WO2022156344A1 - 一种激光雷达及一种无人机 - Google Patents

一种激光雷达及一种无人机 Download PDF

Info

Publication number
WO2022156344A1
WO2022156344A1 PCT/CN2021/131880 CN2021131880W WO2022156344A1 WO 2022156344 A1 WO2022156344 A1 WO 2022156344A1 CN 2021131880 W CN2021131880 W CN 2021131880W WO 2022156344 A1 WO2022156344 A1 WO 2022156344A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning mirror
laser light
reflected
receiving unit
rotating
Prior art date
Application number
PCT/CN2021/131880
Other languages
English (en)
French (fr)
Inventor
张瓯
丁鼎
Original Assignee
杭州欧镭激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110074676.5A external-priority patent/CN112711007A/zh
Priority claimed from CN202120150610.5U external-priority patent/CN214473910U/zh
Application filed by 杭州欧镭激光技术有限公司 filed Critical 杭州欧镭激光技术有限公司
Publication of WO2022156344A1 publication Critical patent/WO2022156344A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • FIG. 1 it is a schematic structural diagram of a common UAV radar in the prior art, which includes a 16-line radar and an obstacle avoidance radar.
  • the existing 16-line radar generally uses 16 sets of transmitting tubes and 16 sets of receiving tubes, respectively composed of two sets of optical systems to form a transmitting and receiving system, forming a fixed vertical field angle of ⁇ 15°, and then realizing a lateral 360° angle through the rotation axis.
  • °scan (the expanded view of its lateral point cloud is shown in Figure 2), but there are blind spots in the field of view in the forward direction of the UAV (the direction of the top of the UAV) and cannot be scanned.
  • the obstacle radar is a single-line ranging radar, which is used to measure whether there are obstacles within a safe distance in the forward direction of the UAV.
  • the 16-wire radar and obstacle avoidance radar are installed separately.
  • the disadvantage of the prior art is that the detection of target objects in different directions needs to be realized by two independent radars, which is expensive and heavy.
  • the purpose of the present invention is to provide a laser radar with low cost, light weight and capable of detecting target objects in different directions, and an unmanned aerial vehicle having the laser radar.
  • the invention discloses a laser radar, comprising:
  • the rotating scanning mirror is rotated under the driving of the first motor, and the rotating scanning mirror includes at least two continuous reflecting surfaces, and the reflecting surfaces are parallel to the rotation axis of the rotating scanning mirror;
  • the first transmitting unit emits a first laser light to the rotating scanning mirror in a first direction, the first laser light is reflected by the reflecting surface and then exits to a first target object, the first laser light reflected from the first target object is received by the first receiving unit after being reflected by the reflecting surface;
  • a second transmitting unit and a second receiving unit the second transmitting unit emits a second laser light to the rotating scanning mirror in a second direction, and the second laser light is reflected by the reflecting surface and then exits toward the second target object, and the second laser light reflected from the second target object is received by the first receiving unit after being reflected by the reflecting surface.
  • the lidar includes a vertical scanning system and a horizontal scanning system;
  • the vertical scanning system includes the rotating scanning mirror, a first transmitting unit, a first receiving unit, a second transmitting unit, and a second receiving unit;
  • the horizontal scanning system includes a second motor and a fixed part, the vertical scanning system is fixed on the fixed part, the second motor drives the fixed part to rotate, and the rotating shaft of the fixed part and the rotating scanning mirror The axis of rotation is vertical.
  • the first direction is perpendicular to the second direction.
  • the vertical scanning system further includes a third transmitting unit and a third receiving unit, the third transmitting unit transmits a third laser light to the rotating scanning mirror in a third direction, and the third laser light passes through the After being reflected by the reflective surface, it is emitted to the third target object, and the third laser light reflected from the third target object is reflected by the reflective surface and then received by the third receiving unit.
