WO2023070807A1 - 光学模组和头戴显示设备 - Google Patents

光学模组和头戴显示设备 Download PDF

Info

Publication number
WO2023070807A1
WO2023070807A1 PCT/CN2021/133811 CN2021133811W WO2023070807A1 WO 2023070807 A1 WO2023070807 A1 WO 2023070807A1 CN 2021133811 W CN2021133811 W CN 2021133811W WO 2023070807 A1 WO2023070807 A1 WO 2023070807A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical module
optical
film
display
Prior art date
Application number
PCT/CN2021/133811
Other languages
English (en)
French (fr)
Inventor
孙琦
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023070807A1 publication Critical patent/WO2023070807A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the invention relates to the technical field of optical display, in particular to an optical module and a head-mounted display device.
  • VR Virtual Reality, virtual reality
  • AR Augmented Reality, augmented reality
  • the optical module of the head-mounted display product is located between the display and the user's eyes.
  • the image so that the human eye can observe the image enlarged by the optical module.
  • the optical path of the head-mounted display product is longer, and the thickness of the entire head-mounted display product from the human eye side to the display side is relatively large, resulting in a larger volume of the head-mounted display product, which brings a lot of inconvenience to the user wearing the product. to a greater burden.
  • the main purpose of the present invention is to provide an optical module, which aims to reduce the optical path of the optical path in the optical module and reduce the volume of the head-mounted display device using the optical module.
  • an optical module which includes:
  • a cemented lens the cemented lens includes a first lens and a second lens, the first lens is arranged on the light exit side of the display, the first lens has a first surface, a second surface and a third surface, the The first surface is arranged on the side of the first lens facing the display, and is located between the second surface and the third surface; the second lens is arranged on the third surface; and
  • An optical film includes a first optical film and a second optical film, the first optical film is arranged on the second surface, and is used to at least partially reflect the light incident on the first surface to the first Three tables;
  • the second optical film includes a quarter-wave plate and a polarized reflection film arranged between the third surface and the second lens, and the quarter-wave plate is located on the third surface surface and the polarizing reflective film.
  • the first surface is inclined, the first surface and the third surface are planes, and the plane where the first surface is located and the plane where the third surface is located form
  • the included angle ⁇ is an obtuse angle.
  • At least part of the first surface is concave toward a direction away from the display, so that the light passing through the first surface converges on the second surface.
  • the second surface is an arc surface, and the second surface protrudes toward a direction away from the third surface.
  • the second surface is an aspheric surface that is convex toward a direction away from the first surface.
  • the thickness of the end of the first lens close to the display is greater than the thickness of the end of the first lens away from the display.
  • the second lens has a fourth surface facing the first lens and a fifth surface facing away from the first lens;
  • the fourth surface is glued to the third surface, and the quarter-wave plate and the polarized reflection film are located between the fourth surface and the third surface.
  • the third surface portion is concaved toward a direction away from the second lens to form a concave portion, and the second lens is accommodated and limited in the concave portion.
  • the third surface portion is concaved toward a direction away from the second lens to form a concave portion
  • the fourth surface is at least partially accommodated in the concave portion, or the fourth surface is concaved toward a direction away from the third surface.
  • the fifth surface is flush with the third surface
  • the fifth surface protrudes toward a direction away from the third surface
  • the fifth surface is concave inward towards the direction of the third surface.
  • the second optical film further includes a polarizing film
  • the polarizing film is arranged between the second lens and the polarizing reflection film.
  • the present invention also proposes a head-mounted display device, and the head-mounted display device includes:
  • the optical module is arranged in the housing, and the first optical film of the optical module is a total reflection film or a semi-transparent and semi-reflective film.
  • the technical solution of the present invention makes the circularly polarized light emitted by the display incident on the first surface of the first lens, the light entering the first lens propagates to the second surface through the first surface, and the light is under the action of the first optical film on the second surface At least partially reflected to the third surface, the light reflected to the third surface first passes through the quarter-wave plate, and under the action of the quarter-wave plate, the polarization direction is changed into linearly polarized light, and the linearly polarized light is directed to the Polarizing reflective film, at this time, the polarization direction of the linearly polarized light is perpendicular to the transmission direction of the polarized reflective film, and the linearly polarized light is reflected back to the second surface under the action of the polarized reflective film, and the first optical film on the second surface The bottom is at least partially reflected to the third surface.
  • the linearly polarized light reflected to the third surface enters the quarter-wave plate, changes the polarization direction again under the action of the quarter-wave plate, and then goes to the polarized reflection film.
  • the polarization direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film, and the linearly polarized light enters the human eye through the polarized reflective film and the second lens, so that the user can observe the image displayed on the display.
  • the propagation process of the optical path in the optical module above it can be seen that the light emitted by the display will be reflected back and forth between the second surface and the third surface of the first lens.
  • the first optical film can be used to change the propagation angle of the optical path.
  • the image displayed on the display is enlarged and propagated, so that the user can observe an image of a suitable size; on the other hand, the optical path can be folded in the second lens, so that the optical path can be compressed and the total length of the optical path can be reduced, which is conducive to reducing the use of this optical module.
  • the size of the head-mounted display device improves the user's wearing experience.
  • Fig. 1 is the structural representation of optical module of the present invention
  • Figure 2 is a partial exploded view of the optical module in Figure 1;
  • Fig. 3 is a partial structural schematic diagram of the optical module in Fig. 1;
  • FIG. 4 is a schematic structural view of the optical module in the first embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical module in a second embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical module in a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical module in a fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical module in a fifth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical module in a sixth embodiment of the present invention.
  • Fig. 10 is a spot diagram of the optical module of the present invention.
  • Fig. 11 is a field area and distortion diagram of the optical module of the present invention.
  • Fig. 12 is a chromatic aberration diagram of the optical module of the present invention.
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the present invention proposes an optical module, which is applied to head-mounted display devices, such as VR display devices and AR display devices.
  • the optical module includes a display 1, a cemented lens 2 and an optical film, the display 1 is used to emit light for imaging display;
  • the cemented lens 2 includes a first lens 21 And the second lens 22, the first lens 21 is arranged on the light exit side of the display 1, the first lens 21 has a first surface 211, a second surface 212 and a third surface 213, the first surface 211 is arranged on the first lens 21 facing the display 1, and between the second surface 212 and the third surface 213;
  • the second lens 22 is located on the third surface 213;
  • the optical film includes a first optical film 3 and a second optical film 4, and the first optical film 3 It is arranged on the second surface 212 and is used to at least partially reflect the light incident on the first surface 211 to the third surface;
  • the second optical film 4 includes a quarter wave arranged between the third surface 213 and the second lens 22
  • the plate 41 and the polarizing reflective film 42 , the quarter wave plate 41 is located between the third surface 213 and the second lens 22
  • the light emitted by the display 1 is circularly polarized light.
