WO2023070459A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023070459A1
WO2023070459A1 PCT/CN2021/127157 CN2021127157W WO2023070459A1 WO 2023070459 A1 WO2023070459 A1 WO 2023070459A1 CN 2021127157 W CN2021127157 W CN 2021127157W WO 2023070459 A1 WO2023070459 A1 WO 2023070459A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
vector
codebook
column
vectors
Prior art date
Application number
PCT/CN2021/127157
Other languages
English (en)
French (fr)
Inventor
陈文洪
黄莹沛
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/127157 priority Critical patent/WO2023070459A1/zh
Publication of WO2023070459A1 publication Critical patent/WO2023070459A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • uplink transmission supports codebooks with 2-antenna ports and 4-antenna ports, and network devices transmit precoding matrix indications (Transmit Precoding Matrix) Indicator, TPMI), the terminal device determines the precoding matrix corresponding to the TPMI from the codebook according to the TPMI.
  • precoding matrix indications Transmit Precoding Matrix
  • the terminal device determines the precoding matrix corresponding to the TPMI from the codebook according to the TPMI.
  • it can support other numbers of antenna ports (such as 3 antenna ports). In this case, how to design a codebook is an urgent problem to be solved.
  • Embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, and design a codebook that supports uplink transmission based on 3 antenna ports, which can make full use of the antenna gain of the 3-antenna port transmission, and can improve spectral efficiency and peak rate.
  • a wireless communication method includes:
  • the terminal device receives the TPMI and TRI sent by the network device;
  • the terminal device determines a precoding matrix from a codebook corresponding to the TRI according to the TPMI; wherein, each codeword in the codebook is 3 rows;
  • the terminal device uses the precoding matrix to precode data
  • the terminal device sends the precoded data.
  • a wireless communication method in a second aspect, includes:
  • the network device determines the precoding matrix from the codebook corresponding to the TRI; wherein, each codeword in the codebook is 3 rows;
  • the network device sends the TPMI corresponding to the precoding matrix and the TRI to the terminal device, and the TPMI is used by the terminal device to determine the precoding matrix from a codebook corresponding to the TRI.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • a codebook that supports uplink transmission based on 3 antenna ports is designed, which can make full use of the antenna gain of 3-antenna port transmission. Compared with degenerating 3-antenna terminals into 2-port transmission, the spectral efficiency can be improved. and peak rate.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of codebook-based PUSCH transmission provided by the present application.
  • Fig. 3 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • IoT Internet of Things
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, vehicle communication equipment, wireless communication chip/application-specific integrated circuit (application specific integrated circuit, ASIC)/system-on-chip (System on Chip, SoC), etc.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city or wireless terminal equipment in smart home
  • vehicle communication equipment wireless communication chip/application-specific integrated circuit (application specific integrated circuit, ASIC
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Precoding processing is generally divided into two parts: analog domain processing and digital domain processing.
  • Analog domain processing is aimed at transmitting analog signals, and generally adopts beamforming to map radio frequency signals to physical antennas.
  • Digital domain processing is aimed at digital signals, generally at baseband, using a precoding matrix to precode digital signals, and mapping data at the transport layer to radio frequency ports. Due to the limited number of radio frequency channels of the terminal, two processing methods are generally used at the same time, that is, precoding the digital signal and beamforming the analog signal.
  • PUSCH transmission is divided into codebook-based transmission and non-codebook-based transmission according to different precoding methods.
  • the network side configures a sounding reference signal (Sounding Reference Signal, SRS) resource set dedicated to codebook transmission for the terminal.
  • SRS Sounding Reference Signal
  • the terminal will send SRS on multiple SRS resources in the set, and the SRS on each SRS resource uses a different beam, and the network side selects the best SRS resource to obtain uplink channel state information (Channel State Information, CSI),
  • CSI uplink channel state information
  • the resource index is indicated to the terminal through the SRS resource indicator (SRS resource indicator, SRI), so that the terminal uses the corresponding beam of the SRS resource to perform analog beamforming on the data.
  • the network side will indicate the Rank Indication (RI) and TPMI through the downlink control information (Downlink Control Information, DCI), and the terminal determines the uplink precoding matrix corresponding to the TPMI from the codebook according to the RI and TPMI.
  • RI Rank Indication
  • DCI Downlink Control Information
  • gNB determines an SRI corresponding to an SRS resource, selects a precoding matrix indicator (Precoding Matrix Indicator, PMI) from the codebook, and determines RI or channel quality indicator (Channel Quantity Indicator, CQI) based on the selected PMI;
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • gNB sends SRI/RI/PMI/modulation and coding scheme (Modulation and Coding Scheme, MCS) to UE;
  • MCS Modulation and Coding Scheme
  • the UE determines the number of layers based on the RI, and determines the precoder based on the PMI;
  • the UE sends precoded data and a demodulation reference signal (Demodulation Reference Signal, DMRS) to the gNB.
  • DMRS Demodulation Reference Signal
  • Uplink supports 2-port and 4-port PUSCH transmission.
  • the codebook used by 2 antenna ports and 1 transmission layer is shown in Table 1, 2 antenna ports and 1 transmission layer (corresponding to Discrete Fourier Transform-spread spectrum-OFDM (Discrete Fourier Transform-Spread -Orthogonal Frequency Division Multiplexing, DFT-S-OFDM))
  • the codebook used is shown in Table 2
  • 4 antenna ports and 1 transmission layer corresponding to Cyclic Prefix-Orthogonal Frequency Division Multiplexing (Cyclic Prefix-Orthogonal Frequency
  • the codebook used by Division Multiplexing, CP-OFDM) is shown in Table 3
  • the codebook used by 2 antenna ports and 2 transmission layers (corresponding to DFT-S-OFDM) is shown in Table 4 antennas
  • the codebook used by the port and 2 transmission layers (corresponding to CP-OFDM) is shown in Table 5
  • the codebook used by 4 antenna ports and 3 transmission layers is shown in Table 6. 4 Table
  • this application proposes an uplink codebook design scheme, and designs a codebook that supports uplink transmission based on 3 antenna ports, which can make full use of the antenna gain of the 3-antenna port transmission, compared to degrading the 3-antenna terminal In the way of 2-port transmission, the spectral efficiency and peak rate can be improved.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device receives the TPMI and TRI sent by the network device;
  • the terminal device determines a precoding matrix from the codebook corresponding to the TRI according to the TPMI; wherein, each codeword in the codebook is 3 rows;
  • the terminal device uses the precoding matrix to precode data
  • the terminal device sends the precoded data.
  • each codeword in the codebook includes 3 lines.
  • the codebook supports uplink transmission based on 3 antenna ports, and can make full use of the antenna gain of 3 antenna port transmission. Compared with Degrading the 3-antenna terminal into a 2-port transmission method can improve spectral efficiency and support layer 3 uplink transmission, thereby increasing the peak rate.
  • each row of each codeword in the codebook corresponds to one antenna port, and 3 rows correspond to 3 antenna ports.
  • the network device may indicate the TPMI through downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the network device may also indicate the TPMI through other signaling, which is not limited in this application.
  • the terminal device may obtain a Transmitted Rank Indicator (TransmittedRankIndicator, TRI) from the DCI indicating the TPMI, and the TRI indicates the number of transmission layers.
  • TransmittedRankIndicator TRI
  • TRI TransmittedRankIndicator
  • the number of transmission layers may be 1, or 2, or 3.
  • codewords when determining the vectors/matrices included in the codebook, codewords may be selected in a manner that maximizes the minimum chordal distance or the average chordal distance between codewords. That is, under a specific codebook size, a candidate codebook with the largest minimum chord distance or the largest average chord distance between codewords is selected from multiple candidate codebooks composed of specific vectors as the codebook.
  • the codebook when the layer number of the transmission layer indicated by the TRI is 1, includes at least one of the following vectors: a first vector, a second vector, a third vector, and a fourth vector ;
  • this first vector is the 3-discrete Fourier transform (Discrete Fourier Transform, DFT) vector of constant modulus;
  • the three elements of this second vector are the quadrature phase shift keying (Quadrature Phase Shift) of constant modulus Keying, QPSK) element; one element of the third vector is 1, one element is QPSK element, and one element is 0; one element of the fourth vector is 1, and the other two elements are 0.
  • a single-layer codeword can be generated based on a constant modulus 3-DFT vector.
  • a single-layer codeword can be generated based on QPSK elements of constant modulus.
  • the QPSK element set is ⁇ 1, -1, j, -j ⁇ , that is, the QPSK element is an element in the QPSK element set.
  • the first vector is a 3-DFT vector of constant modulus, in other words, the first vector is a constant modulus (that is, the modulus of each element of the first vector is the same) and the length is 3 DFT vector of .
  • the first vector is at least one of 30 vectors obtained by performing O-fold oversampling on a DFT vector with a length of 3, where O is a positive integer.
  • the first vector is at least one vector in the following set of vectors:
  • O is a positive integer.
  • the power normalization coefficient is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • the three elements of the second vector are QPSK elements with constant modulus (that is, the modulus of each element of the second vector is the same), that is, each element is from the QPSK element set ⁇ 1, -1,j,-j ⁇ .
  • the first element of the second vector is 1.
  • the second and third elements of the second vector are both QPSK elements, that is, the second vector is [1; x; y], where x and y are taken from the set ⁇ 1,-1,j,-j ⁇ .
  • Different vectors can be used for data that has undergone DFT transformation and data that has not undergone DFT transformation.
  • the second vector is at least one vector in the following set of vectors:
  • the power normalization coefficient is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • the second vector may include all the following 8 vectors:
  • one element of the third vector is 1, one element is a QPSK element, and one element is 0.
  • the third vector is [1; 0; x] or [1; x; 0] or [0; 1; x], where x is taken from the set ⁇ 1, -1, j, -j ⁇ .
  • the third vector is at least one vector in the following set of vectors:
  • the third vector is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • the third vector may contain all four of the following vectors:
  • the fourth vector is at least one vector in the following set of vectors:
  • the fourth vector is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • the fourth vector may contain all the following three elements:
  • the vectors included in the codebook are determined by the type of codebook configured by the network device.
  • the codebook type when the codebook type is a coherent codebook, the codebook includes the first vector, the third vector, and the fourth vector, or the codebook includes the second vector , the third vector and the fourth vector.
  • the codebook type when the codebook type is a partially coherent (partial coherent) codebook, the codebook includes the third vector and the fourth vector.
  • the codebook type is a non-coherent (non-coherent) codebook
  • the codebook includes the fourth vector.
  • the codebook when the number of transmission layers indicated by TRI is 2, includes at least one of the following precoding matrices: the first precoding matrix, the second precoding matrix, the third A precoding matrix, a fourth precoding matrix, and a fifth precoding matrix.
  • each column of the first precoding matrix is a constant modulus DFT vector; each non-zero element of the second precoding matrix is a constant modulus QPSK element; the third precoding matrix
  • the first column is composed of QPSK elements of constant modulus, the second column of the third precoding matrix is composed of non-QPSK elements of constant modulus, and the second column vector of the third precoding matrix is orthogonal to the first column vector ;
  • the first column of the fourth precoding matrix includes two QPSK elements, the second column includes a QPSK element, and these three QPSK elements are located in different rows, and other elements are 0; the two columns of the fifth precoding matrix Each element is 1, and these two elements are in different rows, and the other elements are 0.
  • each column of the first precoding matrix is a 3-DFT vector with constant modulus (ie, the modulus of each element in the column is the same).
  • the two column vectors of the first precoding matrix are two vectors among 30 vectors obtained by performing O times oversampling on a DFT vector with a length of 3, where O is a positive integer.
  • the first precoding matrix is at least one of the following precoding matrix sets:
  • O is a positive integer.
  • the power normalization coefficient in the first precoding matrix, is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • the first precoding matrix is all three matrices in the above precoding matrix set.
  • the first precoding matrix is 4 or 8 matrices in the above precoding matrix set.
  • elements in the first row of the second precoding matrix are all 1, other elements are QPSK elements, and the two column vectors are not the same and are not orthogonal.
  • the second precoding matrix includes several precoding matrices with the same elements in the first two rows and different elements in the third row. Wherein, the second precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the second precoding matrix, is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • the second precoding matrix includes all the above four precoding matrices, where the first two rows of the four precoding matrices are the same, but the third row is different.
  • the two column vectors of the second precoding matrix are orthogonal, and one element of the second column vector is 0, and all other elements are non-zero.
  • the form of the second precoding matrix can be or Among them, x, y, and z are all taken from the set ⁇ 1,-1,j,-j ⁇ .
  • the second precoding matrix is at least one of the following precoding matrix sets:
  • the second precoding matrix may include 4 or 8 precoding matrices in the foregoing matrices.
  • the power normalization coefficient in the second precoding matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In practical applications, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the third precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the third precoding matrix, is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or or or
  • each element in the first column and the second column of the fourth precoding matrix is 1.
  • the fourth precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the fourth precoding matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In practical applications, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the fourth precoding matrix is the 1st-4th matrix, or the 5th-8th matrix, or the 9th-12th matrix in the foregoing precoding matrix set.
  • the fifth precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the fifth precoding matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In practical applications, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the fifth precoding matrix may include all the above three precoding matrices.
  • the precoding matrix included in the codebook is determined by the codebook type configured by the network device.
  • the codebook when the codebook type is a coherent codebook, the codebook includes the first precoding matrix, the fourth precoding matrix, and the fifth precoding matrix, or the codebook The second precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook, or the third precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook .
  • the codebook type when the codebook type is a partially coherent (partial coherent) codebook, the codebook includes the fourth precoding matrix and the fifth precoding matrix.
  • the codebook type is a non-coherent (non-coherent) codebook
  • the codebook includes the fifth precoding matrix
  • a dual layer codeword can be generated based on a constant modulus 3-DFT vector.
  • a two-layer codeword can be generated based on constant-modulus QPSK elements, eg, two layer vectors are non-orthogonal.
  • the first layer vectors of single layer and double layer are generated using constant modulus QPSK elements, and the second layer vectors are generated using non-QPSK elements, which are orthogonal to the first layer.
  • codewords are generated based on constant-modulus QPSK elements, the two layer vectors are orthogonal, and the second layer vectors are sent using only 2 ports.
  • the codebook when the number of transmission layers indicated by the TRI is 3, includes an identity matrix with a size of 3.
  • the codebook is:
  • the power normalization coefficient in the identity matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by In practical applications, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1, or or
  • the terminal device sends an SRS for uplink codebook transmission, wherein the SRS is used by the network device to determine the TPMI.
  • the terminal device sends an SRS for uplink codebook transmission. That is, the network device may determine the TPMI based on the SRS used for uplink codebook transmission.
  • the SRS is a 3-antenna port SRS. That is, the SRS resource of the SRS is configured with 3 antenna ports. And the usage (usage) of the SRS resource is configured as a codebook (codebook).
  • the codebook designed in the embodiment of this application can support uplink transmission based on 3 antenna ports. Compared with degenerating 3-antenna terminals into 2-port transmission, the antenna gain of 3-antenna transmission can be fully utilized, effectively improving Spectral efficiency. At the same time, compared with the method that can only support up to two layers of transmission, the codebook designed in the embodiment of the present application can support uplink transmission of three layers, thereby increasing the peak rate.
  • terminal-side embodiment of the present application is described in detail above in conjunction with FIG. 3
  • network-side embodiment of the present application is described in detail below in conjunction with FIG. 4 . It should be understood that the network-side embodiment and the terminal-side embodiment correspond to each other, and similar descriptions You can refer to the embodiment on the terminal side.
  • FIG. 4 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 4 , the wireless communication method 300 may include at least part of the following content:
  • the network device determines the precoding matrix from the codebook corresponding to the TRI; wherein, each codeword in the codebook is 3 rows;
  • the network device sends the TPMI corresponding to the precoding matrix and the TRI to the terminal device, and the TPMI is used by the terminal device to determine the precoding matrix from the codebook corresponding to the TRI.
  • each codeword in the codebook includes 3 lines.
  • the codebook supports uplink transmission based on 3 antenna ports, and can make full use of the antenna gain of 3 antenna port transmission. Compared with Degrading the 3-antenna terminal into a 2-port transmission method can improve spectral efficiency and support layer 3 uplink transmission, thereby increasing the peak rate.
  • each row of each codeword in the codebook corresponds to one antenna port, and 3 rows correspond to 3 antenna ports.
  • the network device may indicate the TPMI through downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the network device may also indicate the TPMI through other signaling, which is not limited in this application.
  • the network device may carry a TRI in the DCI indicating TPMI, and the TRI indicates the number of transmission layers.
  • TRI and TPMI can be encoded jointly.
  • the number of transmission layers may be 1, or 2, or 3.
  • codewords when determining the vectors/matrices included in the codebook, codewords may be selected in a manner that maximizes the minimum chordal distance or the average chordal distance between codewords.
  • the codebook when the layer number of the transmission layer indicated by the TRI is 1, includes at least one of the following vectors: a first vector, a second vector, a third vector, and a fourth vector ;
  • this first vector is the 3-DFT vector of constant modulus;
  • the three elements of this second vector are all the QPSK elements of constant modulus;
  • One element of this third vector is 1, and one element is QPSK element, and one element is 0; one element of this fourth vector is 1 and the other two elements are 0.
  • a single-layer codeword can be generated based on a constant modulus 3-DFT vector.
  • a single-layer codeword can be generated based on QPSK elements of constant modulus.
  • the QPSK element set is ⁇ 1, -1, j, -j ⁇ , that is, the QPSK element is an element in the QPSK element set.
  • the first vector is a 3-DFT vector of constant modulus, in other words, the first vector is a constant modulus (that is, the modulus of each element of the first vector is the same) and the length is 3 DFT vector of .
  • the first vector is at least one of 30 vectors obtained by performing O-fold oversampling on a DFT vector with a length of 3, where O is a positive integer.
  • the first vector is at least one vector in the following set of vectors:
  • O is a positive integer.
  • the power normalization coefficient is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • the three elements of the second vector are QPSK elements with constant modulus (that is, the modulus of each element of the second vector is the same), that is, each element is from the QPSK element set ⁇ 1, -1,j,-j ⁇ .
  • the first element of the second vector is 1.
  • the second and third elements of the second vector are both QPSK elements, that is, the second vector is [1; x; y], where x and y are taken from the set ⁇ 1,-1,j,-j ⁇ .
  • Different vectors can be used for data that has undergone DFT transformation and data that has not undergone DFT transformation.
  • the second vector is at least one vector in the following set of vectors:
  • the power normalization coefficient is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • the second vector may include all the following 8 vectors:
  • one element of the third vector is 1, one element is a QPSK element, and one element is 0.
  • the third vector is [1; 0; x] or [1; x; 0] or [0; 1; x], where x is taken from the set ⁇ 1, -1, j, -j ⁇ .
  • the third vector is at least one vector in the following set of vectors:
  • the third vector is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • the third vector may contain all four of the following vectors:
  • the fourth vector is at least one vector in the following set of vectors:
  • the fourth vector is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • the fourth vector may contain all the following three elements:
  • the vectors included in the codebook are determined by the type of codebook configured by the network device.
  • the codebook type when the codebook type is a coherent codebook, the codebook includes the first vector, the third vector, and the fourth vector, or the codebook includes the second vector , the third vector and the fourth vector.
  • the codebook type when the codebook type is a partially coherent (partial coherent) codebook, the codebook includes the third vector and the fourth vector.
  • the codebook type is a non-coherent (non-coherent) codebook
  • the codebook includes the fourth vector.
  • the codebook when the number of transmission layers indicated by TRI is 2, includes at least one of the following precoding matrices: the first precoding matrix, the second precoding matrix, the third A precoding matrix, a fourth precoding matrix, and a fifth precoding matrix.
  • each column of the first precoding matrix is a constant modulus DFT vector; each non-zero element of the second precoding matrix is a constant modulus QPSK element; the third precoding matrix
  • the first column is composed of QPSK elements of constant modulus, the second column of the third precoding matrix is composed of non-QPSK elements of constant modulus, and the second column vector of the third precoding matrix is orthogonal to the first column vector ;
  • the first column of the fourth precoding matrix includes two QPSK elements, the second column includes a QPSK element, and these three QPSK elements are located in different rows, and other elements are 0; the two columns of the fifth precoding matrix Each element is 1, and these two elements are in different rows, and the other elements are 0.
  • each column of the first precoding matrix is a 3-DFT vector with constant modulus (ie, the modulus of each element in the column is the same).
  • the two column vectors of the first precoding matrix are two vectors among 30 vectors obtained by performing O times oversampling on a DFT vector with a length of 3, where O is a positive integer.
  • the first precoding matrix is at least one of the following precoding matrix sets:
  • O is a positive integer.
  • the power normalization coefficient in the first precoding matrix, is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • the first precoding matrix is all three matrices in the above precoding matrix set.
  • the first precoding matrix is 4 or 8 matrices in the above precoding matrix set.
  • elements in the first row of the second precoding matrix are all 1, other elements are QPSK elements, and the two column vectors are not the same and are not orthogonal.
  • the second precoding matrix includes several precoding matrices with the same elements in the first two rows and different elements in the third row. Wherein, the second precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the second precoding matrix, is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • the second precoding matrix includes all the above four precoding matrices, where the first two rows of the four precoding matrices are the same, but the third row is different.
  • the two column vectors of the second precoding matrix are orthogonal, and one element of the second column vector is 0, and all other elements are non-zero.
  • the form of the second precoding matrix can be or Among them, x, y, and z are all taken from the set ⁇ 1,-1,j,-j ⁇ .
  • the second precoding matrix is at least one of the following precoding matrix sets:
  • the second precoding matrix may include 4 or 8 precoding matrices in the foregoing matrices.
  • the power normalization coefficient in the second precoding matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In practical applications, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the third precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the third precoding matrix, is the power normalization coefficient.
  • power normalization is not performed in the precoding process, it can also be replaced with other values, such as 1, or or
  • each element in the first column and the second column of the fourth precoding matrix is 1.
  • the fourth precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the fourth precoding matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In actual application, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the fourth precoding matrix is the 1st-4th matrix, or the 5th-8th matrix, or the 9th-12th matrix in the foregoing precoding matrix set.
  • the fifth precoding matrix is at least one of the following precoding matrix sets:
  • the power normalization coefficient in the fifth precoding matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In actual application, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the fifth precoding matrix may include all the above three precoding matrices.
  • the precoding matrix included in the codebook is determined by the codebook type configured by the network device.
  • the codebook when the codebook type is a coherent codebook, the codebook includes the first precoding matrix, the fourth precoding matrix, and the fifth precoding matrix, or the codebook The second precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook, or the third precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook .
  • the codebook type when the codebook type is a partially coherent (partial coherent) codebook, the codebook includes the fourth precoding matrix and the fifth precoding matrix.
  • the codebook type is a non-coherent (non-coherent) codebook
  • the codebook includes the fifth precoding matrix
  • a dual layer codeword can be generated based on a constant modulus 3-DFT vector.
  • a two-layer codeword can be generated based on constant-modulus QPSK elements, eg, two layer vectors are non-orthogonal.
  • the first layer vectors of single layer and double layer are generated using constant modulus QPSK elements, and the second layer vectors are generated using non-QPSK elements, which are orthogonal to the first layer.
  • codewords are generated based on constant-modulus QPSK elements, the two layer vectors are orthogonal, and the second layer vectors are sent using only 2 ports.
  • the codebook when the number of transmission layers indicated by the TRI is 3, includes an identity matrix with a size of 3.
  • the codebook is:
  • the power normalization coefficient in the identity matrix, is the power normalization coefficient, and the power normalization coefficient can also be replaced by or or In practical applications, if power normalization is not performed during the precoding process, it can also be replaced with other values, such as 1.
  • the network device receives the SRS sent by the terminal device for uplink codebook transmission. And in the above S310, the network device determines the precoding matrix from the codebook according to the SRS. That is, before the above S310, the network device receives the SRS sent by the terminal device for uplink codebook transmission.
  • the SRS is a 3-antenna port SRS. That is, the SRS resource of the SRS is configured with 3 antenna ports. And the usage (usage) of the SRS resource is configured as a codebook (codebook).
  • the network device receives data sent by the terminal device that is precoded by using the precoding matrix.
  • the codebook designed in the embodiment of this application can support uplink transmission based on 3 antenna ports. Compared with degenerating 3-antenna terminals into 2-port transmission, the antenna gain of 3-antenna transmission can be fully utilized, effectively improving Spectral efficiency. At the same time, compared with the method that can only support up to two layers of transmission, the codebook designed in the embodiment of the present application can support uplink transmission of three layers, thereby increasing the peak rate.
  • Fig. 5 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the communication unit 410 is configured to receive the transmission precoding matrix indication TPMI and the transmission rank indication TRI sent by the network device;
  • a processing unit 420 configured to determine a precoding matrix from a codebook corresponding to the TRI according to the TPMI; wherein, each codeword in the codebook is 3 rows;
  • the processing unit 420 is further configured to perform data precoding by using the precoding matrix
  • the communication unit 410 is also configured to send precoded data.
  • the codebook when the layer number of the transmission layer indicated by the TRI is 1, includes at least one of the following vectors: a first vector, a second vector, a third vector, and a fourth vector ;
  • the first vector is the 3-discrete Fourier transform DFT vector of the constant modulus
  • the three elements of the second vector are the quadrature phase shift keying QPSK elements of the constant modulus
  • an element of the third vector is 1, one element is a QPSK element, and one element is 0
  • one element of the fourth vector is 1, and the other two elements are 0.
  • the first vector is at least one of 30 vectors obtained by performing O-fold oversampling on a DFT vector with a length of 3, where O is a positive integer.
  • the first vector is at least one vector in the following set of vectors:
  • O is a positive integer.
  • the first element of the second vector is 1.
  • the second vector is at least one vector in the following set of vectors:
  • the third vector is at least one vector in the following set of vectors:
  • the fourth vector is at least one vector in the following set of vectors:
  • the vectors included in the codebook are determined by the type of codebook configured by the network device.
  • the codebook type when the codebook type is a coherent codebook, the codebook includes the first vector, the third vector, and the fourth vector, or, the codebook includes the second vector , the third vector and the fourth vector.
  • the codebook when the codebook type is a partially coherent codebook, the codebook includes the third vector and the fourth vector.
  • the codebook when the codebook type is a non-coherent codebook, the codebook includes the fourth vector.
  • the power normalization coefficient of the vector includes at least one of the following: 1,
  • the codebook when the number of transmission layers indicated by the TRI is 2, includes at least one of the following precoding matrices: the first precoding matrix, the second precoding matrix, the first Three precoding matrices, a fourth precoding matrix, and a fifth precoding matrix;
  • Each column of the first precoding matrix is a constant modulus DFT vector
  • Each non-zero element of the second precoding matrix is a QPSK element of constant modulus
  • the first column of the third precoding matrix is composed of constant modulus QPSK elements
  • the second column of the third precoding matrix is composed of constant modulus non-QPSK elements
  • the second column vector of the third precoding matrix is the same as The first column vector is orthogonal
  • the first column of the fourth precoding matrix includes two QPSK elements, the second column includes one QPSK element, and these three QPSK elements are located in different rows, and other elements are 0;
  • Each of the two columns of the fifth precoding matrix has an element that is 1, and these two elements are in different rows, and other elements are all 0.
  • the two column vectors of the first precoding matrix are two vectors out of 30 vectors obtained by performing 0 times oversampling on a DFT vector with a length of 3, where 0 is a positive integer.
  • the first precoding matrix is at least one of the following precoding matrix sets:
  • O is a positive integer.
  • the two column vectors of the second precoding matrix are orthogonal, and one element of the second column vector is 0, and all other elements are non-zero.
  • the second precoding matrix is at least one of the following precoding matrix sets:
  • the third precoding matrix is at least one of the following precoding matrix sets:
  • each element in the first column and the second column of the fourth precoding matrix is 1.
  • the fourth precoding matrix is at least one of the following precoding matrix sets:
  • the fifth precoding matrix is at least one of the following precoding matrix sets:
  • the precoding matrix included in the codebook is determined by the codebook type configured by the network device.
  • the codebook when the codebook type is a coherent codebook, the codebook includes the first precoding matrix, the fourth precoding matrix, and the fifth precoding matrix, or, the codebook The second precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook, or the third precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook .
  • the codebook when the codebook type is a partially coherent codebook, the codebook includes the fourth precoding matrix and the fifth precoding matrix.
  • the codebook when the codebook type is a non-coherent codebook, the codebook includes the fifth precoding matrix.
  • the power normalization coefficient of the precoding matrix includes at least one of the following: 1,
  • the codebook when the number of transmission layers indicated by the TRI is 3, includes an identity matrix with a size of 3.
  • the communication unit 410 is further configured to send a Sounding Reference Signal SRS for uplink codebook transmission, where the SRS is used by the network device to determine the TPMI.
  • the SRS is a 3-antenna port SRS.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are for realizing the method shown in FIG. 3
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 6 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the processing unit 510 is configured to determine the precoding matrix from the codebook corresponding to the transmission rank indication TRI; wherein, each codeword in the codebook is 3 rows;
  • the communication unit 520 is configured to send a transmit precoding matrix indication TPMI corresponding to the precoding matrix and the TRI to the terminal device, where the TPMI is used by the terminal device to determine the precoding matrix from a codebook corresponding to the TRI.
  • the codebook when the layer number of the transmission layer indicated by the TRI is 1, includes at least one of the following vectors: a first vector, a second vector, a third vector, and a fourth vector ;
  • the first vector is the 3-discrete Fourier transform DFT vector of the constant modulus
  • the three elements of the second vector are the quadrature phase shift keying QPSK elements of the constant modulus
  • an element of the third vector is 1, one element is a QPSK element, and one element is 0
  • one element of the fourth vector is 1, and the other two elements are 0.
  • the first vector is at least one of 30 vectors obtained by performing O-fold oversampling on a DFT vector with a length of 3, where O is a positive integer.
  • the first vector is at least one vector in the following set of vectors:
  • O is a positive integer.
  • the first element of the second vector is 1.
  • the second vector is at least one vector in the following set of vectors:
  • the third vector is at least one vector in the following set of vectors:
  • the fourth vector is at least one vector in the following set of vectors:
  • the vectors included in the codebook are determined by the type of codebook configured by the network device.
  • the codebook type when the codebook type is a coherent codebook, the codebook includes the first vector, the third vector, and the fourth vector, or, the codebook includes the second vector , the third vector and the fourth vector.
  • the codebook when the codebook type is a partially coherent codebook, the codebook includes the third vector and the fourth vector.
  • the codebook when the codebook type is a non-coherent codebook, the codebook includes the fourth vector.
  • the power normalization coefficient of the vector includes at least one of the following: 1,
  • the codebook when the number of transmission layers indicated by the TRI is 2, includes at least one of the following precoding matrices: the first precoding matrix, the second precoding matrix, the first Three precoding matrices, a fourth precoding matrix, and a fifth precoding matrix;
  • Each column of the first precoding matrix is a constant modulus DFT vector
  • Each non-zero element of the second precoding matrix is a QPSK element of constant modulus
  • the first column of the third precoding matrix is composed of constant modulus QPSK elements
  • the second column of the third precoding matrix is composed of constant modulus non-QPSK elements
  • the second column vector of the third precoding matrix is the same as The first column vector is orthogonal
  • the first column of the fourth precoding matrix includes two QPSK elements, the second column includes one QPSK element, and these three QPSK elements are located in different rows, and other elements are 0;
  • Each of the two columns of the fifth precoding matrix has an element that is 1, and these two elements are in different rows, and other elements are all 0.
  • the two column vectors of the first precoding matrix are two vectors out of 30 vectors obtained by performing 0 times oversampling on a DFT vector with a length of 3, where 0 is a positive integer.
  • the first precoding matrix is at least one of the following precoding matrix sets:
  • O is a positive integer.
  • the two column vectors of the second precoding matrix are orthogonal, and one element of the second column vector is 0, and all other elements are non-zero.
  • the second precoding matrix is at least one of the following precoding matrix sets:
  • the third precoding matrix is at least one of the following precoding matrix sets:
  • each element in the first column and the second column of the fourth precoding matrix is 1.
  • the fourth precoding matrix is at least one of the following precoding matrix sets:
  • the fifth precoding matrix is at least one of the following precoding matrix sets:
  • the precoding matrix included in the codebook is determined by the codebook type configured by the network device.
  • the codebook when the codebook type is a coherent codebook, the codebook includes the first precoding matrix, the fourth precoding matrix, and the fifth precoding matrix, or, the codebook The second precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook, or the third precoding matrix, the fourth precoding matrix and the fifth precoding matrix are included in the codebook .
  • the codebook when the codebook type is a partially coherent codebook, the codebook includes the fourth precoding matrix and the fifth precoding matrix.
  • the codebook when the codebook type is a non-coherent codebook, the codebook includes the fifth precoding matrix.
  • the power normalization coefficient of the vector includes at least one of the following: 1,
  • the codebook when the number of transmission layers indicated by the TRI is 3, includes an identity matrix with a size of 3.
  • the communication unit 520 is also configured to receive a Sounding Reference Signal SRS sent by the terminal device for uplink codebook transmission;
  • the processing unit 510 is specifically configured to: determine the precoding matrix from the codebook according to the SRS.
  • the SRS is a 3-antenna port SRS.
  • the communication unit 520 is further configured to receive data sent by the terminal device after being precoded by using the precoding matrix.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are for realizing the method shown in FIG. 4
  • the corresponding processes of the network devices in 300 will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 shown in FIG. 7 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 600 may specifically be the terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. Let me repeat.
  • Fig. 8 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 8 includes a processor 710, and the processor 710 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the device 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 9 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 9 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the above method. repeat.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memories in the embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,设计了支持基于3个天线端口的上行传输的码本,可以充分利用3天线端口传输的天线增益,可以提高频谱效率和峰值速率。该无线通信的方法,包括:终端设备接收网络设备发送的TPMI和TRI;该终端设备根据该TPMI从该TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;该终端设备采用该预编码矩阵进行数据的预编码;该终端设备发送预编码之后的数据。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
现阶段,在基于码本的预编码方式中,上行传输支持2天线端口和4天线端口的码本,网络设备通过下行控制信息(Downlink Control Information,DCI)指示发送预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI),终端设备根据TPMI从码本中确定TPMI对应的预编码矩阵。然而,对于一些特殊的终端,其可以支持其他数量的天线端口(如3天线端口),此种情况下,如何设计码本,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,设计了支持基于3个天线端口的上行传输的码本,可以充分利用3天线端口传输的天线增益,可以提高频谱效率和峰值速率。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备接收网络设备发送的TPMI和TRI;
该终端设备根据该TPMI从该TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;
该终端设备采用该预编码矩阵进行数据的预编码;
该终端设备发送预编码之后的数据。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备从TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;
该网络设备向终端设备发送该预编码矩阵对应的TPMI和该TRI,该TPMI用于该终端设备从该TRI对应的码本中确定该预编码矩阵。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,设计了支持基于3个天线端口的上行传输的码本,可以充分利用3天线端口传输的天线增益,相较于将3天线终端退化成2端口传输的方式,可以提高频谱效率和峰值速率。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种基于码本的PUSCH传输的示意性图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图4是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图5是根据本申请实施例提供的一种终端设备的示意性框图。
图6是根据本申请实施例提供的一种网络设备的示意性框图。
图7是根据本申请实施例提供的一种通信设备的示意性框图。
图8是根据本申请实施例提供的一种装置的示意性框图。
图9是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的 接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为便于更好的理解本申请实施例,对本申请相关的上行码本传输进行说明。
终端设备发送上行数据(如物理上行共享信道(Physical Uplink Shared Channel,PUSCH))时,需要对上行数据进行预编码处理,以获得上行预编码增益。预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对发送的模拟信号,一般采用波束赋形的方式把射频信号映射到物理天线上。数字域处理针对数字信号,一般在基带进行,采用预编码矩阵对数字信号进行预编码,将传 输层的数据映射到射频端口上。由于终端的射频通道数量有限,一般要同时采用两种处理方式,即对数字信号进行预编码,再对模拟信号采用波束进行赋形。PUSCH传输根据预编码方式的不同分为基于码本的传输和基于非码本的传输。
在上行基于码本的预编码方式中,网络侧会为终端配置一个专用于码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集合。终端会在集合中的多个SRS资源上发送SRS,每个SRS资源上的SRS采用不同的波束,网络侧从中选择最好的SRS资源用于获得上行信道状态信息(Channel State Information,CSI),同时将资源索引通过SRS资源指示(SRS resource indicator,SRI)指示给终端,令终端采用SRS资源相应的波束对数据进行模拟波束赋形。同时,网络侧会通过下行控制信息(Downlink Control Information,DCI)指示秩指示(Rank Indication,RI)和TPMI,终端根据RI和TPMI从码本中确定TPMI对应的上行的预编码矩阵。
如图2所示,在基于码本的PUSCH传输中,可以包括如下步骤:
S11,UE在N个SRS资源上发送SRS;
S12,gNB确定一个SRS资源对应的SRI,并从码本中选择预编码矩阵指示(Precoding Matrix Indicator,PMI),以及基于选择的PMI确定RI或信道质量指示(Channel Quantity Indicator,CQI);
S13,gNB向UE发送SRI/RI/PMI/调制编码方案(Modulation and Coding Scheme,MCS);
S14,UE基于RI确定层数,以及基于PMI确定预编码器;
S15,UE向gNB发送预编码数据和解调参考信号(Demodulation Reference Signal,DMRS)。
为便于更好的理解本申请实施例,对本申请相关的上行码本进行说明。
上行支持2端口和4端口的PUSCH的传输。2个天线端口且1个传输层所使用的码本如表1所示,2个天线端口且1个传输层(对应离散傅立叶变换-扩频-正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM))所使用的码本如表2所示,4个天线端口且1个传输层(对应循环前缀-正交分频复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM))所使用的码本如表3所示,2个天线端口且2个传输层(对应DFT-S-OFDM)所使用的码本如表4所示,4个天线端口且2个传输层(对应CP-OFDM)所使用的码本如表5所示,4个天线端口且3个传输层(对应CP-OFDM)所使用的码本如表6所示,4个天线端口且4个传输层(对应CP-OFDM)所使用的码本如表7所示。
表1
Figure PCTCN2021127157-appb-000001
表2
Figure PCTCN2021127157-appb-000002
表3
Figure PCTCN2021127157-appb-000003
表4
Figure PCTCN2021127157-appb-000004
表5
Figure PCTCN2021127157-appb-000005
表6
Figure PCTCN2021127157-appb-000006
表7
Figure PCTCN2021127157-appb-000007
现阶段,支持2天线端口和4天线端口的码本。但是,一些终端有3个发送天线,由于没有3天线端口的码本,这些终端只能退化到2天线端口的传输,即采用2端口的码本进行上行传输。因为无法充分利用3个发送天线的增益,导致频谱效率受到影响。另外,由于2端口传输最高只能支持两流传输,也影响了峰值速率。
基于上述问题,本申请提出了一种上行码本设计方案,设计了支持基于3个天线端口的上行传输的码本,可以充分利用3天线端口传输的天线增益,相较于将3天线终端退化成2端口传输的方式,可以提高频谱效率和峰值速率。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,如图3所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备接收网络设备发送的TPMI和TRI;
S220,该终端设备根据该TPMI从该TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;
S230,该终端设备采用该预编码矩阵进行数据的预编码;
S240,该终端设备发送预编码之后的数据。
在本申请实施例中,码本中的每个码字包括3行,换句话说,该码本支持基于3个天线端口的上行传输,可以充分利用3天线端口传输的天线增益,相较于将3天线终端退化成2端口传输的方式,可以提高频谱效率,以及支持3层的上行传输,从而提高峰值速率。
需要说明的是,该码本中的每个码字的每个一行对应一个天线端口,3行即对应3天线端口。
在一些实施例中,网络设备可以通过下行控制信息(Downlink Control Information,DCI)指示TPMI。当然,网络设备也可以通过其他信令指示TPMI,本申请对此并不限定。
在一些实施例中,终端设备可以从指示TPMI的DCI中得到发送秩指示(TransmittedRankIndicator,TRI),该TRI指示传输层数。其中,TRI和TPMI可以联合编码。
在一些实施例中,传输层数可以是1,也可以是2,也可以是3。
在一些实施例中,在确定码本中包含的向量/矩阵时,可以采用码字间最小弦距或者平均弦距最大化的方式选择码字。即在特定码本大小下,从特定向量组成的多个候选码本中选择码字间最小弦距最大或平均弦距最大的一个候选码本作为该码本。
在一些实施例中,在该TRI指示的传输层的层数为1的情况下,该码本中包括以下向量中的至少之一:第一向量,第二向量,第三向量,第四向量;其中,该第一向量为恒模的3-离散傅里叶变换(Discrete Fourier Transform,DFT)向量;该第二向量的三个元素均为恒模的正交相移键控(Quadrature Phase Shift Keying,QPSK)元素;该第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0;该第四向量的一个元素为1,另外两个元素为0。
也即,在本申请实施例中,可以基于恒模的3-DFT向量生成单层码字。或者,可以基于恒模的QPSK元素生成单层码字。
需要说明的是,QPSK元素集合为{1,-1,j,-j},也即,QPSK元素为QPSK元素集合中的元素。
在一些实施例中,该第一向量为恒模的3-DFT向量,换句话说,该第一向量是恒模(即该第一向量的每个元素的模是相同的)的长度为3的DFT向量。
在一些实施例中,该第一向量为长度为3的DFT向量进行O倍过采样得到的3O个向量中的至少一个向量,其中,O为正整数。
在一些实施例中,该第一向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000008
其中,O为正整数。
在一些实施例中,O=1,或,O=3,或,O=5。例如,O=1,该第一向量为上述向量集合中的全部3个向量。又例如,O=3,该第一向量为上述向量集合中的4个向量,或,该第一向量为上述向量集合中的8个向量。再例如,O=5,该第一向量为上述向量集合中的全部15个向量。
需要说明的是,在第一向量中,
Figure PCTCN2021127157-appb-000009
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000010
或者
Figure PCTCN2021127157-appb-000011
或者
Figure PCTCN2021127157-appb-000012
在一些实施例中,该第二向量的三个元素均为恒模(即该第二向量的每个元素的模是相同的)的QPSK元素,即每个元素都来自QPSK元素集合{1,-1,j,-j}。
具体例如,该第二向量的第一个元素为1。该第二向量的第二个元素和第三个元素均为QPSK元素,即该第二向量为[1;x;y],其中x和y取自集合{1,-1,j,-j}。对于进行DFT变换的数据和没有进行DFT变换的数据,可以采用不同的向量。
在一些实施例中,该第二向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000013
需要说明的是,在第二向量中,
Figure PCTCN2021127157-appb-000014
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000015
或者
Figure PCTCN2021127157-appb-000016
或者
Figure PCTCN2021127157-appb-000017
具体例如,该第二向量可以包含以下全部8个向量:
Figure PCTCN2021127157-appb-000018
在一些实施例中,该第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0。具体的,该第三向量为[1;0;x]或[1;x;0]或[0;1;x],其中,x取自集合{1,-1,j,-j}。
在一些实施例中,该第三向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000019
需要说明的是,在第三向量中,
Figure PCTCN2021127157-appb-000020
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000021
或者
Figure PCTCN2021127157-appb-000022
或者
Figure PCTCN2021127157-appb-000023
具体例如,该第三向量可以包含以下全部4个向量:
Figure PCTCN2021127157-appb-000024
在一些实施例中,该第四向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000025
需要说明的是,在第四向量中,
Figure PCTCN2021127157-appb-000026
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000027
或者
Figure PCTCN2021127157-appb-000028
或者
Figure PCTCN2021127157-appb-000029
具体例如,该第四向量可以包含以下全部3个元素:
Figure PCTCN2021127157-appb-000030
在一些实施例中,该码本中包括的向量由网络设备配置的码本类型确定。
具体例如,在该码本类型为相干(coherent)码本的情况下,该码本中包括该第一向量、该第三向量和该第四向量,或者,该码本中包括该第二向量、该第三向量和该第四向量。
具体又例如,在该码本类型为部分相干(partial coherent)码本的情况下,该码本中包括该第三向量和该第四向量。
具体又例如,在该码本类型为非相干(non-coherent)码本的情况下,该码本中包括该第四向量。
在一些实施例中,在TRI指示的传输层的层数为2的情况下,该码本中包括以下预编码矩阵中的至少之一:第一预编码矩阵,第二预编码矩阵,第三预编码矩阵,第四预编码矩阵,第五预编码矩阵。
在一些实施例中,该第一预编码矩阵的每一列为一个恒模的DFT向量;该第二预编码矩阵的每个非零元素均为恒模的QPSK元素;该第三预编码矩阵的第一列由恒模的QPSK元素组成,该第三预编码矩阵的第二列由恒模的非QPSK元素组成,该第三预编码矩阵的第二个列向量与第一个列向量正交;该第四预编码矩阵的第一列包括两个QPSK元素,第二列包括一个QPSK元素,且这三个QPSK元素位于不同的行,其他元素为0;该第五预编码矩阵的两列各有一个元素为1,且这两个元素在不同的行,其他元素均为0。
在一些实施例中,该第一预编码矩阵的每一列为一个恒模(即该列的每个元素的模是相同的)的3-DFT向量。具体的,该第一预编码矩阵的两个列向量是长度为3的DFT向量进行O倍过采样得到的3O个向量中的两个向量,其中,O为正整数。
在一些实施例中,该第一预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000031
其中,O为正整数。
需要说明的是,在第一预编码矩阵中,
Figure PCTCN2021127157-appb-000032
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000033
或者
Figure PCTCN2021127157-appb-000034
或者
Figure PCTCN2021127157-appb-000035
在一些实施例中,O=1,或,O=3,或,O=5。
例如,O=1,该第一预编码矩阵为上述预编码矩阵集合中的全部3个矩阵。又例如,O=3,该第一预编码矩阵为上述预编码矩阵集合中的4个或8个矩阵。
在一些实施例中,该第二预编码矩阵的第一行元素均为1,其他元素为QPSK元素,两列向量不相同且不正交。在一种实施方式中,该第二预编码矩阵包含前两行元素均相同且第三行元素不同的若干个预编码矩阵。其中,该第二预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000036
需要说明的是,在第二预编码矩阵中,
Figure PCTCN2021127157-appb-000037
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000038
或者
Figure PCTCN2021127157-appb-000039
或者
Figure PCTCN2021127157-appb-000040
具体例如,该第二预编码矩阵包含上述的全部4个预编码矩阵,其中,4个预编码矩阵的前两行是相同的,但第三行各不相同。
在一些实施例中,该第二预编码矩阵的两个列向量正交,且第二个列向量的其中一个元素为0,其他所有元素非零。例如,该第二预编码矩阵的形式可以为
Figure PCTCN2021127157-appb-000041
Figure PCTCN2021127157-appb-000042
其中x,y,z均取自集合{1,-1,j,-j}。其中,该第二预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000043
具体例如,该第二预编码矩阵可以包含上述矩阵中的4个或8个预编码矩阵。
需要说明的是,在第二预编码矩阵中,
Figure PCTCN2021127157-appb-000044
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000045
或者
Figure PCTCN2021127157-appb-000046
或者
Figure PCTCN2021127157-appb-000047
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1。
在一些实施例中,该第三预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000048
Figure PCTCN2021127157-appb-000049
需要说明的是,在第三预编码矩阵中,
Figure PCTCN2021127157-appb-000050
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000051
或者
Figure PCTCN2021127157-appb-000052
或者
Figure PCTCN2021127157-appb-000053
在一些实施例中,该第四预编码矩阵的第一列和第二列中各有一个元素为1。
在一些实施例中,该第四预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000054
需要说明的是,在第四预编码矩阵中,
Figure PCTCN2021127157-appb-000055
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000056
或者
Figure PCTCN2021127157-appb-000057
或者
Figure PCTCN2021127157-appb-000058
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1。
具体例如,该第四预编码矩阵为上述预编码矩阵集合中的第1-4个矩阵,或者,第5-8个矩阵,或者,第9-12个矩阵。
在一些实施例中,该第五预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000059
需要说明的是,在第五预编码矩阵中,
Figure PCTCN2021127157-appb-000060
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000061
或者
Figure PCTCN2021127157-appb-000062
或者
Figure PCTCN2021127157-appb-000063
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1。
具体例如,该第五预编码矩阵可以包含上述全部三个预编码矩阵。
在一些实施例中,该码本中包括的预编码矩阵由网络设备配置的码本类型确定。
具体例如,在该码本类型为相干(coherent)码本的情况下,该码本中包括该第一预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第二预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第三预编码矩阵、该第四预编码矩阵和该第五预编码矩阵。
具体又例如,在该码本类型为部分相干(partial coherent)码本的情况下,该码本中包括该第四预编码矩阵和该第五预编码矩阵。
具体又例如,在该码本类型为非相干(non-coherent)码本的情况下,该码本中包括该第五预编码矩阵。
在一些实施例中,可以基于恒模的3-DFT向量生成双层码字。或者,可以基于恒模的QPSK元素生成双层码字,如两个层向量非正交。
在一些实施例中,单层和双层的第一个层向量采用恒模的QPSK元素生成,第二个层向量采用非QPSK元素生成,与第一层是正交的。
在一些实施例中,基于恒模的QPSK元素生成码字,两个层向量正交,第二层向量只采用2个端口发送。
在一些实施例中,在该TRI指示的传输层的层数为3的情况下,该码本中包括大小为3的单位矩阵。
例如,当TRI指示的秩(rank)为3时,该码本为:
Figure PCTCN2021127157-appb-000064
需要说明的是,在单位矩阵中,
Figure PCTCN2021127157-appb-000065
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000066
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或者
Figure PCTCN2021127157-appb-000067
或者
Figure PCTCN2021127157-appb-000068
在一些实施例中,该终端设备发送用于上行码本传输的SRS,其中,该SRS用于该网络设备确定该TPMI。具体例如,在S210之前,该终端设备发送用于上行码本传输的SRS。也即,网络设备可以基于用于上行码本传输的SRS,确定该TPMI。
在一些实施例中,该SRS为3天线端口的SRS。也即,该SRS的SRS资源被配置了3个天线端口。且该SRS资源的用途(usage)被配置成了码本(codebook)。
因此,本申请实施例中设计的码本,可以支持基于3个天线端口的上行传输,相比于将3天线终端退化成2端口传输的方式,可以充分利用3天线传输的天线增益,有效提高频谱效率。同时,相比于只能支持最多两层传输的方式,本申请实施例中设计的码本可以支持3层的上行传输,从而提高峰值速率。
上文结合图3,详细描述了本申请的终端侧实施例,下文结合图4,详细描述本申请的网络侧实施例,应理解,网络侧实施例与终端侧实施例相互对应,类似的描述可以参照终端侧实施例。
图4是根据本申请实施例的无线通信的方法300的示意性流程图,如图4所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,网络设备从TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;
S320,该网络设备向终端设备发送该预编码矩阵对应的TPMI和该TRI,该TPMI用于该终端设备从该TRI对应的码本中确定该预编码矩阵。
在本申请实施例中,码本中的每个码字包括3行,换句话说,该码本支持基于3个天线端口的上行传输,可以充分利用3天线端口传输的天线增益,相较于将3天线终端退化成2端口传输的方式,可以提高频谱效率,以及支持3层的上行传输,从而提高峰值速率。
需要说明的是,该码本中的每个码字的每个一行对应一个天线端口,3行即对应3天线端口。
在一些实施例中,网络设备可以通过下行控制信息(Downlink Control Information,DCI)指示TPMI。当然,网络设备也可以通过其他信令指示TPMI,本申请对此并不限定。
在一些实施例中,网络设备可以在指示TPMI的DCI中携带TRI,该TRI指示传输层数。其中,TRI和TPMI可以联合编码。
在一些实施例中,传输层数可以是1,也可以是2,也可以是3。
在一些实施例中,在确定码本中包含的向量/矩阵时,可以采用码字间最小弦距或者平均弦距最大化的方式选择码字。
在一些实施例中,在该TRI指示的传输层的层数为1的情况下,该码本中包括以下向量中的至少之一:第一向量,第二向量,第三向量,第四向量;其中,该第一向量为恒模的3-DFT向量;该第二向量的三个元素均为恒模的QPSK元素;该第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0;该第四向量的一个元素为1,另外两个元素为0。
也即,在本申请实施例中,可以基于恒模的3-DFT向量生成单层码字。或者,可以基于恒模的QPSK元素生成单层码字。
需要说明的是,QPSK元素集合为{1,-1,j,-j},也即,QPSK元素为QPSK元素集合中的元素。
在一些实施例中,该第一向量为恒模的3-DFT向量,换句话说,该第一向量是恒模(即该第一向量的每个元素的模是相同的)的长度为3的DFT向量。
在一些实施例中,该第一向量为长度为3的DFT向量进行O倍过采样得到的3O个向量中的至少一个向量,其中,O为正整数。
在一些实施例中,该第一向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000069
其中,O为正整数。
在一些实施例中,O=1,或,O=3,或,O=5。例如,O=1,该第一向量为上述向量集合中的全部3个向量。又例如,O=3,该第一向量为上述向量集合中的4个向量,或,该第一向量为上述向量集合中的8个向量。再例如,O=5,该第一向量为上述向量集合中的全部15个向量。
需要说明的是,在第一向量中,
Figure PCTCN2021127157-appb-000070
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000071
Figure PCTCN2021127157-appb-000072
在一些实施例中,该第二向量的三个元素均为恒模(即该第二向量的每个元素的模是相同的)的QPSK元素,即每个元素都来自QPSK元素集合{1,-1,j,-j}。
具体例如,该第二向量的第一个元素为1。该第二向量的第二个元素和第三个元素均为QPSK元素,即该第二向量为[1;x;y],其中x和y取自集合{1,-1,j,-j}。对于进行DFT变换的数据和没有进行DFT变换的数据,可以采用不同的向量。
在一些实施例中,该第二向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000073
需要说明的是,在第二向量中,
Figure PCTCN2021127157-appb-000074
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000075
Figure PCTCN2021127157-appb-000076
具体例如,该第二向量可以包含以下全部8个向量:
Figure PCTCN2021127157-appb-000077
在一些实施例中,该第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0。具体的,该第三向量为[1;0;x]或[1;x;0]或[0;1;x],其中,x取自集合{1,-1,j,-j}。
在一些实施例中,该第三向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000078
需要说明的是,在第三向量中,
Figure PCTCN2021127157-appb-000079
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000080
Figure PCTCN2021127157-appb-000081
具体例如,该第三向量可以包含以下全部4个向量:
Figure PCTCN2021127157-appb-000082
在一些实施例中,该第四向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000083
需要说明的是,在第四向量中,
Figure PCTCN2021127157-appb-000084
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000085
Figure PCTCN2021127157-appb-000086
具体例如,该第四向量可以包含以下全部3个元素:
Figure PCTCN2021127157-appb-000087
在一些实施例中,该码本中包括的向量由网络设备配置的码本类型确定。
具体例如,在该码本类型为相干(coherent)码本的情况下,该码本中包括该第一向量、该第三向量和该第四向量,或者,该码本中包括该第二向量、该第三向量和该第四向量。
具体又例如,在该码本类型为部分相干(partial coherent)码本的情况下,该码本中包括该第三向量和该第四向量。
具体又例如,在该码本类型为非相干(non-coherent)码本的情况下,该码本中包括该第四向量。
在一些实施例中,在TRI指示的传输层的层数为2的情况下,该码本中包括以下预编码矩阵中的至少之一:第一预编码矩阵,第二预编码矩阵,第三预编码矩阵,第四预编码矩阵,第五预编码矩阵。
在一些实施例中,该第一预编码矩阵的每一列为一个恒模的DFT向量;该第二预编码矩阵的每个非零元素均为恒模的QPSK元素;该第三预编码矩阵的第一列由恒模的QPSK元素组成,该第三预编码矩阵的第二列由恒模的非QPSK元素组成,该第三预编码矩阵的第二个列向量与第一个列向量正交;该第四预编码矩阵的第一列包括两个QPSK元素,第二列包括一个QPSK元素,且这三个QPSK元素位于不同的行,其他元素为0;该第五预编码矩阵的两列各有一个元素为1,且这两个元素在不同的行,其他元素均为0。
在一些实施例中,该第一预编码矩阵的每一列为一个恒模(即该列的每个元素的模是相同的)的3-DFT向量。具体的,该第一预编码矩阵的两个列向量是长度为3的DFT向量进行O倍过采样得到的3O个向量中的两个向量,其中,O为正整数。
在一些实施例中,该第一预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000088
其中,O为正整数。
需要说明的是,在第一预编码矩阵中,
Figure PCTCN2021127157-appb-000089
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000090
Figure PCTCN2021127157-appb-000091
在一些实施例中,O=1,或,O=3,或,O=5。
例如,O=1,该第一预编码矩阵为上述预编码矩阵集合中的全部3个矩阵。又例如,O=3,该第一预编码矩阵为上述预编码矩阵集合中的4个或8个矩阵。
在一些实施例中,该第二预编码矩阵的第一行元素均为1,其他元素为QPSK元素,两列向量不相同且不正交。在一种实施方式中,该第二预编码矩阵包含前两行元素均相同且第三行元素不同的若干个预编码矩阵。其中,该第二预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000092
需要说明的是,在第二预编码矩阵中,
Figure PCTCN2021127157-appb-000093
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000094
Figure PCTCN2021127157-appb-000095
具体例如,该第二预编码矩阵包含上述的全部4个预编码矩阵,其中,4个预编码矩阵的前两行是相同的,但第三行各不相同。
在一些实施例中,该第二预编码矩阵的两个列向量正交,且第二个列向量的其中一个元素为0,其他所有元素非零。例如,该第二预编码矩阵的形式可以为
Figure PCTCN2021127157-appb-000096
Figure PCTCN2021127157-appb-000097
其中x,y,z均取自集合{1,-1,j,-j}。其中,该第二预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000098
具体例如,该第二预编码矩阵可以包含上述矩阵中的4个或8个预编码矩阵。
需要说明的是,在第二预编码矩阵中,
Figure PCTCN2021127157-appb-000099
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000100
Figure PCTCN2021127157-appb-000101
Figure PCTCN2021127157-appb-000102
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1。
在一些实施例中,该第三预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000103
需要说明的是,在第三预编码矩阵中,
Figure PCTCN2021127157-appb-000104
为功率归一化系数,实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1,或
Figure PCTCN2021127157-appb-000105
Figure PCTCN2021127157-appb-000106
在一些实施例中,该第四预编码矩阵的第一列和第二列中各有一个元素为1。
在一些实施例中,该第四预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000107
需要说明的是,在第四预编码矩阵中,
Figure PCTCN2021127157-appb-000108
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000109
Figure PCTCN2021127157-appb-000110
Figure PCTCN2021127157-appb-000111
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,如1。
具体例如,该第四预编码矩阵为上述预编码矩阵集合中的第1-4个矩阵,或者,第5-8个矩阵,或者,第9-12个矩阵。
在一些实施例中,该第五预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000112
需要说明的是,在第五预编码矩阵中,
Figure PCTCN2021127157-appb-000113
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000114
Figure PCTCN2021127157-appb-000115
Figure PCTCN2021127157-appb-000116
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,如1。
具体例如,该第五预编码矩阵可以包含上述全部三个预编码矩阵。
在一些实施例中,该码本中包括的预编码矩阵由网络设备配置的码本类型确定。
具体例如,在该码本类型为相干(coherent)码本的情况下,该码本中包括该第一预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第二预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第三预编码矩阵、该第四预编码矩阵和该第五预编码矩阵。
具体又例如,在该码本类型为部分相干(partial coherent)码本的情况下,该码本中包括该第四预编码矩阵和该第五预编码矩阵。
具体又例如,在该码本类型为非相干(non-coherent)码本的情况下,该码本中包括该第五预编码矩阵。
在一些实施例中,可以基于恒模的3-DFT向量生成双层码字。或者,可以基于恒模的QPSK元素生成双层码字,如两个层向量非正交。
在一些实施例中,单层和双层的第一个层向量采用恒模的QPSK元素生成,第二个层向量采用非QPSK元素生成,与第一层是正交的。
在一些实施例中,基于恒模的QPSK元素生成码字,两个层向量正交,第二层向量只采用2个端口发送。
在一些实施例中,在该TRI指示的传输层的层数为3的情况下,该码本中包括大小为3的单位矩阵。
例如,当TRI指示的秩(rank)为3时,该码本为:
Figure PCTCN2021127157-appb-000117
需要说明的是,在单位矩阵中,
Figure PCTCN2021127157-appb-000118
为功率归一化系数,且功率归一化系数也可以替换为
Figure PCTCN2021127157-appb-000119
Figure PCTCN2021127157-appb-000120
Figure PCTCN2021127157-appb-000121
实际应用时如果不在预编码过程中做功率归一化,也可以替换成其他值,比如1。
在一些实施例中,该网络设备接收该终端设备发送的用于上行码本传输的SRS。以及在上述S310中,该网络设备根据该SRS从该码本中确定该预编码矩阵。也即,在上述S310之前,该网络设备接收该终端设备发送的用于上行码本传输的SRS。
在一些实施例中,该SRS为3天线端口的SRS。也即,该SRS的SRS资源被配置了3个天线端口。且该SRS资源的用途(usage)被配置成了码本(codebook)。
在一些实施例中,该网络设备接收该终端设备发送的采用该预编码矩阵进行预编码之后的数据。
因此,本申请实施例中设计的码本,可以支持基于3个天线端口的上行传输,相比于将3天线终端退化成2端口传输的方式,可以充分利用3天线传输的天线增益,有效提高频谱效率。同时,相比于只能支持最多两层传输的方式,本申请实施例中设计的码本可以支持3层的上行传输,从而提高峰值速率。
上文结合图3至图4,详细描述了本申请的方法实施例,下文结合图5至图9,详细描述本申请 的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图5示出了根据本申请实施例的终端设备400的示意性框图。如图5所示,该终端设备400包括:
通信单元410,用于接收网络设备发送的发送预编码矩阵指示TPMI和发送秩指示TRI;
处理单元420,用于根据该TPMI从所述TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;
该处理单元420,还用于采用该预编码矩阵进行数据的预编码;
该通信单元410,还用于发送预编码之后的数据。
在一些实施例中,在该TRI指示的传输层的层数为1的情况下,该码本中包括以下向量中的至少之一:第一向量,第二向量,第三向量,第四向量;
其中,该第一向量为恒模的3-离散傅里叶变换DFT向量;该第二向量的三个元素均为恒模的正交相移键控QPSK元素;该第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0;该第四向量的一个元素为1,另外两个元素为0。
在一些实施例中,该第一向量为长度为3的DFT向量进行O倍过采样得到的3O个向量中的至少一个向量,其中,O为正整数。
在一些实施例中,该第一向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000122
其中,O为正整数。
在一些实施例中,该第二向量的第一个元素为1。
在一些实施例中,该第二向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000123
在一些实施例中,该第三向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000124
在一些实施例中,该第四向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000125
在一些实施例中,该码本中包括的向量由网络设备配置的码本类型确定。
在一些实施例中,在该码本类型为相干码本的情况下,该码本中包括该第一向量、该第三向量和该第四向量,或者,该码本中包括该第二向量、该第三向量和该第四向量。
在一些实施例中,在该码本类型为部分相干码本的情况下,该码本中包括该第三向量和该第四向量。
在一些实施例中,在该码本类型为非相干码本的情况下,该码本中包括该第四向量。
在一些实施例中,该向量的功率归一化系数包括以下至少之一:
Figure PCTCN2021127157-appb-000126
1,
Figure PCTCN2021127157-appb-000127
在一些实施例中,在该TRI指示的传输层的层数为2的情况下,该码本中包括以下预编码矩阵中的至少之一:第一预编码矩阵,第二预编码矩阵,第三预编码矩阵,第四预编码矩阵,第五预编码矩阵;其中,
该第一预编码矩阵的每一列为一个恒模的DFT向量;
该第二预编码矩阵的每个非零元素均为恒模的QPSK元素;
该第三预编码矩阵的第一列由恒模的QPSK元素组成,该第三预编码矩阵的第二列由恒模的非QPSK元素组成,该第三预编码矩阵的第二个列向量与第一个列向量正交;
该第四预编码矩阵的第一列包括两个QPSK元素,第二列包括一个QPSK元素,且这三个QPSK元素位于不同的行,其他元素为0;
该第五预编码矩阵的两列各有一个元素为1,且这两个元素在不同的行,其他元素均为0。
在一些实施例中,该第一预编码矩阵的两个列向量是长度为3的DFT向量进行O倍过采样得到的3O个向量中的两个向量,其中,O为正整数。
在一些实施例中,该第一预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000128
其中,O为正整数。
在一些实施例中,该第二预编码矩阵的两个列向量正交,且第二个列向量的其中一个元素为0,其他所有元素非零。
在一些实施例中,该第二预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000129
在一些实施例中,该第三预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000130
Figure PCTCN2021127157-appb-000131
在一些实施例中,该第四预编码矩阵的第一列和第二列中各有一个元素为1。
在一些实施例中,该第四预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000132
在一些实施例中,该第五预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000133
在一些实施例中,该码本中包括的预编码矩阵由网络设备配置的码本类型确定。
在一些实施例中,在该码本类型为相干码本的情况下,该码本中包括该第一预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第二预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第三预编码矩阵、该第四预编码矩阵和该第五预编码矩阵。
在一些实施例中,在该码本类型为部分相干码本的情况下,该码本中包括该第四预编码矩阵和该第五预编码矩阵。
在一些实施例中,在该码本类型为非相干码本的情况下,该码本中包括该第五预编码矩阵。
在一些实施例中,该预编码矩阵的功率归一化系数包括以下至少之一:
Figure PCTCN2021127157-appb-000134
1,
Figure PCTCN2021127157-appb-000135
在一些实施例中,在该TRI指示的传输层的层数为3的情况下,该码本中包括大小为3的单位矩阵。
在一些实施例中,该通信单元410还用于发送用于上行码本传输的探测参考信号SRS,其中,该SRS用于该网络设备确定该TPMI。
在一些实施例中,该SRS为3天线端口的SRS。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图6示出了根据本申请实施例的网络设备500的示意性框图。如图6所示,该网络设备500包括:
处理单元510,用于从发送秩指示TRI对应的码本中确定预编码矩阵;其中,该码本中的每个码字为3行;
通信单元520,用于向终端设备发送该预编码矩阵对应的发送预编码矩阵指示TPMI和该TRI, 该TPMI用于该终端设备从该TRI对应的码本中确定该预编码矩阵。
在一些实施例中,在该TRI指示的传输层的层数为1的情况下,该码本中包括以下向量中的至少之一:第一向量,第二向量,第三向量,第四向量;
其中,该第一向量为恒模的3-离散傅里叶变换DFT向量;该第二向量的三个元素均为恒模的正交相移键控QPSK元素;该第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0;该第四向量的一个元素为1,另外两个元素为0。
在一些实施例中,该第一向量为长度为3的DFT向量进行O倍过采样得到的3O个向量中的至少一个向量,其中,O为正整数。
在一些实施例中,该第一向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000136
其中,O为正整数。
在一些实施例中,该第二向量的第一个元素为1。
在一些实施例中,该第二向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000137
在一些实施例中,该第三向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000138
在一些实施例中,该第四向量为以下向量集合中的至少一个向量:
Figure PCTCN2021127157-appb-000139
在一些实施例中,该码本中包括的向量由网络设备配置的码本类型确定。
在一些实施例中,在该码本类型为相干码本的情况下,该码本中包括该第一向量、该第三向量和该第四向量,或者,该码本中包括该第二向量、该第三向量和该第四向量。
在一些实施例中,在该码本类型为部分相干码本的情况下,该码本中包括该第三向量和该第四向量。
在一些实施例中,在该码本类型为非相干码本的情况下,该码本中包括该第四向量。
在一些实施例中,该向量的功率归一化系数包括以下至少之一:
Figure PCTCN2021127157-appb-000140
1,
Figure PCTCN2021127157-appb-000141
在一些实施例中,在该TRI指示的传输层的层数为2的情况下,该码本中包括以下预编码矩阵中的至少之一:第一预编码矩阵,第二预编码矩阵,第三预编码矩阵,第四预编码矩阵,第五预编码矩阵;其中,
该第一预编码矩阵的每一列为一个恒模的DFT向量;
该第二预编码矩阵的每个非零元素均为恒模的QPSK元素;
该第三预编码矩阵的第一列由恒模的QPSK元素组成,该第三预编码矩阵的第二列由恒模的非QPSK元素组成,该第三预编码矩阵的第二个列向量与第一个列向量正交;
该第四预编码矩阵的第一列包括两个QPSK元素,第二列包括一个QPSK元素,且这三个QPSK元素位于不同的行,其他元素为0;
该第五预编码矩阵的两列各有一个元素为1,且这两个元素在不同的行,其他元素均为0。
在一些实施例中,该第一预编码矩阵的两个列向量是长度为3的DFT向量进行O倍过采样得到的3O个向量中的两个向量,其中,O为正整数。
在一些实施例中,该第一预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000142
其中,O为正整数。
在一些实施例中,该第二预编码矩阵的两个列向量正交,且第二个列向量的其中一个元素为0,其他所有元素非零。
在一些实施例中,该第二预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000143
在一些实施例中,该第三预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000144
Figure PCTCN2021127157-appb-000145
在一些实施例中,该第四预编码矩阵的第一列和第二列中各有一个元素为1。
在一些实施例中,该第四预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000146
在一些实施例中,该第五预编码矩阵为以下预编码矩阵集合中的至少一个:
Figure PCTCN2021127157-appb-000147
在一些实施例中,该码本中包括的预编码矩阵由网络设备配置的码本类型确定。
在一些实施例中,在该码本类型为相干码本的情况下,该码本中包括该第一预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第二预编码矩阵、该第四预编码矩阵和该第五预编码矩阵,或者,该码本中包括该第三预编码矩阵、该第四预编码矩阵和该第五预编码矩阵。
在一些实施例中,在该码本类型为部分相干码本的情况下,该码本中包括该第四预编码矩阵和该第五预编码矩阵。
在一些实施例中,在该码本类型为非相干码本的情况下,该码本中包括该第五预编码矩阵。
在一些实施例中,该向量的功率归一化系数包括以下至少之一:
Figure PCTCN2021127157-appb-000148
1,
Figure PCTCN2021127157-appb-000149
在一些实施例中,在该TRI指示的传输层的层数为3的情况下,该码本中包括大小为3的单位矩阵。
在一些实施例中,该通信单元520还用于接收该终端设备发送的用于上行码本传输的探测参考信号SRS;
该处理单元510具体用于:根据该SRS从该码本中确定该预编码矩阵。
在一些实施例中,该SRS为3天线端口的SRS。
在一些实施例中,该通信单元520还用于接收该终端设备发送的采用该预编码矩阵进行预编码之后的数据。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例提供的一种通信设备600示意性结构图。图7所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图7所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,如图7所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的装置的示意性结构图。图8所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图8所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统800的示意性框图。如图9所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这 些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (73)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的发送预编码矩阵指示TPMI和发送秩指示TRI;
    所述终端设备根据所述TPMI从所述TRI对应的码本中确定预编码矩阵;其中,所述码本中的每个码字为3行;
    所述终端设备采用所述预编码矩阵进行数据的预编码;
    所述终端设备发送预编码之后的数据。
  2. 如权利要求1所述的方法,其特征在于,在所述TRI指示的传输层的层数为1的情况下,所述码本中包括以下向量中的至少之一:第一向量,第二向量,第三向量,第四向量;
    其中,所述第一向量为恒模的3-离散傅里叶变换DFT向量;所述第二向量的三个元素均为恒模的正交相移键控QPSK元素;所述第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0;所述第四向量的一个元素为1,另外两个元素为0。
  3. 如权利要求2所述的方法,其特征在于,所述第一向量为长度为3的DFT向量进行O倍过采样得到的3O个向量中的至少一个向量,其中,O为正整数。
  4. 如权利要求2或3所述的方法,其特征在于,
    所述第一向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100001
    其中,O为正整数。
    m=0,1,...3O-1
  5. 如权利要求2所述的方法,其特征在于,所述第二向量的第一个元素为1。
  6. 如权利要求2或5所述的方法,其特征在于,
    所述第二向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100002
  7. 如权利要求2所述的方法,其特征在于,
    所述第三向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100003
  8. 如权利要求2所述的方法,其特征在于,
    所述第四向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100004
  9. 如权利要求2至8中任一项所述的方法,其特征在于,所述码本中包括的向量由网络设备配置的码本类型确定。
  10. 如权利要求9所述的方法,其特征在于,
    在所述码本类型为相干码本的情况下,所述码本中包括所述第一向量、所述第三向量和所述第四向量,或者,所述码本中包括所述第二向量、所述第三向量和所述第四向量。
  11. 如权利要求9所述的方法,其特征在于,
    在所述码本类型为部分相干码本的情况下,所述码本中包括所述第三向量和所述第四向量。
  12. 如权利要求9所述的方法,其特征在于,
    在所述码本类型为非相干码本的情况下,所述码本中包括所述第四向量。
  13. 如权利要求4、6、7或8所述的方法,其特征在于,所述向量的功率归一化系数包括以下至少之一:
    Figure PCTCN2021127157-appb-100005
  14. 如权利要求1所述的方法,其特征在于,
    在所述TRI指示的传输层的层数为2的情况下,所述码本中包括以下预编码矩阵中的至少之一:第一预编码矩阵,第二预编码矩阵,第三预编码矩阵,第四预编码矩阵,第五预编码矩阵;其中,
    所述第一预编码矩阵的每一列为一个恒模的DFT向量;
    所述第二预编码矩阵的每个非零元素均为恒模的QPSK元素;
    所述第三预编码矩阵的第一列由恒模的QPSK元素组成,所述第三预编码矩阵的第二列由恒模的非QPSK元素组成,所述第三预编码矩阵的第二个列向量与第一个列向量正交;
    所述第四预编码矩阵的第一列包括两个QPSK元素,第二列包括一个QPSK元素,且这三个QPSK元素位于不同的行,其他元素为0;
    所述第五预编码矩阵的两列各有一个元素为1,且这两个元素在不同的行,其他元素均为0。
  15. 如权利要求14所述的方法,其特征在于,所述第一预编码矩阵的两个列向量是长度为3的DFT向量进行O倍过采样得到的3O个向量中的两个向量,其中,O为正整数。
  16. 如权利要求14或15所述的方法,其特征在于,
    所述第一预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100006
    其中,O为正整数。
    m=0,1,...3O-1
  17. 如权利要求14所述的方法,其特征在于,所述第二预编码矩阵的两个列向量正交,且第二个列向量的其中一个元素为0,其他所有元素非零。
  18. 如权利要求14或17所述的方法,其特征在于,
    所述第二预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100007
    Figure PCTCN2021127157-appb-100008
    Figure PCTCN2021127157-appb-100009
  19. 如权利要求14所述的方法,其特征在于,
    所述第三预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100010
    Figure PCTCN2021127157-appb-100011
    Figure PCTCN2021127157-appb-100012
    Figure PCTCN2021127157-appb-100013
    Figure PCTCN2021127157-appb-100014
  20. 如权利要求14所述的方法,其特征在于,
    所述第四预编码矩阵的第一列和第二列中各有一个元素为1。
  21. 如权利要求14或20所述的方法,其特征在于,
    所述第四预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100015
    Figure PCTCN2021127157-appb-100016
  22. 如权利要求14所述的方法,其特征在于,
    所述第五预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100017
  23. 如权利要求14至22中任一项所述的方法,其特征在于,所述码本中包括的预编码矩阵由网络设备配置的码本类型确定。
  24. 如权利要求23所述的方法,其特征在于,在所述码本类型为相干码本的情况下,所述码本中包括所述第一预编码矩阵、所述第四预编码矩阵和所述第五预编码矩阵,或者,所述码本中包括所述第二预编码矩阵、所述第四预编码矩阵和所述第五预编码矩阵,或者,所述码本中包括所述第三预编码矩阵、所述第四预编码矩阵和所述第五预编码矩阵。
  25. 如权利要求23所述的方法,其特征在于,
    在所述码本类型为部分相干码本的情况下,所述码本中包括所述第四预编码矩阵和所述第五预编码矩阵。
  26. 如权利要求23所述的方法,其特征在于,
    在所述码本类型为非相干码本的情况下,所述码本中包括所述第五预编码矩阵。
