WO2023070872A1 - 一种无负极锌离子杂化电容器及其制备方法 - Google Patents

一种无负极锌离子杂化电容器及其制备方法 Download PDF

Info

Publication number
WO2023070872A1
WO2023070872A1 PCT/CN2021/137954 CN2021137954W WO2023070872A1 WO 2023070872 A1 WO2023070872 A1 WO 2023070872A1 CN 2021137954 W CN2021137954 W CN 2021137954W WO 2023070872 A1 WO2023070872 A1 WO 2023070872A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
current collector
electroplating
preparation
diaphragm
Prior art date
Application number
PCT/CN2021/137954
Other languages
English (en)
French (fr)
Inventor
陈永
吴金鹏
陈大明
王振
罗先游
赖文德
李敏
Original Assignee
海南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南大学 filed Critical 海南大学
Publication of WO2023070872A1 publication Critical patent/WO2023070872A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the technical field of zinc ion hybrid capacitors, in particular to an anode-free zinc ion hybrid capacitor and a preparation method thereof.
  • Water-based zinc-ion hybrid capacitors are constructed with metal zinc as the negative electrode. From the perspective of safety and resource reserves, it is considered to be one of the energy storage devices with broad prospects.
  • the zinc in the currently developed water-based zinc-ion hybrid capacitors is a pure zinc sheet, resulting in an excessively thick zinc metal anode, which reduces the energy density of the entire zinc-ion hybrid capacitor.
  • Its too thick zinc metal negative electrode also leads to the formation of isolated metal zinc during cycling, which reduces the cycle efficiency, and there is also the problem of dendrite growth, which will pierce the diaphragm and cause an internal short circuit of the capacitor.
  • the purpose of the present invention is to overcome the deficiencies of the prior art.
  • the present invention provides a method for preparing a negative-electrode zinc-ion hybrid capacitor, which can effectively control the thickness of the galvanized layer and inhibit the growth of dendrites inside the capacitor.
  • the invention also discloses a non-negative electrode zinc ion hybrid capacitor, which has good capacitance performance and is not easy to short-circuit inside.
  • the present invention proposes a method for preparing a negative-electrode zinc-ion hybrid capacitor, comprising:
  • the step of pre-galvanizing the current collector includes:
  • the concentration of the electroplating electrolyte is 0.5-6mol/L
  • the chelating agent is polyethyleneimine, and the amount of the chelating agent added is 1-2% of the total volume of the electroplating electrolyte;
  • the electroplating voltage is (-0.05)-(-1.5)V, and the electroplating time is 100-36000s.
  • the step of pre-galvanizing the current collector includes:
  • step (3) Place the substrate material obtained in step (2) below the zinc target, place the current collector above the zinc target, and perform magnetron sputtering to obtain an electroplated product.
  • the ultrasonic cleaning time of the substrate material is 5-10min;
  • the distance between the zinc target and the current collector is 75-85mm;
  • the sputtering atmosphere is high-purity argon with a purity of 99.9%.
  • the material of the current collector is carbon material film products such as carbon nanotubes, graphene, activated carbon, carbon paper, nickel foam, aluminum mesh, aluminum foam, stainless steel foil, titanium foil, copper foil, foam Choose one of the electrodeless materials such as nickel and stainless steel mesh to galvanize the current collector evenly.
  • the diaphragm is one or more of cellulose diaphragm, non-woven cloth diaphragm and glass fiber diaphragm.
  • the diaphragm is selected from a non-woven diaphragm
  • the current collector is made of hydrophilic carbon paper.
  • step (2) includes:
  • the intermediate body is obtained by sequentially laminating the positive pole piece, the soaked separator, the pre-galvanized current collector, the gasket, and the shrapnel.
  • the solute of the electrolyte is zinc trifluoromethyl carbonate, zinc chloride, zinc sulfate, zinc nitrate, zinc perchlorate, zinc acetate, zinc chloride, zinc borate hydrate, di(tri One or more of zinc fluoromethylsulfonyl)imides.
  • step (2.2) electrolyte solution is added after assembly, and the amount of electrolyte solution added is 0.01-0.5% of the total volume of the whole capacitor.
  • the present invention also provides a negative-electrode zinc-ion hybrid capacitor, which is made by any one of the above-mentioned preparation methods.
  • one side of the current collector is pre-galvanized to replace the traditional use of zinc sheet as the negative electrode, so as to avoid the growth of dendrites inside the zinc ion hybrid capacitor and shorten the zinc ion due to the excessive use of zinc metal in the zinc ion hybrid capacitor.
  • the cycle life of the hybrid capacitor and by controlling the ratio of the pre-galvanized mass to the adsorption mass of the positive electrode material to 1: (1.2-1.7), the thickness of the galvanized layer is controlled to avoid excessive thickness of the galvanized layer and improve the zinc ion hybrid capacitor. Capacitive performance.