  • the circularly polarized light first irradiates the first surface 211 of the first lens 21 , and then enters the first lens 21 through the first surface 211 .
  • the circularly polarized light entering the first lens 21 propagates to the second surface 212 in the first lens 21 , and the circularly polarized light is at least partially reflected to the third surface 213 by the first optical film 3 on the second surface 212 .
  • the light reflected to the third surface 213 first passes through the quarter-wave plate 41 in the second optical film 4 , and changes the polarization state and polarization direction under the action of the quarter-wave plate 41 into linearly polarized light.
  • the linearly polarized light is directed toward the polarized reflective film 42 in the second optical film 4 again.
  • the polarization direction of the linearly polarized light is perpendicular to the transmission direction of the polarized reflective film 42, and the linearly polarized light cannot be transmitted through the polarized reflective film 42.
  • the reflective film 42 is reflected back to the second surface 212 , and is at least partially reflected to the third surface 213 by the first optical film 3 on the second surface 212 .
  • the linearly polarized light reflected by the third surface 213 enters the quarter-wave plate 41 , changes the polarization direction again under the action of the quarter-wave plate 41 , and then goes to the polarized reflection film 42 .
  • the polarization direction of the linearly polarized light is the same as the transmission direction of the polarized reflective film 42 , and the linearly polarized light passes through the polarized reflective film 42 and the second lens 22 and enters the human eye 5 , so that the user can observe the image displayed on the display 1 .
  • the first optical film 3, the quarter wave plate 41 and the polarized reflection film 42 can be independent optical films, and they can be installed and fixed by bonding; the first optical film 3, the quarter wave plate
  • the wave plate 41 and the polarized reflection film 42 may also be provided by coating, which is not limited here.
  • the second lens 22 can be completely cemented with the third surface 213 of the first lens 21; During the extended length of the three surfaces 213, part of the surface of the third surface 213 is cemented with the second lens 22, that is, the second lens 22 and the third surface 213 are cemented, and there is a complete cementing and partial cementing of the third surface 213 and the second lens 22. Condition.
  • the light emitted by the display 1 will be reflected back and forth between the second surface 212 and the third surface 213 of the first lens 21, so that the light emitted by the display 1 can realize an optical path in the first lens 21 After being folded and enlarged, it propagates toward the second lens 22 .
  • the first optical film 3 can be used to change the divergence angle of the optical path propagation, and the image displayed on the display 1 can be enlarged, so that the user can observe an image of a suitable size; Folding within 22 can compress the optical path length and reduce the total length of the optical path, which is conducive to reducing the volume of the head-mounted display device using the optical module and improving the wearing experience of the user.
  • the second lens 22 is arranged on the third surface 213 of the first lens 21, and glued with the first lens 21;
  • the second optical film 4 is provided, and by setting the second lens 22, on the one hand, the second optical film 4 can be isolated and protected by the second lens 22, so as to prevent the second optical film 4 from being easily scratched and easily produced when it is exposed.
  • the problem of wrinkles; on the other hand, the first lens 21 can be designed as an optical lens with a light-adjusting effect.
  • the first lens 21 can be set as a condensing lens to realize the concentration of the output light of this optical module and improve the user's visual perception .
  • the first surface 211 is arranged obliquely, the first surface 211 and the third surface 213 are planes, and the plane where the first surface 211 is located and the plane where the third surface 213 is located
  • the included angle ⁇ is an obtuse angle.
  • the second surface 212 and the third surface 213 are opposite to each other and both extend toward the first surface 211 .
  • the materials used for the first lens 21 can be saved, thereby saving the material cost of the first lens 21;
  • the surface 211 can directly spread to the second surface 212 closer to the first surface 211, improving the utilization rate of the first lens 21; in addition, when the first surface 211 is a plane, it is also beneficial to reduce the processing difficulty of the first surface 211 .
  • the second surface 212 is an arc surface, and the second surface 212 protrudes toward a direction away from the third surface 213 .
  • the first optical film 3 disposed on the second surface 212 can be arranged in an arc shape, so that the first optical film 3 that is transmitted to the first Light from the three optical films can be incident at a smaller incident angle and reflected at a smaller reflection angle.
  • the compression amount of the optical path in the first lens 21 can be increased, so that the optical path in the first lens 21 can be kept at a position where the first lens 21 is closer to the first surface 211, so that the first lens 21 can be designed as
  • the thickness of the end of the first lens 21 close to the display 1 is smaller than that of the end of the first lens 21 away from the display 1, reducing the volume of the end of the first lens 21 away from the display 1, which is conducive to improving the utilization rate of the first lens 21 and reducing the first lens 21.
  • the volume of the lens 21 refers to the distance between the third surface 213 and the second surface 212 .
  • the second lens 22 has a fourth surface 221 facing the first lens 21 and a fifth surface 222 facing away from the first lens 21;
  • the three surfaces 213 are glued together, and the quarter wave plate 41 and the polarized reflection film 42 are located between the fourth surface 221 and the third surface 213 .
  • the polarizing film 43 is arranged on the fourth surface 221
  • the polarizing reflective film is arranged on the side of the polarizing film facing away from the fourth surface 221
  • the quarter wave plate 41 is arranged on the polarizing reflecting film 42 facing away from One side of the polarizing film 43.
  • Both the polarizing film 43 and the polarizing reflective film 42 have a transmission direction, and the transmission direction of the polarizing film 43 is the same as that of the polarizing reflective film 42 .
  • the polarizing film 43 filters the passing light, and the light that is transmitted in a direction different from that of the polarizing film 43 will be filtered and absorbed, so as to ensure that the light passing through the optical module can maintain a consistent vibration direction and reduce the appearance of stray light.
  • the polarizing film 43 is arranged between the polarizing reflective film 42 and the second lens 22, and the quarter wave plate 41, the polarizing reflective film 42 and the polarizing film 43 can be integrally formed into an integral film layer, to compress the overall thickness of the second optical film 4 .
  • the second optical film 4 as a whole can be bonded and fixed with the third surface 213 of the first lens 21 and the fourth surface 221 of the second lens 22 through optical glue, so that the first lens 21, the second optical film 4 and the second lens 22 laminated and glued to improve the stability of the connection between the first lens 21, the second optical film 4 and the second lens 22, and ensure the accuracy of the optical path propagation between the first lens 21, the second optical film 4 and the second lens 22 and reliability.
  • first lens 21 and the second lens 22 have various structural forms, which will be described in the first embodiment to the sixth embodiment.
  • At least a portion of the first surface 211 is concave toward a direction away from the display 1 , so that the light passing through the first surface 211 converges on the second surface 212 .
  • the first surface 211 is designed as an inner concave surface.
  • the material cost of the first lens 21 can be reduced;
  • the light emitted by the display 1 can be concentrated to the local area of the second surface 212, reducing the divergence and propagation loss of light, and improving the light output brightness of the final optical module;
  • the second The concave part of the first surface 211 can also be used as a shelter for the display 1, so that the display 1 can be placed closer to the first surface 211, further reducing the volume of the entire optical module.
  • the third surface 213 is partially convex toward the second lens 22
  • the fourth surface 221 is at least partially concave toward a direction away from the first lens 21 .
  • the third surface 213 is partly accommodated in the concave part of the fourth surface 221.
  • the second optical film 4 is arranged in an arc shape as a whole, and the second optical film 4 protrudes toward the fourth surface 221 as a whole, and Confined between the third surface 213 and the fourth surface 221 .
