WO2022188687A1 - 一种探测装置、探测器、激光雷达及终端设备 - Google Patents

一种探测装置、探测器、激光雷达及终端设备 Download PDF

Info

Publication number
WO2022188687A1
WO2022188687A1 PCT/CN2022/078993 CN2022078993W WO2022188687A1 WO 2022188687 A1 WO2022188687 A1 WO 2022188687A1 CN 2022078993 W CN2022078993 W CN 2022078993W WO 2022188687 A1 WO2022188687 A1 WO 2022188687A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization state
echo signal
polarized light
wave plate
linearly polarized
Prior art date
Application number
PCT/CN2022/078993
Other languages
English (en)
French (fr)
Inventor
邱孙杰
安凯
郭家兴
王晓恒
余安亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022188687A1 publication Critical patent/WO2022188687A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/493Extracting wanted echo signals

Definitions

  • the present application relates to the field of detection technology, and in particular, to a detection device, a detector, a laser radar and a terminal device.
  • LiDAR light detection and ranging, LiDAR
  • the working principle of lidar is to transmit a detection signal to the target, and then compare and process the echo signal reflected by the target with the detection signal, and then obtain information related to the target, such as the distance of the target, the azimuth of the target, the speed of the target, The posture of the target and even the shape of the target can be used to detect, track and identify the target.
  • the detector in the lidar Since the detector in the lidar has a certain reflectivity, it may reflect the received echo signal, and the echo signal reflected by the detector will enter the detector again, which will cause optical damage to the actual echo signal.
  • Crosstalk for example, can create a crosstalk image that can cause the detector to detect false targets.
  • the present application provides a detection device, a detector, a laser radar and a terminal device, which are used to avoid optical crosstalk generated by echo signals reflected by a detection module as much as possible.
  • the present application provides a detection device.
  • the detection device may include a transmitting module, a receiving module, and a detection module.
  • the receiving module includes a first lens group and a first polarization state conversion component.
  • the emission module can be used to emit the first light beam.
  • the first lens group is used for receiving the echo signal for the first light beam from the detection area, and converging the echo signal to the first polarization state conversion component.
  • the first polarization state conversion component is used for propagating the echo signal from the first lens group to the detection module, and for converting the polarization state of the echo signal reflected by the detection module to realize the absorption of the reflected echo signal;
  • the detection module is used to convert the received echo signal into an electrical signal, and the electrical signal is used to determine the information of the target in the detection area.
  • the polarization state of the echo signal reflected by the detection module can be converted to realize the absorption of the echo signal reflected by the detection module. In this way, the echo signals reflected by the detection module will not enter the detection module again, thereby preventing the echo signals reflected by the detection module from causing optical crosstalk to the echo signals from the detection area.
  • the first polarization state conversion component includes a first polarizer and a second 1/4 wave plate.
  • the function of the first polarization state conversion component can be realized by a simple structure.
  • the polarization state of the echo signal from the first lens group is the first linear polarization or the first circular polarization; based on the above structure 1, the first polarizer allows the polarization state from the first lens group The echo signal for the first linearly polarized light passes through.
  • the first polarizer passes a part of the echo signal of the first circularly polarized light (that is, the echo signal whose polarization state is the first linearly polarized light part), or passes the echo signal whose polarization state is the first linearly polarized light .
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light passing through the first polarizer into an echo signal whose polarization state is the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the second circularly polarized light reflected by the detection module into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the optical axis of the second quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.2°.
  • the included angle between the optical axis of the second 1/4 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.2°, it is helpful to improve the first polarization conversion component to absorb the echo signal reflected by the detection module Effect.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first polarizer and a second 1/4 wave plate.
  • the effect of suppressing crosstalk twice can be achieved, and the crosstalk isolation degree can be further improved, thereby helping to further improve the ability of the detection device to identify the target.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; based on the above structure 2, the first 1/4 wave plate is used to convert the echo from the first lens group The polarization state of the signal is converted from the first circularly polarized light to the first linearly polarized light.
  • the first polarizer passes the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light passing through the first polarizer into an echo signal whose polarization state is the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the second circularly polarized light reflected by the detection module into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the optical axis of the first quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°
  • the optical axis of the second quarter-wave plate and the first The angle between the polarization directions of the polarizers is 45 ⁇ 0.5°.
  • the first polarization state conversion component includes a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the dispersion can be eliminated, so that the detection device can also have better suppression of crosstalk when the wavelength drifts at high temperature or low temperature effect.
  • the polarization state of the echo signal from the first lens group is the first linear polarization.
  • the first polarizer is used to pass the echo signal whose polarization state is the first linearly polarized light from the first lens group.
  • the second 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/2 wave plate is also used for converting the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linearly polarized light.
  • the included angle between the equivalent optical axes of the second 1/4 wave plate and the second 1/2 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.2°. In this way, it is helpful to improve the effect of the first polarization conversion component absorbing the echo signal reflected by the detection module.
  • the first polarization conversion component further includes a first 1/4 wave plate, a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the effect of suppressing crosstalk twice can also be achieved, which can further improve the crosstalk isolation, thereby helping to further improve the ability of the detection device to recognize the target; and through the second 1/2 wave plate and the second 1/2
  • the combination of 4 wave plates can eliminate dispersion, so that the detection device can also have a better effect of suppressing crosstalk when the wavelength drifts at high temperature or low temperature.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; based on the above structure 4, the first 1/4 wave plate is used to convert the echo from the first lens group The polarization state of the signal is converted from the first circularly polarized light to the first linearly polarized light.
  • the first polarizer is used for passing the echo signal whose polarization state is the first linear polarization.
  • the second 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/2 wave plate is also used for converting the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the optical axis of the first 1/4 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°
  • the second 1/4 wave plate and the second 1/2 The included angle between the equivalent optical axis of the wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°. In this way, it is helpful to improve the effect of the first polarization conversion component absorbing the echo signal reflected by the detection module.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer and a second 1/4 wave plate.
  • the crosstalk suppression effect can be achieved twice through the first 1/4 wave plate and the second 1/4 wave plate, which can further improve the crosstalk isolation, thereby helping to further improve the detection device's ability to identify targets And through the combination of the first 1/4 wave plate and the first 1/2 wave plate, the dispersion can be eliminated, so that the detection device can also have a better effect of suppressing crosstalk when the wavelength drifts at high temperature or low temperature.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; the first 1/4 wave plate is used to convert the polarization state of the echo signal from the first lens group by The first circularly polarized light is converted to the first linearly polarized light.
  • the first 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second polarizer is used for passing the echo signal whose polarization state is the second linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal of the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linearly polarized light.
  • the second polarizer is also used for absorbing echo signals whose polarization state is the first linearly polarized light.
  • the included angle between the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°
  • the second 1 The included angle between the optical axis of the /4 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the crosstalk suppression effect can be achieved twice through the first 1/4 wave plate and the second 1/4 wave plate, which can further improve the crosstalk isolation, thereby helping to further improve the detection device's ability to identify targets ; And through the combination of the first 1/4 wave plate, the first 1/2 wave plate, the second 1/2 wave plate and the second 1/4 wave plate, the dispersion can be effectively eliminated, so that the detection device can be used at high temperature. Or when the wavelength drifts at low temperature, it also has a better effect of suppressing crosstalk.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; based on the above structure 6, the first 1/4 wave plate is used to convert the echo from the first lens group The polarization state of the signal is converted from the first circularly polarized light to the first linearly polarized light.
  • the first 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second polarizer is used for passing the echo signal whose polarization state is the second linearly polarized light.
  • the second half-wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the second circularly polarized light reflected by the detection module into the echo signal whose polarization state is the second linearly polarized light.
  • the second half-wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first linearly polarized light.
  • the second polarizer is also used for absorbing echo signals whose polarization state is the first linearly polarized light.
  • the included angle between the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°
  • the second 1 The included angle between the equivalent optical axis of the /4 wave plate and the second 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the emission module may include a light source module and a second polarization state conversion component; the light source module is used to emit a first light beam whose polarization state is the first linearly polarized light; the second polarization state conversion component is used to convert the polarization state The first light beam with the first linear polarization state is converted into the first light beam with the polarization state of the first circular polarization.
  • the second polarization state conversion component includes a third 1/4 wave plate.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is parallel to the third 1/4 wave.
  • the optical axis of the wave plate is parallel; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is the same as that of the first linearly polarized light.
  • the optical axes of the three 1/4 wave plates are orthogonal. In this way, the echo signal can be made to pass through the first polarizer as much as possible, which helps to improve the receiving rate of the echo signal, thereby improving the utilization rate of the echo signal.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is parallel to the third 1/4 wave.
  • the optical axis of the wave plate is parallel; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is the same as that of the first linearly polarized light.
  • the optical axes of the three 1/4 wave plates are orthogonal. In this way, the echo signal can be made to pass through the first polarizer as much as possible, which helps to improve the receiving rate of the echo signal, thereby improving the utilization rate of the echo signal.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the third 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the second polarizer, the first The equivalent optical axes of the 1/4 wave plate and the first 1/2 wave plate are orthogonal to the optical axis of the third 1/4 wave plate. In this way, the echo signal can be made to pass through the second polarizer as much as possible, which helps to improve the receiving rate of the echo signal, thereby improving the utilization rate of the echo signal.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the third 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the second polarizer, the first The equivalent optical axes of the 1/4 wave plate and the first 1/2 wave plate are orthogonal to the optical axis of the third 1/4 wave plate. In this way, the echo signal can be made to pass through the second polarizer as much as possible, which helps to improve the receiving rate of the echo signal, thereby improving the utilization rate of the echo signal.
  • the emission module may include a light source module and a second polarization state conversion component; the light source module is used for emitting the first light beam whose polarization state is the second linearly polarized light; the second polarization state conversion component is used for converting the polarization state The first light beam with the second linear polarization state is converted into the first light beam with the polarization state of the first circular polarization.
  • the second polarization state conversion component includes a third 1/2 wave plate and a third 1/4 wave plate.
  • the third 1/2 wave plate is used to convert the first beam whose polarization state is the second linear polarization into the first beam whose polarization state is the first linear polarization; the third 1/4 wave plate is used to convert the polarization state into the first linear beam
  • the polarized first light beam is converted into a first light beam with a polarization state of a first circularly polarized light.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the polarization direction of the third 1/2 wave plate and the third 1/4 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the first 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the first linearly polarized light whose polarization direction is orthogonal to the polarization direction of the first polarizer, and the third
  • the equivalent optical axes of the 1/2 wave plate and the third 1/4 wave plate are orthogonal to the optical axis of the first 1/4 wave plate.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the polarization direction of the third 1/2 wave plate and the third 1/4 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the first 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the first linearly polarized light whose polarization direction is orthogonal to the polarization direction of the first polarizer, and the third
  • the equivalent optical axes of the 1/2 wave plate and the third 1/4 wave plate are orthogonal to the optical axis of the first 1/4 wave plate.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate;
  • the polarization directions of the polarizers are orthogonal, and the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate are positive to the equivalent optical axes of the third 1/2 wave plate and the third 1/4 wave plate. pay.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate;
  • the polarization directions of the polarizers are orthogonal, and the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate are positive to the equivalent optical axes of the third 1/2 wave plate and the third 1/4 wave plate. pay.
  • the first polarization state conversion component is located on the detection module.
  • the present application provides a detector, which may include a detection module and a first polarization state conversion component.
  • the first polarization state conversion component is used for receiving the echo signal corresponding to the first light beam emitted by the transmitting module from the detection area, and transmitting the echo signal to the detection module.
  • the detection module is used to convert the received echo signal into an electrical signal, and the electrical signal is used to determine the information of the target in the detection area.
  • the first polarization state conversion component is further configured to convert the polarization state of the echo signal reflected by the detection module to realize absorption of the echo signal reflected by the detection module.
  • the first polarization state conversion component includes a first polarizer and a second 1/4 wave plate.
  • the function of the first polarization state conversion component can be realized by a simple structure.
  • the polarization state of the echo signal from the first lens group is the first linear polarization or the first circular polarization; based on the above structure 1, the first polarizer allows the polarization state from the first lens group The echo signal for the first linearly polarized light passes through.
  • the first polarizer passes a part of the echo signal of the first circularly polarized light (that is, the echo signal whose polarization state is the first linearly polarized light part), or passes the echo signal whose polarization state is the first linearly polarized light .
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light passing through the first polarizer into an echo signal whose polarization state is the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the second circularly polarized light reflected by the detection module into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the optical axis of the second quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.2°.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first polarizer and a second 1/4 wave plate.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; based on the above structure 2, the first 1/4 wave plate is used to convert the echo from the first lens group The polarization state of the signal is converted from the first circularly polarized light to the first linearly polarized light.
  • the first polarizer passes the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light passing through the first polarizer into an echo signal whose polarization state is the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the second circularly polarized light reflected by the detection module into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the optical axis of the first quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°
  • the optical axis of the second quarter-wave plate and the first The angle between the polarization directions of the polarizers is 45 ⁇ 0.5°.
  • the first polarization state conversion component includes a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the dispersion can be eliminated, so that the detection device can also have better suppression of crosstalk when the wavelength drifts at high temperature or low temperature effect.
  • the polarization state of the echo signal from the first lens group is the first linear polarization.
  • the first polarizer is used to pass the echo signal whose polarization state is the first linearly polarized light from the first lens group.
  • the second 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/2 wave plate is also used for converting the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the equivalent optical axes of the second 1/4 wave plate and the second 1/2 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.2°.
  • the first polarization conversion component further includes a first 1/4 wave plate, a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; based on the above structure 4, the first 1/4 wave plate is used to convert the echo from the first lens group The polarization state of the signal is converted from the first circularly polarized light to the first linearly polarized light.
  • the first polarizer is used for passing the echo signal whose polarization state is the first linear polarization.
  • the second 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/2 wave plate is also used for converting the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the first polarizer is also used for absorbing echo signals whose polarization state is the second linear polarization.
  • the included angle between the optical axis of the first 1/4 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°
  • the second 1/4 wave plate and the second 1/2 The included angle between the equivalent optical axis of the wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer and a second 1/4 wave plate.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; the first 1/4 wave plate is used to convert the polarization state of the echo signal from the first lens group by The first circularly polarized light is converted to the first linearly polarized light.
  • the first 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second polarizer is used for passing the echo signal whose polarization state is the second linearly polarized light.
  • the second 1/4 wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal of the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linearly polarized light.
  • the second polarizer is also used for absorbing echo signals whose polarization state is the first linearly polarized light.
  • the included angle between the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°
  • the second 1 The included angle between the optical axis of the /4 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°
  • the first polarization state conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light; based on the above structure 6, the first 1/4 wave plate is used to convert the echo from the first lens group The polarization state of the signal is converted from the first circularly polarized light to the first linearly polarized light.
  • the first 1/2 wave plate is used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second linearly polarized light.
  • the second polarizer is used for passing the echo signal whose polarization state is the second linearly polarized light.
  • the second half-wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first linearly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first linearly polarized light into the echo signal whose polarization state is the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the second circularly polarized light reflected by the detection module into the echo signal whose polarization state is the second linearly polarized light.
  • the second half-wave plate is used to convert the echo signal whose polarization state is the second linearly polarized light into the echo signal whose polarization state is the first linearly polarized light.
  • the second polarizer is also used for absorbing echo signals whose polarization state is the first linearly polarized light.
  • the included angle between the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°
  • the second 1 The included angle between the equivalent optical axis of the /4 wave plate and the second 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the present application provides a lidar, including the first aspect or any one of the detection devices in the first aspect.
  • the present application provides a terminal device, including the first aspect or any one of the detection apparatuses in the first aspect.
  • the terminal device may be a smart phone, a vehicle, a smart home device, a smart manufacturing device, a robot, an unmanned aerial vehicle, an intelligent transportation device, or a surveying and mapping device.
  • the present application provides a lidar, including any detector in the second aspect or the second aspect.
  • the present application provides a terminal device, including any detector in the second aspect or the second aspect.
  • the terminal device may be a smart phone, a vehicle, a smart home device, a smart manufacturing device, a robot, an unmanned aerial vehicle, an intelligent transportation device, or a surveying and mapping device.
  • FIG. 1 is a schematic diagram of an application scenario of a lidar provided by the present application
  • FIG. 2 is a schematic structural diagram of a detection device provided by the application.
  • FIG. 3 is a schematic structural diagram of a first polarization state conversion component provided by the application.
  • 4a is a schematic diagram of a propagation light path in a first polarization conversion component provided by the application
  • Fig. 4b is another schematic diagram of the propagation light path in the first polarization conversion component provided by the application.
  • FIG. 5 is a schematic structural diagram of yet another first polarization state conversion component provided by the present application.
  • FIG. 6 is another schematic diagram of the propagation light path in the first polarization conversion component provided by the application.
  • FIG. 7 is a schematic structural diagram of yet another first polarization state conversion component provided by the present application.
  • FIG. 8 is another schematic diagram of the propagation light path in the first polarization conversion component provided by the application.
  • FIG. 9 is a schematic structural diagram of yet another first polarization state conversion component provided by the present application.
  • FIG. 10 is another schematic diagram of the propagation light path in the first polarization conversion component provided by the application.
  • FIG. 11 is a schematic structural diagram of yet another first polarization state conversion component provided by the application.
  • FIG. 12 is another schematic diagram of the propagation light path in the first polarization conversion component provided by the application.
  • FIG. 13 is a schematic structural diagram of yet another first polarization state conversion component provided by the application.
  • FIG. 14 is another schematic diagram of the propagation light path in the first polarization conversion component provided by the application.
  • FIG. 15 is a schematic structural diagram of a first lens group provided by the application.
  • FIG. 16a is a schematic diagram of a propagation light path of a transmitting module provided by the application.
  • FIG. 16b is a schematic diagram of the propagation light path of another transmitting module provided by the application.
  • FIG. 17 is a schematic structural diagram of a second lens group provided by the application.
  • FIG. 18 is a schematic diagram of the positional relationship between a detection module and a first polarization state conversion component provided by the application;
  • 19a is a schematic structural diagram of a scanner provided by the application.
  • 19b is a schematic structural diagram of a scanner provided by the application.
  • FIG. 20 is a schematic structural diagram of a detector provided by the present application.
  • Linearly polarized light is also known as linearly polarized light or plane polarized light.
  • the electric vector of each point In the direction of light propagation, the electric vector of each point is in a certain plane, and this kind of light is called plane polarized light. Since the locus of the endpoints of the electric vector is a straight line, it is called linearly polarized light.
  • the plane formed by the direction of the light vector and the direction of light propagation is called the vibration plane.
  • the vibration plane of linearly polarized light is fixed and will not be deflected.
  • Circularly polarized light is also known as circularly polarized light.
  • the light whose endpoints of the rotating electric vector trace a circular trajectory is called circularly polarized light, which is a special case of elliptically polarized light.
  • the vibration directions are perpendicular to each other and the phase difference is constant as
  • circularly polarized light with regular changes in electric vector can be synthesized.
  • the magnitude of the electric vector of circularly polarized light remains constant, while the direction changes uniformly with time.
  • the phase difference is When it is left-handed circularly polarized light, the phase difference is is right-handed circularly polarized light.
  • Elliptically polarized light refers to the trajectory traced by the end of the light's electric vector or light vector in a plane perpendicular to the direction of propagation.