  • the third transmitting unit transmits a third laser light to the rotating scanning mirror in a third direction, and the third laser light passes through the After being reflected by the reflective surface, it is emitted to the third target object, and the third laser light reflected from the third target object is reflected by the reflective surface and then received by the third receiving unit.
  • the first direction is perpendicular to the second direction
  • the first direction is perpendicular to the third direction
  • the second direction is the same as the third direction, and the second laser light in the second direction is reflected by the reflecting surface and exits in the same direction as the third laser light in the third direction is reflected by the reflecting surface
  • the direction of the rear exit is opposite.
  • the rotating scanning mirror includes at least two continuous and vertical reflecting surfaces.
  • the rotating scanning mirror includes 4 continuous and vertical reflecting surfaces
  • the cross-sections of the four continuous and vertical reflection surfaces on a plane perpendicular to the rotation axis of the rotating scanning mirror are square, and the rotating axis of the rotating scanning mirror is located at the center of the square.
  • the rotation of the rotating scanning mirror is circular rotation or reciprocating rotation.
  • the present invention also discloses an unmanned aerial vehicle, which includes the above-mentioned laser radar.
  • the horizontal scanning system drives the two transmitting and receiving units and the rotating scanning mirror to rotate as a whole, which can realize the target object detection in the circumferential direction of 360 degrees and the top direction, so as to replace the 16-line radar and obstacle avoidance radar in the prior art, Compared with the technical solution of 16-line radar plus obstacle avoidance radar, it reduces the number of radars, reduces cost and weight, and can achieve a larger field of view and higher detection accuracy.
  • Fig. 1 is the structural representation of UAV radar in the prior art
  • Figure 2 is an expanded view of the 16-line radar lateral point cloud in Figure 1;
  • FIG. 3 is a schematic structural diagram of a laser radar in an embodiment of the present invention.
  • FIG. 4 is a point cloud view of the top direction of the lidar in FIG. 3;
  • FIG. 5 is an expanded view of the lidar lateral point cloud in FIG. 3 .
  • 100-vertical scanning system 110-rotating scanning mirror, 111-rotating axis of scanning mirror, 120-first transmitting unit, 130-first receiving unit, 140-second transmitting unit, 150-second receiving unit, 160 - Third transmitting unit, 170 - Third receiving unit, 200 - Horizontal scanning system, 210 - Fixed part.
  • first, second, third, etc. may be used in this disclosure to describe various pieces of information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.
  • word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the laser radar includes a vertical scanning system 100 and a horizontal scanning system 200 .
  • the vertical scanning system 100 includes a rotating scanning mirror 110 , a first transmitting unit 120 , a first receiving unit 130 , a second transmitting unit 140 , a second receiving unit 150 , a third transmitting unit 160 and a third receiving unit 170 .
  • the rotating scanning mirror 110 includes four continuous and vertical reflecting surfaces, and the cross-sections of the four continuous and vertical reflecting surfaces on a plane perpendicular to the rotation axis 111 of the rotating scanning mirror 110 are square.
  • the rotation axis 111 of 110 is located at the center of the square, and the reflection surfaces are all perpendicular to the rotation axis 111 .
  • the vertical scanning system 100 further includes a first motor, and the rotating scanning mirror 110 is driven by the first motor to rotate around the rotating shaft 111 .
  • the rotation of the rotating scanning mirror 110 is a circular rotation, that is, a 360° rotation in one direction (clockwise in the figure) around the rotation axis 111 .
  • the rotation of the rotating scanning mirror 110 may also be reciprocating rotation, that is, reciprocating rotation around the rotation axis 111 according to a preset angle.
  • the side of the rotating scanning mirror 110 away from the rotating shaft 111 is a reflective surface.
  • the first emitting unit 120 emits a first laser light to the rotating scanning mirror 110 in a first direction, and the first laser light is reflected by the reflecting surface and then exits toward the first target object, The first laser light reflected from the first target object is received by the first receiving unit 130 after being reflected by the reflecting surface;
