WO2023070670A1 - 径向动压平面轴承和齿轮箱 - Google Patents

径向动压平面轴承和齿轮箱 Download PDF

Info

Publication number
WO2023070670A1
WO2023070670A1 PCT/CN2021/127970 CN2021127970W WO2023070670A1 WO 2023070670 A1 WO2023070670 A1 WO 2023070670A1 CN 2021127970 W CN2021127970 W CN 2021127970W WO 2023070670 A1 WO2023070670 A1 WO 2023070670A1
Authority
WO
WIPO (PCT)
Prior art keywords
dynamic pressure
plane bearing
radial dynamic
pressure plane
bearing
Prior art date
Application number
PCT/CN2021/127970
Other languages
English (en)
French (fr)
Inventor
韩慧敏
刘际轩
夏祥瑞
陈向科
Original Assignee
舍弗勒技术股份两合公司
韩慧敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 韩慧敏 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/127970 priority Critical patent/WO2023070670A1/zh
Publication of WO2023070670A1 publication Critical patent/WO2023070670A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to a radial dynamic pressure plane bearing and a gear box.
  • the plane bearing in the gearbox is connected with the gear or the mandrel by interference fit to ensure the relative position of the plane bearing and the gear or the plane bearing and the mandrel.
  • interference fit connection between the plane bearing and the mandrel as an example, at low temperature, since the deformation of the plane bearing is greater than that of the mandrel, the stress on the inner surface of the plane bearing increases greatly, and may even cause the plane bearing to break. At high temperatures, the plane bearing and the mandrel may slip. If the relative position of the plane bearing and the mandrel is only guaranteed by the interference connection, the reliability will be greatly reduced, and even serious failure will occur.
  • the purpose of this application is to propose a radial dynamic pressure plane bearing and a gear box, which can make the radial dynamic pressure plane bearing have a stronger bearing capacity.
  • the present invention provides a radial dynamic pressure plane bearing
  • the radial dynamic pressure plane bearing is cylindrical as a whole
  • the outer peripheral surface of the radial dynamic pressure plane bearing is provided with a hydraulic oil chamber
  • the radial dynamic pressure plane bearing is provided with a hydraulic oil hole and an oil return hole radially penetrating the wall of the radial dynamic pressure plane bearing
  • the end of the radial dynamic pressure plane bearing is provided with a marking part, and in the circumferential direction of the radial dynamic pressure plane bearing, the position of the marking part corresponds to the position of the hydraulic oil chamber, so that the The identification part judges the position of the hydraulic oil chamber in the circumferential direction.
  • the identification part is configured in a shape capable of being connected to the opposing structure in a twist-resistant manner.
  • the outer peripheral surface of the radial dynamic pressure plane bearing is provided with a circumferential oil groove, and the circumferential oil groove extends along the circumferential direction of the radial dynamic pressure plane bearing, and the circumferential oil groove and the The hydraulic oil chamber is connected.
  • there are two hydraulic oil chambers the openings of the two hydraulic oil chambers face opposite directions, and the circumferential oil groove connects the two radial dynamic pressure plane bearings in the circumferential direction.
  • the hydraulic oil chambers are connected.
  • the hydraulic oil hole is located in the hydraulic oil cavity, and the oil return hole is located in the circumferential oil groove.
  • the radial dynamic pressure plane bearing is provided with a threaded hole, and the threaded hole is a through hole.
  • the radial dynamic pressure plane bearing is provided with a modified part, the modified part is located at both axial ends of the radial dynamic pressure plane bearing, and the outer diameter of the modified part is smaller than The outer diameter of the axial middle part of the radial dynamic pressure plane bearing.
  • the identification portion is a wedge-shaped groove.
  • the present invention also provides a gearbox, which includes the radial dynamic pressure planar bearing described in any one of the above technical solutions.
  • the gearbox further includes an axial thrust dynamic pressure plane bearing, a mandrel, a planetary gear, and a planet carrier, and the radial dynamic pressure plane bearing and the axial thrust dynamic pressure plane bearing are both fitted Set on the mandrel, the planetary gear is sleeved on the radial dynamic pressure plane bearing, and the two axial thrust dynamic pressure plane bearings are respectively located at the two axial ends of the planetary gear,
  • the radial dynamic pressure planar bearing is connected to the planet carrier and/or the core shaft in a torsion-resistant manner
  • the axial thrust dynamic pressure planar bearing is connected to the planet carrier in a torsion-resistant manner.
  • the mandrel is provided with an oil inlet passage and an oil return passage, the oil inlet passage communicates with the hydraulic oil hole, the oil return passage communicates with the oil return hole, and the core
  • the shaft is provided with a first anti-rotation part, and the first anti-rotation part cooperates with the identification part to make the radial dynamic pressure planar bearing and the mandrel non-rotatably connected.
  • the planet carrier is provided with a second anti-rotation part, and the second anti-rotation part cooperates with the identification part to make the radial dynamic pressure planar bearing and the planet carrier anti-rotationally connect.
  • the planet carrier is provided with an installation groove
  • the axial thrust dynamic pressure plane bearing is at least partially embedded in the installation groove
  • the installation groove and the axial thrust dynamic pressure plane bearing are radially Up transition fit or interference fit.
  • the gearbox further includes positioning pins, the axial thrust dynamic pressure planar bearing is provided with a first pin installation hole, the planet carrier is provided with a second pin installation hole, and the first pin The mounting hole corresponds to the second pin mounting hole, one end of the positioning pin is inserted into the first pin mounting hole, and the other end of the positioning pin is inserted into the second pin mounting hole.
  • the first pin installation hole is a blind hole.
  • the gearbox further includes a positioning bolt, and the axial thrust dynamic pressure planar bearing and the planet carrier are connected through the positioning bolt.
  • the position of the hydraulic oil chamber can be distinguished through the marking part, so that the hydraulic oil chamber can avoid the bearing area, reduce the edge stress of the hydraulic oil chamber, and then make the radial dynamic pressure
  • the bearing capacity of the plane bearing is relatively strong.
  • Fig. 1 shows a schematic diagram of the internal structure of a gearbox according to an embodiment of the present application.
  • Fig. 2 shows a schematic structural diagram of a radial dynamic pressure plane bearing of a gearbox according to an embodiment of the present application.
  • Fig. 3 shows a schematic structural diagram of a mandrel of a gearbox according to an embodiment of the present application.
  • Fig. 4 shows a schematic structural diagram of an axial thrust dynamic pressure plane bearing of a gearbox according to an embodiment of the present application.
  • the present application proposes a gearbox, which can be applied to a fan in the field of wind power generation.
  • the gearbox includes a radial dynamic pressure plane bearing 1 , an axial thrust dynamic pressure plane bearing 2 , a mandrel 3 , a planetary gear 4 and a planet carrier 5 .
  • the planet carrier 5 can be integral or split. Both the radial dynamic pressure plane bearing 1 and the axial thrust dynamic pressure plane bearing 2 are sleeved on the mandrel 3 .
  • the planetary gear 4 is sleeved on the radial dynamic pressure plane bearing 1, and the two axial thrust dynamic pressure plane bearings 2 are respectively located at the axial ends of the planetary gear 4, and the two axial thrust dynamic pressure plane bearings 2 have the same structure.
  • the radial dynamic pressure plane bearing 1 and the axial thrust dynamic pressure plane bearing 2 form a dynamic pressure oil film with the inner peripheral surface and the end surface of the planetary gear 4 respectively, and the dynamic pressure oil film can bear the radial and axial load acting on the planetary gear 4 .
  • the radial dynamic pressure plane bearing 1, the axial thrust dynamic pressure plane bearing 2, the mandrel 3, and the planetary gear 4 are coaxially installed, and their axial direction is consistent with that of the planetary carrier 5, which are left and right in Fig. 1 direction.
  • the radial dynamic pressure planar bearing 1 includes a hydraulic oil chamber 11 , a marking portion 12 , a circumferential oil groove 13 and a trimming portion 14 .
  • the radial dynamic pressure plane bearing 1 is cylindrical as a whole, and the hydraulic oil chamber 11 is arranged on the outer peripheral surface of the radial dynamic pressure plane bearing 1 .
  • the hydraulic oil chamber 11 may be in the shape of a strip extending along the axial direction A.
  • the hydraulic oil chamber 11 On the circumferential direction C of the radial dynamic pressure plane bearing 1, the hydraulic oil chamber 11 may be provided with one or more, for example, the hydraulic oil chamber 11 Two hydraulic oil chambers 11 are provided, and the two hydraulic oil chambers 11 may be separated by 180 degrees in the circumferential direction C of the radial dynamic pressure plane bearing 1 , and their openings face opposite directions.
  • the hydraulic oil chamber 11 is provided with a hydraulic oil hole 111 , the hydraulic oil hole 111 can radially penetrate the radial dynamic pressure planar bearing 1 , and lubricating oil can be delivered to the hydraulic oil chamber 11 through the hydraulic oil hole 111 .
  • a hydraulic oil chamber 11 may be provided with a plurality of hydraulic oil holes 111 , for example, a hydraulic oil chamber 11 is provided with two hydraulic oil holes 111 , and the two hydraulic oil holes 111 are arranged at intervals along the axial direction.
  • the two hydraulic oil holes 111 may be located at the two axial ends of the hydraulic oil chamber 11.
  • the marking parts 12 may be located at both axial ends of the radial dynamic pressure plane bearing 1 , and for each hydraulic oil chamber 11 , one marking part 12 may be respectively provided at both axial ends of the radial dynamic pressure plane bearing 1 .
  • the position of the marking part 12 corresponds to the position of the hydraulic oil chamber 11, so that the position of the hydraulic oil chamber 11 on the circumference of the radial dynamic pressure plane bearing 1 can be judged through the marking part 12. The position above C, and then the hydraulic oil chamber 11 can avoid the load-bearing area during installation, reducing the edge stress of the hydraulic oil chamber.
  • two hydraulic oil chambers 11 may be arranged on both sides in the circumferential direction of the planet carrier 5 of the spindle 3 .
  • the radial load on the radial dynamic pressure planar bearing 1 is mainly the gravity load along the vertical direction, so the two hydraulic oil grooves 11 can be arranged in the horizontal direction, so as to avoid the bearing area.
  • the marking portion 12 at one axial end of the radial dynamic pressure planar bearing 1 cooperates with the mandrel 3 so that the radial dynamic pressure planar bearing 1 cannot rotate relative to the mandrel 3 .
  • the marking portion 12 at the other axial end of the radial dynamic pressure planar bearing 1 cooperates with the planet carrier 5 so that the radial dynamic pressure planar bearing 1 cannot rotate relative to the planet carrier 5 .
  • the identification part 12 may be a groove.
  • the groove can cooperate with the protrusions of the mandrel 3 and the planet carrier 5 , so that the radial dynamic pressure planar bearing 1 cannot rotate relative to the mandrel 3 and the planet carrier 5 .
  • the circumferential oil groove 13 is arranged on the outer peripheral surface of the radial dynamic pressure plane bearing 1, and the circumferential oil groove 13 extends along the circumferential direction C of the radial dynamic pressure plane bearing 1 to form a ring or arc shape, and the circumferential oil groove 13 is connected to the hydraulic oil chamber 11 .
  • a plurality of hydraulic oil chambers 11 in the circumferential direction C of the radial dynamic pressure planar bearing 1 are communicated through a circumferential oil groove 13 , and the circumferential oil groove 13 can communicate with the hydraulic oil chamber 11 at the middle position of the hydraulic oil chamber 11 .
  • the circumferential oil groove 13 can not only deliver the lubricating oil in the hydraulic oil chamber 11 to the lubricating surface quickly, but also return the lubricating oil to the oil return channel 34 of the spindle 3 .
  • the circumferential oil groove 13 may be provided with an oil return hole 131 , the oil return hole 131 may radially penetrate the radial dynamic pressure plane bearing 1 , and a plurality of oil return holes 131 may be provided along the circumference of the radial dynamic pressure plane bearing 1 .
  • the radial dynamic pressure plane bearing 1 is provided with a threaded hole 112, the threaded hole 112 may be located in the hydraulic oil chamber 11 and/or the circumferential oil groove 13, and the threaded hole 112 is a through hole. Screwing the stop screw into the threaded hole 112 can make the radial dynamic pressure plane bearing 1 and the mandrel 3 non-torsionally connected, so as to prevent the radial dynamic pressure plane bearing 1 from slipping, especially under high temperature conditions.
  • the mandrel 3 can be provided with a hole corresponding to the threaded hole 112, so that the stop screw is inserted into the hole on the mandrel 3, so that the stop screw can also make the radial dynamic pressure plane bearing 1 and the core
  • the shaft 3 is connected in a rotationally fixed manner. It can be understood that the degree of deformation of radial dynamic pressure plane bearing 1 and mandrel 3 is different when the temperature changes. Under high temperature conditions, the gap between radial dynamic pressure plane bearing 1 and mandrel 3 will increase, which may cause radial dynamic pressure The pressure plane bearing 1 slips, and the stop screw can avoid this problem.
  • the oil return hole 131 and the threaded hole 112 may be at the same position in the axial direction A of the radial dynamic pressure plane bearing 1 .
  • the above-mentioned threaded hole 112 may not be provided on the radial dynamic pressure plane bearing 1, but only a through hole may be provided, and a threaded hole may be provided on the mandrel 3 so that the stop screw passes through the through hole (for example, one or more oil return holes). hole) and threaded to the threaded hole on the mandrel 3.
  • the modified part 14 is arranged at both axial ends of the radial dynamic pressure plane bearing 1, and the outer diameter of the modified part 14 is smaller than other parts of the radial dynamic pressure plane bearing 1 (the axial middle part except the circumferential oil groove 13 ), the modified portion 14 is tangent to other parts of the radial dynamic pressure planar bearing 1, and the modified portion 14 can make the edge stress of the radial dynamic pressure planar bearing 1 lower.
  • the radial dynamic pressure plane bearing 1 can be made of copper or copper alloy.
  • one axial end of the mandrel 3 is provided with a positioning portion 31 , and the positioning portion 31 protrudes from the outer peripheral surface of the mandrel 3 .
  • One end of the radial dynamic pressure plane bearing 1 is in contact with the positioning portion 31 to axially position the radial dynamic pressure plane bearing 1 .
  • the positioning part 31 is provided with a first anti-rotation part (an example of an opposing structure) 32 that cooperates with the identification part 12.
  • the first anti-rotation part 32 can be a protrusion, and the protrusion can be used as the identification part 12.
  • the grooves cooperate so that the radial dynamic pressure plane bearing 1 cannot rotate relative to the mandrel 3 .
  • the protrusion as the first anti-rotation part 32 and the groove as the identification part 12 can both be wedge-shaped, and under the action of axial load, the positioning part 31 and the radial dynamic pressure plane bearing 1 can be squeezed against each other, The wedge-shaped protrusion and groove can make the protrusion press against the side wall of the groove.
  • the mandrel 3 is provided with an oil inlet passage 33 and an oil return passage 34, the oil inlet passage 33 communicates with the hydraulic oil hole 111, and the lubricating oil is delivered to the hydraulic oil chamber 11 through the oil inlet passage 33, and the oil return passage 34 communicates with the oil return hole 131 The lubricating oil is communicated through the oil return passage 34, so that the lubricating oil circulates.
  • the oil inlet passage 33 includes an axial oil inlet passage 331 and a radial oil inlet passage 332, the axial oil inlet passage 331 communicates with the radial oil inlet passage 332, the axial oil inlet passage 331 extends axially, and the radial oil inlet passage 332 extends radially, and the radial oil inlet channel 332 communicates with the hydraulic oil hole 111 .
  • the oil return channel 34 includes an axial oil return channel 341 and a radial oil return channel 342, the axial oil return channel 341 communicates with the radial oil return channel 342, the axial oil return channel 341 extends in the axial direction, and the radial oil return channel 342 extends radially, and the radial oil return channel 342 communicates with the oil return hole 131 .
  • the axial oil return channel 341 may be disposed at the center of the spindle 3 .
  • an oil storage tank 21 is provided on the side of the axial thrust dynamic pressure planar bearing 2 facing the planetary gear 4, and the oil storage tank 21 can be provided along the circumferential direction C of the axial thrust dynamic pressure planar bearing 2 Multiple, for example, eight oil storage tanks 21 may be provided.
  • the axial thrust dynamic pressure plane bearing 2 can be made of copper or copper alloy.
  • the axial thrust dynamic pressure planar bearing 2 is connected to the planet carrier 5 in a torsion-resistant manner.
  • the following first embodiment, second embodiment and third embodiment can be implemented independently, and the first embodiment can also be used in combination with the second embodiment or the third embodiment to realize the axial thrust dynamic pressure planar bearing 2 It is connected to the planetary carrier 5 in a rotationally fixed manner.
  • Fig. 1 shows the technical solution of the combination of the first embodiment and the second embodiment.
  • the planetary carrier 5 can be provided with a mounting groove, and the axial thrust dynamic pressure plane bearing 2 is at least partially embedded in the mounting groove, and the mounting groove and the axial thrust dynamic pressure plane bearing 2 are transitionally fitted or interfered in the radial direction to prevent the axial thrust dynamic pressure
  • the pressing plane bearing 2 rotates along the circumferential direction.
  • the installation groove can be used for axial positioning of the axial thrust dynamic pressure plane bearing 2 .
  • the installation groove and the axial thrust dynamic pressure plane bearing 2 have an interference fit in the radial direction, and the interference needs to be large enough to make the axial thrust dynamic pressure plane bearing 2 non-torsionally connected on planet carrier 5.
  • the installation groove and the axial thrust dynamic pressure planar bearing 2 can be transition fit or interference fit in the radial direction, especially transition fit.
  • the axial thrust dynamic pressure planar bearing 2 may be provided with at least one first pin installation hole, and the planet carrier 5 may be provided with at least one second pin installation hole, and the first pin installation hole corresponds to the second pin installation hole.
  • One end of the positioning pin 6 is embedded in the first pin mounting hole, and the other end of the positioning pin 6 is embedded in the second pin mounting hole, so that the axial thrust dynamic pressure planar bearing 2 and the planet carrier 5 are positioned in the circumferential direction C and cannot rotate relative to each other.
  • the first pin installation hole is a blind hole
  • the first pin installation hole and the oil storage tank 21 are located on two opposite end surfaces of the axial thrust dynamic pressure planar bearing 2 . This can prevent the positioning pin 6 from jumping out from the side of the axial thrust dynamic pressure plane bearing 2 facing the planetary gear 4 under the action of the axial load, thereby affecting the space between the axial thrust dynamic pressure plane bearing 2 and the planetary gear 4 Form a hydraulic oil film.
  • the positioning pin 6 may or may not be threaded.
  • the dowel pin 6 may optionally be threadedly engaged with the second pin mounting hole.
  • the axial thrust dynamic pressure planar bearing 2 can be provided with at least one first bolt installation hole, and the planet carrier 5 is provided with at least one second bolt installation hole, the first bolt installation hole can be a countersunk through hole, and the second bolt installation hole can be for threaded holes.
  • the first bolt installation hole corresponds to the second bolt installation hole.
  • the positioning bolt passes through the first bolt installation hole and is screwed into the second bolt installation hole, so that the axial thrust dynamic pressure planar bearing 2 and the planet carrier 5 are positioned in the circumferential direction C and cannot be rotated relative to each other.
  • at least two first bolt installation holes and at least two second bolt installation holes may be spaced apart in the circumferential direction C, so as to balance the forces on the axial thrust dynamic pressure planar bearing 2 .
  • the processing features of the planet carrier 5 and/or the axial thrust dynamic pressure planar bearing 2 are less.
  • the first embodiment is adopted alone, there is no need to process pin mounting holes or bolt mounting holes, nor to use positioning pins or screws.
  • the second embodiment or the third embodiment is adopted alone, there is no need to process mounting grooves on the planetary carrier 5 .
  • the gear box of the present application has the following beneficial effects.
  • the position of the hydraulic oil chamber 11 can be distinguished through the marking part 12, so that the hydraulic oil chamber 11 can avoid the load-bearing area, reduce the edge stress of the oil groove, and then make the radial dynamic pressure plane Bearing 1 has a relatively strong carrying capacity.
  • the thickness of the plane bearing will be designed thicker.
  • the wall of the radial dynamic pressure planar bearing 1 can have a smaller thickness, thereby greatly reducing the radial dimensions of the mandrel 3 and the planetary gear 4,
  • the gearbox is small in size, light in weight and compact in structure.
  • the axial thrust dynamic pressure planar bearing 2 can be fixed to the planet carrier 5 through the positioning pin 6 or the positioning bolt, and the planet carrier does not need to process the installation groove, so that the production cost is low.
  • the position and quantity of the hydraulic oil chamber 11 are not limited, as long as the bearing area can be avoided when installed in the gearbox.
  • the identification part 12 is a groove, and the anti-rotation part is a protrusion.
  • the application is not limited thereto.
  • the identification part may be a protrusion, and the anti-rotation part may be a groove. It is sufficient to be able to connect in a rotationally fixed manner.
  • the shapes of the marking part 12, the first anti-rotation part 32 and the second anti-rotation part are not limited to wedge-shaped, and can also be semi-circular, arc-shaped, etc., as long as under the action of axial load, the protrusion can be made Just press it against the side wall of the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