  • the diaphragm is soaked in the electrolyte, and the positive pole piece, diaphragm, current collector, gasket, and shrapnel are sequentially stacked on the intermediate body; wherein, the galvanized side of the current collector is set facing the diaphragm, and the intermediate body is assembled in the negative electrode shell
  • the finished product is obtained in vivo.
  • the assembly structure of the traditional zinc ion hybrid capacitor its capacitance is higher, the structure is more stable, and the cycle life is longer.
  • Fig. 1 is the long cycle performance comparative figure of embodiment 1 and comparative example 1;
  • Fig. 2 is the coulombic efficiency figure of embodiment 1;
  • Fig. 3 is the rate performance figure of embodiment 1;
  • Fig. 4 is the coulombic efficiency distribution figure of embodiment 2;
  • Fig. 5 is the long cycle and coulombic efficiency figure of embodiment 2;
  • Fig. 6 is the coulombic efficiency distribution figure of embodiment 3.
  • Fig. 7 is the long cycle and coulombic efficiency figure of embodiment 3.
  • Fig. 8 is a schematic structural view of a negative-electrode zinc ion hybrid capacitor according to the present invention.
  • the traditional zinc ion hybrid capacitor uses pure zinc sheet as the negative electrode of the capacitor.
  • the pure zinc sheet must be excessive, which leads to the excessive zinc metal of the traditional zinc ion hybrid capacitor, and the excessive zinc metal It will reduce the energy density of zinc ion hybrid capacitors, which will lead to the formation of isolated metal zinc during cycling, reducing the cycle efficiency of zinc ion hybrid capacitors; in addition, it will also cause dendrites to grow inside the capacitor, and the continuous growth of dendrites will pierce through Zinc ions hybridize the diaphragm of the capacitor, causing a short circuit inside the capacitor.
  • the present invention provides a kind of preparation method of negative electrode zinc ion hybrid capacitor, it comprises:
  • the ratio of pre-galvanized mass to positive electrode material adsorption mass is 1:(1.2-1.7); exemplarily, it is 1:1.2, 1:1.4, 1:1.5, 1:1.7, but not limited thereto.
  • the purpose of controlling the ratio of the pre-galvanized mass to the adsorption mass of the positive electrode material is to control the thickness of the pre-galvanized layer of the current collector and avoid the pre-galvanized layer from being too thick or too thin.
  • the method of pre-galvanizing one side of the current collector is magnetron sputtering zinc method, electro-galvanizing method, hot-dip method, cold-dip method, but not limited thereto.
  • the pre-galvanizing method is magnetron sputtering zinc method or electro-galvanizing method.
  • Current collector materials are carbon nanotubes, graphene, activated carbon, carbon paper and other carbon material film products, nickel foam, aluminum mesh, aluminum foam, stainless steel foil, titanium foil, copper foil, nickel foam, stainless steel mesh and other electrodeless to electrical materials Choose one of them to evenly galvanize the current collector.
  • the current collector material is carbon paper.
  • the pre-galvanizing method is an electro-galvanizing method, and its steps include:
  • the concentration of the electroplating electrolyte is 0.5-6 mol/L, for example, 0.5, 2.3, 3.7, 4.8, 5.7 mol/L, but not limited thereto.
  • concentration of the electroplating electrolyte is less than 0.5mol/L, the pre-galvanized layer on the current collector will be too thin and easily broken and damaged; when the concentration of the electroplating electrolyte is higher than 6mol/L, the pre-galvanized layer on the current collector will It will be too thick, and the too thick galvanized layer will reduce the capacitance performance of the zinc ion hybrid capacitor, will promote the growth of dendrites inside the capacitor, and shorten the cycle life of the capacitor.
  • adding a chelating agent in the electroplating electrolyte can reduce the metal ion to form a chelate with completely different properties and control the concentration of the metal ion, so as to avoid the excessive concentration of the metal ion in the electroplating electrolyte.
  • the addition amount of the chelating agent is 1%-2% of the total volume of the electroplating electrolyte.
  • the chelating agent is polyethyleneimine.
  • the electroplating voltage is (-0.05)-(-1.5)V, for example, (-0.05), (-0.15), (-0.49), (-1.1)V, but not limited thereto.
  • the electroplating time is 100-36000s, for example, 100, 1000, 10000s, but not limited thereto.
  • the pre-galvanizing method is a magnetron sputtering zinc method, and its steps include:
  • the distance between the zinc target and the current collector is 75-85 mm, for example, 76, 78, 83, 85 mm, but not limited thereto.