  • the second transmitting unit 140 emits a second laser light to the rotating scanning mirror 110 in the second direction , the second laser light is reflected by the reflecting surface and then exits toward the second target object, and the second laser light reflected from the second target object is reflected by the reflecting surface and then received by the second receiving unit 150;
  • the third emitting unit 160 emits a third laser light to the rotating scanning mirror 110 in a third direction, the third laser light is reflected by the reflective surface and then exits to a third target object, from the third target
  • the third laser light reflected by the object is received by the third receiving unit 170 after being reflected by the reflecting surface.
  • the first direction is perpendicular to the second direction; the first direction is perpendicular to the third direction; the second direction is the same as the third direction, and the second laser light in the second direction passes through the reflective surface
  • the exiting direction after reflection is opposite to the exiting direction of the third laser light in the third direction after being reflected by the reflecting surface.
  • the first transmitting unit 120, the second transmitting unit 140 and the third transmitting unit 160 are laser transmitters; the first receiving unit 130, the second receiving unit 150 and the third receiving unit 170 include avalanche photodiodes.
  • the first target object, the second target object and the third target object are objects on which the laser light is incident and reflected back, which are only used for illustration and do not refer to specific objects.
  • the second target object and the third target object may be independent objects or different parts of the same object.
  • the horizontal scanning system 200 includes a second motor and a fixing part 210.
  • the vertical scanning system 100 is fixed on the fixing part 210.
  • the fixing part 210 in the figure is only for illustration. A mounting and fixing structure for each component of the vertical scanning system 100 is provided thereon.
  • the second motor drives the fixing part 210 to rotate, and the rotation axis of the fixing part 210 is perpendicular to the rotation axis 111 of the rotating scanning mirror 110 .
  • the second motor drives the vertical scanning system 100 to rotate 360° as a whole, so that the laser beam emitted by the first transmitting unit 120 can achieve target detection in a certain area above (ie, the direction of the top of the lidar).
  • the point cloud view of the direction is shown in Figure 4; the laser beams emitted by the second transmitting unit 140 and the third transmitting unit 160 can realize the detection of the target object with a lateral 360°, and the expanded view of the lateral point cloud is shown in Figure 5 Show.
  • the target object detection can be realized in a lateral direction of 360 degrees and a top direction, so that the 16-line radar and obstacle avoidance radar in the prior art can be replaced.
  • the technical solution of 16-line radar plus obstacle avoidance radar reduces the number of radars, reduces cost and weight, has a larger field of view, and has denser point cloud accuracy.
  • the third transmitting unit 160 and the third receiving unit 170 may not be provided in the vertical scanning system 100, and only by rotating the scanning mirror 110, the first transmitting unit 120, the first receiving unit 130, the second The transmitting unit 140 , the second receiving unit 150 and the horizontal scanning system 200 realize the detection of the target objects in the lateral direction and the top of 360°.
  • the rotating scanning mirror 110 may only include two continuous reflecting surfaces, and the two reflecting surfaces are perpendicular or approximately perpendicular. As the rotating scanning mirror 110 rotates, the two reflecting surfaces are connected to the transmitting and receiving units. In cooperation, the laser beam is reflected to the side and the top successively, and then combined with the rotation of the horizontal scanning system 200, the detection of the target object in the lateral 360° and the top is realized.
  • the number of reflective surfaces can be flexibly set according to actual design requirements.
  • the horizontal scanning system 200 may not be provided, and only the vertical scanning system 100 is used to realize target object detection in a fixed direction.
  • the laser emitting unit may be a multi-line laser emitting unit.