一种径向动压平面轴承(1)和齿轮箱,径向动压平面轴承(1)整体上为圆筒状,径向动压平面轴承(1)的外周面设置有液压油腔(11),径向动压平面轴承(1)设置有径向贯穿径向动压平面轴承(1)的壁部的液压油孔(111)和回油孔(131),径向动压平面轴承(1)的端部设置有标识部(12),在径向动压平面轴承(1)的周向(C)上,标识部(12)的位置和液压油腔(11)的位置相对应,从而可以通过标识部(12)判断液压油腔(11)在周向(C)上的位置。

Description

径向动压平面轴承和齿轮箱 技术领域
本申请涉及一种径向动压平面轴承和齿轮箱。
背景技术
随着海上风电的发展,大兆瓦级风机是未来发展的趋势,同时度电成本的降低,对齿轮箱的成本以及运行可靠性有更苛刻的要求,而轴承是齿轮箱中的关键部件,这对轴承的尺寸以及承载能力有更高的要求。
一种可能的技术方案的齿轮箱中的平面轴承通过与齿轮或芯轴过盈配合连接,来保证平面轴承与齿轮或平面轴承与芯轴的相对位置。以平面轴承与芯轴过盈配合连接为例,在低温时,由于平面轴承的变形量大于芯轴的变形量,导致平面轴承的内表面的应力大大增加,甚至可能导致平面轴承破裂。而在高温时,平面轴承和芯轴可能出现打滑的现象。如果只靠过盈连接保证平面轴承与芯轴的相对位置,可靠性会大大降低,甚至产生严重的失效。
发明内容
本申请旨在提出一种径向动压平面轴承和齿轮箱,可以使径向动压平面轴承的承载能力较强。
为了解决上述技术问题,本发明提供了一种径向动压平面轴承,所述径向动压平面轴承整体上为圆筒状,所述径向动压平面轴承的外周面设置有液压油腔,所述径向动压平面轴承设置有径向贯穿所述径向动压平面轴承的壁部的液压油孔和回油孔,
所述径向动压平面轴承的端部设置有标识部,在所述径向动压平面轴承的周向上,所述标识部的位置和所述液压油腔的位置相对应,从而可以通过所述标识部判断所述液压油腔在所述周向上的位置。
在至少一个实施方式中,所述标识部设置为能够与对向结构抗扭连接的形状。
在至少一个实施方式中,所述径向动压平面轴承的外周面设置有周向油槽,所述周向油槽沿所述径向动压平面轴承的周向延伸,所述周向油槽和所 述液压油腔连通。
在至少一个实施方式中,所述液压油腔设置有两个,两个所述液压油腔的开口朝向相反的方向,所述周向油槽将所述径向动压平面轴承的周向上的两个所述液压油腔连通。
在至少一个实施方式中,所述液压油孔位于所述液压油腔内,所述回油孔位于所述周向油槽内。
在至少一个实施方式中,所述径向动压平面轴承设置有螺纹孔,所述螺纹孔为通孔。
在至少一个实施方式中,所述径向动压平面轴承设置有修型部,所述修型部位于所述径向动压平面轴承的轴向两端,所述修型部的外径小于所述径向动压平面轴承的轴向中间部分的外径。
在至少一个实施方式中,所述标识部为楔形的凹槽。
为了解决上述技术问题,本发明还提供了一种齿轮箱,所述齿轮箱包括上述技术方案中任一项所述的径向动压平面轴承。
在至少一个实施方式中,所述齿轮箱还包括轴向推力动压平面轴承、芯轴、行星齿轮和行星架,所述径向动压平面轴承和所述轴向推力动压平面轴承均套设于所述芯轴,所述行星齿轮套设于所述径向动压平面轴承,两个所述轴向推力动压平面轴承分别位于所述行星齿轮的轴向两端,
所述径向动压平面轴承抗扭地连接于所述行星架和/或所述芯轴,所述轴向推力动压平面轴承抗扭地连接于所述行星架。
在至少一个实施方式中,所述芯轴设置有进油通道和回油通道,所述进油通道与所述液压油孔连通,所述回油通道与所述回油孔连通,所述芯轴设置有第一止转部,所述第一止转部和所述标识部配合,使所述径向动压平面轴承和所述芯轴抗扭地连接。
在至少一个实施方式中,所述行星架设置有第二止转部,所述第二止转部和所述标识部配合,使所述径向动压平面轴承和所述行星架抗扭地连接。
在至少一个实施方式中,所述行星架设置有安装槽,所述轴向推力动压平面轴承至少部分地嵌入所述安装槽,所述安装槽和所述轴向推力动压平面轴承在径向上过渡配合或过盈配合。
在至少一个实施方式中,所述齿轮箱还包括定位销,所述轴向推力动压 平面轴承设置有第一销钉安装孔,所述行星架设置有第二销钉安装孔,所述第一销钉安装孔和所述第二销钉安装孔相对应,所述定位销的一端嵌入所述第一销钉安装孔,所述定位销的另一端嵌入所述第二销钉安装孔。
在至少一个实施方式中,所述第一销钉安装孔为盲孔。
在至少一个实施方式中,所述齿轮箱还包括定位螺栓,所述轴向推力动压平面轴承和所述行星架通过所述定位螺栓连接。
通过采用上述技术方案,在安装径向动压平面轴承时,可以通过标识部分辨液压油腔的位置,使液压油腔避开承载区域,降低液压油腔的边缘应力,进而使径向动压平面轴承的承载能力较强。
根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
图1示出了根据本申请的实施方式的齿轮箱的内部结构示意图。
图2示出了根据本申请的实施方式的齿轮箱的径向动压平面轴承的结构示意图。
图3示出了根据本申请的实施方式的齿轮箱的芯轴的结构示意图。
图4示出了根据本申请的实施方式的齿轮箱的轴向推力动压平面轴承的结构示意图。
附图标记说明
1径向动压平面轴承 11液压油腔 111液压油孔 112螺纹孔 12标识部 13周向油槽 131回油孔 14修型部
2轴向推力动压平面轴承 21储油槽
3芯轴 31定位部 32第一止转部 33进油通道 331轴向进油通道 332径向进油通道 34回油通道 341轴向回油通道 342径向回油通道
4行星齿轮
5行星架
6定位销
A轴向 C周向。
具体实施方式
为了更加清楚地阐述本申请的上述目的、特征和优点,在该部分结合附图详细说明本申请的具体实施方式。除了在本部分描述的各个实施方式以外,本申请还能够通过其他不同的方式来实施,在不违背本申请主旨的情况下,本领域技术人员可以做相应的改进、变形和替换,因此本申请不受该部分公开的具体实施例的限制。本申请的保护范围应以权利要求为准。
如图1至图4所示,本申请提出一种齿轮箱,该齿轮箱可以应用于风力发电领域的风机。齿轮箱包括径向动压平面轴承1、轴向推力动压平面轴承2、芯轴3、行星齿轮4和行星架5。行星架5可以是一体的或分体的。径向动压平面轴承1和轴向推力动压平面轴承2均套设于芯轴3。行星齿轮4套设于径向动压平面轴承1,两个轴向推力动压平面轴承2分别位于行星齿轮4的轴向两端,两个轴向推力动压平面轴承2的结构相同。径向动压平面轴承1和轴向推力动压平面轴承2分别与行星齿轮4的内周面和端面形成动压油膜,动压油膜可以承受作用在行星齿轮4的径向和轴向载荷。
径向动压平面轴承1、轴向推力动压平面轴承2、芯轴3、行星齿轮4是同轴安装的,它们的轴向和行星架5的轴向一致,均为图1中的左右方向。
如图1和图2所示,径向动压平面轴承1包括液压油腔11、标识部12、周向油槽13和修型部14。
径向动压平面轴承1整体上为圆筒状,液压油腔11设置于径向动压平面轴承1的外周面。可选的,液压油腔11可以为沿轴向A延伸的条状,在径向动压平面轴承1的周向C上,液压油腔11可以设置有一个或多个,例如液压油腔11设置有两个,两个液压油腔11可以在径向动压平面轴承1的周向C上间隔180度,其开口朝向相反的方向。
液压油腔11内设置有液压油孔111,液压油孔111可以径向贯穿径向动压平面轴承1,润滑油可以通过液压油孔111输送至液压油腔11。一个液压油腔11内可以设置有多个液压油孔111,例如一个液压油腔11内设置两个液压油孔111,两个液压油孔111沿轴向间隔设置。可选的,两个液压油孔111可以位 于液压油腔11的轴向两端区域。
标识部12可以位于径向动压平面轴承1的轴向两端,对于每个液压油腔11,可以在径向动压平面轴承1的轴向两端对应地各设置有一个标识部12。在径向动压平面轴承1的周向C上,标识部12的位置和液压油腔11的位置相对应,从而可以通过标识部12判断液压油腔11在径向动压平面轴承1的周向C上的位置,进而在安装时使液压油腔11能够避开承载区域,降低液压油腔的边缘应力。例如,两个液压油腔11可以布置在芯轴3的行星架5的周向上的两侧。径向动压平面轴承1受到的径向载荷主要是沿竖直方向的重力载荷,因此两个液压油槽11可以呈水平方向布置,从而避开承载区域。
径向动压平面轴承1的轴向一端的标识部12与芯轴3配合,使径向动压平面轴承1无法相对于芯轴3转动。径向动压平面轴承1的轴向另一端的标识部12与行星架5配合,使径向动压平面轴承1无法相对于行星架5转动。
可选的,标识部12可以为凹槽。该凹槽可以与芯轴3和行星架5的凸起配合,从而使径向动压平面轴承1不能相对于芯轴3和行星架5的转动。
周向油槽13设置于径向动压平面轴承1的外周面,周向油槽13沿径向动压平面轴承1的周向C延伸形成环形或弧形,周向油槽13连接于液压油腔11。通过周向油槽13将径向动压平面轴承1的周向C上的多个液压油腔11连通,周向油槽13可以在液压油腔11的中间位置与液压油腔11连通。
周向油槽13既可以将液压油腔11的润滑油较快地输送到润滑表面,还可以将润滑油回流引入到芯轴3的回油通道34。
周向油槽13可以设置有回油孔131,回油孔131可以径向贯穿径向动压平面轴承1,回油孔131可以沿径向动压平面轴承1的周向设置有多个。
可选的,径向动压平面轴承1设置有螺纹孔112,螺纹孔112可以位于液压油腔11和/或周向油槽13内,螺纹孔112为通孔。在螺纹孔112中旋入止动螺钉,可以使径向动压平面轴承1和芯轴3抗扭地连接,从而防止径向动压平面轴承1打滑,特别是在高温工况下打滑。优选地,芯轴3可以设置与螺纹孔112对应的孔,使止动螺钉嵌入该芯轴3上的孔,从而使止动螺钉在高温工况下也使径向动压平面轴承1和芯轴3抗扭地连接。可以理解,温度变化时径向动压平面轴承1和芯轴3的变形程度不同,在高温工况下,径向动压平面轴承1和芯轴3的间隙会增大,可能导致径向动压平面轴承1打滑,止动螺钉可以避 免这一问题。回油孔131和螺纹孔112可以在径向动压平面轴承1的轴向A上处于相同的位置。
当然,可以不在径向动压平面轴承1上设置上述螺纹孔112,而仅设置通孔,可以在芯轴3上设置螺纹孔,使得止动螺钉通过通孔(例如,一个或多个回油孔)而螺纹连接到芯轴3上的螺纹孔。
修型部14设置于径向动压平面轴承1的轴向两端,修型部14的外径小于径向动压平面轴承1的其他部分(除周向油槽13之外的轴向中间部分)的外径,修型部14和径向动压平面轴承1的其他部分相切,修型部14可以使径向动压平面轴承1的边缘应力较低。
径向动压平面轴承1可以由铜或铜合金制成。
如图1和图3所示,芯轴3的轴向一端设置有定位部31,定位部31凸出于芯轴3的外周面。径向动压平面轴承1的一端与定位部31接触,对径向动压平面轴承1进行轴向定位。
定位部31设置有与标识部12配合的第一止转部(对向结构的示例)32,可选的,第一止转部32可以为凸起,该凸起可以与作为标识部12的凹槽配合,从而使径向动压平面轴承1不能相对于芯轴3转动。
进一步的,作为第一止转部32的凸起和作为标识部12的凹槽可以均为楔形,在轴向载荷的作用下,定位部31和径向动压平面轴承1可以相互挤压,楔形的凸起和凹槽可以使凸起压紧于凹槽的侧壁。
行星架5,特别是行星架5的与定位部31相对的(图1中位于左侧且面向右侧的端壁)轴向端壁,设置有与标识部12配合的第二止转部(对向结构的示例),第二止转部可以和第一止转部32形状相同,不再赘述。
芯轴3设置有进油通道33和回油通道34,进油通道33与液压油孔111连通,通过进油通道33将润滑油输送至液压油腔11,回油通道34与回油孔131连通,通过回油通道34使润滑油回流,从而使润滑油循环流动。
进油通道33包括轴向进油通道331和径向进油通道332,轴向进油通道331和径向进油通道332连通,轴向进油通道331沿轴向延伸,径向进油通道332沿径向延伸,径向进油通道332与液压油孔111连通。
回油通道34包括轴向回油通道341和径向回油通道342,轴向回油通道341和径向回油通道342连通,轴向回油通道341沿轴向延伸,径向回油通道 342沿径向延伸,径向回油通道342与回油孔131连通。轴向回油通道341可以设置于芯轴3的中心。
如图1和图4所示,轴向推力动压平面轴承2的朝向行星齿轮4的一侧面设置有储油槽21,储油槽21沿轴向推力动压平面轴承2的周向C可以设置有多个,例如储油槽21可以设置有8个。
轴向推力动压平面轴承2可以由铜或铜合金制成。
轴向推力动压平面轴承2抗扭地连接于行星架5。下述第一实施方式、第二实施方式和第三实施方式可以单独地实施,第一实施方式也可以与第二实施方式或第三实施方式组合使用,以实现轴向推力动压平面轴承2抗扭地连接于行星架5。图1示出了第一实施方式和第二实施方式组合的技术方案。
(第一实施方式)
行星架5可以设置有安装槽,轴向推力动压平面轴承2至少部分地嵌入安装槽,安装槽和轴向推力动压平面轴承2在径向上过渡配合或过盈配合,防止轴向推力动压平面轴承2沿周向转动。安装槽可以用于轴向推力动压平面轴承2的轴向定位。
可以理解,第一实施方式单独实施时,安装槽和轴向推力动压平面轴承2在径向上过盈配合,并且过盈量需要足够大以使轴向推力动压平面轴承2抗扭地连接于行星架5。第一实施方式与下述第二实施方式或第三实施方式组合使用时,安装槽和轴向推力动压平面轴承2在径向上可以过渡配合或过盈配合,特别是过渡配合。
(第二实施方式)
轴向推力动压平面轴承2可以设置有至少一个第一销钉安装孔,行星架5设置有至少一个第二销钉安装孔,第一销钉安装孔和第二销钉安装孔相对应。定位销6的一端嵌入第一销钉安装孔,定位销6的另一端嵌入第二销钉安装孔,使轴向推力动压平面轴承2和行星架5在周向C上定位,无法相对转动。
可选的,第一销钉安装孔为盲孔,第一销钉安装孔和储油槽21位于轴向推力动压平面轴承2的相反的两个端面。这样可以避免定位销6在轴向载荷的作用下从轴向推力动压平面轴承2的朝向行星齿轮4的一侧窜出,进而影响到轴向推力动压平面轴承2和行星齿轮4之间形成液压油膜。
这里,定位销6可以有或没有螺纹。定位销6可选地可以与第二销钉安 装孔螺纹接合。
(第三实施方式)
轴向推力动压平面轴承2可以设置有至少一个第一螺栓安装孔,行星架5设置有至少一个第二螺栓安装孔,第一螺栓安装孔可以为沉头通孔,第二螺栓安装孔可以为螺纹孔。
第一螺栓安装孔和第二螺栓安装孔相对应。定位螺栓穿过第一螺栓安装孔并且旋入第二螺栓安装孔,使轴向推力动压平面轴承2和行星架5在周向C上定位,无法相对转动。这里,可以是至少两个第一螺栓安装孔和至少两个第二螺栓安装孔均在周向C上间隔开,从而使轴向推力动压平面轴承2的受力平衡。
在上述三个实施方式单独实施时,行星架5和/或轴向推力动压平面轴承2的加工特征较少。单独采用第一实施方式时,无需加工销钉安装孔或螺栓安装孔,也无需使用定位销或螺钉。单独采用第二实施方式或第三实施方式时,无需在行星架5上加工安装槽。
本申请的齿轮箱具有以下有益效果。
(1)在安装径向动压平面轴承1时,可以通过标识部12分辨液压油腔11的位置,使液压油腔11避开承载区域,降低油槽的边缘应力,进而使径向动压平面轴承1的承载能力较强。
(2)如果使用螺栓将轴承和芯轴连接来保证平面轴承与芯轴的相对位置,将导致平面轴承的厚度设计的较厚,,。本申请由于不必通过螺钉将径向动压平面轴承1连接于芯轴3,径向动压平面轴承1的壁部可以厚度较小,从而大大降低芯轴3和行星齿轮4的径向尺寸,使得齿轮箱体积较小,轻量化,结构紧凑。
(3)轴向推力动压平面轴承2可以通过定位销6或定位螺栓固定于行星架5,行星架可以不加工安装槽,使生产成本较低。
(4)由于径向动压平面轴承1和芯轴3无需通过过盈配合连接,对于它们的加工精度要求较低,使生产成本较低
虽然上述实施方式对本申请进行了详细说明,这里还有以下几点补充说明。
(1)液压油腔11的位置和数量不做限定,只要在安装到齿轮箱时能够 避开承载区域即可。
(2)在上述实施方式中,标识部12为凹槽,止转部为凸起,本申请不限于此,标识部可以为凸起,止转部可以为凹槽,标识部和止转部能够抗扭地连接即可。
(3)标识部12、第一止转部32和第二止转部的形状不限于楔形,还可以是半圆形、圆弧形等,只要在轴向载荷的作用下,可以使凸起压紧于凹槽的侧壁即可。
虽使用上述实施方式对本申请进行了详细说明,但对于本领域技术人员来说,本申请显然并不限于在本说明书中说明的实施方式。本申请能够在不脱离由权利要求书所确定的本申请的主旨以及范围的前提下加以修改并作为变更实施方式加以实施。因此,本说明书中的记载以示例说明为目的,对于本申请并不具有任何限制性的含义。

Claims (16)

  1. 一种径向动压平面轴承,其特征在于,所述径向动压平面轴承(1)整体上为圆筒状,所述径向动压平面轴承(1)的外周面设置有液压油腔(11),所述径向动压平面轴承(1)设置有径向贯穿所述径向动压平面轴承(1)的壁部的液压油孔(111)和回油孔(131),
    所述径向动压平面轴承(1)的端部设置有标识部(12),在所述径向动压平面轴承(1)的周向(C)上,所述标识部(12)的位置和所述液压油腔(11)的位置相对应,从而可以通过所述标识部(12)判断所述液压油腔(11)在所述周向(C)上的位置。
  2. 根据权利要求1所述的径向动压平面轴承,其特征在于,所述标识部(12)设置为能够与对向结构抗扭连接的形状。
  3. 根据权利要求1所述的径向动压平面轴承,其特征在于,所述径向动压平面轴承(1)的外周面设置有周向油槽(13),所述周向油槽(13)沿所述径向动压平面轴承(1)的周向(C)延伸,所述周向油槽(13)和所述液压油腔(11)连通。
  4. 根据权利要求3所述的径向动压平面轴承,其特征在于,所述液压油腔(11)设置有两个,两个所述液压油腔(11)的开口朝向相反的方向,所述周向油槽(13)将所述径向动压平面轴承(1)的周向(C)上的两个所述液压油腔(11)连通。
  5. 根据权利要求3所述的径向动压平面轴承,其特征在于,所述液压油孔(111)位于所述液压油腔(11)内,所述回油孔(131)位于所述周向油槽(13)内。
  6. 根据权利要求1所述的径向动压平面轴承,其特征在于,所述径向动压平面轴承(1)设置有螺纹孔(112),所述螺纹孔(112)为通孔。
  7. 根据权利要求1所述的径向动压平面轴承,其特征在于,所述径向动压平面轴承(1)设置有修型部(14),所述修型部(14)位于所述径向动压平面轴承(1)的轴向两端,所述修型部(14)的外径小于所述径向动压平面轴承(1)的轴向中间部分的外径。
  8. 根据权利要求1所述的径向动压平面轴承,其特征在于,所述标识部(12)为楔形的凹槽。
  9. 一种齿轮箱,其特征在于,所述齿轮箱包括权利要求1至8中任一项 所述的径向动压平面轴承。
  10. 根据权利要求9所述的齿轮箱,其特征在于,所述齿轮箱还包括轴向推力动压平面轴承(2)、芯轴(3)、行星齿轮(4)和行星架(5),所述径向动压平面轴承(1)和所述轴向推力动压平面轴承(2)均套设于所述芯轴(3),所述行星齿轮(4)套设于所述径向动压平面轴承(1),两个所述轴向推力动压平面轴承(2)分别位于所述行星齿轮(4)的轴向两端,
    所述径向动压平面轴承(1)抗扭地连接于所述行星架(5)和/或所述芯轴(3),所述轴向推力动压平面轴承(2)抗扭地连接于所述行星架(5)。
  11. 根据权利要求10所述的齿轮箱,其特征在于,所述芯轴(3)设置有进油通道(33)和回油通道(34),所述进油通道(33)与所述液压油孔(111)连通,所述回油通道(34)与所述回油孔(131)连通,所述芯轴(3)设置有第一止转部(32),所述第一止转部(32)和所述标识部(12)配合,使所述径向动压平面轴承(1)和所述芯轴(3)抗扭地连接。
  12. 根据权利要求10所述的齿轮箱,其特征在于,所述行星架(5)设置有第二止转部,所述第二止转部和所述标识部(12)配合,使所述径向动压平面轴承(1)和所述行星架(5)抗扭地连接。
  13. 根据权利要求10所述的齿轮箱,其特征在于,所述行星架(5)设置有安装槽,所述轴向推力动压平面轴承(2)至少部分地嵌入所述安装槽,所述安装槽和所述轴向推力动压平面轴承(2)在径向上过渡配合或过盈配合。
  14. 根据权利要求10所述的齿轮箱,其特征在于,所述齿轮箱还包括定位销(6),所述轴向推力动压平面轴承(2)设置有第一销钉安装孔,所述行星架(5)设置有第二销钉安装孔,所述第一销钉安装孔和所述第二销钉安装孔相对应,所述定位销(6)的一端嵌入所述第一销钉安装孔,所述定位销(6)的另一端嵌入所述第二销钉安装孔。
  15. 根据权利要求14所述的齿轮箱,其特征在于,所述第一销钉安装孔为盲孔。
  16. 根据权利要求10所述的齿轮箱,其特征在于,所述齿轮箱还包括定位螺栓,所述轴向推力动压平面轴承(2)和所述行星架(5)通过所述定位螺栓连接。
PCT/CN2021/127970 2021-11-01 2021-11-01 径向动压平面轴承和齿轮箱 WO2023070670A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127970 WO2023070670A1 (zh) 2021-11-01 2021-11-01 径向动压平面轴承和齿轮箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127970 WO2023070670A1 (zh) 2021-11-01 2021-11-01 径向动压平面轴承和齿轮箱

Publications (1)

Publication Number Publication Date
WO2023070670A1 true WO2023070670A1 (zh) 2023-05-04

Family

ID=86159970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127970 WO2023070670A1 (zh) 2021-11-01 2021-11-01 径向动压平面轴承和齿轮箱

Country Status (1)

Country Link
WO (1) WO2023070670A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972576A (en) * 1975-02-27 1976-08-03 Vandervell Products Limited Flanged half bearings
CN202182159U (zh) * 2010-04-30 2012-04-04 温纳吉股份公司 用于风力发电设备的行星齿轮变速器
CN105422745A (zh) * 2015-12-28 2016-03-23 南京高速齿轮制造有限公司 风力发电机齿轮箱中的行星轮减速级
WO2018059982A1 (de) * 2016-09-30 2018-04-05 Flender Gmbh Planetengetriebe mit anlaufscheiben
CN108787809A (zh) * 2017-04-26 2018-11-13 米巴滑动轴承奥地利有限公司 用于制造滑动轴套的方法
CN109667918A (zh) * 2017-10-13 2019-04-23 南京高速齿轮制造有限公司 一种行星齿轮变速器以及风力发电设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972576A (en) * 1975-02-27 1976-08-03 Vandervell Products Limited Flanged half bearings
CN202182159U (zh) * 2010-04-30 2012-04-04 温纳吉股份公司 用于风力发电设备的行星齿轮变速器
CN105422745A (zh) * 2015-12-28 2016-03-23 南京高速齿轮制造有限公司 风力发电机齿轮箱中的行星轮减速级
WO2018059982A1 (de) * 2016-09-30 2018-04-05 Flender Gmbh Planetengetriebe mit anlaufscheiben
CN108787809A (zh) * 2017-04-26 2018-11-13 米巴滑动轴承奥地利有限公司 用于制造滑动轴套的方法
CN109667918A (zh) * 2017-10-13 2019-04-23 南京高速齿轮制造有限公司 一种行星齿轮变速器以及风力发电设备

Similar Documents

Publication Publication Date Title
US9416867B2 (en) Planetary gear stage with plain bearings as planet bearings and use thereof
CN202510680U (zh) 风电增速齿轮箱及其空心轴的安装结构
US11746876B2 (en) Compound planet gear arrangement and gear wheel arrangement
US10533636B2 (en) Compound planet gear arrangement and drive train arrangement
WO2013043822A2 (en) Compact planetary gear system with stiffened carrier
EP3488125A1 (de) Lagerung für ein planetenrad eines planetengetriebes
CN110725869A (zh) 一种防爆型电控液压离合器
WO2023070670A1 (zh) 径向动压平面轴承和齿轮箱
EP3379107B1 (en) Compound planet gear arrangement and gear wheel arrangement
CN102996630A (zh) 一种用于支撑传动轴的轴承单元及齿轮减速机
CN110081150B (zh) 风电齿轮箱及其行星轮轴承润滑固定结构
JP2012510029A (ja) 大型舶用変速機のための軸受配置
CN109027002B (zh) 一种高速浮环轴承及转子系统支承方式
KR100777333B1 (ko) 감속기
EP3379106A1 (en) Compound planet gear arrangement and gear wheel arrangement
CN213990394U (zh) 一种电机轴与减速器输入轴连接结构
CN114658831A (zh) 行星齿轮箱和风电设备
WO2023212862A1 (zh) 行星齿轮箱和风电设备
EP3379109B1 (en) Compound planet gear arrangment and gear wheel arrangement
CN210178876U (zh) 装载机变速箱变速泵取力口轴承支撑结构
CN105840788A (zh) 风力发电机齿轮箱中的齿轮减速级
CN207569165U (zh) 一种行星齿轮组件及其方便轴承拆卸的齿轮
EP3379108B1 (en) Compound planet gear arrangement and gear wheel arrangement
CN216112045U (zh) 一种变速器中间轴及变速器
CN207554751U (zh) 一种方便安装的减速机推力轴承预紧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE