WO2023071364A1 - 输出控制电路、控制器及空调器 - Google Patents

输出控制电路、控制器及空调器 Download PDF

Info

Publication number
WO2023071364A1
WO2023071364A1 PCT/CN2022/109802 CN2022109802W WO2023071364A1 WO 2023071364 A1 WO2023071364 A1 WO 2023071364A1 CN 2022109802 W CN2022109802 W CN 2022109802W WO 2023071364 A1 WO2023071364 A1 WO 2023071364A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
module
terminal
output
signal
Prior art date
Application number
PCT/CN2022/109802
Other languages
English (en)
French (fr)
Inventor
赵震
杨大有
阎杰
Original Assignee
上海美控智慧建筑有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海美控智慧建筑有限公司, 广东美的暖通设备有限公司 filed Critical 上海美控智慧建筑有限公司
Priority to US18/564,280 priority Critical patent/US20240250652A1/en
Priority to EP22885264.6A priority patent/EP4428638A1/en
Publication of WO2023071364A1 publication Critical patent/WO2023071364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/261Amplifier which being suitable for instrumentation applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers

Definitions

  • the present application relates to the field of electronic technology, in particular to an output control circuit, a controller and an air conditioner.
  • PLC Programmable Logic Controller
  • DDC Direct Digital Control
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first purpose of the present application is to propose an output control circuit, which can be controlled by software to further realize intelligent and remote configuration, realize the switching of the output signal function of the controller, and enhance the versatility and reliability of the output control circuit. Safety and reliability.
  • a second object of the present application is to propose a controller.
  • the third purpose of the present application is to provide an air conditioner.
  • the embodiment of the first aspect of the present application proposes an output control circuit, the output control circuit is set in the controller, and the output control circuit includes: a signal input terminal for inputting a voltage input signal; A first amplification module, the first input end of the first amplification module is connected to the signal input end; a first power module, the first end of the first power module is connected to the output end of the first amplification module , the second terminal of the first power is connected to the first DC voltage source; the first resistor, the first terminal of the first resistor is connected to the third terminal of the first power module, and the first resistor of the first resistor The second end is connected to the signal output end; the second amplifying module, the first input end of the second amplifying module is connected to the first end of the first resistor, the second input end of the second amplifying module connected to the second end of the first resistor; a switch module, the switch module is respectively connected to the second end of the first resistor, the output end of the second amplifying
  • the output control circuit proposed in the embodiment of the present application includes a signal output terminal, a signal input terminal, a first amplification module, a first power module, a first resistor, a second amplification module and a switch module, and a voltage input signal is input through the signal input terminal,
  • the first input terminal of the first amplification module is connected to the signal input terminal
  • the first terminal of the first power module is connected to the output terminal of the first amplification module
  • the second terminal of the first power module is connected to the first DC voltage source
  • the second terminal of the first power module is connected to the first DC voltage source.
  • the first end of a resistor is connected to the third end of the first power module, the second end of the first resistor is connected to the signal output end, the first input end of the second amplification module is connected to the first end of the first resistor, and the second end of the first resistor is connected to the first end of the first resistor.
  • the second input end of the second amplification module is connected to the second end of the first resistor
  • the switch module is respectively connected to the second end of the first resistor, the output end of the second amplification module, and the second input end of the first amplification module
  • the switch module The module is used to switch the connection between the second end of the first resistor and the second input end of the first amplifying module and the connection between the output end of the second amplifying module and the second input end of the first amplifying module, A digital first voltage output signal, an analog second voltage output signal and an analog current output signal are output through the signal output terminal. Therefore, the circuit is controllable by software, further realizes intelligent and remote configuration, realizes switching of the output signal function of the controller, and enhances the versatility, safety and reliability of the output control circuit.
  • the output control circuit proposed in the embodiment of the first aspect of the present application may also have the following additional technical features:
  • the first amplification module includes: a first operational amplifier, the non-inverting input terminal of the first operational amplifier is connected to the signal input terminal, and the output terminal of the first operational amplifier is connected to the signal input terminal.
  • the first end of the first power module is connected; the first capacitor, the first end of the first capacitor is connected to the output end of the first operational amplifier, the second end of the first capacitor is connected to the first
  • the inverting input terminal of the operational amplifier is connected; the second resistor, the first terminal of the second resistor is connected with the inverting input terminal of the first operational amplifier, and the second terminal of the second resistor is connected with the switch module connect.
  • the output control circuit further includes: an overcurrent protection module, and the second end of the first power module is connected to the first DC power supply through the overcurrent protection module.
  • the overcurrent protection module includes: a voltage stabilizer or a current limiter, a first terminal of the voltage stabilizer or a current limiter is connected to the first DC voltage source, and the stabilizer The second terminal of the voltage regulator or current limiter is connected to the second terminal of the first power module; the third resistor, the second terminal of the voltage regulator or current limiter is connected to the stabilizer through the third resistor The third terminal connection of the voltage regulator or current limiter.
  • the second amplifying module includes: a fourth resistor; a fifth resistor; a second operational amplifier, and the non-inverting input terminal of the second operational amplifier communicates with the first resistor through the fourth resistor.
  • the first end of the resistor is connected, the inverting input end of the second operational amplifier is connected to the second end of the first resistor through the fifth resistor, and the output end of the second operational amplifier is connected to the switch module connection;
  • the sixth resistance the first end of the sixth resistance is grounded, the second end of the sixth resistance is connected to the non-inverting input end of the second operational amplifier;
  • the seventh resistance the first end of the seventh resistance One end is connected to the output end of the second operational amplifier, the second end of the seventh resistor is connected to the inverting input end of the second operational amplifier;
  • the second capacitor the first end of the second capacitor connected to the output terminal of the second operational amplifier, and the second terminal of the second capacitor is connected to the inverting input terminal of the second operational amplifier.
  • the switch module includes: a first switch unit, the first switch unit is respectively connected to the second end of the first resistor and the second input end of the first amplification module; A second switch unit, the second switch unit is respectively connected to the output end of the second amplifying module and the second input end of the first amplifying module; a control unit, the control unit is respectively connected to the first switch The unit is connected to the second switch unit, and the control unit is used to control the first switch unit to turn on or off the second end of the first resistor and the first amplifying module according to the input control signal. the connection between the second input terminals, and controlling the second switch unit to switch on or off the connection between the output terminal of the second amplifying module and the second input terminal of the first amplifying module.
  • the first switch unit includes: a first solid state relay, the input end of the first solid state relay is connected to the second end of the first resistor, and the output end of the first solid state relay terminal is connected to the second input terminal of the first amplifying module, the input control terminal of the first solid state relay is connected to the control unit, and the output control terminal of the first solid state relay is grounded.
  • the second switch unit includes: a second solid state relay, the input end of the second solid state relay is connected to the output end of the second amplification module, and the output end of the second solid state relay The terminal is connected to the second input terminal of the first amplifying module, the input control terminal of the second solid state relay is connected to the control unit, and the output control terminal of the second solid state relay is grounded.
  • the control unit includes: a control signal input terminal for inputting the control signal; a first transistor, the control terminal of the first transistor is connected to the control signal input terminal, the The first end of the first transistor is connected to the first switch unit, the second end of the first transistor is grounded; the eighth resistor, the first end of the eighth resistor is connected to the second DC voltage source, and the first end of the eighth resistor is connected to the second DC voltage source.
  • the second end of the eighth resistor is connected to the first end of the first transistor; the second transistor, the control end of the second transistor is connected to the control signal input end, and the first end of the second transistor is connected to the third The DC voltage source is connected, and the second terminal of the second transistor is connected with the second switch unit.
  • the output control circuit further includes: a diode, the anode of the diode is grounded, and the cathode of the diode is connected to the signal output terminal.
  • the output control circuit further includes: a filter module, the first input terminal of the first amplification module is connected to the signal input terminal through the filter module.
  • the output control circuit further includes: a second power module, the first terminal of the second power module is connected to the output terminal of the first amplification module, and the output terminal of the second power module The second terminal is connected to the second terminal of the first power module; the ninth resistor, the first terminal of the ninth resistor is connected to the third terminal of the second power module, and the second terminal of the ninth resistor connected to the signal output terminal; the second amplifying module further includes: a tenth resistor, the first end of the tenth resistor is connected to the first end of the ninth resistor, and the first end of the tenth resistor The two terminals are connected with the non-inverting input terminal of the second operational amplifier.
  • the embodiment of the second aspect of the present application provides a controller, which includes: the output control circuit as described in the embodiment of the first aspect of the present application.
  • the controller of the embodiment of the present application is controllable by software, further realizes intelligent and remote configuration, realizes switching of the output signal function of the controller, and enhances the versatility, safety and reliability of the output control circuit.
  • the embodiment of the third aspect of the present application provides an air conditioner, including the controller as described in the embodiment of the second aspect of the present application.
  • the air conditioner in the embodiment of the present application is controllable by software, further realizes intelligent and remote configuration, realizes switching of the output signal function of the controller, and enhances the versatility, safety and reliability of the output control circuit.
  • FIG. 1 is a schematic diagram of an output control circuit according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an overcurrent protection module of an output control circuit according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first amplification module of an output control circuit according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a second amplification module of an output control circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a switch module of an output control circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a control unit of an output control circuit according to an embodiment of the present application.
  • FIG. 7 is a simplified circuit diagram of a voltage output mode of an output control circuit according to an embodiment of the present application.
  • FIG. 8 is a simplified circuit diagram of a current output mode of an output control circuit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the overall structure of an output control circuit according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the overall structure of an output control circuit according to another embodiment of the present application.
  • Figure 11 is a schematic diagram of a controller according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of an air conditioner according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an output control circuit according to an embodiment of the present application.
  • the output control circuit 1 of the embodiment of the present application may specifically include: a signal input terminal in, a signal output terminal out, a first amplification module 10, a first resistor R1, a second amplification module 20, a switch module 30 and The first power module 40 .
  • the signal input terminal in is used for inputting a voltage input signal, such as a 0-10V analog voltage input signal, or a 12V digital voltage input signal.
  • the first amplifying module 10 includes a first input terminal, a second input terminal and an output terminal, the first input terminal of the first amplifying module 10 is connected to the signal input terminal in, the second input terminal is connected to the switch module 30, and the output terminal is connected to the second input terminal in.
  • the first end of a power module 40 is connected; the second end of the first power module 40 is connected to the first DC power supply VDD1 (such as a 12V-24V DC power supply), and the third end of the first power module 40 is connected to the first
  • VDD1 such as a 12V-24V DC power supply
  • the first terminal of the resistor R1 is connected, and the second terminal of the first resistor R1 is connected to the signal output terminal out and the switch module 30.
  • the first amplification module 10 can be used to amplify the voltage input signal, for example, when the voltage input signal is lower than 10V, it can The first amplifier module 10 outputs a voltage signal of 10V to the first end of the first power module 40 .
  • the second amplifying module 20 includes a first input terminal, a second input terminal and an output terminal, the first input terminal of the second amplifying module 20 is connected to the first end of the first resistor R1, and the second input terminal of the second amplifying module 20 It is connected to the second end of the first resistor R1 , and the output end of the second amplification module 20 is connected to the switch module 30 .
  • the switch module 30 is used to switch the connection between the second end of the first resistor R1 and the second input end of the first amplifying module 10, and the connection between the output end of the second amplifying module 20 and the second input end of the first amplifying module 10. connection between inputs.
  • the signal output terminal out is used to output the first digital voltage output signal, the second analog voltage output signal and the analog current output signal.
  • the first voltage output signal of the digital quantity can be a voltage output signal of 12V
  • the second voltage output signal of the analog quantity can be a voltage output signal of 0-10V
  • the current output signal of the analog quantity can be a current output signal of 0-20mA Signal.
  • the voltage input signal input to the control signal input terminal in is a 0-10V analog voltage input signal
  • the first amplifier module 20 and the first power module 40 form an emitter-follower circuit, so that an analog first voltage output signal such as a 0-10V voltage output signal can be output through the signal output terminal out.
  • the voltage input signal input to the control signal input terminal in is a 12V digital voltage input signal
  • the first resistor R1 is also connected
  • the amplifying module 20 and the first power module 40 form an emitter follower circuit, so that a digital second voltage output signal such as a 12V voltage output signal can be output through the signal output terminal out.
  • the voltage input signal input by the control signal input terminal in is a 0-10V analog voltage input signal, and disconnect the first The connection between the second end of the resistor R1 and the second input end of the first amplifying module 10, and connect the connection between the output end of the second amplifying module 20 and the second input end of the first amplifying module 10, so An analog current output signal such as a 0-20mA current output signal can be output through the signal output terminal out.
  • the circuit can realize the control of the circuit through software, further realize intelligent and remote configuration, realize the switching of the output signal function of the controller, and enhance the versatility, safety and reliability of the output control circuit.
  • the lower output control circuit will be described in detail below with reference to FIGS. 2-9 .
  • the first power module 40 may be composed of triodes or MOS transistors, which are not limited in this application, as shown in Figures 7-9.
  • the first triode Q1 is used as the first transistor Q1 in the embodiment of this application.
  • the first power module 40 is taken as an example for illustration, where the base of the first transistor Q1 is used as the first terminal of the first power module 40, and the collector of the first transistor Q1 is used as the second terminal of the first power module 40. end, the emitter of the first triode Q1 serves as the third end of the first power module 40 .
  • the output control circuit 1 may also include: an overcurrent protection module 50, the first triode Q1 is connected to the first DC power supply VDD1 through the overcurrent protection module 50, so that the signal is output due to user misoperation When the terminal out is short-circuited, the first triode Q1 is protected against overcurrent.
  • the overcurrent protection module 50 may include a voltage regulator or current limiter IC1 and a third resistor R3, wherein the voltage regulator or current limiter IC1 is a three-terminal regulator regulator or current limiter, the first terminal of the voltage regulator or current limiter IC1 is connected to the first DC voltage source VDD1, and the second terminal of the voltage regulator or current limiter IC1 is connected to the collector of the first triode Q1 , the second terminal of the voltage regulator or current limiter IC1 is connected to the third terminal of the voltage regulator or current limiter IC1 through the third resistor R3.
  • the voltage regulator or current limiter IC1 is a three-terminal regulator regulator or current limiter
  • the first terminal of the voltage regulator or current limiter IC1 is connected to the first DC voltage source VDD1
  • the second terminal of the voltage regulator or current limiter IC1 is connected to the collector of the first triode Q1
  • the second terminal of the voltage regulator or current limiter IC1 is connected to the third terminal of the voltage regulator or current limit
  • the first amplification module 10 may include: a first operational amplifier A1 , a first capacitor C1 and a second resistor R2 .
  • the non-inverting input terminal of the first operational amplifier A1 is used as the first input terminal of the first amplifying module 10 and connected to the signal input terminal in
  • the output terminal of the first operational amplifier A1 is used as the output terminal of the first amplifying module 10 to connect with the first three
  • the base of the transistor Q1 is connected
  • the inverting input terminal of the first operational amplifier A1 is connected to the first terminal of the second resistor R2, and the second terminal of the second resistor R2 serves as the second input terminal of the first amplification module 10 and the switch Module 30 is connected.
  • the first terminal of the first capacitor C1 is connected to the output terminal of the first operational amplifier A1, and the second terminal of the first capacitor C2 is connected to the inverting input terminal of the first operational amplifier A1.
  • the second amplification module 20 may include: a fourth resistor R4 , a fifth resistor R5 , a second operational amplifier A2 , a sixth resistor R6 , a seventh resistor R7 and a second capacitor C2 .
  • the non-inverting input terminal of the second operational amplifier A1 is connected to the first terminal of the fourth resistor R4, and the second terminal of the fourth resistor R4 serves as the first input terminal of the second amplification module 20 and the first terminal of the first resistor R1 connection
  • the inverting input terminal of the second operational amplifier A2 is connected to the first terminal of the fifth resistor R5, and the second terminal of the fifth resistor R5 is used as the second input terminal of the second amplification module 20 and the second terminal of the first resistor R1
  • the output terminal of the second operational amplifier A2 is connected to the switch module 30 as the output terminal of the second amplification module 20 .
  • a first end of the sixth resistor R6 is grounded to GND, and a second end of the sixth resistor R6 is connected to the non-inverting input end of the second operational amplifier A2.
  • a first end of the seventh resistor R7 is connected to the output end of the second operational amplifier A2, and a second end of the seventh resistor R7 is connected to the inverting input end of the second operational amplifier A2.
  • the first terminal of the second capacitor C2 is connected to the output terminal of the second operational amplifier A2, and the second terminal of the second capacitor C2 is connected to the inverting input terminal of the second operational amplifier A2.
  • the switch module 30 may include: a first switch unit 301 , a second switch unit 302 and a control unit 303 .
  • the second end of the first resistor R1 is connected to the switch module 30 , specifically to the first switch unit 301 in the switch module 30 .
  • the second input end of the first amplifying module 10 is connected to the switch module 30 , specifically, it can be connected to the first switch unit 301 and the second switch unit 302 in the switch module 30 .
  • the output end of the second amplifying module 20 is connected to the switch module 30 , specifically, can be connected to the second switch unit 302 in the switch module 30 .
  • the control unit 303 is connected to the first switch unit 301 and the second switch unit 302 respectively, and the control unit 303 controls the first switch unit 301 to turn on or off the second end of the first resistor R1 and the first amplification module according to the input control signal 10 , and control the second switch unit 302 to switch on or off the connection between the output terminal of the second amplifying module 20 and the second input terminal of the first amplifying module 10 .
  • the first switch unit 301 may include but not limited to a first solid state relay IC2, etc., wherein the first solid state relay IC2 includes an input terminal, an output terminal, a control input terminal and a control output terminal.
  • the input end of the first solid state relay IC2 in the first switch unit 301 is connected to the second end of the first resistor R5, and the output end of the first solid state relay IC2 is connected to the second end of the first amplifying module 10
  • the two input terminals are connected, the input control terminal of the first solid state relay IC2 is connected with the control unit 303 , and the output control terminal of the first solid state relay IC2 is grounded to GND.
  • the second switch unit 302 may include but not limited to a second solid state relay IC3, etc., wherein the second solid state relay IC3 includes an input terminal, an output terminal, a control input terminal and a control output terminal.
  • the input end of the second solid state relay IC3 in the second switch unit 302 is connected with the output end of the second amplifying module 20, and the output end of the second solid state relay IC3 is connected with the first amplifying module 10 of the second switching unit 302.
  • the two input terminals are connected, the input control terminal of the second solid state relay IC3 is connected to the control unit 303, the output control terminal of the second solid state relay IC3 is grounded to GND or can be grounded to GND through the eleventh resistor R11.
  • first switch unit 301 and the second switch unit 302 are not limited to solid state relays, but also can use DIP switches and jumpers, or electromagnetic relays, etc., to control the first switch unit 301 through the IO pins of the single-chip microcomputer. and the input port of the second switch unit 302, the control of the first switch unit 301 and the second switch unit 302 is realized through software.
  • the control unit 303 may include: a control signal input terminal CNTL-in, a first transistor Q2 , an eighth resistor R8 and a second transistor Q3 .
  • the control signal is generated by the single chip microcomputer, and the control signal is input into the control unit 303 from the input terminal CNTL-in.
  • the control terminal of the first transistor Q2 is connected to the control signal input terminal CNTL-in, the first terminal of the first transistor Q2 is connected to the first switch unit 301, specifically, it can be connected to the input control terminal of the first solid state relay IC2, the first transistor The second control end of Q2 is grounded to GND.
  • a first end of the eighth resistor R8 is connected to the second DC voltage source VDD2, and a second end of the eighth resistor R8 is connected to the first end of the first transistor Q2.
  • the control terminal of the second transistor Q3 is connected to the control signal input terminal CNTL-in, the first terminal of the second transistor Q3 is connected to the third DC voltage source VDD3, the second terminal of the second transistor Q3 is connected to the second switch unit 302, Specifically, it can be connected to the input control terminal of the second solid state relay IC3.
  • the single-chip microcomputer can output the control signal to the control signal input terminal CNTL-in to control the turn-off or turn-off of the first transistor Q2 and the second transistor Q3 in the control module 303, so as to realize the control of the first switch unit 301 and the control of the second switch unit 302, that is, to control the first switch unit 301 to turn on or off the connection between the second end of the first resistor R1 and the second input end of the first amplifying module 10, and to control the second
  • the switch unit 302 connects or disconnects the connection between the output end of the second amplifying module 20 and the second input end of the first amplifying module 10 .
  • control signal output by the single-chip microcomputer can be configured by software to switch the output signal function of the control circuit, further realizing intelligent and remote configuration.
  • the output control circuit 1 can also connect a diode D1 to the signal output terminal out.
  • the anode of the diode D1 is grounded to GND, and the cathode is connected to the signal output terminal out, and the diode D1 is used to absorb the peak voltage generated when the first solid state relay IC2 or the second solid state relay IC3 is disconnected.
  • the output control circuit 1 can also add a filter module 60 between the first amplification module 10 and the signal input terminal in, and the first input terminal of the first amplification module 10 is connected with the signal input through the filter module 60 The terminal in is connected to filter the analog voltage input signal, and input the filtered analog voltage input signal to the first input terminal of the first amplifying module 10, wherein the filtering module 60 may include a twelfth resistor R12 and Capacitor C3.
  • the output control circuit of the embodiment of the present application controls the first switch unit 301 (specifically, the first solid state relay IC2) in the switch module 30 to turn on or off the second end of the first resistor R1 through the control signal of the control unit 303 and the connection between the second input end of the first amplifying module 10, and controlling the second switch unit 301 (specifically, the second solid state relay IC3) to turn on or off the output end of the second amplifying module 20 and the first amplifying connection between the second input of the module 10.
  • the first switch unit 301 specifically, the first solid state relay IC2
  • the second switch unit 301 specifically, the second solid state relay IC3
  • both the first transistor Q2 and the second transistor Q3 in the control unit 303 are turned off, so that the first switch unit 301 (specifically, the first solid state relay IC2) is turned on, and the second switch The unit 302 (specifically, the first solid state relay IC3) is disconnected, so that the connection between the second end of the first resistor R1 and the second input end of the first amplifying module 10 is connected, and the output end of the second amplifying module 20 It is disconnected from the second input terminal of the first amplifying module 10, as shown in FIG. 7, and the output control circuit is in the voltage feedback mode at this time.
  • the control signal input terminal CNTL-in inputs a low-level signal, and the control signal input terminal in input voltage
  • the input signal is a 0-10V analog voltage input signal, so that the second end of the first resistor R1 is connected to the second input end of the first amplifying module 10, and the output end of the second amplifying module 20 is connected to the first amplifying
  • the second input terminals of the module 10 are disconnected, so that the first amplifier module 20 and the first triode Q1 form an emitter-follower circuit, and through the voltage feedback function, the first output of the analog quantity can be output through the signal output terminal out.
  • Voltage output signal such as 0-10V voltage output signal.
  • the control signal input terminal CNTL-in inputs a low-level signal, and the control signal input terminal in inputs the voltage input signal
  • the voltage input signal is a 12V digital quantity, so that the second end of the first resistor R1 is connected to the second input end of the first amplifying module 10, and the output end of the second amplifying module 20 is connected to the first amplifying module 10.
  • the second input terminals are disconnected, and the first amplifier module 20 and the first triode Q1 form an emitter-follower circuit.
  • the digital second voltage output signal such as 12V can be output through the signal output terminal out. voltage output signal.
  • both the first transistor Q2 and the second transistor Q3 in the control unit 303 are turned on, so that the first switch unit 301 (specifically, the first solid state relay IC2) is turned off, and the second The switch unit 302 (specifically, the first solid state relay IC3) is turned on, so that the second end of the first resistor R1 is disconnected from the second input end of the first amplifying module 10, and the output end of the second amplifying module 20 connected with the second input terminal of the first amplifying module 10, as shown in FIG. 8, the circuit is in the current feedback mode at this time.
  • the control signal input terminal CNTL-in inputs a high-level signal, and the control signal input terminal in inputs a voltage input signal 0-10V analog voltage input signal, so that the second end of the first resistor R1 is disconnected from the second input end of the first amplifying module 10, and the output end of the second amplifying module 20 is connected to the first amplifying module 10 Connected between the second input terminals of the second input terminal, at this time in the current feedback mode, the voltage signal is taken from both ends of the first resistor R1 and passed through the second amplifier module 20 (specifically, it can be the second operational amplifier IC3) for differential amplification, and the amplified The voltage needs to be consistent with the input voltage corresponding to the voltage input signal.
  • the second amplifier module 20 specifically, it can be the second operational amplifier IC3
  • the amplification factor of the second amplification module 20 is 50 times. If the first resistor R1 , the fourth resistor R4 , the fifth resistor R5 and the seventh resistor are all 5 ⁇ , the amplification factor of the second amplification module 20 is 100 times.
  • the output control circuit of the embodiment of the present application may further include: a second power module 70 and a ninth resistor R9.
  • the second power module 70 may be composed of a triode or a MOS transistor, which is not limited in this application.
  • the second triode Q4 is used as the second power module 70 to illustrate the output control circuit.
  • the base of the transistor Q4 serves as the first end of the second power module 70
  • the collector of the second triode Q4 serves as the second end of the second power module 70
  • the emitter of the second triode Q4 serves as the second power module 70.
  • the control terminal (base) of the second transistor Q4 is connected to the output terminal of the first amplifying module 10
  • the first terminal (collector) of the second transistor Q4 is connected to the first terminal (collector) of the first transistor Q1 ( collector) connection.
  • the first terminal of the ninth resistor R9 is connected to the second terminal (emitter) of the second transistor Q4, and the second terminal of the ninth resistor R9 is connected to the signal output terminal out.
  • the second amplifying module 20 may further include: a tenth resistor R10. Wherein, the first end of the tenth resistor R10 is connected to the first end of the ninth resistor R9, and the second end of the tenth resistor R10 is connected to the non-inverting input end of the second operational amplifier A2.
  • the output control circuit proposed in the embodiment of the present application includes a signal output terminal, a signal input terminal, a first amplification module, a first power module, a first resistor, a second amplification module and a switch module, and the signal input terminal Input voltage input signal, the first input terminal of the first amplification module is connected to the signal input terminal, the first terminal of the first power module is connected to the output terminal of the first amplification module, and the second terminal of the first power module is connected to the first DC
  • the voltage source is connected, the first end of the first resistor is connected to the third end of the first power module, the second end of the first resistor is connected to the signal output end, the first input end of the second amplification module is connected to the third end of the first resistor
  • One terminal is connected, the second input terminal of the second amplification module is connected with the second terminal of the first resistor, and the switch module is respectively connected with the second terminal of the first resistor, the output terminal of the second amplification module and the second terminal of the
  • the input terminal is connected, and the switch module is used to switch and connect the connection between the second terminal of the first resistor and the second input terminal of the first amplifying module, and the output terminal of the second amplifying module and the second input terminal of the first amplifying module
  • the signal output terminal outputs the first voltage output signal of digital quantity, the second voltage output signal of analog quantity and the current output signal of analog quantity. Therefore, the circuit is controllable by software, further realizes intelligent and remote configuration, realizes switching of the output signal function of the controller, and enhances the versatility, safety and reliability of the output control circuit.
  • the embodiments of the present application further provide a controller.
  • the controller 110 proposed in the embodiment of the present application may specifically include: the output control circuit 1 shown in any of the above-mentioned embodiments.
  • the controller of the embodiment of the present application can be controlled by software to further realize intelligent and remote configuration, realize switching of the output signal function of the controller, and enhance the versatility, safety and reliability of the output control circuit.
  • the embodiment of the present application further proposes an air conditioner 120 .
  • the air conditioner 120 proposed in the embodiment of the present application may specifically include: the controller 110 shown in FIG. 11 .
  • the air conditioner in the embodiment of the present application can be controlled by software to further realize intelligent and remote configuration, realize switching of the output signal function of the controller, and enhance the versatility, safety and reliability of the output control circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

一种输出控制电路(1)、控制器(110)及空调器(120),输出控制电路(1)包括:信号输入端(in);第一放大模块(10),其第一输入端与信号输入端(in)连接;第一功率模块(40),其第一输入端与第一放大模块(10)的输出端连接,第二输入端与第一直流电压源(VDD1)连接;第一电阻(R1),其第一端与第一功率模块(40)的输出端连接;第二放大模块(20),其第一输入端与第一电阻(R1)的第一端连接,其第二输入端与第一电阻(R1)的第二端连接;开关模块(30),分别与第一电阻(R1)的第二端、第二放大模块(20)的输出端和第一放大模块(10)的第二输入端连接;信号输出端(out),与第一电阻(R1)的第二端连接,用于输出多种类型的输出信号,通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。

Description

输出控制电路、控制器及空调器
相关申请的交叉引用
本申请基于申请号为202111284433.0、申请日为2021年11月1日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电子技术领域,尤其涉及一种输出控制电路、控制器及空调器。
背景技术
随着工业自动化的快速发展,可编程逻辑控制器(Programmable Logic Controller,简称PLC)及直接数字控制(Direct Digital Control,简称DDC)控制器越来越多的应用于工业,交通、楼宇等各个领域,随着控制器的智能化升级,对控制器的输出控制电路的功能要求也越来越高,例如根据需要切换输出控制电路的功能,实现数字量输出和模拟量输出等多种信号输出。
因此,如何增强输出控制电路的通用性和安全可靠性已经成为目前亟待解决的问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种输出控制电路,以通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
本申请的第二个目的在于提出一种控制器。
本申请的第三个目的在于提出一种空调器。
为达上述目的,本申请第一方面实施例提出了一种输出控制电路,所述输出控制电路设置在控制器内,所述输出控制电路,包括:信号输入端,用于输入电压输入信号;第一放大模块,所述第一放大模块的第一输入端与所述信号输入端连接;第一功率模块,所述第一功率模块的第一端与所述第一放大模块的输出端连接,所述第一功率的第二端与第一直流电压源连接;第一电阻,所述第一电阻的第一端与所述第一功率模块的第三端连接, 所述第一电阻的第二端与所述信号输出端连接;第二放大模块,所述第二放大模块的第一输入端与所述第一电阻的第一端连接,所述第二放大模块的第二输入端与所述第一电阻的第二端连接;开关模块,所述开关模块分别与所述第一电阻的第二端、所述第二放大模块的输出端和所述第一放大模块的第二输入端连接,所述开关模块用于切换接通所述第一电阻的第二端与所述第一放大模块的第二输入端之间的连接以及所述第二放大模块的输出端与所述第一放大模块的第二输入端之间的连接;信号输出端,用于输出数字量的第一电压输出信号、模拟量的第二电压输出信号和模拟量的电流输出信号。
本申请实施例提出的输出控制电路,包括信号输出端、信号输入端、第一放大模块、第一功率模块、第一电阻、第二放大模块和开关模块,通过信号输入端输入电压输入信号,第一放大模块的第一输入端与信号输入端连接,第一功率模块的第一端与第一放大模块的输出端连接,第一功率模块的第二端与第一直流电压源连接,第一电阻的第一端与第一功率模块的第三端连接,第一电阻的第二端与信号输出端连接,第二放大模块的第一输入端与第一电阻的第一端连接,第二放大模块的第二输入端与第一电阻的第二端连接,开关模块分别与第一电阻的第二端、第二放大模块的输出端和第一放大模块的第二输入端连接,开关模块用于切换接通第一电阻的第二端与第一放大模块的第二输入端之间的连接以及第二放大模块的输出端与第一放大模块的第二输入端之间的连接,通过信号输出端输出数字量的第一电压输出信号、模拟量的第二电压输出信号和模拟量的电流输出信号。由此,该电路通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
另外,本申请第一方面实施例提出的输出控制电路还可以具有如下附加的技术特征:
根据本申请的一个实施例,所述第一放大模块包括:第一运算放大器,所述第一运算放大器的同相输入端与所述信号输入端连接,所述第一运算放大器的输出端与所述第一功率模块的第一端连接;第一电容,所述第一电容的第一端与所述第一运算放大器的输出端连接,所述第一电容的第二端与所述第一运算放大器的反相输入端连接;第二电阻,所述第二电阻的第一端与所述第一运算放大器的反相输入端连接,所述第二电阻的第二端与所述开关模块连接。
根据本申请的一个实施例,所述输出控制电路还包括:过流保护模块,所述第一功率模块的第二端通过所述过流保护模块与所述第一直流电源连接。
根据本申请的一个实施例,所述过流保护模块包括:稳压器或限流器,所述稳压器或限流器的第一端与所述第一直流电压源连接,所述稳压器或限流器的第二端与所述第一功率模块的第二端连接;第三电阻,所述稳压器或限流器的第二端通过所述第三电阻与所述 稳压器或限流器的第三端连接。
根据本申请的一个实施例,所述第二放大模块包括:第四电阻;第五电阻;第二运算放大器,所述第二运算放大器的同相输入端通过所述第四电阻与所述第一电阻的第一端连接,所述第二运算放大器的反相输入端通过所述第五电阻与所述第一电阻的第二端连接,所述第二运算放大器的输出端与所述开关模块连接;第六电阻,所述第六电阻的第一端接地,所述第六电阻的第二端与所述第二运算放大器的同相输入端连接;第七电阻,所述第七电阻的第一端与所述第二运算放大器的输出端连接,所述第七电阻的第二端与所述第二运算放大器的反相输入端连接;第二电容,所述第二电容的第一端与所述第二运算放大器的输出端连接,所述第二电容的第二端与所述第二运算放大器的反相输入端连接。
根据本申请的一个实施例,所述开关模块包括:第一开关单元,所述第一开关单元分别与所述第一电阻的第二端和所述第一放大模块的第二输入端连接;第二开关单元,所述第二开关单元分别与所述第二放大模块的输出端和所述第一放大模块的第二输入端连接;控制单元,所述控制单元分别与所述第一开关单元和所述第二开关单元连接,所述控制单元用于根据输入的控制信号控制所述第一开关单元接通或断开所述第一电阻的第二端和所述第一放大模块的第二输入端之间的连接,以及控制所述第二开关单元接通或断开所述第二放大模块的输出端和所述第一放大模块的第二输入端之间的连接。
根据本申请的一个实施例,所述第一开关单元包括:第一固态继电器,所述第一固态继电器的输入端与所述第一电阻的第二端连接,所述第一固态继电器的输出端与所述第一放大模块的第二输入端连接,所述第一固态继电器的输入控制端与所述控制单元连接,所述第一固态继电器的输出控制端接地。
根据本申请的一个实施例,所述第二开关单元包括:第二固态继电器,所述第二固态继电器的输入端与所述第二放大模块的输出端连接,所述第二固态继电器的输出端与所述第一放大模块的第二输入端连接,所述第二固态继电器的输入控制端与所述控制单元连接,所述第二固态继电器的输出控制端接地。
根据本申请的一个实施例,所述控制单元包括:控制信号输入端,用于输入所述控制信号;第一晶体管,所述第一晶体管的控制端与所述控制信号输入端连接,所述第一晶体管的第一端与所述第一开关单元连接,所述第一晶体管的第二端接地;第八电阻,所述第八电阻的第一端与第二直流电压源连接,所述第八电阻的第二端与第一晶体管的第一端连接;第二晶体管,所述第二晶体管的控制端与所述控制信号输入端连接,所述第二晶体管的第一端与第三直流电压源连接,所述第二晶体管的第二端与所述第二开关单元连接。
根据本申请的一个实施例,所述输出控制电路还包括:二极管,所述二极管的正极接 地,所述述二极管的负极与所述信号输出端连接。
根据本申请的一个实施例,所述输出控制电路还包括:滤波模块,所述第一放大模块的第一输入端通过所述滤波模块与所述信号输入端连接。
根据本申请的一个实施例,所述输出控制电路还包括:第二功率模块,所述第二功率模块的第一端与所述第一放大模块的输出端连接,所述第二功率模块的第二端与所述第一功率模块的第二端连接;第九电阻,所述第九电阻的第一端与所述第二功率模块的第三端连接,所述第九电阻的第二端与所述信号输出端连接;所述第二放大模块还包括:第十电阻,所述第十电阻的第一端与所述第九电阻的第一端连接,所述第十电阻的第二端与所述第二运算放大器的同相输入端连接。
为达上述目的,本申请第二方面实施例提出了一种控制器,其包括:如本申请第一方面实施例所述的输出控制电路。
本申请实施例的控制器,通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
为达上述目的,本申请第三方面实施例提出了一种空调器,包括如本申请第二方面实施例所述的控制器。
本申请实施例的空调器,通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的输出控制电路的示意图;
图2是根据本申请一个实施例的输出控制电路的过流保护模块的示意图;
图3是根据本申请一个实施例的输出控制电路的第一放大模块的示意图;
图4是根据本申请一个实施例的输出控制电路的第二放大模块的示意图;
图5是根据本申请一个实施例的输出控制电路的开关模块的示意图;
图6是根据本申请一个实施例的输出控制电路的控制单元的示意图;
图7是根据本申请一个实施例的输出控制电路的电压输出模式的简化电路图;
图8是根据本申请一个实施例的输出控制电路的电流输出模式的简化电路图;
图9是根据本申请一实施例的输出控制电路的整体结构示意图;
图10是根据本申请另一实施例的输出控制电路的整体结构示意图;
图11是根据本申请一个实施例的控制器的示意图;
图12是根据本申请一个实施例的空调器的示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的输出控制电路、控制器及空调器。
图1是根据本申请一个实施例的输出控制电路的结构示意图。
如图1所示,本申请实施例的输出控制电路1具体可包括:信号输入端in、信号输出端out、第一放大模块10、第一电阻R1、第二放大模块20、开关模块30和第一功率模块40。
其中,信号输入端in用于输入电压输入信号,例如0-10V模拟量的电压输入信号,或12V数字量的电压输入信号。第一放大模块10包括第一输入端、第二输入端和输出端,第一放大模块10的第一输入端与信号输入端in连接,第二输入端与开关模块30连接,输出端与第一功率模块40的第一端连接;第一功率模块40的第二端与第一直流电源VDD1(如采用12V~24V的直流电源)连接,第一功率模块40的第三端与第一电阻R1的第一端连接,第一电阻R1的第二端与信号输出端out和开关模块30连接,第一放大模块10可用于放大电压输入信号,例如当电压输入信号低于10V时,可通过第一放大模块10输出10V的电压信号至第一功率模块40的第一端。第二放大模块20包括第一输入端、第二输入端和输出端,第二放大模块20的第一输入端与第一电阻R1的第一端连接,第二放大模块20的第二输入端与第一电阻R1的第二端连接,第二放大模块20的输出端与开关模块30连接。开关模块30用于切换接通第一电阻R1的第二端与第一放大模块10的第二输入端之间的连接,以及第二放大模块20的输出端与第一放大模块10的第二输入端之间的连接。信号输出端out用于输出数字量的第一电压输出信号、模拟量的第二电压输出信号和模拟量的电流输出信号。其中,数字量的第一电压输出信号可以为12V的电压输出信号,模拟量的第二电压输出信号可以为0-10V的电压输出信号,模拟量的电流输出信号可以为0-20mA的电流输出信号。
举例说明,当需要通过信号输出端out输出模拟量的第一电压输出信号如0-10V的电 压输出信号时,控制信号输入端in输入的电压输入信号为0-10V模拟量的电压输入信号,并接通第一电阻R1的第二端与第一放大模块10的第二输入端之间的连接,且断开第二放大模块20的输出端与第一放大模块10的第二输入端之间的连接,由此由第一放大模块20和第一功率模块40构成射随电路,这样便可通过信号输出端out输出模拟量的第一电压输出信号如0-10V的电压输出信号。
当需要通过信号输出端out输出数字量的第二电压输出信号如12V的电压输出信号时,控制信号输入端in输入的电压输入信号为12V数字量的电压输入信号,同样接通第一电阻R1的第二端与第一放大模块10的第二输入端之间的连接,且断开第二放大模块20的输出端与第一放大模块10的第二输入端之间的连接,由第一放大模块20和第一功率模块40构成射随电路,这样便可通过信号输出端out输出数字量的第二电压输出信号如12V的电压输出信号。
当需要通过信号输出端out输出模拟量的电流输出信号如0-20mA的电流输出信号时,控制信号输入端in输入的电压输入信号为0-10V模拟量的电压输入信号,并断开第一电阻R1的第二端与第一放大模块10的第二输入端之间的连接,且接通第二放大模块20的输出端与第一放大模块10的第二输入端之间的连接,这样便可通过信号输出端out输出模拟量的电流输出信号如0-20mA的电流输出信号。
由此,该电路通过软件可实现对电路的控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
下面结合图2-图9来具体说明下输出控制电路。
需要说明的是,第一功率模块40可以由三极管或MOS管构成,具体本申请不做限定,如图7-9所示,为便于说明,本申请实施例中以第一三极管Q1作为第一功率模块40为例进行说明,其中,第一三极管Q1的基极作为第一功率模块40的第一端,第一三极管Q1的集电极作为第一功率模块40的第二端,第一三极管Q1的发射极作为第一功率模块40的第三端。
如图2和图9,输出控制电路1还可以包括:过流保护模块50,第一三极管Q1通过过流保护模块50与第一直流电源VDD1连接,从而在用户误操作造成信号输出端out短路时,对第一三级管Q1进行过流保护。
作为一种可行的实施方式,如图2所示,过流保护模50可以包括稳压器或限流器IC1和第三电阻R3,其中,稳压器或限流器IC1为三端稳压器或限流器,稳压器或限流器IC1的第一端与第一直流电压源VDD1连接,稳压器或限流器IC1的第二端与第一三极管Q1的集电极连接,稳压器或限流器IC1的第二端通过第三电阻R3与稳压器或限流器IC1的第 三端连接。
如图3和图9所示,第一放大模块10可以包括:第一运算放大器A1、第一电容C1和第二电阻R2。其中,第一运算放大器A1的同相输入端作为第一放大模块10的第一输入端与信号输入端in连接,第一运算放大器A1的输出端作为第一放大模块10的输出端与第一三极管Q1的基极连接,第一运算放大器A1的反相输入端与第二电阻R2的第一端连接,第二电阻R2的第二端作为第一放大模块10的第二输入端与开关模块30连接。第一电容C1的第一端与第一运算放大器A1的输出端连接,第一电容C2的第二端与第一运算放大器A1的反相输入端连接。
如图4和图9所示,第二放大模块20可以包括:第四电阻R4、第五电阻R5、第二运算放大器A2、第六电阻R6、第七电阻R7和第二电容C2。其中,第二运算放大器A1的同相输入端与第四电阻R4的第一端连接,第四电阻R4的第二端作为第二放大模块20的第一输入端与第一电阻R1的第一端连接,第二运算放大器A2的反相输入端与第五电阻R5的第一端连接,第五电阻R5的第二端作为第二放大模块20的第二输入端与第一电阻R1的第二端连接,第二运算放大器A2的输出端作为第二放大模块20的输出端与开关模块30连接。第六电阻R6的第一端接地GND,第六电阻R6的第二端与第二运算放大器A2的同相输入端连接。第七电阻R7的第一端与第二运算放大器A2的输出端连接,第七电阻R7的第二端与第二运算放大器A2的反相输入端连接。第二电容C2的第一端与第二运算放大器A2的输出端连接,第二电容C2的第二端与第二运算放大器A2的反相输入端连接。
如图5和图9所示,开关模块30可以包括:第一开关单元301、第二开关单元302和控制单元303。其中,第一电阻R1的第二端与开关模块30连接,具体可与开关模块30中的第一开关单元301连接。第一放大模块10的第二输入端与开关模块30连接,具体可与开关模块30中的第一开关单元301和第二开关单元302连接。第二放大模块20的输出端与开关模块30连接,具体可与开关模块30中的第二开关单元302连接。控制单元303分别与第一开关单元301和第二开关单元302连接,控制单元303根据输入的控制信号控制第一开关单元301接通或断开第一电阻R1的第二端和第一放大模块10的第二输入端之间的连接,以及控制第二开关单元302接通或断开第二放大模块20的输出端和第一放大模块10的第二输入端之间的连接。
在本申请的实施例中,第一开关单元301可以包括但不限于第一固态继电器IC2等,其中,第一固态继电器IC2包括输入端、输出端、控制输入端和控制输出端。如图5和图9所示,第一开关单元301中第一固态继电器IC2的输入端与第一电阻R5的第二端连接,第一固态继电器IC2的输出端与第一放大模块10的第二输入端连接,第一固态继电器IC2 的输入控制端与控制单元303连接,第一固态继电器IC2的输出控制端接地GND。
在本申请的实施例中,第二开关单元302可以包括但不限于第二固态继电器IC3等,其中,第二固态继电器IC3包括输入端、输出端、控制输入端和控制输出端。如图5和图9所示,第二开关单元302中第二固态继电器IC3的输入端与第二放大模块20的输出端连接,第二固态继电器IC3的输出端与第一放大模块10的第二输入端连接,第二固态继电器IC3的输入控制端与控制单元303连接,第二固态继电器IC3的输出控制端接地GND或者可以通过第十一电阻R11接地GND。
需要说明的是,第一开关单元301和第二开关单元302不仅限于固态继电器,还可以使用拨码开关和跳线,也可以使用电磁继电器等,通过单片机的IO管脚控制第一开关单元301和第二开关单元302的输入口,通过软件实现对第一开关单元301和第二开关单元302的控制。
如图6和图9所示,控制单元303可以包括:控制信号输入端CNTL-in、第一晶体管Q2、第八电阻R8和第二晶体管Q3。其中,控制信号由单片机生成,并将控制信号从输入端CNTL-in输入控制单元303。第一晶体管Q2的控制端与控制信号输入端CNTL-in连接,第一晶体管Q2的第一端与第一开关单元301连接,具体可与第一固态继电器IC2的输入控制端连接,第一晶体管Q2的第二控制端接地GND。第八电阻R8的第一端与第二直流电压源VDD2连接,第八电阻R8的第二端与第一晶体管Q2的第一端连接。第二晶体管Q3的控制端与控制信号输入端CNTL-in连接,第二晶体管Q3的第一端与第三直流电压源VDD3连接,第二晶体管Q3的第二端与第二开关单元302连接,具体可与第二固态继电器IC3的输入控制端连接。
在一些实施例中,可以通过单片机输出控制信号至控制信号输入端CNTL-in,以控制控制模块303中第一晶体管Q2和第二晶体管Q3的截止或导通,从而实现对第一开关单元301和第二开关单元302的控制,即:控制第一开关单元301接通或断开第一电阻R1的第二端和第一放大模块10的第二输入端之间的连接,以及控制第二开关单元302接通或断开第二放大模块20的输出端和第一放大模块10的第二输入端之间的连接。
由此,可以通过软件配置单片机输出的控制信号实现控制电路输出信号功能的切换,进一步实现智能化,远程化配置。
如图10所示,输出控制电路1还可以在信号输出端out连接一个二极管D1。其中,二极管D1的正极接地GND,负极与信号输出端out连接,二极管D1用于吸收第一固态继电器IC2或者第二固态继电器IC3断开时产生的尖峰电压。
如图7-图10所示,输出控制电路1还可以在第一放大模块10和信号输入端in之间增 加滤波模块60,第一放大模块10的第一输入端通过滤波模块60与信号输入端in连接,以对模拟量的电压输入信号进行滤波,将滤波后的模拟量的电压输入信号输入第一放大模块10的第一输入端,其中,滤波模块60可以包括第十二电阻R12和电容C3。
本申请实施例的输出控制电路,通过控制单元303的控制信号,控制开关模块30中第一开关单元301(具体可为第一固态继电器IC2)接通或断开第一电阻R1的第二端和第一放大模块10的第二输入端之间的连接,以及控制第二开关单元301(具体可为第二固态继电器IC3)接通或断开第二放大模块20的输出端和第一放大模块10的第二输入端之间的连接。
当控制信号为低电平信号时,控制单元303中第一晶体管Q2和第二晶体管Q3均截止,从而使得第一开关单元301(具体可为第一固态继电器IC2)接通,且第二开关单元302(具体可为第一固态继电器IC3)断开,这样便使得第一电阻R1的第二端和第一放大模块10的第二输入端之间接通,且第二放大模块20的输出端和第一放大模块10的第二输入端之间断开,如图7所示,此时输出控制电路处于电压反馈模式。
例如,当需要通过信号输出端out输出模拟量的第一电压输出信号如0-10V的电压输出信号时,控制信号输入端CNTL-in输入低电平信号,并控制信号输入端in输入的电压输入信号为0-10V模拟量的电压输入信号,使得第一电阻R1的第二端与第一放大模块10的第二输入端之间接通,且第二放大模块20的输出端与第一放大模块10的第二输入端之间断开,由此由第一放大模块20和第一三极管Q1构成射随电路,通过电压反馈功能,这样便可通过信号输出端out输出模拟量的第一电压输出信号如0-10V的电压输出信号。
又如,当需要通过信号输出端out输出数字量的第二电压输出信号如12V的电压输出信号时,控制信号输入端CNTL-in输入低电平信号,控制信号输入端in输入的电压输入信号为12V数字量的电压输入信号,以使第一电阻R1的第二端与第一放大模块10的第二输入端之间接通,且第二放大模块20的输出端与第一放大模块10的第二输入端之间断开,由第一放大模块20和第一三极管Q1构成射随电路,通过电压反馈功能,这样便可通过信号输出端out输出数字量的第二电压输出信号如12V的电压输出信号。
当控制信号为高电平信号时,控制单元303中第一晶体管Q2和第二晶体管Q3均导通,从而使得第一开关单元301(具体可为第一固态继电器IC2)断开,且第二开关单元302(具体可为第一固态继电器IC3)接通,这样便使得第一电阻R1的第二端和第一放大模块10的第二输入端之间断开,第二放大模块20的输出端和第一放大模块10的第二输入端之间接通,如图8所示,此时电路处于电流反馈模式。
例如,当需要通过信号输出端out输出模拟量的电流输出信号如0-20mA的电流输出信 号时,控制信号输入端CNTL-in输入高电平信号,并控制信号输入端in输入的电压输入信号为0-10V模拟量的电压输入信号,使得第一电阻R1的第二端与第一放大模块10的第二输入端之间断开,且第二放大模块20的输出端与第一放大模块10的第二输入端之间接通,此时处于电流反馈模式,从第一电阻R1的两端取电压信号经过第二放大模块20(具体可为第二运算放大器IC3)进行差分放大,放大后的电压需要与电压输入信号对应的输入电压保持一致。举例说明,若第一电阻R1、第四电阻R4、第五电阻R5和第七电阻均为10Ω,想要通过信号输出端out输出模拟量的电流为20mA,输入电压U=R1*I*Af=10*0.02*100/2V=10V,则第二放大模块20的放大倍数为50倍。若第一电阻R1、第四电阻R4、第五电阻R5和第七电阻均为5Ω,则第二放大模块20的放大倍数为100倍。
在上述实施例的基础上,当单个三极管(第一三极管Q1)驱动电流不满足要求时,可以使用2个三极管并联方式。如图10所示,本申请实施例的输出控制电路还可以包括:第二功率模块70和第九电阻R9。其中,第二功率模块70可以由三极管或MOS管构成,具体本申请不做限定,本申请实施例中以第二三极管Q4作为第二功率模块70进行输出控制电路的说明,第二三极管Q4的基极作为第二功率模块70的第一端,第二三极管Q4的集电极作为第二功率模块70的第二端,第二三极管Q4的发射极作为第二功率模块70的第三端。第二三极管Q4的控制端(基极)与第一放大模块10的输出端连接,第二三极管Q4的第一端(集电极)与第一三极管Q1的第一端(集电极)连接。第九电阻R9的第一端与第二三极管Q4的第二端(发射极)连接,第九电阻R9的第二端与信号输出端out连接。
对应的,第二放大模块20还可以包括:第十电阻R10。其中,第十电阻R10的第一端与第九电阻R9的第一端连接,第十电阻R10的第二端与第二运算放大器A2的同相输入端连接。
需要说明的是,图10所示电路的工作原理如图9所示电路的工作原理,具体这里不再赘述。
综上所述,本申请实施例提出的输出控制电路,包括信号输出端、信号输入端、第一放大模块、第一功率模块、第一电阻、第二放大模块和开关模块,通过信号输入端输入电压输入信号,第一放大模块的第一输入端与信号输入端连接,第一功率模块的第一端与第一放大模块的输出端连接,第一功率模块的第二端与第一直流电压源连接,第一电阻的第一端与第一功率模块的第三端连接,第一电阻的第二端与信号输出端连接,第二放大模块的第一输入端与第一电阻的第一端连接,第二放大模块的第二输入端与第一电阻的第二端连接,开关模块分别与第一电阻的第二端、第二放大模块的输出端和第一放大模块的第二 输入端连接,开关模块用于切换接通第一电阻的第二端与第一放大模块的第二输入端之间的连接以及第二放大模块的输出端与第一放大模块的第二输入端之间的连接,通过信号输出端输出数字量的第一电压输出信号、模拟量的第二电压输出信号和模拟量的电流输出信号。由此,该电路通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
为了实现上述实施例,本申请实施例还提出一种控制器。
如图11所示,本申请实施例提出的控制器110具体可包括:上述任一实施例所示的输出控制电路1。
本申请实施例的控制器,能够通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
为了实现上述实施例,本申请实施例还提出一种空调器120。
如图12所示,本申请实施例提出的空调器120具体可包括:图11所示的控制器110。
本申请实施例的空调器,能够通过软件可控制,进一步实现智能化,远程化配置,实现控制器输出信号功能的切换,增强输出控制电路的通用性和安全可靠性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种输出控制电路,其特征在于,所述输出控制电路设置在控制器内,所述输出控制电路,包括:
    信号输入端,用于输入电压输入信号;
    第一放大模块,所述第一放大模块的第一输入端与所述信号输入端连接;
    第一功率模块,所述第一功率模块的第一端与所述第一放大模块的输出端连接,所述第一功率模块的第二端与第一直流电压源连接;
    第一电阻,所述第一电阻的第一端与所述第一功率模块的第三端连接;
    第二放大模块,所述第二放大模块的第一输入端与所述第一电阻的第一端连接,所述第二放大模块的第二输入端与所述第一电阻的第二端连接;
    开关模块,所述开关模块分别与所述第一电阻的第二端、所述第二放大模块的输出端和所述第一放大模块的第二输入端连接,所述开关模块用于切换接通所述第一电阻的第二端与所述第一放大模块的第二输入端之间的连接以及所述第二放大模块的输出端与所述第一放大模块的第二输入端之间的连接;
    信号输出端,所述信号输出端与所述第一电阻的第二端连接,用于输出数字量的第一电压输出信号、模拟量的第二电压输出信号和模拟量的电流输出信号。
  2. 根据权利要求1所述的输出控制电路,其特征在于,所述第一放大模块包括:
    第一运算放大器,所述第一运算放大器的同相输入端与所述信号输入端连接,所述第一运算放大器的输出端与所述第一功率模块的第一端连接;
    第一电容,所述第一电容的第一端与所述第一运算放大器的输出端连接,所述第一电容的第二端与所述第一运算放大器的反相输入端连接;
    第二电阻,所述第二电阻的第一端与所述第一运算放大器的反相输入端连接,所述第二电阻的第二端与所述开关模块连接。
  3. 根据权利要求1或2所述的输出控制电路,其特征在于,还包括:
    过流保护模块,所述第一功率模块的第二端通过所述过流保护模块与所述第一直流电源连接。
  4. 根据权利要求3所述的输出控制电路,其特征在于,所述过流保护模块包括:
    稳压器或限流器,所述稳压器或限流器的第一端与所述第一直流电压源连接,所述稳 压器或限流器的第二端与所述第一功率模块的第二端连接;
    第三电阻,所述稳压器或限流器的第二端通过所述第三电阻与所述稳压器或限流器的第三端连接。
  5. 根据权利要求1至4中任一项所述的输出控制电路,其特征在于,所述第二放大模块包括:
    第四电阻;
    第五电阻;
    第二运算放大器,所述第二运算放大器的同相输入端通过所述第四电阻与所述第一电阻的第一端连接,所述第二运算放大器的反相输入端通过所述第五电阻与所述第一电阻的第二端连接,所述第二运算放大器的输出端与所述开关模块连接;
    第六电阻,所述第六电阻的第一端接地,所述第六电阻的第二端与所述第二运算放大器的同相输入端连接;
    第七电阻,所述第七电阻的第一端与所述第二运算放大器的输出端连接,所述第七电阻的第二端与所述第二运算放大器的反相输入端连接;
    第二电容,所述第二电容的第一端与所述第二运算放大器的输出端连接,所述第二电容的第二端与所述第二运算放大器的反相输入端连接。
  6. 根据权利要求1至5中任一项所述的输出控制电路,其特征在于,所述开关模块包括:
    第一开关单元,所述第一开关单元分别与所述第一电阻的第二端和所述第一放大模块的第二输入端连接;
    第二开关单元,所述第二开关单元分别与所述第二放大模块的输出端和所述第一放大模块的第二输入端连接;
    控制单元,所述控制单元分别与所述第一开关单元和所述第二开关单元连接,所述控制单元用于根据输入的控制信号,控制所述第一开关单元接通或断开所述第一电阻的第二端和所述第一放大模块的第二输入端之间的连接,或者控制所述第二开关单元接通或断开所述第二放大模块的输出端和所述第一放大模块的第二输入端之间的连接。
  7. 根据权利要求6所述的输出控制电路,其特征在于,所述第一开关单元包括:
    第一固态继电器,所述第一固态继电器的输入端与所述第一电阻的第二端连接,所述 第一固态继电器的输出端与所述第一放大模块的第二输入端连接,所述第一固态继电器的输入控制端与所述控制单元连接,所述第一固态继电器的输出控制端接地。
  8. 根据权利要求6或7所述的输出控制电路,其特征在于,所述第二开关单元包括:
    第二固态继电器,所述第二固态继电器的输入端与所述第二放大模块的输出端连接,所述第二固态继电器的输出端与所述第一放大模块的第二输入端连接,所述第二固态继电器的输入控制端与所述控制单元连接,所述第二固态继电器的输出控制端接地。
  9. 根据权利要求6至8中任一项所述的输出控制电路,其特征在于,所述控制单元包括:
    控制信号输入端,用于输入所述控制信号;
    第一晶体管,所述第一晶体管的控制端与所述控制信号输入端连接,所述第一晶体管的第一端与所述第一开关单元连接,所述第一晶体管的第二端接地;
    第八电阻,所述第八电阻的第一端与第二直流电压源连接,所述第八电阻的第二端与第一晶体管的第一端连接;
    第二晶体管,所述第二晶体管的控制端与所述控制信号输入端连接,所述第二晶体管的第一端与第三直流电压源连接,所述第二晶体管的第二端与所述第二开关单元连接。
  10. 根据权利要求1至9中任一项所述的输出控制电路,其特征在于,还包括:
    二极管,所述二极管的正极接地,所述述二极管的负极与所述信号输出端连接。
  11. 根据权利要求1至10中任一项所述的输出控制电路,其特征在于,还包括:
    滤波模块,所述第一放大模块的第一输入端通过所述滤波模块与所述信号输入端连接。
  12. 根据权利要求5至11中任一项所述的输出控制电路,其特征在于,还包括:
    第二功率模块,所述第二功率模块的第一端与所述第一放大模块的输出端连接,所述第二功率模块的第二端与所述第一功率模块的第二端连接;
    第九电阻,所述第九电阻的第一端与所述第二功率模块的第三端连接,所述第九电阻的第二端与所述信号输出端连接;
    所述第二放大模块还包括:
    第十电阻,所述第十电阻的第一端与所述第九电阻的第一端连接,所述第十电阻的第 二端与所述第二运算放大器的同相输入端连接。
  13. 一种控制器,其特征在于,包括:如权利要求1-12任一项所述的输出控制电路。
  14. 一种空调器,其特征在于,包括:如权利要求13所述的控制器。
PCT/CN2022/109802 2021-11-01 2022-08-02 输出控制电路、控制器及空调器 WO2023071364A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/564,280 US20240250652A1 (en) 2021-11-01 2022-08-02 Output control circuit, controller, and air conditioner
EP22885264.6A EP4428638A1 (en) 2021-11-01 2022-08-02 Output control circuit, controller, and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111284433.0A CN114137865B (zh) 2021-11-01 2021-11-01 输出控制电路、控制器及空调器
CN202111284433.0 2021-11-01

Publications (1)

Publication Number Publication Date
WO2023071364A1 true WO2023071364A1 (zh) 2023-05-04

Family

ID=80391954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109802 WO2023071364A1 (zh) 2021-11-01 2022-08-02 输出控制电路、控制器及空调器

Country Status (4)

Country Link
US (1) US20240250652A1 (zh)
EP (1) EP4428638A1 (zh)
CN (1) CN114137865B (zh)
WO (1) WO2023071364A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137865A (zh) * 2021-11-01 2022-03-04 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316742A (ja) * 1995-05-22 1996-11-29 Yokogawa Electric Corp アナログ信号出力装置
CN103616827A (zh) * 2013-11-18 2014-03-05 深圳市航嘉驰源电气股份有限公司 一种电源输出装置及电源输出装置控制方法
CN203616592U (zh) * 2013-11-18 2014-05-28 深圳市航嘉驰源电气股份有限公司 一种电源输出装置
CN108062054A (zh) * 2017-12-22 2018-05-22 深圳市英威腾电气股份有限公司 一种模拟量信号输出电路
CN109861649A (zh) * 2019-02-22 2019-06-07 上海艾为电子技术股份有限公司 信号处理电路及音频功率放大电路
CN209388151U (zh) * 2019-01-15 2019-09-13 长沙硕博电子科技股份有限公司 一种模拟量输出控制电路
CN114137865A (zh) * 2021-11-01 2022-03-04 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器
CN216561500U (zh) * 2021-11-01 2022-05-17 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105578B1 (ko) * 2010-11-19 2012-01-17 엘에스산전 주식회사 Plc 출력 회로
CN108111172A (zh) * 2017-12-25 2018-06-01 广州市熙泰自控设备有限公司 一种将数字量转换为电阻输出的电路
CN110601666B (zh) * 2019-09-23 2024-04-26 深圳市知用电子有限公司 一种功率管模拟电路、输出级电路及功率放大器
CN111198522B (zh) * 2019-11-28 2022-03-29 广州民航职业技术学院 包含多种输出类型的接口电路及其控制方法
CN114063551B (zh) * 2021-11-01 2024-02-06 上海美控智慧建筑有限公司 输入输出控制电路、控制器及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316742A (ja) * 1995-05-22 1996-11-29 Yokogawa Electric Corp アナログ信号出力装置
CN103616827A (zh) * 2013-11-18 2014-03-05 深圳市航嘉驰源电气股份有限公司 一种电源输出装置及电源输出装置控制方法
CN203616592U (zh) * 2013-11-18 2014-05-28 深圳市航嘉驰源电气股份有限公司 一种电源输出装置
CN108062054A (zh) * 2017-12-22 2018-05-22 深圳市英威腾电气股份有限公司 一种模拟量信号输出电路
CN209388151U (zh) * 2019-01-15 2019-09-13 长沙硕博电子科技股份有限公司 一种模拟量输出控制电路
CN109861649A (zh) * 2019-02-22 2019-06-07 上海艾为电子技术股份有限公司 信号处理电路及音频功率放大电路
CN114137865A (zh) * 2021-11-01 2022-03-04 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器
CN216561500U (zh) * 2021-11-01 2022-05-17 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137865A (zh) * 2021-11-01 2022-03-04 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器
CN114137865B (zh) * 2021-11-01 2024-03-19 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器

Also Published As

Publication number Publication date
CN114137865A (zh) 2022-03-04
EP4428638A1 (en) 2024-09-11
CN114137865B (zh) 2024-03-19
US20240250652A1 (en) 2024-07-25

Similar Documents

Publication Publication Date Title
CN108062054B (zh) 一种模拟量信号输出电路
WO2023071364A1 (zh) 输出控制电路、控制器及空调器
US3316423A (en) Amplifying apparatus providing two output states
WO2023071532A1 (zh) 输入输出控制电路、控制器及空调器
CN215267757U (zh) 一种双电源切换电路及双电源控制系统
CN216561500U (zh) 输出控制电路、控制器及空调器
CN104615053A (zh) 一种晶体管控制型电子负载控制电路
CN217034573U (zh) 输出控制电路、控制器及空调器
CN112688788B (zh) 一种分立pd电路及供电系统
CN108599558A (zh) 基于低压h桥的控制电路
CN114137864B (zh) 输出控制电路、控制器及空调器
CN101459378B (zh) 线性降压调节器
CN217034572U (zh) 输入输出控制电路、控制器及空调器
CN208299688U (zh) 基于低压h桥的控制电路
GB1098685A (en) Electronic circuit
CN113110669A (zh) 一种采用pwm控制和使能控制的高低边输出恒流源系统
US4937478A (en) Circuit configuration for low-distortion signal switching
CN204406108U (zh) 一种晶体管控制型电子负载控制电路
CN220254718U (zh) 改良型图腾柱电路和led驱动电源
CN210867630U (zh) 固态继电器电路
CN215528867U (zh) 用于无线模块的电源滤波电路和无线通信设备
CN217741686U (zh) 一种大功率运算放大器
CN117762055A (zh) 一种控制器的输出电路、pcb板及控制器
CN112104350A (zh) 一种兼容pwm与模拟量输出的电路
CN115811327A (zh) 一种终端通信电路、工业相机及终端通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885264

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18564280

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022885264

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022885264

Country of ref document: EP

Effective date: 20240603