WO2022021615A1 - 一种显示面板和显示器 - Google Patents
一种显示面板和显示器 Download PDFInfo
- Publication number
- WO2022021615A1 WO2022021615A1 PCT/CN2020/121265 CN2020121265W WO2022021615A1 WO 2022021615 A1 WO2022021615 A1 WO 2022021615A1 CN 2020121265 W CN2020121265 W CN 2020121265W WO 2022021615 A1 WO2022021615 A1 WO 2022021615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- display panel
- layer
- emitting
- emitting device
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 101
- 239000000758 substrate Substances 0.000 claims abstract description 71
- 239000010410 layer Substances 0.000 claims description 149
- 239000002245 particle Substances 0.000 claims description 31
- 239000011241 protective layer Substances 0.000 claims description 20
- 238000009792 diffusion process Methods 0.000 claims description 16
- 238000004020 luminiscence type Methods 0.000 claims description 16
- 239000003292 glue Substances 0.000 description 26
- 239000011521 glass Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 239000002096 quantum dot Substances 0.000 description 9
- 239000003086 colorant Substances 0.000 description 6
- 229910004205 SiNX Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
Definitions
- the present invention relates to the technical field of semiconductor display, in particular to a display panel and a display.
- the display panel includes two glass substrates, upper and lower, and the LEDs are transferred to the lower glass substrate by mass transfer, and the upper glass substrate is correspondingly arranged.
- the purpose of the present application is to provide a display panel and a display, aiming at solving the problem that the thickness of the existing display panel is relatively thick.
- a display panel comprising.
- the shielding layer is formed on the substrate, and the shielding layer is formed with a plurality of grooves separated from each other and the bottom of which is communicated with the substrate.
- the light-emitting device is arranged in each of the grooves and fixed on the substrate, and the light-emitting surface of the light-emitting device is far away from the substrate.
- a shielding layer is arranged on the substrate of the above-mentioned display panel, and a plurality of grooves separated from each other and connected to the substrate at the bottom are formed on the shielding layer.
- the display panel also includes a light-emitting conversion layer attached to the light-emitting surface of each light-emitting device; that is, in the embodiment of the present invention, the light-emitting conversion layer is directly disposed on the light-emitting
- the light-emitting device and the light-emitting conversion layer are both carried on one substrate, so that the upper substrate for carrying the light-emitting conversion layer is no longer required, so that the display panel can reduce the thickness of at least one substrate, thereby making the display panel lighter and thinner ;
- the cost of the display panel can be reduced.
- the present application also provides a display, which includes: a frame and the display panel as shown above.
- the display panel is fixed on the frame.
- the light-emitting conversion layer of the display panel is directly disposed on the light-emitting device, so that both the light-emitting device and the light-emitting conversion layer are carried on one substrate, so that it is no longer necessary to provide a light-emitting conversion layer for carrying the light-emitting conversion layer.
- the upper substrate can reduce the thickness of at least one substrate of the display panel, thereby making the display panel lighter and thinner, improving user experience satisfaction, and reducing the cost of the display panel; the display is equipped with the display panel, because the overall display panel The thickness is smaller and the cost is lower. Therefore, the display provided by the embodiment of the present invention has smaller thickness and lower cost than the display manufactured by using the display panel of the prior art.
- FIG. 1 is a partial cross-sectional schematic diagram of a display backplane of the existing micro led+QD technology.
- FIG. 2 is a schematic cross-sectional view of a partial area of a display panel provided in this embodiment.
- FIG. 3 is a schematic cross-sectional view of a partial region of another display panel provided in this embodiment.
- FIG. 4 is a schematic cross-sectional view of a partial region of another display panel provided in this embodiment.
- FIG. 5 is a schematic cross-sectional view of a partial region of another display panel provided in this embodiment.
- FIG. 6 is a schematic cross-sectional view of a partial area of a display panel for realizing color display according to the present embodiment.
- FIG. 7 is a schematic cross-sectional view of a partial region of another display panel provided in this embodiment.
- 301-QD-R red quantum dots
- 302-QD-G green quantum dots
- 303-QD-B blue quantum dots
- the conventional display panel shown in FIG. 1 it includes an upper glass substrate 002 and a lower glass substrate 001 , the lower glass substrate 001 is provided with LED chips 003 and a black glue layer 004 , and the upper glass substrate 002 is provided with LED chips 003
- a sealant process is required, and a circle of frame glue 006 is arranged between the lower glass substrate 001 and the upper glass substrate 002.
- Such a display panel needs to be formed by stacking two upper and lower glass substrates, resulting in a thicker display panel, and the setting of the frame adhesive 006 obviously affects the frame thickness of the display panel, making it difficult to achieve a narrow frame.
- the present embodiment provides a display panel including.
- the shielding layer is formed on the substrate, and the shielding layer is formed with a plurality of grooves separated from each other and the bottom of which is communicated with the substrate.
- the light-emitting device is arranged in each groove and fixed on the substrate.
- the light-emitting surface of the light-emitting device is far away from the substrate.
- the light-emitting device can be fixed on the substrate by but not limited to welding, and is electrically connected to the corresponding circuit on the substrate.
- the luminescence conversion layer in this embodiment can be used to achieve, but not limited to, at least one of wavelength conversion of light (ie, color conversion of light) and diffusion of light. It can be flexibly set according to application requirements.
- the display panel in this embodiment includes a plurality of light-emitting devices disposed on the substrate, a light-emitting conversion layer disposed on the light-emitting devices, and a shielding layer disposed on the substrate and filled in the plurality of light-emitting devices. in the gap of the light-emitting device.
- the light-emitting conversion layer of the display panel is directly arranged on the light-emitting device, so that both the light-emitting device and the light-emitting conversion layer are carried on one substrate, so that the upper substrate for carrying the light-emitting conversion layer is no longer required, so that the display panel can be reduced by at least one piece
- the thickness of the substrate can make the display panel lighter and thinner; at the same time, since the upper substrate is no longer required, there is no need to additionally install the frame glue, which can make the frame of the display panel narrower, thereby reducing the size of the display black borders. Improve user experience satisfaction while reducing the cost of display panels.
- FIG. 2 is a schematic cross-sectional view of a partial area of the display panel provided in this embodiment.
- the display panel includes: a substrate 100, a light-emitting device 200 disposed on the substrate 100, and a shielding layer 400.
- the substrate 100 is the carrier of the entire display panel and plays the role of supporting the light-emitting device and the shielding layer; the substrate 100 in this embodiment can be Choices include but are not limited to TFT (Thin Film Transistor, thin film transistor) substrate, the shielding layer 400 is disposed on the substrate 100, as can be seen from FIG.
- TFT Thin Film Transistor, thin film transistor
- the bottom of the groove communicates with the substrate 100, and can be a groove
- the entire bottom of the groove communicates with the substrate 100, or it can be a part of the bottom of the groove (for example, the area used for the electrical connection between the electrodes of the light-emitting device 200 and the substrate 100 communicates with the substrate 100, which can be flexibly set according to requirements.
- the light emitted by the light emitting device 200 inside can be shielded by the groove wall of the groove, so as to avoid stringing into other grooves, so as to shield the light.
- the TFT substrate in this embodiment is a glass substrate, and a matrix driving circuit is arranged therein.
- the light-emitting device 200 is a light source on the display panel, each light-emitting device 200 represents a sub-pixel, or the light-emitting device 200 arranged in each groove represents a sub-pixel, wherein a light-emitting device 200 can be arranged in a groove, or Two or more light emitting devices 200 are provided as required, and when two or more light emitting devices 200 are provided, the two or more light emitting devices 200 can be connected in series, in parallel, or in series and parallel as required combine. Wherein, the display realizes image display by controlling the on and off of these light-emitting devices 200.
- the specific number of light-emitting devices 200 on the display panel can be adjusted according to the resolution of the display panel, for example, 1920*
- the total number of light-emitting devices is 2,073,600; for a display panel with a resolution of 2560*1440, the total number of light-emitting devices is 3,686,400.
- the light emitting conversion layer 300 is disposed on the light emitting device 200 .
- the light emitting conversion layer 300 is a conversion layer that converts the light generated by the light emitting device 200 into light of a specific color, or diffuses the light radiated by the light emitting device 200 .
- the light-emitting device 200 may have limited types of choices.
- the light emission conversion layer 300 is arranged on the light emission conversion layer 300 , and various required color lights are generated through the conversion of the light emission conversion layer 300 .
- the light emitting conversion layer 300 is directly attached (ie, attached) on the light emitting device 200 , which can further effectively reduce the thickness of the display panel and reduce the problem of light crosstalk caused by light leakage from the light emitting device 200 .
- the shielding layer 400 is disposed in the gaps between the light-emitting devices 200 on the substrate 100.
- the function of the shielding layer 400 is to isolate the adjacent light-emitting devices 200 and prevent the light generated by the two adjacent light-emitting devices 200 from interacting with each other. interference.
- the substrate 100, the light-emitting device 200 and the light-emitting conversion layer 300 are arranged layer by layer, the light-emitting device 200 is arranged on the substrate 100, and the light-emitting conversion layer 300 is arranged on the light-emitting device 200, and the existing
- the arrangement of the upper glass substrate in the technology can reduce the distance between the light-emitting device 200 and the light-emitting conversion layer 300, and thereby effectively reduce the thickness of the entire display panel, as well as reduce the adjacent light-emitting device 200 and the light-emitting conversion layer 300.
- the light emitting conversion layer may include a plurality of color conversion particles respectively attached to the light emitting surfaces of the light emitting devices in each groove.
- the luminescence conversion layer includes a plurality of color conversion particles and a plurality of diffusion layers, and the sum of the number of the color conversion particles and the number of the diffusion layers is equal to the number of the grooves; the plurality of color conversion particles and The plurality of diffusion layers are respectively attached to the light-emitting surfaces of the light-emitting devices in the corresponding grooves.
- the above-mentioned color conversion particles are configured to be excited by the light radiated from the light emitting device 200 to generate light of a predetermined wavelength.
- the luminescence conversion layer in FIG. 6 includes QD-R (red quantum dots) 301, QD-G (green quantum dots) 302 and QD-B (blue quantum dots)/diffusion layer 303, each A color conversion particle or diffusion layer is disposed on the corresponding light-emitting device.
- QD-R301 is excited by the light radiated by the light-emitting device 200 to generate red light
- QD-G302 is excited by the light radiated by the light-emitting device 200.
- Green light when the QD-B/diffusion layer 303 is specifically QD-B, it is excited by the light radiated by the light-emitting device 200 to generate blue light.
- the uniformity of light radiated by the light emitting device 200 is improved. It should be noted that the example given in FIG. 6 is for the convenience of understanding the present invention and is not intended to limit the present invention. In practical applications, other materials with color conversion function can also be used to make the luminescence conversion layer.
- the luminescence conversion layer 300 may include a color conversion particle (wherein a color conversion particle achieves conversion of a wavelength range).
- the fabricated display panel can only display one color, such as a black and white display panel, an electronic ink screen display panel, and the like.
- the luminescence conversion layer 300 includes a plurality of color conversion particles arranged in a predetermined regularity.
- the display panel made of it can display multiple colors, and can also realize the display of more colors through the combination of each color.
- the most common display panel in the current display panel The screen uses sub-pixels of red, green and blue colors, and all colors can be displayed by arranging the sub-pixels of the three colors of red, green and blue according to certain rules.
- the solution of the red, green and blue quantum dot layers given in this embodiment is only one of many color display panels, which is not used to limit the present invention.
- the brightness can also adopt the pixel point scheme of four colors of red, green, blue and white, which also belongs to the protection scope of the present invention.
- the display panel further includes: a filter layer, which is attached on the light emission conversion layer.
- a filter layer which is attached on the light emission conversion layer.
- the function of the filter layer 600 may include, but is not limited to, emit light from the light conversion layer 300 . The outgoing light is filtered to produce purer monochromatic light.
- the filter layer 600 includes a plurality of filters disposed on the same layer, a plurality of the filters and a plurality of the color conversion particles or the plurality of color conversion particles and a plurality of The diffusing layers are arranged correspondingly, and the wavelength of the light that the filter can transmit is consistent with the wavelength of the light converted by the color conversion particles or the light diffused by the diffusing layer.
- the corresponding filter layer 600 also needs to be provided with a corresponding type of filter, and the wavelength of the light that can pass through each filter needs to be converted with the light generated by the corresponding color conversion particles. wavelengths are the same.
- the area of the light incident surface of the color filter is greater than or equal to the area of the light exit surface of the color conversion particles.
- the area of the light incident surface (that is, the surface in contact with the light emitting conversion layer 300 ) on the bottom surface of the filter should be greater than or equal to the light emitting surface
- the thickness of the shielding layer is greater than the thickness of the light-emitting devices, so as to avoid cross-light between the light-emitting devices as much as possible.
- the thickness of the shielding layer is set to be greater than the sum of the thicknesses of the light emitting device and the light emitting conversion layer, so that both the light emitting device and the light emitting conversion layer are located in the corresponding grooves.
- the thickness of the shielding layer is smaller than the sum of the thicknesses of the light-emitting device and the light-emitting conversion layer, so that in the corresponding groove of the light-emitting device, the shielding layer is exposed on the side of the light-emitting conversion layer on the light-emitting device away from the bottom of the groove.
- the shielding layer may include, but is not limited to, a black glue layer, and the thickness of the black glue layer is greater than that of the light-emitting device.
- the function of the shielding layer 400 is to isolate the adjacent light-emitting devices to avoid light crosstalk.
- the black glue layer is selected as the shielding layer 400, which can effectively isolate the light generated by the adjacent light-emitting devices, and the thickness of the black glue layer needs to be greater than
- the thickness of the light-emitting device can avoid crosstalk between the light emitted from the top of the light-emitting device and the surrounding light-emitting devices, and at the same time, the light-emitting conversion layer can be embedded in this part of the area raised by the vinyl layer, so that the light-emitting conversion layer can be automatically Align with the light emitting device.
- the shielding layer 400 in this embodiment is used to isolate the light-emitting device from the surrounding light-emitting devices to prevent light crosstalk. Therefore, the choice of the shielding layer 400 is not only limited to black glue, other can effectively block Any material of light can be used as a material for composing the shielding layer of the present embodiment.
- the thickness of the black glue is greater than the thickness of the light-emitting device.
- the purpose is to better reduce the crosstalk of light, and at the same time, the light-emitting conversion layer can be automatically aligned with the light-emitting device.
- the thickness of the black glue is There are three possibilities related to the thickness of the luminescence conversion layer. Case 1: As shown in Figure 2, the thickness of the black glue is lower than the top of the luminescence conversion layer, which requires less process and has no obvious impact on the display effect.
- the light emitting device includes any one of a micro light emitting diode (micro LED), an organic electroluminescent diode (OLED), or a mini light emitting diode (mini LED).
- micro LED micro light emitting diode
- OLED organic electroluminescent diode
- mini LED mini light emitting diode
- the display panel provided in this embodiment further includes a light-transmitting protective layer, and the light-transmitting protective layer is disposed on the light-emitting conversion layer.
- the display panel includes a light-transmitting protective layer disposed on the filter layer and covering the filter layer.
- the display panel in FIG. 5 includes a light-transmitting protective layer 500 , and the light-transmitting protective layer 500 is disposed on the shielding layer 400 and the light-emitting conversion layer. 300; in another example, the display panel includes a light-transmitting protective layer disposed on the filter layer 600 shown in FIG. 7 and covering the filter layer 600 inside.
- the function of the protective layer 500 may include, but is not limited to, to protect the filter layer, the luminescence conversion layer and the masking glue below it, and at the same time, the color light generated after the light generated by the light emitting device 200 is converted by the luminescence conversion layer 300 needs to be removed from the protective layer 500 . Therefore, it is necessary to make the protective layer 500 transparent.
- a display comprising: a frame and a display panel as described above.
- the display panel is fixed on the frame.
- the specific terminals mounted on the display are not limited, including but not limited to smart watches, smart phones, computer monitors, home TV monitors, and large-screen display screens.
- the above-mentioned display is equipped with the display panel provided by the embodiment of the present invention. Since the overall thickness and frame width of the display panel are effectively improved, the display provided by the embodiment of the present invention can also effectively reduce the thickness of the display and the frame of the display. width to improve the aesthetics of the display.
- a manufacturing process of a micro LED display panel provided in a real-time manner in the implementation of the present invention is taken as an example.
- the fabrication process includes but is not limited to the following steps.
- the thickness of the black glue is higher than that of the micro
- the LED chip can cover the micro LED chip, and the black glue is cured through the curing process; for example, under the action of 120 ° C and a vacuum environment, the black glue film is tightly attached to the surface of the LED, and then baked at a temperature of about 160 ° C. , so that the black glue curing is completed.
- SiNx silicon nitride
- the protective layer can also be a single-layer SiNx, or a SiOx/SiNx double-layer structure and other highly transparent inorganic layers. patterned instant micro The protective layer above the LED chip is removed, leaving the remaining protective layer.
- Plasma (plasma) treatment place the substrate in the O2 Plasma clean machine, bombard the surface of the substrate with plasma, where there is a protective layer pattern, the black glue is retained, and the rest is removed to expose the LED light-emitting surface.
- the QD-R quantum dotsred red quantum material
- QD-G quantum dotsgreen green quantum material
- Scatter diffusion material
- the baking temperature is less than or equal to 180°C.
- the thickness of the three layers of materials QD-R, QD-G and Scatter needs to be ⁇ the thickness of the black glue+protective layer above the LED chip.
- the manufacturing process is coating, exposure, developing, and baking, and the baking temperature needs to be less than or equal to 180°C.
- QD-R, QD-G, and Scatter can also be sprayed in the grooves formed by the black glue through Ink jet (ink jet printing), and different films can be completed by controlling the injection amount of Ink Jet. Thick design can ensure that the three-layer material thickness of QD-R, QD-G and Scatter is less than or equal to the thickness of the vinyl + protective layer above the LED chip. There is less risk of cross color.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种显示面板和显示器,显示面板的基板(100)上设置有遮蔽层(400),该遮蔽层(400)上形成有若干个相互分离、且底部与基板相通的凹槽,设于各凹槽内,并固定于基板上的发光器件(200);该显示面板还包括附着于各发光器件(200)的出光面上的发光转换层(300)。
Description
本发明涉及半导体显示技术领域,尤其涉及一种显示面板和显示器。
现有LED+QD(Quantum Dots,量子点)技术实现全彩设计中,显示面板包括上、下两块玻璃基板,将LED通过巨量转移转到下玻璃基板上,上玻璃基板上则对应设置QD做成的对盒模组。也即现有显示面板中, LED和LED对应的QD是分别设置在上、下两块玻璃基板上的,然后上、下两块玻璃基板对位贴合形成显示面板,这种结构导致显示面板较厚,不利于其轻薄化。
因此,如何使得显示面板更轻薄化,是亟需解决的问题。
鉴于上述现有技术的不足,本申请的目的在于提供一种显示面板和显示器,旨在解决现有显示面板厚度较厚的问题。
一种显示面板,包括。
基板。
形成于所述基板上的遮蔽层,所述遮蔽层上形成有若干个相互分离、且底部与所述基板相通的凹槽。
设于各所述凹槽内,并固定于所述基板上的发光器件,所述发光器件的出光面远离所述基板。
以及附着于各所述发光器件的出光面上的发光转换层。
上述显示面板的基板上设置有遮蔽层,该遮蔽层上形成有若干个相互分离、且底部与基板相通的凹槽,设于各凹槽内,并固定于基板上的发光器件,发光器件设置于该凹槽内可避免出现漏光和串光的情况发生;该显示面板还包括附着于各发光器件的出光面上的发光转换层;也即本发明实施例中将发光转换层直接设置于发光器件上,使得发光器件和发光转换层都承载在一块基板上,从而不再需要设置用于承载发光转换层的上基板,使得显示面板可至少减少一块基板的厚度,从而使得显示面板更轻薄化;同时还可降低显示面板的成本。
基于同样的发明构思,本申请还提供一种显示器,所述显示器包括:框架和如上所示的显示面板。
所述显示面板固定在所述框架上。
本发明实施例提供的显示面板和显示器,显示面板的发光转换层直接设置于发光器件上,使得发光器件和发光转换层都承载在一块基板上,从而不再需要设置用于承载发光转换层的上基板,使得显示面板可至少减少一块基板的厚度,从而使得显示面板更轻薄化,提升用户体验的满意度,同时还可降低显示面板的成本;显示器搭载了该显示面板,由于显示面板的整体厚度更小,成本更低,因此本发明实施例提供的显示器,相对采用现有技术的显示面板制得的显示器的厚度更小,且成本更低。
图1为现有micro led+QD技术的显示背板的局部剖面示意图。
图2为本实施例提供的一种显示面板部分区域的剖面示意图。
图3为本实施例提供的另外一种显示面板部分区域的剖面示意图。
图4为本实施例提供的另外一种显示面板部分区域的剖面示意图。
图5为本实施例提供的另外一种显示面板部分区域的剖面示意图。
图6为本实施例提供的一种显示面板实现彩色显示的部分区域的剖面示意图。
图7为本实施例提供的另外一种显示面板部分区域的剖面示意图。
附图标记说明。
001-下玻璃基板;002-上玻璃基板;003-LED芯片;004-黑胶层;005-QD,006-边框胶;100-基板;200-发光器件;300-发光转换层;400-遮蔽层;500-透光保护层;301-QD-R(红色量子点)301;302-QD-G(绿色量子点);303-QD-B(蓝色量子点)/扩散层;600-滤光层。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
参见图1所示的现有显示面板,其包括上玻璃基板002和下玻璃基板001,下玻璃基板001上设有LED芯片003和黑胶层004,上玻璃基板002上设有与LED芯片003对应的QD005,为了保证模组内部的密封,需要采用框胶工艺,在下玻璃基板001和上玻璃基板002之间设置一圈边框胶006。这种显示面板需要使用上、下两块玻璃基板叠加构成,造成显示面板厚度较厚,且该边框胶006的设置明显影响显示面板的边框厚度,导致其很难实现窄边框。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
本实施提供了一种显示面板,包括。
基板。
形成于基板上的遮蔽层,遮蔽层上形成有若干个相互分离、且底部与基板相通的凹槽。
设于各凹槽内,并固定于基板上的发光器件,发光器件的出光面远离基板,发光器件可通过但不限于焊接等方式固定于基板上,并与基板上对应的电路形成电连接。
以及附着于各发光器件的出光面上的发光转换层。本实施例中的发光转换层可用于实现但不限于光的波长转换(也即光的颜色转换)和光的扩散中的至少一种。具体可根据应用需求灵活设定。
也即,本实施例中的显示面板包括设置于基板之上的若干个发光器件,以及设置于发光器件之上的发光转换层,还包括遮蔽层,设置于基板之上,且填充于若干个发光器件的间隙之中。该显示面板的发光转换层直接设置于发光器件上,使得发光器件和发光转换层都承载在一块基板上,从而不再需要设置用于承载发光转换层的上基板,使得显示面板可至少减少一块基板的厚度,从而使得显示面板更轻薄化;同时由于不再需要设置上基板,也就不需要额外设置边框胶,可使得显示面板的边框可以做的更窄,从而减小显示黑边尺寸,提升用户体验的满意度,同时还可降低显示面板的成本。
参见图2,图2为本实施例提供的显示面板部分区域的剖面示意图。显示面板包括:基板100,设置于基板100上的发光器件200以及遮蔽层400,基板100是整个显面板的载体,起到支撑发光器件和支撑遮蔽层的作用;本实施例中的基板100可选的包括但不限于TFT(Thin Film
Transistor,薄膜晶体管)基板,遮蔽层400设置于基板100上,参见图2可知,其包括多个相互分离用于设置发光器件200的凹槽,凹槽的底部与基板100相通,可以是凹槽的底部整个与基板100相通,也可以是凹槽的底部的一部分(例如用于供发光器件200的电极与基板100电连接的区域与基板100相通,具体可根据需求灵活设置。设置于凹槽内的发光器件200发出的光可被凹槽的槽壁遮挡,避免串入到其他凹槽中,从而起到遮蔽光的作用。当发光器件200设置在基板100上以后可与对应的驱动电路连接,从而通过驱动电路来控制发光器件的亮和灭,本实施例中的TFT基板是一种玻璃基底,且在其中设置有矩阵型驱动电路。
发光器件200是显示面板上的光源,每一个发光器件200代表一个子像素,或每一个凹槽内设置的发光器件200代表一个子像素,其中一个凹槽内可以设置一个发光器件200,也可根据需求设置两个或两个以上的发光器件200,且设置两个或两个以上的发光器件200时,该两个或两个以上的发光器件200之间可以根据需求串联、并联或串并联结合。其中,显示器实现图像显示就是通过控制这些发光器件200的亮和灭实现,需要说明的是,显示面板上的发光器件200的具体数目,可以根据显示面板的分辨率进行对于的调整,例如1920*1080分辨率的显示面板,总的发光器件数目有2073600个;2560*1440分辨率的显示面板,总的发光器件数目有3686400个。
发光转换层300,设置在发光器件200上,发光转换层300是将发光器件200产生的光线转换为特定颜色的光线,或对发光器件200所辐射光线进行扩散的转换层。例如在一些应用场景中,发光器件200在综合考虑各方面因素,例如发光效率等因素后,可选择的类型比较有限,为了通过有限种类的发光器件产生多种所需的色光,可在发光器件200上设置发光转换层300,通过发光转换层300的转换产生所需的各种色光。本实施例中将发光转换层300直接贴附(也即附着)在发光器件200之上,还能进一步有效的降低显示面板的厚度,减少发光器件200漏光产生光线串扰的问题。
遮蔽层400设置于基板100上的各个发光器件200的间隙之中,设置遮蔽层400的作用是为了将相邻的发光器件200隔离开来,避免相邻的两个发光器件200产生的光线互相干扰。
在本实施例提供的显示面板中,将基板100、发光器件200和发光转换层300逐层设置,发光器件200设置在基板100上,发光转换层300设置在发光器件200上,可省略现有技术中上玻璃基板的设置,同时可减小发光器件200与发光转换层300之间的间距,且从而有效的降低了整个显示面板的厚度,以及降低了相邻发光器件200和发光转换层300之间的光线串扰;同时由于省略了上玻璃基板的设置,不再需要在显示面板的边框上做胶框作为支撑,能够有效的降低显示器边框的厚度,可减小显示面板黑边框的尺寸。
在一些实施例中,发光转换层可包括若干个分别与各凹槽内的发光器件的出光面贴合的色彩转换颗粒。
在有一些实施例中,发光转换层包括多个色彩转换颗粒和多个扩散层,色彩转换颗粒的个数与扩散层的个数之和与凹槽的个数相等;多个色彩转换颗粒和多个扩散层分别贴合于对应凹槽内的发光器件的出光面上。
其中,上述色彩转换颗粒被配置为:受发光器件200所辐射光线的激发产生预定波长的光线。
例如,参见图6,在图6中的发光转换层包括QD-R(红色量子点)301,QD-G(绿色量子点)302和QD-B(蓝色量子点)/扩散层303,每一个色彩转换颗粒或扩散层均设置在对应的发光器件上,在图6中,QD-R301被发光器件200所辐射光线的激发产生红光,QD-G302被发光器件200所辐射光线的激发产生绿光,QD-B/扩散层303具体采用QD-B时,被发光器件200所辐射光线的激发产生蓝光,具体采用扩散层时,扩散层则可对发光器件200所辐射光线进行扩散,以提高发光器件200辐射的光线的均匀性。需要说明的是,图6中给出的示例是为了便于理解本发明,并不用于限定本发明,在实际应用中还可以使用其他的具备色彩转换功能的材料制作发光转换层。
在一些实施方式中,所述发光转换层300可包括一种色彩转换颗粒(其中一种色彩转换颗粒实现一个波长范围的转换)。当发光转换层300只有一种色彩转换颗粒时,制成的显示面板只能显示一种颜色,例如黑白显示面板、电子墨水屏显示屏面板等。
在一些实施方式中,所述发光转换层300包括采用预定规则排列的多种色彩转换颗粒。当发光转换层包括多种色彩转换颗粒时,其制成的显示面板可以显示多种颜色,还可以通过各个颜色的组合实现更多种颜色的显示,例如,目前的显示面板中最常见的显示屏采用红、绿和蓝三种颜色的子像素,而将红、绿和蓝这三种颜色的子像素采用一定的规则进行排列就可以显示所有的颜色。需要说明的是,本实施例给出的红、绿和蓝三种量子点层的方案只是众多彩色显示面板中的一种,其并不用于限制本发明,在实际应用中,例如为了提高显示器的亮度还可以采用红、绿、蓝和白四种颜色的像素点方案,也属于本发明的保护范围。
在一些实施方式中,显示面板还包括:滤光层,附着于发光转换层之上,一种示例请参见图7所示,滤光层600的作用可以包括但不限于将光转换层300发射出来的光线进行滤光,以产生更加纯净的单色光。
在一些实施方式中,所述滤光层600包括设置于同层的若干个滤光片,若干个所述滤光片与若干个所述色彩转换颗粒或所述多个色彩转换颗粒和多个扩散层对应设置,且所述滤光片所能透过的光线的波长与所示色彩转换颗粒转换的光线或扩散层扩散光线的波长一致。当色彩转换颗粒包括多种类型时,对应的滤光层600也需要设置对应类型的滤光片,每一种滤光片所能通过的光线的波长需与对应的彩转换颗粒转换产生的光线的波长一致。
在一些实施方式中,所述滤光片入光面的面积大于等于所述色彩转换颗粒出光面的面积。参见图7,为了让产生的光线更加的准确,避免漏光产生干扰,在一种示例中,滤光片底面的入光面(也即与发光转换层300接触的一面)的面积要大于等于发光转换层顶层的出光面(也即与滤光片接触的一面)的面积。
在一些实施方式中,所述遮蔽层的厚度大于所述发光器件的厚度,以尽可能避免发光器件之间出现串光的情况。例如:在一种示例中,设置遮蔽层厚度大于发光器件与发光转换层的厚度和,从而使得发光器件和发光转换层都位于对应的凹槽内。在另一示例中,遮蔽层厚度小于发光器件与发光转换层的厚度和,从而使得发光器件对应的凹槽内,该发光器件上的发光转换层远离凹槽底部的一面露出遮蔽层。
例如,一种应用示例中,遮蔽层可包括但不限于黑胶层,且所述黑胶层的厚度大于所述发光器件的厚度。遮蔽层400的作用是将相邻的发光器件进行隔离,避免光线串扰,因此选用黑胶层作为遮蔽层400,可以有效的隔离相邻的发光器件产生的光线,而黑胶层的厚度需要大于发光器件的厚度,可以避免发光器件从顶端发射出去的光线与周围的发光器件产生光线串扰,同时还能让发光转换层嵌入到黑胶层所高出来的这部分区域中,让发光转换层自动与发光器件对齐。
需要说明的是,本实施的遮蔽层400,其作用是将发光器件与周围的发光器件隔离开,防止产生光线串扰,因此,遮蔽层400的选择不仅仅局限于黑胶,其他的能够有效阻隔光线的材料均可以作为组成本实施的遮蔽层的材料。
需要说明的是,本实施例中,黑胶的厚度大于发光器件的厚度,其目的是为了更好的减少光线串扰,同时还能让发光转换层自动与发光器件对齐,此时黑胶的厚度与发光转换层的厚度关系还存在三种可能,情况一:如图2所示,黑胶的厚度低于发光转换层的顶端,该情况对工艺的要求较低,对显示效果的影响不明显;情况二:如图3所示,黑胶的厚度与发光转换层的顶端齐平,该情况有利于在发光转换层之上继续做滤光层,实际的显示效果也相对最好;情况三:如图4所示,黑胶的厚度高于发光转换层的顶端,该情况可以有效的避免各个像素点之间的串光,使的显示色彩更佳的准确。
在一些实施方式中,发光器件包括微发光二极管(micro LED)、有机电致发光二极管(OLED)或迷你发光二极管(mini LED)中的任意一种。
在一些实施方式中,本实施例提供的显示面板还包括透光保护层,透光保护层设置于发光转换层之上。在一种应用示例中,显示面板包括设置于滤光层之上,将滤光层覆盖在内的透光保护层。
如图5所示,是本实施例提供的另外一种显示面板的局部剖面示意图,图5中的显示面板包括了透光保护层500,透光保护层500设置在遮蔽层400和发光转换层300之上;在另一示例中,显示面板包括设置于图7中所示的滤光层600之上,将滤光层600覆盖在内的透光保护层。保护层500的作用可包括但不限于为保护其下方的滤光层、发光转换层和遮蔽胶,同时由于发光器件200产生的光线通过发光转换层300转换后产生的色光需要从保护层500中射出,因此需要将保护层500做成透明。
在一些实施方式中,还提供了一种显示器,所述显示器包括:框架和如上述的显示面板。
所述显示面板固定在所述框架上。
需要说明的是,这里提供的一种显示器,其显示器所搭载的具体终端不做限定,包括但不限于智能手表,智能手机,电脑显示器,家用电视显示器和大屏显示屏等。
上述显示器搭载了本发明实施例提供的显示面板,由于显示面板的整体厚度和边框宽度,均得到了有效的改善,因此本发明实施例提供的显示器也可以有效的降低显示器的厚度和显示器的边框宽度,提高显示器的美观性。
为了便于理解,对本发明实施的实时方式提供的一种micro LED的显示面板的制作工艺作为示例。制作工艺包括但不限于以下步骤。
S1、通过巨量转移技术将Blue micro LED芯片(蓝色微发光二极管芯片)批量转移到TFT基板上。
S2、在TFT基板上涂抹黑胶,黑胶的厚度要高于micro
LED芯片,能够覆盖住micro LED芯片,通过固化工艺使得黑胶固化;例如在120℃以及抽真空环境作用下,让黑胶膜紧紧贴付在LED表面,再通过160℃左右的温度烘烤,使黑胶固化完成。
S3、用PVD(Physical Vapor
Deposition物理气相沉积)工艺在黑胶上方溅射一层SiNx(氮化硅)保护层,再通过曝光,显影,蚀刻方式,使得保护层pattern(图案)化。因SiNx是无机材质,能耐得住后制程plasma(等离子)处理。此外,此保护层还可以是单层SiNx,或者SiOx/SiNx双层结构以及其他高透明无机层。图案化即时将micro
LED芯片上方的保护层去除,保留其余部分的保护层。
S4、Plasma(等离子)处理,将基板放置在O2 Plasma clean机台中,利用电浆轰击基板表面,有保护层pattern的地方,黑胶保留下来,其余地方被去除,使LED发光表面露出来。
S5、通过涂布,曝光,显影,烘烤等制程,依次完成QD-R(quantum
dotsred红色量子材料),QD-G(quantum
dotsgreen绿色量子材料),Scatter(扩散材料)。因现有QD材料热衰退问题,其烘烤温度小于等于180℃。特别的,在该实施例中,为保证有效涂布厚度均匀性,QD-R、QD-G以及Scatter这三层材料厚度需≥LED 芯片上方黑胶+保护层厚度。
S6、依次完成R滤光层、G滤光层和B滤光层,其工艺为涂布,曝光,显影,烘烤,且其烘烤温度需≤180℃。特别的,RGB滤光层三层的线宽(CD),要大于下层QD以及scatter的线宽,防止QD以及scatter在烘烤时材料收缩,边缘部分与黑胶贴合不紧密,最下层LED 漏光。
S7、在最外层制作一层透明保护层。其制作工艺为涂布曝光显影烘烤,且烘烤温度需≤180℃。
在一个实施例中,还可以将QD-R,QD-G,Scatter通过Ink jet(喷墨打印)方式,将其喷在黑胶形成的凹槽中,通过控制Ink Jet注入量,完成不同膜厚设计,可保证QD-R,QD-G以及Scatter这三层材料厚度≤LED 芯片上方黑胶+保护层厚度,这样不仅能有效控制膜厚均一性,且由于黑胶高度≥QD材料高度,串色风险更小。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (16)
- 一种显示面板,包括:基板;形成于所述基板上的遮蔽层,所述遮蔽层上形成有若干个相互分离、且底部与所述基板相通的凹槽;设于各所述凹槽内,并固定于所述基板上的发光器件,所述发光器件的出光面远离所述基板;以及附着于各所述发光器件的出光面上的发光转换层。
- 如权利要求1所述的显示面板,其中,所述发光转换层包括若干个分别与各所述凹槽内的发光器件的出光面贴合的色彩转换颗粒;所述色彩转换颗粒被配置为:受所述发光器件所辐射光线的激发产生预定波长的光线。
- 如权利要求1所述的显示面板,其中,所述发光转换层包括多个色彩转换颗粒和多个扩散层,所述色彩转换颗粒的个数与所述扩散层的个数之和与所述凹槽的个数相等;所述多个色彩转换颗粒和多个扩散层分别贴合于对应所述凹槽内的发光器件的出光面上;所述色彩转换颗粒被配置为:受所述发光器件所辐射光线的激发产生预定波长的光线。
- 如权利要求2所述的显示面板,其中,所述显示面板还包括:附着于所述发光转换层上的滤光层,所述滤光层包括若干个滤光片,若干个所述滤光片与若干个所述色彩转换颗粒一一对应设置,且所述滤光片所能透过的光线的波长与所述色彩转换颗粒转换的光线的波长一致。
- 如权利要求3所述的显示面板,其中,所述显示面板还包括:附着于所述发光转换层上的滤光层,所述滤光层包括若干个滤光片,若干个所述滤光片与多个所述色彩转换颗粒和多个所述扩散层一一对应设置;且所述滤光片所能透过的光线的波长与所述色彩转换颗粒或扩散层转换的光线的波长一致。
- 如权利要求4所述的显示面板,其中,所述滤光片的入光面的面积,大于等于所述色彩转换颗粒的出光面的面积。
- 如权利要求5所述的显示面板,其中,所述滤光片的入光面的面积,大于等于所述色彩转换颗粒或扩散层的出光面的面积。
- 如权利要求4-7任一项所述的显示面板,其中,还包括:设置于所述滤光层之上,将所述滤光层覆盖在内的透光保护层。
- 如权利要求2-7任一项所述的显示面板,其中,所述发光转换层包括一种色彩转换颗粒。
- 如权利要求2-7任一项所述的显示面板,其中,所述发光转换层包括采用预定规则排列的多种色彩转换颗粒。
- 如权利要求1-7任一项所述的显示面板,其中,所述遮蔽层的厚度大于所述发光器件的厚度。
- 如权利要求11所述的显示面板,其中,所述遮蔽层厚度大于所述发光器件与所述发光转换层的厚度之和。
- 如权利要求11所述的显示面板,其中,所述遮蔽层厚度小于所述发光器件与所述发光转换层的厚度之和。
- 如权利要求1-7任一项所述的显示面板,其中,所述发光器件包括微发光二极管、有机电致发光二极管或迷你发光二极管中的任意一种。
- 如权利要求1-7任一项所述的显示面板,其中,一个所述凹槽内设置一个所述发光器件。
- 一种显示器,包括:框架和如权利要求1-15任一项所述的显示面板;所述显示面板固定在所述框架上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202021572584.7U CN212625583U (zh) | 2020-07-30 | 2020-07-30 | 一种显示面板和显示器 |
CN202021572584.7 | 2020-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022021615A1 true WO2022021615A1 (zh) | 2022-02-03 |
Family
ID=74730353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/121265 WO2022021615A1 (zh) | 2020-07-30 | 2020-10-15 | 一种显示面板和显示器 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN212625583U (zh) |
TW (1) | TWM609847U (zh) |
WO (1) | WO2022021615A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113193101B (zh) * | 2021-04-07 | 2023-02-07 | 深圳市华星光电半导体显示技术有限公司 | 显示面板及阻隔型蓝色发光器件显示器的制备方法 |
CN114019713A (zh) * | 2021-06-16 | 2022-02-08 | 重庆康佳光电技术研究院有限公司 | 发光组件、显示屏及发光组件制作方法 |
CN113594196B (zh) * | 2021-07-29 | 2024-08-02 | 錼创显示科技股份有限公司 | 微型发光二极管显示装置及其制造方法 |
CN113725248A (zh) * | 2021-08-24 | 2021-11-30 | 上海天马微电子有限公司 | 显示装置及其制作方法 |
CN113990190A (zh) * | 2021-10-29 | 2022-01-28 | Tcl华星光电技术有限公司 | 显示基板、显示面板及显示基板的制作方法 |
CN114035380B (zh) * | 2021-11-01 | 2023-07-14 | 重庆康佳光电技术研究院有限公司 | 一种彩膜基板、显示面板及彩膜基板制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684108A (zh) * | 2015-11-05 | 2017-05-17 | 群创光电股份有限公司 | 发光二极管显示设备 |
CN110416247A (zh) * | 2019-07-31 | 2019-11-05 | 云谷(固安)科技有限公司 | 一种显示组件、显示面板及显示装置 |
CN110992841A (zh) * | 2019-11-06 | 2020-04-10 | 深圳市华星光电半导体显示技术有限公司 | 显示装置及显示装置的制作方法 |
US20200152612A1 (en) * | 2018-06-29 | 2020-05-14 | Boe Technology Group Co., Ltd. | Display panel, manufacturing method and display device |
CN112133718A (zh) * | 2019-06-25 | 2020-12-25 | 成都辰显光电有限公司 | 显示面板、显示装置及显示面板的制备方法 |
-
2020
- 2020-07-30 CN CN202021572584.7U patent/CN212625583U/zh active Active
- 2020-10-15 WO PCT/CN2020/121265 patent/WO2022021615A1/zh active Application Filing
- 2020-10-30 TW TW109214283U patent/TWM609847U/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684108A (zh) * | 2015-11-05 | 2017-05-17 | 群创光电股份有限公司 | 发光二极管显示设备 |
US20200152612A1 (en) * | 2018-06-29 | 2020-05-14 | Boe Technology Group Co., Ltd. | Display panel, manufacturing method and display device |
CN112133718A (zh) * | 2019-06-25 | 2020-12-25 | 成都辰显光电有限公司 | 显示面板、显示装置及显示面板的制备方法 |
CN110416247A (zh) * | 2019-07-31 | 2019-11-05 | 云谷(固安)科技有限公司 | 一种显示组件、显示面板及显示装置 |
CN110992841A (zh) * | 2019-11-06 | 2020-04-10 | 深圳市华星光电半导体显示技术有限公司 | 显示装置及显示装置的制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN212625583U (zh) | 2021-02-26 |
TWM609847U (zh) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022021615A1 (zh) | 一种显示面板和显示器 | |
US20210234134A1 (en) | Anti-peeping display panel and anti-peeping display apparatus | |
US11362148B2 (en) | Quantum dot display panel and manufacturing method thereof | |
US11637260B2 (en) | Quantum dot-based display panel and method for fabricating the same, and display device | |
CN109713018B (zh) | 一种显示装置及其制作方法 | |
US7956537B2 (en) | Display device with cooperating groove and insert sealing structure and manufacturing method therefor | |
US8040052B2 (en) | Light-emitting device, method for manufacturing the same, and electronic apparatus | |
US20180088416A1 (en) | Array substrate and method for manufacturing the same, and display panel | |
KR20190010698A (ko) | 유기 디바이스 상의 비공통 캡핑 층 | |
CN109509767A (zh) | 一种显示面板及显示装置 | |
CN110752242B (zh) | 一种显示面板及显示装置 | |
US20170170245A1 (en) | Organic light emitting diode display and method for manufacturing the same | |
CN111244127B (zh) | 显示面板的制作方法、显示面板和显示装置 | |
CN104851983A (zh) | 有机发光装置的制造方法、有机发光装置以及电子设备 | |
JP7525512B2 (ja) | 表示基板及びその製造方法、表示装置 | |
WO2018040329A1 (zh) | 一种发光面板及其制备方法 | |
WO2019205425A1 (zh) | Woled显示面板及其制作方法 | |
WO2019041990A1 (zh) | 有机电致发光显示面板及其制备方法 | |
CN114335126B (zh) | 一种显示面板及显示装置 | |
US20230165094A1 (en) | Display device, display panel and manufacturing method thereof, driving circuit and driving method | |
US11145836B2 (en) | OLED display device and manufacturing method for the same | |
CN110085750A (zh) | 有机发光二极管器件及其制作方法 | |
WO2020233298A1 (zh) | 封装结构及封装方法、显示装置 | |
US20240099079A1 (en) | Display apparatus, and display panel and manufacturing method therefor | |
TW200428310A (en) | Full color display panel and color-seperating substrate thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20947735 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20947735 Country of ref document: EP Kind code of ref document: A1 |