位置,第一物体和第二物体的选定可以根据实际情况确定,例如第一物体可以为黑色车辆等,此处不做限定。那么,将预设阈值设置在第一阈值和第二阈值之间,则该控制器可以将鬼影信号滤除。需要说明的是,如果第一阈值小于第二阈值,则可以通过调节扫描器的反射率和/或探测装置的其它部件的参数以使第一阈值大于第二阈值。
可选地,装置还包括驱动电路600,驱动电路用于驱动第一扫描模组和第二扫描模组分别绕旋转轴旋转或绕同一旋转轴旋转。此处对旋转速率不作限定。
本申请所提供的探测装置10还可以应用多种可能场景,例如,探测装置10还可以安装在车辆上。或者,还可以安装在无人机上,作为机载雷达。再比如,探测装置10可以安装在自动导引运输车(automated guided vehicle,AGV)上,其中,AGV指装备有电磁或光学等自动导航装置,能够沿规定的导航路径行驶,具有安全保护以及各种移载功能的运输车。再比如,探测装置10也可以应用于远程医疗、远程培训、多人游戏、多人训练等场景。
基于上述内容,探测装置10还应用场景可应用于无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联车、安防监控、远程交互、测绘或人工智能等领域。
结合图6A和图6B,介绍本申请实施例提供的一种扫描器700。如图6A所示,该扫描器包括第一扫描模组701、连接体702和第二扫描模组703,该扫描器可以绕旋转轴旋转。其中:
由图6A所示,第一扫描模组701为长方体,第一扫描模组701与连接体702相接的面、第一扫描模组701与连接体702相接的面的对面不为反射区域,其他四个面均为反射区域,反射区域用于将发射模组发射的光信号发射至探测空间;第二扫描模组703为长方体,第二扫描模组703与连接体702相接的面、第二扫描模组703与连接体702相接的面的对面不为接收区域,其他四个面均为接收区域,接收面用于将回波信号反射至接收模组;连接体702为圆柱体,用于减少杂光的影响。
请参见图6B,由于第一扫描模组701和第二扫描模组703为一体结构,第一反射区域与第一接收区域共面,第二反射区域与第二接收区域共面。因此,可以将第一反射区域与第一接收区域称为扫描器700的第一面,将第二反射区域与第二接收区域称为扫描器700的第二面,与第一面相对的面为扫描器700的第三面,与第二面相对的面为扫描器700的第四面。
其中,扫描器700有至少一个面的发射区域反射率和接收区域反射率的乘积比其它面的发射区域反射率和接收区域反射率的乘积低。例如扫描器700的第一面的发射区域反射率和接收区域反射率的乘积比其它面的发射区域反射率和接收区域反射率的乘积低一半以上,则接收模组接收扫描器700第一面的光信号能量比其它面的回波信号低至一半以下,而接收模组接收扫描器700第一面的鬼影信号的能量会比其它面接收的鬼影信号低至1/4以下,即鬼影信号的能量衰减的更快,当鬼影信号的能量低于光信号能量时,可以被算法过滤掉,从而解决了虚假鬼像的问题。
在一些实施例中,扫描器700中发射区域反射率和接收区域反射率的乘积低的面可以用于近距离探测,扫描器700中发射区域反射率和接收区域反射率的乘积高的面用于LiDAR远 距离探测。
基于图6A和图6B所示的扫描器700,可以得到如图7所示的探测装置20和图9所示的探测装置30。
请参见图7,该探测装置20包括一个发射模组、一个接收模组和扫描器,发射模组和接收模组均位于在扫描器同侧。图8示例性的示出了探测装置20的一种工作状态,如图8所示,斜线区域用于代表光信号或回波信号,发射模组可以向扫描器的第一面的反射区域发送光信号,光信号的回波信号经第一面的接收区域反射至接收模组。其中:
在一种实现中,扫描器的第二面和第四面的发射区域的反射率和接收区域的反射率可以均为A,A为正数;扫描器的第一面和第三面的发射区域的反射率和接收区域的反射率可以均为B,B为正数;其中,B/A≤0.707。在该探测装置20进行探测时,与扫描器的第二面和第四面相比,通过扫描器的第一面和第三面得到的鬼像信号的能量比光信号的能量多衰减一倍以上。
在另一种实现中,扫描器的第二面和第四面的发射区域的反射率和接收区域的反射率均为A,A为正数;扫描器的第一面和第三面的发射区域的反射率均为A,扫描器的第一面和第三面的接收区域的反射率均为B,B为正数;其中,B/A≤0.5。在该探测装置20进行探测时,与扫描器的第二面和第四面相比,扫描器的第一面和第三面反射至接收模组的背景光的能量和光信号的能量同比例降低一半以上,因此接收的信噪比没有降低。
请参见图9,该探测装置30包括一个发射模组、两个接收模组和扫描器,发射模组和第一接收模块均位于在扫描器同侧,第二接收模块位于扫描器的另一侧。图10示例性的示出了探测装置30的一种工作状态,如图10所示,斜线区域用于代表光信号或回波信号,发射模组可以向扫描器的第一面的反射区域发送光信号,光信号的回波信号经第一面的接收区域反射至第一接收模块,光信号的回波信号经第二面的接收区域反射至第二接收模块。其中:
扫描器的第二面和第四面的发射区域的反射率和接收区域的反射率可以均为A,A为正数;扫描器的第一面和第三面的发射区域的反射率可以均为A,扫描器的第一面和第三面的接收区域的反射率可以均为B,B为正数;其中,B/A≤0.5。
探测装置30可以同时用不同的接收模组接收回波信号,可以缩短探测时间。例如,在发射模组的光信号经第一面的反射区域反射至探测空间时,该光信号的第一回波信号经第一面的接收区域反射至第一接收模块,该光信号的第二回波信号经第二面的接收区域反射至第二接收模块。由于第二面的接收区域的反射率低于第一面的接收区域的反射率,因此,第二面可以接收的回波信号的距离较近,用于接收近距离的回波信号。因此,探测装置30可以同时接收远处和近处的回波信号,相比探测装置20帧频提升一倍。
上述探测装置可以是独立的设备,或者该探测装置也可以设置在其他设备中,所述其他设备例如为终端设备或网络设备,网络设备例如包括接入网设备,接入网设备例如为基站等,或者,所述其他设备也可以是雷达等设备。本申请实施例所述的探测装置可以安装在机动车辆、无人机、轨道车、自行车、信号灯、测速装置或网络设备(如各种系统中的基站、终端设备)等设备内。本申请实施例既适用于车与车之间的探测,也适用于车与无人机等其他装置之间的探测,或适用于其他装置之间的探测。例如,该探测装置可以安装在智能运输设备、智能家居设备、机器人等智能终端上。本申请实施例对安装该探测装置的终端设备类型,该探测装置的安装位置和该探测装置的功能等不做限定。
本申请实施例还提供了一种雷达,所述雷达包含探测装置。所述探测装置可以为前述的图4、图7或者图9等实施例中所描述的探测装置。
本申请实施例还提供了一种终端,所述终端包含前述的探测装置,例如图4、图7或者图9所示的探测装置。
可选的,上述终端可以为车辆、无人机、路侧单元、路口雷达或机器人等运输工具或智能终端。
在上述实施例中,全部或部分功能可以通过软件、硬件、或者软件加硬件的组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (13)

  1. 一种探测装置,其特征在于,包括:发射模组、第一扫描模组、第二扫描模组和接收模组,其中:
    所述发射模组,用于发射光信号;
    所述第一扫描模组包括绕第一旋转轴旋转的第一反射区域和第二反射区域,所述第一反射区域和所述第二反射区域均用于反射所述发射模组发射的光信号;
    所述第二扫描模组包括绕第二旋转轴旋转的第一接收区域和第二接收区域;所述第一接收区域用于将经所述第一反射区域反射的光信号的第一回波信号反射至所述接收模组;所述第二接收区域用于将经所述第二反射区域反射的光信号的第二回波信号反射至所述接收模组;所述第一反射区域的反射率和所述第一接收区域的反射率的乘积小于所述第二反射区域的反射率和所述第二接收区域的反射率的乘积;
    所述接收模组,用于接收所述第一回波信号和所述第二回波信号。
  2. 根据权利要求1所述的探测装置,其特征在于,所述第一反射区域和所述第二反射区域的反射率相等,所述第一接收区域的反射率低于所述第二接收区域的反射率。
  3. 根据权利要求1或2所述的探测装置,其特征在于,所述第一反射区域的法向量与所述第一接收区域的法向量之间的夹角为大于0°的角度。
  4. 根据权利要求1或2所述的探测装置,其特征在于,所述第一扫描模组和所述第二扫描模组为一体结构,所述第一旋转轴和所述第二旋转轴为同一个轴;所述第一反射区域与所述第一接收区域共面,所述第二反射区域与所述第二接收区域共面。
  5. 根据权利要求1-4任一项所述的探测装置,其特征在于,所述第一反射区域用于扫描第一区域,所述第二反射区域用于扫描第二区域,所述第二区域与所述探测装置的最大距离大于所述第一区域与所述探测装置的最大距离;
    所述探测装置还包括控制器,所述控制器用于:
    去除所述第二回波信号中对应所述第一区域的回波信号,得到第三回波信号;
    基于所述第三回波信号和所述第一回波信号,生成第一点云数据。
  6. 根据权利要求5所述的探测装置,其特征在于,所述控制器还用于:
    去除所述第一回波信号中能量低于预设阈值的回波信号,得到第四回波信号;所述预设阈值小于第一阈值且大于第二阈值,所述第一阈值为所述第一反射区域反射的光信号探测位于第一位置的第一物体的回波信号经所述第一接收区域反射后的能量;所述第一位置为所述第一反射区域的光信号能够探测的最远距离的位置;所述第二阈值为所述第一反射区域反射的光信号探测第二位置时因视窗和第二物体产生的回波信号经所述第二接收区域反射后的能量;所述第二位置为所述第一反射区域的光信号能够探测的最近距离的位置;
    所述控制器用于基于所述第三回波信号和所述第一回波信号,生成点云数据,包括:基于所述第三回波信号和所述第四回波信号,生成第二点云数据。
  7. 根据权利要求1-6任一项所述的探测装置,其特征在于,所述接收模组包括第一接收 模块和第二接收模块;所述第一反射区域和所述第二反射区域为同一区域;
    所述第一接收区域具体用于将经所述第一反射区域反射的光信号的第一回波信号反射至所述第一接收模块;
    所述第二接收区域具体用于将经所述第一反射区域反射的光信号的第二回波信号反射至所述第二接收模块。
  8. 一种扫描器,其特征在于,包括第一扫描模组和第二扫描模组,其中:
    所述第一扫描模组包括绕第一旋转轴旋转的第一反射区域和第二反射区域,所述第一反射区域和所述第二反射区域均用于反射发射模组发射的光信号;
    所述第二扫描模组包括绕第二旋转轴旋转的第一接收区域和第二接收区域;所述第一接收区域用于将经所述第一反射区域反射的光信号的第一回波信号反射至接收模组;所述第二接收区域用于将经所述第二反射区域反射的光信号的第二回波信号反射至所述接收模组;所述第一反射区域的反射率和所述第一接收区域的反射率的乘积小于所述第二反射区域的反射率和所述第二接收区域的反射率的乘积。
  9. 根据权利要求8所述的扫描器,其特征在于,所述第一反射区域和所述第二反射区域的反射率相等,所述第一接收区域的反射率低于所述第二接收区域的反射率。
  10. 根据权利要求8或9所述的扫描器,其特征在于,所述第一反射区域的法向量与所述第一接收区域的法向量之间的夹角为大于0°的角度。
  11. 根据权利要求8或9所述的扫描器,其特征在于,所述第一扫描模组和所述第二扫描模组为一体结构,所述第一旋转轴和所述第二旋转轴为同一个轴;所述第一反射区域与所述第一接收区域共面,所述第二反射区域与所述第二接收区域共面。
  12. 一种雷达,其特征在于,包括如权利要求1-7任一项所述的探测装置。
  13. 一种终端,其特征在于,包括如权利要求1-7任一项所述的探测装置。
PCT/CN2022/122159 2021-10-26 2022-09-28 一种探测装置及扫描器 WO2023071684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111249539.7 2021-10-26
CN202111249539.7A CN116027353A (zh) 2021-10-26 2021-10-26 一种探测装置及扫描器

Publications (1)

Publication Number Publication Date
WO2023071684A1 true WO2023071684A1 (zh) 2023-05-04

Family

ID=86069271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122159 WO2023071684A1 (zh) 2021-10-26 2022-09-28 一种探测装置及扫描器

Country Status (2)

Country Link
CN (1) CN116027353A (zh)
WO (1) WO2023071684A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230303A (ja) * 1993-02-03 1994-08-19 Fuji Electric Co Ltd 回転多面鏡
EP3070496A1 (de) * 2015-03-18 2016-09-21 Sick Ag Polygonscanner und verfahren zum erfassen von objekten
DE202017107043U1 (de) * 2017-11-21 2019-02-25 Sick Ag Polygonscanner zum Erfassen von Objekten in einem Überwachungsbereich
CN109709529A (zh) * 2019-03-05 2019-05-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN209894964U (zh) * 2019-03-05 2020-01-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN111580115A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230303A (ja) * 1993-02-03 1994-08-19 Fuji Electric Co Ltd 回転多面鏡
EP3070496A1 (de) * 2015-03-18 2016-09-21 Sick Ag Polygonscanner und verfahren zum erfassen von objekten
DE202017107043U1 (de) * 2017-11-21 2019-02-25 Sick Ag Polygonscanner zum Erfassen von Objekten in einem Überwachungsbereich
CN109828259A (zh) * 2019-02-14 2019-05-31 昂纳信息技术(深圳)有限公司 一种激光雷达及组合扫描装置
CN109709529A (zh) * 2019-03-05 2019-05-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN209894964U (zh) * 2019-03-05 2020-01-03 深圳市镭神智能系统有限公司 一种旋转棱镜和多线激光雷达测距系统
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN111580115A (zh) * 2020-04-29 2020-08-25 上海禾赛光电科技有限公司 用于激光雷达的扫描装置及激光雷达

Also Published As

Publication number Publication date
CN116027353A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US10571570B1 (en) Lidar system with range-ambiguity mitigation
US20220082702A1 (en) Lidar System with High-Resolution Scan Pattern
US10340651B1 (en) Lidar system with optical trigger
US20210255329A1 (en) Environment sensing system and movable platform
WO2020243962A1 (zh) 物体检测方法、电子设备和可移动平台
US20210293928A1 (en) Ranging apparatus, balance method of scan field thereof, and mobile platform
US11681033B2 (en) Enhanced polarized light collection in coaxial LiDAR architecture
Kim et al. An experiment of mutual interference between automotive LIDAR scanners
WO2022120839A1 (zh) 基于车载毫米波雷达的防干扰方法、装置、系统及车辆
CN112083730A (zh) 一种融合多组传感器数据在复杂环境中避障的方法
CN115461260A (zh) 玻璃镜附接至旋转金属电机框架
CN113874756A (zh) 用于可转向激光雷达的情境感知实时功率调整
US20240012117A1 (en) Detection Method and Apparatus
WO2023071684A1 (zh) 一种探测装置及扫描器
WO2020142941A1 (zh) 一种光发射方法、装置及扫描系统
WO2022110210A1 (zh) 一种激光雷达及移动平台
WO2023019441A1 (zh) 一种收发光学系统、激光雷达、终端设备、方法及装置
WO2023225963A1 (zh) 一种扫描装置、激光雷达和终端
US20220317267A1 (en) Reconstruction of pulsed signals
US20220099831A1 (en) Sensor arrangement on an autonomous personal mobility vehicle
WO2022188687A1 (zh) 一种探测装置、探测器、激光雷达及终端设备
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
US20210333374A1 (en) Ranging apparatus and mobile platform
WO2022252057A1 (zh) 一种检测方法及装置
WO2022156344A1 (zh) 一种激光雷达及一种无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885569

Country of ref document: EP

Kind code of ref document: A1