  • S120 Provide the substrate material, place it in absolute ethanol and ultrasonically clean it for a predetermined time, and then dry it;
  • the ultrasonic cleaning time of the substrate material is 5-10 minutes, for example, 5, 7, 9, 10 minutes, but not limited thereto.
  • S130 Place the substrate material obtained in S120 under the zinc target, place the current collector above the zinc target, and perform magnetic co-sputtering to obtain an electroplating product.
  • the sputtering atmosphere is high-purity argon with a purity of 99.9%.
  • the electrolyte solution is added dropwise to the separator 2 during the assembly process, and the amount of the electrolyte solution added is 0.01-0.5% of the total volume of the whole capacitor. Exemplary, 0.01, 0.09, 0.25, 0.49%, but not limited thereto.
  • the electrolyte solution is added dropwise to the diaphragm 2 to ensure the smooth transfer of ions between the electrolytes and the smooth operation of the zinc ion hybrid capacitor.
  • the separator 2 is one or more of cellulose separator, non-woven fabric separator, and glass fiber separator, and the solute of the electrolyte is zinc trifluoromethyl carbonate, zinc chloride, zinc sulfate, zinc nitrate, perchloric acid
  • the diaphragm 2 is a non-woven diaphragm.
  • the concentration of the electroplating electrolyte is 3mol/L, and 10ml of polyethyleneimine is added to the electroplating electrolyte of 1000ml to obtain the electroplating mixed solution;
  • the positive pole piece is made of stainless steel with a diameter of 10 mm and a thickness of 100 ⁇ m, and coated with activated carbon and PTFE; the shrapnel is made of stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m; the gasket is made of stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m.
  • the electrolyte solution was added dropwise to the separator (the drop amount was 0.5% of the total volume of the whole capacitor).
  • the substrate material is placed under the zinc target, the current collector is placed at a position 78mm above the zinc target, and magnetic co-sputtering is performed under the protection of a high-purity argon atmosphere to reach the electroplated finished product.
  • the positive pole piece is made of stainless steel with a diameter of 10 mm and a thickness of 100 ⁇ m, and coated with activated carbon and PTFE; the shrapnel is made of stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m; the gasket is made of stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m.
  • the electrolyte solution was added dropwise to the diaphragm (the drop amount was 0.01% of the total volume of the whole capacitor).
  • the concentration of the electroplating electrolyte is 3mol/L, and 10ml of polyethyleneimine is added to the electroplating electrolyte of 1000ml to obtain the electroplating mixed solution;
  • the positive pole piece is made of stainless steel with a diameter of 10 mm and a thickness of 100 ⁇ m, and coated with activated carbon and PTFE; the shrapnel is made of stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m; the gasket is made of stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m.
  • the electrolyte solution was added dropwise to the separator (the drop amount was 0.5% of the total volume of the whole capacitor).
  • a pure zinc sheet with a diameter of 10 mm and a thickness of 200 ⁇ m was selected as the negative electrode; the positive electrode sheet, diaphragm, negative electrode, gasket, and shrapnel were stacked in sequence to obtain an intermediate; the positive electrode sheet was selected from stainless steel with a diameter of 10 mm and a thickness of 100 ⁇ m, and the It is coated with activated carbon and PTFE; the shrapnel is selected from stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m; the gasket is selected from stainless steel with a diameter of 15 mm and a thickness of 200 ⁇ m; the diaphragm is selected from a non-woven fabric with a diameter of 15 mm and a thickness of 10 ⁇ m.
  • the electrolyte solution is added dropwise to the separator (the drop amount is 0.5% of the total volume of the whole capacitor); the intermediate body is assembled in the negative electrode case to obtain the finished product.
  • Example 1 The long-term cycle performance and coulombic efficiency of the zinc ion hybrid capacitors prepared in Examples 1-3 and Comparative Example 1 were tested; in addition, the rate performance of Example 1 also needs to be tested.
  • the long cycle performance of embodiment 1 is better than the long cycle performance of comparative example 1;
  • the coulombic efficiency of embodiment 1 is higher than 95%
  • embodiment 1 can know its rate performance.
  • Example 2 the capacitance is maintained between 140-160F/g.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明实施例公开了一种无负极锌离子杂化电容器的制备方法,包括:(1)将集流体的其中一面进行预镀锌处理;其中,预镀锌质量与正极材料吸附质量之比为1:(1.2-1.7);(2)将正极极片、隔膜、预镀锌后的集流体、垫片、弹片依次层叠得到中间体;其中,集流体的镀锌面朝隔膜设置;(3)将中间体装配于负极壳体内,得到成品。本发明还提供了一种锌离子杂化电容器,其由上述制备方法制备而得。本发明通过在集流体上进行预镀锌,代替传统将锌片作为负极,有效抑制锌离子杂化电容器内部的枝晶生长,延长锌离子杂化电容器的使用寿命。

