WO2023070535A1 - 显示装置、显示面板及其制造方法 - Google Patents

显示装置、显示面板及其制造方法 Download PDF

Info

Publication number
WO2023070535A1
WO2023070535A1 PCT/CN2021/127483 CN2021127483W WO2023070535A1 WO 2023070535 A1 WO2023070535 A1 WO 2023070535A1 CN 2021127483 W CN2021127483 W CN 2021127483W WO 2023070535 A1 WO2023070535 A1 WO 2023070535A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
offset
area
emitting
emitting units
Prior art date
Application number
PCT/CN2021/127483
Other languages
English (en)
French (fr)
Inventor
朱志坚
卢鹏程
李云龙
李东升
张大成
杨盛际
黄冠达
陈小川
Original Assignee
京东方科技集团股份有限公司
云南创视界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 云南创视界光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to GB2402604.9A priority Critical patent/GB2624569A/en
Priority to PCT/CN2021/127483 priority patent/WO2023070535A1/zh
Priority to CN202180003154.4A priority patent/CN116897611A/zh
Publication of WO2023070535A1 publication Critical patent/WO2023070535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display device, a display panel, and a method for manufacturing the display panel.
  • Virtual reality (virtual reality, VR) devices and augmented reality (augmented reality, AR) devices using near-eye display technology have been applied to games, medical care and other fields.
  • the optical system is used to image images within the focus range of the eyes according to the display content of the display panel.
  • the uniformity of displayed images of some near-eye display devices still needs to be improved.
  • the disclosure provides a display device, a display panel and a manufacturing method of the display panel.
  • a display panel comprising:
  • the driving backplane has a pixel area, the pixel area includes a central area and n offset areas surrounding the central area in turn, and n is a positive integer;
  • a plurality of light-emitting modules are arranged on one side of the driving backplane and distributed in the central area and the offset area; one of the light-emitting modules includes a plurality of light-emitting units, and one of the light-emitting units includes Directional distributed light emitting devices and converging lenses driving the backplane;
  • the center of the orthographic projection of the light-emitting device on the driving backplane is located at a distance from the center of the orthographic projection of the converging lens on the driving backplane.
  • One side of the central area, and the distance between the center of the orthographic projection of the light-emitting device on the driving backplane and the center of the orthographic projection of the converging lens on the driving backplane is the offset of the light-emitting unit displacement;
  • the extension direction of the line between the center of the orthographic projection of the light-emitting device on the driving backplane and the center of the orthographic projection of the converging lens on the driving backplane is the offset of the light-emitting device move direction;
  • the offset amounts of the light-emitting units in the same offset area are the same; the offset directions of the light-emitting units in the same light-emitting module are the same;
  • the offset of the light-emitting units in the central area is zero; the offset of the light-emitting units in any of the offset areas is greater than the offset of the light-emitting units in the central area, and each of the The offset of the light emitting units in the offset area increases toward a direction away from the central area.
  • the light emitting units are distributed in an array along a row direction and a column direction;
  • the component of the offset of the light-emitting units in each offset area in the row direction gradually increases toward both sides of the central area along the row direction;
  • the column direction component of the offset amount of the light emitting units in each offset area gradually increases toward both sides of the central area along the column direction.
  • the offset area includes a plurality of sub-areas distributed around the central area; the light emitting modules are distributed in each of the sub-areas;
  • the first central axis of the pixel region passes through at least one of the subregions, and the second central axis of the pixel region passes through at least one of the subregions;
  • the first central axis is a central axis extending along the row direction, and the second central axis is a central axis extending along the column direction;
  • the light emitting unit further includes:
  • a filter part arranged between the light emitting device and the converging lens
  • the colors of the filter parts of at least two different light emitting units of the same light emitting module are different.
  • the center of the orthographic projection of the filter part on the driving backplane coincides with the center of the orthographic projection of the converging lens on the driving backplane.
  • the component of the offset of any light-emitting unit in the row direction satisfies the following relational expression:
  • ⁇ S x is the component of the offset of any of the light-emitting units in the row direction
  • P x is the length of the filter portion of the light emitting unit corresponding to ⁇ S x in the row direction;
  • D x is the length of the light emitting device of the light emitting unit corresponding to ⁇ S x in the row direction.
  • the component of the offset of any light-emitting unit in the row direction satisfies the following relational expression:
  • ⁇ S y is the component of the offset of any of the light-emitting units in the column direction
  • P y is the length of the filter part of the light-emitting unit corresponding to ⁇ S y in the column direction;
  • D y is the length of the light emitting device of the light emitting unit corresponding to ⁇ S y in the column direction.
  • the offset of any one of the light emitting units satisfies the following relational expression:
  • ⁇ S ((2x ⁇ S xmax /W) 2 +(2y ⁇ S ymax /L) 2 ) 1/2 ;
  • ⁇ S is the offset of the light-emitting unit
  • x is the distance between the center of the sub-area where the light-emitting unit is located and the center of the central area in the row direction;
  • y is the distance between the center of the sub-region where the light-emitting unit is located and the center of the central region in the column direction;
  • ⁇ S xmax is the component of the offset of the light-emitting units in the offset area farthest from the central area in the row direction;
  • ⁇ S ymax is the component of the offset of the light-emitting units in the offset area farthest from the central area in the column direction;
  • W is the length of the pixel area in the row direction
  • L is the length of the pixel area in the column direction.
  • each of the offset regions is divided into m segments distributed sequentially in a direction away from the central region, and each of the segments includes a plurality of the offset regions ;
  • m is a positive integer;
  • the offset of the light-emitting units in each offset area increases linearly with the increase of the distance between the offset area and the central area, and the increase of the offset
  • the rate is the growth rate of the segment in question
  • At least two of said segments have different growth rates.
  • the sections include a first section, a second section and a third section that are sequentially distributed in a direction away from the central area;
  • the growth rate of the second section is greater than the growth rate of the first section, and the growth rate of the third section is smaller than the growth rate of the first section.
  • the direction of the maximum luminous intensity of the light-emitting units passing through the sub-region of the first central axis is the same as the direction perpendicular to the driving backplane.
  • the included angle of the direction is the first included angle; the included angle between the direction where the luminous intensity of the light-emitting unit in the sub-region passing through the second central axis is the largest and the direction perpendicular to the driving backplane is the second included angle;
  • the first included angle and the second included angle satisfy the following relationship:
  • is the first included angle
  • is the second included angle
  • the converging lens is a spherical segment structure protruding away from the driving backplane.
  • the display panel further includes:
  • the encapsulation layer covers each of the light-emitting modules; the filter part is disposed on a side of the encapsulation layer away from the driving backplane.
  • At least two of the light emitting modules are distributed along the row direction; at least two of the light emitting modules are distributed along the column direction.
  • the number of the light-emitting units in the k+1th offset area in the direction away from the central area is greater than the number of light-emitting units included in the k-th offset area.
  • the number of units, k is a positive integer less than n.
  • the number of units is not less than the number of the light-emitting units passing through the k-th offset region, and k is a positive integer smaller than n.
  • the orthographic projection of the light-emitting device on the driving backplane and the orthographic projection of the converging lens on the driving backplane are at least partially overlapped.
  • the orthographic projections of the gaps between the adjacent two converging lenses on the driving backplane are at least partially located in the adjacent The gap between the two light emitting devices is within the orthographic projection on the driving backplane;
  • the orthographic projections of the gaps between the adjacent two converging lenses on the driving backplane are all
  • the gap between two adjacent light-emitting devices is outside the orthographic projection of the driving backplane
  • k is a positive integer smaller than n.
  • the width of the filter part in the k+1th offset region in the direction away from the central region is larger than that in the kth offset region compared with the kth +1 the width of the filters of the same color in the offset area;
  • k is a positive integer smaller than n.
  • a method of manufacturing a display panel including:
  • the pixel area includes a central area and n offset areas surrounding the central area in turn; n is a positive integer;
  • a converging lens corresponding to the light emitting device is formed on the side of the light emitting device away from the driving backplane, and the converging lens is used to converge the light emitted by the light emitting device within a specified angle;
  • Each of the light-emitting units is divided into a plurality of light-emitting modules, one of the light-emitting modules includes a plurality of the light-emitting units, and one of the light-emitting units includes a light-emitting device and its corresponding converging lens;
  • the center of the orthographic projection of the light-emitting device on the driving backplane is located at a distance from the center of the orthographic projection of the converging lens on the driving backplane.
  • One side of the central area, and the distance between the center of the orthographic projection of the light-emitting device on the driving backplane and the center of the orthographic projection of the converging lens on the driving backplane is the offset of the light-emitting unit displacement;
  • the extension direction of the line between the center of the orthographic projection of the light-emitting device on the driving backplane and the center of the orthographic projection of the converging lens on the driving backplane is the offset of the light-emitting device move direction;
  • the offset amounts of the light-emitting units in the same offset region are the same; the offset directions of the light-emitting units in the same light-emitting module are the same;
  • the offset of the light-emitting units in the central area is zero; the offset of the light-emitting units in any of the offset areas is greater than the offset of the light-emitting units in the central area, and each of the The offset of the light emitting units in the offset area increases toward a direction away from the central area.
  • a display device including the display panel described in any one of the above.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a display panel of the present disclosure.
  • FIG. 2 is a schematic diagram of the distribution of the central area and the offset area of an embodiment of the display panel of the present disclosure.
  • FIG. 3 is a schematic diagram of distribution of light emitting modules in an embodiment of the display panel of the present disclosure.
  • FIG. 4 is a schematic diagram of a light emitting unit of an embodiment of the display panel of the present disclosure.
  • FIG. 5 is a schematic diagram of the distribution of chief ray angles in the column direction in an embodiment of the display panel of the present disclosure.
  • FIG. 6 is a schematic diagram of the distribution of chief ray angles in the row direction in an embodiment of the display panel of the present disclosure.
  • FIG. 7 is a schematic diagram of the relationship between the chief ray angle and the half-image height in an embodiment of the display panel of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the positional relationship between the A feature (light-emitting module, light-emitting unit, light-emitting device, filter, etc.) outside the driving backplane described in this article and the central area and the offset area refers to the orthographic projection of the A feature on the driving backplane
  • the positional relationship with the center zone and the offset zone means that the orthographic projection of the light emitting module on the driving backplane is located in the offset area.
  • the row direction and the column direction are only used to describe two directions perpendicular to each other.
  • the X direction is the row direction
  • the Y direction is the column direction
  • the row direction is not limited to the horizontal direction.
  • the column orientation must be portrait. Those skilled in the art can know that if the display panel is rotated, the actual orientation of the row direction and the column direction may change. Therefore, the embodiments herein do not limit the actual orientation of the row direction and the column direction.
  • near-eye display devices such as virtual reality devices and augmented reality devices may include a display panel and an optical path assembly. View images. Due to the low efficiency of the optical path components and high light loss, the brightness of the near-eye display device is affected, especially when the near-eye display device is used outdoors, if the brightness of the near-eye display device is low, it is not conducive to users to watch images.
  • the light path component is arranged on the light output side of the display panel, and is used for adjusting the light path of the display panel and forming an image for users to watch in a designated space.
  • the display panel may include a plurality of light-emitting devices and a plurality of lenses, each lens is arranged on the light-emitting side of the light-emitting device, and is arranged in one-to-one correspondence with each light-emitting device, and the light emitted by the light-emitting device can be converged to a specified range through the lens, Avoid excessive divergence of light, so that the brightness of the display panel can be improved through the lens.
  • the luminous range required by the near-eye display device is larger than the actual luminous range of the display panel, resulting in near-eye The brightness uniformity of the picture presented by the display device is low.
  • the display panel of the present disclosure may include a driving backplane 1 and a plurality of light emitting modules 01, wherein:
  • the driving backplane 1 has a pixel area 10, and the pixel area 10 includes a central area 101 and n offset areas 102 surrounding the central area 101 in turn; n is a positive integer;
  • a plurality of light-emitting modules 01 are arranged on one side of the drive backplane 1 and distributed in the central area 101 and the offset area 102; one light-emitting module 01 includes a plurality of light-emitting units 011, and one light-emitting unit 011 includes Distributed light emitting devices 0111 and converging lenses 0112;
  • the center of the orthographic projection of the light-emitting device 0111 on the driving backplane 1 is located on the side away from the central area 101 of the center of the orthographic projection of the converging lens 0112 on the driving backplane 1 , and the distance between the center of the orthographic projection of the light-emitting device 0111 on the driving backplane 1 and the center of the orthographic projection of the converging lens 0112 on the driving backplane 1 is the offset of the light-emitting unit 011;
  • the extension direction of the line between the center of the orthographic projection on 1 and the center of the orthographic projection of the converging lens 0112 on the driving backplane 1 is the offset direction of the light emitting device 0111;
  • the offset amounts of the light emitting units 011 in the same offset area 102 are the same; the offset directions of the light emitting units 011 in the same light emitting module 01 are the same;
  • the offset of the light emitting unit 011 in the central area 101 is zero; the offset of the light emitting unit 011 in any offset area 102 is greater than the offset of the light emitting unit 011 in the central area 101, and each offset area 102
  • the offset of the light-emitting units 011 in the inner region increases toward the direction away from the central region 101 .
  • the display panel in the embodiment of the present disclosure can adjust the light emitting angle of the light emitting unit 011 by shifting the position of the light emitting device 0111 and its converging lens 0112 in the same light emitting unit 011, so as to be compatible with near-eye display devices such as virtual devices or enhanced devices.
  • the optical path components of the near-eye display device are matched to improve the uniformity of the light emitted by the near-eye display device, so that the uniformity of the picture actually seen by the user is improved.
  • the angle between the direction of the maximum luminous intensity of any light emitting unit 011 and the direction perpendicular to the screen may be defined as the chief ray angle.
  • the chief ray angles of the light-emitting units 011 in the same offset area 102 are the same, and the chief ray angles of the light-emitting units 011 in different offset areas 102 increase away from the central area 101, thereby increasing the light-emitting range of the display panel.
  • the luminous range of the display panel is matched with the optical path components, and the brightness uniformity of the picture presented by the near-eye display device is improved.
  • the driving backplane 1 of the display panel may include a pixel area 10 and a peripheral area 11 , the peripheral area 11 is located outside the pixel area 10 , and the peripheral area 11 may be an annular area surrounding the pixel area 10 .
  • the driving backplane 1 is used to form a driving circuit for driving each light emitting device 0111 to emit light, and the driving circuit may include a pixel circuit and a peripheral circuit, wherein:
  • the pixel circuits can be 2T1C, 4T2C, 6T1C or 7T1C pixel circuits, as long as they can drive the light emitting devices 0111 to emit light. Its structure is not particularly limited.
  • the number of pixel circuits may be the same as the number of light emitting devices 0111, and they are connected to the light emitting devices 0111 in a one-to-one correspondence, so as to respectively control each light emitting device 0111 to emit light.
  • nTmC indicates that a pixel circuit includes n transistors (indicated by the letter "T") and m capacitors (indicated by the letter "C").
  • the same pixel circuit can also drive multiple light emitting devices 0111 .
  • the peripheral circuit is located in the peripheral area 11 and connected to the pixel circuit.
  • the peripheral circuit may include at least one of a light-emitting control circuit, a gate drive circuit, a source drive circuit, and a power supply circuit, and of course other circuits, as long as the light-emitting device 0111 can be driven to emit light through the pixel circuit.
  • the driving backplane 1 may include a substrate and at least one wiring layer disposed on the substrate, wherein the substrate may be a silicon base, and the driving circuit may be formed on the silicon base through a semiconductor process.
  • both the pixel circuit and the peripheral circuit may include a plurality of transistors, and a well region may be formed in the silicon substrate through a doping process, and the well region has two doped regions distributed at intervals.
  • a well region as an example: a gate is provided on one side of the driving backplane 1 , that is, the orthographic projection of the gate on the substrate is located between two doped regions.
  • At least one wiring layer is connected to the doped region, and one wiring layer may include a source and a drain connected to two doped regions of the same well region.
  • the transistors are connected through each wiring layer to form a driving circuit.
  • the specific connection lines and wiring patterns depend on the circuit structure, and are not specifically limited here.
  • the wiring layer can be covered with a flat layer, and its material can be silicon oxide, silicon oxynitride or silicon nitride, which is formed layer by layer through multiple deposition and polishing processes, and the flat layer can be formed by stacking multiple insulating film layers.
  • a light-emitting functional layer 2 can be provided on the driving backplane 1, and the light-emitting functional layer 2 can include a plurality of light-emitting devices 0111, and each light-emitting device 0111 is distributed in an array on one side of the driving backplane 1, for example, each The light emitting device 0111 is disposed on the surface of the flat layer away from the substrate.
  • Each light-emitting device 0111 may include a first electrode 21, a second electrode 24, and a light-emitting layer 23 between the first electrode 21 and the second electrode 24, and both the first electrode 21 and the second electrode 24 may be connected to the wiring layer .
  • the peripheral circuit may further include a power circuit connected to the second electrode 24 for inputting a power signal to the second electrode 24 .
  • the peripheral circuit can input a driving signal to the first electrode 21 and a power signal to the second electrode 24 through the pixel circuit, so as to control the light emitting device 0111 to emit light.
  • each light-emitting device 0111 can emit light of the same color, cooperate with the color filter layer 4 on the side of the second electrode 24 facing away from the substrate to realize color display, and the embodiment of the present disclosure uses this color display
  • the scheme is described as an example.
  • each light-emitting device can also be made to emit light independently, and different light-emitting devices 0111 can emit light in different colors.
  • a plurality of light emitting devices 0111 can be formed by the first electrode layer, the pixel definition layer 22, the light emitting layer 23 and the second electrode 24, wherein:
  • the first electrode layer is disposed on the surface of the flat layer away from the substrate.
  • the first electrode layer may include a plurality of first electrodes 21 distributed at intervals, and the orthographic projection of each first electrode 21 on the substrate is located in the pixel region 10 and connected to the pixel circuit, and one first electrode 21 is connected to one pixel circuit.
  • the pixel definition layer 22 covers the flat layer and exposes each first electrode 21.
  • the pixel definition layer 22 is provided with an opening 221 exposing the first electrode 21, through the pixel definition layer 22 and its opening 221
  • the range of each light emitting device 0111 can be defined, and the light emitting range of the light emitting device 0111 is also limited by the opening 221 , and the boundary of the opening 221 is the boundary of the light emitting device 0111 .
  • the direction in which the light emitting intensity of the light emitting device 0111 is maximum may be a direction perpendicular to the first electrode 21 and passing through the center of the opening 221 .
  • the material of the pixel definition layer 22 may be insulating materials such as silicon oxide and silicon nitride, which are not specifically limited here.
  • the light-emitting layer 23 covers the pixel definition layer 22 and the first electrode 21, and the light-emitting layer 23 is located in an opening 221 and is stacked with the first electrode to form a light-emitting device 0111, that is, each light-emitting device 0111 may share the same light emitting layer 23 , that is, the parts of the light emitting layer 23 located in different openings 221 belong to different light emitting devices 0111 .
  • each light-emitting device 0111 shares the light-emitting layer 23, different light-emitting devices 0111 emit the same color.
  • the light emitting layer 23 may include multiple light emitting sublayers connected in series along the direction away from the substrate, at least one light emitting sublayer is connected in series with an adjacent light emitting sublayer through the charge generation layer.
  • each luminescent sublayer can emit light, and different luminescent sublayers can be used to emit light of different colors.
  • the second electrode 24 covers the light emitting layer 23 , and the orthographic projection of the second electrode 24 on the substrate can cover the pixel area 10 and extend into the peripheral area 11 .
  • Each light emitting device 0111 may share the same second electrode 24 .
  • the voltage difference between the second electrode 24 and the first electrode 21 reaches the voltage difference that enables the light-emitting layer 23 to emit light, the light-emitting layer 23 can be made to emit light. Therefore, by controlling the power signal input to the second electrode 24 and input to the The voltage of the driving signal of the first electrode 21 is used to control the light emitting layer 23 to emit light.
  • the display panel of the present disclosure may further include an encapsulation layer 3 that may cover each light emitting device 0111 .
  • the encapsulation layer 3 is disposed on the side of the second electrode 24 facing away from the substrate, and is located between the color filter layer 4 and the second electrode 24 to block the erosion of external water and oxygen.
  • the encapsulation layer 3 can be a single-layer or multi-layer structure.
  • the encapsulation layer 3 can include a first encapsulation sublayer 31, a second encapsulation sublayer 32, and a third encapsulation sublayer 33 stacked in sequence in a direction away from the substrate, wherein
  • the material of the first encapsulation sublayer 31 and the second encapsulation sublayer 32 can be inorganic insulating materials such as silicon nitride (SiN), aluminum oxide (AL 2 O 3 ), for example, the material of the first encapsulation sublayer 31 is nitrogen
  • the material of the second encapsulation sublayer 32 is aluminum oxide; the material of the third encapsulation sublayer 33 can be an organic material such as parylene.
  • the display panel can also include a color filter layer 4, which can be arranged on the side of the second electrode 24 away from the substrate, and includes a plurality of filter parts 0113, each of which emits light.
  • the device 0111 and each filter part 0113 are arranged opposite to each other in a direction perpendicular to the substrate, that is, the orthographic projection of a filter part 0113 on the flat layer at least partially overlaps with a first electrode 21 .
  • Each filter portion 0113 includes at least three color filter portions 0113 , for example, a filter portion 0113 that can transmit red light, a filter portion 0113 that can transmit green light, and a filter portion 0113 that can transmit blue light. After the light emitted by each light-emitting device 0111 is filtered by the filter part 0113, monochromatic light of different colors can be obtained, thereby realizing color display.
  • the shape of the orthographic projection of the filter portion 0113 on the substrate can be larger than the opening 221 of the pixel definition layer 22, and the orthographic projection of each opening 221 on the substrate is located at the orthographic projection of each filter portion 0113 on the substrate. within the projection.
  • the color filter layer 4 may further include a light-shielding part separating the filter part 0113 , the light-shielding part is opaque and shields the area between the two light-emitting devices 0111 .
  • the filter part 0113 can be directly spaced from the filter part 0113 by using a light-shielding material; or, in some embodiments of the present disclosure, adjacent filter parts 0113 can be placed in the area corresponding to the area between two adjacent light-emitting devices 0111 They are stacked, and the colors of light transmitted by the two are different, so that the stacked area is opaque.
  • the color filter layer 4 can also include a transparent part. In the direction perpendicular to the substrate, a transparent part can be connected with A light-emitting unit 011 is arranged opposite to each other, so that the color filter layer 4 can also pass through white light, and the brightness can be increased through white light.
  • the side of the color filter layer 4 facing away from the driving backplane 1 can be provided with a light-gathering layer.
  • the light-gathering layer includes a plurality of converging lenses 0112 distributed in an array. 0111 are set in one-to-one correspondence, of course, each filter part 0113 is also set in one-to-one correspondence.
  • the light emitted by any light-emitting device 0111 can pass through its corresponding filter part 0113 and the converging lens 0112, and the converging lens 0112 can converge the light within a specified range, so as to improve the brightness of the display panel.
  • the structure of the converging lens 0112 is not particularly limited here, as long as the above converging function can be realized.
  • the converging lens 0112 can be a spherical segment structure protruding away from the driving backplane 1 , and its surface can be surrounded by a plane and a spherical cap.
  • each light-emitting module 01 is located on the side of the driving backplane 1, and can include a plurality of light-emitting units 011, each light emitting unit 011 can be distributed in an array along the row direction and the column direction.
  • Each light-emitting unit 011 may include a light-emitting device 0111 and its corresponding converging lens 0112, and a filter part 0113 between the light-emitting device 0111 and the converging lens 0112. The color of its light is defined by the filter part 0113.
  • a light-emitting module 01 can be regarded as a pixel, and each light-emitting unit 011 included in it can be regarded as a sub-pixel.
  • one light emitting module 01 may include three light emitting units 011 with different light emitting colors, such as a red light emitting unit 011 , a green light emitting unit 011 and a blue light emitting unit 011 .
  • the pixel area 10 of the driving backplane 1 includes a central area 101 and a plurality of offset areas 102 surrounding the central area 101 in turn.
  • the offset areas 102 can extend along a circular track around the central area 101.
  • the circular trajectory can be a circular ring, of course, it can also be a polygonal ring such as a square ring or other shapes.
  • the offset region 102 can be a continuous closed area extending along the circular track, or a discontinuous area distributed along the circular track at intervals.
  • the plurality of offset regions 102 may be distributed in a plurality of concentric rings. Meanwhile, the central area 101 and each offset area 102 are continuously distributed, the central area 101 is connected to the adjacent offset area 102 , and two adjacent offset areas 102 are connected.
  • each light emitting module 01 can be distributed in the central area 101 and the offset area 102 , that is, the light emitting modules 01 are provided in the range of the central area 101 and each offset area 102 .
  • Any offset region 102 may be composed of a plurality of subregions 1021 distributed around the central region 101 , and each light emitting module 01 is distributed in each subregion 1021 .
  • the sub-area 1021 can be a detection area when detecting the local brightness of the display panel, and the center of the detection area can be distributed in a ring around the center of the central area 101 to form an offset area 102 .
  • the sub-region 1021 may be the same size and shape as the central region 101 .
  • the sub-region 1021 may be a circular region with a diameter of 0.2mm-0.5mm.
  • the pixel area 10 is rectangular, and at least the outermost offset area 102 is a discontinuous annular area formed by a plurality of sub-areas 1021 distributed at intervals, and at least a part of the offset area 102 is Continuous circular area.
  • At least two light emitting modules 01 are distributed along the row direction; at least two light emitting modules 01 are distributed along the column direction; that is, in any offset area 102, in the row direction and column direction, There are at least two light emitting modules 01.
  • the number of light emitting units 011 in the k+1th offset region 102 in the direction away from the central region is greater than the number of light emitting units 011 included in the kth offset region 102 number
  • k is a positive integer less than n. That is to say, among two adjacent offset regions 102 , the number of light-emitting units 011 in the offset region 102 away from the central region 101 is greater than the number of light-emitting units 011 in the offset region 102 close to the central region 101 .
  • k is a positive integer smaller than n.
  • the orthographic projection of the gap between the adjacent two converging lenses 0112 on the driving backplane 1 is at least partly located between the adjacent two light-emitting devices
  • the gap between 0111 is within the orthographic projection on the drive backplane 1;
  • the orthographic projections of the gaps between the adjacent two converging lenses 0112 on the driving backplane 1 are all located in the adjacent two light-emitting units.
  • the gap between devices 0111 is outside the orthographic projection on the drive backplane 1 .
  • k is a positive integer smaller than n.
  • the gap between two adjacent light emitting devices 0111 may refer to the gap between 21 of two adjacent light emitting devices 0111 , or may refer to the area between two adjacent openings 221 of the pixel definition layer 22 .
  • the first central axis S1 of the pixel region 10 can pass through at least one sub-region 1021 of each offset region 102
  • the second central axis S2 of the pixel region 10 can pass through each offset region 102
  • the first central axis S1 is the central axis extending along the row direction X of the pixel region 10
  • the second central axis S2 is the central axis extending along the column direction Y of the pixel region 10
  • the first central axis S1 and the second central axis S2 are The centers of the pixel regions 10 intersect, and the center of the pixel regions 10 is the center of the central region 101 .
  • the distance between the subregion 1021 and the central region 101 can be defined as the distance (OP) between the center (P) of the subregion 1021 and the center (O) of the central region 101, and the offset region 102 where the center of the subregion 1021 is located is The offset region 102 where the subregion 1021 is located, and not every defined subregion 1021 must be completely located in an offset region 102 .
  • the direction of the maximum luminous intensity of the light emitting unit 011 can be adjusted Relative to the angle perpendicular to the direction of driving the backplane 1 , that is, adjusting the light emitting angle of the light emitting unit 011 , thereby adjusting the light emitting range.
  • the center (i) of the orthographic projection of the light-emitting device 0111 on the driving backplane 1 can be located at the orthographic projection of the converging lens 0112 on the driving backplane 1
  • the center (j) of is away from the side of the central area 101, that is to say, the center of the light-emitting device 0111 of a light-emitting unit 011 is offset to the outside of the central area 101 relative to the center of the converging lens 0112 corresponding to it, so that the The direction of the maximum luminous intensity of the light-emitting unit 011 increases outward relative to the angle perpendicular to the direction of the driving backplane 1, so that the light-emitting range of the pixel area 10 increases, so as to adapt to the optical path components of the near-eye display device and make the near-eye display device image
  • the uniformity of brightness is improved.
  • the center (i) of the orthographic projection of the light-emitting device 0111 on the driving backplane 1 and the center (j) of the orthographic projection of the converging lens 0112 on the driving backplane 1 ) can be defined as the offset ⁇ S of the light-emitting unit 011;
  • the extension direction of the line (ij) is the offset direction of the light emitting device 0111; as shown in Figure 5 and Figure 6, the angle between the direction of the maximum luminous intensity of the light emitting unit 011 and the direction perpendicular to the driving backplane 1 is the chief ray angle.
  • the light emitting range of any light emitting unit 011 is the chief ray angle ⁇ specified angle ⁇ , for example, the specified angle ⁇ can be 15°, of course, the specified angle can also be 20° or 10°, etc. , depends specifically on the light emitting range of the light emitting device 0111 and the size of the filter part 0113 and the converging lens 0112 , and is not particularly limited here.
  • the offsets of the light-emitting units 011 in the same offset area 102 are the same, so that the chief ray angles of the light-emitting units 011 in the same offset area 102 have the same magnitude, but the offset direction can be radial along the circumferential direction around the central area 101
  • the offset direction of each light-emitting unit 011 of the same light-emitting module 01 is the same, so as to avoid affecting the image display due to the different chief ray angles of each light-emitting unit 011 of the same light-emitting module 01.
  • the orthographic projection of the light-emitting device 0111 on the driving backplane 1 and the orthographic projection of the converging lens 0112 on the driving backplane 1 are at least partially coincident, of course, the two orthographic projections may be included or completely coincident relation. That is to say, the offset between the converging lens 0112 and the corresponding light-emitting device 0111 is not greater than the maximum dimension of the light-emitting device 0111 in the direction parallel to the driving backplane 1, so as to ensure that the light emitted by the light-emitting device 0111 can irradiate the corresponding converging Lens 0112.
  • the offset of the light-emitting unit 011 in the central area 101 is zero, that is, the chief ray angle of the light-emitting unit 011 in the central area 101 is zero, and the direction of its maximum brightness is perpendicular to Drive backplane 1.
  • the offset of the light-emitting units 011 in any offset area 102 is greater than the offset of the light-emitting units 011 in the central area 101, and the offset of the light-emitting units 011 in different offset areas 102 is farther away from the central area 101.
  • the direction increases, so that the chief ray angle increases away from the central area 101, thereby increasing the luminous range.
  • the offset ⁇ S of any light-emitting unit 011 can be decomposed into the component ⁇ S x along the row direction and the component ⁇ S y along the column direction.
  • both the component in the row direction and the component in the column direction can be is zero, for example, the component in the row direction and the component in the column direction of the offset of the light emitting unit 011 in the central area 101 are both zero.
  • the square of the offset is equal to the sum of the squares of the row direction component and the column direction component.
  • the component of the offset amount of the light emitting units 011 in each offset area 102 in the row direction gradually increases from the central area 101 to both sides of the central area 101 along the row direction.
  • the column direction component of the offset amount of the light emitting units 011 in each offset area 102 gradually increases from the central area 101 to both sides of the central area 101 along the column direction.
  • the component of the offset of the light-emitting units 011 in the sub-region 1021 where the first central axis S1 passes is zero in the column direction, that is, the offset direction is the extension direction of the first central axis S1.
  • the row direction component of the offset of the light emitting units 011 in the sub-region 1021 where the second central axis S2 passes is zero, that is, the offset direction is the extension direction of the second central axis S2.
  • the light emitting units 011 may be distributed symmetrically about the first central axis S1 and the second central axis S2 respectively.
  • the offset of any light-emitting unit 011 may satisfy the following relationship:
  • ⁇ S is the offset of the light emitting unit 011
  • x is the distance between the center of the sub-region 1021 where the light-emitting unit 011 is located and the center of the central region 101 in the row direction;
  • y is the distance between the center of the sub-region 1021 where the light-emitting unit 011 is located and the center of the central region 101 in the column direction;
  • ⁇ S xmax is the component of the offset in the row direction of the light emitting units 011 in the offset area 102 farthest from the central area 101 . It should be noted that, in any column of the two columns of light-emitting units 011 farthest from the central area 101 in the row direction, the offsets of different light-emitting units 011 are different, but the components of each light-emitting unit 011 in the row direction are the same. is ⁇ S xmax .
  • ⁇ S ymax is the column direction component of the offset of the light emitting units 011 in the offset area 102 farthest from the central area 101 . It should be noted that, in any of the two columns of light-emitting units 011 farthest from the central area 101 in the column direction, the offsets of different light-emitting units 011 are different, but the components of each light-emitting unit 011 in the column direction are the same. The components are all ⁇ S ymax .
  • W is the length of the pixel region 10 in the row direction
  • L is the length of the pixel region 10 in the column direction.
  • W is the width
  • L is the length
  • L:W is the aspect ratio, which can be 16:9 or 4:3, etc., of course, can also be 1:1 , without any special limitation here.
  • W and L can be represented by units such as cm and mm, and can also be represented by the number of rows and columns of the light emitting unit 011 .
  • each offset region 102 may be divided into m segments distributed sequentially in a direction away from the central region 101 , where m is a positive integer.
  • Each section includes a plurality of offset regions 102 , that is, m is less than n, and the number of offset regions 102 in different sections may be the same or different, which is not specifically limited here.
  • the offset of the light-emitting unit 011 of each offset area 102 increases linearly with the increase of the distance between the offset area 102 and the central area 101, and the growth rate of the offset can be defined as the area segment growth rate.
  • the distance between the offset area 102 and the central area 101 may be the distance between the center of the offset area 102 and the central area 101 .
  • the growth rate of the offset may be the ratio of the largest offset to the smallest offset in the segment.
  • the growth rate of different sections can be different, so that the offset of each section increases non-linearly in the direction away from the central area 101, and the chief ray angle also increases non-linearly, so that it is more in line with the requirements of the optical path components. match.
  • each section may include a first section, a second section and a third section which are sequentially distributed away from the central area 101 .
  • the growth rate of the second section may be greater than the growth rate of the first section, and the growth rate of the third section may be smaller than the growth rate of the first section.
  • a plurality of sections can be divided according to the distance between the offset area 102 and the center of the pixel area 10, and the offset required by the outermost offset area 102 of each section can be determined through optical simulation respectively. Then, based on these offsets, the offsets required by each offset area 102 are calculated according to the distance between the offset area 102 and the center of the pixel area 10, so as to realize the segmented linear gradient offset.
  • the chief ray angle can be increased non-linearly with the increase of the half-image height of the pixel area 10 . Referring to FIG. 7 , the dashed line in FIG. 7 shows the actual trend of non-linear increase of the chief ray angle of multiple segments, and the solid line shows the ideal trend of the chief ray angle derived from optical simulation. It can be seen that the actual trend roughly matches the ideal trend.
  • the chief ray angle of the light emitting unit 011 in the subregion 1021 passing through the first central axis S1 is the first included angle ;
  • the chief ray angle of the light emitting unit 011 in the sub-region 1021 passing through the second central axis S2 is the second included angle.
  • the first included angle and the second included angle satisfy the following relationship:
  • is the first included angle
  • is the second included angle
  • W and L are the same as W and L in relational expression (1).
  • the center of the orthographic projection of the filter part 0113 on the driving backplane 1 may coincide with the center of the orthographic projection of the corresponding converging lens 0112 on the driving backplane 1, that is, In any light emitting unit 011 , the filter part 0113 and the converging lens 0112 are not offset, but the light emitting device 0111 is offset relative to the filter part 0113 and the converging lens 0112 .
  • the filter part 0113 is not shifted relative to the converging lens 0112 , light emitted from the same filter part 0113 can be prevented from entering two adjacent converging lenses 0112 at the same time, thereby preventing cross-color between adjacent light emitting units 011 .
  • the component of the offset of any light-emitting unit in the row direction may satisfy the following relational expression:
  • ⁇ S x is the component of the offset of any light-emitting unit 011 in the row direction
  • P x is the length in the row direction of the filter part 0113 of the light emitting unit 011 corresponding to ⁇ S x ;
  • D x is the length of the light emitting device 0111 of the light emitting unit 011 corresponding to ⁇ S x in the row direction.
  • the above relation (3) can limit the component of the offset of the light-emitting unit 011 in the row direction, which is beneficial to prevent the light emitted by the light-emitting device 0111 from entering the adjacent light-emitting unit 011 due to the excessive offset.
  • the filter part 0113 it is beneficial to avoid cross-color occurrence in adjacent light-emitting units 011 and ensure the uniformity of chromaticity.
  • the component of the offset of any light emitting unit 011 in the row direction satisfies the following relational expression:
  • ⁇ S y is the component of the offset of any light-emitting unit 011 in the column direction;
  • P y is the length of the filter part 0113 of the light emitting unit 011 corresponding to ⁇ S y in the column direction;
  • D y is the length of the light emitting device 0111 of the light emitting unit 011 corresponding to ⁇ S y in the column direction.
  • the above-mentioned relation (4) can limit the component of the offset of the light-emitting unit 011 in the column direction, which is beneficial to prevent the light emitted by the light-emitting device 0111 from entering the adjacent light-emitting unit 011 due to the excessive offset.
  • the light filter part 0113 it is beneficial to avoid color crossover in adjacent light emitting units 011 and ensure the uniformity of chromaticity.
  • the above-mentioned ⁇ S x and ⁇ S y can be defined at the same time, that is, the relational formula (3) and the relational formula (4) can be used to define at the same time, so that the offset of the light-emitting unit 011 ⁇
  • the two components of S are limited to avoid cross-color to the greatest extent.
  • the width of the filter part in order to realize the offset of the filter part 0113 relative to its corresponding light emitting device 0111, can be increased along the direction away from the central region 101, specifically, The width of the filter part 0113 in the k+1th offset area 102 in the direction away from the central area 101 is larger than the filter part 0113 of the same color as in the k+1th offset area 102 in the kth offset area 102. the width of the light part 0113; and k is a positive integer smaller than n.
  • the present disclosure also provides a method for manufacturing a display panel.
  • the display panel is the display panel in any of the above embodiments, and its specific structure will not be described in detail here.
  • the manufacturing method may include step S110-step S130, wherein :
  • Step S110 forming a drive backplane 1 with a pixel area 10, the pixel area 10 includes a central area and n offset areas 102 surrounding the central area in turn; n is a positive integer;
  • Step S120 forming a plurality of light emitting devices 0111 arrayed in the central area and the offset area 102 on one side of the driving backplane 1;
  • Step S130 forming a converging lens 0112 corresponding to the light emitting device 0111 on the side of the light emitting device 0111 away from the driving backplane 1, the converging lens 0112 is used to converge the light emitted by the light emitting device 0111 within a specified angle;
  • Each light emitting unit 011 is divided into a plurality of light emitting modules 01, a light emitting module 01 includes a plurality of light emitting units 011, a light emitting unit 011 includes a light emitting device 0111 and its corresponding converging lens 0112;
  • the center of the orthographic projection of the light-emitting device 0111 on the driving backplane 1 is located on the side away from the center of the orthographic projection of the converging lens 0112 on the driving backplane 1, And the distance between the center of the orthographic projection of the light emitting device 0111 on the driving backplane 1 and the center of the orthographic projection of the converging lens 0112 on the driving backplane 1 is the offset of the light emitting unit 011;
  • the extension direction of the line between the center of the orthographic projection on the drive backplane 1 and the center of the orthographic projection of the converging lens 0112 on the driving backplane 1 is the offset direction of the light emitting device 0111;
  • the offset amounts of the light emitting units 011 in the same offset area 102 are the same; the offset directions of the light emitting units 011 in the same light emitting module 01 are the same;
  • the offset of the light-emitting unit 011 in the central area is zero; the offset of the light-emitting unit 011 in any offset area 102 is greater than the offset of the light-emitting unit 011 in the central area, and each offset area 102 The offset of the light emitting unit 011 increases toward a direction away from the central area.
  • the present disclosure also provides a display device, which may include a display panel, and the structure of the display panel may refer to the implementation of the display panel above, and will not be described in detail here. Since the display device adopts the display panel of the present disclosure, the beneficial effect of the display device can also refer to the beneficial effect of the display panel.
  • the display device of the present disclosure can be used in near-eye display devices such as virtual reality devices and augmented reality devices, and is used for emitting light to an optical path component of the near-eye display device so as to present images.
  • the detailed principle and structure of the near-eye display device are not particularly limited here, as long as it can realize image display.
  • the light emitting range of the display device can be matched with the optical path assembly, so that the brightness uniformity of the screen of the near-eye display device is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示装置、显示面板及其制造方法,显示面板包括驱动背板(1)和驱动背板(1)一侧的多个发光模块(01),驱动背板具有含中心区(101)和n个偏移区(102)的像素区(10),n为正整数。发光模块(01)包括多个发光单元(011),发光单元(011)包括对应的发光器件(0111)和汇聚透镜(0112);在偏移区(102)的任一发光单元中,发光器件(0111)的中心偏移至汇聚透镜(0112)的中心远离中心区(101)的一侧,得到偏移量和偏移方向;同一偏移区(102)的发光单元(011)的偏移量相同;同一发光模块(01)的发光单元(011)的偏移方向相同;各偏移区(102)的发光单元(011)的偏移量向远离中心区(101)增大。本公开可提高近眼显示设备的画面的亮度的均一性。 (图1)

Description

显示装置、显示面板及其制造方法 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示装置、显示面板及显示面板的制造方法。
背景技术
采用近眼显示技术的虚拟现实(virtual reality,VR)设备和增强现实(augmented reality,AR)设备已经应用到游戏、医疗等领域。利用光学系统根据显示面板显示内容在眼睛的聚焦范围内成像。但是,显示有的近眼显示设备显示图像的均一性仍有待提高。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开提供一种显示装置、显示面板及显示面板的制造方法。
根据本公开的一个方面,提供一种显示面板,包括:
驱动背板,具有像素区,所述像素区包括中心区和依次围绕于所述中心区外的n个偏移区,n为正整数;
多个发光模块,设于所述驱动背板一侧,且分布于所述中心区和所述偏移区;一所述发光模块包括多个发光单元,一所述发光单元包括沿远离所述驱动背板的方向分布的发光器件和汇聚透镜;
在所述偏移区内的任一发光单元中,所述发光器件在所述驱动背板上的正投影的中心位于所述汇聚透镜在所述驱动背板上的正投影的中心远离所述中心区的一侧,且所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的距离为所述发光单元的偏移量;所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的连线的延伸方向为所述发光器件的偏移方向;
同一所述偏移区内的发光单元的偏移量相同;同一所述发光模块的发光单元的偏移方向相同;
所述中心区内的发光单元的所述偏移量为零;任一所述偏移区内的发光单元的偏移量大于所述中心区内的发光单元的偏移量,且各所述偏移区内的发光单元的偏移量向远离所述中心区的方向增大。
在本公开的一种示例性实施方式中,所述发光单元沿行方向和列方向阵列分布;
各所述偏移区内的发光单元的偏移量在所述行方向上的分量,沿所述行方向朝所述中心区的两侧逐渐增大;
各所述偏移区内的发光单元的偏移量在所述列方向上的分量,沿所述列方向朝所述中心区的两侧逐渐增大。
在本公开的一种示例性实施方式中,所述偏移区包括围绕所述中心区分布的多个子区域;所述发光模块分布于各所述子区域内;
在同一所述偏移区中,所述像素区的第一中轴线经过至少一个所述子区域,所述像素区的第二中轴线经过至少一个所述子区域;所述第一中轴线为沿所述行方向延伸的中轴线,所述第二中轴线为沿所述列方向延伸的中轴线;
所述第一中轴线经过的子区域内的所述发光单元的偏移量在所述列方向上的分量为零;所述第二中轴线经过的子区域内的所述发光单元的偏移量在所述行方向上的分量为零。
在本公开的一种示例性实施方式中,所述发光单元还包括:
滤光部,设于所述发光器件和所述汇聚透镜之间;
同一所述发光模块的至少两个不同发光单元的所述滤光部的颜色不同。
在本公开的一种示例性实施方式中,所述滤光部在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心重合。
在本公开的一种示例性实施方式中,任一所述发光单元的偏移量在所述行方向上的分量满足如下关系式:
0≤△S x≤(P x-D x)/2;
△S x为任一所述发光单元的偏移量在所述行方向上的分量;
P x为△S x对应的发光单元的滤光部在所述行方向上的长度;
D x为△S x对应的发光单元的发光器件在所述行方向上的长度。
在本公开的一种示例性实施方式中,任一所述发光单元的偏移量在所述行方向上的分量满足如下关系式:
0≤△S y≤(P y-D y)/2;
△S y为任一所述发光单元的偏移量在所述列方向上的分量;
P y为△S y对应的发光单元的滤光部在所述列方向上的长度;
D y为△S y对应的发光单元的发光器件在所述列方向上的长度。
在本公开的一种示例性实施方式中,任一所述发光单元的偏移量满足如下关系式:
△S=((2x△S xmax/W) 2+(2y△S ymax/L) 2) 1/2
△S为所述发光单元的偏移量;
x为所述发光单元所在的子区域的中心与所述中心区的中心在所述行方向上的距离;
y为所述发光单元所在的子区域的中心与所述中心区的中心在所述列方向上的距离;
△S xmax为距离所述中心区最远的偏移区内的发光单元的偏移量在所述行方向上的分量;
△S ymax为距离所述中心区最远的偏移区内的发光单元的偏移量在所述列方向上的分量;
W为所述像素区在所述行方向上的长度;
L为所述像素区在所述列方向上的长度。
在本公开的一种示例性实施方式中,各所述偏移区划分为向远离所述中心区的方向依次分布的m个区段,每个所述区段包括多个所述偏移区;m为正整数;
在任一所述区段中,各所述偏移区的发光单元的偏移量随所述偏移区与所述中心区的距离的增大而线性增大,且所述偏移量的增长率为所述区段的增长率;
至少两个所述区段的增长率不同。
在本公开的一种示例性实施方式中,所述区段包括向远离所述中心 区的方向依次分布的第一区段、第二区段和第三区段;
所述第二区段的增长率大于所述第一区段的增长率,所述第三区段的增长率小于所述第一区段的增长率。
在本公开的一种示例性实施方式中,在同一所述偏移区中,经过所述第一中轴线的子区域内的发光单元的发光强度最大的方向与垂直于所述驱动背板的方向的夹角为第一夹角;经过所述第二中轴线的子区域内的发光单元的发光强度最大的方向与垂直于所述驱动背板的方向的夹角为第二夹角;
所述第一夹角和所述第二夹角满足如下关系式:
α=βW/L;
α为第一夹角,β为第二夹角。
在本公开的一种示例性实施方式中,所述汇聚透镜为向远离所述驱动背板的方向凸起的球缺结构。
在本公开的一种示例性实施方式中,所述显示面板还包括:
封装层,覆盖各所述发光模块;所述滤光部设于所述封装层背离所述驱动背板的一侧。
在本公开的一种示例性实施方式中,在同一所述偏移区内,至少两个所述发光模块沿所述行方向分布;至少两个所述发光模块沿所述列方向分布。
在本公开的一种示例性实施方式中,在远离所述中心区的方向上的第k+1个偏移区中的所述发光单元的个数大于第k个偏移区中包括的发光单元的个数,k为小于n的正整数。
在本公开的一种示例性实施方式中,至少存在一通过所述中心区的中心的直线,在远离所述中心区的方向上的第k+1个偏移区中穿过的所述发光单元的个数不小于在第k个偏移区中穿过的所述发光单元的个数,k为小于n的正整数。
在本公开的一种示例性实施方式中,在同一所述发光单元中,所述发光器件在所述驱动背板上的正投影与所述汇聚透镜在所述驱动背板上的正投影至少部分重合。
在本公开的一种示例性实施方式中,相邻两所述汇聚透镜间具有间 隙;
在远离所述中心区的方向上的第k个偏移区的相邻两所述发光单元中,相邻两所述汇聚透镜的间隙在所述驱动背板上的正投影至少部分位于相邻两所述发光器件之间的间隙在所述驱动背板上的正投影内;
在远离所述中心区的方向上的第k+1个所述偏移区的相邻两所述发光单元中,相邻两所述汇聚透镜的间隙在所述驱动背板上的正投影全部位于相邻两所述发光器件之间的间隙在所述驱动背板上的正投影外;
k为小于n的正整数。
在本公开的一种示例性实施方式中,在远离所述中心区的方向上的第k+1个偏移区中的滤光部的宽度大于第k个偏移区中与所述第k+1个偏移区中相同颜色的滤光部的宽度;
k为小于n的正整数。
根据本公开的一个方面,提供一种显示面板的制造方法,包括:
形成一具有像素区的驱动背板,所述像素区包括中心区和依次围绕于所述中心区外的n个偏移区;n为正整数;
在所述驱动背板的一侧形成阵列分布于所述中心区和所述偏移区内的多个发光器件;
在所述发光器件背离所述驱动背板的一侧形成与所述发光器件一一对应的汇聚透镜,所述汇聚透镜用于使所述发光器件发出的汇聚于指定角度内;
各所述发光单元划分为多个发光模块,一所述发光模块包括多个所述发光单元,一所述发光单元包括一发光器件及其对应的汇聚透镜;
在所述偏移区内的任一发光单元中,所述发光器件在所述驱动背板上的正投影的中心位于所述汇聚透镜在所述驱动背板上的正投影的中心远离所述中心区的一侧,且所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的距离为所述发光单元的偏移量;所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的连线的延伸方向为所述发光器件的偏移方向;
同一所述偏移区内的发光单元的偏移量相同;同一所述发光模块的 发光单元的偏移方向相同;
所述中心区内的发光单元的所述偏移量为零;任一所述偏移区内的发光单元的偏移量大于所述中心区内的发光单元的偏移量,且各所述偏移区内的发光单元的偏移量向远离所述中心区的方向增大。
根据本公开的一个方面,提供一种显示装置,包括上述任意一项所述的显示面板。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开显示面板一实施方式的截面示意图。
图2为本公开显示面板一实施方式的中心区和偏移区的分布示意图。
图3为本公开显示面板一实施方式的发光模块的分布示意图。
图4为本公开显示面板一实施方式的一发光单元的示意图。
图5为本公开显示面板一实施方式中在列方向上的主光线角的分布示意图。
图6为本公开显示面板一实施方式中在行方向上的主光线角的分布示意图。
图7为本公开显示面板一实施方式中主光线角和半像高的关系示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反, 提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
本文中描述的驱动背板之外的A特征(发光模块、发光单元、发光器件、滤光部等)与中心区和偏移区的位置关系,是指A特征在驱动背板上的正投影与中心区和偏移区的位置关系。例如,发光模块位于偏移区内是指,发光模块在驱动背板上的正投影位于偏移区内。
行方向和列方向仅用于描述相互垂直的两个方向,在本公开的附图示出的实施方式中,X方向为行方向,Y方向为列方向,但不限定行方向一定是横向,列方向一定是纵向。本领域技术人员可以知晓的是,若显示面板发生旋转,则行方向和列方向的实际朝向可能发生变化,因此,本文的实施方式并不构成对行方向和列方向的实际朝向的限定。
相关技术中,虚拟现实设备和增强现实设备等近眼显示设备可包括显示面板和光路组件,光路组件设于显示面板的出光侧,用于调节显示面板的光路,并在指定空间内形成可供用户观看的图像。由于光路组件的效率较低,光损耗较多,对近眼显示设备的亮度造成影响,特别是在户外使用时,若近眼显示设备的亮度较低,不利于用户观看图像。光路组件设于显示面板的出光侧,用于调节显示面板的光路,并在指定空间内形成可供用户观看的图像。其中,显示面板可包括多个发光器件和多个透镜,各透镜设于发光器件的出光侧,且与各发光器件一一对应设置,通过透镜可使发光器件发出的光线汇聚至指定的范围,避免光线过于发散,从而可通过透镜提高显示面板的亮度。
但是,发明人发现,由于用户看到的图像是通过光路组件对光路进 行调节后所形成的图像,不是直接看到显示面板。而光路系统对显示面板的光线进行调节后所呈现的画面与显示面板直接显示的画面的亮度和发光范围并不一致,近眼显示设备所需的发光范围是大于显示面板实际发光的范围的,导致近眼显示设备所呈现的画面的亮度均一性较低。
本公开实施方式提供了一种显示面板,如图1-图3所示,本公开的显示面板可包括驱动背板1和多个发光模块01,其中:
驱动背板1具有像素区10,像素区10包括中心区101和依次围绕于中心区101外的n个偏移区102;n为正整数;
多个发光模块01设于驱动背板1一侧,且分布于中心区101和偏移区102;一发光模块01包括多个发光单元011,一发光单元011包括沿远离驱动背板1的方向分布的发光器件0111和汇聚透镜0112;
在偏移区102内的任一发光单元011中,发光器件0111在驱动背板1上的正投影的中心位于汇聚透镜0112在驱动背板1上的正投影的中心远离中心区101的一侧,且发光器件0111在驱动背板1上的正投影的中心与汇聚透镜0112在驱动背板1上的正投影的中心间的距离为发光单元011的偏移量;发光器件0111在驱动背板1上的正投影的中心与汇聚透镜0112在驱动背板1上的正投影的中心间的连线的延伸方向为发光器件0111的偏移方向;
同一偏移区102内的发光单元011的偏移量相同;同一发光模块01的发光单元011的偏移方向相同;
中心区101内的发光单元011的偏移量为零;任一偏移区102内的发光单元011的偏移量大于中心区101内的发光单元011的偏移量,且各偏移区102内的发光单元011的偏移量向远离中心区101的方向增大。
本公开实施方式的显示面板,通过使同一发光单元011中的发光器件0111及其汇聚透镜0112的位置偏移,可调节发光单元011的发光角度,以便与虚拟设备或增强设备等近眼显示设备中的光路组件相匹配,使近眼显示设备的出光的均一性提高,使用户实际看到的画面的均一性提高。
具体而言,为了便于描述技术效果,可将任一发光单元011的发光强度最大的方向与垂直于屏幕的方向的夹角定义为主光线角。
同一偏移区102内的发光单元011的主光线角的大小相同,不同偏移区102的发光单元011的主光线角向远离中心区101的方向增大,从而使显示面板发光范围增大,以使显示面板的发光范围与光路组件匹配,提高近眼显示设备呈现的画面的亮度的均一性。
下面对本公开显示面板实现显示功能的结构进行详细说明:
如图1-图3所示,显示面板的驱动背板1可包括像素区10和外围区11,外围区11位于像素区10外,外围区11可以是围绕像素区10设置的环形区域。驱动背板1用于形成驱动各发光器件0111发光的驱动电路,驱动电路可包括像素电路和外围电路,其中:
像素电路和发光器件0111的数量均可以是多个,且像素电路位于像素区10内,像素电路可以是2T1C、4T2C、6T1C或7T1C等像素电路,只要能驱动发光器件0111发光即可,在此不对其结构做特殊限定。像素电路的数量可与发光器件0111的数量相同,且一一对应地与发光器件0111连接,以便分别控制各个发光器件0111发光。其中,nTmC表示一个像素电路包括n个晶体管(用字母“T”表示)和m个电容(用字母“C”表示)。当然,同一像素电路也可以驱动多个发光器件0111。
外围电路位于外围区11,且与像素电路连接。外围电路可包括发光控制电路、栅极驱动电路和源极驱动电路以及电源电路中的至少一个,当然还可以包括其它电路,只要能通过像素电路驱动发光器件0111发光即可,
在本公开的一些实施方式中,驱动背板1可包括衬底和设于衬底上的至少一层走线层,其中,衬底可为硅基底,驱动电路可通过半导体工艺形成于硅基底上,例如,像素电路和外围电路均可包括多个晶体管,可通过掺杂工艺在硅基底中形成阱区,阱区具有间隔分布的两个掺杂区。同时,以一个阱区为例:驱动背板1一侧设有栅极,即栅极在衬底上的正投影位于两掺杂区之间。至少一走线层和掺杂区连接,且一走线层可包括连接于同一阱区的两掺杂区的源极和漏极。通过各走线层对晶体管进行连接,可形成驱动电路,具体连接线路和走线图案视电路结构而定,在此不做特殊限定。
走线层上可覆盖平坦层,其材料可采用氧化硅、氮氧化硅或氮化硅,通过多次沉积和抛光工艺逐层形成,平坦层可由多个绝缘膜层层叠而成。
如图1-图3所示,驱动背板1上可设置发光功能层2,发光功能层2可包括多个发光器件0111,各发光器件0111阵列分布于驱动背板1一侧,例如,各发光器件0111设于平坦层背离衬底的表面。每个发光器件0111可包括第一电极21、第二电极24以及位于第一电极21和第二电极24之间的发光层23,第一电极21和第二电极24均可与走线层连接。同时,外围电路还可包括与第二电极24连接的电源电路,用于向第二电极24输入电源信号。外围电路可通过像素电路向第一电极21输入驱动信号,并向第二电极24输入电源信号,从而控制发光器件0111发光。
为了实现彩色显示,可以使各发光器件0111均发出相同颜色的光线,配合位于第二电极24背离衬底一侧的彩膜层4,实现彩色显示,本公开的实施方式以此种彩色显示的方案为例进行说明。当然,也可以使各个发光其器件分别独立发光,且不同的发光器件0111的发光颜色可以不同。
在本公开的一些实施方式中,如图1所示,可通过第一电极层、像素定义层22、发光层23和第二电极24形成多个发光器件0111,其中:
第一电极层设于平坦层背离衬底的表面。第一电极层可包括多个间隔分布的第一电极21,且各第一电极21在衬底上的正投影位于像素区10,且与像素电路连接,一个第一电极21连接一个像素电路。
如图1所示,像素定义层22覆盖平坦层,且露出各第一电极21,具体而言,像素定义层22设有露出第一电极21的开口221,通过像素定义层22及其开口221可限定出各个发光器件0111的范围,发光器件0111的发光范围也受到该开口221的限定,开口221的边界即为发光器件0111的边界。发光器件0111的发光强度最大的方向可为垂直于第一电极21且经过开口221的中心的方向。像素定义层22的材料可以是氧化硅、氮化硅等绝缘材料,在此不做特殊限定。
如图1所示,发光层23覆盖像素定义层22和第一电极21,发光层23位于一开口221内且与第一电极层叠的区域用于形成发光器件0111,也就是说,各个发光器件0111可共用同一发光层23,即,发光层23位于不同开口221内的部分属于不同的发光器件0111。此外,由于各发光 器件0111共用发光层23,使得不同的发光器件0111的发光颜色相同。
举例而言:发光层23可包括沿背离衬底的方向依次串联的多层发光子层,至少一发光子层通过电荷生成层与相邻的一发光子层串联。在向第一电极21和第二电极24施加电信号时,各发光子层均可发光,且不同的发光子层可用于发出不同颜色的光线。
如图1所示,第二电极24覆盖发光层23,且第二电极24在衬底上的正投影可覆盖像素区10,并延伸至外围区11内。各个发光器件0111可共用同一第二电极24。第二电极24与第一电极21之间的电压差达到能使发光层23发光的压差时,可使发光层23发光,因此,可通过控制输入至第二电极24的电源信号和输入至第一电极21的驱动信号的电压来控制发光层23发光。
如图1所示,在本公开的一些实施方式中,本公开的显示面板还可包括封装层3,其可覆盖各发光器件0111。例如,封装层3设于第二电极24背离衬底的一侧,且位于彩膜层4和第二电极24之间,用于阻隔外界水、氧的侵蚀。封装层3可为单层或多层结构,例如,封装层3可包括向背离衬底的方向依次层叠的第一封装子层31、第二封装子层32和第三封装子层33,其中,第一封装子层31和第二封装子层32的材料可以是氮化硅(SiN)、氧化铝(AL 2O 3)等无机绝缘材料,例如,第一封装子层31的材料为氮化硅,第二封装子层32的材料为氧化铝;第三封装子层33的材料可为聚对二甲苯(Parylene)等有机材料。
如图1所示,为了实现彩色显示,显示面板还可包括彩膜层4,彩膜层4可设于第二电极24背离衬底的一侧,且包括多个滤光部0113,各发光器件0111与各滤光部0113在垂直于衬底的方向上一一相对设置,即一滤光部0113在平坦层上的正投影与一第一电极21至少部分重合。各个滤光部0113中至少包括三种颜色的滤光部0113,例如,可透红光的滤光部0113、可透过绿光的滤光部0113和可透过蓝光的滤光部0113。各发光器件0111发出的光线经过滤光部0113的滤光作用后,可得到不同颜色的单色光,从而实现彩色显示。
滤光部0113在衬底上的正投影的形状可大于像素定义层22的开口221,且各开口221在衬底上的正投影一一对应地位于各滤光部0113在 衬底上的正投影以内。
如图1所示,彩膜层4还可包括分隔滤光部0113的遮光部,遮光部不透光,并遮挡两发光器件0111之间的区域。滤光部0113可直接采用遮光材料与滤光部0113间隔设置;或者,在本公开的一些实施方式中,可以使相邻的滤光部0113在对应于相邻两发光器件0111之间的区域层叠设置,且二者透光的光线的颜色不同,从而使得层叠区域不透光。
此外,在本公开的一些实施方式中,在发光层23发出白光的基础上,为了提高画面亮度,彩膜层4还可包括透明部,在垂直于衬底的方向上,一透明部可与一发光单元011相对设置,使得彩膜层4还可透过白光,可通过白光增加亮度。
彩膜层4背离驱动背板1的一侧可设有聚光层,聚光层包括多个阵列分布的汇聚透镜0112,各汇聚透镜0112在垂直于驱动背板1的方向上与各发光器件0111一一对应设置,当然,也与各滤光部0113一一对应设置。任一发光器件0111发出的光线可穿过其对应的滤光部0113和汇聚透镜0112,汇聚透镜0112可使光线汇聚于指定的范围内,以便提高显示面板的亮度。
如图1所示,汇聚透镜0112的结构在此不做特殊限定,只要能实现上述的汇聚功能即可。举例而言,汇聚透镜0112可为向远离驱动背板1的方向凸起的球缺结构,其表面可由一平面和球冠围成。
基于上文中的显示面板的结构,如图1和图3所示,可在显示面板中划分出多个发光模块01,各发光模块01位于驱动背板1一侧,且可包括多个发光单元011,各发光单元011可沿行方向和列方向阵列分布。每个发光单元011可包括一发光器件0111及其对应的汇聚透镜0112以及位于发光器件0111和汇聚透镜0112之间的滤光部0113,发光单元011的发光范围由发光器件0111和汇聚透镜0112共同限定,其发光的颜色由滤光部0113限定。一发光模块01可视作一像素,其包含的各发光单元011可视作子像素。
在本公开的一些实施方式中,一个发光模块01可包括三个发光颜色不同的发光单元011,例如红色的发光单元011、绿色的发光单元011和蓝色的发光单元011。
下面对本公开的显示面板提高均一性的方案进行详细说明:
如图2所示,驱动背板1的像素区10包括中心区101和依次围绕于中心区101外的多个偏移区102,偏移区102可沿围绕中心区101的环形轨迹延伸,该环形轨迹可以是圆环,当然,也可以是方环等多边形环或者其它形状。同时,偏移区102可以是沿环形轨迹延伸的连续封闭区域,也可以是沿环形轨迹间隔分布的间断区域。多个偏移区102可呈多个同心环状分布。同时,中心区101与各偏移区102连续分布,中心区101与相邻的偏移区102相接,相邻两偏移区102相接。
如图2和图3所示,各个发光模块01可分布于中心区101和偏移区102,即中心区101和每个偏移区102的范围内均设有发光模块01。任一偏移区102可由多个围绕中心区101分布的子区域1021组成,各发光模块01分布于各子区域1021内。子区域1021可为对显示面板的局部亮度进行检测时的检测区域,可使该检测区域的中心以中心区101的中心为圆心呈环形分布,形成一偏移区102。子区域1021可与中心区101的大小和形状相同。该子区域1021的直径可为0.2mm-0.5mm的圆形区域。在本公开的一些实施方式中,像素区10为矩形,则至少最外侧的偏移区102是由多个间隔分布的子区域1021形成的不连续的环形区域,至少有一部分偏移区102为连续的环形区域。
在同一偏移区102内,至少两个发光模块01沿行方向分布;至少两个发光模块01沿列方向分布;也就是说,在任一偏移区102内,在行方向和列方向上,至少都有两个发光模块01。
在本公开的一些实施方式中,在远离中心区的方向上的第k+1个偏移区102中的发光单元011的个数大于第k个偏移区102中包括的发光单元011的个数,k为小于n的正整数。也就是说,相邻两偏移区102中,远离中心区101的偏移区102的发光单元011的个数大于靠近中心区101的偏移区102的发光单元011的个数。k为小于n的正整数。
在本公开的一些实施方式中,至少存在一通过中心区101的中心的直线,在远离中心区101的方向上的第k+1个偏移区102中穿过的发光单元011的个数不小于在第k个偏移区102中穿过的发光单元011的个 数,k为小于n的正整数。
在本公开的一些实施方式中,相邻两汇聚透镜0112间具有间隙;
在远离中心区101的方向上的第k个偏移区102的相邻两发光单元011中,相邻两汇聚透镜0112的间隙在驱动背板1上的正投影至少部分位于相邻两发光器件0111之间的间隙在驱动背板1上的正投影内;
在远离中心区101的方向上的第k+1个偏移区102的相邻两发光单元中011,相邻两汇聚透镜0112的间隙在驱动背板1上的正投影全部位于相邻两发光器件0111之间的间隙在驱动背板1上的正投影外。k为小于n的正整数。
相邻两发光器件0111之间的间隙可以是指相邻两发光器件0111的21之间的间隙,也可以是指像素定义层22相邻两开口221之间的区域。
需要说明的是,相邻的汇聚透镜0112之间也可以没有间隙,二者的交界处在驱动背板1的正投影位于相邻两发光器件0111之间的间隙在驱动背板1上的正投影。
如图2和图3所示,像素区10的第一中轴线S1可经过每个偏移区102的至少一个子区域1021,像素区10的第二中轴线S2可经过每个偏移区102的至少一个子区域1021。第一中轴线S1为像素区10的沿行方向X延伸的中轴线,第二中轴线S2为像素区10的沿列方向Y延伸的中轴线,第一中轴线S1和第二中轴线S2在像素区10的中心相交,像素区10的中心即为中心区101的中心。同时,子区域1021与中心区101的距离可定义为子区域1021的中心(P)与中心区101的中心(O)的距离(OP),子区域1021的中心所在的偏移区102即为该子区域1021所在的偏移区102,而并不每个限定子区域1021必须完全位于一偏移区102。
如图1、图2和图4所示,可通过使一发光单元011的发光器件0111的中心相对于其对应的汇聚透镜0112的中心偏移,来调节该发光单元011的发光强度最大的方向相对于垂直于驱动背板1的方向的角度,即调节发光单元011的出光角度,从而调节发光范围。具体而言,在偏移区102内的任一发光单元011中,可使发光器件0111在驱动背板1上的正投影的中心(i)位于汇聚透镜0112在驱动背板1上的正投影的中心(j)远离中心区101的一侧,也就是说,使一发光单元011的发光器件 0111的中心相对于向其对应的汇聚透镜0112的中心向中心区101的外侧偏移,使得该发光单元011的发光强度最大的方向相对于垂直于驱动背板1的方向的角度向外增大,使像素区10的发光范围增大,以便适应近眼显示设备的光路组件,使近眼显示设备成像的亮度的均一性提高。
如图1和图4所示,在任一发光单元011中,发光器件0111在驱动背板1上的正投影的中心(i)与其汇聚透镜0112在驱动背板1上的正投影的中心(j)间的距离可定义为该发光单元011的偏移量△S;发光器件0111在驱动背板1上的正投影的中心与汇聚透镜0112在驱动背板1上的正投影的中心间的连线(ij)的延伸方向为发光器件0111的偏移方向;如图5和图6所示,发光单元011的发光强度最大的方向与垂直于驱动背板1的方向的角度为主光线角。
如图5和图6所示,任一发光单元011的发光范围为主光线角±指定角度γ,例如,该指定角度γ可为15°,当然,指定角度也可以是20°或者10°等,具体视发光器件0111的发光范围以及滤光部0113和汇聚透镜0112的大小而定,在此不做特殊限定。
同一偏移区102内的发光单元011的偏移量相同,使得同一偏移区102内的发光单元011的主光线角的大小相同,但偏移方向可以沿围绕中心区101的周向呈辐射状分布;同一发光模块01的各发光单元011的偏移方向相同,避免同一发光模块01的各发光单元011的主光线角不同而影响画面显示。
在同一发光单元011中,发光器件0111在驱动背板1上的正投影与汇聚透镜0112在驱动背板1上的正投影至少部分重合,当然,该两个正投影可以是包含或者完全重合的关系。也就是说,汇聚透镜0112与对应的发光器件0111的偏移量不大于发光器件0111在平行于驱动背板1的方向上的最大尺寸,以保证发光器件0111发出的光线能照射到对应的汇聚透镜0112。
如图1、图5和图6所示,中心区101内的发光单元011的偏移量为零,即中心区101内的发光单元011的主光线角为零,其最大亮度的方向垂直于驱动背板1。任一偏移区102内的发光单元011的偏移量大于中心区101内的发光单元011的偏移量,且不同偏移区102内的发光 单元011的偏移量向远离中心区101的方向增大,使得主光线角向远离中心区101的方向增大,从而增大发光范围。
下面对发光单元011的偏移量的设置进行详细说明:
如图4所示,任一发光单元011的偏移量△S可分解为沿行方向的分量△S x和列方向的分量△S y,当然,行方向的分量和列方向的分量均可以是零,例如,中心区101内的发光单元011的偏移量的行方向的分量和列方向的分量均为零。此外,若行方向的分量和列方向的分量均不为零,由于行方向和列方向垂直,根据勾股定理,偏移量的平方等于其行方向的分量和列方向的分量的平方和。
各偏移区102内的发光单元011的偏移量在行方向上的分量,沿行方向由中心区101朝中心区101的两侧逐渐增大。同时,各偏移区102内的发光单元011的偏移量在列方向上的分量,沿列方向由中心区101朝中心区101的两侧逐渐增大。
第一中轴线S1经过的子区域1021内的发光单元011的偏移量在列方向上的分量为零,即偏移方向为第一中轴线S1的延伸方向。第二中轴线S2经过的子区域1021内的发光单元011的偏移量在行方向上的分量为零,即偏移方向为第二中轴线S2的延伸方向。发光单元011可以关于分别第一中轴线S1和第二中轴线S2对称分布。
在本公开的一些实施方式中,任一发光单元011的偏移量可满足如下关系式:
△S=((2x△S xmax/W) 2+(2y△S ymax/L) 2) 1/2;(1)
其中:△S为发光单元011的偏移量;
x为发光单元011所在的子区域1021的中心与中心区101的中心在行方向上的距离;
y为发光单元011所在的子区域1021的中心与中心区101的中心在列方向上的距离;
△S xmax为距离中心区101最远的偏移区102内的发光单元011的偏移量在行方向上的分量。需要说明的是,在行方向上距离中心区101最远的两列发光单元011的任一列中,不同发光单元011的偏移量不同,但各发光单元011在行方向上的分量相同,该分量均为△S xmax
△S ymax为距离中心区101最远的偏移区102内的发光单元011的偏移量在列方向上的分量。需要说明的是,在列方向上距离中心区101最远的两列发光单元011的任一列中,不同发光单元011的偏移量不同,但各发光单元011在列方向上的分量相同,该分量均为△S ymax
W为像素区10在行方向上的长度,L为像素区10在列方向上的长度。其中,以像素区10的形状为长方形为例,W为宽度,L为长度,L:W即为长宽比,其可以是16:9或4:3等,当然,也可以是1:1,在此不做特殊限定。需要说明的是,W和L可以用cm、mm等单位表征,也可以用发光单元011的行数和列数表征。
此外,发明人发现至少一部分虚拟现实设备和增强现实设备等近眼显示设备的光路组件对显示面板的发光单元011的主光线角的要求并非是线性。因此,为了使发光单元011的主光线角与光路组件匹配,可使各发光单元011的主光线角向远离中心区101的方向非线性增大。在本公开的另一些实施方式中,可将各偏移区102划分为向远离中心区101的方向依次分布的m个区段,m为正整数。每个区段包括多个偏移区102,也就是说,m小于n,不同区段的偏移区102的数量可以相同,也可以不同,在此不做特殊限定。
在任一区段中,各偏移区102的发光单元011的偏移量随偏移区102与中心区101的距离的增大而线性增大,并可将偏移量的增长率定义为区段的增长率。偏移区102与中心区101的距离可为偏移区102的中心与中心区101的距离。偏移量的增长率可为该区段中的最大偏移量与最小偏移量之比。
可使不同的区段的增长率不同,从而使各区段的偏移量向远离中心区101的方向非线性增大,相应的使主光线角也非线性增大,从而与光路组件的需求更加匹配。
进一步的,各区段中可包括向远离中心区101依次分布的第一区段、第二区段和第三区段。第二区段的增长率可大于第一区段的增长率,第三区段的增长率可小于第一区段的增长率。
在具体实施时,可根据偏移区102与像素区10的中心的距离,划分出多个区段,分别通过光学仿真模拟,确定每个区段的最外侧的偏移区 102所需的偏移量,然后,以这些偏移量为基准,根据偏移区102与像素区10的中心的距离计算出各偏移区102所需的偏移量,实现分段线性渐变偏移。相应的,可使主光线角可随着像素区10的半像高的增大而非线性增大。参考图7,图7的虚线示出了多个区段的主光线角非线性增大的实际趋势,实线示出了光学仿真得出的主光线角的理想趋势。可以看出,实际趋势与理想趋势大致相符。
如图5和图6所示,在本公开的一些实施方式中,在同一偏移区102中,经过第一中轴线S1的子区域1021内的发光单元011的主光线角为第一夹角;经过第二中轴线S2的子区域1021内的发光单元011的主光线角为第二夹角。第一夹角和第二夹角满足如下关系式:
α=βW/L;(2)
其中,α为第一夹角,β为第二夹角,W和L的含义与关系式(1)中的W和L相同。
通过上述的关系式(2)可根据W和L建立第一夹角和第二夹角的关系,若W:L≠1:1,则α≠β,以便使像素区10在行方向上的边缘和列方向上的边缘的发光范围于像素区10的形状相匹配,例如,W:L=9:16,则α=9β/16,第一夹角α小于第二夹角β。
此外,如图1和图4所示,滤光部0113在驱动背板1上的正投影的中心可与对应的汇聚透镜0112在驱动背板1上的正投影的中心重合,也就是说,在任一发光单元011中,滤光部0113与汇聚透镜0112不发生偏移,而发光器件0111相对于滤光部0113和汇聚透镜0112发生偏移。在滤光部0113未相对于汇聚透镜0112偏移的情况下,可防止同一滤光部0113出射的光线同时进入相邻两个汇聚透镜0112,从而防止相邻发光单元011之间出现串色。
如图1和图4所示,在本公开的一些实施方式中,任一发光单元的偏移量在行方向上的分量可满足如下关系式:
0≤△S x≤(P x-D x)/2;(3)
其中,△S x为任一发光单元011的偏移量在行方向上的分量;
P x为△S x对应的发光单元011的滤光部0113在行方向上的长度;
D x为△S x对应的发光单元011的发光器件0111在行方向上的长度。
通过上述的关系式(3)可对发光单元011的偏移量在行方向上的分量进行限制,有利于防止偏移量过大而导致发光器件0111发出的光线入射至相邻的发光单元011的滤光部0113中,有利于避免相邻的发光单元011出现串色,保证色度的均一性。
如图4所示,在本公开的一些实施方式中,任一发光单元011的偏移量在行方向上的分量满足如下关系式:
0≤△S y≤(P y-D y)/2;(4)
其中,△S y为任一发光单元011的偏移量在列方向上的分量;
P y为△S y对应的发光单元011的滤光部0113在列方向上的长度;
D y为△S y对应的发光单元011的发光器件0111在列方向上的长度。
通过上述的关系式(4)可对发光单元011的偏移量在列方向上的分量进行限制,有利于防止偏移量过大而导致发光器件0111发出的光线入射至相邻的发光单元011的滤光部0113中,有利于避免相邻的发光单元011出现串色,保证色度的均一性。
在本公开的一些实施方式中,可同时对上述的△S x和△S y进行限定,即同时采用关系式(3)和关系式(4)限定,从而对发光单元011的偏移量△S的两个分量进行限定,最大程度的避免串色。
在本公开的一些实施方式中,为了实现滤光部0113相对于其对应的发光器件0111的偏移,可以通过沿远离中心区101的方向增大滤光部的宽度的方式,具体而言,在远离中心区101的方向上的第k+1个偏移区102中的滤光部0113的宽度大于第k个偏移区102中与第k+1个偏移区102中相同颜色的滤光部0113的宽度;且k为小于n的正整数。通过使增大滤光部0113的宽度可使其中心相应的向远离中心区101的方向偏移,从而实现发光器件0111和滤光部0113的相对偏移。
本公开还提供一种显示面板的制造方法,该显示面板为上述任意实施方式中的显示面板,在此不再详述其具体结构,相应的,该制造方法可包括步骤S110-步骤S130,其中:
步骤S110、形成一具有像素区10的驱动背板1,像素区10包括中 心区和依次围绕于中心区外的n个偏移区102;n为正整数;
步骤S120、在驱动背板1的一侧形成阵列分布于中心区和偏移区102内的多个发光器件0111;
步骤S130、在发光器件0111背离驱动背板1的一侧形成与发光器件0111一一对应的汇聚透镜0112,汇聚透镜0112用于使发光器件0111发出的汇聚于指定角度内;
各发光单元011划分为多个发光模块01,一发光模块01包括多个发光单元011,一发光单元011包括一发光器件0111及其对应的汇聚透镜0112;
在偏移区102内的任一发光单元011中,发光器件0111在驱动背板1上的正投影的中心位于汇聚透镜0112在驱动背板1上的正投影的中心远离中心区的一侧,且发光器件0111在驱动背板1上的正投影的中心与汇聚透镜0112在驱动背板1上的正投影的中心间的距离为发光单元011的偏移量;发光器件0111在驱动背板1上的正投影的中心与汇聚透镜0112在驱动背板1上的正投影的中心间的连线的延伸方向为发光器件0111的偏移方向;
同一偏移区102内的发光单元011的偏移量相同;同一发光模块01的发光单元011的偏移方向相同;
中心区内的发光单元011的偏移量为零;任一偏移区102内的发光单元011的偏移量大于中心区内的发光单元011的偏移量,且各偏移区102内的发光单元011的偏移量向远离中心区的方向增大。
需要说明的是,尽管在附图中以特定顺序描述了本公开中制造方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本公开还提供一种显示装置,其可包括显示面板,该显示面板的结构可参考上文中显示面板的实施方式,在此不再详述。由于该显示装置采用了本公开的显示面板,因此,该显示装置的有益效果也可参考显示面板的有益效果。
本公开的显示装置可以用于虚拟现实设备和增强现实设备等近眼显示设备,用于向近眼显示设备的光路组件发出光线,以便呈现画面。近眼显示设备的详细原理和结构在此不做特殊限定,只要能实现图像显示即可。其中,由于采用了本公开的显示装置,可使显示装置的发光范围与光路组件相匹配,使近眼显示设备的画面的亮度的均一性提高。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (21)

  1. 一种显示面板,包括:
    驱动背板,具有像素区,所述像素区包括中心区和依次围绕于所述中心区外的n个偏移区,n为正整数;
    多个发光模块,设于所述驱动背板一侧,且分布于所述中心区和所述偏移区;一所述发光模块包括多个发光单元,一所述发光单元包括沿远离所述驱动背板的方向分布的发光器件和汇聚透镜;
    在所述偏移区内的任一发光单元中,所述发光器件在所述驱动背板上的正投影的中心位于所述汇聚透镜在所述驱动背板上的正投影的中心远离所述中心区的一侧,且所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的距离为所述发光单元的偏移量;所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的连线的延伸方向为所述发光器件的偏移方向;
    同一所述偏移区内的发光单元的偏移量相同;同一所述发光模块的发光单元的偏移方向相同;
    所述中心区内的发光单元的所述偏移量为零;任一所述偏移区内的发光单元的偏移量大于所述中心区内的发光单元的偏移量,且各所述偏移区内的发光单元的偏移量向远离所述中心区的方向增大。
  2. 根据权利要求1所述的显示面板,其中,所述发光单元沿行方向和列方向阵列分布;
    各所述偏移区内的发光单元的偏移量在所述行方向上的分量,沿所述行方向朝所述中心区的两侧逐渐增大;
    各所述偏移区内的发光单元的偏移量在所述列方向上的分量,沿所述列方向朝所述中心区的两侧逐渐增大。
  3. 根据权利要求2所述的显示面板,其中,所述偏移区包括围绕所述中心区分布的多个子区域;所述发光模块分布于各所述子区域内;
    在同一所述偏移区中,所述像素区的第一中轴线经过至少一个所述子区域,所述像素区的第二中轴线经过至少一个所述子区域;所述第一中轴线为沿所述行方向延伸的中轴线,所述第二中轴线为沿所述列方向 延伸的中轴线;
    所述第一中轴线经过的子区域内的所述发光单元的偏移量在所述列方向上的分量为零;所述第二中轴线经过的子区域内的所述发光单元的偏移量在所述行方向上的分量为零。
  4. 根据权利要求2所述的显示面板,其中,所述发光单元还包括:
    滤光部,设于所述发光器件和所述汇聚透镜之间;
    同一所述发光模块的至少两个不同发光单元的所述滤光部的颜色不同。
  5. 根据权利要求4所述的显示面板,其中,所述滤光部在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心重合。
  6. 根据权利要求5所述的显示面板,其中,任一所述发光单元的偏移量在所述行方向上的分量满足如下关系式:
    0≤△S x≤(P x-D x)/2;
    其中,△S x为任一所述发光单元的偏移量在所述行方向上的分量;
    P x为△S x对应的发光单元的滤光部在所述行方向上的长度;
    D x为△S x对应的发光单元的发光器件在所述行方向上的长度。
  7. 根据权利要求5所述的显示面板,其中,任一所述发光单元的偏移量在所述行方向上的分量满足如下关系式:
    0≤△S y≤(P y-D y)/2;
    其中,△S y为任一所述发光单元的偏移量在所述列方向上的分量;
    P y为△S y对应的发光单元的滤光部在所述列方向上的长度;
    D y为△S y对应的发光单元的发光器件在所述列方向上的长度。
  8. 根据权利要求3所述的显示面板,其中,任一所述发光单元的偏移量满足如下关系式:
    △S=((2x△S xmax/W) 2+(2y△S ymax/L) 2) 1/2
    其中,△S为所述发光单元的偏移量;
    x为所述发光单元所在的子区域的中心与所述中心区的中心在所述行方向上的距离;
    y为所述发光单元所在的子区域的中心与所述中心区的中心在所述 列方向上的距离;
    △S xmax为距离所述中心区最远的偏移区内的发光单元的偏移量在所述行方向上的分量;
    △S ymax为距离所述中心区最远的偏移区内的发光单元的偏移量在所述列方向上的分量;
    W为所述像素区在所述行方向上的长度;
    L为所述像素区在所述列方向上的长度。
  9. 根据权利要求3所述的显示面板,其中,各所述偏移区划分为向远离所述中心区的方向依次分布的m个区段,每个所述区段包括多个所述偏移区;m为正整数;
    在任一所述区段中,各所述偏移区的发光单元的偏移量随所述偏移区与所述中心区的距离的增大而线性增大,且所述偏移量的增长率为所述区段的增长率;
    至少两个所述区段的增长率不同。
  10. 根据权利要求9所述的显示面板,其中,所述区段包括向远离所述中心区的方向依次分布的第一区段、第二区段和第三区段;
    所述第二区段的增长率大于所述第一区段的增长率,所述第三区段的增长率小于所述第一区段的增长率。
  11. 根据权利要求3所述的显示面板,其中,在同一所述偏移区中,经过所述第一中轴线的子区域内的发光单元的发光强度最大的方向与垂直于所述驱动背板的方向的夹角为第一夹角;经过所述第二中轴线的子区域内的发光单元的发光强度最大的方向与垂直于所述驱动背板的方向的夹角为第二夹角;
    所述第一夹角和所述第二夹角满足如下关系式:
    α=βW/L;
    其中,α为第一夹角,β为第二夹角。
  12. 根据权利要求1所述的显示面板,其中,所述汇聚透镜为向远离所述驱动背板的方向凸起的球缺结构。
  13. 根据权利要求4所述的显示面板,其中,所述显示面板还包括:
    封装层,覆盖各所述发光模块;所述滤光部设于所述封装层背离所 述驱动背板的一侧。
  14. 根据权利要求1所述的显示面板,其中,在同一所述偏移区内,至少两个所述发光模块沿所述行方向分布;至少两个所述发光模块沿所述列方向分布。
  15. 根据权利要求1所述的显示面板,其中,在远离所述中心区的方向上的第k+1个偏移区中的所述发光单元的个数大于第k个偏移区中包括的发光单元的个数,k为小于n的正整数。
  16. 根据权利要求1所述的显示面板,其中,至少存在一通过所述中心区的中心的直线,在远离所述中心区的方向上的第k+1个偏移区中穿过的所述发光单元的个数不小于在第k个偏移区中穿过的所述发光单元的个数,k为小于n的正整数。
  17. 根据权利要求1所述的显示面板,其中,在同一所述发光单元中,所述发光器件在所述驱动背板上的正投影与所述汇聚透镜在所述驱动背板上的正投影至少部分重合。
  18. 根据权利要求1所述的显示面板,其中,相邻两所述汇聚透镜间具有间隙;
    在远离所述中心区的方向上的第k个偏移区的相邻两所述发光单元中,相邻两所述汇聚透镜的间隙在所述驱动背板上的正投影至少部分位于相邻两所述发光器件之间的间隙在所述驱动背板上的正投影内;
    在远离所述中心区的方向上的第k+1个所述偏移区的相邻两所述发光单元中,相邻两所述汇聚透镜的间隙在所述驱动背板上的正投影全部位于相邻两所述发光器件之间的间隙在所述驱动背板上的正投影外;
    k为小于n的正整数。
  19. 根据权利要求4所述的显示面板,其中,在远离所述中心区的方向上的第k+1个偏移区中的滤光部的宽度大于第k个偏移区中与所述第k+1个偏移区中相同颜色的滤光部的宽度;
    k为小于n的正整数。
  20. 一种显示面板的制造方法,其中,包括:
    形成一具有像素区的驱动背板,所述像素区包括中心区和依次围绕于所述中心区外的n个偏移区;n为正整数;
    在所述驱动背板的一侧形成阵列分布于所述中心区和所述偏移区内的多个发光器件;
    在所述发光器件背离所述驱动背板的一侧形成与所述发光器件一一对应的汇聚透镜,所述汇聚透镜用于使所述发光器件发出的汇聚于指定角度内;
    各所述发光单元划分为多个发光模块,一所述发光模块包括多个所述发光单元,一所述发光单元包括一发光器件及其对应的汇聚透镜;
    在所述偏移区内的任一发光单元中,所述发光器件在所述驱动背板上的正投影的中心位于所述汇聚透镜在所述驱动背板上的正投影的中心远离所述中心区的一侧,且所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的距离为所述发光单元的偏移量;所述发光器件在所述驱动背板上的正投影的中心与所述汇聚透镜在所述驱动背板上的正投影的中心间的连线的延伸方向为所述发光器件的偏移方向;
    同一所述偏移区内的发光单元的偏移量相同;同一所述发光模块的发光单元的偏移方向相同;
    所述中心区内的发光单元的所述偏移量为零;任一所述偏移区内的发光单元的偏移量大于所述中心区内的发光单元的偏移量,且各所述偏移区内的发光单元的偏移量向远离所述中心区的方向增大。
  21. 一种显示装置,包括权利要求1-19任一项所述的显示面板。
PCT/CN2021/127483 2021-10-29 2021-10-29 显示装置、显示面板及其制造方法 WO2023070535A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2402604.9A GB2624569A (en) 2021-10-29 2021-10-29 Display apparatus, and display panel and manufacturing method thereof
PCT/CN2021/127483 WO2023070535A1 (zh) 2021-10-29 2021-10-29 显示装置、显示面板及其制造方法
CN202180003154.4A CN116897611A (zh) 2021-10-29 2021-10-29 显示装置、显示面板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127483 WO2023070535A1 (zh) 2021-10-29 2021-10-29 显示装置、显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2023070535A1 true WO2023070535A1 (zh) 2023-05-04

Family

ID=86158850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127483 WO2023070535A1 (zh) 2021-10-29 2021-10-29 显示装置、显示面板及其制造方法

Country Status (3)

Country Link
CN (1) CN116897611A (zh)
GB (1) GB2624569A (zh)
WO (1) WO2023070535A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016272A (ja) * 2011-06-30 2013-01-24 Canon Inc 表示装置
CN106873161A (zh) * 2017-03-02 2017-06-20 上海天马微电子有限公司 一种显示装置及近眼可穿戴设备
CN108375840A (zh) * 2018-02-23 2018-08-07 苏州耐德佳天成光电科技有限公司 基于小型阵列图像源的光场显示单元及使用其的三维近眼显示装置
CN110118776A (zh) * 2018-02-07 2019-08-13 欧姆龙株式会社 图像检查装置以及照明装置
CN112216730A (zh) * 2019-07-12 2021-01-12 佳能株式会社 显示装置和显示系统
US20210159373A1 (en) * 2019-11-22 2021-05-27 Facebook Technologies, Llc Light extraction for micro-leds
CN113167934A (zh) * 2018-11-30 2021-07-23 索尼集团公司 显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016272A (ja) * 2011-06-30 2013-01-24 Canon Inc 表示装置
CN106873161A (zh) * 2017-03-02 2017-06-20 上海天马微电子有限公司 一种显示装置及近眼可穿戴设备
CN110118776A (zh) * 2018-02-07 2019-08-13 欧姆龙株式会社 图像检查装置以及照明装置
CN108375840A (zh) * 2018-02-23 2018-08-07 苏州耐德佳天成光电科技有限公司 基于小型阵列图像源的光场显示单元及使用其的三维近眼显示装置
CN113167934A (zh) * 2018-11-30 2021-07-23 索尼集团公司 显示装置
CN112216730A (zh) * 2019-07-12 2021-01-12 佳能株式会社 显示装置和显示系统
US20210159373A1 (en) * 2019-11-22 2021-05-27 Facebook Technologies, Llc Light extraction for micro-leds

Also Published As

Publication number Publication date
GB2624569A (en) 2024-05-22
GB202402604D0 (en) 2024-04-10
CN116897611A (zh) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7229359B2 (ja) 表示基板、表示パネル及び表示装置
US11139347B2 (en) Display device and method for manufacturing the same
WO2019019604A1 (zh) 显示基板、显示装置及其显示方法、掩模板
WO2020024848A1 (zh) 显示面板和显示装置
CN110085645B (zh) 显示装置
WO2021184324A1 (zh) 显示装置及其显示方法
TW202139158A (zh) 顯示面板及顯示裝置
WO2022021615A1 (zh) 一种显示面板和显示器
US20220093690A1 (en) Display panel, display screen and display device
US20240099079A1 (en) Display apparatus, and display panel and manufacturing method therefor
WO2021035534A1 (zh) 显示基板及其制作方法、显示装置
WO2022188421A1 (zh) 显示基板、彩膜基板、显示面板及显示装置
US7301273B2 (en) Display element array for emissive, fixed format display
US20240224755A1 (en) Display apparatus and near-eye display device
WO2024045987A1 (zh) 显示基板、显示装置及显示基板的制备方法
WO2023070535A1 (zh) 显示装置、显示面板及其制造方法
WO2024103761A1 (zh) 显示面板及显示装置
WO2021035401A1 (zh) 发光二极管显示面板及其制作方法、显示装置
JP4210609B2 (ja) マルチカラーoled画素構造、画素構造のアレイ、およびマルチカラーoled画素構造製造方法
WO2023070450A1 (zh) 终端设备、显示装置、显示面板及其制造方法
CN109950418A (zh) 显示面板及显示屏
TWI687742B (zh) 顯示裝置
WO2023123535A1 (zh) 显示面板及移动终端
CN113782695A (zh) 显示面板及显示装置
WO2024109196A1 (zh) 显示基板以及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18575177

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202402604

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211029

NENP Non-entry into the national phase

Ref country code: DE