WO2023071532A1 - 输入输出控制电路、控制器及空调器 - Google Patents

输入输出控制电路、控制器及空调器 Download PDF

Info

Publication number
WO2023071532A1
WO2023071532A1 PCT/CN2022/117042 CN2022117042W WO2023071532A1 WO 2023071532 A1 WO2023071532 A1 WO 2023071532A1 CN 2022117042 W CN2022117042 W CN 2022117042W WO 2023071532 A1 WO2023071532 A1 WO 2023071532A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
resistor
switch module
control
input
Prior art date
Application number
PCT/CN2022/117042
Other languages
English (en)
French (fr)
Inventor
赵震
杨大有
阎杰
Original Assignee
上海美控智慧建筑有限公司
广东美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海美控智慧建筑有限公司, 广东美的暖通设备有限公司 filed Critical 上海美控智慧建筑有限公司
Publication of WO2023071532A1 publication Critical patent/WO2023071532A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1103Special, intelligent I-O processor, also plc can only access via processor

Definitions

  • the present application relates to the field of electronic technology, in particular to an input and output control circuit, a controller and an air conditioner.
  • PLC Programmable Logic Controller
  • DDC Direct Digital Control
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first purpose of the present application is to propose an input-output control circuit to realize the conversion of input-output signals through simple operations, and enhance the versatility, safety and reliability of the input-output control circuit.
  • a second object of the present application is to propose a controller.
  • the third purpose of the present application is to provide an air conditioner.
  • the embodiment of the first aspect of the present application proposes an input and output control circuit, the circuit includes: a signal input and output terminal for inputting or outputting a signal; a first switch module, the first switch module The first terminal is connected to the first DC voltage source; the first resistor, the first terminal of the first resistor is connected to the second terminal of the first switch module; the second switch module, the second switch module of the second switch module One end is connected to the third end of the first switch module, the second end of the second switch module is grounded, and the third end of the second switch module is connected to the first control end of the control module; the second resistor , the first end of the second resistance is connected to the signal input and output end, and the second end of the second resistance is respectively connected to the second DC voltage source and the analog-to-digital conversion end of the control module; the third resistance , the first terminal of the third resistor is connected to the signal input and output terminal; the third switch module, the first terminal of the third switch module is connected to the second terminal of the third
  • the input and output control circuit of the embodiment of the present application includes a signal input and output terminal, a first switch module, a first resistor, a second switch module, a second resistor, a third resistor, a third switch module, a fourth resistor, and a fourth switch module , the fifth switch module, the amplifying module, the sixth switch module and the control module, wherein the signal input and output terminals are used to input signals or output signals; the first end of the first switch module is connected to the first DC voltage source; the first resistor The first end of the first switch module is connected to the second end of the first switch module; the first end of the second switch module is connected to the third end of the first switch module, the second end of the second switch module is grounded, and the second end of the second switch module The three terminals are connected to the first control terminal of the control module; the first terminal of the second resistor is connected to the signal input and output terminals, and the second terminal of the second resistor is respectively connected to the second DC voltage source and the analog-to-digital conversion terminal
  • the second control end of the control module is connected; the first end of the amplification module is connected to the digital-to-analog conversion end of the control module, and the second end of the amplification module is grounded; the first end of the sixth switch module is connected to the third end of the amplification module, The second terminal of the sixth switch module is connected to the signal input and output terminal, the third terminal of the sixth switch module is connected to the third control terminal of the control module, and the fourth terminal of the sixth switch module is grounded; the control module is used to pass the first The control terminal outputs the first control signal to control the on-off of the second switch module, outputs the second control signal through the second control terminal to correspondingly control the on-off of the second switch module and the third switch module, and outputs through the third control terminal
  • the third control signal is used to control the on-off of the fifth switch module, so as to realize the sampling of the input signal of the signal input and output terminal through the analog-to-digital conversion terminal, or realize the output of the input signal of the digital-to-an
  • the input and output control circuit proposed in the embodiment of the first aspect of the present invention may also have the following additional technical features:
  • the first switch module includes: a first transistor, a first terminal of the first transistor is connected to the first DC voltage source, a second terminal of the first transistor is connected to the first The first terminal of a resistor is connected, the third terminal of the first transistor is connected to the first terminal of the second switch module; the fifth resistor, the first terminal of the fifth resistor is connected to the first terminal of the first transistor The first terminal is connected, and the second terminal of the fifth resistor is connected with the third terminal of the second transistor.
  • the second switch module includes: a second transistor, the first terminal of the second transistor is connected to the third terminal of the second switch module, and the second terminal of the second transistor The terminal is grounded, and the third terminal of the second transistor is connected to the first control terminal.
  • the third switch module includes: a third transistor, the first end of the third transistor is connected to the second end of the third resistor, and the second end of the third transistor Grounded, the third terminal of the transistor is connected to the second control terminal; the sixth resistor, the first terminal of the sixth resistor is connected to the third terminal of the third transistor, the sixth resistor of the sixth resistor The two terminals are connected with the second terminal of the third transistor.
  • the fourth switch module includes: a fourth transistor, the first end of the fourth transistor is connected to the second end of the third resistor, and the second end of the fourth transistor Grounded, the third end of the fourth transistor is connected to the first end of the fifth switch module; the seventh resistor, the first end of the seventh resistor is connected to the second end of the fourth transistor, so The second end of the seventh resistor is connected to the third end of the fourth transistor.
  • the fifth switch module includes: a fifth transistor, a first terminal of the fifth transistor is connected to the third DC voltage source through an eighth resistor, and a second terminal of the fifth transistor grounded, and the third terminal of the fifth transistor is connected to the second control terminal.
  • the amplifying module includes: an operational amplifier; a ninth resistor, the first terminal of the ninth resistor is connected to the non-inverting input terminal of the operational amplifier, and the second terminal of the ninth resistor connected to the digital-to-analog conversion end; a tenth resistor, the first end of the tenth resistor is connected to the inverting input end of the operational amplifier, and the second end of the tenth resistor is grounded; the eleventh resistor, The first end of the eleventh resistor is connected to the first end of the sixth switch module, the second end of the eleventh resistor is connected to the output end of the operational amplifier; the twelfth resistor, the The first end of the twelfth resistor is connected to the first end of the eleventh resistor, and the second end of the twelfth resistor is connected to the inverting input end of the operational amplifier.
  • the sixth switch module includes: a relay, the first end of the relay is connected to the third end of the amplification module, the second end of the relay is connected to the signal input and output end connected, the third end of the relay is connected to the third control end through a thirteenth resistor, and the fourth end of the relay is grounded.
  • the above input and output control circuit further includes: a filter module; wherein the filter module includes a first capacitor, a second capacitor and a fourteenth resistor, wherein the first capacitor of the first capacitor One end is respectively connected to the second end of the second resistor and the first end of the fourteenth resistor, the second end of the second capacitor is grounded, and the first end of the second capacitor is connected to the first end of the fourteenth resistor respectively.
  • the analog-to-digital conversion terminal is connected to the second terminal of the fourteenth resistor, and the second terminal of the second capacitor is grounded.
  • the above input and output control circuit further includes: a first voltage regulator, the first terminal of the first voltage regulator is connected to the signal input and output terminal, and the first voltage regulator The second end of the device is grounded.
  • the above input and output control circuit further includes: a second voltage regulator, the first terminal of the second voltage regulator is connected to the fourth DC voltage source, and the second voltage regulator The second terminal of the second regulator is connected to the analog-to-digital conversion terminal, and the third terminal of the second regulator is grounded.
  • the embodiment of the second aspect of the present application provides a controller, which includes: the output control circuit as described in the embodiment of the first aspect of the present application.
  • the controller of the embodiment of the present application can realize the conversion of input and output signals through simple operations, and enhance the versatility, safety and reliability of the input and output control circuit.
  • the embodiment of the third aspect of the present application provides an air conditioner, including the controller as described in the embodiment of the second aspect of the present application.
  • the air conditioner in the embodiment of the present application can realize the conversion of input and output signals through simple operation, and enhance the versatility, safety and reliability of the input and output control circuit.
  • FIG. 1 is a schematic diagram of an input and output control circuit according to an embodiment of the present application
  • FIG. 2 is a circuit diagram of an input-output control circuit according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a controller according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an air conditioner according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an input-output control circuit according to an embodiment of the present application.
  • the input and output control circuit of the embodiment of the present application includes: signal input and output terminals in-out, a first switch module 10, a first resistor R1, a second switch module 20, a second resistor R2, a third The resistor R3 , the third switch module 30 , the fourth resistor R4 , the fourth switch module 40 , the fifth switch module 50 , the sixth switch module 60 , the amplification module 70 and the control module 80 .
  • the signal input and output terminal in-out is used for inputting a signal or outputting a signal.
  • the first terminal of the first switch module 10 is connected to a first DC voltage source (for example, a 10V DC voltage source).
  • a first end of the first resistor R1 is connected to a second end of the first switch module 10 .
  • the first terminal of the second switch module 20 is connected to the third terminal of the first switch module 10, the second terminal of the second switch module 20 is grounded, and the third terminal of the second switch module 20 is connected to the first control terminal of the control module 80.
  • CI-1 connection for example, a 10V DC voltage source.
  • the first end of the second resistor R2 is connected to the signal input and output terminal in-out, and the second end of the second resistor R2 is respectively connected to the second DC voltage source (such as a 3.3V DC voltage source) and the analog-to-digital conversion of the control module 80 end ADC connection.
  • the first terminal of the third resistor R3 is connected to the signal input and output terminal in-out.
  • the first terminal of the third switch module 30 is connected to the signal input and output terminal in-out, the second terminal of the third switch module 30 is grounded, and the third terminal of the third switch module 30 is connected to the second control terminal CI of the control module 80- 2 connections.
  • a first end of the fourth resistor R4 is connected to a second end of the second resistor R2.
  • the first end of the fourth switch module 40 is connected to the second end of the fourth resistor R4, and the second end of the fourth switch module 40 is grounded.
  • the first end of the fifth switch module 50 is respectively connected with the third end of the fourth switch module 40 and the third DC voltage source (such as a 5V DC voltage source), the second end of the fifth switch module 50 is grounded, and the fifth switch
  • the third terminal of the module 50 is connected with the second control terminal CI-2 of the control module 80 .
  • the first terminal of the amplification module 70 is connected to the digital-to-analog conversion terminal DAC of the control module 80 , and the second terminal of the amplification module 70 is grounded.
  • the first end of the sixth switch module 60 is connected to the third end of the amplification module 70, the second end of the sixth switch module 60 is connected to the signal input and output terminal in-out, and the third end of the sixth switch module 60 is connected to the control module 80 is connected to the third control terminal CI-3, and the fourth terminal of the sixth switch module 60 is grounded.
  • the control module 80 is used to output the first control signal through the first control terminal CI-1 to control the on-off of the second switch module 20, and output the second control signal through the second control terminal CI-2 to control the second switch module 20 accordingly.
  • the input and output terminals are in the input state, such as the input signal is a temperature signal, that is, the input and output control circuit is in the resistance sampling mode, and the external resistance temperature sensor RT is connected to the input and output terminals.
  • the control module 80 outputs the first control signal through the first control terminal CI-1 to control the second switch module 20 to turn on, the second switch module 20 controls the first control module 80 to turn on, and outputs the second control signal through the second control terminal CI-2.
  • Two control signals to respectively control the third switch module 30 and the fifth switch module 50 to be turned off, the fifth control module 80 controls the fourth switch module 40 to be turned on, and the third control signal is output through the third control terminal CI-3 to control the fifth switch module 50.
  • the six switch module 60 is disconnected, at this time the second resistor R2 and the fourth resistor R4 are connected in series, the external resistance temperature sensor RT is connected in parallel with the second resistor R2 and the fourth resistor R4 connected in series, and then the first resistor R1 is connected in series, through the first
  • the DC voltage source supplies power to the resistance sampling circuit, and then a voltage signal is taken at both ends of the fourth resistance R4, and the voltage signal is output to the analog-to-digital conversion terminal ADC, and the analog-to-digital conversion is performed through the control module 80.
  • the control module 80 is based on the obtained voltage
  • the signal can get the resistance value corresponding to the external resistance temperature sensor RT, so that the input electric group value can be sampled.
  • the control module 80 When the input and output terminals are in the input state, such as the input signal is a current signal, that is, the input and output control circuit is in the current sampling mode, and the 0-20mA current signal is connected to the input and output terminals.
  • the control module 80 outputs the first control signal through the first control terminal CI-1 to control the second switch module 20 to turn off, the second switch module 20 controls the first control module 80 to turn off, and outputs the second control signal through the second control terminal CI-2.
  • Two control signals to respectively control the third switch module 30 and the fifth switch module 50 to turn on, the fifth control module 80 controls the fourth switch module 40 to turn off, and output the third control signal through the third control terminal CI-3 to control the fifth switch module 50.
  • the six switch module 60 is disconnected.
  • the current signal of 0-20mA is sampled by the third resistor R3, and the current is converted into a voltage. After passing through the second resistor R2, it is output to the analog-to-digital conversion terminal ADC, and the analog-to-digital conversion is performed through the control module 80. Conversion, at this time, the control module 80 can obtain the current value of the current signal according to the obtained voltage signal, so that the input current value can be sampled.
  • the input and output terminals When the input and output terminals are in the input state, if the input signal is a voltage signal, that is, the input and output control circuit is in the voltage sampling mode, and the voltage signal of 0-10V is connected to the input and output terminals.
  • the control module 80 outputs the first control signal through the first control terminal CI-1 to control the second switch module 20 to turn off, the second switch module 20 controls the first control module 80 to turn off, and outputs the second control signal through the second control terminal CI-2.
  • Two control signals to respectively control the third switch module 30 and the fifth switch module 50 to turn off, the fifth switch module 50 controls the fourth switch module 40 to turn on, and output the third control signal through the third control terminal CI-3 to control the fifth
  • the six-switch module 60 is disconnected.
  • the voltage signal of 0-10V is divided by the second resistor R2 and the fourth resistor R4 and then output to the analog-to-digital converter ADC.
  • the analog-to-digital conversion is performed by the control module 80.
  • the control module 80 can obtain the voltage value of the voltage signal according to the obtained voltage signal, so that the input voltage value can be sampled.
  • the control module 80 When the input and output terminals are in the output state, such as when the output signal is a voltage signal, that is, the input and output control circuit is in the voltage output mode, the control module 80 inputs a 0-10V voltage signal to the digital-to-analog conversion terminal DAC, and through the first control Terminal CI-1 outputs a first control signal to control the second switch module 20 to turn off, the second switch module 20 controls the first control module 80 to turn off, and outputs a second control signal through the second control terminal CI-2 to control the second switch module 80 respectively.
  • the third switch module 30 and the fifth switch module 50 are disconnected, the fifth control module 80 controls the fourth switch module 40 to be turned on, and outputs a third control signal through the third control terminal CI- 3 to control the sixth switch module 60 to be turned on.
  • the voltage signal of 0-10V is amplified by the amplification module 70, and the voltage signal of 0-10V is output to the input and output terminals. In this way, the voltage signal of 0-10V is output from the input and output terminals.
  • the voltage signal is divided by the second resistor R2 and the fourth resistor R4, and the ADC at the analog-to-digital conversion terminal can monitor the input voltage by collecting the voltage across the fourth resistor R4.
  • the control module 80 When the input and output terminals are passive dry contact signals, the control module 80 outputs the first control signal through the first control terminal CI-1 to control the second switch module 20 to turn on, and the second switch module 20 controls the first control module 80 is turned on, and the second control signal is output through the second control terminal CI-2 to respectively control the third switch module 30 and the fifth switch module 50 to turn off, the fifth control module 80 controls the fourth switch module 40 to turn on, through the second control terminal CI-2
  • the third control terminal CI- 3 outputs a third control signal to control the sixth switch module 60 to turn off.
  • the voltage sampled by the ADC at the analog-to-digital conversion terminal is about 10V;
  • the maximum value and minimum value of the sampled voltage value can be used to judge whether the input and output terminals are connected or disconnected, so as to realize the monitoring of the digital quantity.
  • the circuit can realize the conversion of the input and output signals through simple operation, thereby enhancing the versatility, safety and reliability of the input and output control circuit.
  • the input-output control circuit of the embodiment of the present application will be described below with reference to FIG. 2 .
  • the first switch module 10 includes: a first transistor Q1 and a fifth resistor R5.
  • the first terminal of the first transistor Q1 is connected to the first DC voltage source
  • the second terminal of the first transistor Q1 is connected to the first terminal of the first resistor R1
  • the third terminal of the first transistor Q1 is connected to the second switch module
  • the first end of 20 is connected.
  • a first end of the fifth resistor R5 is connected to the first end of the first transistor Q1, and a second end of the fifth resistor R5 is connected to the third end of the second transistor Q2.
  • the first transistor Q1 may be a P-type MOS transistor.
  • the second switch module 20 includes: a second transistor Q2, the first end of the second transistor Q2 is connected to the third end of the second switch module 20, the second end of the second transistor Q2 is grounded, and the second The third terminal of the transistor Q2 is connected to the first control terminal CI-1.
  • the second transistor Q2 may be an NPP transistor.
  • the third switch module 30 includes: a third transistor Q3 and a sixth resistor R6.
  • the first terminal of the third transistor Q3 is connected to the second terminal of the third resistor R3, the second terminal of the third transistor Q3 is grounded, and the third terminal of the transistor is connected to the second control terminal CI-2.
  • a first end of the sixth resistor R6 is connected to the third end of the third transistor Q3, and a second end of the sixth resistor R6 is connected to the second end of the third transistor Q3.
  • the third transistor Q3 may be an N-type MOS transistor.
  • the fourth switch module 40 includes: a fourth transistor Q4 and a seventh resistor R7.
  • the first end of the fourth transistor Q4 is connected to the second end of the third resistor R3, the second end of the fourth transistor Q4 is grounded, and the third end of the fourth transistor Q4 is connected to the first end of the fifth switch module 50 .
  • a first end of the seventh resistor R7 is connected to the second end of the fourth transistor Q4, and a second end of the seventh resistor R7 is connected to the third end of the fourth transistor Q4.
  • the fourth transistor Q4 may be an N-type MOS transistor.
  • the fifth switch module 50 includes: a fifth transistor Q5, the first end of the fifth transistor Q5 is connected to the third DC voltage source through an eighth resistor, the second end of the fifth transistor Q5 is grounded, and the fifth transistor Q5 The third terminal of the transistor Q5 is connected to the second control terminal CI-2.
  • the fifth transistor Q5 may be an NPN transistor.
  • the amplifying module 70 includes: an operational amplifier ICID, a ninth resistor R9 , a tenth resistor R10 , an eleventh resistor R11 and a twelfth resistor R12 .
  • the first terminal of the ninth resistor R9 is connected to the non-inverting input terminal of the operational amplifier ICID
  • the second terminal of the ninth resistor R9 is connected to the digital-to-analog conversion terminal DAC.
  • a first end of the tenth resistor R10 is connected to the inverting input end of the operational amplifier ICID, and a second end of the tenth resistor R10 is grounded.
  • the first end of the eleventh resistor R11 is connected to the first end of the sixth switch module 60 , and the second end of the eleventh resistor R11 is connected to the output end of the operational amplifier ICID.
  • the first end of the twelfth resistor R12 is connected to the first end of the eleventh resistor R11, and the second end of the twelfth resistor R12 is connected to the inverting input end of the operational amplifier ICID.
  • the sixth switch module 60 includes: a relay IC1.
  • the first end of the relay IC1 is connected to the third end of the amplification module 70, the second end of the relay IC1 is connected to the signal input and output terminal in-out, and the third end of the relay IC1 is connected to the third control terminal through the thirteenth resistor CI-3 is connected, and the fourth terminal of relay IC1 is grounded.
  • the relay IC1 may be a solid relay IC1, an electromagnetic relay IC1, or the like.
  • the above input and output control circuit further includes: a filtering module; wherein the filtering module includes a first capacitor C1, a second capacitor C2 and a fourteenth resistor R14, wherein the first end of the first capacitor C1 respectively connected to the second end of the second resistor R2 and the first end of the fourteenth resistor R14; the second end of the second capacitor C2 is grounded; The second end of the four resistors R14 is connected, and the second end of the second capacitor C2 is grounded.
  • the filtering module includes a first capacitor C1, a second capacitor C2 and a fourteenth resistor R14, wherein the first end of the first capacitor C1 respectively connected to the second end of the second resistor R2 and the first end of the fourteenth resistor R14; the second end of the second capacitor C2 is grounded; The second end of the four resistors R14 is connected, and the second end of the second capacitor C2 is grounded.
  • the above input and output control circuit also includes: a first voltage regulator D1, the first end of the first voltage regulator D1 is connected to the signal input and output terminal in-out, the first voltage regulator D1 The second end is grounded.
  • the above input and output control circuit also includes: a second voltage regulator D2, the first end of the second voltage regulator D2 is connected to a fourth DC voltage source (such as a 3.3V DC voltage source), and the second The second terminal of the second voltage regulator D2 is connected to the analog-to-digital conversion terminal ADC, and the third terminal of the second voltage regulator D2 is grounded.
  • a fourth DC voltage source such as a 3.3V DC voltage source
  • the input and output terminals are in the input state, such as the input signal is a temperature signal, that is, the input and output control circuit is in the resistance sampling mode, and the external resistance temperature sensor RT is connected to the input and output terminals.
  • the control module 80 outputs a high-level signal through the first control terminal CI-1 to control the second transistor Q2 and the first transistor Q1 to be turned on, and outputs a low-level signal through the second control terminal CI-2 to respectively control the third transistor Q3
  • the fifth transistor Q5 is disconnected, the fourth transistor Q4 is connected, and a low level signal is output through the third control terminal CI-3 to control the power-off of the relay IC1.
  • the second resistor R2 and the fourth resistor R4 are connected in series, and the external resistor
  • the type temperature sensor RT is connected in parallel with the second resistor R2 and the fourth resistor R4 in series, and then connects the first resistor R1 in series, supplies power to the resistance sampling circuit through the first DC voltage source, and then takes a voltage signal at both ends of the fourth resistor R4.
  • the control module 80 can obtain the temperature corresponding to the external resistance temperature sensor RT according to the obtained voltage signal. resistance, so that the input electric group value can be sampled.
  • the control module 80 When the input and output terminals are in the input state, such as the input signal is a current signal, that is, the input and output control circuit is in the current sampling mode, and the 0-20mA current signal is connected to the input and output terminals.
  • the control module 80 outputs a low-level signal through the first control terminal CI-1 to control the second transistor Q2 and the first transistor Q1 to be turned off, and outputs a high-level signal through the second control terminal CI-2 to respectively control the third transistor Q3
  • the fifth transistor Q5 is turned on, the fourth transistor Q4 is turned off, and a low level signal is output through the third control terminal CI-3 to control the power-off of the relay IC1.
  • the current signal of 0-20mA is sampled by the third resistor R3 , convert the current into a voltage, and output it to the filter module after passing through the second resistor R2, filter through the filter module, and output it to the analog-to-digital conversion terminal ADC of the control module 80, and perform analog-to-digital conversion on the voltage signal through the control module 80, At this time, the control module 80 can obtain the current value of the current signal according to the obtained voltage signal, so that the input current value can be sampled.
  • the input and output terminals are in the input state, if the input signal is a voltage signal, that is, the input and output control circuit is in the voltage sampling mode, and the voltage signal of 0-10V is connected to the input and output terminals.
  • the control module 80 outputs a low-level signal through the first control terminal CI-1 to control the second transistor Q2 and the first transistor Q1 to turn off, and outputs a low-level signal through the second control terminal CI-2 to respectively control the third transistor Q3
  • the fifth transistor Q5 is disconnected, the fourth transistor Q4 is switched on, and a low-level signal is output through the third control terminal CI-3 to control the power-off of the relay IC1.
  • the voltage signal of 0-10V passes through the second resistor R2 and The voltage of the fourth resistor R4 is divided and filtered by the filter module, and then output to the analog-to-digital conversion terminal ADC, and the voltage signal is converted by the control module 80.
  • the control module 80 can obtain the voltage of the voltage signal according to the obtained voltage signal value, so that the input voltage value can be sampled.
  • the control module 80 inputs a 0-10V voltage signal to the digital-to-analog conversion terminal DAC, and through the first control
  • the terminal CI-1 outputs a low-level signal to control the second transistor Q2 and the first transistor Q1 to turn off
  • the second control terminal CI-2 outputs a low-level signal to respectively control the third transistor Q3 and the fifth transistor Q5 to turn off
  • the fourth transistor Q4 is turned on, and outputs a high-level signal through the third control terminal CI-3 to control the relay IC1 to be energized.
  • the voltage signal of 0-10V is amplified by the amplification module 70, and the voltage signal of 0-10V is output to the input and output terminals. In this way, the voltage signal of 0-10V is output from the input and output terminals.
  • the voltage signal is divided by the second resistor R2 and the fourth resistor R4, and the ADC at the analog-to-digital conversion terminal can monitor the input voltage by collecting the voltage across the fourth resistor R4.
  • the control module 80 When the input and output terminals are passive dry contact signals, the control module 80 outputs a high-level signal through the first control terminal CI-1 to control the second transistor Q2 and the first transistor Q1 to be turned on, and through the second control terminal CI-1 -2 outputs a low-level signal to respectively control the third transistor Q3 and the fifth transistor Q5 to be turned off, and the fourth transistor Q4 to be turned on, and the third control terminal CI-3 outputs a low-level signal to control the relay IC1 to be powered off.
  • the voltage sampled by the ADC at the analog-to-digital conversion terminal is about 10V;
  • the maximum value and minimum value of the sampled voltage value can be used to judge whether the input and output terminals are connected or disconnected, so as to realize the monitoring of the digital quantity.
  • the input and output control circuit of the embodiment of the present application includes a signal input and output terminal, a first switch module, a first resistor, a second switch module, a second resistor, a third resistor, a third switch module, and a fourth resistor , the fourth switch module, the fifth switch module, the amplification module, the sixth switch module and the control module, wherein the signal input and output terminals are used for input signals or output signals; the first terminal of the first switch module is connected to the first DC voltage source connection; the first end of the first resistor is connected to the second end of the first switch module; the first end of the second switch module is connected to the third end of the first switch module, the second end of the second switch module is grounded, and the second end of the second switch module is connected to the ground.
  • the third terminal of the second switch module is connected to the first control terminal of the control module; the first terminal of the second resistor is connected to the signal input and output terminal, and the second terminal of the second resistor is respectively connected to the second DC voltage source and the module of the control module.
  • the first end of the third resistor is connected to the signal input and output end; the first end of the third switch module is connected to the second end of the third resistor, the second end of the third switch module is grounded, and the third switch
  • the third terminal of the module is connected to the second control terminal of the control module; the first terminal of the fourth resistor is connected to the second terminal of the second resistor; the first terminal of the fourth switch module is connected to the second terminal of the fourth resistor, The second terminal of the fourth switch module is grounded; the first terminal of the fifth switch module is respectively connected to the third terminal of the fourth switch module and the third DC voltage source, the second terminal of the fifth switch module is grounded, and the fifth switch module
  • the third terminal of the sixth switch module is connected to the second control terminal of the control module; the first terminal of the amplification module is connected to the digital-to-analog conversion terminal of the control module, and the second terminal of the amplification module is grounded; the first terminal of the sixth switch module is connected to the The third terminal is connected, the second terminal of the sixth switch
  • the embodiments of the present application further provide a controller.
  • the controller 110 proposed in the embodiment of the present application may specifically include: the output control circuit 1 shown in any of the above-mentioned embodiments.
  • the controller in the embodiment of the present application can realize the conversion of the output signal of the controller, and enhance the versatility, safety and reliability of the output control circuit.
  • the embodiment of the present application further proposes an air conditioner 120 .
  • the air conditioner 120 proposed in the embodiment of the present application may specifically include: the controller 110 shown in FIG. 3 .
  • the air conditioner in the embodiment of the present application can realize the conversion of the output signal of the controller, and enhance the versatility, safety and reliability of the output control circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

一种输入输出控制电路、控制器(110)和空调器(120),电路包括:信号输入输出端(in-out)、第一开关模块(10)、第一电阻(R1)、第二开关模块(20)、第二电阻(R2)、第三电阻(R3)、第四电阻(R4)、第四开关模块(40)、第五开关模块(50)、放大模块(70)、第六开关模块(60)和控制模块(80),控制模块(80)用于通过第一控制端(CI-1)输出第一控制信号以控制第二开关模块(20)的通断、通过第二控制端(CI-2)输出第二控制信号以对应控制第二开关模块(20)和第三开关模块(30)的通断,以及通过第三控制端(CI-3)输出第三控制信号以控制第五开关模块(50)的通断,来实现通过模数转换端(ADC)对信号输入输出端(in-out)输入信号的采样,或实现通过信号输入输出端(in-out)对数模转换端(DAC)输入信号的输出。由此,电路能够增强输入输出控制电路的通用性和安全可靠性。

Description

输入输出控制电路、控制器及空调器
相关申请的交叉引用
本申请基于申请号为202111284434.5、申请日为2021年11月1日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电子技术领域,尤其涉及一种输入输出控制电路、控制器及空调器。
背景技术
随着工业自动化的快速发展,可编程逻辑控制器(Programmable Logic Controller,简称PLC)及直接数字控制(Direct Digital Control,简称DDC)控制器越来越多的应用于工业,交通、楼宇等各个领域,随着控制器的智能化升级,对控制器的输入输出控制电路的功能要求也越来越高。
因此,如何增强输入输出控制电路的通用性和安全可靠性已经成为目前亟待解决的问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种输入输出控制电路,以通过简单地操作实现输入输出信号的转换,增强输入输出控制电路的通用性和安全可靠性。
本申请的第二个目的在于提出一种控制器。
本申请的第三个目的在于提出一种空调器。
为达上述目的,本申请第一方面实施例提出了一种输入输出控制电路,该电路包括:信号输入输出端,用于输入信号或输出信号;第一开关模块,所述第一开关模块的第一端与第一直流电压源连接;第一电阻,所述第一电阻的第一端与所述第一开关模块的第二端连接;第二开关模块,所述第二开关模块的第一端与所述第一开关模块的第三端连接,所述第二开关模块的第二端接地,所述第二开关模块的第三端与控制模块的第一控制端连接; 第二电阻,所述第二电阻的第一端与所述信号输入输出端连接,所述第二电阻的第二端分别与第二直流电压源和所述控制模块的模数转换端连接;第三电阻,所述第三电阻的第一端与所述信号输入输出端连接;第三开关模块,所述第三开关模块的第一端与所述第三电阻的第二端连接,所述第三开关模块的第二端接地,所述第三开关模块的第三端与所述控制模块的第二控制端连接;第四电阻,所述第四电阻的第一端与所述第二电阻的第二端连接;第四开关模块,所述第四开关模块的第一端与所述第四电阻的第二端连接,所述第四开关模块的第二端接地;第五开关模块,所述第五开关模块的第一端分别与所述第四开关模块的第三端和第三直流电压源连接,所述第五开关模块的第二端接地,所述第五开关模块的第三端与所述控制模块的第二控制端连接;放大模块,所述放大模块的第一端与所述控制模块的数模转换端连接,所述放大模块的第二端接地;第六开关模块,所述第六开关模块的第一端与所述放大模块的第三端连接,所述第六开关模块的第二端与所述信号输入输出端连接,所述第六开关模块的第三端与所述控制模块的第三控制端连接,所述第六开关模块的第四端接地;所述控制模块,用于通过所述第一控制端输出第一控制信号以控制第二开关模块的通断、通过所述第二控制端输出第二控制信号以对应控制第二开关模块和第三开关模块的通断,以及通过所述第三控制端输出第三控制信号以控制第五开关模块的通断,来实现通过所述模数转换端对所述信号输入输出端输入信号的采样,或实现通过信号输入输出端对所述数模转换端输入信号的输出。
本申请实施例的输入输出控制电路包括信号输入输出端、第一开关模块、第一电阻、第二开关模块、第二电阻、第三电阻、第三开关模块、第四电阻、第四开关模块、第五开关模块、放大模块、第六开关模块和控制模块,其中,信号输入输出端用于输入信号或输出信号;第一开关模块的第一端与第一直流电压源连接;第一电阻的第一端与第一开关模块的第二端连接;第二开关模块的第一端与第一开关模块的第三端连接,第二开关模块的第二端接地,第二开关模块的第三端与控制模块的第一控制端连接;第二电阻的第一端与信号输入输出端连接,第二电阻的第二端分别与第二直流电压源和控制模块的模数转换端连接;第三电阻的第一端与信号输入输出端连接;第三开关模块的第一端与第三电阻的第二端连接,第三开关模块的第二端接地,第三开关模块的第三端与控制模块的第二控制端连接;第四电阻的第一端与第二电阻的第二端连接;第四开关模块的第一端与第四电阻的第二端连接,第四开关模块的第二端接地;第五开关模块的第一端分别与第四开关模块的第三端和第三直流电压源连接,第五开关模块的第二端接地,第五开关模块的第三端与控制模块的第二控制端连接;放大模块的第一端与控制模块的数模转换端连接,放大模块的第二端接地;第六开关模块的第一端与放大模块的第三端连接,第六开关模块的第二端与 信号输入输出端连接,第六开关模块的第三端与控制模块的第三控制端连接,第六开关模块的第四端接地;控制模块用于通过第一控制端输出第一控制信号以控制第二开关模块的通断、通过第二控制端输出第二控制信号以对应控制第二开关模块和第三开关模块的通断,以及通过第三控制端输出第三控制信号以控制第五开关模块的通断,来实现通过模数转换端对信号输入输出端输入信号的采样,或实现通过信号输入输出端对数模转换端输入信号的输出。由此,该电路能够通过简单地操作实现输入输出信号的转换,增强输入输出控制电路的通用性和安全可靠性。
另外,本发明第一方面实施例提出的输入输出控制电路还可以具有如下附加的技术特征:
根据本申请的一个实施例,第一开关模块包括:第一晶体管,所述第一晶体管的第一端与所述第一直流电压源连接,所述第一晶体管的第二端与所述第一电阻的第一端连接,所述第一晶体管的第三端与所述第二开关模块的第一端连接;第五电阻,所述第五电阻的第一端与所述第一晶体管的第一端连接,所述第五电阻的第二端与所述第二晶体管的第三端连接。
根据本申请的一个实施例,所述第二开关模块包括:第二晶体管,所述第二晶体管的第一端与所述第二开关模块的第三端连接,所述第二晶体管的第二端接地,所述第二晶体管的第三端与所述第一控制端连接。
根据本申请的一个实施例,所述第三开关模块包括:第三晶体管,所述第三晶体管的第一端与所述第三电阻的第二端连接,所述第三晶体管的第二端接地,所述晶体管的第三端与所述第二控制端连接;第六电阻,所述第六电阻的第一端与所述第三晶体管的第三端连接,所述第六电阻的第二端与所述第三晶体管的第二端连接。
根据本申请的一个实施例,所述第四开关模块包括:第四晶体管,所述第四晶体管的第一端与所述第三电阻的第二端连接,所述第四晶体管的第二端接地,所述第四晶体管的第三端与所述第五开关模块的第一端连接;第七电阻,所述第七电阻的第一端与所述第四晶体管的第二端连接,所述第七电阻的第二端与所述第四晶体管的第三端连接。
根据本申请的一个实施例,所述第五开关模块包括:第五晶体管,所述第五晶体管的第一端通过第八电阻与所述第三直流电压源连接,第五晶体管的第二端接地,第五晶体管的第三端与所述第二控制端连接。
根据本申请的一个实施例,所述放大模块包括:运算放大器;第九电阻,所述第九电阻的第一端与所述运算放大器的同相输入端连接,所述第九电阻的第二端与所述数模转换端连接;第十电阻,所述第十电阻的第一端与所述运算放大器的反相输入端连接,所述第 十电阻的第二端接地;第十一电阻,所述第十一电阻的第一端与所述第六开关模块的第一端连接,所述第十一电阻的第二端与所述运算放大器的输出端连接;第十二电阻,所述第十二电阻的第一端与所述第十一电阻的第一端连接,所述第十二电阻的第二端与所述运算放大器的反相输入端连接。
根据本申请的一个实施例,所述第六开关模块包括:继电器,所述继电器的第一端与所述放大模块的第三端连接,所述继电器的第二端与所述信号输入输出端连接,所述继电器的第三端通过第十三电阻与所述第三控制端连接,所述继电器的第四端接地。
根据本申请的一个实施例,上述的输入输出控制电路,还包括:滤波模块;其中,所述滤波模块包括第一电容、第二电容和第十四电阻,其中,所述第一电容的第一端分别与所述第二电阻的第二端和所述第十四电阻的第一端连接,所述第二电容的第二端接地,所述第二电容的第一端分别与所述模数转换端和所述第十四电阻的第二端连接,所述第二电容的第二端接地。
根据本申请的一个实施例,上述的输入输出控制电路,还包括:第一稳压器,所述第一稳压器的第一端与所述信号输入输出端连接,所述第一稳压器的第二端接地。
根据本申请的一个实施例,上述的输入输出控制电路,还包括:第二稳压器,所述第二稳压器的第一端与第四直流电压源连接,所述第二稳压器的第二端与所述模数转换端连接,所述第二稳压器的第三端接地。
为达上述目的,本申请第二方面实施例提出了一种控制器,其包括:如本申请第一方面实施例所述的输出控制电路。
本申请实施例的控制器,能够通过简单地操作实现输入输出信号的转换,增强输入输出控制电路的通用性和安全可靠性。
为达上述目的,本申请第三方面实施例提出了一种空调器,包括如本申请第二方面实施例所述的控制器。
本申请实施例的空调器,能够通过简单地操作实现输入输出信号的转换,增强输入输出控制电路的通用性和安全可靠性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的输入输出控制电路的示意图;
图2是根据本申请一个实施例的输入输出控制电路的电路图;
图3是根据本申请一个实施例的控制器的示意图;
图4是根据本申请一个实施例的空调器的示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面结合附图来描述本申请实施例的输入输出控制电路、控制器及空调器。
图1是根据本申请实施例的输入输出控制电路的示意图。
需要说明的是,本申请实施例的输入输出控制电路设置在控制器内。
如图1所示,本申请实施例的输入输出控制电路,包括:信号输入输出端in-out、第一开关模块10、第一电阻R1、第二开关模块20、第二电阻R2、第三电阻R3、第三开关模块30、第四电阻R4、第四开关模块40、第五开关模块50、第六开关模块60、放大模块70和控制模块80。
其中,信号输入输出端in-out用于输入信号或输出信号。第一开关模块10的第一端与第一直流电压源(如10V的直流电压源)连接。第一电阻R1的第一端与第一开关模块10的第二端连接。第二开关模块20的第一端与第一开关模块10的第三端连接,第二开关模块20的第二端接地,第二开关模块20的第三端与控制模块80的第一控制端CI-1连接。第二电阻R2的第一端与信号输入输出端in-out连接,第二电阻R2的第二端分别与第二直流电压源(如3.3V的直流电压源)和控制模块80的模数转换端ADC连接。第三电阻R3的第一端与信号输入输出端in-out连接。第三开关模块30的第一端与信号输入输出端in-out连接,第三开关模块30的第二端接地,第三开关模块30的第三端与控制模块80的第二控制端CI-2连接。第四电阻R4的第一端与第二电阻R2的第二端连接。第四开关模块40的第一端与第四电阻R4的第二端连接,第四开关模块40的第二端接地。第五开关模块50的第一端分别与第四开关模块40的第三端和第三直流电压源(如5V的直流电压源)连接,第五开关模块50的第二端接地,第五开关模块50的第三端与控制模块80的第二控制端CI-2连接。放大模块70的第一端与控制模块80的数模转换端DAC连接,放大模块70的第二端接地。第六开关模块60的第一端与放大模块70的第三端连接,第六开关模块60的第二端与信号输入输出端in-out连接,第六开关模块60的第三端与控制模块80的第三控 制端CI-3连接,第六开关模块60的第四端接地。控制模块80用于通过第一控制端CI-1输出第一控制信号以控制第二开关模块20的通断、通过第二控制端CI-2输出第二控制信号以对应控制第二开关模块20和第三开关模块30的通断,以及通过第三控制端CI-3输出第三控制信号以控制第五开关模块50的通断,来实现通过模数转换端ADC对信号输入输出端in-out输入信号的采样,或实现通过信号输入输出端in-out对数模转换端DAC输入信号的输出。
具体地,当输入输出端处于输入状态,如输入的信号为温度信号时,即输入输出控制电路处于电阻采样模式,外部电阻型温度传感器RT连接到输入输出端。控制模块80通过第一控制端CI-1输出第一控制信号以控制第二开关模块20接通,第二开关模块20控制第一控制模块80接通,通过第二控制端CI-2输出第二控制信号以分别控制第三开关模块30和第五开关模块50断开,第五控制模块80控制第四开关模块40接通,通过第三控制端CI-3输出第三控制信号以控制第六开关模块60断开,此时第二电阻R2和第四电阻R4串联,外部电阻型温度传感器RT与串联的第二电阻R2和第四电阻R4并联,再串联第一电阻R1,通过第一直流电压源给电阻采样电路供电,再在第四电阻R4两端取电压信号,该电压信号输出到模数转换端ADC,通过控制模块80进行模数转换,此时控制模块80根据得到的电压信号便可得到外部电阻型温度传感器RT对应的阻值,这样便可对输入的电组值进行采样。
当输入输出端处于输入状态,如输入的信号为电流信号时,即输入输出控制电路处于电流采样模式,0-20mA的电流信号连接到输入输出端。控制模块80通过第一控制端CI-1输出第一控制信号以控制第二开关模块20断开,第二开关模块20控制第一控制模块80断开,通过第二控制端CI-2输出第二控制信号以分别控制第三开关模块30和第五开关模块50接通,第五控制模块80控制第四开关模块40断开,通过第三控制端CI-3输出第三控制信号以控制第六开关模块60断开,此时,0-20mA的电流信号经过第三电阻R3采样,把电流转换为电压,经过第二电阻R2后输出到模数转换端ADC,通过控制模块80进行模数转换,此时控制模块80根据得到的电压信号便可得到电流信号的电流值,这样便可对输入的电流值进行采样。
当输入输出端处于输入状态,如输入的信号为电压信号时,即输入输出控制电路处于电压采样模式,0-10V的电压信号连接到输入输出端。控制模块80通过第一控制端CI-1输出第一控制信号以控制第二开关模块20断开,第二开关模块20控制第一控制模块80断开,通过第二控制端CI-2输出第二控制信号以分别控制第三开关模块30和第五开关模块50断开,第五开关模块50控制第四开关模块40接通,通过第三控制端CI-3输出第三控制 信号以控制第六开关模块60断开,此时,0-10V的电压信号通过第二电阻R2和第四电阻R4分压后输出到模数转换端ADC,通过控制模块80进行模数转换,此时控制模块80根据得到的电压信号便可得到电压信号的电压值,这样便可对输入的电压值进行采样。
当输入输出端处于输出状态,如输出的信号为电压信号时,即输入输出控制电路处于电压输出模式,控制模块80给数模转换端DAC输入一个0-10V的电压信号,并通过第一控制端CI-1输出第一控制信号以控制第二开关模块20断开,第二开关模块20控制第一控制模块80断开,通过第二控制端CI-2输出第二控制信号以分别控制第三开关模块30和第五开关模块50断开,第五控制模块80控制第四开关模块40接通,通过第三控制端CI-3输出第三控制信号以控制第六开关模块60接通。此时0-10V的电压信号通过放大模块70进行运算放大后,输出0-10V的电压信号至输入输出端,这样来说输入输出端输出了0-10V的电压信号,此时该0-10V的电压信号经过第二电阻R2和第四电阻R4分压,模数转换端ADC通过采集第四电阻R4两端的电压,便可实现对输入电压的监测。
当输入输出端输入的是无源干接点信号时,控制模块80通过第一控制端CI-1输出第一控制信号以控制第二开关模块20接通,第二开关模块20控制第一控制模块80接通,通过第二控制端CI-2输出第二控制信号以分别控制第三开关模块30和第五开关模块50断开,第五控制模块80控制第四开关模块40接通,通过第三控制端CI-3输出第三控制信号以控制第六开关模块60断开。此时,当输入输出端断开时,模数转换端ADC采样的电压约为10V;当输入输出端接通时,模数转换端ADC采样的电压约为0V,这样模数转换端ADC可以通过采样的电压值的最大值和最小值判断输入输出端是接通还是断开,以实现数字量的监测。
由此,该电路能够通过简单地操作实现输入输出信号的转换,增强输入输出控制电路的通用性和安全可靠性。
下面参照图2来说明本申请实施例的输入输出控制电路。
如图2所示,第一开关模块10包括:第一晶体管Q1和第五电阻R5。其中,第一晶体管Q1的第一端与第一直流电压源连接,第一晶体管Q1的第二端与第一电阻R1的第一端连接,第一晶体管Q1的第三端与第二开关模块20的第一端连接。第五电阻R5的第一端与第一晶体管Q1的第一端连接,第五电阻R5的第二端与第二晶体管Q2的第三端连接。其中,第一晶体管Q1可以为P型MOS管。
如图2所示,第二开关模块20包括:第二晶体管Q2,第二晶体管Q2的第一端与第二开关模块20的第三端连接,第二晶体管Q2的第二端接地,第二晶体管Q2的第三端与第一控制端CI-1连接。其中,第二晶体管Q2可以为NPP型三极管。
如图2所示,第三开关模块30包括:第三晶体管Q3和第六电阻R6。其中,第三晶体管Q3的第一端与第三电阻R3的第二端连接,第三晶体管Q3的第二端接地,晶体管的第三端与第二控制端CI-2连接。第六电阻R6的第一端与第三晶体管Q3的第三端连接,第六电阻R6的第二端与第三晶体管Q3的第二端连接。其中,第三晶体管Q3可以为N型MOS管。
如图2所示,第四开关模块40包括:第四晶体管Q4和第七电阻R7。其中,第四晶体管Q4的第一端与第三电阻R3的第二端连接,第四晶体管Q4的第二端接地,第四晶体管Q4的第三端与第五开关模块50的第一端连接。第七电阻R7的第一端与第四晶体管Q4的第二端连接,第七电阻R7的第二端与第四晶体管Q4的第三端连接。其中,第四晶体管Q4可以为N型MOS管。
如图2所示,第五开关模块50包括:第五晶体管Q5,第五晶体管Q5的第一端通过第八电阻与第三直流电压源连接,第五晶体管Q5的第二端接地,第五晶体管Q5的第三端与第二控制端CI-2连接。其中,第五晶体管Q5可以为NPN型三极管。
如图2所示,放大模块70包括:运算放大器ICID、第九电阻R9、第十电阻R10、第十一电阻R11和第十二电阻R12。其中,第九电阻R9的第一端与运算放大器ICID的同相输入端连接,第九电阻R9的第二端与数模转换端DAC连接。第十电阻R10的第一端与运算放大器ICID的反相输入端连接,第十电阻R10的第二端接地。第十一电阻R11的第一端与第六开关模块60的第一端连接,第十一电阻R11的第二端与运算放大器ICID的输出端连接。第十二电阻R12的第一端与第十一电阻R11的第一端连接,第十二电阻R12的第二端与运算放大器ICID的反相输入端连接。
如图2所示,第六开关模块60包括:继电器IC1。其中,继电器IC1的第一端与放大模块70的第三端连接,继电器IC1的第二端与信号输入输出端in-out连接,继电器IC1的第三端通过第十三电阻与第三控制端CI-3连接,继电器IC1的第四端接地。其中,继电器IC1可以为固型继电器IC1、电磁继电器IC1等。
如图2所示,上述的输入输出控制电路,还包括:滤波模块;其中,滤波模块包括第一电容C1、第二电容C2和第十四电阻R14,其中,第一电容C1的第一端分别与第二电阻R2的第二端和第十四电阻R14的第一端连接,第二电容C2的第二端接地,第二电容C2的第一端分别与模数转换端ADC和第十四电阻R14的第二端连接,第二电容C2的第二端接地。
如图2所示,上述的输入输出控制电路,还包括:第一稳压器D1,第一稳压器D1的第一端与信号输入输出端in-out连接,第一稳压器D1的第二端接地。
如图2所示,上述的输入输出控制电路,还包括:第二稳压器D2,第二稳压器D2的第一端与第四直流电压源(如3.3V直流电压源)连接,第二稳压器D2的第二端与模数转换端ADC连接,第二稳压器D2的第三端接地。
具体地,当输入输出端处于输入状态,如输入的信号为温度信号时,即输入输出控制电路处于电阻采样模式,外部电阻型温度传感器RT连接到输入输出端。控制模块80通过第一控制端CI-1输出高电平信号以控制第二晶体管Q2和第一晶体管Q1接通,通过第二控制端CI-2输出低电平信号以分别控制第三晶体管Q3和第五晶体管Q5断开、第四晶体管Q4接通,通过第三控制端CI-3输出低电平信号以控制继电器IC1断电,此时第二电阻R2和第四电阻R4串联,外部电阻型温度传感器RT与串联的第二电阻R2和第四电阻R4并联,再串联第一电阻R1,通过第一直流电压源给电阻采样电路供电,再在第四电阻R4两端取电压信号,该电压信号通过滤波模块滤波后输出到模数转换端ADC,以通过控制模块80对该电压信号进行模数转换,此时控制模块80根据得到的电压信号便可得到外部电阻型温度传感器RT对应的阻值,这样便可对输入的电组值进行采样。
当输入输出端处于输入状态,如输入的信号为电流信号时,即输入输出控制电路处于电流采样模式,0-20mA的电流信号连接到输入输出端。控制模块80通过第一控制端CI-1输出低电平信号以控制第二晶体管Q2和第一晶体管Q1断开,通过第二控制端CI-2输出高电平信号以分别控制第三晶体管Q3和第五晶体管Q5接通、第四晶体管Q4断开,通过第三控制端CI-3输出低电平信号以控制继电器IC1断电,此时,0-20mA的电流信号经过第三电阻R3采样,把电流转换为电压,经过第二电阻R2后输出到滤波模块,通过滤波模块进行滤波,并输出至控制模块80的模数转换端ADC,通过控制模块80对该电压信号进行模数转换,此时控制模块80根据得到的电压信号便可得到电流信号的电流值,这样便可对输入的电流值进行采样。
当输入输出端处于输入状态,如输入的信号为电压信号时,即输入输出控制电路处于电压采样模式,0-10V的电压信号连接到输入输出端。控制模块80通过第一控制端CI-1输出低电平信号以控制第二晶体管Q2和第一晶体管Q1断开,通过第二控制端CI-2输出低电平信号以分别控制第三晶体管Q3和第五晶体管Q5断开、第四晶体管Q4接通,通过第三控制端CI-3输出低电平信号以控制继电器IC1断电,此时,0-10V的电压信号通过第二电阻R2和第四电阻R4分压再经过滤波模块滤波后输出到模数转换端ADC,通过控制模块80对该电压信号进行模数转换,此时控制模块80根据得到的电压信号便可得到电压信号的电压值,这样便可对输入的电压值进行采样。
当输入输出端处于输出状态,如输出的信号为电压信号时,即输入输出控制电路处于 电压输出模式,控制模块80给数模转换端DAC输入一个0-10V的电压信号,并通过第一控制端CI-1输出低电平信号以控制第二晶体管Q2、第一晶体管Q1断开,通过第二控制端CI-2输出低电平信号以分别控制第三晶体管Q3和第五晶体管Q5断开、第四晶体管Q4接通,通过第三控制端CI-3输出高电平信号以控制继电器IC1得电。此时0-10V的电压信号通过放大模块70进行运算放大后,输出0-10V的电压信号至输入输出端,这样来说输入输出端输出了0-10V的电压信号,此时该0-10V的电压信号经过第二电阻R2和第四电阻R4分压,模数转换端ADC通过采集第四电阻R4两端的电压,便可实现对输入电压的监测。
当输入输出端输入的是无源干接点信号时,控制模块80通过第一控制端CI-1输出高电平信号以控制第二晶体管Q2和第一晶体管Q1接通,通过第二控制端CI-2输出低电平信号以分别控制第三晶体管Q3和第五晶体管Q5断开、第四晶体管Q4接通,通过第三控制端CI-3输出低电平信号以控制继电器IC1断电。此时,当输入输出端断开时,模数转换端ADC采样的电压约为10V;当输入输出端接通时,模数转换端ADC采样的电压约为0V,这样模数转换端ADC可以通过采样的电压值的最大值和最小值判断输入输出端是接通还是断开,以实现数字量的监测。
需要说明的是,还可以通过输入输出端输出电流信号等。
综上所述,本申请实施例的输入输出控制电路包括信号输入输出端、第一开关模块、第一电阻、第二开关模块、第二电阻、第三电阻、第三开关模块、第四电阻、第四开关模块、第五开关模块、放大模块、第六开关模块和控制模块,其中,信号输入输出端用于输入信号或输出信号;第一开关模块的第一端与第一直流电压源连接;第一电阻的第一端与第一开关模块的第二端连接;第二开关模块的第一端与第一开关模块的第三端连接,第二开关模块的第二端接地,第二开关模块的第三端与控制模块的第一控制端连接;第二电阻的第一端与信号输入输出端连接,第二电阻的第二端分别与第二直流电压源和控制模块的模数转换端连接;第三电阻的第一端与信号输入输出端连接;第三开关模块的第一端与第三电阻的第二端连接,第三开关模块的第二端接地,第三开关模块的第三端与控制模块的第二控制端连接;第四电阻的第一端与第二电阻的第二端连接;第四开关模块的第一端与第四电阻的第二端连接,第四开关模块的第二端接地;第五开关模块的第一端分别与第四开关模块的第三端和第三直流电压源连接,第五开关模块的第二端接地,第五开关模块的第三端与控制模块的第二控制端连接;放大模块的第一端与控制模块的数模转换端连接,放大模块的第二端接地;第六开关模块的第一端与放大模块的第三端连接,第六开关模块的第二端与信号输入输出端连接,第六开关模块的第三端与控制模块的第三控制端连接,第六开关模块的第四端接地;控制模块用于通过第一控制端输出第一控制信号以控制第二 开关模块的通断、通过第二控制端输出第二控制信号以对应控制第二开关模块和第三开关模块的通断,以及通过第三控制端输出第三控制信号以控制第五开关模块的通断,来实现通过模数转换端对信号输入输出端输入信号的采样,或实现通过信号输入输出端对数模转换端输入信号的输出。由此,该电路能够通过简单地操作实现输入输出信号的转换,增强输入输出控制电路的通用性和安全可靠性。
为了实现上述实施例,本申请实施例还提出一种控制器。
如图3所示,本申请实施例提出的控制器110具体可包括:上述任一实施例所示的输出控制电路1。
本申请实施例的控制器,能够实现控制器输出信号的转换,增强输出控制电路的通用性和安全可靠性。
为了实现上述实施例,本申请实施例还提出一种空调器120。
如图4所示,本申请实施例提出的空调器120具体可包括:图3所示的控制器110。
本申请实施例的空调器,能够实现控制器输出信号的转换,增强输出控制电路的通用性和安全可靠性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种输入输出控制电路,其特征在于,所述输入输出控制电路设置在控制器内,所述输入输出控制电路,包括:
    信号输入输出端,用于输入信号或输出信号;
    第一开关模块,所述第一开关模块的第一端与第一直流电压源连接;
    第一电阻,所述第一电阻的第一端与所述第一开关模块的第二端连接;
    第二开关模块,所述第二开关模块的第一端与所述第一开关模块的第三端连接,所述第二开关模块的第二端接地,所述第二开关模块的第三端与控制模块的第一控制端连接;
    第二电阻,所述第二电阻的第一端与所述信号输入输出端连接,所述第二电阻的第二端分别与第二直流电压源和所述控制模块的模数转换端连接;
    第三电阻,所述第三电阻的第一端与所述信号输入输出端连接;
    第三开关模块,所述第三开关模块的第一端与所述第三电阻的第二端连接,所述第三开关模块的第二端接地,所述第三开关模块的第三端与所述控制模块的第二控制端连接;
    第四电阻,所述第四电阻的第一端与所述第二电阻的第二端连接;
    第四开关模块,所述第四开关模块的第一端与所述第四电阻的第二端连接,所述第四开关模块的第二端接地;
    第五开关模块,所述第五开关模块的第一端分别与所述第四开关模块的第三端和第三直流电压源连接,所述第五开关模块的第二端接地,所述第五开关模块的第三端与所述控制模块的第二控制端连接;
    放大模块,所述放大模块的第一端与所述控制模块的数模转换端连接,所述放大模块的第二端接地;
    第六开关模块,所述第六开关模块的第一端与所述放大模块的第三端连接,所述第六开关模块的第二端与所述信号输入输出端连接,所述第六开关模块的第三端与所述控制模块的第三控制端连接,所述第六开关模块的第四端接地;
    所述控制模块,用于通过所述第一控制端输出第一控制信号以控制第二开关模块的通断、通过所述第二控制端输出第二控制信号以对应控制第二开关模块和第三开关模块的通断,以及通过所述第三控制端输出第三控制信号以控制第五开关模块的通断,来实现通过所述模数转换端对所述信号输入输出端输入信号的采样,或实现通过信号输入输出端对所述数模转换端输入信号的输出。
  2. 根据权利要求1所述的输入输出控制电路,其特征在于,第一开关模块包括:
    第一晶体管,所述第一晶体管的第一端与所述第一直流电压源连接,所述第一晶体管的第二端与所述第一电阻的第一端连接,所述第一晶体管的第三端与所述第二开关模块的第一端连接;
    第五电阻,所述第五电阻的第一端与所述第一晶体管的第一端连接,所述第五电阻的第二端与所述第二晶体管的第三端连接。
  3. 根据权利要求1或2所述的输入输出控制电路,其特征在于,所述第二开关模块包括:
    第二晶体管,所述第二晶体管的第一端与所述第二开关模块的第三端连接,所述第二晶体管的第二端接地,所述第二晶体管的第三端与所述第一控制端连接。
  4. 根据权利要求1至3中任一项所述的输入输出控制电路,其特征在于,所述第三开关模块包括:
    第三晶体管,所述第三晶体管的第一端与所述第三电阻的第二端连接,所述第三晶体管的第二端接地,所述晶体管的第三端与所述第二控制端连接;
    第六电阻,所述第六电阻的第一端与所述第三晶体管的第三端连接,所述第六电阻的第二端与所述第三晶体管的第二端连接。
  5. 根据权利要求1至4中任一项所述的输入输出控制电路,其特征在于,所述第四开关模块包括:
    第四晶体管,所述第四晶体管的第一端与所述第三电阻的第二端连接,所述第四晶体管的第二端接地,所述第四晶体管的第三端与所述第五开关模块的第一端连接;
    第七电阻,所述第七电阻的第一端与所述第四晶体管的第二端连接,所述第七电阻的第二端与所述第四晶体管的第三端连接。
  6. 根据权利要求1至5中任一项所述的输入输出控制电路,其特征在于,所述第五开关模块包括:
    第五晶体管,所述第五晶体管的第一端通过第八电阻与所述第三直流电压源连接,第五晶体管的第二端接地,第五晶体管的第三端与所述第二控制端连接。
  7. 根据权利要求1至6中任一项所述的输入输出控制电路,其特征在于,所述放大模块包括:
    运算放大器;
    第九电阻,所述第九电阻的第一端与所述运算放大器的同相输入端连接,所述第九电阻的第二端与所述数模转换端连接;
    第十电阻,所述第十电阻的第一端与所述运算放大器的反相输入端连接,所述第十电阻的第二端接地;
    第十一电阻,所述第十一电阻的第一端与所述第六开关模块的第一端连接,所述第十一电阻的第二端与所述运算放大器的输出端连接;
    第十二电阻,所述第十二电阻的第一端与所述第十一电阻的第一端连接,所述第十二电阻的第二端与所述运算放大器的反相输入端连接。
  8. 根据权利要求1至7中任一项所述的输入输出控制电路,其特征在于,所述第六开关模块包括:
    继电器,所述继电器的第一端与所述放大模块的第三端连接,所述继电器的第二端与所述信号输入输出端连接,所述继电器的第三端通过第十三电阻与所述第三控制端连接,所述继电器的第四端接地。
  9. 根据权利要求1至8中任一项所述的输入输出控制电路,其特征在于,还包括:
    滤波模块;其中,
    所述滤波模块包括第一电容、第二电容和第十四电阻,其中,所述第一电容的第一端分别与所述第二电阻的第二端和所述第十四电阻的第一端连接,所述第二电容的第二端接地,所述第二电容的第一端分别与所述模数转换端和所述第十四电阻的第二端连接,所述第二电容的第二端接地。
  10. 根据权利要求1至9中任一项所述的输入输出控制电路,其特征在于,还包括:
    第一稳压器,所述第一稳压器的第一端与所述信号输入输出端连接,所述第一稳压器的第二端接地。
  11. 根据权利要求1至10中任一项所述的输入输出控制电路,其特征在于,还包括:
    第二稳压器,所述第二稳压器的第一端与第四直流电压源连接,所述第二稳压器的第 二端与所述模数转换端连接,所述第二稳压器的第三端接地。
  12. 一种控制器,其特征在于,包括:如权利要求1-11任一项所述的输入输出控制电路。
  13. 一种空调器,其特征在于,包括:如权利要求12所述的控制器。
PCT/CN2022/117042 2021-11-01 2022-09-05 输入输出控制电路、控制器及空调器 WO2023071532A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111284434.5 2021-11-01
CN202111284434.5A CN114063551B (zh) 2021-11-01 2021-11-01 输入输出控制电路、控制器及空调器

Publications (1)

Publication Number Publication Date
WO2023071532A1 true WO2023071532A1 (zh) 2023-05-04

Family

ID=80236634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117042 WO2023071532A1 (zh) 2021-11-01 2022-09-05 输入输出控制电路、控制器及空调器

Country Status (2)

Country Link
CN (1) CN114063551B (zh)
WO (1) WO2023071532A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137865A (zh) * 2021-11-01 2022-03-04 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114063551B (zh) * 2021-11-01 2024-02-06 上海美控智慧建筑有限公司 输入输出控制电路、控制器及空调器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308231B1 (en) * 1998-09-29 2001-10-23 Rockwell Automation Technologies, Inc. Industrial control systems having input/output circuits with programmable input/output characteristics
CN102650854A (zh) * 2012-04-23 2012-08-29 广州市新锘威智能科技有限公司 输入输出通道复用智能控制器
CN205720625U (zh) * 2016-05-25 2016-11-23 重庆宇通系统软件有限公司 用于智能过程检验仪的输入输出电路
CN106921379A (zh) * 2015-12-24 2017-07-04 施耐德电气工业公司 输入电路
CN107942787A (zh) * 2017-11-17 2018-04-20 上海华兴数字科技有限公司 模拟信号复用电路及模拟信号采集电路
CN108829006A (zh) * 2018-06-29 2018-11-16 北京广利核系统工程有限公司 可选择性输出电压或电流的模拟量输出装置和方法
CN111176152A (zh) * 2019-12-03 2020-05-19 上海辛格林纳新时达电机有限公司 光藕切换输入信号源电路
CN114063551A (zh) * 2021-11-01 2022-02-18 上海美控智慧建筑有限公司 输入输出控制电路、控制器及空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790565B (zh) * 2016-05-30 2017-11-24 广东美的制冷设备有限公司 智能功率模块和空调器
CN205792230U (zh) * 2016-05-30 2016-12-07 广东美的制冷设备有限公司 智能功率模块和空调器
CN217034572U (zh) * 2021-11-01 2022-07-22 上海美控智慧建筑有限公司 输入输出控制电路、控制器及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6308231B1 (en) * 1998-09-29 2001-10-23 Rockwell Automation Technologies, Inc. Industrial control systems having input/output circuits with programmable input/output characteristics
CN102650854A (zh) * 2012-04-23 2012-08-29 广州市新锘威智能科技有限公司 输入输出通道复用智能控制器
CN106921379A (zh) * 2015-12-24 2017-07-04 施耐德电气工业公司 输入电路
CN205720625U (zh) * 2016-05-25 2016-11-23 重庆宇通系统软件有限公司 用于智能过程检验仪的输入输出电路
CN107942787A (zh) * 2017-11-17 2018-04-20 上海华兴数字科技有限公司 模拟信号复用电路及模拟信号采集电路
CN108829006A (zh) * 2018-06-29 2018-11-16 北京广利核系统工程有限公司 可选择性输出电压或电流的模拟量输出装置和方法
CN111176152A (zh) * 2019-12-03 2020-05-19 上海辛格林纳新时达电机有限公司 光藕切换输入信号源电路
CN114063551A (zh) * 2021-11-01 2022-02-18 上海美控智慧建筑有限公司 输入输出控制电路、控制器及空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114137865A (zh) * 2021-11-01 2022-03-04 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器
CN114137865B (zh) * 2021-11-01 2024-03-19 上海美控智慧建筑有限公司 输出控制电路、控制器及空调器

Also Published As

Publication number Publication date
CN114063551A (zh) 2022-02-18
CN114063551B (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
WO2023071532A1 (zh) 输入输出控制电路、控制器及空调器
CN108957065B (zh) 一种电子负载电路
CN109884384B (zh) 一种兼容电流和电压输入的信号采集电路
CN217034572U (zh) 输入输出控制电路、控制器及空调器
CN104615053A (zh) 一种晶体管控制型电子负载控制电路
WO2023071364A1 (zh) 输出控制电路、控制器及空调器
CN207730833U (zh) 一种恒流源测试仪
CN216561500U (zh) 输出控制电路、控制器及空调器
CN207150155U (zh) 过压过流保护电路
CN112367075B (zh) 一种单接口多功能信号处理电路
CN113868049A (zh) 电容触摸屏触控矩阵修复电路
CN210721074U (zh) 信号采集和输出电路及装置
CN217034573U (zh) 输出控制电路、控制器及空调器
CN202978705U (zh) Dc/dc输出电路
CN209513895U (zh) 一种用于电机控制的电流采样电路
CN106505856A (zh) 输入电压自动调节电路和电子设备
CN113030769B (zh) 一种具有监控功能的智慧电源板卡
CN206427930U (zh) 一种基于起重机应用的vacon变频器继电器卡
CN209197924U (zh) 一种电机温度采样通用模块电路
CN207977899U (zh) 可随输入信号变动工作电源的动态电源系统
CN214479836U (zh) 车辆检测系统用智能配电箱
CN108540133A (zh) 一种多功能运放采样前端电路的实现方法及装置
CN217133269U (zh) 绝缘电阻检测电路
CN204406108U (zh) 一种晶体管控制型电子负载控制电路
CN220043237U (zh) 一种适用于开关电源的集中控制电源开启关断的硬件电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885422

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18564315

Country of ref document: US