  • the trajectory of the synthetic vibration at the point is generally elliptical.
  • the electric vector of each point in space rotates with the light as the axis, and the endpoint of the electric vector traces an elliptical trajectory.
  • This kind of light is called elliptically polarized light. Looking at the direction of the light, if the electric vector rotates clockwise, it is called right-handed elliptically polarized light, and if it rotates counterclockwise, it is called left-handed elliptically polarized light.
  • the rotating electric vector in elliptically polarized light is the result of the vibration synthesis of two electric vectors with the same frequency, perpendicular vibration directions and fixed phase difference.
  • 1/4 wave plate is also called 1/4 retarder plate.
  • the 1/4 wave plate is usually used to convert linearly polarized light to circularly polarized light or elliptically polarized light; or, to convert circularly polarized light or elliptically polarized light to linearly polarized light.
  • linearly polarized light is perpendicular to the 1/4 wave plate, and the polarization of the light and the optical axis plane of the 1/4 wave plate (vertical natural split plane) form an angle ⁇ , it will be elliptically polarized light after exiting.
  • 1/2 wave plate is also called half wave plate.
  • the 1/2 wave plate is used to change the direction of polarized light.
  • the outgoing light is still plane polarized light, but the vibration plane of the polarized light is rotated by a certain angle.
  • the P-linearly polarized light is vertically incident on the 1/2-wave plate, it emerges as S-linearly polarized light.
  • the outgoing light is still circularly polarized light or elliptically polarized light, but the direction of rotation is reversed.
  • a polarizer also known as a light sheet, is a type of optical filter. Polarizers are used to absorb or reflect light in one polarization direction and transmit light in another orthogonal polarization direction. The transmittance of light is directly related to its polarization state. Polarizers are generally classified into absorbing polarizers and reflective polarizers (RP). Absorptive polarizers strongly absorb one of the orthogonally polarized components of incident linearly polarized light, while the other component is less absorbed. In other words, the absorbing polarizer can strongly absorb linearly polarized light in a certain direction and transmit light whose polarization direction is perpendicular to the strongly absorbed direction.
  • Reflective polarizers can transmit linearly polarized light in a certain direction and can reflect light whose polarization direction is perpendicular to the transmitted direction.
  • the absorbing polarizer may be, for example, a dichroic polarizer, and the reflective polarizer may be, for example, a polarizing beam splitter utilizing birefringence.
  • the polarization direction also becomes the polarization direction. This is because there is a certain characteristic direction in the polarizer, called the polarization direction.
  • the polarizer only allows vibrations parallel to the polarization direction to pass through, while absorbing or reflecting light that vibrates perpendicular to the direction.
  • the optical axis of the 1/2 wave plate or the 1/4 wave plate refers to the light vector direction of the e light.
  • Waveplates can be divided into multi-order waveplates, true zero-order waveplates and composite waveplates according to their structure.
  • Multi-order means that in addition to the retardation of less than one wavelength, the optical path also goes through several full wavelengths (also called orders) retardation.
  • the retardation of the true zero-order wave plate has low wavelength sensitivity, high temperature stability and large acceptance effective angle.
  • Optical crosstalk is when stray light interferes with normal received light.
  • Gluing also known as gluing or lamination or lamination, refers to the operation of laminating the surfaces to be glued or properly aired together.
  • FIG. 1 a schematic diagram of an application scenario of a laser radar provided in the present application.
  • the lidar emits a laser beam in a certain direction. If there is a target within a certain distance along the emission direction of the laser beam, the target can reflect the received laser beam back to the lidar (called an echo signal).
  • the signal can determine the information of the target, such as the distance to the target, the moving speed of the target, the attitude of the target or the point cloud map, etc.
  • this example is an example of a lidar deployed at the front end of a vehicle, and the lidar can perceive a fan-shaped area as shown by the dotted box, and the fan-shaped area may be called a detection area of the lidar.
  • the application scenario can be, for example, unmanned driving, autonomous driving, assisted driving, intelligent driving, connected vehicles, etc.; etc.), as vehicle lidar (such as vehicle FMCW lidar).
  • Vehicle LiDAR can obtain the detected measurement information such as longitude and latitude, speed, orientation, and distance to surrounding objects in real time or periodically, and then realize the realization based on these measurement information combined with advanced driving assistant system (ADAS).
  • ADAS advanced driving assistant system
  • Assisted or unmanned driving of the vehicle For example, use the latitude and longitude to determine the position of the vehicle, or use the speed and orientation to determine the direction and purpose of the vehicle in the future, or use the distance of surrounding objects to determine the number and density of obstacles around the vehicle.
  • Vehicle lidar can also realize mapping functions and so on.
  • the lidar can also be installed on the UAV as an airborne lidar (such as an airborne FMCW lidar), etc.
  • lidars can also be installed on roadside traffic equipment (such as roadside units (RSUs)) as roadside traffic lidars, enabling intelligent vehicle-road collaboration.
  • RSUs roadside units
  • lidar can also be applied in various other scenarios, and is not limited to the scenarios exemplified above.
  • lidar can also be applied to terminal equipment or set in components of terminal equipment, such as smart phones, smart home equipment, intelligent manufacturing equipment, robots, drones, or intelligent transportation equipment (such as automatic guided transportation Vehicle (automated guided vehicle, AGV) or unmanned transport vehicle, etc.).
  • the lidar may also be arranged at positions such as the sides of the vehicle or the rear of the vehicle, which is not limited in this application.
  • lidar it is usually the detector that photoelectrically converts the received echo signal, and determines the information of the target according to the converted electrical signal.
  • the detector since the detector has a certain reflectivity (such as a single-photon avalanche diode (SPAD), etc.), it may reflect a part of the received echo signal, and this part of the reflected echo signal may be reflected.
  • the wave signal will reflect each other with the lens (or lens group) in the lidar, so that it will enter the detector again to form a crosstalk image; or reflect with the target to form a false target crosstalk image.
  • the present application proposes a detection device.
  • the detection device can be used to avoid optical crosstalk caused by echo signals reflected by the detection module as much as possible.
  • the detection device may include a transmission module 201 , a reception module 202 and a detection module 203 , and the reception module includes a first lens group 2021 and a first polarization state conversion component 2022 .
  • the transmitting module 201 can be used to transmit the first light beam.
  • the transmitting module 201 may transmit the first light beam to the detection area.
  • the first lens group 2021 is used for receiving echo signals for the first light beam from the detection area, and condensing the received echo signals to the first polarization state conversion component 2022 .
  • the first polarization state conversion component 2022 is used for propagating the echo signal from the first lens group 2021 to the detection module 203, and for converting the polarization state of the echo signal reflected by the detection module 203 to realize the reflection of the detection module. Absorption of echo signals. It can also be understood that the first polarization state conversion component 2022 is used to transmit the echo signal from the first lens group 2021 to the detection module 203, and to convert the polarization state of the echo signal reflected by the detection module 203, and the polarization state conversion The latter echo signal can be absorbed by the first polarization state conversion component 2022 .
  • the detection module 203 is configured to convert the received echo signal (ie, the echo light signal) into an electrical signal, and the electrical signal can be used to determine the information of the target in the detection area.
  • the polarization state of the echo signal reflected by the detection module can be converted to realize the absorption of the echo signal reflected by the detection module.
  • the echo signal reflected by the detection module will not enter the detection module again, thereby avoiding optical crosstalk between the echo signal reflected by the detection module and the echo signal from the detection area, thereby helping to improve the detection accuracy of the detection device and target recognition ability.
  • the intensity of the echo signal reflected by the detection module is strong. If the echo signal reflected by the detection module enters the detection module again, it will seriously affect the detection module's response to the echo from the detection area. detection of wave signals.
  • the information of the target may be, for example, distance information of the target, a depth image of the target, and/or a point cloud image of the target, and the like.
  • the above-mentioned echo signal for the first light beam refers to the echo signal obtained by the target reflecting the first light beam.
  • the polarization state of the echo signal for the first light beam is the same as the polarization state of the first light beam directed to the detection area, and the polarization state of the echo signal from the first lens group is the same as the polarization state of the echo signal for the first light beam .
  • the first polarization state conversion component can also convert the polarization state of the echo signal from the first lens group, and propagate the echo signal after the polarization state conversion to the detection module, as shown in the following Figure 4a, The description of FIG. 4b, FIG. 6, FIG. 7, FIG. 8 or FIG. 14 will not be repeated here. It can also be understood that the polarization state of the echo signal from the first lens group is different from the polarization state of the echo signal propagated by the first polarization state conversion component to the detection module. In other words, the first polarization state conversion component can be used to convert the polarization state of the echo signal from the first lens group, and transmit the echo signal after the polarization state conversion to the detection module.
  • the first polarization state conversion component can be used to convert the polarization state of the echo signal from the first lens group, but the polarization state of the echo signal transmitted by the first polarization state conversion component to the detection module is different from the polarization state of the echo signal from the first lens group
  • the polarization states of the echo signals are the same, and reference may be made to the description in FIG. 10 or FIG. 12 below, which will not be repeated here. It can also be understood that the first polarization state conversion component does not change the polarization state of the echo signal from the first lens group.
  • the polarization state of the echo signal propagating to the detection module is the same as the polarization state of the echo signal reflected by the detection module.
  • the echo signals propagating to the detection module are converted into electrical signals by the detection module, and a small part is reflected by the detection module (ie, echo signals reflected by the detection module).
  • the echo signal reflected by the detection module is a part of the echo signal received by the detection module.
  • the transmitting module 201 the receiving module 202 , the detection module 203 , the first lens group 2021 and the first polarization conversion component 2022 are not marked in the following description.
  • the first polarizer allows the first linearly polarized light to pass through and absorbs the second linearly polarized light as an example;
  • the second polarizer allows the second linearly polarized light to pass through and absorbs the first linearly polarized light as an example;
  • the first linear polarization is P-line polarized light
  • the second linearly polarized light is S-line polarized light
  • the first circularly polarized light is left-handed circularly polarized light
  • the second circularly polarized light is right-handed circularly polarized light.
  • the propagation light path of the echo signal in the first polarization state conversion component includes the propagation light path of the echo signal from the first lens group in the first polarization state conversion component, and the optical path reflected by the detection module.
  • the propagation optical path of the echo signal in the first polarization state conversion component includes the propagation optical path of the echo signal from the first lens group in the first polarization state conversion component, and the optical path reflected by the detection module.
  • each structure included in the first polarization state conversion assembly refers to the direction along the main optical axis of the first lens group and from the target side to the detection module.
  • the first polarization state conversion component includes a first polarizer and a second 1/4 wave plate.
  • FIG. 3 it is a schematic structural diagram of a first polarization conversion component provided by the present application.
  • the first polarization state conversion component sequentially includes a first polarizer and a second 1/4 wave plate. Based on this structure, the function of the first polarization state conversion component can be realized through a simple structure. Illustratively, the first polarizer and the second 1/4 wave plate may be glued together.
  • the included angle between the optical axis of the second quarter-wave plate and the polarization direction of the first polarizer is 45° ⁇ 0.2° . It can also be understood that the included angle between the optical axis of the second quarter-wave plate and the polarization direction of the first polarizer is 45°, and a deviation of ⁇ 0.2° is allowed.
  • the following describes the process of implementing the absorption of the reflected echo signals by the first polarization state conversion component in a case-by-case manner.
  • the polarization state of the echo signal from the first lens group may be the first linear polarization.
  • the propagation light path of the echo signal in the first polarization state conversion component can be seen in Fig. 4a, specifically: the echo signal whose polarization state is the first linearly polarized light passes through the first polarizer and propagates to the second 1 /4 wave plate; the echo signal whose polarization state is the first linearly polarized light is converted into an echo signal whose polarization state is the second circularly polarized light after the second 1/4 wave plate, and propagates to the detection module; the polarization state is the second The echo signal of the circularly polarized light is reflected to the second 1/4 wave plate by the detection module; the second 1/4 wave plate is also used to convert the echo signal of the second circularly polarized light reflected by the detection module into the polarization state is the echo signal of the second linearly polarized light and propagates to the first polarizer; the echo signal whose polarization state is the second linearly polarized light is absorbed by the first polarizer, that is, the echo signal whose polarization
  • the polarization state of the echo signal from the first lens group may be the first circularly polarized light.
  • the propagation optical path of the echo signal in the first polarization conversion component can be seen in Fig. 4b, specifically: the first polarizer allows the polarization state of the echo signal whose polarization state is the first circularly polarized light to be the first polarization state
  • the echo signal of the linearly polarized light passes through, that is, the first polarizer allows a part of the echo signal of the echo signal whose polarization state is the first circularly polarized light (that is, the echo signal whose polarization state is the first linearly polarized light part) to pass through, in other words,
  • the echo signal whose polarization state is the first circularly polarized light is converted into an echo signal whose polarization state is the first linearly polarized light after passing through the first polarizer, that is, the echo signal whose polarization state is the first linearly polarized light can propagate the second 1/4 Wave plate; the echo signal whose polarization state is the first linearly polarized light is converted into an echo
  • the first polarization state conversion component includes a first 1/4 wave plate, a first polarizer and a second 1/4 wave plate.
  • FIG. 5 it is a schematic structural diagram of still another first polarization state conversion component provided by the present application.
  • the first polarization state conversion component sequentially includes a first 1/4 wave plate, a first polarizer and a second 1/4 wave plate.
  • the first 1/4 wave plate is glued together with one side of the first polarizer, and the other side of the first polarizer is glued together with the second 1/4 wave plate.
  • the included angle between the optical axis of the first quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°
  • the optical axis of the second quarter-wave plate is The included angle with the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light.
  • the propagation optical path of the echo signal in the first polarization conversion component can be seen in FIG.
  • the echo signal whose polarization state is the first circularly polarized light is converted into the first line of polarization state after the first 1/4 wave plate
  • the echo signal of the polarized light is transmitted to the first polarizer; the echo signal whose polarization state is the first linearly polarized light passes through the first polarizer and propagates to the second 1/4 wave plate; the polarization state is the first linearly polarized light
  • the echo signal is converted into an echo signal whose polarization state is the second circularly polarized light after the second 1/4 wave plate, and propagates to the detection module; the echo signal whose polarization state is the second circularly polarized light is reflected by the detection module to the second circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal of the second circularly polarized light reflected by the detection module into the echo signal of the second linear polarized light, and propagate to the first a polarizer; the echo signal whose polarization state is the second linearly polarized light is absorbed by the first polarizer.
  • the first polarization conversion assembly based on the second structure has two suppression effects on the echo signal reflected by the detection module, and the crosstalk isolation degree is high, thereby helping to further improve the accuracy of target recognition by the detection device.
  • the first polarization state conversion component includes a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • FIG. 7 it is a schematic structural diagram of still another first polarization state conversion component provided by the present application.
  • the first polarization state conversion component sequentially includes a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate. Based on the third structure, through the combination of the second 1/2 wave plate and the second 1/4 wave plate, the dispersion can be eliminated, so that the detection device can also have better suppression of crosstalk when the wavelength drifts at high temperature or low temperature effect.
  • the first polarizer is glued together with one side of the second 1/2 wave plate, and the other side of the second 1/2 wave plate is glued together with the second 1/4 wave plate.
  • the included angle between the equivalent optical axes of the second 1/4 wave plate and the second 1/2 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.2°.
  • the polarization state of the echo signal from the first lens group is the first linearly polarized light.
  • the propagation optical path of the echo signal in the first polarization state conversion component can be seen in FIG.
  • the echo signal whose polarization state is the first linearly polarized light passes through the first polarizer and propagates to the second 1/2 wave plate;
  • the echo signal whose polarization state is the first linearly polarized light is converted into an echo signal whose polarization state is the second linearly polarized light after passing through the second 1/2 wave plate, and propagates to the second 1/4 wave plate;
  • the polarization state is the second linearly polarized light
  • the echo signal is converted into an echo signal whose polarization state is the first circularly polarized light, and propagates to the detection module;
  • the echo signal whose polarization state is the first circularly polarized light is reflected by the detection module to the first circularly polarized light.
  • the second 1/4 wave plate is also used to convert the echo signal whose polarization state is the first circularly polarized light reflected by the detection module into the echo signal whose polarization state is the first linear polarization, and propagate to the second 1/2 wave plate; the echo signal whose polarization state is the first linearly polarized light is converted into an echo signal whose polarization state is the second linearly polarized light after the second 1/2 wave plate, and propagates to the first polarizing plate; The echo signal whose polarization state is the second linearly polarized light is absorbed by the first polarizer.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the first polarization state conversion component sequentially includes a first 1/4 wave plate, a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the first 1/4 wave plate is glued to one side of the first polarizer
  • the other side of the first polarizer is glued to one side of the second 1/2 wave plate
  • the second 1/2 wave plate is glued together.
  • the other side is glued together with the second 1/4 wave plate.
  • the included angle between the optical axis of the first quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°; and, the second quarter-wave plate and the second The included angle between the equivalent optical axis of the 1/2 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light.
  • the propagation optical path of the echo signal in the first polarization state conversion component can be seen in Figure 10, specifically: the echo signal whose polarization state is the first circularly polarized light is converted into the first line of polarization state after the first 1/4 wave plate The echo signal of the polarized light is transmitted to the first polarizer; the echo signal whose polarization state is the first linearly polarized light passes through the first polarizer and propagates to the second half-wave plate; the polarization state is the first linearly polarized light The echo signal is converted into the echo signal whose polarization state is the second linear polarization after passing through the second 1/2 wave plate, and propagates to the second 1/4 wave plate; the echo signal whose polarization state is the second linear polarization is passed through the second 1 After the /4 wave plate is converted into an echo signal whose polarization state is the first circular
  • the first polarization state conversion component based on the above-mentioned structure 4 has two suppression effects on the echo signal reflected by the detection module, and the crosstalk isolation degree is high, thereby helping to further improve the accuracy of target recognition by the detection device.
  • the dispersion can be eliminated, so that the detection device can also have a better effect of suppressing crosstalk when the wavelength drifts at high temperature or low temperature.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer and a second 1/4 wave plate.
  • FIG. 11 it is a schematic structural diagram of still another first polarization state conversion component provided by the present application.
  • the first polarization state conversion component sequentially includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer and a second 1/4 wave plate.
  • a first 1/4 wave plate and the first 1/2 wave plate are glued together
  • the other side of the first 1/2 wave plate and one side of the second polarizer are glued together
  • the second polarizer is glued together.
  • the other side is glued together with the second 1/4 wave plate.
  • the angle between the polarization direction of the first polarizer and the polarization direction of the second polarizer is 90 degrees.
  • the included angle between the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°; and, The included angle between the optical axis of the second quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light.
  • the propagation optical path of the echo signal in the first polarization state conversion component can be seen in Figure 12, specifically: the echo signal whose polarization state is the first circularly polarized light is converted into the first line of polarization state after the first 1/4 wave plate The echo signal of polarized light is transmitted to the first 1/2 wave plate; the echo signal whose polarization state is the first linearly polarized light is converted into the echo signal whose polarization state is the second linear polarization after passing through the first 1/2 wave plate, and propagate to the second polarizer; the echo signal whose polarization state is the second linearly polarized light passes through the second polarizer and propagates to the second 1/4 wave plate; the echo signal whose polarization state is the second linearly polarized light passes through the second 1/4 wave plate; After the 4-wave plate is converted into an echo signal whose polarization state is the first
  • the first polarization conversion assembly based on the above structure 5 has two suppression effects on the echo signal reflected by the detection module, and the crosstalk isolation is relatively high, thereby helping to further improve the accuracy of target recognition by the detection device. Moreover, through the combination of the first 1/2 wave plate and the first 1/4 wave plate, the dispersion can be eliminated, so that the detection device can also have a better effect of suppressing crosstalk when the wavelength drifts at high temperature or low temperature.
  • the first polarization state conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • FIG. 13 it is a schematic structural diagram of still another first polarization state conversion component provided by the present application.
  • the first polarization state conversion component sequentially includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer, a second 1/2 wave plate and a second 1/4 wave plate.
  • the included angle between the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°; and, The included angle between the equivalent optical axis of the second 1/4 wave plate and the second 1/2 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state of the echo signal from the first lens group is the first circularly polarized light.
  • the propagation optical path of the echo signal in the first polarization conversion component can be seen in Figure 14, specifically: the echo signal whose polarization state is the first circularly polarized light is converted into the first line of polarization state after the first 1/4 wave plate The echo signal of polarized light is transmitted to the first 1/2 wave plate; the echo signal whose polarization state is the first linearly polarized light is converted into the echo signal whose polarization state is the second linear polarization after passing through the first 1/2 wave plate, and propagate to the second polarizer; the echo signal whose polarization state is the second linearly polarized light passes through the second polarizer and propagates to the second 1/2 wave plate; the echo signal whose polarization state is the second linearly polarized light passes through the second 1/2 wave plate.
  • the 2-wave plate After the 2-wave plate, it is converted into an echo signal whose polarization state is the first linearly polarized light, and propagates to the second 1/4-wave plate; the echo signal whose polarization state is the first linearly polarized light is converted after being converted by the second 1/4-wave plate.
  • the second 1/4 wave plate is also used to transmit the polarization state reflected by the detection module as
  • the echo signal of the second circularly polarized light is converted into an echo signal whose polarization state is the second linearly polarized light, and the echo signal whose polarization state is the second linearly polarized light is propagated to the second 1/2 wave plate;
  • the echo signal is converted into an echo signal whose polarization state is the first linearly polarized light after passing through the second 1/2 wave plate; the echo signal whose polarization state is the first linearly polarizing light is absorbed after passing through the second polarizing plate.
  • first polarizer and second polarizer may be absorbing polarizers.
  • the polarization state of the first light beam refers to the polarization state of the first light beam entering the detection area.
  • the first polarization state conversion components of the above structures help to improve the flexibility of the design of the receiving module.
  • the first lens assembly is configured to receive an echo signal for the first light beam from the detection area, and focus the echo signal to the first polarization state conversion assembly.
  • the first lens group may be a single spherical lens, a plurality of spherical lenses, a single aspherical lens, a plurality of aspherical lenses, or the like.
  • the single lens may be a concave-convex lens;
  • the plurality of spherical lenses may be a combination of a convex lens and a concave lens, or a combination of a concave lens or a combination of convex lenses.
  • convex and concave lenses have many different shapes, for example, convex lenses have biconvex lenses, plano-convex lenses and meniscus lenses; concave lenses have biconcave lenses, plano-concave lenses and meniscus lenses.
  • the specific shapes of the convex lens and the concave lens are not limited here, and any single lens or a combination of multiple lenses that can transmit the echo signal for the first light beam from the detection area to the detection module as much as possible are applicable to the present application.
  • the first lens group can also be used to collect the echo signals reflected by the target for the first light beam as much as possible, so as to improve the range and sensitivity of the detection distance of the detection device. Therefore, when the aperture of the first lens group toward the detection area is larger, more echo signals can be received.
  • the first lens group may include a meniscus lens.
  • the concave surface of the meniscus lens faces the detection area, so as to receive the echo signal for the first light beam from the detection area as much as possible.
  • any structure that can propagate the echo signal to the detection module can be used, and the first lens group is only a possible example.
  • the transmitting module is configured to transmit the first light beam to the detection area.
  • the polarization state of the first light beam entering the detection module may be the first linearly polarized light or the first circularly polarized light. The following description will be given based on the polarization state of the first light beam emitted by the transmitting module.
  • the polarization state of the first light beam injected into the detection area by the transmitting module is the first linearly polarized light.
  • the emission module may include a light source module configured to emit a first light beam whose polarization state is the first linearly polarized light, and emit the first light beam whose polarization state is the first linearly polarized light toward the detection area.
  • the polarization state of the first light beam injected into the detection area by the transmitting module is the first circularly polarized light.
  • the emission module includes a light source module and a second polarization conversion component, wherein the second polarization conversion component includes a third 1/4 wave plate.
  • the light source module is used for emitting the first light beam with the polarization state of the first linear polarization; the third 1/4 wave plate is used for converting the first light beam with the polarization state of the first linear polarization into polarization
  • the state is the first beam of the first circularly polarized light.
  • Figure 16a shows the propagation light path of the emission module based on this structure.
  • the light source module emits a first beam whose polarization state is the first linearly polarized light, and propagates to the third 1/4 wave plate; the first light beam whose polarization state is the first linearly polarized light After passing through the third 1/4 wave plate, the light beam is converted into a first light beam whose polarization state is the first circularly polarized light.
  • the emission module includes a light source module and a second polarization conversion component, wherein the second polarization conversion component includes a third 1/2 wave plate and a third 1/4 wave plate.
  • the light source module is used for emitting the first light beam with the polarization state of the second linearly polarized light; the third 1/2 wave plate is used for converting the first light beam with the polarization state of the second linearly polarized light into the polarization state of the first light beam of the first linear polarization; the third 1/4 wave plate is used to convert the first light beam whose polarization state is the first linear polarization into the first light beam whose polarization state is the first circular polarization.
  • Figure 16b shows the propagation light path of the emission module based on this structure.
  • the light source module is used to emit the first light beam whose polarization state is the second linearly polarized light and propagates to the third half-wave plate; the first light beam whose polarization state is the second linearly polarized light After passing through the third 1/2 wave plate, the light beam is converted into the first beam whose polarization state is the first linear polarization, and the first beam whose polarization state is the first linear polarization is transformed into the first beam whose polarization state is the first linear polarization after passing through the third 1/4 wave plate.
  • a first beam of circularly polarized light is used to emit the first light beam whose polarization state is the second linearly polarized light and propagates to the third half-wave plate; the first light beam whose polarization state is the second linearly polarized light After passing through the third 1/2 wave plate, the light beam is converted into the first beam whose polarization state is the first linear polarization, and the first beam whose polarization state is the first linear polarization is transformed into the first beam
  • the emission module includes a light source module.
  • the light source module is configured to emit a first light beam with a polarization state of a first circularly polarized light, and inject the first light beam with a polarization state of the first circularly polarized light into the detection area.
  • the above-mentioned light source module may be a distributed feedback (distributed feedback, DFB) laser or a distributed Bragg reflector (distributed bragg reflector, DBR) laser.
  • the wavelength range of the first light beam emitted by the light source module may be in the 1550 nm band range, or may also be in the 905 nm band range, or may also be in the 940 nm band range. It should be understood that, under normal circumstances, the polarization state of the light beam emitted by the light source module is linearly polarized light.
  • the transmitting module may further include a second lens group, and the second lens group may be a single lens, or may also be a plurality of lenses.
  • the lens may be a simple spherical lens or an aspherical lens, for example, a concave lens or a convex lens.
  • a single lens can be a convex lens;
  • a lens group can be a combination of a convex lens and a concave lens, or a combination of a concave lens or a combination of convex lenses.
  • convex and concave lenses have many different shapes, for example, convex lenses have biconvex lenses, plano-convex lenses and meniscus lenses; concave lenses have biconcave lenses, plano-concave lenses and meniscus lenses.
  • the specific shapes of the convex lens and the concave lens are not limited here, and any single lens or a combination of multiple lenses that can transmit the first light beam from the light source module to the detection area as far as possible are applicable to the present application.
  • the emission module may further collimate and shape the first light beam, so that the emission to The divergence angle of the first light beam in the detection area is small, and more first light beams can be irradiated to the detection area.
  • FIG. 17 it is a schematic structural diagram of a second lens group provided by the present application.
  • the second lens group takes three lenses as an example, which are a meniscus lens 1 , a meniscus lens 2 and a biconvex lens 3 in sequence.
  • the surface of the meniscus lens 1 facing the light source module is a concave surface, and the surface facing the meniscus lens 2 is a convex surface; the surface of the meniscus lens 2 facing the meniscus lens 1 is a convex surface, and the surface facing the lenticular lens 3 is a concave surface.
  • the transmitting module is the structure 1 in the above-mentioned case 2. Based on the different structures of the receiving module, it can be divided into the following five possible situations.
  • the transmitting module is the structure 1 in the above-mentioned situation 2, and the receiving module is the above-mentioned structure 1.
  • the second polarization conversion component includes a third 1/4 wave plate
  • the first polarization conversion component includes a first polarizer and a second 1/4 wave plate in sequence.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the transmitting module is the structure 1 in the above-mentioned case 2, and the receiving module is the above-mentioned structure 2.
  • the second polarization state conversion component includes a third 1/4 wave plate
  • the first polarization state conversion component includes a first 1/4 wave plate, a first polarizer, and a second 1/4 wave plate.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is parallel to the third 1/4 wave.
  • the optical axis of the wave plate is parallel; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is the same as that of the first linearly polarized light.
  • the optical axes of the three 1/4 wave plates are orthogonal.
  • the transmitting module is the structure 1 in the above-mentioned situation 2, and the receiving module is the above-mentioned structure 4.
  • the second polarization conversion component includes a third 1/4 wave plate
  • the first polarization conversion component includes a first 1/4 wave plate, a first polarizer, a second 1/2 wave plate and a second 1/4 wave plate 4 wave plates.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is parallel to the third 1/4 wave.
  • the optical axis of the wave plate is parallel; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the first polarizer, and the optical axis of the first 1/4 wave plate is the same as that of the first linearly polarized light.
  • the optical axes of the three 1/4 wave plates are orthogonal.
  • the transmitting module is the structure 1 in the above-mentioned situation 2, and the receiving module is the above-mentioned structure 5.
  • the second polarization conversion component includes a third 1/4 wave plate
  • the first polarization conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer, and a second 1/4 wave plate. 4 wave plates.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the third 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the second polarizer, the first The equivalent optical axes of the 1/4 wave plate and the first 1/2 wave plate are orthogonal to the optical axis of the third 1/4 wave plate.
  • the transmitting module is the structure 1 in the above-mentioned case 2, and the receiving module is the above-mentioned structure 6.
  • the second polarization conversion component includes a third 1/4 wave plate
  • the first polarization conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a second polarizer, a second 1/4 wave plate 2 wave plate and second 1/4 wave plate.
  • the included angle between the optical axis of the third quarter-wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the third 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the polarization direction of the first linearly polarized light is orthogonal to the polarization direction of the second polarizer, the first The equivalent optical axes of the 1/4 wave plate and the first 1/2 wave plate are orthogonal to the optical axis of the third 1/4 wave plate.
  • the transmitting module is the structure 2 in the above-mentioned case 2. Based on the different structures of the receiving module, it can also be divided into the following five possible situations.
  • the transmitting module is the structure 2 in the above-mentioned situation 2, and the receiving module is the above-mentioned structure 1.
  • the second polarization conversion assembly includes a third 1/2 wave plate and a third 1/4 wave plate
  • the first polarization conversion assembly includes a first polarizer and a second 1/4 wave plate in sequence.
  • the included angle between the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the transmitting module is the structure 2 in the above-mentioned case 2, and the receiving module is the above-mentioned structure 2.
  • the second polarization state conversion assembly includes a third 1/2 wave plate and a third 1/4 wave plate
  • the first polarization state conversion assembly includes a first 1/4 wave plate, a first polarizer, and a second 1/4 wave plate 4 wave plates.
  • the included angle between the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the polarization direction of the third 1/2 wave plate and the third 1/4 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the first 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the first linearly polarized light whose polarization direction is orthogonal to the polarization direction of the first polarizer, and the third The equivalent optical axes of the 1/2 wave plate and the third 1/4 wave plate are orthogonal to the optical axis of the first 1/4 wave plate.
  • the transmitting module is the structure 2 in the above-mentioned situation 2
  • the receiving module is the above-mentioned structure 4.
  • the second polarization conversion component includes a third 1/2 wave plate and a third 1/4 wave plate
  • the first polarization conversion component includes a first 1/4 wave plate, a first polarizer, a second 1/4 wave plate 2 wave plate and second 1/4 wave plate.
  • the included angle between the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate and the polarization direction of the first polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the first polarizer, and the polarization direction of the third 1/2 wave plate and the third 1/4 wave plate is parallel.
  • the equivalent optical axis is parallel to the optical axis of the first 1/4 wave plate; or, the polarization state of the first light beam emitted by the light source module is the first linearly polarized light whose polarization direction is orthogonal to the polarization direction of the first polarizer, and the third The equivalent optical axes of the 1/2 wave plate and the third 1/4 wave plate are orthogonal to the optical axis of the first 1/4 wave plate.
  • the transmitting module is the structure 2 in the above-mentioned situation 2, and the receiving module is the above-mentioned structure 5.
  • the second polarization conversion component includes a third 1/2 wave plate and a third 1/4 wave plate
  • the first polarization conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a Two polarizers and a second 1/4 wave plate.
  • the included angle between the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate;
  • the polarization directions of the polarizers are orthogonal, and the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate are positive to the equivalent optical axes of the third 1/2 wave plate and the third 1/4 wave plate. pay.
  • the transmitting module is the structure 2 in the above-mentioned case 2
  • the receiving module is the above-mentioned structure 6.
  • the second polarization conversion component includes a third 1/2 wave plate and a third 1/4 wave plate
  • the first polarization conversion component includes a first 1/4 wave plate, a first 1/2 wave plate, a Two polarizers, a second 1/2 wave plate and a second 1/4 wave plate.
  • the included angle between the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate and the polarization direction of the second polarizer is 45 ⁇ 0.5°.
  • the polarization state emitted by the light source module is that the polarization direction of the first beam of the first linearly polarized light is parallel to the polarization direction of the second polarizer, and the polarization direction of the first 1/4 wave plate and the first 1/2 wave plate is parallel.
  • the equivalent optical axis is parallel to the equivalent optical axis of the third 1/2 wave plate and the third 1/4 wave plate;
  • the polarization directions of the polarizers are orthogonal, and the equivalent optical axes of the first 1/4 wave plate and the first 1/2 wave plate are positive to the equivalent optical axes of the third 1/2 wave plate and the third 1/4 wave plate. pay.
  • the transmitting module is the structure 1 or structure 2 in the above-mentioned situation 2
  • the polarization state of the first light beam entering the detection area by the transmitting module is the first circularly polarized light. Therefore, the receiving module can be one of the above-mentioned structures. Case B, structure two, structure four, structure five and structure six.
  • the transmitting module can also be the above-mentioned situation 1, and the receiving module can be the above-mentioned structure 3; or, the transmitting module can be the structure 3 in the above-mentioned situation 2, and the receiving module can be the situation B, the structure Structure 4, Structure 5 or Structure 6; repeated descriptions are not repeated here.
  • the materials of the first 1/4 wave plate, the second 1/4 wave plate, the third 1/4 wave plate, the first polarizer, and the second polarizer may be plastic or glass.
  • the first 1/4 wave plate, the second 1/4 wave plate and the third 1/4 wave plate are usually zero-order 1/4 wave plate, so it is helpful to the echo signal of the large angle reflected by the detection module A better inhibitory effect can also be achieved.
  • the detection module may be configured to perform photoelectric conversion on the received echo signal to obtain an electrical signal, where the electrical signal is used to determine the information of the target in the detection area. Further, the detection module can also be used to reflect part of the received echo signals. It can also be understood that the detection module can be used to receive the echo signal from the first polarization state conversion component, and perform photoelectric conversion on most of the received echo signals, and reflect a small part.
  • the detection module can be, for example, a photon detector (PD), SPAD, P-type semiconductor-intrinsic layer-N-type semiconductor (positive intrinsic negative, PIN) type photodiode (also known as a PIN junction diode) , or avalanche photodiode (APD); the detector array can be a SPAD array, a PIN photodiode array, or an APD array, and the like.
  • SPAD is a photodetection avalanche diode with single-photon detection capability. It has high sensitivity and is triggered when a photon is detected. After triggering, it usually takes about 10ns to recover to the initial state, so it is widely used in Lidar.
  • the first polarization state conversion component may be located on the detection module.
  • the first polarization state conversion component can be glued on the protective glass of the detection module, as shown in FIG. 18 . In this way, the preparation and assembly of the detection device are facilitated.
  • the first polarization conversion component can replace the protective glass on the detection module, for example, the first polarization conversion component can be glued on the detection module. In this way, it contributes to the miniaturization of the detection device. It should be noted that, for the structure of the first polarization state conversion component, reference may be made to the foregoing related descriptions, which will not be repeated here.
  • the detection device may further include a scanning module, which will be described in detail below.
  • the scanning module may be used to change the propagation direction of the first light beam from the transmitting module, so as to direct the first light beam to different positions of the detection area, thereby realizing scanning of the detection area.
  • the scanning module may be configured to shoot the first light beams from the transmitting module to the detection area respectively under different scanning angles, so as to realize the scanning of the detection area.
  • the scanning module may be a scanner, such as a reflective scanner.
  • Reflective scanners include, but are not limited to, mechanical rotating mirrors or microelectro-mechanical system (MEMS) mirrors.
  • MEMS microelectro-mechanical system
  • the reflective scanner changes the scanning angle by mechanical rotation, so that the scanner can scan the detection area in different directions.
  • the scanner may be in a continuous operation mode or a stepwise operation mode, which is not limited in this application.
  • the detection device may preset a plurality of scanning angles, and the scanning module may respectively emit the first light beam from the transmitting module to the detection area at each scanning angle of the plurality of different scanning angles.
  • FIG. 19a a schematic structural diagram of a scanner provided by the present application.
  • the scanner can change the scanning angle in two-dimensional directions (horizontal direction and vertical direction), and changing the scanning angle can also be understood as making the scanner under different scanning angles.
  • the processing module may control the scanner to rotate in a two-dimensional direction, so that the scanner is at different scanning angles, and respectively shoot the first light beams from the emission module toward the detection area.
  • the processing module can control the scanner to rotate horizontally and then vertically, or rotate vertically and then horizontally, or rotate both vertically and horizontally, or alternately rotate horizontally and vertically, etc. area scan.
  • FIG. 19b a schematic structural diagram of another scanner provided by the present application.
  • the scanner can change the scanning angle in one dimension (horizontal direction) so that the scanner is under different scanning angles.
  • the volume of the detection device can be further simplified, and it helps to simplify the complexity of the processing module controlling the scanner.
  • the function of the scanning module can also be implemented by an optical phased array (OPA).
  • OPA optical phased array
  • the working principle of OPA is: by adjusting the phase relationship between the light waves radiated from each phase control unit (such as an optical phase shifter), so that they are in phase with each other in the set direction, resulting in mutually reinforcing interference, and the result of the interference is in the A high-intensity beam is generated in this direction, while the light waves emitted from each phased unit in other directions do not satisfy the condition of being in phase with each other, and the interference results cancel each other, so the radiation intensity is close to zero.
  • each phased unit constituting the phased array can make a high-intensity laser beam or a plurality of high-intensity laser beams scan according to the designed direction.
  • the detection device is usually two mutually isolated optical paths (ie, the transmitting optical path and the receiving optical path), and the transmitting optical path and the receiving optical path do not affect each other.
  • the echo signal for the first light beam may not pass through the scanning module.
  • the detection device may further include other modules, such as a processing module, and the processing module may be configured to receive electrical signals from the detection module, and determine target information according to the received electrical signals.
  • the lidar may include the detection device in any of the above embodiments. Further, optionally, the lidar may further include a processing module, and the processing module may be configured to receive an electrical signal from the detection device, and determine the information of the target according to the received electrical signal.
  • the present application may further provide a terminal device, and the terminal device may include the detection device in any of the foregoing embodiments. Further, optionally, the terminal device may further include a processor, and the processor may be configured to receive an electrical signal from the detection device, and determine the information of the target according to the received electrical signal.
  • the processor may further plan the travel path of the terminal device according to the determined information of the target. For example, avoiding obstacles on the driving path, etc.
  • the terminal device may also include other devices, such as a memory and a wireless communication device.
  • the terminal device may include vehicles (such as unmanned vehicles, smart vehicles, electric vehicles, digital vehicles, etc.), robots, surveying and mapping equipment, drones, smart home equipment, intelligent manufacturing equipment, or intelligent transportation equipment. (such as automated guided vehicles (AGVs) or unmanned vehicles, etc.).
  • vehicles such as unmanned vehicles, smart vehicles, electric vehicles, digital vehicles, etc.
  • robots surveying and mapping equipment, drones, smart home equipment, intelligent manufacturing equipment, or intelligent transportation equipment.
  • AGVs automated guided vehicles
  • the detector may include a detection module 2001 and a first polarization state conversion component 2002; the first polarization state conversion component 2002 is configured to receive an echo signal from the detection area corresponding to the first light beam emitted by the transmitting module, and to propagate back wave signal to the detection module.
  • the echo signal corresponding to the first light beam emitted by the transmitting module is the above-mentioned echo signal for the first light beam.
  • the detection module 2001 is used to convert the received echo signal into an electrical signal, and the electrical signal is used to determine the information of the target in the detection area; the first polarization state conversion component 2002 is also used to convert the echo signal reflected by the detection module.
  • the polarization state is converted to realize the absorption of the echo signal reflected by the detection module.
  • the polarization state of the echo signal reflected by the detection module can be converted to realize the absorption of the echo signal reflected by the detection module. In this way, the echo signals reflected by the detection module will not enter the detection module again, thereby helping to prevent the echo signals reflected by the detection module from causing optical crosstalk to the echo signals from the detection area.
  • the detection module 2001 please refer to the relevant introduction of the aforementioned detection module 203, and for the possible implementation of the first polarization state conversion component 2002, please refer to the related introduction of the aforementioned first polarization state conversion component 2022, which will not be repeated here. Repeat.
  • the first polarization conversion component 2002 may be located on the detection module 2001 .
  • the first polarization conversion component 2002 can be adhered to the protective glass of the detection module 2001; or, the first polarization conversion component 2002 can replace the protective glass on the detection module 2001.
  • the present application may further provide a laser radar, and the laser radar may include the detector in any of the above embodiments.
  • the lidar may further include a processor, and the processor may be configured to receive an electrical signal from the detector, and determine the information of the target according to the received electrical signal.
  • the present application may further provide a terminal device, and the terminal device may include the detector in any of the above embodiments. Further, optionally, the terminal device may further include a processor. The processor in the terminal device can be used to receive the electrical signal from the detector and determine the information of the target according to the electrical signal.
  • the processor may further plan the travel path of the terminal device according to the determined information of the target. For example, avoiding obstacles on the driving path, etc.
  • the terminal device may also include other devices, such as a memory and a wireless communication device.
  • the terminal device may include vehicles (such as unmanned vehicles, smart vehicles, electric vehicles, digital vehicles, etc.), robots, surveying and mapping equipment, drones, smart home equipment, intelligent manufacturing equipment, or intelligent transportation equipment. (such as automated guided vehicles (AGVs) or unmanned vehicles, etc.).
  • vehicles such as unmanned vehicles, smart vehicles, electric vehicles, digital vehicles, etc.
  • robots surveying and mapping equipment, drones, smart home equipment, intelligent manufacturing equipment, or intelligent transportation equipment.
  • AGVs automated guided vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种探测装置、探测器、激光雷达及终端设备,可应用于自动驾驶、智能驾驶或测绘等领域。探测装置包括:发射模块(201)用于发射第一光束;第一透镜组(2021)用于接收来自探测区域中针对第一光束的回波信号,并将回波信号汇聚至第一偏振态转换组件(2022);第一偏振态转换组件(2022)用于将来自第一透镜组(2021)的回波信号传播至探测模块(203)、并对探测模块(203)反射的回波信号的偏振态转换以实现对反射的回波信号的吸收;探测模块(203)用于将接收到的回波信号转换为电信号,电信号用于确定探测区域中的目标的信息。可避免探测模块(203)反射的回波信号再次进入探测模块(203),从而可避免探测模块(203)反射的回波信号产生光学串扰。

Description

一种探测装置、探测器、激光雷达及终端设备
相关申请的交叉引用
本申请要求在2021年03月09日提交中国专利局、申请号为202110256534.0、申请名称为“一种探测装置、探测器、激光雷达及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及探测技术领域,尤其涉及一种探测装置、探测器、激光雷达及终端设备。
背景技术
激光雷达(light detection and ranging,LiDAR)是通过发射探测信号(激光束)探测目标的位置、速度等特征量的探测装置。激光雷达的工作原理是向目标发射探测信号,然后将目标反射回来的回波信号与探测信号进行比较和处理后,可获得目标有关的信息,如目标的距离、目标的方位、目标的速度、目标的姿态、甚至目标的形状等参数,从而可实现对目标进行探测、跟踪和识别。
由于激光雷达中的探测器具有一定的反射率,因此可能会对接收到的回波信号进行反射,被探测器反射的回波信号会再次进入探测器,从而会对实际的回波信号造成光学串扰,例如,可能会形成串扰像,从而会造成探测器探测到虚假的目标。
发明内容
本申请提供一种探测装置、探测器、激光雷达及终端设备,用于尽可能避免探测模块反射的回波信号产生光学串扰。
第一方面,本申请提供一种探测装置,该探测装置可包括发射模块、接收模块和探测模块,接收模块包括第一透镜组和第一偏振态转换组件。发射模块可用于发射第一光束。第一透镜组用于接收来自探测区域中针对第一光束的回波信号,并将回波信号汇聚至第一偏振态转换组件。第一偏振态转换组件用于将来自第一透镜组的回波信号传播至探测模块,以及用于对探测模块反射的回波信号的偏振态进行转换以实现对反射的回波信号的吸收;探测模块用于将接收到的回波信号转换为电信号,该电信号用于确定探测区域中的目标的信息。
基于上述探测装置,通过第一偏振态转换组件,可将探测模块反射的回波信号进行偏振态的转换以实现吸收探测模块反射的回波信号。如此,探测模块反射的回波信号不会再次进入探测模块,从而可避免探测模块反射的回波信号对来自探测区域的回波信号产生光学串扰。
下面示例性地的示出了六种可能的第一偏振态转换组件的结构。
结构一,第一偏振态转换组件包括第一偏振片和第二1/4波片。
基于该结构一,可通过简单的结构即可实现第一偏振态转换组件的功能。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一线偏光或第一 圆偏光;基于上述结构一,第一偏振片允许来自第一透镜组的偏振态为第一线偏光的回波信号通过。换言之,第一偏振片通过第一圆偏光的回波信号中的一部分回波信号(即偏振态为第一线偏光部分的回波信号),或者通过偏振态为第一线偏光的回波信号。第二1/4波片用于将通过第一偏振片的、偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.2°。
通过将第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角设置为45±0.2°,有助于提高第一偏振态转换组件吸收探测模块反射的回波信号的效果。
结构二,第一偏振态转换组件包括第一1/4波片、第一偏振片和第二1/4波片。
基于该结构二,可以实现两次抑制串扰的效果,可进一步提高串扰隔离度,从而有助于进一步提高探测装置对目标识别的能力。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;基于上述结构二,第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一偏振片通过偏振态为第一线偏光的回波信号。第二1/4波片用于将通过第一偏振片的、偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第一1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。如此,有助于提高第一偏振态转换组件吸收探测模块反射的回波信号的效果。
结构三,第一偏振态转换组件包括第一偏振片、第二1/2波片和第二1/4波片。
基于该结构三,通过第二1/2波片和第二1/4波片的组合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一线偏光。基于上述结构三,第一偏振片用于通过来自第一透镜组的偏振态为第一线偏光的回波信号。第二1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二1/4波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二1/2波片还用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片,还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第二1/4波片和第二1/2波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.2°。如此,有助于提高第一偏振态转换组件吸收探测模块反射的回波信号的效果。
结构四,第一偏振态转换组件还包括第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片。
基于该结构四,也可以实现两次抑制串扰的效果,可进一步提高串扰隔离度,从而有助于进一步提高探测装置对目标识别的能力;而且通过第二1/2波片和第二1/4波片的组 合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;基于上述结构四,第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一偏振片用于通过偏振态为第一线偏光的回波信号。第二1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二1/4波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二1/2波片还用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第一1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片和第二1/2波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。如此,有助于提高第一偏振态转换组件吸收探测模块反射的回波信号的效果。
结构五,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。
基于该结构五,通过第一1/4波片和第二1/4波片可以实现两次抑制串扰的效果,可进一步提高串扰隔离度,从而有助于进一步提高探测装置对目标识别的能力;而且通过第一1/4波片、第一1/2波片的组合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二偏振片用于通过偏振态为第二线偏光的回波信号。第二1/4波片用于将偏振态为第二线偏光的回波信号转换为第一圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二偏振片还用于吸收偏振态为第一线偏光的回波信号。
进一步,可选地,第一1/4波片和第一1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。如此,有助于提高第一偏振态转换组件吸收探测模块反射的回波信号的效果。
结构六,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片、第二1/2波片和第二1/4波片。
基于该结构六,通过第一1/4波片和第二1/4波片可以实现两次抑制串扰的效果,可进一步提高串扰隔离度,从而有助于进一步提高探测装置对目标识别的能力;而且通过第一1/4波片、第一1/2波片、第二1/2波片和第二1/4波片的组合,可以有效消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;基于上述结构六,第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二偏振片用于通过偏振态为第二线偏光的回波信号。第二1/2波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二1/4 波片还用于将偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二1/2波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二偏振片还用于吸收偏振态为第一线偏光的回波信号。
进一步,可选地,第一1/4波片和第一1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片和第二1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。如此,有助于提高第一偏振态转换组件吸收探测模块反射的回波信号的效果。
在一种可能的实现方式中,发射模块可包括光源模块和第二偏振态转换组件;光源模块用于发射偏振态为第一线偏光的第一光束;第二偏振态转换组件用于将偏振态为第一线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。
进一步,可选地,第二偏振态转换组件包括第三1/4波片。
当第一偏振态转换组件为上述结构二时,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第一1/4波片的光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第一1/4波片的光轴与第三1/4波片的光轴正交。如此,可以使得回波信号尽可能的通过第一偏振片,有助于提高回波信号的接收率,从而可提高回波信号的利用率。
当第一偏振态转换组件为上述结构四时,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第一1/4波片的光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第一1/4波片的光轴与第三1/4波片的光轴正交。如此,可以使得回波信号尽可能的通过第一偏振片,有助于提高回波信号的接收率,从而可提高回波信号的利用率。
当第一偏振态转换组件为上述结构五时,第三1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴正交。如此,可以使得回波信号尽可能的通过第二偏振片,有助于提高回波信号的接收率,从而可提高回波信号的利用率。
当第一偏振态转换组件为上述结构六时,第三1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴正交。如此,可以使得回波信号尽可能的通过第二偏振片,有助于提高回波信号的接收率,从而可提高回波信号的利用率。
在另一种可能的实现方式中,发射模块可包括光源模块和第二偏振态转换组件;光源模块用于发射偏振态为第二线偏光的第一光束;第二偏振态转换组件用于将偏振态为第二线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。
进一步,可选地,第二偏振态转换组件包括第三1/2波片和第三1/4波片。第三1/2波片用于将偏振态为第二线偏光的第一光束转换为偏振态为第一线偏光的第一光束;第三1/4波片用于将偏振态为第一线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。
通过在第二偏振态转换组件中增加第三1/2波片,可起到进一步消除色散的作用。
当第一偏振态转换组件为上述结构二时,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴正交。
当第一偏振态转换组件为上述结构四时,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴正交。
当第一偏振态转换组件为上述结构五时,第三1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴正交。
当第一偏振态转换组件为上述结构六时,第三1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴正交。
在一种可能的实现方式中,第一偏振态转换组件位于探测模块上。
通过将偏振态转换组件设置于探测模块上,有助于简化探测装置的组装。
第二方面,本申请提供一种探测器,该探测器可包括探测模块和第一偏振态转换组件。其中,第一偏振态转换组件用于接收来自探测区域的、对应于发射模块发射的第一光束的回波信号,以及,传播回波信号到探测模块。探测模块用于将接收到的回波信号转换为电信号,电信号用于确定探测区域中的目标的信息。第一偏振态转换组件还用于对探测模块反射的回波信号的偏振态进行转换以实现对所述探测模块反射的回波信号的吸收。
如下示例性地的示出了第一偏振态转换组件可能的六种结构。
结构一,第一偏振态转换组件包括第一偏振片和第二1/4波片。
基于该结构一,可通过简单的结构即可实现第一偏振态转换组件的功能。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一线偏光或第一圆偏光;基于上述结构一,第一偏振片允许来自第一透镜组的偏振态为第一线偏光的回波信号通过。换言之,第一偏振片通过第一圆偏光的回波信号中的一部分回波信号(即偏振态为第一线偏光部分的回波信号),或者通过偏振态为第一线偏光的回波信号。第二1/4波片用于将通过第一偏振片的、偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.2°。
结构二,第一偏振态转换组件包括第一1/4波片、第一偏振片和第二1/4波片。
基于该结构二,可以实现两次抑制串扰的效果,从而可进一步提高串扰隔离度。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;基于上述结构二,第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一偏振片通过偏振态为第一线偏光的回波信号。第二1/4波片用于将通过第一偏振片的、偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第一1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
结构三,第一偏振态转换组件包括第一偏振片、第二1/2波片和第二1/4波片。
基于该结构三,通过第二1/2波片和第二1/4波片的组合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一线偏光。基于上述结构三,第一偏振片用于通过来自第一透镜组的偏振态为第一线偏光的回波信号。第二1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二1/4波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二1/2波片还用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第二1/4波片和第二1/2波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.2°。
结构四,第一偏振态转换组件还包括第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;基于上述结构四,第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一偏振片用于通过偏振态为第一线偏光的回波信号。第二1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二1/4波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一圆偏光的回波信号。第二1/4 波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二1/2波片还用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第一偏振片还用于吸收偏振态为第二线偏光的回波信号。
进一步,可选地,第一1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片和第二1/2波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
结构五,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二偏振片用于通过偏振态为第二线偏光的回波信号。第二1/4波片用于将偏振态为第二线偏光的回波信号转换为第一圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二偏振片还用于吸收偏振态为第一线偏光的回波信号。
进一步,可选地,第一1/4波片和第一1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
结构六,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片、第二1/2波片和第二1/4波片。
在一种可能的实现方式中,来自第一透镜组的回波信号的偏振态为第一圆偏光;基于上述结构六,第一1/4波片用于将来自第一透镜组的回波信号的偏振态由第一圆偏光转换为第一线偏光。第一1/2波片用于将偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二偏振片用于通过偏振态为第二线偏光的回波信号。第二1/2波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二1/4波片还用于将偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号。第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号。第二1/2波片用于将偏振态为第二线偏光的回波信号转换为偏振态为第一线偏光的回波信号。第二偏振片还用于吸收偏振态为第一线偏光的回波信号。
进一步,可选地,第一1/4波片和第一1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片和第二1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
第三方面,本申请提供一种激光雷达,包括上述第一方面或第一方面中的任意一种探测装置。
第四方面,本申请提供一种终端设备,包括上述第一方面或第一方面中的任意一种探测装置。
在一种可能的实现方式中,终端设备可以是智能手机、车辆、智能家居设备、智能制造设备、机器人、无人机、智能运输设备或测绘设备。
第五方面,本申请提供一种激光雷达,包括上述第二方面或第二方面中的任意一种探测器。
第六方面,本申请提供一种终端设备,包括上述第二方面或第二方面中的任意一种探测器。
在一种可能的实现方式中,终端设备可以是智能手机、车辆、智能家居设备、智能制造设备、机器人、无人机、智能运输设备或测绘设备。
上述第二方面至第六方面中任一方面可以达到的技术效果可以参照上述第一方面中有益效果的描述,此处不再重复赘述。
附图说明
图1为本申请提供的一种激光雷达的应用场景示意图;
图2为本申请提供的一种探测装置的结构示意图;
图3为本申请提供的一种第一偏振态转换组件的结构示意图;
图4a为本申请提供的一种在第一偏振态转换组件中的传播光路示意图;
图4b为本申请提供的另一种在第一偏振态转换组件中的传播光路示意图;
图5为本申请提供的又一种第一偏振态转换组件的结构示意图;
图6为本申请提供的另一种在第一偏振态转换组件中的传播光路示意图;
图7为本申请提供的又一种第一偏振态转换组件的结构示意图;
图8为本申请提供的另一种在第一偏振态转换组件中的传播光路示意图;
图9为本申请提供的又一种第一偏振态转换组件的结构示意图;
图10为本申请提供的另一种在第一偏振态转换组件中的传播光路示意图;
图11为本申请提供的又一种第一偏振态转换组件的结构示意图;
图12为本申请提供的另一种在第一偏振态转换组件中的传播光路示意图;
图13为本申请提供的又一种第一偏振态转换组件的结构示意图;
图14为本申请提供的另一种在第一偏振态转换组件中的传播光路示意图;
图15为本申请提供的一种第一透镜组的结构示意图;
图16a为本申请提供的一种发射模块的传播光路示意图;
图16b为本申请提供的另一种发射模块的传播光路示意图;
图17为本申请提供的一种第二透镜组的结构示意图;
图18为本申请提供的一种探测模块与第一偏振态转换组件的位置关系示意图;
图19a为本申请提供的一种扫描器的结构示意图;
图19b为本申请提供的一种扫描器的结构示意图;
图20为本申请提供的一种探测器的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
以下,对本申请中的部分用语进行解释说明。需要说明的是,这些解释是为了便于本领域技术人员理解,并不是对本申请所要求的保护范围构成限定。
一、线偏光
线偏光亦称为线偏振光或平面偏振光。在光的传播方向上,各点的电矢量在确定的平面内,这种光称为平面偏振光。由于电矢量端点的轨迹为一直线,因此称为线偏振光。光 矢量的方向和光的传播方向所构成的平面称为振动面。线偏振光的振动面固定不动,不会发生偏转。
二、圆偏光
圆偏光亦称为圆偏振光。旋转电矢量端点描出圆轨迹的光称为圆偏振光,是椭圆偏振光的特殊情况。当传播方向相同,振动方向相互垂直且相位差恒定为
Figure PCTCN2022078993-appb-000001
的两平面偏振光叠加后可合成电矢量有规则变化的圆偏振光。圆偏振光的电矢量大小保持不变,而方向随时间均匀变化。相位差为
Figure PCTCN2022078993-appb-000002
时为左旋圆偏振光,相位差为
Figure PCTCN2022078993-appb-000003
Figure PCTCN2022078993-appb-000004
时为右旋圆偏振光。
三、椭圆偏振光
椭圆偏振光是指光的电矢量或光矢量末端在垂直于传播方向的平面上描绘出的轨迹。当两个相互垂直的振动同时作用于一点时,若它们的频率相同并且有固定的位相差,则该点的合成振动的轨迹一般呈椭圆形。
在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,且电矢量端点描出一个椭圆轨迹,这种光称为椭圆偏振光。迎着光线方向看,凡电矢量顺时针旋转的称右旋椭圆偏振光,凡逆时针旋转的称左旋椭圆偏振光。椭圆偏振光中的旋转电矢量是由两个频率相同、振动方向互相垂直、有固定相位差的电矢量振动合成的结果。
四、1/4波片
1/4波片亦称为1/4推迟板。当法向入射的光透过时,出射的寻常光(o光)和异常光(e光)之间的相位差等于1/4波长。在光路中,1/4波片通常用来使线偏振光转换为圆偏振光或椭圆偏振光;或者,使圆偏振光或椭圆偏振光转换为线偏振光。示例性地,当线偏振光垂直入射1/4波片,并且光的偏振和1/4波片的光轴面(垂直自然裂开面)成θ角,出射后成椭圆偏振光。当θ=45°时,出射光为圆偏振光。
其中,光在单轴晶体中传播时发生双折射现象时,两束折射光中的一束折射光恒遵守通常的折射定律,这束光称为寻常光(ordinary light),简称o光;与o光振动方向垂直的偏光称为异常光(extraordinary light),简称e光。
五、1/2波片
1/2波片亦称为半波片。一定厚度的双折射晶体,当法向入射的光透过时,出射的寻常光和异常光之间的相位差等于1/2波长,这样的晶片称为1/2波片。在光路中,1/2波片用于改变偏振光的方向。当某一平面偏振光穿过1/2波片时,出射光仍为平面偏振光,只不过偏振光的振动面旋转了一定角度。示例性地,P线偏振光垂直入射1/2波片时,出射后成S线偏振光。圆偏振光或椭圆偏振光入射1/2波片时,出射光仍为圆偏光或椭圆偏振光,只是旋向相反。
六、偏振片
偏振片亦称为片光片,是一种光滤波器。偏振片用于吸收或反射一个偏振方向的光,透射另一个正交偏振方向的光。光的透射率与其偏振状态直接相关。偏振片通常可分为吸收型偏振片和反射型偏振片(reflective polarizer,RP)。吸收型偏振片可对入射的线偏振光的正交偏振分量之一强烈吸收,而对另一分量则吸收较弱。换言之,吸收型偏振片可以强烈吸收某一方向的线偏振光且透射偏振方向与被强烈吸收的方向垂直的光。反射型偏振片可以透射某一方向的线偏振光且可反射偏振方向与被透射的方向垂直的光。吸收型偏振片例如可以是二色性偏振片,反射型偏振片例如可以是利用双折射的偏振分束器。
需要说明的是,线偏光入射偏振片时,出射光仍为线偏光;圆偏振光或椭圆偏振光入射偏振片时,出射光为线偏光。
七、偏振方向
偏振方向亦成为偏振化方向。这是由于偏振片中存在着某种特征性的方向,叫做偏振化方向,偏振片只允许平行于偏振化方向的振动通过,同时吸收或反射垂直于该方向振动的光。
八、光轴
1/2波片或1/4波片的光轴均是指e光光矢量方向。
九、零级波片
波片按结构可分为多级波片、真零级波片和复合波片。多级是指除了小于一个波长的延迟外,光程还经过若干个全波长(也称为级次)的延迟。真零级波片的延迟量的波长敏感度低,温度稳定性高,接受有效角度大。
十、光学串扰
光学串扰指杂散光干扰了接收到的正常光。
十一、胶合
胶合也可称为粘合或叠合或贴合,是指将涂胶后或经过适当晾置的被粘表面叠合在一起的操作方法。
基于上述内容,如图1所示,为本申请提供的一种激光雷达的应用场景示意图。该激光雷达以一定方向发射激光束,若在沿激光束的发射方向的一定距离内存在目标,目标可将接收到的激光束反射回激光雷达(称为回波信号),激光雷达根据回波信号可确定出目标的信息,例如与目标的距离、目标的移动速度、目标的姿态或点云图等。应理解,该示例中是以部署于车辆前端的激光雷达示例的,该激光雷达可感知到如虚线框所示的扇形区域,该扇形区域可称为激光雷达的探测区域。
该应用场景例如可以为无人驾驶、自动驾驶、辅助驾驶、智能驾驶、网联车等;在该场景中,激光雷达可被安装在车辆(例如无人车、智能车、电动车、数字汽车等)上,作为车载激光雷达(如车载FMCW激光雷达)。车载激光雷达可以实时或周期性地获取探测到的到车辆的经纬度、速度、朝向、周围物体的距离等测量信息,再根据这些测量信息并结合高级驾驶辅助系统(advanced driving assistant system,ADAS)实现车辆的辅助驾驶或无人驾驶。例如,利用经纬度确定车辆的位置,或利用速度和朝向确定车辆在未来一段时间的行驶方向和目的,或利用周围物体的距离确定车辆周围的障碍物数量、密度等。车载激光雷达还可以实现测绘功能等。或者,激光雷达也可被安装在无人机上,作为机载激光雷达(如机载FMCW激光雷达)等。或者,激光雷达也可以安装在路边交通设备(如路侧单元(road side unit,RSU))上,作为路边交通激光雷达,从而可实现智能车路协同。
需要说明的是,如上应用场景只是举例,本申请所提供的激光雷达还可以应用在多种其它场景下,而不限于上述示例出的场景。例如,激光雷达还可应用于终端设备或设置于终端设备的部件中,终端设备例如可以是智能手机、智能家居设备、智能制造设备、机器人、无人机或智能运输设备(如自动导引运输车(automated guided vehicle,AGV)或者无人运输车等)等。另外,激光雷达也可以设置与车的两侧或者车尾等位置,本申请对此不做限定。
在激光雷达中,通常是探测器对接收到的回波信号进行光电转换,并根据转换后的电信号确定目标的信息。然而,由于探测器具有一定的反射率(如单光子雪崩二极管(single-photon avalanche diode,SPAD)等),因此可能会对接收到的回波信号中的一部分进行反射,这部分被反射的回波信号会与激光雷达中的透镜(或透镜组)相互反射,从而会再次进入探测器,形成串扰像;或者与目标之间相互反射形成虚假目标串扰像。
鉴于此,本申请提出一种探测装置。该探测装置可用于尽可能避免探测模块反射的回波信号产生的光学串扰。
下面结合附图2至附图19b,对本申请提出的探测装置进行具体阐述。
基于上述内容,如图2所示,为本申请提供的一种探测装置的结构示意图。该探测装置可包括发射模块201、接收模块202和探测模块203,接收模块包括第一透镜组2021和第一偏振态转换组件2022。其中,发射模块201可用于发射第一光束。具体地,发射模块201可向探测区域发射第一光束。第一透镜组2021用于接收来自探测区域中针对第一光束的回波信号,并将接收到的回波信号汇聚至第一偏振态转换组件2022。第一偏振态转换组件2022用于将来自第一透镜组2021的回波信号传播至探测模块203,以及用于对探测模块203反射的回波信号的偏振态进行转换以实现对探测模块反射的回波信号的吸收。也可以理解为,第一偏振态转换组件2022用于将来自第一透镜组2021的回波信号传播至探测模块203,并对探测模块203反射的回波信号的偏振态进行转换,偏振态转换后的回波信号可被该第一偏振态转换组件2022吸收。探测模块203用于将接收到的回波信号(即回波光信号)转换为电信号,该电信号可用于确定探测区域中的目标的信息。
基于上述探测装置,通过第一偏振态转换组件,可将探测模块反射的回波信号进行偏振态的转换以实现吸收探测模块反射的回波信号。如此,探测模块反射的回波信号不会再次进入探测模块,从而可避免探测模块反射的回波信号对来自探测区域的回波信号产生光学串扰,从而有助于提高探测装置探测的精确度以及目标的识别能力。特别是当探测装置应用于强光探测领域时,探测模块反射的回波信号强度较强,若被探测模块反射的回波信号再次进入探测模块时,会严重影响探测模块对来自探测区域的回波信号的探测。
此处,目标的信息例如可以是目标的距离信息、目标的深度图像和/或目标的点云图等。
需要说明的是,上述针对第一光束的回波信号是指目标对第一光束反射得到的回波信号。针对第一光束的回波信号的偏振态与射向探测区域的第一光束的偏振态相同,来自第一透镜组的回波信号的偏振态与针对第一光束的回波信号的偏振态相同。
还需要说明的是,第一偏振态转换组件也可转换来自第一透镜组的回波信号的偏振态,并将偏振态转换后的回波信号传播至探测模块,可参见下述图4a、图4b、图6、图7、图8或图14的介绍,此处不再重复赘述。也可以理解为,来自第一透镜组的回波信号的偏振态与第一偏振态转换组件传播至探测模块的回波信号的偏振态不同。换言之,第一偏振态转换组件可用于对来自第一透镜组的回波信号的偏振态进行转换,并将偏振态转换后的回波信号传播至探测模块。或者,第一偏振态转换组件可用于对来自第一透镜组的回波信号的偏振态进行转换,但第一偏振态转换组件传播至探测模块的回波信号的偏振态与来自第一透镜组的回波信号的偏振态相同,可参见下述图10或图12的介绍,此处不再重复赘述。也可以理解为,第一偏振态转换组件未改变来自第一透镜组的回波信号的偏振态。另外,传播至探测模块的回波信号的偏振态与探测模块反射的回波信号的偏振态相同。
还需要说明的是,传播至探测模块的回波信号中的大部分被探测模块转换为了电信号,少部分被探测模块反射(即探测模块反射的回波信号)。换言之,探测模块反射的回波信号是其接收到的回波信号中的一部分。
下面对图2所示的各个功能组件和结构分别进行介绍说明,以给出示例性的具体实现方案。为方便说明,下文中的发射模块201、接收模块202、探测模块203、第一透镜组2021和第一偏振态转换组件2022均未加标识。
在下文的介绍中,为了便于方案的说明,以第一偏振片允许第一线偏光通过且吸收第二线偏光为例;第二偏振片允许第二线偏光通过且吸收第一线偏光为例;附图是以第一线偏光为P线偏光,第二线偏光为S线偏光,第一圆偏光为左旋圆偏光,第二圆偏光为右旋圆偏光为例示例的。另外,下文中若无特别说明,回波信号在第一偏振态转换组件中的传播光路包括来自第一透镜组的回波信号在第一偏振态转换组件中的传播光路、以及探测模块反射的回波信号在第一偏振态转换组件中的传播光路。
一、第一偏振态转换组件
在下文的介绍中,第一偏振态转换组件包括的各个结构是指沿第一透镜组的主光轴、且从目标侧至探测模块的方向。
如下,示例性地的示出了六种第一偏振态转换组件的结构。
结构一,第一偏振态转换组件包括第一偏振片和第二1/4波片。
如图3所示,为本申请提供的一种第一偏振态转换组件的结构示意图。该第一偏振态转换组件依次包括第一偏振片和第二1/4波片。基于此结构,可通过简单的结构即可实现第一偏振态转换组件的功能。示例性地,第一偏振片和第二1/4波片可胶合于一起。
在一种可能的实现方式中,第二1/4波片的光轴与第一偏振片的偏振方向(或称为第一偏振片的偏振方向)之间的夹角为45°±0.2°。也可以理解为,第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45°,且允许有±0.2°的偏差。
基于来自第一透镜组的回波信号的偏振态的不同,下面分情形介绍第一偏振态转换组件实现对反射的回波信号的吸收的过程。
情形A,来自第一透镜组的回波信号的偏振态可以为第一线偏光。
基于该情形A,回波信号在第一偏振态转换组件中的传播光路可参见图4a,具体地:偏振态为第一线偏光的回波信号通过第一偏振片,并传播至第二1/4波片;偏振态为第一线偏光的回波信号经第二1/4波片后转换为偏振态为第二圆偏光的回波信号,并传播至探测模块;偏振态为第二圆偏光的回波信号被探测模块反射至第二1/4波片;第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号,并传播至第一偏振片;偏振态为第二线偏光的回波信号经第一偏振片后被吸收,即偏振态为第二线偏光的回波信号被第一偏振片截止。
情形B,来自第一透镜组的回波信号的偏振态可以为第一圆偏光。
基于该情形B,回波信号在第一偏振态转换组件中的传播光路可参见图4b,具体地:第一偏振片允许偏振态为第一圆偏光的回波信号中的偏振态为第一线偏光的回波信号通过,即第一偏振片允许偏振态为第一圆偏光的回波信号中的一部分回波信号(即偏振态为第一线偏光部分的回波信号)通过,换言之,偏振态为第一圆偏光的回波信号经过第一偏振片后转换为偏振态为第一线偏光的回波信号,即偏振态为第一线偏光的回波信号可传播 第二1/4波片;偏振态为第一线偏光的回波信号经第二1/4波片后转换为偏振态为第二圆偏光的回波信号,偏振态为第二圆偏光的回波信号被探测模块反射至第二1/4波片;第二1/4波片还用于将偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号,并传播至第一偏振片;偏振态为第二线偏光的回波信号经第一偏振片后被吸收。
结构二,第一偏振态转换组件包括第一1/4波片、第一偏振片和第二1/4波片。
如图5所示,为本申请提供的又一种第一偏振态转换组件的结构示意图。该第一偏振态转换组件依次包括第一1/4波片、第一偏振片和第二1/4波片。示例性地,第一1/4波片与第一偏振片的一面胶合于一起,第一偏振片的另一面与第二1/4波片胶合于一起。
在一种可能的实现方式中,第一1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°,以及,第二1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
基于上述图5所示的第一偏振态转换组件,来自第一透镜组的回波信号的偏振态为第一圆偏光。回波信号在第一偏振态转换组件中的传播光路可参见图6,具体地:偏振态为第一圆偏光的回波信号经第一1/4波片后转换为偏振态为第一线偏光的回波信号,并传播至第一偏振片;偏振态为第一线偏光的回波信号通过第一偏振片,并传播至第二1/4波片;偏振态为第一线偏光的回波信号经第二1/4波片后转换为偏振态为第二圆偏光的回波信号,并传播中探测模块;偏振态为第二圆偏光的回波信号被探测模块反射至第二1/4波片;第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号,并传播至第一偏振片;偏振态为第二线偏光的回波信号经第一偏振片后被吸收。
基于上述结构二,通过图6所示的光路,若因第一1/4波片、第一偏振片和第二1/4波片贴合误差等造成被探测模块反射回来的回波信号经过第二1/4波片后虽然阻隔了大部分,还可能残余一小部分第一线偏光会透过第一偏振片,从第一偏振片透过去的第一线偏光再次经过第一1/4波片后被目标再次反射回来,再次经第一1/4波片后偏振态转换为第二线偏光,可被第一偏振片再次吸收。即基于上述结构二的第一偏振态转换组件对探测模块反射的回波信号具有两次抑制作用,串扰隔离度较高,从而有助于进一步提高探测装置对目标识别的准确性。
结构三,第一偏振态转换组件包括第一偏振片、第二1/2波片和第二1/4波片。
如图7所示,为本申请提供的又一种第一偏振态转换组件的结构示意图。该第一偏振态转换组件依次包括第一偏振片、第二1/2波片和第二1/4波片。基于该结构三,通过第二1/2波片和第二1/4波片的组合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。示例性地,第一偏振片与第二1/2波片的一面胶合于一起,第二1/2波片的另一面与第二1/4波片胶合于一起。
在一种可能的实现方式中,第二1/4波片和第二1/2波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.2°。
基于上述图7所示的第一偏振态转换组件,来自第一透镜组的回波信号的偏振态为第一线偏光。回波信号在第一偏振态转换组件中的传播光路可参见图8,具体地:偏振态为第一线偏光的回波信号通过第一偏振片,并传播至第二1/2波片;偏振态为第一线偏光的回波信号经第二1/2波片后转换为偏振态为第二线偏光的回波信号,并传播至第二1/4波片;偏振态为第二线偏光的回波信号经第二1/4波片后转换为偏振态为第一圆偏光的回波信号,并传播至探测模块;偏振态为第一圆偏光的回波信号被探测模块反射至第二1/4波 片;第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号,并传播至第二1/2波片;偏振态为第一线偏光的回波信号经第二1/2波片后转换为偏振态为第二线偏光的回波信号,并传播至第一偏振片;偏振态为第二线偏光的回波信号经第一偏振片后被吸收。
结构四,第一偏振态转换组件包括第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片。
如图9所示,为本申请提供的又一种第一偏振态转换组件的结构示意图。该第一偏振态转换组件依次包括第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片。示例性地,第一1/4波片与第一偏振片的一面胶合于一起,第一偏振片的另一面与第二1/2波片的一面胶合于一起,第二1/2波片的另一面与第二1/4波片胶合于一起。
在一种可能的实现方式中,第一1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°;以及,第二1/4波片和第二1/2波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
基于上述图9所示的第一偏振态转换组件,来自第一透镜组的回波信号的偏振态为第一圆偏光。回波信号在第一偏振态转换组件中的传播光路可参见图10,具体地:偏振态为第一圆偏光的回波信号经第一1/4波片后转换为偏振态为第一线偏光的回波信号,并传播至第一偏振片;偏振态为第一线偏光的回波信号通过第一偏振片,并传播至第二1/2波片;偏振态为第一线偏光的回波信号经第二1/2波片后转换为偏振态为第二线偏光的回波信号,并传播至第二1/4波片;偏振态为第二线偏光的回波信号经第二1/4波片后转换为偏振态为第一圆偏光的回波信号,传播至探测模块;偏振态为第一圆偏光的回波信号被探测模块反射至第二1/4波片;偏振态为第一圆偏光的回波信号再次经第二1/4波片后转换为偏振态为第一线偏光的回波信号,即第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号,并传播至第二1/2波片;偏振态为第一线偏光的回波信号经第二1/2波片后转换为偏振态为第二线偏光的回波信号,并传播至第一偏振片;偏振态为第二线偏光的回波信号经第一偏振片后被吸收。
基于上述结构四,通过图10所示的光路,若因第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片贴合误差等造成被探测模块反射回来的回波信号经过第二1/4波片后虽然阻隔了大部分,还可能残余一小部分第一线偏光会透过第一偏振片,从第一偏振片透过去的第一线偏光再次经过第一1/4波片后被目标再次反射回来,再次经第一1/4波片后偏振态转换为第二线偏光,可被第一偏振片再次吸收。即基于上述结构四的第一偏振态转换组件对探测模块反射的回波信号具有两次抑制作用,串扰隔离度较高,从而有助于进一步提高探测装置对目标识别的准确性。而且通过第二1/2波片和第二1/4波片的组合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
结构五,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。
如图11所示,为本申请提供的又一种第一偏振态转换组件的结构示意图。该第一偏振态转换组件依次包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。示例性地,第一1/4波片和第一1/2波片的一面胶合于一起,第一1/2波片的另一面与第二偏振片的一面胶合于一起,第二偏振片的另一面与第二1/4波片胶合于一起。
需要说明的是,第一偏振片的偏振方向与第二偏振片的偏振方向之间的夹角为90度。
在一种可能的实现方式中,第一1/4波片和第一1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°;以及,第二1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
基于上述图11所示的第一偏振态转换组件,来自第一透镜组的回波信号的偏振态为第一圆偏光。回波信号在第一偏振态转换组件中的传播光路可参见图12,具体地:偏振态为第一圆偏光的回波信号经第一1/4波片后转换为偏振态为第一线偏光的回波信号,并传播至第一1/2波片;偏振态为第一线偏光的回波信号经第一1/2波片后转换为偏振态为第二线偏光的回波信号,并传播至第二偏振片;偏振态为第二线偏光的回波信号通过第二偏振片,并传播至第二1/4波片;偏振态为第二线偏光的回波信号经第二1/4波片后转换为偏振态为第一圆偏光的回波信号,并传播至探测模块;第二1/4波片还用于将通过探测模块反射的偏振态为第一圆偏光的回波信号转换为偏振态为第一线偏光的回波信号,并传播至第二偏振片;偏振态为第一线偏光的回波信号经第二偏振片后被吸收。
基于上述结构五,通过图12所示的光路,若因第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片贴合误差等造成被探测模块反射回来的回波信号经过第二1/4波片后虽然阻隔了大部分,还可能残余一小部分第二线偏光会透过第二偏振片,从第二偏振片透过去的第二线偏光再次经过第一1/2波片和第一1/4波片后被目标再次反射回来,再次经第一1/2波片和第一1/4波片后偏振态转换为第一线偏光,可被第二偏振片再次吸收。即基于上述结构五的第一偏振态转换组件对探测模块反射的回波信号具有两次抑制作用,串扰隔离度较高,从而有助于进一步提高探测装置对目标识别的准确性。而且通过第一1/2波片和第一1/4波片的组合,可以消除色散,从而可使得该探测装置在高温或低温下波长漂移时,也具有较好的抑制串扰的作用。
结构六,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片、第二1/2波片和第二1/4波片。
如图13所示,为本申请提供的又一种第一偏振态转换组件的结构示意图。该第一偏振态转换组件依次包括第一1/4波片、第一1/2波片、第二偏振片、第二1/2波片和第二1/4波片。
在一种可能的实现方式中,第一1/4波片和第一1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°;以及,第二1/4波片和第二1/2波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
基于上述图13所示的第一偏振态转换组件,来自第一透镜组的回波信号的偏振态为第一圆偏光。回波信号在第一偏振态转换组件中的传播光路可参见图14,具体地:偏振态为第一圆偏光的回波信号经第一1/4波片后转换为偏振态为第一线偏光的回波信号,并传播至第一1/2波片;偏振态为第一线偏光的回波信号经第一1/2波片后转换为偏振态为第二线偏光的回波信号,并传播至第二偏振片;偏振态为第二线偏光的回波信号通过第二偏振片,并传播中第二1/2波片;偏振态为第二线偏光的回波信号经第二1/2波片后转换为偏振态为第一线偏光的回波信号,并传播至第二1/4波片;偏振态为第一线偏光的回波信号经第二1/4波片后转换为偏振态为第二圆偏光的回波信号,并将偏振态为第二圆偏光的回波信号传播中探测模块;第二1/4波片还用于将通过探测模块反射的偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号,并将偏振态为第二线偏光的回波信 号传播中第二1/2波片;偏振态为第二线偏光的回波信号经第二1/2波片后转换为偏振态为第一线偏光的回波信号;偏振态为第一线偏光的回波信号经第二偏振片后被吸收。
需要说明的是,上述第一偏振片和第二偏振片可为吸收型偏振片。
还需要说明的是,在上述六个结构的第一偏振态转换组件的传播光路的介绍中,若无特别说明,第一光束的偏振态是指射入探测区域的第一光束的偏振态。
通过上述各个结构的第一偏振态转换组件,有助于提高接收模块设计的灵活性。
二、第一透镜组
在一种可能的实现方式中,第一透镜组件用于接收来自探测区域中针对第一光束的回波信号,并将回波信号汇聚至第一偏振态转换组件。
示例性地,第一透镜组可以是单个球面透镜、多个球面透镜、单个非球面透镜、或多个非球面透镜等。其中,单个透镜可以是凹凸透镜;多个球面透镜可以是凸透镜和凹透镜的组合,也可以是凹透镜的组合,或者凸透镜的组合。由于凸透镜和凹透镜有多种不同的形状,例如凸透镜有双凸透镜,平凸透镜以及凹凸透镜;凹透镜有双凹透镜,平凹透镜以及凹凸透镜。此处不限定凸透镜和凹透镜的具体形状,凡是能够满足将来自探测区域中针对第一光束的回波信号尽可能传输至探测模块的单个透镜或者多个透镜的组合均适用于本申请。进一步,可选地,第一透镜组还可用于尽可能的收集目标针对第一光束反射后的回波信号,以提高探测装置的探测距离的范围和灵敏度。因此,第一透镜组朝向探测区域的通光口径较大的时候,可以接收到较多的回波信号。
如图15所示,为本申请提供的一种第一透镜组的结构示意图。该第一透镜组可包括一个凹凸透镜。该凹凸透镜的凹面朝向探测区域,以尽可能的接收来自探测区域中针对第一光束的回波信号。
需要说明的是,可以将回波信号传播至探测模块的任意结构均可以,第一透镜组仅是一种可能的示例。
三、发射模块
在一种可能的实现方式中,发射模块用于向探测区域发射第一光束。进一步,可选地,射入探测模块的第一光束的偏振态可以是第一线偏光,也可以是第一圆偏光。下面基于发射模块发射的第一光束的偏振态分情形进行介绍。
情形1,发射模块射入探测区域的第一光束的偏振态是第一线偏光。
基于该情形1,发射模块可包括光源模块,光源模块用于发射偏振态为第一线偏光的第一光束,并将偏振态为第一线偏光的第一光束射向探测区域。
情形2,发射模块射入探测区域的第一光束的偏振态是第一圆偏光。
基于该情形2,如下示例性地的示出了三种可能的发射模块的结构。
结构1,发射模块包括光源模块和第二偏振态转换组件,其中,第二偏振态转换组件包括第三1/4波片。
在一种可能的实现方式中,光源模块用于发射偏振态为第一线偏光的第一光束;第三1/4波片用于将偏振态为第一线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。基于该结构的发射模块的传播光路可参见图16a,光源模块发射偏振态为第一线偏光的第一光束,并传播至第三1/4波片;偏振态为第一线偏光的第一光束经第三1/4波片后转换为偏振态为第一圆偏光的第一光束。
结构2,发射模块包括光源模块和第二偏振态转换组件,其中,第二偏振态转换组件 包括第三1/2波片和第三1/4波片。
在一种可能的实现方式中,光源模块用于发射偏振态为第二线偏光的第一光束;第三1/2波片用于将偏振态为第二线偏光的第一光束转换为偏振态为第一线偏光的第一光束;第三1/4波片用于将偏振态为第一线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。基于该结构的发射模块的传播光路可参见图16b,光源模块用于发射偏振态为第二线偏光的第一光束,并传播至第三1/2波片;偏振态为第二线偏光的第一光束经第三1/2波片后转换为偏振态为第一线偏光的第一光束,偏振态为第一线偏光的第一光束经第三1/4波片后转换为偏振态为第一圆偏光的第一光束。
结构3,发射模块包括光源模块。
在一种可能的实现方式中,光源模块用于发射偏振态为第一圆偏光的第一光束,并将该偏振态为第一圆偏光的第一光束射入探测区域。
需要说明的是,上述光源模块可以是分布式反馈(distributed feedback,DFB)激光器或分布式布拉格反射(distributed bragg reflector,DBR)激光器。光源模块发射的第一光束的波长范围可以在1550nm波段范围,或者也可以在905nm波段范围,或者也可以在940nm波段范围。应理解,通常情况下,光源模块发射的光束的偏振态为线偏光。
进一步,可选地,发射模块还可包括第二透镜组,第二透镜组可以是单个透镜,或者也可以是多个透镜。其中,透镜可以是简单的球面透镜或者非球面透镜,例如,凹透镜或凸透镜。单个透镜可以为凸透镜;透镜组可以是凸透镜和凹透镜的组合,也可以是凹透镜的组合,或者凸透镜的组合。由于凸透镜和凹透镜有多种不同的形状,例如凸透镜有双凸透镜,平凸透镜以及凹凸透镜;凹透镜有双凹透镜,平凹透镜以及凹凸透镜。此处不限定凸透镜和凹透镜的具体形状,凡是能够满足将来自光源模块的第一光束尽可能传输至探测区域的单个透镜或者多个透镜的组合均适用于本申请。进一步,可选地,由于来自光源模块的第一光束的发散角可能比较大,而且可能存在像散质量差的光束,因此发射模块还可以对第一光束进行准直和整形,从而使发射至探测区域的第一光束的发散角较小,能有较多的第一光束照射到探测区域。
如图17所示,为本申请提供的一种第二透镜组的结构示意图。该第二透镜组以三个透镜为例,依次为凹凸透镜1、凹凸透镜2和双凸透镜3。其中,凹凸透镜1朝向光源模块的面为凹面,朝向凹凸透镜2的面为凸面;凹凸透镜2朝向凹凸透镜1的面为凸面,朝向双凸透镜3的面为凹面。
基于上述发射模块与接收模块的可能结构,如下,示例性地的示出了发射模块与接收模块可能的组合情形。
情形1,发射模块为上述情形2中的结构1,基于接收模块的不同结构,可分如下五种可能的情形。
情形1.1,发射模块为上述情形2中的结构1,接收模块为上述结构一。
此处,第二偏振态转换组件包括第三1/4波片,第一偏振态转换组件依次包括第一偏振片和第二1/4波片。其中,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
情形1.2,发射模块为上述情形2中的结构1,接收模块为上述结构二。
此处,第二偏振态转换组件包括第三1/4波片,第一偏振态转换组件包括第一1/4波 片、第一偏振片和第二1/4波片。其中,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第一1/4波片的光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第一1/4波片的光轴与第三1/4波片的光轴正交。
情形1.3,发射模块为上述情形2中的结构1,接收模块为上述结构四。
此处,第二偏振态转换组件包括第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片。其中,第三1/4波片的光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第一1/4波片的光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第一1/4波片的光轴与第三1/4波片的光轴正交。
情形1.4,发射模块为上述情形2中的结构1,接收模块为上述结构五。
此处,第二偏振态转换组件包括第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。其中,第三1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴正交。
情形1.5,发射模块为上述情形2中的结构1,接收模块为上述结构六。
此处,第二偏振态转换组件包括第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片、第二1/2波片和第二1/4波片。其中,第三1/4波片的光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/4波片的光轴正交。
情形2,发射模块为上述情形2中的结构2,基于接收模块的不同结构,也可分如下五种可能的情形。
情形2.1,发射模块为上述情形2中的结构2,接收模块为上述结构一。
此处,第二偏振态转换组件包括第三1/2波片和第三1/4波片,第一偏振态转换组件依次包括第一偏振片和第二1/4波片。其中,第三1/2波片和第三1/4波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
情形2.2,发射模块为上述情形2中的结构2,接收模块为上述结构二。
此处,第二偏振态转换组件包括第三1/2波片和第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一偏振片和第二1/4波片。其中,第三1/2波片和第三1/4波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴正交。
情形2.3,发射模块为上述情形2中的结构2,接收模块为上述结构四。
此处,第二偏振态转换组件包括第三1/2波片和第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一偏振片、第二1/2波片和第二1/4波片。其中,第三1/2波片和第三1/4波片的等效光轴与第一偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向平行,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第一偏振片的偏振方向正交,第三1/2波片和第三1/4波片的等效光轴与第一1/4波片的光轴正交。
情形2.4,发射模块为上述情形2中的结构2,接收模块为上述结构五。
此处,第二偏振态转换组件包括第三1/2波片和第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。其中,第三1/2波片和第三1/4波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴正交。
情形2.5,发射模块为上述情形2中的结构2,接收模块为上述结构六。
此处,第二偏振态转换组件包括第三1/2波片和第三1/4波片,第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片、第二1/2波片和第二1/4波片。其中,第三1/2波片和第三1/4波片的等效光轴与第二偏振片的偏振方向之间的夹角为45±0.5°。
进一步,可选地,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向平行,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴平行;或者,光源模块发射的偏振态为第一线偏光的第一光束的偏振方向与第二偏振片的偏振方向正交,第一1/4波片和第一1/2波片的等效光轴与第三1/2波片和第三1/4波片的等效光轴正交。
需要说明的是,发射模块为上述情形2中的结构1或结构2时,发射模块射入探测区域的第一光束的偏振态为第一圆偏光,因此,接收模块可为上述结构一中的情形B、结构二、结构四、结构五和结构六。
还需要说明的是,发射模块也可为上述情形1,接收模块可为上述结构三;或者,发射模块为上述情形2中结构3,接收模块可为上述结构一中的情形B、结构二、结构四、结构五或结构六;此处不再重复赘述。
上述第一1/4波片、第二1/4波片、第三1/4波片、第一偏振片、第二偏振片的材料可以是塑料,或者也可以是玻璃。第一1/4波片、第二1/4波片和第三1/4波片通常均为零级1/4波片,如此,有助于对探测模块反射的大角度的回波信号也能实现较好的抑制作用。
四、探测模块
在一种可能的实现方式中,探测模块可用于对接收到的回波信号进行光电转换,得到电信号,该电信号用于确定探测区域中的目标的信息。进一步,探测模块还可用于反射接收到的部分回波信号。也可以理解为,探测模块可用于接收来自第一偏振态转换组件的回波信号,并对接收到的回波信号中的大部分进行光电转换,少部分进行反射。
示例性地,探测模块例如可以是光电探测器(photon detector,PD)、SPAD、P型半导体-本征层-N型半导体(positive intrinsic negative,PIN)型光电二极管(亦称为PIN结二极管)、或雪崩光电二极管(avalanche photodiode,APD);探测器阵列可为SPAD阵列、PIN型光电二极管阵列、或APD阵列等。其中,SPAD是一种具有单光子探测能力的光电探测雪崩二极管,具有较高的灵敏度,检测到一个光子即会被触发,触发之后通常需要约10ns的时间恢复至初始状态,因此被广泛应用于激光雷达。
在一种可能的实现方式中,第一偏振态转换组件可位于探测模块上。例如第一偏振态转换组件可胶合于探测模块的保护玻璃上,可参见图18。如此,便于该探测装置的制备和组装。或者,第一偏振态转换组件可代替探测模块上的保护玻璃,例如第一偏振态转换组件可胶合于探测模块上。如此,有助于探测装置的小型化。需要说明的是,第一偏振态转换组件的结构可参见前述相关描述,此处不再重复赘述。
在一种可能的实现方式中,探测装置还可包括扫描模块,如下对扫描模块进行详细介绍。
五、扫描模块
在一种可能的实现方式中,扫描模块可用于改变来自发射模块的第一光束的传播方向,以将第一光束射向探测区域的不同位置,从而实现对探测区域的扫描。示例性地,扫描模块可用于在不同的扫描角度下,将来自发射模块的第一光束分别射向探测区域,以实现对探测区域的扫描。
在一种可能的实现方式中,扫描模块可以为扫描器,例如反射式扫描器。反射式扫描器包括但不限于机械旋转镜或微机电系统(micro electro-mechanical system,MEMS)反射镜。反射式扫描器是通过机械转动来改变扫描角度,从而实现扫描器在不同的方向上对探测区域进行扫描。可选地,扫描器可以是连续运转模式,也可以是步进运转模式,本申请对此不做限定。
示例性地,探测装置可预设多个扫描角度,扫描模块可以在多个不同的扫描角度的每个扫描角度下分别将来自发射模块的第一光束射向探测区域。如图19a所示,为本申请提供的一种扫描器的结构示意图。该扫描器可以在二维方向(水平方向和垂直方向)上变换扫描角度,变换扫描角度也可理解为使得扫描器处于不同的扫描角度下。进一步,可选地,可以是处理模块控制扫描器在二维方向上旋转,使扫描器处于不同扫描角度,并分别将来自发射模块的第一光束射向探测区域。例如,处理模块可控制扫描器先水平方向旋转后垂直方向旋转,或者先垂直方向旋转后水平方向旋转,或者垂直方向和水平方向一起旋转,或者水平方向和垂直方向交替旋转等,从而实现对探测区域的扫描。
如图19b所示,为本申请提供的另一种扫描器的结构示意图。该扫描器可以在一维方向(水平方向)上变换扫描角度,使得扫描器处于不同的扫描角度下。通过一维扫描器,可进一步简化探测装置达的体积,且有助于简化处理模块控制扫描器的复杂度。
在另一种可能的实现方式中,扫描模块的功能也可通过光学相控阵(optical phased  array,OPA)来实现。OPA工作原理为:通过调节从各个相控单元(如光学移相器)辐射出的光波之间的相位关系,使其在设定方向上彼此同相,产生相互加强的干涉,干涉的结果是在该方向上产生一束高强度光束,而在其他方向上从各相控单元射出的光波都不满足彼此同相的条件,干涉的结果彼此相抵消,因此,辐射强度接近于零。组成相控阵的各相控单元可在处理模块的控制下,可使一个高强度激光束或多个高强度激光束的按设计的指向实现扫描。
应理解,探测装置通常是两个相互隔离的光路(即发射光路和接收光路),发射光路和接收光路互不影响。示例性地,针对第一光束的回波信号可以不经过该扫描模块。
需要说明的是,探测装置还可包括其它的模块,例如处理模块,处理模块可用于接收来自探测模块的电信号,并根据接收到的电信号确定目标的信息。
基于上述描述的探测装置的结构和功能原理,本申请还可以提供一种激光雷达。该激光雷达可以包括上述任一实施例中的探测装置。进一步,可选地,该激光雷达还可包括处理模块,该处理模块可用于接收来自探测装置的电信号,并根据接收到的电信号确定目标的信息。
基于上述描述的探测装置的结构和功能原理,本申请还可以提供一种终端设备,该终端设备可以包括上述任一实施例中探测装置。进一步,可选地,该终端设备还可包括处理器,该处理器可用于接收来自探测装置的电信号,并根据接收到的电信号确定目标的信息。
进一步,可选地,该处理器还可根据确定出的目标的信息,对终端设备的行驶路径进行规划。例如躲避行驶路径上的障碍物等。当然,该终端设备还可以包括其他器件,例如存储器和无线通信装置等。
示例性地,该终端设备例如可以是包括车辆(例如无人车、智能车、电动车、数字汽车等)、机器人、测绘设备、无人机、智能家居设备、智能制造设备、或智能运输设备(如自动导引运输车(automated guided vehicle,AGV)或者无人运输车等)等。
如图20所示,为本申请提供的一种探测器的结构示意图。该探测器可包括探测模块2001和第一偏振态转换组件2002;第一偏振态转换组件2002用于接收来自探测区域的、对应于发射模块发射的第一光束的回波信号,以及,传播回波信号到探测模块。此处,对应于发射模块发射的第一光束的回波信号即为上述针对第一光束的回波信号。探测模块2001用于将接收到的回波信号转换为电信号,该电信号用于确定探测区域中的目标的信息;第一偏振态转换组件2002还用于对探测模块反射的回波信号的偏振态进行转换以实现对探测模块反射的回波信号的吸收。
基于上述探测器,通过第一偏振态转换组件,可将探测模块反射的回波信号进行偏振态的转换以实现吸收探测模块反射的回波信号。如此,探测模块反射的回波信号不会再次进入探测模块,从而可有助于避免探测模块反射的回波信号对来自探测区域的回波信号产生光学串扰。
关于探测模块2001的可能的实现方式可参见前述探测模块203的相关介绍,关于第一偏振态转换组件2002的可能的实现方式可参见前述第一偏振态转换组件2022的相关介绍,此处不再重复赘述。
在一种可能的实现方式中,第一偏振态转换组件2002可位于探测模块2001上。例如第一偏振态转换组件2002可粘合于探测模块2001的保护玻璃上;或者,第一偏振态转换 组件2002可代替探测模块2001上的保护玻璃。
基于上述描述的探测器的结构和功能原理,本申请还可以提供一种激光雷达,该激光雷达可以包括上述任一实施例中的探测器。进一步,可选地,该激光雷达还可包括处理器,该处理器可用于接收来自探测器的电信号,并根据接收到的电信号确定目标的信息。
基于上述描述的探测器的结构和功能原理,本申请还可以提供一种终端设备,该终端设备可以包括上述任一实施例中探测器。进一步,可选地,该终端设备还可包括处理器。终端设备中的处理器可用于接收来自探测器的电信号,并根据电信号确定目标的信息。
进一步,可选地,该处理器还可根据确定出的目标的信息,对终端设备的行驶路径进行规划。例如躲避行驶路径上的障碍物等。当然,该终端设备还可以包括其他器件,例如存储器和无线通信装置等。
示例性地,该终端设备例如可以是包括车辆(例如无人车、智能车、电动车、数字汽车等)、机器人、测绘设备、无人机、智能家居设备、智能制造设备、或智能运输设备(如自动导引运输车(automated guided vehicle,AGV)或者无人运输车等)等。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“均匀”不是指绝对的均匀,可以允许有一定的误差。“垂直”不是指绝对的垂直,可以允许有一定的误差。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系。在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。例如前述提到的“1/2”、“1/4”。另外,在本申请中,“示例性地”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。或者可理解为,使用示例的一词旨在以具体方式呈现概念,并不对本申请构成限定。
可以理解的是,在本申请中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。术语“第一”、“第二”等类似表述,是用于分区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的方案进行示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种探测装置,其特征在于,包括发射模块、接收模块和探测模块,所述接收模块包括第一透镜组和第一偏振态转换组件;
    所述发射模块,用于发射第一光束;
    所述第一透镜组,用于接收来自探测区域中针对所述第一光束的回波信号,并将所述回波信号汇聚至所述第一偏振态转换组件;
    所述第一偏振态转换组件,用于将来自所述第一透镜组的回波信号传播至所述探测模块,以及用于对所述探测模块反射的回波信号的偏振态进行转换以实现对所述反射的回波信号的吸收;
    所述探测模块,用于将接收到的回波信号转换为电信号,所述电信号用于确定所述探测区域中的目标的信息。
  2. 如权利要求1所述的探测装置,其特征在于,所述第一偏振态转换组件包括第二1/4波片和第一偏振片。
  3. 如权利要求2所述的探测装置,其特征在于,所述来自所述第一透镜组的回波信号的偏振态为第一线偏光或第一圆偏光;
    所述第一偏振片,用于通过偏振态为第一线偏光的回波信号;
    所述第二1/4波片,用于将通过所述第一偏振片的、所述偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号;
    所述第二1/4波片,还用于将通过所述探测模块反射的所述偏振态为第二圆偏光的回波信号转换为偏振态为第二线偏光的回波信号;
    所述第一偏振片,还用于吸收所述偏振态为第二线偏光的回波信号。
  4. 如权利要求2或3所述的探测装置,其特征在于,所述第一偏振态转换组件还包括第一1/4波片。
  5. 如权利要求4所述的探测装置,其特征在于,所述来自所述第一透镜组的回波信号的偏振态为第一圆偏光;
    所述第一1/4波片,用于将所述来自所述第一透镜组的回波信号的偏振态由所述第一圆偏光转换为所述第一线偏光。
  6. 如权利要求2所述的探测装置,其特征在于,所述第一偏振态转换组件还包括第二1/2波片。
  7. 如权利要求6所述的探测装置,其特征在于,所述来自所述第一透镜组的回波信号的偏振态为第一线偏光;
    所述第一偏振片,用于通过偏振态为第一线偏光的回波信号;
    所述第二1/2波片,用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号;
    所述第二1/4波片,用于将所述偏振态为第二线偏光的回波信号转换为偏振态为第一圆偏光的回波信号;
    所述第二1/4波片,还用于将通过所述探测模块反射的所述偏振态为第一圆偏光的回波信号转换为所述偏振态为第一线偏光的回波信号;
    所述第二1/2波片,还用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第 二线偏光的回波信号;
    所述第一偏振片,还用于吸收所述偏振态为第二线偏光的回波信号。
  8. 如权利要求2所述的探测装置,其特征在于,所述第一偏振态转换组件还包括第一1/4波片和第二1/2波片。
  9. 如权利要求8所述的探测装置,其特征在于,所述来自所述第一透镜组的回波信号的偏振态为第一圆偏光;
    所述第一1/4波片,用于将所述来自所述第一透镜组的回波信号的偏振态由所述第一圆偏光转换为第一线偏光;
    所述第一偏振片,用于通过所述偏振态为第一线偏光的回波信号;
    所述第二1/2波片,用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号;
    所述第二1/4波片,用于将所述偏振态为第二线偏光的回波信号转换为偏振态为第一圆偏光的回波信号;
    所述第二1/4波片,还用于将通过所述探测模块反射的所述偏振态为第一圆偏光的回波信号转换为所述偏振态为第一线偏光的回波信号;
    所述第二1/2波片,还用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号;
    所述第一偏振片,还用于吸收所述偏振态为第二线偏光的回波信号。
  10. 如权利要求1所述的探测装置,其特征在于,所述第一偏振态转换组件包括第一1/4波片、第一1/2波片、第二偏振片和第二1/4波片。
  11. 如权利要求10所述的探测装置,其特征在于,所述来自所述第一透镜组的回波信号的偏振态为第一圆偏光;
    所述第一1/4波片,用于将所述来自所述第一透镜组的回波信号的偏振态由所述第一圆偏光转换为第一线偏光;
    所述第一1/2波片,用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号;
    所述第二偏振片,用于通过所述偏振态为第二线偏光的回波信号;
    所述第二1/4波片,用于将所述偏振态为第二线偏光的回波信号转换为第一圆偏光的回波信号;
    所述第二1/4波片,还用于将通过所述探测模块反射的所述偏振态为第一圆偏光的回波信号转换为所述偏振态为第一线偏光的回波信号;
    所述第二偏振片,还用于吸收所述偏振态为第一线偏光的回波信号。
  12. 如权利要求10或11所述的探测装置,其特征在于,所述第一偏振态转换组件还包括第二1/2波片。
  13. 如权利要求12所述的探测装置,其特征在于,所述来自所述第一透镜组的回波信号的偏振态为第一圆偏光;
    所述第一1/4波片,用于将所述来自所述第一透镜组的回波信号的偏振态由所述第一圆偏光转换为第一线偏光;
    所述第一1/2波片,用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第二线偏光的回波信号;
    所述第二偏振片,用于通过所述偏振态为第二线偏光的回波信号;
    所述第二1/2波片,用于将所述偏振态为第二线偏光的回波信号转换为偏振态为第一线偏光的回波信号;
    所述第二1/4波片,还用于将所述偏振态为第一线偏光的回波信号转换为偏振态为第二圆偏光的回波信号;
    所述第二1/4波片,还用于将通过所述探测模块反射的所述偏振态为第二圆偏光的回波信号转换为所述偏振态为第二线偏光的回波信号;
    所述第二1/2波片,用于将所述偏振态为第二线偏光的回波信号转换为偏振态为第一线偏光的回波信号;
    所述第二偏振片,还用于吸收所述偏振态为第一线偏光的回波信号。
  14. 如权利要求1至5任一项、或8至13任一项所述的探测装置,其特征在于,所述发射模块包括光源模块和第二偏振态转换组件;
    所述光源模块,用于发射偏振态为第一线偏光的第一光束;
    所述第二偏振态转换组件,用于将所述偏振态为第一线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。
  15. 如权利要求14所述的探测装置,其特征在于,所述第二偏振态转换组件包括第三1/4波片。
  16. 如权利要求1至5任一项、或8至13任一项所述的探测装置,其特征在于,所述发射模块包括光源模块和第二偏振态转换组件;
    所述光源模块,用于发射偏振态为第二线偏光的第一光束;
    所述第二偏振态转换组件,用于将所述偏振态为第二线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。
  17. 如权利要求16所述的探测装置,其特征在于,所述第二偏振态转换组件包括第三1/2波片和第三1/4波片;
    所述第三1/2波片,用于将所述偏振态为第二线偏光的第一光束转换为偏振态为第一线偏光的第一光束;
    所述第三1/4波片,用于将所述偏振态为第一线偏光的第一光束转换为偏振态为第一圆偏光的第一光束。
  18. 如权利要求1至17任一项所述的探测装置,其特征在于,所述第一偏振态转换组件位于所述探测模块上。
  19. 一种探测器,其特征在于,包括探测模块和第一偏振态转换组件;
    所述第一偏振态转换组件,用于接收来自探测区域的、对应于发射模块发射的第一光束的回波信号,以及,传播所述回波信号到所述探测模块;
    所述探测模块,用于将接收到的回波信号转换为电信号,所述电信号用于确定所述探测区域中的目标的信息;
    所述第一偏振态转换组件,还用于对所述探测模块反射的所述回波信号的偏振态进行转换以实现对所述探测模块反射的回波信号的吸收。
  20. 一种激光雷达,其特征在于,包括如权利要求1至18任一项所述的探测装置;或者,包括如权利要求19所述的探测器。
  21. 一种终端设备,其特征在于,包括如权利要求1至18任一项所述的探测装置;或 者,包括如权利要求19所述的探测器。
  22. 如权利要求21所述的终端设备,其特征在于,所述终端设备包括以下任一项:
    智能手机、智能家居设备、智能制造设备、机器人、无人机或智能运输设备。
PCT/CN2022/078993 2021-03-09 2022-03-03 一种探测装置、探测器、激光雷达及终端设备 WO2022188687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110256534.0A CN115047431A (zh) 2021-03-09 2021-03-09 一种探测装置、探测器、激光雷达及终端设备
CN202110256534.0 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022188687A1 true WO2022188687A1 (zh) 2022-09-15

Family

ID=83156480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078993 WO2022188687A1 (zh) 2021-03-09 2022-03-03 一种探测装置、探测器、激光雷达及终端设备

Country Status (2)

Country Link
CN (1) CN115047431A (zh)
WO (1) WO2022188687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719040A (zh) * 2022-09-16 2023-09-08 荣耀终端有限公司 传感器组件及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213763A (zh) * 2011-04-11 2011-10-12 哈尔滨工业大学 基于锁模激光器的相干多普勒测风激光雷达测距系统及测距方法
CN109212690A (zh) * 2018-10-29 2019-01-15 青岛海信宽带多媒体技术有限公司 单纤双向光组件及光模块
US20190257927A1 (en) * 2018-02-16 2019-08-22 Xiaotian Steve Yao Optical sensing based on wavelength division multiplexed (wdm) light at different wavelengths in light detection and ranging lidar systems
CN111929700A (zh) * 2019-05-13 2020-11-13 华为技术有限公司 一种光探测系统及方法
CN112147595A (zh) * 2019-06-27 2020-12-29 华为技术有限公司 激光探测的装置、方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102213763A (zh) * 2011-04-11 2011-10-12 哈尔滨工业大学 基于锁模激光器的相干多普勒测风激光雷达测距系统及测距方法
US20190257927A1 (en) * 2018-02-16 2019-08-22 Xiaotian Steve Yao Optical sensing based on wavelength division multiplexed (wdm) light at different wavelengths in light detection and ranging lidar systems
CN109212690A (zh) * 2018-10-29 2019-01-15 青岛海信宽带多媒体技术有限公司 单纤双向光组件及光模块
CN111929700A (zh) * 2019-05-13 2020-11-13 华为技术有限公司 一种光探测系统及方法
CN112147595A (zh) * 2019-06-27 2020-12-29 华为技术有限公司 激光探测的装置、方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116719040A (zh) * 2022-09-16 2023-09-08 荣耀终端有限公司 传感器组件及电子设备

Also Published As

Publication number Publication date
CN115047431A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN108226899B (zh) 激光雷达及其工作方法
US20230184905A1 (en) Optical system of laser radar, and laser radar system
CN110161517B (zh) 激光雷达系统和激光扫描控制方法
WO2021012132A1 (zh) 一种激光雷达系统
US20210341610A1 (en) Ranging device
CN108761424A (zh) 激光雷达及激光雷达控制方法
CN210015229U (zh) 一种距离探测装置
US10788574B2 (en) LIDAR device and LIDAR system including the same
CN109946710B (zh) 一种双波长多偏振激光成像装置
WO2021168832A1 (zh) 一种激光探测系统及车辆
US20230273300A1 (en) Scanner, and coaxial and non-coaxial radar systems using same
CN115542345A (zh) Fmcw激光雷达、自动驾驶系统及可移动设备
WO2022188687A1 (zh) 一种探测装置、探测器、激光雷达及终端设备
RU2362120C1 (ru) Лазерный дальномер
CN111399218A (zh) 一种基于偏振光栅的激光雷达光束扫描系统
EP3953734A1 (en) Continuous-wave light detection and ranging (lidar) system
US20210341588A1 (en) Ranging device and mobile platform
WO2020237500A1 (zh) 一种测距装置及其扫描视场的控制方法
JP6424364B2 (ja) レーザレンジファインダ、3次元スキャナおよびレーザ光偏向装置
WO2023225963A1 (zh) 一种扫描装置、激光雷达和终端
CN115047428A (zh) 激光雷达
CN219285407U (zh) 发射模组及激光雷达
CN219302659U (zh) 发射模组及激光雷达
CN211905854U (zh) 一种基于偏振光栅的激光雷达光束扫描系统
TW202407381A (zh) 雷射探測系統及車輛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766213

Country of ref document: EP

Kind code of ref document: A1