WO2023071516A1 - 一种xbar滤波器 - Google Patents

一种xbar滤波器 Download PDF

Info

Publication number
WO2023071516A1
WO2023071516A1 PCT/CN2022/116493 CN2022116493W WO2023071516A1 WO 2023071516 A1 WO2023071516 A1 WO 2023071516A1 CN 2022116493 W CN2022116493 W CN 2022116493W WO 2023071516 A1 WO2023071516 A1 WO 2023071516A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric substrate
insulating layer
xbar filter
idt
interdigital
Prior art date
Application number
PCT/CN2022/116493
Other languages
English (en)
French (fr)
Inventor
胡锦钊
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023071516A1 publication Critical patent/WO2023071516A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material

Definitions

  • the utility model relates to the technical field of filters, in particular to an XBAR filter.
  • the XBAR filter is a kind of bulk acoustic wave filter (Baw-SMR Filter), which can achieve an electromechanical coupling coefficient of 20% or more, thereby achieving a larger bandwidth.
  • the resonant frequency of the XBAR filter is usually determined by the thickness of the piezoelectric substrate. However, the thickness of the piezoelectric substrate of the existing XBAR filter is single. The filter requires at least two different resonant frequencies, so it is difficult to realize the required filter with ladder structure using the existing XBAR filter.
  • the embodiment of the utility model provides an XBAR filter, which can obtain at least two resonators with different resonant frequencies on the same piezoelectric substrate, so as to meet the frequency requirements of the ladder filter, and can avoid piezoelectric substrates of different thicknesses.
  • the heterogeneous integration of bottom materials reduces the difficulty and cost of packaging.
  • the utility model provides an XBAR filter on the one hand, comprising a piezoelectric substrate, at least two interdigital transducers and at least two insulating layers formed on the piezoelectric substrate, the The insulating layer is provided in one-to-one correspondence with the interdigital transducers, and each interdigital transducer and its corresponding insulating layer and piezoelectric substrate are used to form a resonator;
  • Each of the insulating layers is provided between the corresponding IDT and the piezoelectric substrate, or on a side of the piezoelectric substrate opposite to the corresponding IDT , wherein the insulating layers corresponding to at least two of the IDTs have different thicknesses.
  • the thickness of the piezoelectric substrate is 0.1 ⁇ ⁇ 4 ⁇ , and the ⁇ is the wavelength of the bulk acoustic wave.
  • the duty cycle of the IDT is 0.1-0.9.
  • the insulating layer is a silicon dioxide insulating layer or a silicon nitride insulating layer.
  • the material used for the interdigital transducer is one or more of Al, Cu, Pt, Au and Ti.
  • the material of the piezoelectric substrate is LiNbO3 or LiTaO3.
  • the XBAR filter of the present invention includes a piezoelectric substrate, at least two interdigital transducers formed on the piezoelectric substrate, and at least two insulating layers, and the insulating layer is connected to the fork
  • the finger transducers are arranged in one-to-one correspondence, and each finger transducer and its corresponding insulating layer and piezoelectric substrate are used to form a resonator, so the XBAR filter includes at least two resonators; wherein each of the The insulating layer is disposed between the corresponding interdigital transducer and the piezoelectric substrate, or disposed on the side of the piezoelectric substrate opposite to the corresponding interdigital transducer, therefore, each The combination of an insulating layer and a piezoelectric substrate is equivalent to an integral piezoelectric substrate, and the thicknesses of at least two insulating layers corresponding to the interdigital transducers are different, that is, the thicknesses of at least two piezoelectric substrates different
  • Fig. 1 is a schematic structural diagram of an XBAR filter provided by an embodiment of the present invention.
  • the XBAR filter 100 provided by the embodiment of the present invention includes a piezoelectric substrate 11, at least two interdigital transducers 12 formed on the piezoelectric substrate 11, and at least two insulating layers 13.
  • the insulating layer 13 is provided in one-to-one correspondence with the IDTs 12, and each IDT 12 and its corresponding insulating layer 13 and piezoelectric substrate 11 are used to form a resonator. Therefore, this
  • the XBAR filter 100 includes at least two resonators.
  • the number of insulating layers 13 is also two, so that the two interdigital transducers 12 and the corresponding insulating layers 13 and the piezoelectric lining
  • the resonators formed by bottom 13 are resonator A and resonator B respectively.
  • each of the insulating layers 13 is arranged between the corresponding interdigital transducer 12 and the piezoelectric substrate 11, or arranged between the piezoelectric substrate 11 and the corresponding interdigital transducer device 12 on the opposite side.
  • the insulating layer 13 is arranged on the side of the piezoelectric substrate 11 opposite to the corresponding IDT 12, wherein the two IDTs 12 are The corresponding insulating layers 13 have different thicknesses.
  • each insulating layer 13 and the piezoelectric substrate 11 is equivalent to a whole piezoelectric substrate, and the thicknesses of the insulating layers 13 corresponding to the two interdigital transducers 12 are different, that is, the two piezoelectric substrates
  • the thickness of the electric base material is different, and the thickness of the piezoelectric base material determines the resonant frequency of the resonator, so two resonators A and B with different frequencies can be obtained, thus, through the above method, the utility model can operate in a single voltage Resonators with different frequencies are formed on the electrical substrate to meet the requirements of the ladder filter, and each resonator uses the same piezoelectric substrate, so the heterogeneous integration of piezoelectric substrate materials with different thicknesses can be avoided and the packaging cost can be reduced. difficulty and cost.
  • the thickness of the piezoelectric substrate 11 is 0.1 ⁇ ⁇ 4 ⁇ , and the ⁇ is the wavelength of the bulk acoustic wave.
  • the ⁇ 2*p, wherein p represents the period of the IDT 12, that is, p is the sum of the length of the IDT 12 and the distance between two adjacent IDTs 12 , the length of the IDT 12 described here refers to the length of the IDT 12 along the horizontal direction based on the view of FIG. 1 .
  • the duty cycle of the IDT 12 is 0.1 ⁇ 0.9.
  • the duty cycle of the IDT 12 refers to the ratio of the length of the IDT 12 to p.
  • the insulating layer 13 may be a silicon dioxide insulating layer or a silicon nitride insulating layer.
  • the material used for the interdigital transducer 12 is one or more of Al, Cu, Pt, Au and Ti, for example, it can be made of Al alone, or it can be made of Al, Cu, Pt, Au and Ti Lamination of multiple materials in .
  • the piezoelectric substrate 11 is made of LiNbO3 or LiTaO3.
  • the number of interdigital transducers 12 is not limited, and may be 2, 5 or more.
  • the piezoelectric substrate of each resonator adopts the same piezoelectric substrate 11, so its thickness is consistent, and by arranging insulating layers 13 of different thicknesses, the resonator can be made The resonant frequency changes to a certain extent, so that resonators with different resonant frequencies can be formed on the same piezoelectric substrate 11 .

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种XBAR滤波器(100),包括压电衬底(11)、形成在压电衬底(11)上的至少两个叉指换能器(12)以及至少两个绝缘层(13),绝缘层(13)与叉指换能器(12)一一对应设置,每个叉指换能器(12)及其对应的绝缘层(13)以及压电衬底(11)用于形成一个谐振器;每个绝缘层(13)设置在对应的叉指换能器(12)和压电衬底(11)之间,或者设置在压电衬底(11)的与对应的叉指换能器(12)相对的一侧上,其中至少两个叉指换能器(12)所对应的绝缘层(13)的厚度不同,通过上述方式,可以在同一压电衬底(11)上形成不同谐振频率的谐振器,满足梯形滤波器的需求。

Description

一种XBAR滤波器 技术领域
本实用新型涉及滤波器技术领域,尤其涉及一种XBAR滤波器。
背景技术
无线通讯技术从1G到5G,频段越来越高,同时,带宽也越来越大,例如如5G频段中的N77、N79频段,其带宽分别达到了900MHz和600MHz。传统的机械谐振器结构已难以满足相关的带宽需求,XBAR滤波器应运而生。XBAR滤波器是体声波滤波器(Baw-SMR Filter)的一种,其能够达到20%或以上的机电耦合系数,从而达到较大的带宽。XBAR滤波器的谐振频率通常由压电衬底厚度决定,然而,现有的XBAR滤波器的压电衬底厚度都是单一的,从而当需要形成梯形结构的XBAR滤波器时,由于梯形结构的滤波器需要至少两种不同的谐振频率,因此难以使用现有的XBAR滤波器实现所需的梯形结构滤波器。
实用新型内容
本实用新型实施例提供一种XBAR滤波器,能够在同一压电衬底上获得至少两种不同的谐振频率的谐振器,从而满足梯形滤波器的频率要求,并且可以避免不同厚度的压电衬底材料的异质集成,降低封装的难度和成本。
为了解决上述技术问题,本实用新型一方面提供一种XBAR滤波器,包括压电衬底、形成在所述压电衬底上的至少两个叉指换能器以及至少两个绝缘层,所述绝缘层与所述叉指换能器一一对应设置,每个叉指换能器及其对应的绝缘层以及压电衬底用于形成一个谐振器;
每个所述绝缘层设置在对应的所述叉指换能器和压电衬底之间,或者设置在所述压电衬底的与对应的所述叉指换能器相对的一侧上,其中至少两个所述叉指换能器所对应的绝缘层的厚度不同。
其中,所述压电衬底的厚度为0.1λ~4λ,所述λ为体声波波波长。
其中,所述λ=2*p,其中p表示叉指换能器的周期。
其中,所述叉指换能器的占空比为0.1~0.9。
其中,所述绝缘层为二氧化硅绝缘层或者氮化硅绝缘层。
其中,所述叉指换能器采用的材料为Al、Cu、Pt、Au以及Ti中的一种或多种。
其中,所述压电衬底的材料为LiNbO3或LiTaO3。
有益效果:本实用新型的XBAR滤波器,包括压电衬底、形成在所述压电衬底上的至少两个叉指换能器以及至少两个绝缘层,所述绝缘层与所述叉指换能器一一对应设置,每个叉指换能器及其对应的绝缘层以及压电衬底用于形成一个谐振器,因此XBAR滤波器包括至少两个谐振器;其中每个所述绝缘层设置在对应的所述叉指换能器和压电衬底之间,或者设置在所述压电衬底的与对应的所述叉指换能器相对的一侧上,因此,每个绝缘层和压电衬底的组合相当于是一个整体的压电基材,而至少两个所述叉指换能器所对应的绝缘层的厚度不同,即至少两个压电基材的厚度不同,而压电基材的厚度决定了谐振器的谐振频率,因此可以获得至少两个不同频率的谐振器,由此,通过上述方式,本实用新型可以在单一压电衬底上形成不同频率的谐振器,满足梯形滤波器的要求,并且各谐振器都采用同一个压电衬底,因此可以避免不同厚度的压电衬底材料的异质集成,降低封装的难度和成本。
附图说明
下面结合附图,通过对本实用新型的具体实施方式详细描述,将使本实用新型的技术方案及其有益效果显而易见。
图1是本实用新型实施例提供的XBAR滤波器的结构示意图。
具体实施方式
请参照图式,其中相同的组件符号代表相同的组件,本实用新型的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本实用新型具体实施例,其不应被视为限制本实用新型未在此详述的其它具体实施例。
参阅图1,本实用新型实施例提供的XBAR滤波器100中,包括压电衬底11、形成在所述压电衬底11上的至少两个叉指换能器12以及至少两个绝缘层13。所述绝缘层13与所述叉指换能器12一一对应设置,每个叉指换能器12及其对应的绝缘层13以及压电衬底11用于形成一个谐振器,因此,本实用新型实施例中,XBAR滤波器100包括至少两个谐振器。如图1所示,以两个叉指换能器12为例,相应地,绝缘层13的数量也为2个,从而两个叉指换能器 12和对应的绝缘层13以及压电衬底13所形成的的谐振器分别为谐振器A和谐振器B。
其中,每个所述绝缘层13设置在对应的所述叉指换能器12和压电衬底11之间,或者设置在所述压电衬底11的与对应的所述叉指换能器12相对的一侧上。图1所示的实施例中,绝缘层13设置在了压电衬底11的与对应的所述叉指换能器12相对的一侧上,其中两个所述叉指换能器12所对应的绝缘层13的厚度不同。
因此,每个绝缘层13和压电衬底11的组合相当于是一个整体的压电基材,而两个所述叉指换能器12所对应的绝缘层13的厚度不同,即两个压电基材的厚度不同,而压电基材的厚度决定了谐振器的谐振频率,因此可以获得两个不同频率的谐振器A和B,由此,通过上述方式,本实用新型可以在单一压电衬底上形成不同频率的谐振器,满足梯形滤波器的要求,并且各谐振器都采用同一个压电衬底,因此可以避免不同厚度的压电衬底材料的异质集成,降低封装的难度和成本。
进一步地,所述压电衬底11的厚度为0.1λ~4λ,所述λ为体声波波波长。其中,所述λ=2*p,其中p表示叉指换能器12的周期,即p为叉指换能器12的长度与相邻两个叉指换能器12之间的距离之和,此处所描述的叉指换能器12的长度是指以图1的视图为基础,叉指换能器12沿水平方向的长度。
其中,所述叉指换能器12的占空比为0.1~0.9。所述叉指换能器12的占空比是指叉指换能器12的长度与p的比值。
其中,所述绝缘层13可以是二氧化硅绝缘层或者氮化硅绝缘层。所述叉指换能器12采用的材料为Al、Cu、Pt、Au以及Ti中的一种或多种,比如可以是单独的Al制成,也可以是Al、Cu、Pt、Au以及Ti中的多种材料的层叠。所述压电衬底11的材料为LiNbO3或LiTaO3。
可以理解的是,本实用新型实施例中,叉指换能器12的数量并不做限定,可以是2个、5个或更多个。
本实用新型的XBAR滤波器100中,各谐振器的压电衬底都是采用同一压电衬底11,因此其厚度是一致的,而通过设置不同厚度的绝缘层13,可以使得谐振器的谐振频率产生一定的变化,从而实现了在同一压电衬底11上形成不同 谐振频率的谐振器。
本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本实用新型的限制。

Claims (7)

  1. 一种XBAR滤波器,其特征在于,包括压电衬底、形成在所述压电衬底上的至少两个叉指换能器以及至少两个绝缘层,所述绝缘层与所述叉指换能器一一对应设置,每个叉指换能器及其对应的绝缘层以及压电衬底用于形成一个谐振器;
    每个所述绝缘层设置在对应的所述叉指换能器和压电衬底之间,或者设置在所述压电衬底的与对应的所述叉指换能器相对的一侧上,其中至少两个所述叉指换能器所对应的绝缘层的厚度不同。
  2. 根据权利要求1所述的XBAR滤波器,其特征在于,所述压电衬底的厚度为0.1λ~4λ,所述λ为体声波波波长。
  3. 根据权利要求1所述的XBAR滤波器,其特征在于,所述λ=2*p,其中p表示叉指换能器的周期。
  4. 根据权利要求1所述的XBAR滤波器,其特征在于,所述叉指换能器的占空比为0.1~0.9。
  5. 根据权利要求1所述的XBAR滤波器,其特征在于,所述绝缘层为二氧化硅绝缘层或者氮化硅绝缘层。
  6. 根据权利要求1所述的XBAR滤波器,其特征在于,所述叉指换能器采用的材料为Al、Cu、Pt、Au以及Ti中的一种或多种。
  7. 根据权利要求1所述的XBAR滤波器,其特征在于,所述压电衬底的材料为LiNbO3或LiTaO3。
PCT/CN2022/116493 2021-10-28 2022-09-01 一种xbar滤波器 WO2023071516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122617806.3U CN216390939U (zh) 2021-10-28 2021-10-28 一种xbar滤波器
CN202122617806.3 2021-10-28

Publications (1)

Publication Number Publication Date
WO2023071516A1 true WO2023071516A1 (zh) 2023-05-04

Family

ID=81247614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116493 WO2023071516A1 (zh) 2021-10-28 2022-09-01 一种xbar滤波器

Country Status (2)

Country Link
CN (1) CN216390939U (zh)
WO (1) WO2023071516A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216390939U (zh) * 2021-10-28 2022-04-26 深圳飞骧科技股份有限公司 一种xbar滤波器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368296A1 (en) * 2013-06-18 2014-12-18 Taiyo Yuden Co., Ltd. Acoustic wave device
CN108449068A (zh) * 2018-01-31 2018-08-24 湖北宙讯科技有限公司 双工器
CN110572138A (zh) * 2019-10-08 2019-12-13 开元通信技术(厦门)有限公司 一种滤波装置及其制作方法
JP2020182130A (ja) * 2019-04-25 2020-11-05 太陽誘電株式会社 フィルタおよびマルチプレクサ
CN216390939U (zh) * 2021-10-28 2022-04-26 深圳飞骧科技股份有限公司 一种xbar滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140368296A1 (en) * 2013-06-18 2014-12-18 Taiyo Yuden Co., Ltd. Acoustic wave device
CN108449068A (zh) * 2018-01-31 2018-08-24 湖北宙讯科技有限公司 双工器
JP2020182130A (ja) * 2019-04-25 2020-11-05 太陽誘電株式会社 フィルタおよびマルチプレクサ
CN110572138A (zh) * 2019-10-08 2019-12-13 开元通信技术(厦门)有限公司 一种滤波装置及其制作方法
CN216390939U (zh) * 2021-10-28 2022-04-26 深圳飞骧科技股份有限公司 一种xbar滤波器

Also Published As

Publication number Publication date
CN216390939U (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
JP5709226B2 (ja) 広帯域音響結合薄膜bawフィルタ
JP5648695B2 (ja) 弾性波装置及びその製造方法
US7564174B2 (en) Acoustic wave device and filter
CN103891139B (zh) 弹性表面波装置
JP4535067B2 (ja) 弾性境界波装置の製造方法及び弾性境界波装置
JPWO2016208236A1 (ja) 弾性波フィルタ装置
JP3827232B2 (ja) フィルタ装置およびそれを用いた分波器
CN112217490B (zh) 层状温补型声表面波谐振器与封装方法
WO2009139108A1 (ja) 弾性境界波装置
JP6760480B2 (ja) エクストラクタ
JP4836748B2 (ja) バルク音響波共振子及びフィルタ装置並びに通信装置
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN110710106A (zh) 弹性波装置、分波器及通信装置
WO2024140171A1 (zh) 声表面波滤波器的制造方法及声表面波滤波器
WO2023071516A1 (zh) 一种xbar滤波器
JP2019201345A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
CN107925396A (zh) 弹性波装置
CN110572138A (zh) 一种滤波装置及其制作方法
CN210405249U (zh) 一种滤波装置
WO2023097531A1 (zh) 一种体声波谐振器、滤波器及电子设备
WO2024024778A1 (ja) 弾性波共振子、弾性波フィルタおよび通信装置
JP2005354650A (ja) 弾性表面波デバイス
JP4339604B2 (ja) 圧電薄膜素子
JP2006060759A (ja) 弾性表面波共振器とこれを用いた電子装置
Yantchev et al. Thin AlN film resonators utilizing the lowest order symmetric lamb mode: Further developments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22885407

Country of ref document: EP

Kind code of ref document: A1