Abstract

一种激光雷达及一种无人机,包括:旋转扫描镜(110),旋转扫描镜(110)在第一电机的带动下旋转,旋转扫描镜(110)包括至少2个连续的反射面,反射面与旋转扫描镜(110)的旋转轴(111)平行;第一发射单元(120)、第一接收单元(130)、第二发射单元(140)和第二接收单元(150),第一发射单元(120)和第二发射单元(140)以不同的方向向旋转扫描镜(110)发出激光光线,激光光线经反射面反射后出射向目标物体,自目标物体反射回的激光光线经反射面反射后分别被第一接收单元(130)和第二接收单元(150)接收。激光雷达结构简单,且可以实现对两个方向的目标探测。

Description

一种激光雷达及一种无人机 技术领域
本发明涉及雷达技术领域,尤其涉及一种激光雷达及一种无人机。
背景技术
现有技术中,无人机多采用激光雷达进行避障。参见附图1,为现有技术中常见的无人机雷达的结构示意图,其包括16线雷达和避障雷达。现有的16线雷达一般是采用16组发射管,16组接收管,分别通过两组光学系统组成发射和接收系统,形成±15°的固定垂直视场角,再通过旋转轴实现侧向360°扫描(其侧向的点云展开图如图2所示),但其在无人机前进方向(无人机顶部方向)存在视场盲点无法扫描,因此,需要额外设置避障雷达,避障雷达为一个单线测距雷达,用以测量无人机前进方向的安全距离内是否有障碍物。16线雷达和避障雷达分开安装。
现有技术的缺陷在于对于不同方向目标物体的探测需要通过两个独立的雷达来实现,其成本较高、重量较大。
发明内容
为了克服上述技术缺陷,本发明的目的在于提供一种成本较低、重量较轻且能对不同方向目标物体进行探测的激光雷达,及具有该激光雷达的无人机。
本发明公开了一种激光雷达,包括:
旋转扫描镜,所述旋转扫描镜在第一电机的带动下旋转,所述旋转扫描镜包括至少2个连续的反射面,所述反射面与所述旋转扫描镜的旋转轴平行;
第一发射单元和第一接收单元,所述第一发射单元以第一方向向所述旋转扫描镜发出第一激光光线,所述第一激光光线经所述反射面反射后出射向第一目标物体,自第一目标物体反射回的第一激光光线经所述反射面反射后被第一接收单元接收;
第二发射单元和第二接收单元,所述第二发射单元以第二方向向所述旋转扫描镜发 出第二激光光线,所述第二激光光线经所述反射面反射后出射向第二目标物体,自所述第二目标物体反射回的第二激光光线经所述反射面反射后被第一接收单元接收。
优选地,所述激光雷达包括垂直扫描系统和水平扫描系统;
所述垂直扫描系统包括所述旋转扫描镜、第一发射单元、第一接收单元、第二发射单元、第二接收单元;
所述水平扫描系统包括第二电机和固定部,所述垂直扫描系统固定于所述固定部,所述第二电机带动所述固定部旋转,所述固定部的旋转轴与所述旋转扫描镜的旋转轴垂直。
优选地,所述第一方向与第二方向垂直。
优选地,所述垂直扫描系统还包括第三发射单元和第三接收单元,所述第三发射单元以第三方向向所述旋转扫描镜发出第三激光光线,所述第三激光光线经所述反射面反射后出射向第三目标物体,自所述第三目标物体反射回的第三激光光线经所述反射面反射后被第三接收单元接收。
优选地,所述第一方向与第二方向垂直;
所述第一方向与第三方向垂直;
所述第二方向与所述第三方向相同,所述第二方向的第二激光光线经所述反射面反射后出射的方向与所述第三方向的第三激光光线经所述反射面反射后出射的方向相反。
优选地,所述旋转扫描镜包括至少2个连续且垂直的反射面。
优选地,所述旋转扫描镜包括4个连续且垂直的反射面;
4个连续且垂直的反射面在垂直于所述旋转扫描镜的旋转轴的平面上的截面为正方形,所述旋转扫描镜的旋转轴位于所述正方形的中心。
优选地,所述旋转扫描镜的旋转为圆周旋转或往复旋转。
本发明还公开了一种无人机,其包括如上所述的激光雷达。
采用了上述技术方案后,与现有技术相比,具有以下有益效果:
1.通过两个发射、接收单元与旋转扫描镜的配合,可以通过一个雷达实现不同方向目标物体探测,结构简单;
2.通过水平扫描系统带动两个发射、接收单元与旋转扫描镜整体转动,可以实现周向360度及顶部方向的目标物体探测,从而可以替代现有技术中的16线雷达和避障雷达,其相对于16线雷达加避障雷达的技术方案,减少了雷达数量,降低了成本及重量,且能实现更大的视场角及更高的探测精度。
附图说明
图1为现有技术中无人机雷达的结构示意图;
图2为图1中16线雷达侧向点云的展开视图;
图3为本发明一实施例中激光雷达的结构示意图;
图4为图3中激光雷达顶部方向的点云视图;
图5为图3中激光雷达侧向点云的展开视图。
附图标记:
100-垂直扫描系统,110-旋转扫描镜,111-旋转扫描镜的旋转轴,120-第一发射单元,130-第一接收单元,140-第二发射单元,150-第二接收单元,160-第三发射单元,170-第三接收单元,200-水平扫描系统,210-固定部。
具体实施方式
以下结合附图与具体实施例进一步阐述本发明的优点。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗 示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