  • the second optical film 4 can be reliably positioned between the first surface 211 and the fourth surface 221 through the matching arc design of the third surface 213 and the fourth surface 221, preventing the second optical film from 4 to ensure the reliability of optical path relay; on the other hand, the connection area between the second optical film 4 and the third surface 213 and the fourth surface 221 is increased, which is beneficial to improve the connection between the second optical film 4 and the third surface. 213 and the reliability of the connection between the fourth surface 221 and fixed.
  • a portion of the third surface 213 is concaved toward a direction away from the second lens 22 to form a concave portion 213 a
  • the fourth surface 221 is concaved toward a direction away from the third surface 213 .
  • a part of the second optical film 4 is accommodated and limited in the concave portion 213 a
  • another part of the second optical film 4 is accommodated and limited in the inner recess of the fourth surface 221 .
  • the inner wall of the concave part 213a and the inner wall of the concave part of the fourth surface 221 are enclosed to form a cavity structure, and the cavity structure is used for the first
  • the second optical film 4 is limited, which can prevent the lateral movement of the second optical film 4 and ensure the reliability of the optical path relay; on the other hand, the connection between the second optical film 4 and the third surface 213 and the fourth surface 221 is increased.
  • the area is beneficial to improve the reliability of the connection and fixation between the second optical film 4 and the third surface 213 and the fourth surface 221 .
  • part of the third surface 213 is recessed toward the direction away from the second lens 22 to form a concave portion 213a, and the second lens 22 is accommodated and limited in the concave portion 213a; or, the fourth surface 221 is at least partially accommodated in the concave portion 213a
  • the third surface 213 can be a plane or an arc surface, such as a spherical surface or an aspheric surface, and the shape of the fourth surface 221 and the shape of the third surface 213 can be matched.
  • the fifth surface 222 can be flush with the third surface 213, so that the compactness of the cooperation between the first lens 21 and the second lens 22 can be improved on the one hand, On the other hand, the combined volume of the first lens 21 and the second lens 22 can also be reduced, thereby reducing the volume of the entire optical module.
  • the fourth surface 221 When the fourth surface 221 is at least partially disposed in the concave portion 213a, the fourth surface 221 can cooperate with the inner wall of the concave portion 213a to limit and fix the second optical film 4, so that the second optical film 4 can be limited between the fourth surface 221 and the inner wall of the concave portion 213a. Between the inner walls of the concave portion 213a, the second optical film 4 can be effectively prevented from being scratched or wrinkled through the shielding of the second optical film 4 by the fourth surface 221 .
  • the fifth surface 222 protrudes toward a direction away from the third surface 213 .
  • the fifth surface 222 as a convex arc surface, the light rays entering the second lens 22 can be converged after passing through the fifth surface 222, so that the user can observe higher brightness and clearer images. image.
  • the fourth surface 221 can be configured as an arc symmetrical to the fifth surface 222 , so that the second lens 22 becomes a convex lens, thereby facilitating the processing and shaping of the second lens 22 .
  • the fourth surface 221 is convex toward the third surface 213
  • the fifth surface 222 is concave toward the direction of the third surface 213 .
  • the second lens 22 can be crescent-shaped as a whole, and the fifth surface 222 is set to be concave toward the third surface 213, which can reduce the thickness and volume of the second lens 22, thereby reducing the volume of the entire optical module. , to reduce the material cost of the second lens 22 .
  • the present invention also proposes a head-mounted display device, which is a VR or AR display device.
  • the head-mounted display device includes a casing (not shown) and the optical module in the above-mentioned embodiment, the optical module is arranged on the casing, and the optical module
  • the first optical film 3 is a total reflection film or a transflective film.
  • the housing is provided with a cavity, and the optical module can be assembled on the wall of the cavity to realize the connection and fixation of the optical module and the housing.
  • the specific structure of the optical module refers to the above-mentioned embodiments. Since this head-mounted display device adopts all the technical solutions of all the above-mentioned embodiments, it at least has all the beneficial effects brought by the technical solutions of the above-mentioned embodiments. Let me repeat them one by one.
  • the above-mentioned head-mounted display device can adopt the optical module structure shown in Figure 1. Based on the structural design of the optical module, the head-mounted display device can provide users with clearer images. For the display effect and better wearing experience, the structural design of the optical module in this embodiment is described in detail below:
  • the first surface 211 of the first lens 21 is a slope
  • the second surface 212 is a spherical or aspherical arc surface
  • the third surface 213 is a plane
  • the third surface 213 is concave toward the direction of the second surface 212.
  • the inner wall surface of the inner recess of the third surface 213 is a spherical or non-spherical arc surface.
  • the fourth surface 221 of the second lens 22 is a spherical or aspherical curved surface matching the shape of the inner wall surface of the second surface 212
  • the fifth surface 222 is flush with the third surface 213 of the first lens 21. flat.
  • the optical path of the light output from the display 1 passing through the first lens 21 and the second lens 22 to the human eye 5 can be referred to the above embodiment and the dotted arrow in FIG. 1 , and will not be repeated here.
  • the focal length of the optical module in the head-mounted display device can be designed to be 20.7mm, and the imaging field angle of the optical module is 25°-35°, such as 30°. In this angle range Inside, users can observe clear imaging. As shown in Fig. 10, Fig.
  • FIG. 10 shows the imaging spot diagrams under 7 different fields of view in separate grid diagrams, and the spot diagrams of each area are divided into image plane (bottom side abscissa IMA) and object plane (top side The abscissa OBJ) is represented, and the bottom side of Figure 11 corresponds to the root mean square radius value (the English RMS radius shown in the picture) and the geometric radius value (the English GEO radius), it can be seen from Figure 10 that the imaging spot of the optical film group is smaller than 13.7um.
  • the left side of Figure 11 is the field curvature diagram, the abscissa of the field curvature diagram is the distortion size in millimeters, and the ordinate is the object height; the right diagram is the distortion diagram, and the abscissa of the distortion diagram is the distortion percentage , and the ordinate is the object height.
  • the field curvature of the optical film group is less than 0.2mm, and the distortion at the position of the maximum field of view is less than 5%.
  • the abscissa shown in Figure 12 is the dispersion value, and the ordinate is the field of view angle.
  • the maximum dispersion value of the optical film group is less than 50um. It can be seen from the above parameters that this optical module meets high Quality imaging design requirements, to ensure that users obtain images with higher definition.
  • Table 1 and Table 2 respectively list the optical surface numbers (Surface ), the curvature (C) of each optical surface on the optical axis, the distance (T) between each surface and the next optical surface on the optical axis from the human eye 5 (aperture) to the display screen of the head-mounted display device, and even Sub-aspheric coefficients ⁇ 2, ⁇ 3, ⁇ 4, among which the aspheric coefficients can satisfy the following equation.
  • z is the coordinate along the optical axis
  • Y is the radial coordinate with the lens length as the unit
  • C is the curvature (1/R)
  • k is the cone coefficient (Coin Constant)
  • ⁇ i is the coefficient of each higher order term
  • 2i is the order of aspherical coefficient (the order of Aspherical Coefficient).
  • the spherical coefficient without high-order term reaches 4th order.
  • the thickness in Table 1 refers to the distance from the optical surface to the next optical surface
  • the positive value of the thickness refers to the distance from the display 1 to the human eye 5
  • the negative value of the thickness refers to the distance from the human eye 5 to the display. 1 direction distance.
  • the material refers to the material between the optical surface and the next optical surface.
  • the meaning of Mirror (reflection) is not material, but means that the optical surface has a reflection effect.
  • the data represented by 4th in Table 2 is the fourth-order coefficient used to bring into the calculation formula of the corresponding surface type.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