Description

一种无负极锌离子杂化电容器及其制备方法 技术领域
本发明涉及锌离子杂化电容器技术领域,尤其涉及一种无负极锌离子杂化电容器及其制备方法。
背景技术
水基锌离子杂化电容器是以金属锌为负极构筑的,从安全性和资源储量的角度出发,其被认为是具有广阔前景的储能设备之一。然而,目前开发的水基锌离子杂化电容器的锌是纯锌片,导致其锌金属负极过厚,降低了整个锌离子杂化电容器的能量密度。其过厚的锌金属负极还导致循环时形成孤立的金属锌,降低循环效率,还存在枝晶生长的问题,枝晶生长会刺穿隔膜导致电容内部短路。
发明内容
本发明的目的在于克服现有技术的不足,本发明提供了一种无负极锌离子杂化电容器的制备方法,其能有效控制镀锌层的厚度,抑制电容器内部枝晶的生长。
本发明还公开了一种无负极锌离子杂化电容器,其电容性能良好,内部不易发生短路。
为了解决上述问题,本发明提出了一种无负极锌离子杂化电容器的制备方法,包括:
(1)将集流体的其中一面进行预镀锌处理;其中,预镀锌质量与正极材料吸附质量之比为1:(1.2-1.7);
(2)将正极极片、隔膜、预镀锌后的集流体、垫片、弹片依次层叠得到中间体;其中,集流体的镀锌面朝隔膜设置;
(3)将中间体装配于负极壳体内,得到成品。
作为上述技术方案的改进,集流体预镀锌步骤包括:
(1)提供电镀电解液,加入螯合剂混匀,得到电镀混合液;
(2)将集流体浸泡于电镀混合液中,电镀预定时间得到电镀预成品;
(3)将电镀预成品清洗,得到电镀成品。
作为上述技术方案的改进,电镀电解液的浓度为0.5-6mol/L;
所述螯合剂为聚乙烯亚胺,螯合剂的添加量为电镀电解液总体积的1-2%;
电镀电压为(-0.05)-(-1.5)V,电镀时间为100-36000s。
作为上述技术方案的改进,集流体预镀锌步骤包括:
(1)提供锌靶材;
(2)提供衬底材料,并置于无水乙醇中超声清洗预定时间后进行干燥;
(3)将步骤(2)得到的衬底材料置于锌靶材的下方,集流体置于锌靶材上方,进行磁控溅射得到电镀成品。
其中,衬底材料超声清洗时间为5-10min;
锌靶材与集流体的间距为75-85mm;
溅射气氛为高纯氩气,其纯度为99.9%。
作为上述技术方案的改进,所述集流体的材料为碳纳米管、石墨烯、活性炭、碳纸等碳材料薄膜制品、泡沫镍、铝网、泡沫铝、不锈钢箔、钛箔、铜箔、泡沫镍、不锈钢网等无极到电材料选择其中一种对集流体均匀镀锌。
所述隔膜为纤维素隔膜、无纺布隔膜、玻璃纤维隔膜中的一种或多种。
作为上述技术方案的改进,所述隔膜选用无纺布隔膜;
所述集流体选用亲水碳纸。
作为上述技术方案的改进,步骤(2)包括:
(2.1)将隔膜浸泡于温度为0~90℃的电解液中1min~10h;
(2.2)将正极极片、浸泡后的隔膜、预镀锌后的集流体、垫片、弹片依次层叠得到中间体。
作为上述技术方案的改进,所述电解液的溶质为三氟甲基碳酸锌、氯化锌、硫酸锌、硝酸锌、高氯酸锌、乙酸锌、氯化锌、水合硼酸锌、二(三氟甲基磺酰)亚胺锌中的一种或多种。
作为上述技术方案的改进,步骤(2.2)中,装配后加入电解液,电解液的加入量为整体电容器总体积的0.01-0.5%。
相应的,本发明还提供一种无负极锌离子杂化电容器,其由上述任一项所述的制备方法制成。
实施本发明具有以下有益效果:
本发明在集流体的其中一面上进行预镀锌处理,来代替传统使用锌片作为负极,避免锌离子杂化电容器因使用过量的锌金属,导致锌离子杂化电容器内部枝晶生长缩短锌离子杂化电容器的循环寿命,并且通过控制预镀锌质量与正极材料吸附质量之比为1:(1.2-1.7),控制镀锌层的厚度,避免镀锌层过厚,提高锌离子杂化电容器的电容性能。
另外,将隔膜浸泡于电解液中,将正极极片、隔膜、集流体、垫片、弹片依次层叠的到中间体;其中,集流体的镀锌面朝隔膜设置,将中间体装配于负极壳体内得到成品。相较于传统的锌离子杂化电容器其的组装结构,其电容量更高,结构更稳定,循环寿命更长。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是实施例1和对比例1的长循环性能对比图;
图2是实施例1的库伦效率图;
图3是实施例1的倍率性能图;
图4是实施例2的库伦效率分布图;
图5是实施例2的长循环和库伦效率图;
图6是实施例3的库伦效率分布图;
图7是实施例3的长循环和库伦效率图;
图8是本发明一种无负极锌离子杂化电容器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
传统的锌离子杂化电容器,其采用纯锌片作为电容器的负极,在传统的制备工艺中纯锌片一定是过量的,进而导致传统的锌离子杂化电容器的锌金属过量,过量的锌金属会降低锌离子杂化电容器的能量密度,进而导致循环时形成孤立的金属锌,降低锌离子杂化电容器的循环效率;另外,还会导致电容器内部生长枝晶,枝晶的连续生长会刺穿锌离子杂化电容器的隔膜,导致电容器内部出现短路的现象。
因此,本发明提供一种无负极锌离子杂化电容器的制备方法,其包括:
S1:将集流体的其中一面进行预镀锌处理;
其中,预镀锌质量与正极材料吸附质量之比为1:(1.2-1.7);示例性的为1:1.2、1:1.4、1:1.5、1:1.7,但不限于此。控制预镀锌质量与正极材料吸附质量之比,是为了控制集流体预镀锌层的厚度,避免预镀锌层过厚或过薄。
具体的,集流体的其中一面进行预镀锌处理的方法为磁控溅射锌法、电镀锌法、热镀法、冷镀法,但不限于此。优选的,预镀锌方法为磁控溅射锌法或电镀锌法。集流体的材料为碳纳米管、石墨烯、活性炭、碳纸等碳材料薄膜制品、泡沫镍、铝网、泡沫铝、不锈钢箔、钛箔、铜箔、泡沫镍、不锈钢网等无极到电材料选择其中一种对集流体均匀镀锌。优选的,集流体材料为碳纸。
在本发明的一个实施例中,预镀锌方法为电镀锌法,其步骤包括:
S101:提供电镀电解液,加入螯合剂混匀,得到电镀混合液;
其中,电镀电解液的浓度为0.5-6mol/L,示例性的为,0.5、2.3、3.7、4.8、5.7mol/L,但不限于此。当电镀电解液的浓度小于0.5mol/L时,集流 体上的预镀锌层会过薄,容易断裂损坏;当电镀电解液的浓度高于6mol/L时,集流体上的预镀锌层会过厚,过厚的镀锌层降低锌离子杂化电容器的电容性能,会促进电容内部枝晶的生长,缩短电容器的循环寿命。
其中,在电镀电解液中加入螯合剂使金属离子生成性质完全不同的螯合物降低和控制金属离子浓度,避免电镀电解液中的金属离子浓度过高。螯合剂的添加量为电镀电解液总体积的1%-2%。优选的,螯合剂为聚乙烯亚胺。
S102:将将集流体浸泡于电镀混合液中,电镀预定时间,得到电镀预成品;
其中,电镀电压为(-0.05)-(-1.5)V,示例性的为,(-0.05)、(-0.15)、(-0.49)、(-1.1)V,但不限于此。电镀时间为100-36000s,示例性的为,100、1000、10000s,但不限于此。
S103:将电镀预成品用酒精清洗得到电镀成品。
在本发明的另一个实施例中,预镀锌方法为磁控溅射锌法,其步骤包括:
S110:提供锌靶材;
其中,锌靶材与集流体之间的间距为75-85mm,示例性的为,76、78、83、85mm,但不限于此。
S120:提供衬底材料,并置于无水乙醇中超声清洗预定时间后进行干燥;
其中,衬底材料的超声波清洗时间为5-10min,示例性的为,5、7、9、10min,但不限于此。
S130:将S120得到的衬底材料置于锌靶材的下方,集流体置于锌靶材上方,进行磁共溅射得到电镀成品。
其中,溅射气氛为高纯氩气,其纯度为99.9%。
S2:参见图8,将正极极片1、隔膜2、预镀锌后的集流体3、垫片4、弹5片依次层叠的到中间体;其中,集流体的镀锌面31朝隔膜2设置;
其中,在装配过程中往隔膜2滴加电解液,电解液的加入量为整体电容器总体积的0.01-0.5%。示例性的为,0.01、0.09、0.25、0.49%,但不限 于此。在装配过程中往隔膜2滴加电解液,保证电解之间能够顺畅地传递离子,保证锌离子杂化电容器能够平稳地运行。当电解液的加入量大于整体电容器总体积0.5%时,容易导致锌离子杂化电容器故障损坏;当电解液的加入量小于整体电容器总体积0.01%时,无法有效在电极之间传递离子,影响锌离子杂化电容器的工作状态。