参见附图3,为本发明一实施例中的激光雷达的结构示意图,所述激光雷达包括垂直扫描系统100和水平扫描系统200。
所述垂直扫描系统100包括旋转扫描镜110、第一发射单元120、第一接收单元130、第二发射单元140、第二接收单元150、第三发射单元160和第三接收单元170。
所述旋转扫描镜110包括4个连续且垂直的反射面,4个连续且垂直的反射面在垂直于所述旋转扫描镜110的旋转轴111的平面上的截面为正方形,所述旋转扫描镜110的旋转轴111位于所述正方形的中心,所述反射面均与旋转轴111垂直。所述垂直扫描系统100还包括第一电机,所述旋转扫描镜110在第一电机的带动下绕旋转轴111旋转。在本实施例中,所述旋转扫描镜110的旋转为圆周旋转,即绕旋转轴111沿一个方向360°旋转(图中为顺时针方向)。在其它一些实施例中,所述旋转扫描镜110的旋转也可以为往复旋转,即绕旋转轴111按照预设的角度往复旋转。所述旋转扫描镜110远离旋转轴111的一侧为反射面。
如图3所示,所述第一发射单元120以第一方向向所述旋转扫描镜110发出第一激光光线,所述第一激光光线经所述反射面反射后出射向第一目标物体,自第一目标物体反射回的第一激光光线经所述反射面反射后被第一接收单元130接收;所述第二发射单元140以第二方向向所述旋转扫描镜110发出第二激光光线,所述第二激光光线经所述反射面反射后出射向第二目标物体,自所述第二目标物体反射回的第二激光光线经所述反射面反射后被第二接收单元150接收;所述第三发射单元160以第三方向向所述旋转扫描镜110发出第三激光光线,所述第三激光光线经所述反射面反射后出射向第三目标物体,自所述第三目标物体反射回的第三激光光线经所述反射面反射后被第三接收单元170接收。所述第一方向与第二方向垂直;所述第一方向与第三方向垂直;所述第二方向 与所述第三方向相同,所述第二方向的第二激光光线经所述反射面反射后出射的方向与所述第三方向的第三激光光线经所述反射面反射后出射的方向相反。随着旋转扫描镜110的旋转,第一发射单元120发出的激光光束实现图中上方一定角度范围的目标探测,第二发射单元140发出的激光光束实现图中右侧一定角度范围的目标探测,第三发射单元160发出的激光光束实现图中左侧一定角度范围的目标探测。具体地,可实现±20°的左右两个方向的固定垂直视场角,外加±20°的顶部水平视场角。所述第一发射单元120、第二发射单元140和第三发射单元160为激光发射器;第一接收单元130、第二接收单元150和第三接收单元170包括雪崩光电二极管。所述第一目标物体、第二目标物体和第三目标物体为激光光线在其上射入并反射回的物体,其仅用于说明,并不指代特定的物体,第一目标物体、第二目标物体和第三目标物体可以是独立的物体,也可以是同一物体的不同部分。
所述水平扫描系统200包括第二电机和固定部210,所述垂直扫描系统100固定于所述固定部210,图中固定部210仅为示意,所述固定部210可以是壳体,壳体上设置有垂直扫描系统100的各个部件的安装固定结构。所述第二电机带动所述固定部210旋转,所述固定部210的旋转轴与所述旋转扫描镜110的旋转轴111垂直。本实施例中,所述第二电机带动垂直扫描系统100整体360°旋转,从而,第一发射单元120发出的激光光束可以实现上方一定区域范围(即激光雷达顶部方向)的目标探测,其顶部方向的点云视图如图4所示;第二发射单元140和第三发射单元160发出的激光光束可以实现侧向360°的目标物体的探测,其侧向点云的展开视图如图5所示。本申请的技术方案,通过水平扫描系统200垂直扫描系统100整体转动,可以实现侧向360度及顶部方向的目标物体探测,从而可以替代现有技术中的16线雷达和避障雷达,其相对于16线雷达加避障雷达的技术方案,减少了雷达数量,降低了成本及重量,视场角更大,点云精度更密。且通过调整旋转扫描镜110和固定部210的转动频率,可以调整点云的密度,从而满足不同精度的探测需求。本实施例的激光雷达还包括处理单元,其与发射单元和接收单元连接,用于根据激光的发射与接收以及旋转扫描镜和固定部的转动频率,判断目标物体相对激光雷达的方位和距离。
在其它一些实施例中,垂直扫描系统100中可以不设置所述第三发射单元160和第三接收单元170,仅通过旋转扫描镜110、第一发射单元120、第一接收单元130、第二发射单元140、第二接收单元150以及水平扫描系统200实现侧向360°以及顶部的目标物体的探测。
在其它一些实施例中,所述旋转扫描镜110可以仅包括2个连续的反射面,2个反射面垂直或近似垂直,随着旋转扫描镜110的旋转,两个反射面与发射及接收单元配合,先后将激光光束反射向侧向及顶部,再配合水平扫描系统200的旋转,实现侧向360°以及顶部的目标物体的探测。反射面的数量可以根据实际设计需求灵活设置。
在其它一些实施例中,可以不设置水平扫描系统200,仅通过垂直扫描系统100实现固定方向的目标物体探测,相应地,在该实施例中,激光发射单元可以为多线的激光发射单元。
本发明还公开了一种无人机,其包括上述实施例中的激光雷达,其通过上述激光雷达实现侧向及顶部方向的目标物体探测。
应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。