一种光学模组,光学模组包括显示器(1)、胶合透镜(2)以及光学膜,显示器(1)用于发射用于成像显示的光线;胶合透镜(2)包括第一透镜(21)和第二透镜(22),第一透镜(21)设于显示器(1)的出光侧,第一透镜(21)具有第一表面(211)、第二表面(212)以及第三表面(213),第一表面(211)设于第一透镜(21)面向显示器(1)的一侧,并位于第二表面(212)和第三表面(213)之间;第二透镜(22)设于第三表面(213);光学膜包括第一光学膜(3)和第二光学膜(4),第一光学膜(3)设于第二表面(212),并用于将入射第一表面(211)的光线至少部分反射至第三表面(213);第二光学膜(4)包括设于第三表面(213)和第二透镜(22)之间的四分之一波片(41)和偏振反射膜(42),四分之一波片(41)位于第三表面(213)和偏振反射膜(42)之间。光学模组的光路光程更短,能够缩减采用本光学模组的头戴显示设备的体积。

Description

光学模组和头戴显示设备 技术领域
本发明涉及光学显示技术领域,特别涉及一种光学模组和头戴显示设备。
背景技术
随着光学设计及加工技术、显示技术及处理器的发展和升级,VR(Virtual Reality、虚拟现实)、AR(Augmented Reality、增强现实)等头戴显示产品的形态和种类层出不穷,他们的应用领域也愈加广泛。
在相关技术中,头戴显示产品的光学模组位于显示器和用户的眼部之间,光学模组包括若干光学镜片,这些光学镜片对显示器显示的图像进行多次折射和反射,以放大显示器显示的图像,使人眼能够观察到经过光学模组放大后的图像。在上述过程中,头戴显示产品内光路的光程较长,整个头戴显示产品由人眼侧到显示器侧的厚度较大,导致头戴显示产品具有较大的体积,给用户穿戴产品带来更大负担。
发明内容
本发明的主要目的是提出一种光学模组,旨在减小光学模组内光路的光程,缩减采用本光学模组的头戴显示设备的体积。
为实现上述目的,本发明提出了一种光学模组,所述光学模组包括:
显示器,所述显示器用于发射用于成像显示的光线;
胶合透镜,所述胶合透镜包括第一透镜和第二透镜,所述第一透镜设于所述显示器的出光侧,所述第一透镜具有第一表面、第二表面以及第三表面,所述第一表面设于所述第一透镜面向所述显示器的一侧,并位于所述第二表面和所述第三表面之间;所述第二透镜设于所述第三表面;及
光学膜,所述光学膜包括第一光学膜和第二光学膜,所述第一光学膜设于所述第二表面,并用于将入射所述第一表面的光线至少部分反射至所述第三表;所述第二光学膜包括设于所述第三表面和所述第二透镜之间的四分之 一波片和偏振反射膜,所述四分之一波片位于所述第三表面和所述偏振反射膜之间。
在本发明的一实施例中,所述第一表面倾斜设置,所述第一表面和所述第三表面为平面,所述第一表面所在的平面和所述第三表面所在的平面所呈的夹角α为钝角。
在本发明的一实施例中,所述第一表面至少部分朝向背离所述显示器的方向内凹,以使透过所述第一表面的光线在所述第二表面上汇聚。
在本发明的一实施例中,所述第二表面为弧面,所述第二表面朝向背离所述第三表面的方向凸起。
在本发明的一实施例中,所述第二表面为朝向背离所述第一表面的方向凸起的非球面。
在本发明的一实施例中,所述第一透镜靠近所述显示器一端的厚度大于所述第一透镜远离所述显示器一端的厚度。
在本发明的一实施例中,所述第二透镜具有面向所述第一透镜的第四表面和背向所述第一透镜的第五表面;
所述第四表面与所述第三表面胶合,所述四分之一波片和所述偏振反射膜位于所述第四表面和所述第三表面之间。
在本发明的一实施例中,所述第三表面部分朝向背离所述第二透镜的方向内凹形成凹部,所述第二透镜容纳并限位于所述凹部内。
在本发明的一实施例中,所述第三表面部分朝向背离所述第二透镜的方向内凹形成凹部;
所述第四表面至少部分容纳于所述凹部内,或所述第四表面朝向背离所述第三表面的方向内凹。
在本发明的一实施例中,所述第五表面与所述第三表面齐平;
或,所述第五表面朝向背离所述第三表面的方向凸起;
或,所述第五表面向朝向所述第三表面的方向内凹。
在本发明的一实施例中,所述第二光学膜还包括偏振膜;
所述偏振膜设于所述第二透镜和所述偏振反射膜之间。
此外,本发明还提出一种头戴显示设备,所述头戴显示设备包括:
壳体;和
上述的光学模组,所述光学模组设于所述壳体,所述光学模组的第一光学膜为全反射膜或半透半反膜。
本发明技术方案通过使显示器发射的圆偏振光入射第一透镜的第一表面,进入第一透镜的光线经由第一表面传播至第二表面,光线在第二表面上的第一光学膜作用下至少部分反射至第三表面,反射至第三表面的光线先经过四分之一波片,并在四分之一波片的作用下改变偏振方向转变为线偏振光,线偏振光再射向偏振反射膜,此时线偏振光的偏振方向与偏振反射膜的透射方向垂直,线偏振光在偏振反射膜作用下反射回第二表面,并在第二表面上的第一光学膜片的作用下至少部分反射至第三表面。反射至第三表面的线偏振光入射四分之一波片,并在四分之一波片的作用下再次改变偏振方向后射向偏振反射膜。此时,线偏振光的偏振方向与偏振反射膜的透射方向相同,线偏振光透过偏振反射膜和第二透镜进入人眼,使用户能够观察到显示器显示的图像。根据以上本光学模组内光路的传播过程可知,显示器发射的光线将在第一透镜的第二表面和第三表面之间发生来回反射,一方面能够利用第一光学膜改变光路传播角度,对显示器显示的图像进行放大传播,使用户能够观察到合适大小的图像;另一方面可使光路在第二透镜内折叠,从而能够压缩光路光程,降低光路总长,有利于缩减采用本光学模组的头戴显示设备的体积,提升用户的穿戴体验。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明光学模组的结构示意图;
图2为图1中光学模组的部分爆炸图;
图3为图1中光学模组的部分结构示意图;
图4为本发明第一实施例中光学模组的结构示意图;
图5为本发明第二实施例中光学模组的结构示意图;
图6为本发明第三实施例中光学模组的结构示意图;
图7为本发明第四实施例中光学模组的结构示意图;
图8为本发明第五实施例中光学模组的结构示意图;
图9为本发明第六实施例中光学模组的结构示意图;
图10为本发明光学模组的点列图;
图11为本发明光学模组的场区和畸变图;
图12为本发明光学模组的色差图。
附图标号说明:
标号 名称 标号 名称
1 显示器 221 第四表面
2 胶合透镜 222 第五表面
21 第一透镜 3 第一光学膜
211 第一表面 4 第二光学膜
212 第二表面 41 四分之一波片
213 第三表面 42 偏振反射膜
213a 凹部 43 偏振膜
22 第二透镜 5 人眼
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、 后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。全文中出现的“和/或”、“且/或”的含义相同,均表示包括三个并列的方案,以“A且/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出了一种光学模组,该光学模组应用于头戴显示设备,例如VR显示设备和AR显示设备。
在本发明的一实施例中,如图1所示,该光学模组包括显示器1、胶合透镜2以及光学膜,显示器1用于发射用于成像显示的光线;胶合透镜2包括第一透镜21和第二透镜22,第一透镜21设于显示器1的出光侧,第一透镜21具有第一表面211、第二表面212以及第三表面213,第一表面211设于第一透镜21面向显示器1的一侧,并位于第二表面212和第三表面213之间;第二透镜22设于第三表面213;光学膜包括第一光学膜3和第二光学膜4,第一光学膜3设于第二表面212,并用于将入射第一表面211的光线至少部分反射至第三表;第二光学膜4包括设于第三表面213和第二透镜22之间的四分之一波片41和偏振反射膜42,四分之一波片41位于第三表面213和偏振 反射膜42之间。
在本实施例中,显示器1发出的光线为圆偏振光,该圆偏振光首先照射第一透镜21的第一表面211,并由第一表面211透射进入第一透镜21。进入第一透镜21的圆偏振光在第一透镜21内传播至第二表面212,圆偏振光在第二表面212上的第一光学膜3作用下至少部分反射至第三表面213。反射至第三表面213的光线先经过第二光学膜4中的四分之一波片41,并在四分之一波片41的作用下改变偏振态和偏振方向转变为线偏振光。线偏振光再射向第二光学膜4内的偏振反射膜42,此时线偏振光的偏振方向与偏振反射膜42的透射方向垂直,线偏振光无法透射偏振反射膜42,而是在偏振反射膜42的作用下反射回第二表面212,并在第二表面212上的第一光学膜3片的作用下至少部反射至第三表面213。反射至第三表面213的线偏振光入射四分之一波片41,并在四分之一波片41的作用下再次改变偏振方向后射向偏振反射膜42。此时,线偏振光的偏振方向与偏振反射膜42的透射方向相同,线偏振光透过偏振反射膜42和第二透镜22进入人眼5,使用户能够观察到显示器1显示的图像。其中,第一光学膜3、四分之一波片41以及偏振反射膜42可为单独的光学膜片,它们均可通过粘接的方式进行安装固定;第一光学膜3、四分之一波片41以及偏振反射膜42也可通过镀膜的方式进行设置,此处不做限定。当第二透镜22的镜片延伸长度大于或等于第三表面213的延伸长度时,第二透镜22可与第一透镜21的第三表面213完全胶合;当第二透镜22的镜片延伸长度小于第三表面213的延伸长度时,第三表面213的部分表面与第二透镜22胶合,即第二透镜22和第三表面213胶合存在上述第三表面213与第二透镜22完全胶合和部分胶合的情况。
如图1虚线箭头所示,显示器1发射的光线将在第一透镜21的第二表面212和第三表面213之间发生来回反射,以使显示器1发出的光线在第一透镜21内实现光路折叠和放大后向第二透镜22传播。以此,一方面,能够利用第一光学膜3改变光路传播的发散角度,对显示器1显示的图像进行放大处理,使用户能够观察到合适大小的图像;另一方面,使光路在第二透镜22内折叠,能够压缩光路光程,降低光路总长,有利于缩减采用本光学模组的头戴显示设备的体积,提升用户的穿戴体验。
结合图1和图2所示,第二透镜22设于第一透镜21的第三表面213,并 与第一透镜21胶合;第二透镜22和第一透镜21的第三表面213之间夹设有第二光学膜4,通过设置第二透镜22,一方面,可通过第二透镜22对第二光学膜4进行隔离保护,避免出现第二光学膜4外露时容易被刮损和容易产生褶皱的问题;另一方面,第一透镜21可设计为具有调光作用的光学镜片,比如可将第一透镜21设置为聚光镜片,实现本光学模组输出光线的集中,改善用户的视觉观感。
在本实用新型的一实施例中,如图1所示,第一表面211倾斜设置,第一表面211和第三表面213为平面,第一表面211所在的平面和第三表面213所在的平面所呈的夹角α为钝角。
在本实施例中,第二表面212和第三表面213相对设置,并均向第一表面211延伸。通过将第一表面211设计为倾斜的平面,一方面可节省第一透镜21的用料,从而节省第一透镜21的物料成本;另一方面,可使显示器1发出的光线在透过第一表面211后能够直接传播至第二表面212更靠近第一表面211的部位,提升第一透镜21的利用率;此外,第一表面211为平面时,还有利于降低第一表面211的加工难度。
在本发明的一实施例中,如图1所示,第二表面212为弧面,第二表面212朝向背离第三表面213的方向凸起。
在本实施例中,通过将第二表面212设置为凸弧面,比如球面或非球面,可使设置于第二表面212的第一光学膜3呈拱弧形设置,从而使传播至第一光学膜3片的光线能够以更小入射角度入射和以更小的反射角度反射。以此,一方面可提升第一透镜21内光路的压缩量,使第一透镜21内的光路保持在第一透镜21更为靠近第一表面211的部位,从而能够将第一透镜21设计为,第一透镜21靠近显示器1的一端的厚度小于第一透镜21远离显示器1的一端,降低第一透镜21远离显示器1一端的体积,如此有利于提升第一透镜21的利用率和缩减第一透镜21的体积。其中,上述第一透镜21的厚度指的是,第三表面213与第二表面212之间的间距。
在本实用新型的一实施例中,如图3所示,第二透镜22具有面向第一透镜 21的第四表面221和背向第一透镜21的第五表面222;第四表面221与第三表面213胶合,四分之一波片41和偏振反射膜42位于第四表面221和第三表面213之间。
在本实施例中,偏振膜43设于第四表面221,偏正反射膜设于偏正膜背向第四表面221的一侧,四分之一波片41设于偏振反射膜42背向偏振膜43的一侧。偏振膜43和偏振反射膜42均具有透射方向,偏振膜43的透射方向与偏振反射膜42的透射方向相同。偏振膜43对经过的光线进行滤除,与偏振膜43透射方向不同的光线将被过滤吸收,从而保证经过光学模组的光线能够保持一致的振动方向,减少杂光的出现。
为便于光学模组的组装,偏振膜43设于偏振反射膜42和第二透镜22之间,四分之一波片41、偏振反射膜42以及偏振膜43可一体成型为一整体膜层,以压缩第二光学膜4的整体厚度。第二光学膜4整体可通过光学胶与第一透镜21的第三表面213和第二透镜22的第四表面221进行粘接固定,使第一透镜21、第二光学膜4以及第二透镜22层叠胶合,提升第一透镜21、第二光学膜4以及第二透镜22相连接的稳固性,保证第一透镜21、第二光学膜4以及第二透镜22之间的光路传播的准确性和可靠性。
在实际应用中,第一透镜21和第二透镜22具有多种结构形态,以下以第一实施例至第六实施例中进行区分说明。
第一实施例:
如图4所示,第一表面211至少部分朝向背离显示器1的方向内凹,以使透过第一表面211的光线在第二表面212上汇聚。
在本实施例中,将第一表面211设计为内凹面,一方面,能够降低第一透镜21的物料成本;另一方面,可借助第一表面211为内凹面时带来的聚光效应,使显示器1发出的光线能够更为集中地向第二表面212的局部汇聚,降低光的发散性和传播损耗,改善最终光学模组的出光亮度;此外,第一表面211为内凹面时,第一表面211的内凹处还可以作为显示器1避位的空间,使显示器1能够更靠近第一表面211设置,进一步缩窄整个光学模组的体积。
第二实施例:
如图5所示,第三表面213部分朝向第二透镜22凸起,第四表面221至少部分朝向背离第一透镜21的方向内凹。
在本实施例中,第三表面213部分容纳于第四表面221的内凹处,此时第二光学膜4整体呈弧形设置,第二光学膜4整体朝向第四表面221凸起,并限位于第三表面213和第四表面221之间。以此,一方面,通过第三表面213和第四表面221相互匹配的弧面设计,能够将第二光学膜4可靠定位于第一表面211和第四表面221之间,防止第二光学膜4的侧向移动,保证光路转播的可靠性;另一方面,增加了第二光学膜4与第三表面213和第四表面221的连接面积,有利于提升第二光学膜4与第三表面213和第四表面221的连接固定时的可靠性。
第三实施例:
如图6所示,第三表面213部分朝向背离第二透镜22的方向内凹形成凹部213a,第四表面221朝向背离第三表面213的方向内凹。
在本实施例中,第二光学膜4部分容纳并限位于凹部213a内,第二光学膜4另一部分容纳并限位于第四表面221的内凹处。以此,一方面,通过第三表面213和第四表面221相互对应的凹陷设计,使凹部213a的内壁与第四表面221内凹处的内壁围合形成腔体结构,通过腔体结构对第二光学膜4进行限位,能够防止第二光学膜4的侧向移动,保证光路转播的可靠性;另一方面,增加了第二光学膜4与第三表面213和第四表面221的连接面积,有利于提升第二光学膜4与第三表面213和第四表面221的连接固定时的可靠性。
第四实施例:
如图7所示,第三表面213部分朝向背离第二透镜22的方向内凹形成凹部213a,第二透镜22容纳并限位于凹部213a内;或,第四表面221至少部分容纳于凹部213a内
在本实施中,第三表面213可为平面或弧面,比如球面或非球面,第四表面221的形状与第三表面213的形状可相适配。当将第二透镜22设置在第三表面213的凹部213a内时,第五表面222可与第三表面213齐平,如此一 方面能够提升第一透镜21和第二透镜22配合的紧凑性,另一方面也能够降低第一透镜21和第二透镜22组合后的整体体积,进而缩减整个光学模组的体积。第当将第四表面221至少部分设置在凹部213a内时,能够使第四表面221与凹部213a的内壁配合限位固定第二光学膜4,使第二光学膜4限位于第四表面221和凹部213a的内壁之间,通过第四表面221对第二光学膜4的遮挡,能够有效防止第二光学膜4被刮损或产生褶皱。
第五实施例:
如图8所示,第五表面222朝向背离第三表面213的方向凸起。
在本实施中,通过将第五表面222设计为凸弧面,能够使进入第二透镜22的光线光线在透过第五表面222后汇聚,从而使用户能够观察到亮度更高更为清晰的图像。第四表面221可设置为与第五表面222相对称的弧面,使第二透镜22成为凸透镜,以此能够便于第二透镜22的加工成型。
第六实施例:
如图9所示,第四表面221朝向第三表面213凸起,第五表面222向朝向第三表面213的方向内凹。
在本实施例中,第二透镜22整体可呈月牙形,将第五表面222设置为朝向第三表面213内凹,能够缩减第二透镜22的厚度和体积,从而缩减整个光学模组的体积,降低第二透镜22的物料成本。
本发明还提出一种头戴显示设备,该头戴显示设备为VR或AR显示设备。
在本发明的一实施例中,如图1所示,该头戴显示设备包括壳体(图未示)和上述实施例中的光学模组,光学模组设于壳体,光学模组的第一光学膜3为全反射膜或半透半反膜。
在本实施中,壳体设有容腔,光学模组可装配于容腔的腔壁,实现光学模组与壳体的连接固定。得益于光学模组内折叠光路的设计,本头戴显示设备内光学模组的光学总长为TTL,TTL满足条件:TTL<12mm,例如,TTL=11.56mm,以此能够实现光学模组和本头戴显示设备的更轻薄的设计。其中,光学模组的具体结构参照上述实施例,由于本头戴显示设备采用了上 述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
在本发明的一实施例中,上述头戴显示设备可采用如图1所示的光学模组结构,基于该光学模组的结构设计,本头戴显示设备能够给用户提供更为清晰的图像显示效果以及更佳的佩戴体验,以下对本实施例中光学模组的结构设计进行具体说明:
在本实施中,第一透镜21的第一表面211为斜面,第二表面212为球形或非球形弧面,第三表面213为平面,第三表面213朝向第二表面212的方向内凹,第三表面213的内凹处的内壁面为球形或非球形弧面。第二透镜22的第四表面221为与第二表面212内凹处内壁面形状相匹配的球形或非球形弧面,第五表面222为与第一透镜21的第三表面213相齐平的平面。本实施例中显示器1出光经过第一透镜21和第二透镜22传播至人眼5的光路参阅上述实施例和图1虚线箭头,此处不再赘述。
通过上述光学膜组的结构设计,本头戴显示设备内的光学模组的焦距可设计为20.7mm,光学模组的成像视场角为25°~35°,比如30°,在这角度范围内,用户能够观察到清晰的成像。如图10所示,图10以分开的栅格图展示7个不同视场下的成像点列图,每一区域点列图均以像面(底侧横坐标IMA)和物面(顶侧横坐标OBJ)体现,图11底侧按1~7区域(图示英文Field)对应体现相应区域内点列的均方根半径值(图示英文RMS radius)和几何半径值(图示英文GEO radius),由图10可知,该光学膜组的成像光斑小于13.7um。如图11所示,图11左侧图为场曲图,场曲图横坐标为畸变尺寸,单位为毫米,纵坐标为物高;右侧图为畸变图,畸变图的横坐标为畸变百分比,纵坐标为物高,由图11可知,该光学膜组的场曲小于0.2mm,最大视场位置的畸变小于5%。如图12所示,图12所示横坐标为色散值,纵坐标为视场角,由图12可知,该光学膜组的最大色散值小于50um,通过上述参数可知,本光学模组满足高质量成像设计要求,能够保证用户获得清晰度较高的图像。
参阅以下表一和表二,表一和表二分别列有采用上述结构设计的光学模组由人眼5(光阑STOP)到头戴显示设备的显示屏依序编号的光学面号码(Surface)、在光轴上各光学面的曲率(C)、从人眼5(光阑)到头戴显示 设备的显示屏的光轴上各面与后一光学表面的距离(T),以及偶次非球面系数α2、α3、α4,其中非球面系数可以满足如下的方程。
Figure PCTCN2021133811-appb-000001
其中,z是沿光轴方向的坐标,Y为以透镜长度为单位的径向坐标,C是曲率(1/R),k为圆锥系数(Coin Constant),α i是各高次项的系数,2i是非球面的高次方(the order of Aspherical Coefficient),本实施例中考虑到场曲的平缓,无高次项球面系数至4阶。
表一:
Figure PCTCN2021133811-appb-000002
Figure PCTCN2021133811-appb-000003
表二:
Figure PCTCN2021133811-appb-000004
需要指出的是,表一中的厚度是指该光学面距离下一个光学面的距离,厚度的正值是指显示器1到人眼5方向的距离,厚度的负值是指人眼5到显示器1方向的距离。材质是指该光学面到下一个光学面之间都是这种材质, 其中,Mirror(反射)的含义并不是材质,而是表示该光学面具有反射效果。表二中的4th代表的数据,是用于带入相应面型计算公式的4阶系数。
以上所述仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (12)

  1. 一种光学模组,其特征在于,所述光学模组包括:
    显示器,所述显示器用于发射用于成像显示的光线;
    胶合透镜,所述胶合透镜包括第一透镜和第二透镜,所述第一透镜设于所述显示器的出光侧,所述第一透镜具有第一表面、第二表面以及第三表面,所述第一表面设于所述第一透镜面向所述显示器的一侧,并位于所述第二表面和所述第三表面之间;所述第二透镜设于所述第三表面;及
    光学膜,所述光学膜包括第一光学膜和第二光学膜,所述第一光学膜设于所述第二表面,并用于将入射所述第一表面的光线至少部分反射至所述第三表;所述第二光学膜包括设于所述第三表面和所述第二透镜之间的四分之一波片和偏振反射膜,所述四分之一波片位于所述第三表面和所述偏振反射膜之间。
  2. 如权利要求1所述的光学模组,其特征在于,所述第一表面倾斜设置,所述第一表面所在的平面和所述第三表面所在的平面所呈的夹角α为钝角。
  3. 如权利要求1所述的光学模组,其特征在于,所述第一表面至少部分朝向背离所述显示器的方向内凹,以使透过所述第一表面的光线在所述第二表面上汇聚。
  4. 如权利要求1所述的光学模组,其特征在于,所述第二表面为弧面,所述第二表面朝向背离所述第三表面的方向凸起。
  5. 如权利要求4所述的光学模组,其特征在于,所述第二表面为朝向背离所述第一表面的方向凸起的非球面。
  6. 如权利要求4所述的光学模组,其特征在于,所述第一透镜靠近所述显示器一端的厚度大于所述第一透镜远离所述显示器一端的厚度。
  7. 如权利要求1所述的光学模组,其特征在于,所述第二透镜具有面向所述第一透镜的第四表面和背向所述第一透镜的第五表面;
    所述第四表面与所述第三表面胶合,所述四分之一波片和所述偏振反射膜位于所述第四表面和所述第三表面之间。
  8. 如权利要求7所述的光学模组,其特征在于,所述第三表面部分朝向背离所述第二透镜的方向内凹形成凹部,所述第二透镜容纳并限位于所述凹部内。
  9. 如权利要求7所述的光学模组,其特征在于,所述第三表面部分朝向背离所述第二透镜的方向内凹形成凹部;
    所述第四表面至少部分容纳于所述凹部内,或所述第四表面朝向背离所述第三表面的方向内凹。
  10. 如权利要求7所述的光学模组,其特征在于,所述第五表面与所述第三表面齐平;
    或,所述第五表面朝向背离所述第三表面的方向凸起;
    或,所述第五表面向朝向所述第三表面的方向内凹。
  11. 如权利要求1至10中任一项所述的光学模组,其特征在于,所述第二光学膜还包括偏振膜;
    所述偏振膜设于所述第二透镜和所述偏振反射膜之间。
  12. 一种头戴显示设备,其特征在于,所述头戴显示设备包括:
    壳体;和
    如权利要求1至11中任一项所述的光学模组,所述光学模组设于所述壳体,所述光学模组的第一光学膜为全反射膜或半透半反膜。
PCT/CN2021/133811 2021-10-27 2021-11-29 光学模组和头戴显示设备 WO2023070807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111261088.9A CN113934006A (zh) 2021-10-27 2021-10-27 光学模组和头戴显示设备
CN202111261088.9 2021-10-27

Publications (1)

Publication Number Publication Date
WO2023070807A1 true WO2023070807A1 (zh) 2023-05-04

Family

ID=79284635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133811 WO2023070807A1 (zh) 2021-10-27 2021-11-29 光学模组和头戴显示设备

Country Status (2)

Country Link
CN (1) CN113934006A (zh)
WO (1) WO2023070807A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252727A1 (en) * 2015-02-27 2016-09-01 LAFORGE Optical, Inc. Augmented reality eyewear
CN108681073A (zh) * 2018-07-17 2018-10-19 王锐 一种增强现实光学显示系统
US20210080729A1 (en) * 2019-09-18 2021-03-18 Letinar Co., Ltd Optical device for augmented reality having improved light efficiency
CN113219667A (zh) * 2021-04-30 2021-08-06 歌尔股份有限公司 光学镜组和头戴显示设备
CN113419349A (zh) * 2021-06-03 2021-09-21 歌尔光学科技有限公司 光学模组和头戴显示器
CN113448100A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10228561B2 (en) * 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
WO2018103551A1 (zh) * 2016-12-08 2018-06-14 北京耐德佳显示技术有限公司 一种自由曲面棱镜组及使用其的近眼显示装置
CN108957750A (zh) * 2018-07-09 2018-12-07 歌尔科技有限公司 光学系统、头戴显示设备及智能眼镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160252727A1 (en) * 2015-02-27 2016-09-01 LAFORGE Optical, Inc. Augmented reality eyewear
CN108681073A (zh) * 2018-07-17 2018-10-19 王锐 一种增强现实光学显示系统
US20210080729A1 (en) * 2019-09-18 2021-03-18 Letinar Co., Ltd Optical device for augmented reality having improved light efficiency
CN113219667A (zh) * 2021-04-30 2021-08-06 歌尔股份有限公司 光学镜组和头戴显示设备
CN113419349A (zh) * 2021-06-03 2021-09-21 歌尔光学科技有限公司 光学模组和头戴显示器
CN113448100A (zh) * 2021-06-28 2021-09-28 歌尔股份有限公司 光学模组和头戴显示设备

Also Published As

Publication number Publication date
CN113934006A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN214751119U (zh) 光学模组和头戴显示设备
WO2023273128A1 (zh) 光学模组和头戴显示设备
CN112596238B (zh) 成像光路和头戴显示设备
WO2022135106A1 (zh) 一种成像光路和头戴显示设备
CN212111989U (zh) 光学系统及虚拟现实设备
CN111929906B (zh) 图像显示结构和头戴显示设备
CN113419349B (zh) 光学模组和头戴显示器
WO2023273137A1 (zh) 成像模组和头戴显示设备
CN109874302B (zh) 光学系统、放大影像装置、虚拟现实眼镜及增强现实眼镜
CN212846157U (zh) 成像结构和头戴显示设备
CN113934007A (zh) 光学模组和头戴显示设备
CN106646885A (zh) 一种投影物镜及三维显示装置
CN106226907B (zh) 一种vr显示装置及头戴式vr显示设备
CN218003854U (zh) 光学模组以及头戴显示设备
WO2022227538A1 (zh) 胶合镜组和头戴显示设备
CN111929907B (zh) 图像显示结构和头戴显示设备
CN212111977U (zh) 光学系统及虚拟现实设备
WO2022227541A1 (zh) 光学镜组和头戴显示设备
CN106646884A (zh) 一种投影物镜及三维显示装置
JP7406028B1 (ja) 光学系
CN106019586A (zh) 双光波导片式增强现实眼镜
WO2023070807A1 (zh) 光学模组和头戴显示设备
CN208569195U (zh) 一种紧凑型自由曲面波导近眼显示光学装置
WO2023071032A1 (zh) 一种短焦折叠光学系统以及虚拟现实显示设备
WO2023097762A1 (zh) 光学系统及头戴显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE