WO2023070654A1 - 短距离无线通信方法、装置及系统 - Google Patents

短距离无线通信方法、装置及系统 Download PDF

Info

Publication number
WO2023070654A1
WO2023070654A1 PCT/CN2021/127891 CN2021127891W WO2023070654A1 WO 2023070654 A1 WO2023070654 A1 WO 2023070654A1 CN 2021127891 W CN2021127891 W CN 2021127891W WO 2023070654 A1 WO2023070654 A1 WO 2023070654A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
symbol
domain resource
time domain
power
Prior art date
Application number
PCT/CN2021/127891
Other languages
English (en)
French (fr)
Inventor
唐云帅
岳华伟
王庭武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180102970.0A priority Critical patent/CN118044245A/zh
Priority to PCT/CN2021/127891 priority patent/WO2023070654A1/zh
Publication of WO2023070654A1 publication Critical patent/WO2023070654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Definitions

  • the present application relates to the communication field, in particular to a short-distance wireless communication method, device and system.
  • the vehicle wireless short-distance communication system technology is proposed by the China Communications Standards Association, which is used for communication between vehicle controllers and other communication devices, such as smart phones or smart wearable devices.
  • the data sent from the master device to the slave device is carried on the G (grant) symbol; the data sent from the slave device to the master device is carried on the T (terminal) symbol; the control signaling is carried on the S (T) symbol Or on the S(G) symbol, where S(T) represents the uplink S (superframe) symbol, and S(G) represents the downlink S symbol.
  • the slave device wants to send control signaling to the master device, the control signaling carried on the S symbol and the data carried on the T symbol are sent from the slave device to the master device.
  • the S symbol is an uplink S symbol, there is no interval between the S symbol and the T symbol.
  • the master device wants to send control signaling to the slave device
  • the data carried on the G symbol and the control signaling carried on the S symbol are sent by the master device to the slave device together.
  • the S symbol is a downlink S symbol
  • S symbols can only be sent together with T symbols or G symbols with the same transmission power.
  • the S symbol adopts low-order modulation, such as quadrature phase shift keying (quadrature phase shift keying, QPSK)
  • the G symbol or T symbol adopts high-order modulation, such as 1024 quadrature amplitude modulation (quadrature amplitude modulation, QAM).
  • the S symbols of low-order modulation can be sent with a larger transmission power, but because the power is limited when the S symbols are sent together with the G symbols or T symbols, the coverage of the S symbols will be reduced, and the coverage of the system will be limited. Therefore, it is not suitable for scenes with a larger space than the car environment, such as homes, shopping malls, and supermarkets.
  • Embodiments of the present application provide a short-distance wireless communication method, device, and system, which are used to solve the problem of limited system coverage in existing short-distance wireless communication methods.
  • a short-distance wireless communication method may be a first device, such as a terminal device, or a module applied to the first device, such as a Bluetooth chip or chip system.
  • the following description is made by taking the execution subject as the first device as an example.
  • the first device configures a first OFDM symbol on a first time domain resource of a first event period, and configures a second OFDM symbol on a second time domain resource of the first event period, There is a time interval between the first time domain resource and the second time domain resource, the first OFDM symbol is used to transmit data between the first device and the second device, and the second OFDM symbol is used to transmit the first OFDM symbol Control signaling between a device and the second device; the first device sends data to the second device on the first OFDM symbol at a first power, and on the second OFDM symbol at a second power sending control signaling to the second device, wherein the first power is different from the second power.
  • the short-distance wireless communication method there is a time interval design between the first time domain resource and the second time domain resource, so that the first device can use this time interval to adjust the transmission power, so that the second A device may transmit a first OFDM symbol and a second OFDM symbol at different transmit powers.
  • the transmission power of the second OFDM symbol is no longer limited to the transmission power of the first OFDM symbol, therefore, the coverage of the second OFDM symbol can be expanded, thereby enhancing the coverage capability of the system.
  • the first device when the first device is the master device and the second device is the slave device, the first device uses different transmission power to transmit the first OFDM symbol and the second OFDM symbol, which can effectively avoid excessive transmission power, too small and Receive the problem that the AGC gear is not ideal.
  • the second power is higher than the first power.
  • the transmission power of the control signaling is higher than the transmission power of the data, the performance of the control channel can be improved.
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than a first threshold.
  • the anti-multipath interference capability and high-order performance of the system can be improved.
  • the first threshold is 0.456 microseconds.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • increasing the length of each symbol is beneficial to increase the capacity of data and control signaling carried, thereby improving the efficiency of information transmission.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than a third threshold.
  • increasing the length of the event period is beneficial to increasing the number of symbols that can be accommodated in each event period, thereby increasing the flexibility of scheduling data.
  • the third threshold is 20.833 microseconds.
  • the first device is a slave device, and the second device is a master device; the first device configures the first time domain resource on the first event period.
  • An OFDM symbol, and configuring a second OFDM symbol on the second time domain resource of the first event period includes: the first device receives configuration information from the second device; the first device performs the configuration according to the configuration information on the The first OFDM symbol is configured on the first time domain resource of the first event period, and the second OFDM symbol is configured on the second time domain resource of the first event period.
  • the master device configures time domain resources, and the slave device obtains the configuration mode of the time domain resources by receiving configuration information from the master device, and performs resource configuration according to the configuration information.
  • the configuration information may be carried in signaling, and sent from the master device to the slave device in a broadcast manner.
  • a short-distance wireless communication method is provided.
  • the device for performing the short-distance wireless communication method may be a second device, such as a terminal device, or a module applied to the second device, such as a Bluetooth chip or chip system.
  • the following description is made by taking the execution subject as the second device as an example.
  • the second device receives data from the first device on the first OFDM symbol with a first power, and receives control signaling from the first device on the second OFDM symbol with a second power; wherein the first There is a time interval between the first time domain resource occupied by the OFDM symbol and the second time domain resource occupied by the second OFDM symbol, and the first OFDM symbol is used to transmit data between the first device and the second device , the second OFDM symbol is used to transmit control signaling between the first device and the second device, and the first power is different from the second power.
  • the second power is higher than the first power.
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than a first threshold.
  • the first threshold is 0.456 microseconds.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than a third threshold.
  • the third threshold is 20.833 microseconds.
  • the technical effect brought by any possible implementation manner in the second aspect may refer to the technical effect brought by the different implementation manners of the above-mentioned first aspect, which will not be repeated here.
  • the apparatus for implementing the short-distance wireless communication method may be a first device, or may be a module applied to the first device, such as a chip or a chip system.
  • the following description is made by taking the execution subject as the first device as an example.
  • the first device configures a first OFDM symbol on the first time domain resource of the first event period, and configures a second OFDM symbol on the second time domain resource of the first event period, the first There is no time interval between the time domain resource and the second time domain resource, the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than a first threshold, and the first OFDM symbol Used to transmit data between the first device and the second device, the second OFDM symbol is used to transmit control signaling between the first device and the second device; the first device uses the first OFDM symbol sending data to the second device on the second OFDM symbol, and sending control signaling to the second device on the second OFDM symbol.
  • the short-distance wireless communication method provided by increasing the length of the CP, the anti-multipath interference capability and high-order performance of the system can be improved.
  • the first threshold is 0.456 microseconds.
  • the first device sends data to the second device on the first OFDM symbol, and sends a control message to the second device on the second OFDM symbol.
  • Signaling including: the first device sends data to the second device on the first OFDM symbol with a first power, and sends control signaling to the second device on the second OFDM symbol with a second power , where the first power is different from the second power.
  • the design of increasing the CP length of each symbol enables the first device to use part of the CP for power adjustment, so that the first device can transmit the first OFDM symbol and the second OFDM symbol with different transmission powers.
  • the transmission power of the second OFDM symbol is no longer limited to the transmission power of the first OFDM symbol, therefore, the coverage of the second OFDM symbol can be expanded, thereby enhancing the coverage capability of the system.
  • the first device uses different transmission power to transmit the first OFDM symbol and the second OFDM symbol, which can effectively avoid excessive transmission power, too small and Receive the problem that the AGC gear is not ideal.
  • the first device sends data to the second device on the first OFDM symbol, and sends a control message to the second device on the second OFDM symbol.
  • Signaling including: the first device sends data to the second device on the first OFDM symbol with the first power, and sends control signaling to the second device on the second OFDM symbol with the first power .
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • increasing the length of each symbol is beneficial to increase the capacity of data and control signaling carried, thereby improving the efficiency of information transmission.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than a third threshold.
  • increasing the length of the event period is beneficial to increasing the number of symbols that can be accommodated in each event period, thereby increasing the flexibility of scheduling data.
  • the third threshold is 20.833 microseconds.
  • the first device is a slave device, and the second device is a master device; the first device configures the first time domain resource on the first event period.
  • An OFDM symbol, and configuring a second OFDM symbol on the second time domain resource of the first event period includes: the first device receives configuration information from the second device; the first device performs the configuration according to the configuration information on the The first OFDM symbol is configured on the first time domain resource of the first event period, and the second OFDM symbol is configured on the second time domain resource of the first event period.
  • the master device configures time domain resources, and the slave device obtains the configuration mode of the time domain resources by receiving configuration information from the master device, and performs resource configuration according to the configuration information.
  • the configuration information may be carried in signaling, and sent from the master device to the slave device in a broadcast manner.
  • a short-distance wireless communication method may be a second device, and may be a module applied to the second device, such as a chip or a chip system.
  • the following description is made by taking the execution subject as the second device as an example.
  • the second device receives data from the first device on the first OFDM symbol, and receives control signaling from the first device on the second OFDM symbol; wherein, the first time period occupied by the first OFDM symbol There is no time interval between the domain resource and the second time domain resource occupied by the second OFDM symbol, and the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the first threshold , the first OFDM symbol is used to transmit data between the first device and the second device, and the second OFDM symbol is used to transmit control signaling between the first device and the second device.
  • the first threshold is 0.456 microseconds.
  • the second device receives data from the first device on the first OFDM symbol, and receives data from the first device on the second OFDM symbol
  • the control signaling includes: the second device receives data from the first device on the first OFDM symbol with a first power, and receives data from the first device on the second OFDM symbol with a second power control signaling, wherein the first power is different from the second power.
  • the second device receives data from the first device on the first OFDM symbol, and receives data from the first device on the second OFDM symbol
  • the control signaling includes: the second device receives data from the first device on the first OFDM symbol with a first power, and receives data from the first device on the second OFDM symbol with a first power control signaling.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device is a Bluetooth chip or a first device
  • the communication device includes: a transceiver and a processor; the processor is configured to: A first OFDM symbol is configured on a time domain resource, and a second OFDM symbol is configured on a second time domain resource of the first event period, the first time domain resource and the second time domain resource There is a time interval between, the first OFDM symbol is used to transmit data between the communication device and the second device, and the second OFDM symbol is used to transmit control signaling between the communication device and the second device; a transceiver, configured to send data to the second device on the first OFDM symbol with a first power, and send control signaling to the second device on the second OFDM symbol with a second power, wherein the The first power is different from the second power.
  • the second power is higher than the first power.
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than a first threshold.
  • the first threshold is 0.456 microseconds.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the communication device is a slave device, and the second device is a master device;
  • the processor is configured to configure The first orthogonal frequency division multiplexing OFDM symbol, and configuring the second OFDM symbol on the second time domain resource of the first event period includes: receiving configuration information from the second device through the transceiver; according to the The configuration information configures the first OFDM symbol on the first time domain resource of the first event period, and configures the second OFDM symbol on the second time domain resource of the first event period.
  • the technical effect brought by any possible implementation manner in the fifth aspect may refer to the technical effect brought by the different implementation manners of the above-mentioned first aspect, which will not be repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device is a Bluetooth chip or a second device
  • the communication device includes: a transceiver; receiving data from the first device, and receiving control signaling from the first device on the second OFDM symbol with a second power; wherein, the first time domain resource occupied by the first OFDM symbol is the same as the first time domain resource occupied by the first OFDM symbol There is a time interval between the second time domain resources occupied by two OFDM symbols, the first OFDM symbol is used to transmit data between the first device and the communication device, and the second OFDM symbol is used to transmit data between the first device and the communication device For control signaling between the communication devices, the first power is different from the second power.
  • the second power is higher than the first power.
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than the first threshold.
  • the first threshold is 0.456 microseconds.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the technical effect brought by any possible implementation manner in the sixth aspect may refer to the technical effect brought by the different implementation manners of the above-mentioned first aspect, which will not be repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device is a Bluetooth chip or a first device
  • the communication device includes: a transceiver and a processor; the processor is configured to: A first OFDM symbol is configured on a time domain resource, and a second OFDM symbol is configured on a second time domain resource of the first event period, the first time domain resource and the second time domain resource There is no time interval between, the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the first threshold, and the first OFDM symbol is used to transmit the communication device and the second device For data between, the second OFDM symbol is used to transmit control signaling between the communication device and the second device; the transceiver is used to send data to the second device on the first OFDM symbol, and Send control signaling to the second device on the second OFDM symbol.
  • the first threshold is 0.456 microseconds.
  • the transceiver is configured to send data to the second device on the first OFDM symbol, and send data to the second device on the second OFDM symbol
  • the control signaling includes: sending data to the second device on the first OFDM symbol with a first power, and sending control signaling to the second device on the second OFDM symbol with a second power, Wherein, the first power is different from the second power.
  • the transceiver is configured to send data to the second device on the first OFDM symbol, and send data to the second device on the second OFDM symbol
  • the control signaling includes: sending data to the second device on the first OFDM symbol with the first power, and sending control signaling to the second device on the second OFDM symbol with the first power.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the communication device is a slave device, and the second device is a master device;
  • the processor is configured to configure The first orthogonal frequency division multiplexing OFDM symbol, and configuring the second OFDM symbol on the second time domain resource of the first event period includes: receiving configuration information from the second device through the transceiver; according to the The configuration information configures the first OFDM symbol on the first time domain resource of the first event period, and configures the second OFDM symbol on the second time domain resource of the first event period.
  • the technical effect brought by any possible implementation manner in the seventh aspect may refer to the technical effect brought by the different implementation manners of the third aspect above, and details are not repeated here.
  • a communication device for implementing the above method.
  • the communication device includes a corresponding module, unit, or means (means) for implementing the above method, and the module, unit, or means may be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device is a Bluetooth chip or a second device
  • the communication device includes: a transceiver; the transceiver is configured to receive a message from the first OFDM symbol on the first OFDM symbol data of the device, and receiving control signaling from the first device on the second OFDM symbol; wherein, the first time domain resource occupied by the first OFDM symbol is the same as the second time domain resource occupied by the second OFDM symbol There is no time interval between time domain resources, the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than a first threshold, and the first OFDM symbol is used to transmit the first device For data between the communication device and the communication device, the second OFDM symbol is used to transmit control signaling between the first device and the communication device.
  • the first threshold is 0.456 microseconds.
  • the transceiver is configured to receive data from the first device on the first OFDM symbol, and receive data from the first device on the second OFDM symbol Control signaling for receiving data from the first device on the first OFDM symbol with a first power, and receiving control from the first device on the second OFDM symbol with a second power signaling, wherein the first power is different from the second power.
  • the transceiver is configured to receive data from the first device on the first OFDM symbol, and receive data from the first device on the second OFDM symbol Control signaling for receiving data from the first device on the first OFDM symbol with a first power, and receiving control from the first device on the second OFDM symbol with a first power signaling.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the technical effect brought by any possible implementation manner in the eighth aspect may refer to the technical effect brought by the different implementation manners of the above-mentioned third aspect, which will not be repeated here.
  • a ninth aspect provides a communication system, including the communication device described in the fifth aspect above and the communication device described in the sixth aspect above, or, including the communication device described in the seventh aspect above and the communication device described in the eighth aspect above the communication device described above.
  • a communication device including: a processor; the processor is used to be coupled with the memory, and after reading the computer instructions stored in the memory, execute the above-mentioned first aspect, the second aspect, and the first aspect according to the instructions.
  • the communications device further includes a memory; the memory is used to store computer instructions.
  • the communication device further includes a communication interface; the communication interface is used for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit, and the like.
  • the communication device may be a chip or a chip system.
  • the communication device when the communication device is a system-on-a-chip, the communication device may be composed of a chip, or may include a chip and other discrete devices.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium.
  • the computer-readable storage medium When the computer-readable storage medium is run on a computer, the computer can execute the above-mentioned first aspect, second aspect, and third aspect. Or the method described in any one aspect in the fourth aspect.
  • a computer program product containing instructions, which, when run on a computer, enables the computer to execute any of the above-mentioned first, second, third, or fourth aspects.
  • the technical effects brought about by any one of the possible implementations of the ninth aspect to the twelfth aspect can refer to the technical effects brought about by the different implementations of the above-mentioned first aspect or the third aspect, and will not be repeated here. .
  • FIG. 1A is a first schematic diagram of the format of an event cycle in the prior art
  • FIG. 1B is a second schematic diagram of the format of the event cycle in the prior art
  • FIG. 2 is a schematic structural diagram of a long CP-OFDM symbol and a short CP-OFDM symbol in the prior art
  • FIG. 3 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a first schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a flow chart of a short-distance wireless communication method provided by an embodiment of the present application.
  • FIG. 6 is a first schematic diagram of the format of the event cycle provided by the present application and the format of the event cycle in the prior art;
  • FIG. 7 is a second schematic diagram of the format of the event cycle provided by the present application and the format of the event cycle in the prior art;
  • FIG. 8 is a schematic diagram of the format of the event cycle provided by the present application and the format of the event cycle in the prior art III;
  • FIG. 9 is a flowchart of another short-distance wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the format of the event cycle provided by the present application and the format of the event cycle in the prior art 4;
  • FIG. 11 is a schematic diagram of the format of the event cycle provided by the present application and the format of the event cycle in the prior art (5);
  • FIG. 12 is a second schematic structural diagram of a communication device provided by an embodiment of the present application.
  • cyclic prefix (cyclic prefix, CP)
  • G symbols, T symbols or S symbols are usually orthogonal frequency division multiplexing (OFDM) symbols, and CP is introduced into each OFDM symbol to eliminate inter-symbol interference (inter symbol interference (ISI) and inter carrier interference (inter carrier interference, ICI).
  • ISI inter symbol interference
  • ICI inter carrier interference
  • the length of the CP can be 0.163us or 0.456us.
  • An OFDM symbol with a CP with a length of 0.163us can be called a short CP-OFDM symbol, and an OFDM symbol with a CP with a length of 0.456us can be called a long CP-OFDM symbol.
  • Fig. 2 shows the structure of a long CP-OFDM symbol and a short CP-OFDM symbol.
  • the length of short CP OFDM symbols or long CP-OFDM symbols except CP is 64Ts
  • the CP length of short CP-OFDM symbols is 5Ts
  • the length of long CP-OFDM symbols The length of the CP is 14Ts
  • An event cycle is one of the cycles.
  • the length of the event cycle is usually 20.833us.
  • the dominant short-distance wireless communication standard is the technical standard of the vehicle-mounted wireless short-distance communication system mentioned in the background technology section.
  • the technical standards for vehicle-mounted wireless short-distance communication systems are mainly designed for the in-vehicle environment. If the standard is extended to home, shopping malls, supermarkets and other scenarios, there will be the following problems:
  • the modulation order adopted by the G symbol or T symbol carrying data is usually higher than the modulation order adopted by the S symbol carrying control signaling.
  • the S symbols of low-order modulation can be sent with a larger transmission power, but because the power of the S symbols and the G symbols or T symbols is transmitted at the same power, the power will be limited, so the coverage of the S symbols will be reduced, thereby making the System coverage is limited.
  • the master device may send S symbols and G symbols to different slave devices at the same time, the transmit power required for S symbols and G symbols is different, and the required receiving AGC gears are also different.
  • the G symbol does not require too much transmission power, but in order to take into account the slave devices that are farther away from the master device, the system needs a larger coverage, that is, the S symbol requires Larger transmit power.
  • S symbols and G symbols can only be sent with the same transmission power, if they are sent with a smaller power, the transmission power of the S symbols will be too small, and if they are sent with a larger power, the G symbols will be sent The transmit power of the symbol is too high.
  • S symbols and G symbols can only be received with the same AGC gear, if received with an AGC gear that matches the smaller power, the receiving AGC gear of the S symbol will not be ideal. The reception of AGC gears with higher power matching will make the AGC gears of G symbols unsatisfactory.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not necessarily limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes.
  • the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner for easy understanding.
  • the communication system 30 includes a first device 301 and a second device 302 .
  • the first device 301 is configured to configure the first OFDM symbol on the first time domain resource of the first event period, and configure the second OFDM symbol on the second time domain resource of the first event period. symbol, there is a time interval between the first time domain resource and the second time domain resource, the first OFDM symbol is used to transmit data between the first device 301 and the second device 302, and the second OFDM symbol is used to transmit data between the first device 301 and the second device 302 301 Control signaling between the second device 302.
  • the first device 301 is further configured to send data to the second device 302 on the first OFDM symbol with the first power, and send control signaling to the second device 302 on the second OFDM symbol with the second power, wherein, The first power is different from the second power.
  • the second device 302 is configured to receive data from the first device 301 on a first OFDM symbol with a first power, and receive control signaling from the first device 301 on a second OFDM symbol with a second power.
  • the first device 301 is configured to configure the first OFDM symbol on the first time domain resource of the first event period, and configure the second OFDM symbol on the second time domain resource of the first event period.
  • For OFDM symbols there is no time interval between the first time domain resource and the second time domain resource.
  • the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than a first threshold.
  • the first OFDM symbol is used to transmit data between the first device 301 and the second device 302
  • the second OFDM symbol is used to transmit control signaling between the first device 301 and the second device 302 .
  • the first device 301 is further configured to send data to the second device 302 on the first OFDM symbol, and send control signaling to the second device 302 on the second OFDM symbol.
  • the second device 302 is configured to receive data from the first device 301 on the first OFDM symbol, and receive control signaling from the first device 301 on the second OFDM symbol.
  • the relevant functions of the first device or the second device in the embodiment of the present application may be realized by one device, or by multiple devices, or by one or more functional modules in one device , which is not specifically limited in this embodiment of the present application. It can be understood that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) virtualization capabilities.
  • a platform for example, a cloud platform
  • related functions of the first device or the second device in the embodiment of the present application may be implemented by the communication apparatus 400 in FIG. 4 .
  • FIG. 4 is a schematic structural diagram of a communication device 400 provided by an embodiment of the present application.
  • the communication device 400 includes one or more processors 401, communication lines 402, and at least one communication interface (in FIG. 4, it is only exemplary to include a communication interface 404 and a processor 401 for illustration), optional can also include memory 403 .
  • the processor 401 may be a CPU, a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of the present application.
  • ASIC application-specific integrated circuit
  • Communication lines 402 may include vias for connecting different components.
  • the communication interface 404 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, WLAN and so on.
  • the transceiving module may be a device such as a transceiver or a transceiver.
  • the communication interface 404 may also be a transceiver circuit located in the processor 401 to realize signal input and signal output of the processor.
  • the storage 403 may be a device having a storage function.
  • it can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM) or other types of memory that can store information and instructions
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer Any other medium, but not limited to.
  • the memory may exist independently and be connected to the processor through the communication line 402 . Memory can also be integrated with the processor.
  • the memory 403 is used to store computer-executed instructions for implementing the solution of the present application, and the execution is controlled by the processor 401 .
  • the processor 401 is configured to execute computer-executed instructions stored in the memory 403, so as to implement the short-distance wireless communication method provided in the embodiment of the present application.
  • the processor 401 may also execute the processing-related functions in the short-distance wireless communication method provided in the following embodiments of the present application, and the communication interface 404 is responsible for communicating with other devices or communication networks.
  • the example does not specifically limit this.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application program codes, which is not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, for example, CPU0 and CPU1 in FIG. 4 .
  • the communications apparatus 400 may include multiple processors, for example, the processor 401 and the processor 407 in FIG. 4 .
  • Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication apparatus 400 may further include an output device 405 and an input device 406 .
  • Output device 405 is in communication with processor 401 and may display information in a variety of ways.
  • the aforementioned communication device 400 may be a general-purpose device or a dedicated device.
  • the communication device 400 can be a bluetooth earphone, a desktop computer, a portable computer, a web server, a handheld computer (personal digital assistant, PDA), a mobile phone, a tablet computer, a wireless terminal device, a vehicle terminal device, an embedded device or have devices of similar structure.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 400 .
  • the short-distance wireless communication method provided by the embodiment of the present application will be described in detail below with reference to FIG. 1 to FIG. 4 .
  • the short-distance wireless communication method includes the following steps:
  • the first device configures a first OFDM symbol on a first time domain resource of a first event period, and configures a second OFDM symbol on a second time domain resource of the first event period. There is a time interval between the first time domain resource and the second time domain resource, the first OFDM symbol is used to transmit data between the first device and the second device, and the second OFDM symbol is used to transmit data between the first device and the second device. Control signaling between two devices.
  • the first device may be a master device
  • the second device may be one of one or more slave devices, or the first device may be one of one or more slave devices, and the second device may be a master
  • the device is not limited in this embodiment of the present application.
  • the first device as the master device and the second device as one of one or more slave devices as an example, that is, take the downlink transmission from the master device to the slave device as an example for illustration.
  • the first OFDM symbol is a G symbol
  • the first time domain resource is the time domain resource occupied by the G symbol
  • the second OFDM symbol is the S(G) symbol
  • the second time domain resource is the time domain occupied by the S(G) symbol resource.
  • the symbol S in FIG. 6 may represent the symbol S(G).
  • the first device is one of one or more slave devices
  • the second device is the master device as an example, that is, the uplink transmission from the slave device to the master device is taken as an example for illustration.
  • the first OFDM symbol is T symbol
  • the first time domain resource is the time domain resource occupied by T symbol
  • the second OFDM symbol is S(T) symbol
  • the second time domain resource is the time domain occupied by S(T) symbol resource.
  • the symbol S in FIG. 6 may also represent the symbol S(T).
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than the first threshold.
  • the anti-multipath interference capability and high-order performance of the system can be improved.
  • the length of the CP is usually 0.163us or 0.456us.
  • the first threshold may be 0.456us.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • increasing the length of each symbol is beneficial to increase the capacity of data and control signaling carried, thereby improving the efficiency of information transmission.
  • the length of the OFDM symbol is usually 2.246us or 2.539us.
  • the second threshold may be 2.539us.
  • FIG. 7 shows another event cycle format provided by the embodiment of the present application.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • increasing the length of the event period is beneficial to increasing the number of symbols that can be accommodated in each event period, thereby increasing the flexibility of scheduling data.
  • the length of the event cycle is usually 20.833us.
  • the third threshold may be 20.833us.
  • FIG. 8 shows another event cycle format provided by the embodiment of the present application.
  • the CP length of each symbol is greater than 0.456us specified in the technical standard of the vehicle wireless short-distance communication system, and the length of each symbol is greater than the vehicle wireless short distance communication system.
  • the range is 2.539us specified in the technical standard of the communication system, and the length of the event cycle in which the S symbol, G symbol and T symbol are located is greater than the 20.833us specified in the technical standard of the vehicle wireless short-distance communication system.
  • the first device is a slave device, and the second device is a master device; the first device configures the first OFDM symbol on the first time domain resource of the first event period, and at the second time domain of the first event period Configuring the second OFDM symbol on the domain resource includes: the first device receives configuration information from the second device; the first device configures the first OFDM symbol on the first time domain resource in the first event period according to the configuration information, and A second OFDM symbol is configured on a second time domain resource of an event period.
  • the master device configures the time domain resources
  • the slave device obtains the configuration mode of the time domain resources by receiving configuration information from the master device, and performs resource configuration according to the configuration information.
  • the configuration information may be carried in signaling, and sent from the master device to the slave device in a broadcast manner.
  • the first device sends data to the second device on the first OFDM symbol with the first power, and sends control signaling to the second device on the second OFDM symbol with the second power.
  • the second device receives data from the first device on the first OFDM symbol with the first power, and receives control signaling from the first device on the second OFDM symbol with the second power.
  • the first power is different from the second power.
  • the second device receives data with the first power, which may be specifically implemented by receiving data with an AGC gear that matches the first power.
  • the second device receives the control signaling with the second power, which may be specifically implemented by receiving the control signaling with an AGC gear that matches the second power.
  • the second power is higher than the first power.
  • the transmission power of the control signaling is higher than the transmission power of the data, the performance of the control channel can be improved.
  • the short-distance wireless communication method there is a time interval design between the first time domain resource and the second time domain resource, so that the first device can use this time interval to adjust the transmission power, so that the second A device may transmit a first OFDM symbol and a second OFDM symbol at different transmit powers.
  • the transmission power of the second OFDM symbol is no longer limited to the transmission power of the first OFDM symbol, therefore, the coverage of the second OFDM symbol can be expanded, thereby enhancing the coverage capability of the system.
  • the first device when the first device is the master device and the second device is the slave device, the first device uses different transmission power to transmit the first OFDM symbol and the second OFDM symbol, which can effectively avoid excessive transmission power, too small and Receive the problem that the AGC gear is not ideal.
  • the short-distance wireless communication method includes the following steps:
  • the first device configures a first OFDM symbol on a first time domain resource of a first event period, and configures a second OFDM symbol on a second time domain resource of the first event period. Wherein, there is no time interval between the first time domain resource and the second time domain resource, the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the first threshold, and the first OFDM symbol It is used to transmit data between the first device and the second device, and the second OFDM symbol is used to transmit control signaling between the first device and the second device.
  • the anti-multipath interference capability and high-order performance of the system can be improved.
  • the first device is the master device
  • the second device is one or more slave devices
  • the first threshold is 0.456us specified in the technical standard of the vehicle wireless short-distance communication system as an example.
  • the first OFDM symbol is G symbol
  • the first time domain resource is the time domain resource occupied by G symbol
  • the second OFDM symbol is S(G) symbol
  • the second time domain resource is S(G) symbol Time domain resource occupied.
  • the CP length of each symbol in the embodiment of the present application is greater than 0.456us.
  • the first device is one or more slave devices
  • the second device is the master device
  • the first threshold is 0.456us specified in the technical standard of the vehicle wireless short-distance communication system as an example.
  • the first OFDM symbol is T symbol
  • the first time domain resource is the time domain resource occupied by T symbol
  • the second OFDM symbol is S(T) symbol
  • the second time domain resource is S(T) symbol Time domain resource occupied.
  • the CP length of each symbol in the embodiment of the present application is greater than 0.456us.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • increasing the length of each symbol is beneficial to increase the capacity of data and control signaling carried, thereby improving the efficiency of information transmission.
  • FIG. 11 shows another event cycle format provided by the embodiment of the present application.
  • the second threshold is 2.539us specified in the technical standard of the vehicle wireless short-distance communication system as an example for illustration.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • increasing the length of the event period is beneficial to increasing the number of symbols that can be accommodated in each event period, thereby increasing the flexibility of scheduling data.
  • the third threshold may be 20.833us.
  • the first device is a slave device, and the second device is a master device; the first device configures the first OFDM symbol on the first time domain resource of the first event period, and at the second time domain of the first event period Configuring the second OFDM symbol on domain resources includes: the first device receives the
  • the first device configures the first OFDM symbol on the first time domain resource of the first event period according to the configuration information, and configures the second OFDM symbol on the second time domain resource of the first event period.
  • the first device sends data to the second device on the first OFDM symbol, and sends control signaling to the second device on the second OFDM symbol.
  • the second device receives data from the first device on the first OFDM symbol, and receives control signaling from the first device on the second OFDM symbol.
  • the first device sends data to the second device on the first OFDM symbol, and sends control signaling to the second device on the second OFDM symbol, including: the first device uses the first OFDM Send data to the second device on the symbol, and send control signaling to the second device on the second OFDM symbol at the first power.
  • the second device receives the data from the first device on the first OFDM symbol, and receives the control signaling from the first device on the second OFDM symbol, including: the second device uses the first power to transmit Data is received from the first device on an OFDM symbol, and control signaling is received from the first device on a second OFDM symbol at a first power.
  • the first device sends data to the second device on the first OFDM symbol, and sends control signaling to the second device on the second OFDM symbol, including: the first device uses the first OFDM Send data to the second device on a symbol, and send control signaling to the second device on a second OFDM symbol at a second power, where the first power is different from the second power.
  • the second device receives data from the first device on the first OFDM symbol, and,
  • Receiving control signaling from the first device on the second OFDM symbol includes: the second device receives data from the first device on the first OFDM symbol with a first power, and receives data from the first device on the second OFDM symbol with a second power Receive control signaling from the first device.
  • the design of increasing the CP length of each symbol enables the first device to use part of the CP for power adjustment, so that the first device can transmit the first OFDM symbol and the second OFDM symbol with different transmission powers.
  • the transmission power of the second OFDM symbol is no longer limited to the transmission power of the first OFDM symbol, therefore, the coverage of the second OFDM symbol can be expanded, thereby enhancing the coverage capability of the system.
  • the first device when the first device is the master device and the second device is the slave device, the first device uses different transmission power to transmit the first OFDM symbol and the second OFDM symbol, which can effectively avoid excessive transmission power, too small and Receive the problem that the AGC gear is not ideal.
  • both the first device and the second device in the above-mentioned embodiment described in FIG. 5 or FIG. 9 can adopt the architecture of the communication device 400 shown in FIG. 4
  • the actions of the first device in the above-mentioned embodiment can be
  • the processor 401 in the communication device 400 shown in FIG. 4 calls the application program code stored in the memory 403 to instruct the first device to execute.
  • the actions of the second device in the above embodiment can be executed by the communication device 400 shown in FIG. 4
  • the processor 401 calls the application program code stored in the memory 403 to instruct the second device to execute, which is not limited in this embodiment.
  • the methods and/or steps implemented by the first device may also be implemented by components (such as chips or circuits) that can be used in the first device; the methods and/or steps implemented by the second device or steps may also be implemented by components (such as chips or circuits) that can be used in the second device.
  • the embodiment of the present application further provides a communication device, and the communication device is used to implement the above-mentioned various methods.
  • the communication device may be the first device in the above method embodiment, or a device including the above first device, or a component that can be used for the first device; or, the communication device may be the second device in the above method embodiment , or an apparatus comprising the above-mentioned second device, or a component that can be used for the second device.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the embodiment of the present application may divide the functional modules of the communication device according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 12 shows a schematic structural diagram of a communication device 12 .
  • the communication device 12 includes a transceiver 121 .
  • the transceiver 121 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver or a communication interface.
  • the communication device 12 further includes a processor 122, then: the processor 122 is configured to configure the first OFDM symbols, and configuring a second OFDM symbol on the second time domain resource of the first event period, there is a time interval between the first time domain resource and the second time domain resource, and the first OFDM symbol is used to transmit the communication device 12 and For data between the second device, the second OFDM symbol is used to transmit control signaling between the communication device 12 and the second device; the transceiver 121 is used to transmit to the second device on the first OFDM symbol with the first power Data, and control signaling is sent to the second device on a second OFDM symbol at a second power, where the first power is different from the second power.
  • the second power is higher than the first power.
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than the first threshold.
  • the first threshold is 0.456 microseconds.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the communication device 12 is a slave device, and the second device is a master device; the processor 122 is configured to configure the first OFDM symbol on the first time domain resource of the first event period, and Configuring the second OFDM symbol on the second time domain resource of an event period includes: receiving configuration information from the second device through the transceiver 121; configuring the second OFDM symbol on the first time domain resource of the first event period according to the configuration information An OFDM symbol, and a second OFDM symbol is configured on the second time domain resource of the first event period.
  • the transceiver 121 is configured to receive data from the first device on the first OFDM symbol with the first power, and receive control signaling from the first device on the second OFDM symbol with the second power; wherein, the first There is a time interval between the first time domain resource occupied by the OFDM symbol and the second time domain resource occupied by the second OFDM symbol, the first OFDM symbol is used to transmit data between the first device and the communication device 12, and the second OFDM symbol is used to transmit data between the first device and the communication device 12. OFDM symbols are used to transmit control signaling between the first device and the communication device 12, and the first power is different from the second power.
  • the second power is higher than the first power.
  • the length of the cyclic prefix of each OFDM symbol in the first OFDM symbol or each OFDM symbol in the second OFDM symbol is greater than the first threshold.
  • the first threshold is 0.456 microseconds.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the communication device 12 further includes a processor 122, then: the processor 122 is configured to configure The first OFDM symbol, and the second OFDM symbol configured on the second time domain resource of the first event period, there is no time interval between the first time domain resource and the second time domain resource, each symbol in the first OFDM symbol or The length of the cyclic prefix of each symbol in the second OFDM symbol is greater than the first threshold, the first OFDM symbol is used to transmit data between the communication device 12 and the second device, and the second OFDM symbol is used to transmit the data between the communication device 12 and the second device.
  • Control signaling between devices; the transceiver 121 is configured to send data to the second device on the first OFDM symbol, and send control signaling to the second device on the second OFDM symbol.
  • the first threshold is 0.456 microseconds.
  • the transceiver 121 is configured to send data to the second device on the first OFDM symbol, and send control signaling to the second device on the second OFDM symbol, including: The data is sent to the second device on the first OFDM symbol at the power, and the control signaling is sent to the second device on the second OFDM symbol at the second power, wherein the first power is different from the second power.
  • the transceiver 121 is configured to send data to the second device on the first OFDM symbol, and send control signaling to the second device on the second OFDM symbol, including: The data is sent to the second device on the first OFDM symbol at the power, and the control signaling is sent to the second device on the second OFDM symbol at the first power.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the communication device 12 is a slave device, and the second device is a master device; the processor 122 is configured to configure the first OFDM symbol on the first time domain resource of the first event period, and Configuring the second OFDM symbol on the second time domain resource of an event period includes: receiving configuration information from the second device through the transceiver 121; configuring the second OFDM symbol on the first time domain resource of the first event period according to the configuration information An OFDM symbol, and a second OFDM symbol is configured on the second time domain resource of the first event period.
  • the transceiver 121 is configured to receive data from the first device on the first OFDM symbol, and receive control signaling from the first device on the second OFDM symbol; wherein, the first time period occupied by the first OFDM symbol There is no time interval between the domain resource and the second time domain resource occupied by the second OFDM symbol, the length of the cyclic prefix of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the first threshold, and the first The OFDM symbol is used to transmit data between the first device and the communication device 12 , and the second OFDM symbol is used to transmit control signaling between the first device and the communication device 12 .
  • the first threshold is 0.456 microseconds.
  • the transceiver 121 is configured to receive data from the first device on the first OFDM symbol, and receive control signaling from the first device on the second OFDM symbol, including: receiving data from the first device on a first OFDM symbol at a first power, and receiving control signaling from the first device on a second OFDM symbol at a second power, wherein the first power is different from the second power .
  • the transceiver 121 is configured to receive data from the first device on the first OFDM symbol, and receive control signaling from the first device on the second OFDM symbol, including: Data is received from the first device on a first OFDM symbol at a first power, and control signaling from the first device is received on a second OFDM symbol at a first power.
  • the length of each symbol in the first OFDM symbol or each symbol in the second OFDM symbol is greater than the second threshold.
  • the second threshold is 2.539 microseconds.
  • the length of the event period in which the first OFDM symbol and the second OFDM symbol are located is greater than the third threshold.
  • the third threshold is 20.833 microseconds.
  • the communication device 12 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the communication device 12 is the first device or the second device in the above method embodiment, in a simple embodiment, those skilled in the art can imagine that the communication device 12 can adopt the communication device 400 shown in FIG. 4 form.
  • the processor 401 or 407 in the communication device 400 shown in FIG. 4 can invoke the computer-executed instructions stored in the memory 403, so that the communication device 400 executes the short-range wireless communication method in the above method embodiment.
  • the function/implementation process of the processor 122 in FIG. 12 may be implemented by calling the computer-executed instructions stored in the memory 403 by the processor 401 or 407 in the communication device 400 shown in FIG. 4 .
  • the function/implementation process of the transceiver 121 in FIG. 12 can be realized by a communication module connected via the communication interface 404 in FIG. 4 .
  • the communication device 12 provided in this embodiment can execute the above-mentioned short-distance wireless communication method, the technical effect it can obtain can refer to the above-mentioned method embodiment, and will not be repeated here.
  • one or more of the above modules or units may be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and can further include necessary hardware accelerators, such as field programmable gate array (field programmable gate array, FPGA), PLD (programmable logic device) , or a logic circuit that implements a dedicated logic operation.
  • the hardware can be CPU, microprocessor, digital signal processing (digital signal processing, DSP) chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device, which can run necessary software or not depend on software to execute the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • ASIC artificial intelligence processor
  • an embodiment of the present application further provides a chip system, including: at least one processor and an interface, the at least one processor is coupled to the memory through the interface, and when the at least one processor executes the computer program or instruction in the memory When, the method in any one of the above method embodiments is executed.
  • the communication device further includes a memory.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, which is not specifically limited in this embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供短距离无线通信方法、装置及系统,用于解决现有的短距离无线通信方法存在系统覆盖范围受限的问题。方法包括:第一设备在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,第一时域资源与第二时域资源之间存在时间间隔,第一OFDM符号用于传输第一设备与第二设备之间的数据,第二OFDM符号用于传输第一设备与第二设备之间的控制信令;第一设备以第一功率在第一OFDM符号上向第二设备发送数据,以及,以第二功率在第二OFDM符号上向第二设备发送控制信令,其中,第一功率不同于第二功率。

Description

短距离无线通信方法、装置及系统 技术领域
本申请涉及通信领域,尤其涉及短距离无线通信方法、装置及系统。
背景技术
车载无线短距离通信系统技术是由中国通信标准化协会提出的,该技术用于车载控制器和其它通信装置,例如智能手机或智能穿戴设备之间的通信。
该技术中,主控设备向从设备发送的数据承载在G(grant)符号上;从设备向主控设备发送的数据承载在T(terminal)符号上;控制信令承载在S(T)符号或者S(G)符号上,其中,S(T)表示上行S(superframe)符号,S(G)表示下行S符号。当从设备要向主控设备发送控制信令时,S符号上承载的控制信令与T符号上承载的数据一同由从设备发送至主控设备。换言之,如图1A所示,在一个事件周期内,当S符号为上行S符号时,S符号与T符号之间没有间隔。相应地,当主控设备要向从设备发送控制信令时,G符号上承载的数据与S符号上承载的控制信令一同由主控设备发送至从设备。换言之,如图1B所示,在一个事件周期内,当S符号为下行S符号时,S符号与G符号之间没有间隔。
现有技术中,S符号只能与T符号或G符号一同以相同的发送功率发送。通常,S符号采用低阶调制,例如四相相移键控(quadrature phase shift keying,QPSK),而G符号或T符号采用高阶调制,例如1024正交幅度调制(quadrature amplitude modulation,QAM)。低阶调制的S符号本可以以较大的发送功率发送,但由于S符号与G符号或T符号一同发送时功率受限,因此,会导致S符号的覆盖范围降低,进而系统的覆盖范围受限,从而不适用于家居、商场、超市等空间较车内环境大的场景。
发明内容
本申请实施例提供短距离无线通信方法、装置及系统,用于解决现有的短距离无线通信方法存在系统覆盖范围受限的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种短距离无线通信方法,执行该短距离无线通信方法的装置可以为第一设备,例如终端设备,也可以为应用于第一设备中的模块,例如蓝牙芯片或芯片系统。下面以执行主体为第一设备为例进行描述。第一设备在第一事件(event)周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,该第一时域资源与该第二时域资源之间存在时间间隔,该第一OFDM符号用于传输该第一设备与第二设备之间的数据,该第二OFDM符号用于传输该第一设备与该第二设备之间的控制信令;该第一设备以第一功率在该第一OFDM符号上向该第二设备发送数据,以及,以第二功率在该第二OFDM符号上向该第二设备发送控制信令,其中,该第一功率不同于该第二功率。
在本申请实施例提供的短距离无线通信方法中,第一时域资源与第二时域资源之间存在时间间隔的设计,使得第一设备可以利用该时间间隔进行发送功率的调整,从而第一设备可以以不同的发送功率发送第一OFDM符号和第二OFDM符号。在这种 情况下,第二OFDM符号的发送功率不再受限于第一OFDM符号的发送功率,因此,可以扩大第二OFDM符号的覆盖范围,从而增强系统的覆盖能力。此外,当第一设备为主控设备,第二设备为从设备时,第一设备采用不同的发送功率发送第一OFDM符号和第二OFDM符号,可以有效地避免发射功率过大、过小和接收AGC档位不理想的问题。
结合上述第一方面,在一种可能的实现方式中,该第二功率高于该第一功率。在该方案中,由于控制信令的发送功率高于数据的发送功率,因此,可以改善控制信道的性能。
结合上述第一方面,在一种可能的实现方式中,该第一OFDM符号中每个OFDM符号或该第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。在该方案中,通过增加循环前缀的长度,能够提高系统的抗多径干扰能力和高阶性能。
结合上述第一方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第一方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。在该方案中,增加每个符号的长度有利于提高承载的数据和控制信令容量,从而能够提高信息传输效率。
结合上述第一方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第一方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。在该方案中,增加事件周期的长度有利于增加每个事件周期内可容纳的符号数量,从而能够增加调度数据的灵活性。
结合上述第一方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
结合上述第一方面,在一种可能的实现方式中,该第一设备为从设备,该第二设备为主控设备;该第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,包括:该第一设备接收来自该第二设备的配置信息;该第一设备根据该配置信息在该第一事件周期的该第一时域资源上配置该第一OFDM符号,以及在该第一事件周期的该第二时域资源上配置该第二OFDM符号。在该方案中,主控设备配置时域资源,从设备通过接收来自主控设备的配置信息来获得时域资源的配置方式,并根据该配置信息进行资源配置。例如,配置信息可以承载在信令上,通过广播的方式由主控设备发送至从设备。
第二方面,提供了一种短距离无线通信方法,执行该短距离无线通信方法的装置可以为第二设备,例如终端设备,也可以为应用于第二设备中的模块,例如蓝牙芯片或芯片系统。下面以执行主体为第二设备为例进行描述。第二设备以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在该第二OFDM符号上接收来自该第一设备的控制信令;其中,该第一OFDM符号所占用的第一时域资源与该第二OFDM符号所占用的第二时域资源之间存在时间间隔,该第一OFDM符号用于传输第一设备与该第二设备之间的数据,该第二OFDM符号用于传输该第一设备与该第二设备之间的控制信令,该第一功率不同于该第二功率。
结合上述第二方面,在一种可能的实现方式中,该第二功率高于该第一功率。
结合上述第二方面,在一种可能的实现方式中,该第一OFDM符号中每个OFDM符号或该第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。
结合上述第二方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第二方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。
结合上述第二方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第二方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。
结合上述第二方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
其中,第二方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面的不同实现方式所带来的技术效果,此处不再赘述。
第三方面,提供了另一种短距离无线通信方法,执行该短距离无线通信方法的装置可以为第一设备,可以为应用于第一设备中的模块,例如芯片或芯片系统。下面以执行主体为第一设备为例进行描述。第一设备在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,该第一时域资源与该第二时域资源之间没有时间间隔,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,该第一OFDM符号用于传输该第一设备与第二设备之间的数据,该第二OFDM符号用于传输该第一设备与该第二设备之间的控制信令;该第一设备在该第一OFDM符号上向该第二设备发送数据,以及,在该第二OFDM符号上向该第二设备发送控制信令。在本申请实施例提供的短距离无线通信方法中,通过增加CP的长度,能够提高系统的抗多径干扰能力和高阶性能。
结合上述第三方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第三方面,在一种可能的实现方式中,该第一设备在该第一OFDM符号上向该第二设备发送数据,以及,在该第二OFDM符号上向该第二设备发送控制信令,包括:该第一设备以第一功率在该第一OFDM符号上向该第二设备发送数据,以及,以第二功率在该第二OFDM符号上向该第二设备发送控制信令,其中,该第一功率不同于该第二功率。在该方案中,增加每个符号的CP长度的设计,使得第一设备可以借用部分CP进行功率调整,从而第一设备可以以不同的发送功率发送第一OFDM符号和第二OFDM符号。在这种情况下,第二OFDM符号的发送功率不再受限于第一OFDM符号的发送功率,因此,可以扩大第二OFDM符号的覆盖范围,从而增强系统的覆盖能力。此外,当第一设备为主控设备,第二设备为从设备时,第一设备采用不同的发送功率发送第一OFDM符号和第二OFDM符号,可以有效地避免发射功率过大、过小和接收AGC档位不理想的问题。
结合上述第三方面,在一种可能的实现方式中,该第一设备在该第一OFDM符号上向该第二设备发送数据,以及,在该第二OFDM符号上向该第二设备发送控制信令,包括:该第一设备以第一功率在该第一OFDM符号上向该第二设备发送数据,以及,以第一功率在该第二OFDM符号上向该第二设备发送控制信令。该方案与现有的车载无线短距离通信系统技术标准兼容,能够在对标准改动较小的基础上,提高系统的抗多径干扰能力和高阶性能。
结合上述第三方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或 该第二OFDM符号中每个符号的长度大于第二阈值。在该方案中,增加每个符号的长度有利于提高承载的数据和控制信令容量,从而能够提高信息传输效率。
结合上述第三方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第三方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。在该方案中,增加事件周期的长度有利于增加每个事件周期内可容纳的符号数量,从而能够增加调度数据的灵活性。
结合上述第三方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
结合上述第三方面,在一种可能的实现方式中,该第一设备为从设备,该第二设备为主控设备;该第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,包括:该第一设备接收来自该第二设备的配置信息;该第一设备根据该配置信息在该第一事件周期的该第一时域资源上配置该第一OFDM符号,以及在该第一事件周期的该第二时域资源上配置该第二OFDM符号。在该方案中,主控设备配置时域资源,从设备通过接收来自主控设备的配置信息来获得时域资源的配置方式,并根据该配置信息进行资源配置。例如,配置信息可以承载在信令上,通过广播的方式由主控设备发送至从设备。
第四方面,提供了一种短距离无线通信方法,执行该短距离无线通信方法的装置可以为第二设备,可以为应用于第二设备中的模块,例如芯片或芯片系统。下面以执行主体为第二设备为例进行描述。第二设备在第一OFDM符号上接收来自第一设备的数据,以及,在该第二OFDM符号上接收来自该第一设备的控制信令;其中,该第一OFDM符号所占用的第一时域资源与该第二OFDM符号所占用的第二时域资源之间没有时间间隔,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,该第一OFDM符号用于传输该第一设备与该第二设备之间的数据,该第二OFDM符号用于传输该第一设备与该第二设备之间的控制信令。
结合上述第四方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第四方面,在一种可能的实现方式中,该第二设备在该第一OFDM符号上接收来自该第一设备的数据,以及,在该第二OFDM符号上接收来自该第一设备的控制信令,包括:该第二设备以第一功率在该第一OFDM符号上接收来自该第一设备的数据,以及,以第二功率在该第二OFDM符号上接收来自该第一设备的控制信令,其中,该第一功率不同于该第二功率。
结合上述第四方面,在一种可能的实现方式中,该第二设备在该第一OFDM符号上接收来自该第一设备的数据,以及,在该第二OFDM符号上接收来自该第一设备的控制信令,包括:该第二设备以第一功率在该第一OFDM符号上接收来自该第一设备的数据,以及,以第一功率在该第二OFDM符号上接收来自该第一设备的控制信令。
结合上述第四方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。
结合上述第四方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第四方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。
结合上述第四方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
其中,第四方面中任一种可能的实现方式所带来的技术效果可参见上述第三方面的不同实现方式所带来的技术效果,此处不再赘述。
第五方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第五方面,在一种可能的实现方式中,该通信装置为蓝牙芯片或者第一设备,该通信装置包括:收发器和处理器;该处理器,用于在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,该第一时域资源与该第二时域资源之间存在时间间隔,该第一OFDM符号用于传输该通信装置与第二设备之间的数据,该第二OFDM符号用于传输该通信装置与该第二设备之间的控制信令;该收发器,用于以第一功率在该第一OFDM符号上向该第二设备发送数据,以及,以第二功率在该第二OFDM符号上向该第二设备发送控制信令,其中,该第一功率不同于该第二功率。
结合上述第五方面,在一种可能的实现方式中,该第二功率高于该第一功率。
结合上述第五方面,在一种可能的实现方式中,该第一OFDM符号中每个OFDM符号或该第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。
结合上述第五方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第五方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。
结合上述第五方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第五方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。
结合上述第五方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
结合上述第五方面,在一种可能的实现方式中,该通信装置为从设备,该第二设备为主控设备;该处理器,用于在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,包括:用于通过该收发器接收来自第二设备的配置信息;根据该配置信息在该第一事件周期的该第一时域资源上配置该第一OFDM符号,以及在该第一事件周期的该第二时域资源上配置该第二OFDM符号。
其中,第五方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面的不同实现方式所带来的技术效果,此处不再赘述。
第六方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第六方面,在一种可能的实现方式中,该通信装置为蓝牙芯片或者第二设备,该通信装置包括:收发器;该收发器,用于以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在该第二OFDM符号上接收来自该第一设 备的控制信令;其中,该第一OFDM符号所占用的第一时域资源与该第二OFDM符号所占用的第二时域资源之间存在时间间隔,该第一OFDM符号用于传输第一设备与该通信装置之间的数据,该第二OFDM符号用于传输该第一设备与该通信装置之间的控制信令,该第一功率不同于该第二功率。
结合上述第六方面,在一种可能的实现方式中,该第二功率高于该第一功率。
结合上述第六方面,在一种可能的实现方式中,该第一OFDM符号中每个OFDM符号或该第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。
结合上述第六方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第六方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。
结合上述第六方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第六方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。
结合上述第六方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
其中,第六方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面的不同实现方式所带来的技术效果,此处不再赘述。
第七方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第七方面,在一种可能的实现方式中,该通信装置为蓝牙芯片或者第一设备,该通信装置包括:收发器和处理器;该处理器,用于在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,该第一时域资源与该第二时域资源之间没有时间间隔,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,该第一OFDM符号用于传输该通信装置与第二设备之间的数据,该第二OFDM符号用于传输该通信装置与该第二设备之间的控制信令;该收发器,用于在该第一OFDM符号上向该第二设备发送数据,以及在该第二OFDM符号上向该第二设备发送控制信令。
结合上述第七方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第七方面,在一种可能的实现方式中,该收发器,用于在该第一OFDM符号上向该第二设备发送数据,以及在该第二OFDM符号上向该第二设备发送控制信令,包括:用于以第一功率在该第一OFDM符号上向该第二设备发送数据,以及,以第二功率在该第二OFDM符号上向该第二设备发送控制信令,其中,该第一功率不同于该第二功率。
结合上述第七方面,在一种可能的实现方式中,该收发器,用于在该第一OFDM符号上向该第二设备发送数据,以及在该第二OFDM符号上向该第二设备发送控制信令,包括:用于以第一功率在该第一OFDM符号上向该第二设备发送数据,以及,以第一功率在该第二OFDM符号上向该第二设备发送控制信令。
结合上述第七方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。
结合上述第七方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第七方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。
结合上述第七方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
结合上述第七方面,在一种可能的实现方式中,该通信装置为从设备,该第二设备为主控设备;该处理器,用于在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在该第一事件周期的第二时域资源上配置第二OFDM符号,包括:用于通过该收发器接收来自第二设备的配置信息;根据该配置信息在该第一事件周期的该第一时域资源上配置该第一OFDM符号,以及在该第一事件周期的该第二时域资源上配置该第二OFDM符号。
其中,第七方面中任一种可能的实现方式所带来的技术效果可参见上述第三方面的不同实现方式所带来的技术效果,此处不再赘述。
第八方面,提供了一种通信装置用于实现上述方法。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
结合上述第八方面,在一种可能的实现方式中,该通信装置为蓝牙芯片或者第二设备,该通信装置包括:收发器;该收发器,用于在第一OFDM符号上接收来自第一设备的数据,以及,在该第二OFDM符号上接收来自该第一设备的控制信令;其中,该第一OFDM符号所占用的第一时域资源与该第二OFDM符号所占用的第二时域资源之间没有时间间隔,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,该第一OFDM符号用于传输该第一设备与该通信装置之间的数据,该第二OFDM符号用于传输该第一设备与该通信装置之间的控制信令。
结合上述第八方面,在一种可能的实现方式中,该第一阈值为0.456微秒。
结合上述第八方面,在一种可能的实现方式中,该收发器,用于在第一OFDM符号上接收来自第一设备的数据,以及,在该第二OFDM符号上接收来自该第一设备的控制信令,包括:用于以第一功率在该第一OFDM符号上接收来自该第一设备的数据,以及,以第二功率在该第二OFDM符号上接收来自该第一设备的控制信令,其中,该第一功率不同于该第二功率。
结合上述第八方面,在一种可能的实现方式中,该收发器,用于在第一OFDM符号上接收来自第一设备的数据,以及,在该第二OFDM符号上接收来自该第一设备的控制信令,包括:用于以第一功率在该第一OFDM符号上接收来自该第一设备的数据,以及,以第一功率在该第二OFDM符号上接收来自该第一设备的控制信令。
结合上述第八方面,在一种可能的实现方式中,该第一OFDM符号中每个符号或该第二OFDM符号中每个符号的长度大于第二阈值。
结合上述第八方面,在一种可能的实现方式中,该第二阈值为2.539微秒。
结合上述第八方面,在一种可能的实现方式中,该第一OFDM符号和该第二OFDM符号所在的事件周期的长度大于第三阈值。
结合上述第八方面,在一种可能的实现方式中,该第三阈值为20.833微秒。
其中,第八方面中任一种可能的实现方式所带来的技术效果可参见上述第三方面的不同实现方式所带来的技术效果,此处不再赘述。
第九方面,提供了一种通信系统,包括上述第五方面所述的通信装置和上述第六方面所述的通信装置,或者,包括上述第七方面所述的通信装置和上述第八方面所述的通信装置。
第十方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中存储的计算机指令之后,根据该指令执行如上述第一方面、第二方面、第三方面或第四方面中任一方面所述的方法。
结合上述第十方面,在一种可能的实现方式中,通信装置还包括存储器;该存储器用于存储计算机指令。
结合上述第十方面,在一种可能的实现方式中,通信装置还包括通信接口;该通信接口用于该通信装置与其它设备进行通信。示例性的,该通信接口可以为收发器、输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。
结合上述第十方面,在一种可能的实现方式中,该通信装置可以是芯片或芯片系统。其中,当该通信装置是芯片系统时,该通信装置可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面、第二方面、第三方面或第四方面中任一方面所述的方法。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面、第二方面、第三方面或第四方面中任一方面所述的方法。
其中,第九方面至第十二方面中任一种可能的实现方式所带来的技术效果可参见上述第一方面或第三方面的不同实现方式所带来的技术效果,此处不再赘述。
附图说明
图1A为现有技术中事件周期的格式示意图一;
图1B为现有技术中事件周期的格式的示意图二;
图2为现有技术中长CP-OFDM符号和短CP-OFDM符号的结构示意图;
图3为本申请实施例提供的一种通信系统的架构示意图;
图4为本申请实施例提供的通信装置的结构示意图一;
图5为本申请实施例提供的一种短距离无线通信方法的流程图;
图6为本申请提供的事件周期的格式与现有技术中的事件周期的格式示意图一;
图7为本申请提供的事件周期的格式与现有技术中的事件周期的格式示意图二;
图8为本申请提供的事件周期的格式与现有技术中的事件周期的格式示意图三;
图9为本申请实施例提供的另一种短距离无线通信方法的流程图;
图10为本申请提供的事件周期的格式与现有技术中的事件周期的格式示意图四;
图11为本申请提供的事件周期的格式与现有技术中的事件周期的格式示意图五;
图12为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,循环前缀(cyclic prefix,CP)
车载无线短距离通信系统技术中,G符号、T符号或S符号通常为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,并且每个OFDM符号中引入CP,以消除符号间干扰(inter symbol interference,ISI)和载波间干扰(inter carrier interference,ICI)。
目前,CP的长度可以为0.163us或者0.456us。可以将具有长度为0.163us的CP的OFDM符号称为短CP-OFDM符号,具有长度为0.456us的CP的OFDM符号称为长CP-OFDM符号。图2示出了长CP-OFDM符号和短CP-OFDM符号的结构。短CP OFDM符号或长CP-OFDM符号中除CP之外的长度为64Ts,短CP-OFDM符号的CP长度为5Ts,短CP-OFDM符号的长度为5Ts+64Ts=69Ts,长CP-OFDM符号的CP长度为14Ts,长CP-OFDM符号的长度为14Ts+64Ts=78Ts。根据等式1Ts=1/30.72us可以计算出上述64Ts=64/30.72us≈2.083us,5Ts=5/30.72us≈0.163us,69Ts=69/30.72us≈2.246us,14Ts=14/30.72us≈0.456us,78Ts=78/30.72us≈2.539us。
第二,事件周期
时域上,G符号、T符号和S符号的配置是周期性重复的。一个事件周期即为其中的某个周期。在车载无线短距离通信系统技术中,事件周期的长度通常为20.833us。
第三,短距离无线通信标准
目前,主导的短距离无线通信标准为背景技术部分提及的车载无线短距离通信系统技术标准。然而,车载无线短距离通信系统技术标准主要针对车内使用环境设计,若将该标准推广至家居、商场、超市等场景下使用时,会存在如下问题:
问题一、系统的覆盖范围受限
如背景技术部分所述,S符号与T符号或G符号之间没有间隔。因此,当发送S符号和T符号,或者S符号和G符号时,若要使S符号与T符号或G符号的发送功率不同,为了确保控制信令或数据的传输质量,发送功率的调整不能占用每个符号中除CP之外的部分,而只能在CP内进行。但由于每个符号内的CP的长度很短,占用部分CP进行功率调整后会使得CP更短,从而消除ISI和ICI的能力减弱,甚至CP的长度不足支撑功率调整,进而影响到控制信令或数据的传输质量。也就是说,S符号只能与T符号或G符号一同以相同的发送功率发送。在接收端,以与上述发送功率匹配的同一自动增益控制(automatic gain control,AGC)档位接收S符号与T符号或G符号。
为了提高数据的传输效率,承载数据的G符号或T符号采用的调制阶数通常高于承载控制信令的S符号采用的调制阶数。低阶调制的S符号本可以以较大的发送功率发送,但由于S符号与G符号或T符号以相同的功率发送时功率会受限,因此,会导致S符号的覆盖范围降低,进而使得系统的覆盖范围受限。
问题二、发射功率过大、过小和接收AGC档位不理想
在下行传输中,由于主控设备可能同时向不同的从设备发送S符号和G符号,因此,S符号和G符号所需要的发射功率不同,所需要的接收AGC档位也不同。
示例性地,对于距离主控设备较近的从设备,G符号不需要太大的发射功率,但为了兼顾距离主控设备较远的从设备,系统需要较大的覆盖范围,即S符号需要较大的发射功率。一方面,由于S符号和G符号只能以相同的发送功率发送,因此,如果以较小的功率发送,会使S符号的发射功率过小,如果以较大的功率发送,又会使G符号的发射功率过大。另一方面,由于S符号和G符号只能以相同的AGC档位接收,因此,如果以与较小功率匹配的AGC档位接收,会使S符号的接收AGC档位不理想,如果以与较大功率匹配的AGC档位接收,又会使G符号的接收AGC档位不理想。
问题三、抗多径干扰能力弱
由于每个符号内的CP的长度很短,因此,会导致无法有效地消除符号间干扰,从而减弱系统的抗多径干扰能力以及高阶性能。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
如图3所示,为本申请实施例提供的一种通信系统30。该通信系统30包括第一设备301和第二设备302。
一种可能的实现方式中,第一设备301,用于在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,第一时域资源与第二时域资源之间存在时间间隔,第一OFDM符号用于传输第一设备301与第二设备302之间的数据,第二OFDM符号用于传输第一设备301与第二设备302之间的控制信令。第一设备301,还用于以第一功率在第一OFDM符号上向第二设备302发送数据,以及,以第二功率在第二OFDM符号上向第二设备302发送控制信令,其中,第一功率不同于第二功率。第二设备302,用于以第一功率在第一OFDM符号上接收来自第一设备301的数据,以及,以第二功率在第二OFDM符号上接收来 自第一设备301的控制信令。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
另一种可能的实现方式中,第一设备301,用于在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,第一时域资源与第二时域资源之间没有时间间隔。第一OFDM符号中每个符号或第二OFDM符号中每个符号的循环前缀的长度大于第一阈值。第一OFDM符号用于传输第一设备301与第二设备302之间的数据,第二OFDM符号用于传输第一设备301与第二设备302之间的控制信令。第一设备301,还用于在第一OFDM符号上向第二设备302发送数据,以及,在第二OFDM符号上向第二设备302发送控制信令。第二设备302,用于在第一OFDM符号上接收来自第一设备301的数据,以及在第二OFDM符号上接收来自第一设备301的控制信令。该方案的具体实现及技术效果将在后续方法实施例中详细描述,在此不予赘述。
可选的,本申请实施例中的第一设备或者第二设备的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的第一设备或者第二设备的相关功能可以通过图4中的通信装置400来实现。
图4所示为本申请实施例提供的通信装置400的结构示意图。该通信装置400包括一个或多个处理器401,通信线路402,以及至少一个通信接口(图4中仅是示例性的以包括通信接口404,以及一个处理器401为例进行说明),可选的还可以包括存储器403。
处理器401可以是一个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括通路,用于连接不同组件。
通信接口404,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口404也可以是位于处理器401内的收发电路,用以实现处理器的信号输入和信号输出。
存储器403可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器403用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请实施例中提供的短距离无线通信方法。
或者,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的短距离无线通信方法中的处理相关的功能,通信接口404负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置400可以包括多个处理器,例如图4中的处理器401和处理器407。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。
上述的通信装置400可以是一个通用装置或者是一个专用装置。例如通信装置400可以是蓝牙耳机、台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端装置、车载终端装置、嵌入式设备或具有图4中类似结构的设备。本申请实施例不限定通信装置400的类型。
下面将结合图1至图4对本申请实施例提供的短距离无线通信方法进行具体阐述。
如图5所示,为本申请实施例提供的一种短距离无线通信方法,该短距离无线通信方法包括如下步骤:
S501、第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号。其中,第一时域资源与第二时域资源之间存在时间间隔,第一OFDM符号用于传输第一设备与第二设备之间的数据,第二OFDM符号用于传输第一设备与第二设备之间的控制信令。
示例性地,第一设备可以为主控设备,第二设备可以为一个或多个从设备之一,或者,第一设备可以为一个或多个从设备之一,第二设备可以为主控设备,本申请实施例对此不作任何限定。
如图6所示,先以第一设备为主控设备,第二设备为一个或多个从设备之一为例,即以由主控设备至从设备的下行传输为例进行说明。第一OFDM符号为G符号,第一时域资源为G符号所占用的时域资源,第二OFDM符号为S(G)符号,第二时域资源为S(G)符号所占用的时域资源。如背景技术部分所述,现有技术中,S(G)符号与多个G符号之间没有间隔。而在本申请实施例中,S(G)符号与多个G符号之间存在时间间隔。需要说明的是,图6中的S符号可以表示S(G)符号。
如图6所示,再以第一设备为一个或多个从设备之一,第二设备为主控设备为例,即以由从设备至主控设备的上行传输为例进行说明。第一OFDM符号为T符号,第一时域资源为T符号所占用的时域资源,第二OFDM符号为S(T)符号,第二时域资 源为S(T)符号所占用的时域资源。如背景技术部分所述,现有技术中,S(T)符号与多个T符号之间没有间隔。而在本申请实施例中,S(T)符号与多个T符号之间存在时间间隔。需要说明的是,图6中的S符号还可以表示S(T)符号。
可选地,第一OFDM符号中每个OFDM符号或第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。在该方案中,通过增加循环前缀的长度,能够提高系统的抗多径干扰能力和高阶性能。
现有的通信标准中,不同标准对OFDM符号的CP长度有着不同的规定。以车载无线短距离通信系统技术标准为例,CP的长度通常为0.163us或者0.456us。示例性地,第一阈值可以为0.456us。
可选地,第一OFDM符号中每个符号或第二OFDM符号中每个符号的长度大于第二阈值。在该方案中,增加每个符号的长度有利于提高承载的数据和控制信令容量,从而能够提高信息传输效率。
现有的通信标准中,不同标准对OFDM符号的长度有着不同的规定。以车载无线短距离通信系统技术标准为例,OFDM符号的长度通常为2.246us或者2.539us。示例性地,第二阈值可以为2.539us。
示例性地,结合图6,图7示出了本申请实施例提供的另一种事件周期的格式。本申请实施例中,S符号与G符号或T符号之间存在时间间隔,每个符号的CP长度大于车载无线短距离通信系统技术标准中规定的0.456us,并且每个符号的长度大于车载无线短距离通信系统技术标准中规定的2.539us。
可选地,第一OFDM符号和第二OFDM符号所在的事件周期的长度大于第三阈值。在该方案中,增加事件周期的长度有利于增加每个事件周期内可容纳的符号数量,从而能够增加调度数据的灵活性。
现有的通信标准中,不同标准对事件周期的长度有着不同的规定。以车载无线短距离通信系统技术标准为例,事件周期的长度通常为20.833us。示例性地,第三阈值可以为20.833us。
示例性地,结合图7,图8示出了本申请实施例提供的又一种事件周期的格式。本申请实施例中,S符号与G符号或T符号之间存在时间间隔,每个符号的CP长度大于车载无线短距离通信系统技术标准中规定的0.456us,每个符号的长度大于车载无线短距离通信系统技术标准中规定的2.539us,并且S符号、G符号和T符号所在的事件周期的长度大于车载无线短距离通信系统技术标准中规定的20.833us。
可选地,第一设备为从设备,第二设备为主控设备;第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,包括:第一设备接收来自第二设备的配置信息;第一设备根据配置信息在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号。
在本申请实施例中,主控设备配置时域资源,从设备通过接收来自主控设备的配置信息来获得时域资源的配置方式,并根据该配置信息进行资源配置。例如,配置信息可以承载在信令上,通过广播的方式由主控设备发送至从设备。
S502、第一设备以第一功率在第一OFDM符号上向第二设备发送数据,以及,以 第二功率在第二OFDM符号上向第二设备发送控制信令。相应地,第二设备以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在第二OFDM符号上接收来自第一设备的控制信令。其中,第一功率不同于第二功率。
示例性地,第二设备以第一功率接收数据,具体可以通过以与第一功率匹配的AGC档位接收数据来实现。同样地,第二设备以第二功率接收控制信令,具体可以通过以与第二功率匹配的AGC档位接收控制信令来实现。
可选地,第二功率高于第一功率。在该方案中,由于控制信令的发送功率高于数据的发送功率,因此,可以改善控制信道的性能。
在本申请实施例提供的短距离无线通信方法中,第一时域资源与第二时域资源之间存在时间间隔的设计,使得第一设备可以利用该时间间隔进行发送功率的调整,从而第一设备可以以不同的发送功率发送第一OFDM符号和第二OFDM符号。在这种情况下,第二OFDM符号的发送功率不再受限于第一OFDM符号的发送功率,因此,可以扩大第二OFDM符号的覆盖范围,从而增强系统的覆盖能力。此外,当第一设备为主控设备,第二设备为从设备时,第一设备采用不同的发送功率发送第一OFDM符号和第二OFDM符号,可以有效地避免发射功率过大、过小和接收AGC档位不理想的问题。
如图9所示,为本申请实施例提供的另一种短距离无线通信方法,该短距离无线通信方法包括如下步骤:
S901、第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号。其中,第一时域资源与第二时域资源之间没有时间间隔,第一OFDM符号中每个符号或第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,第一OFDM符号用于传输第一设备与第二设备之间的数据,第二OFDM符号用于传输第一设备与第二设备之间的控制信令。
在本申请实施例提供的短距离无线通信方法中,通过增加CP的长度,能够提高系统的抗多径干扰能力和高阶性能。
如图10所示,先以第一设备为主控设备,第二设备为一个或多个从设备之一,第一阈值为车载无线短距离通信系统技术标准中规定的0.456us为例进行说明。在下行传输中,第一OFDM符号为G符号,第一时域资源为G符号所占用的时域资源,第二OFDM符号为S(G)符号,第二时域资源为S(G)符号所占用的时域资源。本申请实施例中,S(G)符号与多个G符号之间没有时间间隔,并且本申请实施例中每个符号的CP长度大于0.456us。
如图10所示,再以第一设备为一个或多个从设备之一,第二设备为主控设备,第一阈值为车载无线短距离通信系统技术标准中规定的0.456us为例进行说明。在上行传输中,第一OFDM符号为T符号,第一时域资源为T符号所占用的时域资源,第二OFDM符号为S(T)符号,第二时域资源为S(T)符号所占用的时域资源。本申请实施例中,S(T)符号与多个T符号之间没有时间间隔,并且本申请实施例中每个符号的CP长度大于0.456us。
可选地,第一OFDM符号中每个符号或第二OFDM符号中每个符号的长度大于第二阈值。在该方案中,增加每个符号的长度有利于提高承载的数据和控制信令容量, 从而能够提高信息传输效率。
示例性地,结合图10,图11示出了本申请实施例提供的另一种事件周期的格式。以第二阈值为车载无线短距离通信系统技术标准中规定的2.539us为例进行说明。本申请实施例中,S(G)符号与G符号,或者S(T)符号与T符号之间没有时间间隔,每个符号的CP长度大于0.456us,并且每个符号的长度大于2.539us。
可选地,第一OFDM符号和第二OFDM符号所在的事件周期的长度大于第三阈值。在该方案中,增加事件周期的长度有利于增加每个事件周期内可容纳的符号数量,从而能够增加调度数据的灵活性。示例性地,第三阈值可以为20.833us。
可选地,第一设备为从设备,第二设备为主控设备;第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,包括:第一设备接收来自第二设
备的配置信息;第一设备根据配置信息在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号。
S902、第一设备在第一OFDM符号上向第二设备发送数据,以及,在第二OFDM符号上向第二设备发送控制信令。相应地,第二设备在第一OFDM符号上接收来自第一设备的数据,以及,在第二OFDM符号上接收来自第一设备的控制信令。
可选地,第一设备在第一OFDM符号上向第二设备发送数据,以及,在第二OFDM符号上向第二设备发送控制信令,包括:第一设备以第一功率在第一OFDM符号上向第二设备发送数据,以及,以第一功率在第二OFDM符号上向第二设备发送控制信令。相应地,第二设备在第一OFDM符号上接收来自第一设备的数据,以及,在第二OFDM符号上接收来自第一设备的控制信令,包括:第二设备以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第一功率在第二OFDM符号上接收来自第一设备的控制信令。该方案与现有的车载无线短距离通信系统技术标准兼容,能够在对标准改动较小的基础上,提高系统的抗多径干扰能力和高阶性能。
可选地,第一设备在第一OFDM符号上向第二设备发送数据,以及,在第二OFDM符号上向第二设备发送控制信令,包括:第一设备以第一功率在第一OFDM符号上向第二设备发送数据,以及,以第二功率在第二OFDM符号上向第二设备发送控制信令,其中,第一功率不同于第二功率。相应地,第二设备在第一OFDM符号上接收来自第一设备的数据,以及,
在第二OFDM符号上接收来自第一设备的控制信令,包括:第二设备以第一功率在第一OFDM符号上接收来自第一设备的数据,以及以第二功率在第二OFDM符号上接收来自第一设备的控制信令。在该方案中,增加每个符号的CP长度的设计,使得第一设备可以借用部分CP进行功率调整,从而第一设备可以以不同的发送功率发送第一OFDM符号和第二OFDM符号。在这种情况下,第二OFDM符号的发送功率不再受限于第一OFDM符号的发送功率,因此,可以扩大第二OFDM符号的覆盖范围,从而增强系统的覆盖能力。此外,当第一设备为主控设备,第二设备为从设备时,第一设备采用不同的发送功率发送第一OFDM符号和第二OFDM符号,可以有效地避免发射功率过大、过小和接收AGC档位不理想的问题。
其中,由于上述图5或者图9所述的实施例中的第一设备和第二设备均可以采用 如图4所示的通信装置400的架构,因此,上述实施例中第一设备的动作可以由图4所示的通信装置400中的处理器401调用存储器403中存储的应用程序代码以指令第一设备执行,上述实施例中第二设备的动作可以由图4所示的通信装置400中的处理器401调用存储器403中存储的应用程序代码以指令第二设备执行,本实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由第一设备实现的方法和/或步骤,也可以由可用于第一设备的部件(例如芯片或者电路)实现;由第二设备实现的方法和/或步骤,也可以由可用于第二设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一设备,或者包含上述第一设备的装置,或者为可用于第一设备的部件;或者,该通信装置可以为上述方法实施例中的第二设备,或者包含上述第二设备的装置,或者为可用于第二设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12示出了一种通信装置12的结构示意图。该通信装置12包括收发器121。所述收发器121,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机或者通信接口。
以通信装置12为上述方法实施例中的第一设备为例,该通信装置12还包括处理器122,则:处理器122,用于在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,第一时域资源与第二时域资源之间存在时间间隔,第一OFDM符号用于传输通信装置12与第二设备之间的数据,第二OFDM符号用于传输通信装置12与第二设备之间的控制信令;收发器121,用于以第一功率在第一OFDM符号上向第二设备发送数据,以及,以第二功率在第二OFDM符号上向第二设备发送控制信令,其中,第一功率不同于第二功率。
一种可能的实现方式中,第二功率高于第一功率。
一种可能的实现方式中,第一OFDM符号中每个OFDM符号或第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。
一种可能的实现方式中,第一阈值为0.456微秒。
一种可能的实现方式中,第一OFDM符号中每个符号或第二OFDM符号中每个 符号的长度大于第二阈值。
一种可能的实现方式中,第二阈值为2.539微秒。
一种可能的实现方式中,第一OFDM符号和第二OFDM符号所在的事件周期的长度大于第三阈值。
一种可能的实现方式中,第三阈值为20.833微秒。
一种可能的实现方式中,通信装置12为从设备,第二设备为主控设备;处理器122,用于在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,包括:用于通过收发器121接收来自第二设备的配置信息;根据配置信息在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号。
以通信装置12为上述方法实施例中的第二设备为例,则:
收发器121,用于以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在第二OFDM符号上接收来自第一设备的控制信令;其中,第一OFDM符号所占用的第一时域资源与第二OFDM符号所占用的第二时域资源之间存在时间间隔,第一OFDM符号用于传输第一设备与通信装置12之间的数据,第二OFDM符号用于传输第一设备与通信装置12之间的控制信令,第一功率不同于第二功率。
一种可能的实现方式中,第二功率高于第一功率。
一种可能的实现方式中,第一OFDM符号中每个OFDM符号或第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。
一种可能的实现方式中,第一阈值为0.456微秒。
一种可能的实现方式中,第一OFDM符号中每个符号或第二OFDM符号中每个符号的长度大于第二阈值。
一种可能的实现方式中,第二阈值为2.539微秒。
一种可能的实现方式中,第一OFDM符号和第二OFDM符号所在的事件周期的长度大于第三阈值。
一种可能的实现方式中,第三阈值为20.833微秒。
或者,以通信装置12为上述方法实施例中的第一设备为例,该通信装置12还包括处理器122,则:处理器122,用于在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,第一时域资源与第二时域资源之间没有时间间隔,第一OFDM符号中每个符号或第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,第一OFDM符号用于传输通信装置12与第二设备之间的数据,第二OFDM符号用于传输通信装置12与第二设备之间的控制信令;收发器121,用于在第一OFDM符号上向第二设备发送数据,以及在第二OFDM符号上向第二设备发送控制信令。
一种可能的实现方式中,第一阈值为0.456微秒。
一种可能的实现方式中,收发器121,用于在第一OFDM符号上向第二设备发送数据,以及在第二OFDM符号上向第二设备发送控制信令,包括:用于以第一功率在第一OFDM符号上向第二设备发送数据,以及,以第二功率在第二OFDM符号上向第二设备发送控制信令,其中,第一功率不同于第二功率。
一种可能的实现方式中,收发器121,用于在第一OFDM符号上向第二设备发送数据,以及在第二OFDM符号上向第二设备发送控制信令,包括:用于以第一功率在第一OFDM符号上向第二设备发送数据,以及,以第一功率在第二OFDM符号上向第二设备发送控制信令。
一种可能的实现方式中,第一OFDM符号中每个符号或第二OFDM符号中每个符号的长度大于第二阈值。
一种可能的实现方式中,第二阈值为2.539微秒。
一种可能的实现方式中,第一OFDM符号和第二OFDM符号所在的事件周期的长度大于第三阈值。
一种可能的实现方式中,第三阈值为20.833微秒。
一种可能的实现方式中,通信装置12为从设备,第二设备为主控设备;处理器122,用于在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号,包括:用于通过收发器121接收来自第二设备的配置信息;根据配置信息在第一事件周期的第一时域资源上配置第一OFDM符号,以及在第一事件周期的第二时域资源上配置第二OFDM符号。
或者,以通信装置12为上述方法实施例中的第二设备为例,则:
收发器121,用于在第一OFDM符号上接收来自第一设备的数据,以及,在第二OFDM符号上接收来自第一设备的控制信令;其中,第一OFDM符号所占用的第一时域资源与第二OFDM符号所占用的第二时域资源之间没有时间间隔,第一OFDM符号中每个符号或第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,第一OFDM符号用于传输第一设备与通信装置12之间的数据,第二OFDM符号用于传输第一设备与通信装置12之间的控制信令。
一种可能的实现方式中,第一阈值为0.456微秒。
一种可能的实现方式中,收发器121,用于在第一OFDM符号上接收来自第一设备的数据,以及,在第二OFDM符号上接收来自第一设备的控制信令,包括:用于以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在第二OFDM符号上接收来自第一设备的控制信令,其中,第一功率不同于第二功率。
一种可能的实现方式中,收发器121,用于在第一OFDM符号上接收来自第一设备的数据,以及,在第二OFDM符号上接收来自第一设备的控制信令,包括:用于以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第一功率在第二OFDM符号上接收来自第一设备的控制信令。
一种可能的实现方式中,第一OFDM符号中每个符号或第二OFDM符号中每个符号的长度大于第二阈值。
一种可能的实现方式中,第二阈值为2.539微秒。
一种可能的实现方式中,第一OFDM符号和第二OFDM符号所在的事件周期的长度大于第三阈值。
一种可能的实现方式中,第三阈值为20.833微秒。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置12以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
当通信装置12为上述方法实施例中的第一设备或第二设备时,在一个简单的实施例中,本领域的技术人员可以想到该通信装置12可以采用图4所示的通信装置400的形式。
比如,图4所示的通信装置400中的处理器401或407可以通过调用存储器403中存储的计算机执行指令,使得通信装置400执行上述方法实施例中的短距离无线通信方法。具体的,图12中的处理器122的功能/实现过程可以通过图4所示的通信装置400中的处理器401或407调用存储器403中存储的计算机执行指令来实现。图12中的收发器121的功能/实现过程可以通过经由图4中的通信接口404连接的通信模块来实现。
由于本实施例提供的通信装置12可执行上述短距离无线通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种芯片系统,包括:至少一个处理器和接口,该至少一个处理器通过接口与存储器耦合,当该至少一个处理器执行存储器中的计算机程序或指令时,使得上述任一方法实施例中的方法被执行。在一种可能的实现方式中,该通信装置还包括存储器。可选的,该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或 无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种短距离无线通信方法,其特征在于,所述方法包括:
    第一设备在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在所述第一事件周期的第二时域资源上配置第二OFDM符号,所述第一时域资源与所述第二时域资源之间存在时间间隔,所述第一OFDM符号用于传输所述第一设备与第二设备之间的数据,所述第二OFDM符号用于传输所述第一设备与所述第二设备之间的控制信令;
    所述第一设备以第一功率在所述第一OFDM符号上向所述第二设备发送数据,以及,以第二功率在所述第二OFDM符号上向所述第二设备发送控制信令,其中,所述第一功率不同于所述第二功率。
  2. 根据权利要求1所述的方法,其特征在于,所述第二功率高于所述第一功率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一OFDM符号中每个OFDM符号或所述第二OFDM符号中每个OFDM符号的循环前缀的长度大于第一阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一阈值为0.456微秒。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一OFDM符号中每个符号或所述第二OFDM符号中每个符号的长度大于第二阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述第二阈值为2.539微秒。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一OFDM符号和所述第二OFDM符号所在的事件周期的长度大于第三阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述第三阈值为20.833微秒。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一设备为从设备,所述第二设备为主控设备;所述第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在所述第一事件周期的第二时域资源上配置第二OFDM符号,包括:
    所述第一设备接收来自所述第二设备的配置信息;
    所述第一设备根据所述配置信息在所述第一事件周期的所述第一时域资源上配置所述第一OFDM符号,以及在所述第一事件周期的所述第二时域资源上配置所述第二OFDM符号。
  10. 一种短距离无线通信方法,其特征在于,所述方法包括:
    第二设备以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在所述第二OFDM符号上接收来自所述第一设备的控制信令;
    其中,所述第一OFDM符号所占用的第一时域资源与所述第二OFDM符号所占用的第二时域资源之间存在时间间隔,所述第一OFDM符号用于传输第一设备与所述第二设备之间的数据,所述第二OFDM符号用于传输所述第一设备与所述第二设备之间的控制信令,所述第一功率不同于所述第二功率。
  11. 根据权利要求10所述的方法,其特征在于,所述第二功率高于所述第一功率。
  12. 一种短距离无线通信方法,其特征在于,所述方法包括:
    第一设备在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在所述第一事件周期的第二时域资源上配置第二OFDM符号,所述第一时域资源 与所述第二时域资源之间没有时间间隔,所述第一OFDM符号中每个符号或所述第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,所述第一OFDM符号用于传输所述第一设备与第二设备之间的数据,所述第二OFDM符号用于传输所述第一设备与所述第二设备之间的控制信令;
    所述第一设备在所述第一OFDM符号上向所述第二设备发送数据,以及,在所述第二OFDM符号上向所述第二设备发送控制信令。
  13. 根据权利要求12所述的方法,其特征在于,所述第一阈值为0.456微秒。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一设备在所述第一OFDM符号上向所述第二设备发送数据,以及,在所述第二OFDM符号上向所述第二设备发送控制信令,包括:
    所述第一设备以第一功率在所述第一OFDM符号上向所述第二设备发送数据,以及,以第二功率在所述第二OFDM符号上向所述第二设备发送控制信令,其中,所述第一功率不同于所述第二功率。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述第一OFDM符号中每个符号或所述第二OFDM符号中每个符号的长度大于第二阈值。
  16. 根据权利要求15所述的方法,其特征在于,所述第二阈值为2.539微秒。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,所述第一OFDM符号和所述第二OFDM符号所在的事件周期的长度大于第三阈值。
  18. 根据权利要求17所述的方法,其特征在于,所述第三阈值为20.833微秒。
  19. 根据权利要求12-18任一项所述的方法,其特征在于,所述第一设备为从设备,所述第二设备为主控设备;所述第一设备在第一事件周期的第一时域资源上配置第一OFDM符号,以及在所述第一事件周期的第二时域资源上配置第二OFDM符号,包括:
    所述第一设备接收来自所述第二设备的配置信息;
    所述第一设备根据所述配置信息在所述第一事件周期的所述第一时域资源上配置所述第一OFDM符号,以及在所述第一事件周期的所述第二时域资源上配置所述第二OFDM符号。
  20. 一种短距离无线通信方法,其特征在于,所述方法包括:
    第二设备在第一OFDM符号上接收来自第一设备的数据,以及,在第二OFDM符号上接收来自所述第一设备的控制信令;
    其中,所述第一OFDM符号所占用的第一时域资源与所述第二OFDM符号所占用的第二时域资源之间没有时间间隔,所述第一OFDM符号中每个符号或所述第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,所述第一OFDM符号用于传输所述第一设备与所述第二设备之间的数据,所述第二OFDM符号用于传输所述第一设备与所述第二设备之间的控制信令。
  21. 根据权利要求20所述的方法,其特征在于,所述第一阈值为0.456微秒。
  22. 根据权利要求19或20所述的方法,其特征在于,所述第二设备在所述第一OFDM符号上接收来自所述第一设备的数据,以及,在所述第二OFDM符号上接收来自所述第一设备的控制信令,包括:
    所述第二设备以第一功率在所述第一OFDM符号上接收来自所述第一设备的数据, 以及,以第二功率在所述第二OFDM符号上接收来自所述第一设备的控制信令,其中,所述第一功率不同于所述第二功率。
  23. 一种通信装置,其特征在于,所述通信装置包括:收发器和处理器;
    所述处理器,用于在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在所述第一事件周期的第二时域资源上配置第二OFDM符号,所述第一时域资源与所述第二时域资源之间存在时间间隔,所述第一OFDM符号用于传输所述通信装置与第二设备之间的数据,所述第二OFDM符号用于传输所述通信装置与所述第二设备之间的控制信令;
    所述收发器,用于以第一功率在所述第一OFDM符号上向所述第二设备发送数据,以及,以第二功率在所述第二OFDM符号上向所述第二设备发送控制信令,其中,所述第一功率不同于所述第二功率。
  24. 一种通信装置,其特征在于,所述通信装置包括:收发器;
    所述收发器,用于以第一功率在第一OFDM符号上接收来自第一设备的数据,以及,以第二功率在所述第二OFDM符号上接收来自所述第一设备的控制信令;
    其中,所述第一OFDM符号所占用的第一时域资源与所述第二OFDM符号所占用的第二时域资源之间存在时间间隔,所述第一OFDM符号用于传输第一设备与所述通信装置之间的数据,所述第二OFDM符号用于传输所述第一设备与所述通信装置之间的控制信令,所述第一功率不同于所述第二功率。
  25. 一种通信装置,其特征在于,所述通信装置包括:收发器和处理器;
    所述处理器,用于在第一事件周期的第一时域资源上配置第一正交频分复用OFDM符号,以及在所述第一事件周期的第二时域资源上配置第二OFDM符号,所述第一时域资源与所述第二时域资源之间没有时间间隔,所述第一OFDM符号中每个符号或所述第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,所述第一OFDM符号用于传输所述通信装置与第二设备之间的数据,所述第二OFDM符号用于传输所述通信装置与所述第二设备之间的控制信令;
    所述收发器,用于在所述第一OFDM符号上向所述第二设备发送数据,以及在所述第二OFDM符号上向所述第二设备发送控制信令。
  26. 一种通信装置,其特征在于,所述通信装置包括:收发器;
    所述收发器,用于在第一OFDM符号上接收来自第一设备的数据,以及,在所述第二OFDM符号上接收来自所述第一设备的控制信令;
    其中,所述第一OFDM符号所占用的第一时域资源与所述第二OFDM符号所占用的第二时域资源之间没有时间间隔,所述第一OFDM符号中每个符号或所述第二OFDM符号中每个符号的循环前缀的长度大于第一阈值,所述第一OFDM符号用于传输所述第一设备与所述通信装置之间的数据,所述第二OFDM符号用于传输所述第一设备与所述通信装置之间的控制信令。
  27. 一种通信系统,其特征在于,包括用于执行权利要求1-9中任一项所述方法的通信装置和用于执行权利要求10或11的通信装置,或者,包括用于执行权利要求12-19中任一项所述方法的通信装置和用于执行权利要求20-22中任一项所述方法的通信装置。
  28. 一种通信装置,其特征在于,包括:存储器以及与所述存储器耦合的处理器,所述存储器用于存储程序,所述处理器用于执行所述存储器存储的所述程序;当所述通信装置运行时,所述处理器运行所述程序,使得所述通信装置执行上述权利要求1-9中任一项所述的方法;或者,使得所述通信装置执行上述权利要求10或11所述的方法;或者,使得所述通信装置执行上述权利要求12-19中任一项所述的方法;或者,使得所述通信装置执行上述权利要求20-22中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行权利要求1-9、10、11、12-19或20-22中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机可以执行权利要求1-9、10、11、12-19或20-22中任一项所述的方法。
PCT/CN2021/127891 2021-11-01 2021-11-01 短距离无线通信方法、装置及系统 WO2023070654A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180102970.0A CN118044245A (zh) 2021-11-01 2021-11-01 短距离无线通信方法、装置及系统
PCT/CN2021/127891 WO2023070654A1 (zh) 2021-11-01 2021-11-01 短距离无线通信方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127891 WO2023070654A1 (zh) 2021-11-01 2021-11-01 短距离无线通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023070654A1 true WO2023070654A1 (zh) 2023-05-04

Family

ID=86159986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127891 WO2023070654A1 (zh) 2021-11-01 2021-11-01 短距离无线通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN118044245A (zh)
WO (1) WO2023070654A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100195566A1 (en) * 2009-02-03 2010-08-05 Krishnamurthy Sandeep H Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
CN109417525A (zh) * 2016-06-17 2019-03-01 Lg 电子株式会社 接收下行链路信号的方法和用户设备发送下行链路信号的方法和基站
CN109818721A (zh) * 2017-11-20 2019-05-28 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN112583751A (zh) * 2019-09-27 2021-03-30 华为技术有限公司 通信方法、装置以及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100195566A1 (en) * 2009-02-03 2010-08-05 Krishnamurthy Sandeep H Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
CN109417525A (zh) * 2016-06-17 2019-03-01 Lg 电子株式会社 接收下行链路信号的方法和用户设备发送下行链路信号的方法和基站
CN109818721A (zh) * 2017-11-20 2019-05-28 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
CN112583751A (zh) * 2019-09-27 2021-03-30 华为技术有限公司 通信方法、装置以及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Views on D2D discovery resource allocation", 3GPP TSG RAN WG1 MEETING #75, R1-135522, 2 November 2013 (2013-11-02), XP050751023 *

Also Published As

Publication number Publication date
CN118044245A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
WO2018228500A1 (zh) 一种调度信息传输方法及装置
WO2020063974A1 (zh) 功率指示方法及装置
WO2019096030A1 (zh) 跳频处理方法及设备
WO2020063909A1 (zh) 上行免动态授权传输的方法及装置
WO2019214523A1 (zh) 一种通信方法及装置
WO2020063728A1 (zh) 一种资源配置的方法、装置及系统
CN107959981B (zh) 一种通信终端和通信测试方法
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2019072206A1 (zh) 一种通信方法及装置
CN112399586A (zh) 配置时域资源的方法和装置
WO2022116014A1 (zh) 一种tbs确定方法
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2019029306A1 (zh) 传输下行控制信息的方法、装置和系统
WO2023070654A1 (zh) 短距离无线通信方法、装置及系统
WO2020143723A1 (zh) 数据传输方法及装置
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
WO2020192360A1 (zh) 通信方法及装置
WO2019096147A1 (zh) 一种控制信息的检测方法及装置
WO2018196624A1 (zh) 一种参数配置方法和装置
WO2023202667A1 (zh) 一种参考信号传输方法、装置及存储介质
WO2022110245A1 (zh) 一种资源指示方法及装置
WO2019141033A1 (zh) 信号的发送、接收方法、装置及存储介质
WO2024027759A1 (zh) 探测参考信号生成方法及装置
WO2024067189A1 (zh) 一种通信方法及装置
WO2024087223A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021962004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021962004

Country of ref document: EP

Effective date: 20240412