其中,隔膜2为纤维素隔膜、无纺布隔膜、玻璃纤维隔膜中的一种或多种,电解液的溶质为三氟甲基碳酸锌、氯化锌、硫酸锌、硝酸锌、高氯酸锌、乙酸锌、氯化锌、水合硼酸锌、二(三氟甲基磺酰)亚胺锌中的一种或多种。优选的,隔膜2为无纺布隔膜。
S3:将中间体装配于负极壳体6内得到成品。
实施例1
(1)选取直径为10mm,厚度为200μm的碳纸作为负极集流体,将其其中一面使用电镀法进行预镀锌处理,预镀锌质量与正极材料吸附质量之比为1:1.5。
(1.1)具体的,电镀电解液的浓度为3mol/L,往1000ml的电镀电解液中添加10ml的聚乙烯亚胺得到电镀混合液;
(1.2)将碳纸浸泡在电镀混合液中,使用三电极施加(-1.0)v电压,电镀10000s得到电镀预成品;
(1.3)将电镀预成品使用酒精清洗完成集流体预镀锌步骤。
(2)选取直径为15mm,厚度为10μm的无纺布作为隔膜,将其浸泡于40℃的硫酸锌溶液中,浸泡1h;
(3)将正极极片、隔膜、集流体、垫片、弹片依次层叠得到中间体;其中,集流体的镀锌面朝下设置;
正极极片选取直径为10mm,厚度为100μm的不锈钢,并在其上涂覆有活性炭和PTFE;弹片选取直径为15mm,厚度为200μm的不锈钢;垫片选取直径为15mm,厚度为200μm的不锈钢。层叠过程中往隔膜滴加电解液(滴加量为整体电容器总体积的0.5%)。
(4)将中间体装配于负极壳体内得到成品。
实施例2
(1)选取直径为10mm,厚度为40μm的碳纳米管作为负极集流体,将其其中一面使用磁共溅射锌法进行预镀锌处理,预镀锌质量与正极材料吸附质量之比为1:1.3。
(1.1)提供锌靶材,其中,锌靶材的纯度为99.9%;
(1.2)提供衬底材料,并置于无水乙醇中超声清洗10min,接着进行干燥;
(1.3)将衬底材料置于锌靶材的下方,集流体置于锌靶材的上方78mm位置处,在高纯氩气气氛保护下进行磁共溅射的到电镀成品。
(2)选取直径为15mm,厚度为10μm的玻璃纤维作为隔膜,将其浸泡于40℃的硫酸锌溶液中,浸泡1h;
(3)将正极极片、隔膜、集流体、垫片、弹片依次层叠得到中间体;其中,集流体的镀锌面朝下设置;
正极极片选取直径为10mm,厚度为100μm的不锈钢,并在其上涂覆有活性炭和PTFE;弹片选取直径为15mm,厚度为200μm的不锈钢;垫片选取直径为15mm,厚度为200μm的不锈钢。层叠过程中往隔膜滴加电解液(滴加量为整体电容器总体积的0.01%)。
(4)将中间体装配于负极壳体内得到成品。
实施例3
(1)选取直径为10mm,厚度为200μm的石墨烯作为负极集流体,将其其中一面使用电镀法进行预镀锌处理,预镀锌质量与正极材料吸附质量之比为1:1.5。
(1.1)具体的,电镀电解液的浓度为3mol/L,往1000ml的电镀电解液中添加10ml的聚乙烯亚胺得到电镀混合液;
(1.2)将碳纸浸泡在电镀混合液中,使用三电极施加(-1.0)v电压,电镀10000s得到电镀预成品;
(1.3)将电镀预成品使用酒精清洗完成集流体预镀锌步骤。
(2)选取直径为15mm,厚度为10μm的无纺布作为隔膜,将其浸泡于40℃的硫酸锌溶液中,浸泡1h;
(3)将正极极片、隔膜、集流体、垫片、弹片依次层叠得到中间体; 其中,集流体的镀锌面朝下设置;
正极极片选取直径为10mm,厚度为100μm的不锈钢,并在其上涂覆有活性炭和PTFE;弹片选取直径为15mm,厚度为200μm的不锈钢;垫片选取直径为15mm,厚度为200μm的不锈钢。层叠过程中往隔膜滴加电解液(滴加量为整体电容器总体积的0.5%)。
(4)将中间体装配于负极壳体内得到成品。
对比例1
选取直径为10mm,厚度为200μm的纯锌片作为负极;将正极极片、隔膜、负极、垫片、弹片依次层叠得到中间体;正极极片选取直径为10mm,厚度为100μm的不锈钢,并在其上涂覆有活性炭和PTFE;弹片选取直径为15mm,厚度为200μm的不锈钢;垫片选取直径为15mm,厚度为200μm的不锈钢,隔膜选取直径为15mm,厚度为10μm的无纺布。层叠过程中往隔膜滴加电解液(滴加量为整体电容器总体积的0.5%);将中间体装配于负极壳体得到成品。
测试实施例1-3和对比例1制备的锌离子杂化电容器的长循环性能和库伦效率;另外,还需要测试实施例1的倍率性能。
参见图1,实施例1的长循环性能优于对比例1的长循环性能;
参见图2,实施例1的库伦效率高于95%;
参见图3,实施例1可知其倍率性能。
参见图4,可知实施例2其库伦效率集中在99.8%;
参见图5,可知实施例2,其电容容量维持在140-160F/g之间。
参见图6,可知实施例3的库伦效率集中在99.9%;
参见图7,可知实施例3的电容容量在160F/g上下轻微浮动。
另外,以上对本发明实施例所提供的无负极锌离子杂化电容器及其制备方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种无负极锌离子杂化电容器的制备方法,其特征在于,包括:
    (1)将集流体的其中一面进行预镀锌处理;其中,预镀锌质量与正极材料吸附质量之比为1:(1.2-1.7);
    (2)将正极极片、隔膜、预镀锌后的集流体、垫片、弹片依次层叠得到中间体;其中,集流体的镀锌面朝隔膜设置;
    (3)将中间体装配于负极壳体内,得到成品。
  2. 如权利要求1所述的制备方法,其特征在于,集流体预镀锌步骤包括:
    (1)提供电镀电解液,加入螯合剂混匀,得到电镀混合液;
    (2)将集流体浸泡于电镀混合液中,电镀预定时间,得到电镀预成品;
    (3)将电镀预成品清洗,得到电镀成品。
  3. 如权利要求2所述的制备方法,其特征在于,电镀电解液的浓度为0.5-6mol/L;
    所述螯合剂为聚乙烯亚胺,螯合剂的添加量为电镀电解液总体积的1-2%;
    电镀电压为(-0.05)-(-1.5)V,电镀时间为100-36000s。
  4. 如权利要求1所述的制备方法,其特征在于,集流体预镀锌步骤包括:
    (1)提供锌靶材;
    (2)提供衬底材料,并置于无水乙醇中超声清洗预定时间后进行干燥;
    (3)将步骤(2)得到的衬底材料置于锌靶材的下方,集流体置于锌靶材上方,进行磁控溅射得到电镀成品。
    其中,衬底材料超声清洗时间为5-10min;
    锌靶材与集流体的间距为75-85mm;
    溅射气氛为高纯氩气,其纯度为99.9%。
  5. 如权利要求1-4任一项所述的制备方法,其特征在于,所述集流体选用碳纳米管薄膜、石墨烯薄膜、活性炭薄膜、碳纸、泡沫镍、铝网、泡沫铝、不锈钢箔、钛箔、铜箔、泡沫镍、不锈钢网中的一种或多种;
    所述隔膜为纤维素隔膜、无纺布隔膜、玻璃纤维隔膜中的一种或多种。
  6. 如权利要求5所述的制备方法,其特征在于,所述隔膜选用无纺布隔膜;
    所述集流体选用碳纸。
  7. 如权利要求1所述的制备方法,其特征在于,步骤(2)包括:
    (2.1)将隔膜浸泡于温度为0~90℃的电解液中1min~10h;
    (2.2)将正极极片、浸泡后的隔膜、预镀锌后的集流体、垫片、弹片依次层叠得到中间体。
  8. 如权利要求7所述的制备方法,其特征在于,所述电解液的溶质为三氟甲基碳酸锌、氯化锌、硫酸锌、硝酸锌、高氯酸锌、乙酸锌、氯化锌、水合硼酸锌、二(三氟甲基磺酰)亚胺锌中的一种或多种。
  9. 如权利要求7所述的制备方法,其特征在于,步骤(2.2)中,装配后加入电解液,电解液的加入量为整体电容器总体积的0.01-0.5%。
  10. 一种无负极锌离子杂化电容器,其特征在于,其由上述权利要求1-9任一项所述的制备方法制成。
PCT/CN2021/137954 2021-10-29 2021-12-14 一种无负极锌离子杂化电容器及其制备方法 WO2023070872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111273352.0 2021-10-29
CN202111273352.0A CN114141545A (zh) 2021-10-29 2021-10-29 一种无负极锌离子杂化电容器及其制备方法

Publications (1)

Publication Number Publication Date
WO2023070872A1 true WO2023070872A1 (zh) 2023-05-04

Family

ID=80395111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137954 WO2023070872A1 (zh) 2021-10-29 2021-12-14 一种无负极锌离子杂化电容器及其制备方法

Country Status (2)

Country Link
CN (1) CN114141545A (zh)
WO (1) WO2023070872A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066681A (ja) * 2006-09-11 2008-03-21 Osaka Prefecture Univ 電気化学キャパシタ及び電気化学キャパシタ亜鉛電極の作製方法
CN103050732A (zh) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 一种钛酸锂基化学电源
CN112216518A (zh) * 2020-09-15 2021-01-12 暨南大学 一种柔性锌离子混合电容器及其制备方法和应用
CN112713002A (zh) * 2021-01-09 2021-04-27 烟台大学 一种锂离子电容器及其制备方法
CN113013496A (zh) * 2021-02-22 2021-06-22 山东大学 一种安全系数高、成本低的无负极锌电池及其应用
CN113036152A (zh) * 2021-03-08 2021-06-25 山东大学 一种高能量密度、高安全无负极锌金属电池及其制备方法和应用
CN113299869A (zh) * 2021-05-10 2021-08-24 山西大学 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981371A (zh) * 2016-01-15 2017-07-25 黄潮 一种水系电解质超级电容电池
CN107768720B (zh) * 2016-08-18 2020-03-17 中国科学院物理研究所 基于液态电解液的无负极二次锂电池
CN111224115B (zh) * 2018-11-27 2021-06-11 中国科学院大连化学物理研究所 一种锌基电池负极及其制备和应用
CN112864399B (zh) * 2021-02-08 2024-05-10 澳门大学 集流体及其制备方法、锌负极及其制备方法和应用
CN113488607B (zh) * 2021-06-07 2022-05-06 暨南大学 一种具有功能性纳米材料修饰层的金属锌负极的制备和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066681A (ja) * 2006-09-11 2008-03-21 Osaka Prefecture Univ 電気化学キャパシタ及び電気化学キャパシタ亜鉛電極の作製方法
CN103050732A (zh) * 2012-12-20 2013-04-17 上海奥威科技开发有限公司 一种钛酸锂基化学电源
CN112216518A (zh) * 2020-09-15 2021-01-12 暨南大学 一种柔性锌离子混合电容器及其制备方法和应用
CN112713002A (zh) * 2021-01-09 2021-04-27 烟台大学 一种锂离子电容器及其制备方法
CN113013496A (zh) * 2021-02-22 2021-06-22 山东大学 一种安全系数高、成本低的无负极锌电池及其应用
CN113036152A (zh) * 2021-03-08 2021-06-25 山东大学 一种高能量密度、高安全无负极锌金属电池及其制备方法和应用
CN113299869A (zh) * 2021-05-10 2021-08-24 山西大学 一种用于抑制锌离子电池/电容器中锌枝晶生长的方法

Also Published As

Publication number Publication date
CN114141545A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
Zhou et al. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries
CN111900388B (zh) 一种锌离子电池负极材料、其制备及应用
CN102332572B (zh) 一种负极材料及其制造方法、锂离子电池及其负极片
WO2017020860A1 (zh) 电池、电池组以及不间断电源
CN110752365B (zh) 一种改性锌片的应用
CN108807842B (zh) 硅@碳-石墨烯基柔性复合材料及其制备方法、锂电池
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
CN113036152B (zh) 一种高能量密度、高安全无负极锌金属电池及其制备方法和应用
CN113346192B (zh) 一种锂离子电池复合隔膜及其制备方法和应用
CN108417798A (zh) 一种ZnO纳米片/碳海绵柔性复合负极材料及其制备方法
CN109671943A (zh) 一种高首效硅碳复合负极材料及其制备方法
CN112909229A (zh) 一种三维亲锂性金属泡沫骨架的银包覆方法及其在锂金属负极中的应用的制备方法
WO2018209762A1 (zh) 锂电池负极及其制备方法和应用
WO2023070872A1 (zh) 一种无负极锌离子杂化电容器及其制备方法
WO2023240891A1 (zh) 氰基基团修饰Zr-Fe MOF、其制备方法及锌基液流电池锌负极材料
CN109065833B (zh) 一种锂电池硅碳复合负极片的多孔集流体表面处理方法
CN110350146A (zh) 一种改性三维多孔锑电极、制备方法及应用
JP2012142214A (ja) リチウムイオン二次電池用負極の製造方法及びリチウムイオン二次電池用負極
CN109301353A (zh) 负极预锂制备工艺
CN115050920A (zh) 一种锑基一体化电极及其制备方法和应用
CN209016215U (zh) 充电电池
CN207409587U (zh) 一种锂电池正极
CN117410437B (zh) 一种锑基电极及其制备方法和应用
CN111162283A (zh) 一种纳米多孔泡沫镍集流体的制备方法和应用
CN108977202A (zh) 一种用于制备微孔铜箔的化学腐蚀剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962215

Country of ref document: EP

Kind code of ref document: A1