Claims (9)

  1. 一种激光雷达,其特征在于,包括:
    旋转扫描镜,所述旋转扫描镜在第一电机的带动下旋转,所述旋转扫描镜包括至少2个连续的反射面,所述反射面与所述旋转扫描镜的旋转轴平行;
    第一发射单元和第一接收单元,所述第一发射单元以第一方向向所述旋转扫描镜发出第一激光光线,所述第一激光光线经所述反射面反射后出射向第一目标物体,自第一目标物体反射回的第一激光光线经所述反射面反射后被第一接收单元接收;
    第二发射单元和第二接收单元,所述第二发射单元以第二方向向所述旋转扫描镜发出第二激光光线,所述第二激光光线经所述反射面反射后出射向第二目标物体,自所述第二目标物体反射回的第二激光光线经所述反射面反射后被第一接收单元接收。
  2. 如权利要求1所述的激光雷达,其特征在于,
    所述激光雷达包括垂直扫描系统和水平扫描系统;
    所述垂直扫描系统包括所述旋转扫描镜、第一发射单元、第一接收单元、第二发射单元、第二接收单元;
    所述水平扫描系统包括第二电机和固定部,所述垂直扫描系统固定于所述固定部,所述第二电机带动所述固定部旋转,所述固定部的旋转轴与所述旋转扫描镜的旋转轴垂直。
  3. 如权利要求2所述的激光雷达,其特征在于,
    所述第一方向与第二方向垂直。
  4. 如权利要求2所述的激光雷达,其特征在于,
    所述垂直扫描系统还包括第三发射单元和第三接收单元,所述第三发射单元以第三方向向所述旋转扫描镜发出第三激光光线,所述第三激光光线经所述反射面反射后出射向第三目标物体,自所述第三目标物体反射回的第三激光光线经所述反射面反射后被第三接收单元接收。
  5. 如权利要求4所述的激光雷达,其特征在于,
    所述第一方向与第二方向垂直;
    所述第一方向与第三方向垂直;
    所述第二方向与所述第三方向相同,所述第二方向的第二激光光线经所述反射面反 射后出射的方向与所述第三方向的第三激光光线经所述反射面反射后出射的方向相反。
  6. 如权利要求1所述的激光雷达,其特征在于,
    所述旋转扫描镜包括至少2个连续且垂直的反射面。
  7. 如权利要求6所述的激光雷达,其特征在于,
    所述旋转扫描镜包括4个连续且垂直的反射面;
    4个连续且垂直的反射面在垂直于所述旋转扫描镜的旋转轴的平面上的截面为正方形,所述旋转扫描镜的旋转轴位于所述正方形的中心。
  8. 如权利要求1所述的激光雷达,其特征在于,
    所述旋转扫描镜的旋转为圆周旋转或往复旋转。
  9. 一种无人机,其特征在于,
    包括如权利要求1-8中任一项所述的激光雷达。
PCT/CN2021/131880 2021-01-20 2021-11-19 一种激光雷达及一种无人机 WO2022156344A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120150610.5 2021-01-20
CN202110074676.5A CN112711007A (zh) 2021-01-20 2021-01-20 一种激光雷达及一种无人机
CN202110074676.5 2021-01-20
CN202120150610.5U CN214473910U (zh) 2021-01-20 2021-01-20 一种激光雷达及一种无人机

Publications (1)

Publication Number Publication Date
WO2022156344A1 true WO2022156344A1 (zh) 2022-07-28

Family

ID=82549348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131880 WO2022156344A1 (zh) 2021-01-20 2021-11-19 一种激光雷达及一种无人机

Country Status (1)

Country Link
WO (1) WO2022156344A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208060703U (zh) * 2018-02-09 2018-11-06 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
KR20190001861A (ko) * 2017-06-28 2019-01-07 주식회사 에스오에스랩 무인 비행체의 프로펠러 구동모터를 이용한 라이다 스캐닝 장치 및 이를 포함하는 무인 비행체
CN109254286A (zh) * 2018-11-13 2019-01-22 武汉海达数云技术有限公司 机载激光雷达光学扫描装置
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN211718520U (zh) * 2019-12-26 2020-10-20 深圳市镭神智能系统有限公司 一种多线激光雷达
CN212275968U (zh) * 2020-04-15 2021-01-01 深圳市镭神智能系统有限公司 一种激光雷达系统
CN112711007A (zh) * 2021-01-20 2021-04-27 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机
CN214473910U (zh) * 2021-01-20 2021-10-22 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190001861A (ko) * 2017-06-28 2019-01-07 주식회사 에스오에스랩 무인 비행체의 프로펠러 구동모터를 이용한 라이다 스캐닝 장치 및 이를 포함하는 무인 비행체
CN208060703U (zh) * 2018-02-09 2018-11-06 北京北科天绘科技有限公司 一种激光扫描装置以及激光雷达装置
CN109254286A (zh) * 2018-11-13 2019-01-22 武汉海达数云技术有限公司 机载激光雷达光学扫描装置
CN211718520U (zh) * 2019-12-26 2020-10-20 深圳市镭神智能系统有限公司 一种多线激光雷达
CN111157975A (zh) * 2020-03-05 2020-05-15 深圳市镭神智能系统有限公司 一种多线激光雷达及自移动车辆
CN212275968U (zh) * 2020-04-15 2021-01-01 深圳市镭神智能系统有限公司 一种激光雷达系统
CN112711007A (zh) * 2021-01-20 2021-04-27 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机
CN214473910U (zh) * 2021-01-20 2021-10-22 杭州欧镭激光技术有限公司 一种激光雷达及一种无人机

Similar Documents

Publication Publication Date Title
CN108445467A (zh) 一种扫描激光雷达系统
CN101576620B (zh) 大口径光学潜望式非同轴激光雷达三维扫描装置
US20240027584A1 (en) Detection device and control method thereof
KR102009024B1 (ko) 무인 비행체의 프로펠러 구동모터를 이용한 라이다 스캐닝 장치 및 이를 포함하는 무인 비행체
CN206223978U (zh) 车载多线激光雷达及车辆
KR101903960B1 (ko) 라이다 장치
WO2023137778A1 (zh) 一种激光雷达系统
CN110794382A (zh) 激光雷达及其探测方法
CN106707297A (zh) 大视场车载激光雷达及车辆
CN110824458A (zh) 一种大范围扫描共轴式mems激光雷达光学系统
CN109917350A (zh) 激光雷达和激光探测设备
CN211718520U (zh) 一种多线激光雷达
JP2024014877A (ja) Lidarの視野を変更するためのシステムおよび方法
WO2022110210A1 (zh) 一种激光雷达及移动平台
CN214473910U (zh) 一种激光雷达及一种无人机
WO2022156344A1 (zh) 一种激光雷达及一种无人机
CN111263898A (zh) 一种光束扫描系统、距离探测装置及电子设备
WO2022006752A1 (zh) 激光接收装置、激光雷达及智能感应设备
CN211554313U (zh) 一种多线激光雷达
CN109839641A (zh) 一种用于无人机挂载的航测激光测距装置
CN112711007A (zh) 一种激光雷达及一种无人机
CN113552578A (zh) 激光雷达以及使用该激光雷达进行目标物探测的方法
WO2021035427A1 (zh) 激光雷达及自动驾驶设备
WO2022062469A1 (zh) 一种激光雷达
CN113820721B (zh) 一种收发分离的激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21920720

Country of ref document: EP

Kind code of ref document: A1