  27. 如权利要求16、18、19、21或22所述的方法,其特征在于,所述预编码矩阵的功率归一化 系数包括以下至少之一:
    Figure PCTCN2021127157-appb-100018
  28. 如权利要求1所述的方法,其特征在于,
    在所述TRI指示的传输层的层数为3的情况下,所述码本中包括大小为3的单位矩阵。
  29. 如权利要求1至28中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送用于上行码本传输的探测参考信号SRS,其中,所述SRS用于所述网络设备确定所述TPMI。
  30. 如权利要求29所述的方法,其特征在于,所述SRS为3天线端口的SRS。
  31. 一种无线通信的方法,其特征在于,包括:
    网络设备从发送秩指示TRI对应的码本中确定预编码矩阵;其中,所述码本中的每个码字为3行;
    所述网络设备向终端设备发送所述预编码矩阵对应的发送预编码矩阵指示TPMI和所述TRI,所述TPMI用于所述终端设备从所述TRI对应的码本中确定所述预编码矩阵。
  32. 如权利要求31所述的方法,其特征在于,在所述TRI指示的传输层的层数为1的情况下,所述码本中包括以下向量中的至少之一:第一向量,第二向量,第三向量,第四向量;
    其中,所述第一向量为恒模的3-离散傅里叶变换DFT向量;所述第二向量的三个元素均为恒模的正交相移键控QPSK元素;所述第三向量的一个元素为1,一个元素为QPSK元素,一个元素为0;所述第四向量的一个元素为1,另外两个元素为0。
  33. 如权利要求32所述的方法,其特征在于,所述第一向量为长度为3的DFT向量进行O倍过采样得到的3O个向量中的至少一个向量,其中,O为正整数。
  34. 如权利要求32或33所述的方法,其特征在于,
    所述第一向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100019
    其中,O为正整数。
    m=0,1,...3O-1
  35. 如权利要求32所述的方法,其特征在于,所述第二向量的第一个元素为1。
  36. 如权利要求32或35所述的方法,其特征在于,
    所述第二向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100020
  37. 如权利要求32所述的方法,其特征在于,
    所述第三向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100021
  38. 如权利要求32所述的方法,其特征在于,
    所述第四向量为以下向量集合中的至少一个向量:
    Figure PCTCN2021127157-appb-100022
  39. 如权利要求32至38中任一项所述的方法,其特征在于,所述码本中包括的向量由网络设备配置的码本类型确定。
  40. 如权利要求39所述的方法,其特征在于,
    在所述码本类型为相干码本的情况下,所述码本中包括所述第一向量、所述第三向量和所述第四向量,或者,所述码本中包括所述第二向量、所述第三向量和所述第四向量。
  41. 如权利要求39所述的方法,其特征在于,
    在所述码本类型为部分相干码本的情况下,所述码本中包括所述第三向量和所述第四向量。
  42. 如权利要求39所述的方法,其特征在于,
    在所述码本类型为非相干码本的情况下,所述码本中包括所述第四向量。
  43. 如权利要求34、36、37或38所述的方法,其特征在于,所述向量的功率归一化系数包括以下至少之一:
    Figure PCTCN2021127157-appb-100023
  44. 如权利要求31所述的方法,其特征在于,
    在所述TRI指示的传输层的层数为2的情况下,所述码本中包括以下预编码矩阵中的至少之一:第一预编码矩阵,第二预编码矩阵,第三预编码矩阵,第四预编码矩阵,第五预编码矩阵;其中,
    所述第一预编码矩阵的每一列为一个恒模的DFT向量;
    所述第二预编码矩阵的每个非零元素均为恒模的QPSK元素;
    所述第三预编码矩阵的第一列由恒模的QPSK元素组成,所述第三预编码矩阵的第二列由恒模的非QPSK元素组成,所述第三预编码矩阵的第二个列向量与第一个列向量正交;
    所述第四预编码矩阵的第一列包括两个QPSK元素,第二列包括一个QPSK元素,且这三个QPSK元素位于不同的行,其他元素为0;
    所述第五预编码矩阵的两列各有一个元素为1,且这两个元素在不同的行,其他元素均为0。
  45. 如权利要求44所述的方法,其特征在于,所述第一预编码矩阵的两个列向量是长度为3的DFT向量进行O倍过采样得到的3O个向量中的两个向量,其中,O为正整数。
  46. 如权利要求44或45所述的方法,其特征在于,
    所述第一预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100024
    其中,O为正整数。
    m=0,1,...3O-1
  47. 如权利要求44所述的方法,其特征在于,所述第二预编码矩阵的两个列向量正交,且第二个列向量的其中一个元素为0,其他所有元素非零。
  48. 如权利要求44或47所述的方法,其特征在于,
    所述第二预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100025
    Figure PCTCN2021127157-appb-100026
    Figure PCTCN2021127157-appb-100027
  49. 如权利要求44所述的方法,其特征在于,
    所述第三预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100028
    Figure PCTCN2021127157-appb-100029
    Figure PCTCN2021127157-appb-100030
    Figure PCTCN2021127157-appb-100031
    Figure PCTCN2021127157-appb-100032
  50. 如权利要求44所述的方法,其特征在于,
    所述第四预编码矩阵的第一列和第二列中各有一个元素为1。
  51. 如权利要求44或50所述的方法,其特征在于,
    所述第四预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100033
    Figure PCTCN2021127157-appb-100034
  52. 如权利要求44所述的方法,其特征在于,
    所述第五预编码矩阵为以下预编码矩阵集合中的至少一个:
    Figure PCTCN2021127157-appb-100035
  53. 如权利要求44至52中任一项所述的方法,其特征在于,所述码本中包括的预编码矩阵由网络设备配置的码本类型确定。
  54. 如权利要求53所述的方法,其特征在于,在所述码本类型为相干码本的情况下,所述码本中包括所述第一预编码矩阵、所述第四预编码矩阵和所述第五预编码矩阵,或者,所述码本中包括所述第二预编码矩阵、所述第四预编码矩阵和所述第五预编码矩阵,或者,所述码本中包括所述第三预编码矩阵、所述第四预编码矩阵和所述第五预编码矩阵。
  55. 如权利要求53所述的方法,其特征在于,
    在所述码本类型为部分相干码本的情况下,所述码本中包括所述第四预编码矩阵和所述第五预编码矩阵。
  56. 如权利要求53所述的方法,其特征在于,
    在所述码本类型为非相干码本的情况下,所述码本中包括所述第五预编码矩阵。
  57. 如权利要求46、48、49、51或52所述的方法,其特征在于,所述预编码矩阵的功率归一化系数包括以下至少之一:
    Figure PCTCN2021127157-appb-100036
  58. 如权利要求31所述的方法,其特征在于,
    在所述TRI指示的传输层的层数为3的情况下,所述码本中包括大小为3的单位矩阵。
  59. 如权利要求31至58中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的用于上行码本传输的探测参考信号SRS;
    所述网络设备从预配置的码本中确定预编码矩阵,包括:
    所述网络设备根据所述SRS从所述码本中确定所述预编码矩阵。
  60. 如权利要求59所述的方法,其特征在于,所述SRS为3天线端口的SRS。
  61. 如权利要求31至60中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的采用所述预编码矩阵进行预编码之后的数据。
  62. 一种终端设备,其特征在于,包括:
    通信单元,用于网络设备发送的发送预编码矩阵指示TPMI和发送秩指示TRI;
    处理单元,用于根据所述TPMI从所述TRI对应的码本中确定预编码矩阵;其中,所述码本中的每个码字为3行;
    所述处理单元,还用于采用所述预编码矩阵进行数据的预编码;
    通信单元,用于发送预编码之后的数据。
  63. 一种网络设备,其特征在于,包括:
    处理单元,用于从发送秩指示TRI对应的码本中确定预编码矩阵;其中,所述码本中的每个码字为3行;
    通信单元,用于向终端设备发送所述预编码矩阵对应的发送预编码矩阵指示TPMI和所述TRI,所述TPMI用于所述终端设备从所述TRI对应的码本中确定所述预编码矩阵。
  64. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至30中任一项所述的方法。
  65. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求31至61中任一项所述的方法。
  66. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至30中任一项所述的方法。
  67. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求31至61中任一项所述的方法。
  68. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  69. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求31至61中任一项所述的方法。
  70. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至30中任一项所述的方法。
  71. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求31至61中任一项所述的方法。
  72. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至30中任一项所述的方法。
  73. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求31至61中任一项所述的方法。
PCT/CN2021/127157 2021-10-28 2021-10-28 无线通信的方法、终端设备和网络设备 WO2023070459A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127157 WO2023070459A1 (zh) 2021-10-28 2021-10-28 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/127157 WO2023070459A1 (zh) 2021-10-28 2021-10-28 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023070459A1 true WO2023070459A1 (zh) 2023-05-04

Family

ID=86160393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127157 WO2023070459A1 (zh) 2021-10-28 2021-10-28 无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023070459A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190149299A1 (en) * 2017-11-16 2019-05-16 Lg Electronics Inc. Method for transmitting and receiving uplink phase tracking reference signal and devices supporting the same
WO2019096071A1 (zh) * 2017-11-15 2019-05-23 华为技术有限公司 通信方法、通信装置和系统
US20200186215A1 (en) * 2018-12-06 2020-06-11 Samsung Electronics Co., Ltd. Full power uplink transmission for advanced wireless communication systems
US20210143874A1 (en) * 2017-06-15 2021-05-13 Lg Electronics Inc. Codebook-based uplink transmission method in wireless communication system and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210143874A1 (en) * 2017-06-15 2021-05-13 Lg Electronics Inc. Codebook-based uplink transmission method in wireless communication system and device therefor
WO2019096071A1 (zh) * 2017-11-15 2019-05-23 华为技术有限公司 通信方法、通信装置和系统
US20190149299A1 (en) * 2017-11-16 2019-05-16 Lg Electronics Inc. Method for transmitting and receiving uplink phase tracking reference signal and devices supporting the same
US20200186215A1 (en) * 2018-12-06 2020-06-11 Samsung Electronics Co., Ltd. Full power uplink transmission for advanced wireless communication systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "On TRI and TPMI indication for CB-based UL transmission", 3GPP DRAFT; R1-1800626_ON TRI AND TPMI INDICATION FOR CB-BASED UL TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 13 January 2018 (2018-01-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051384956 *

Similar Documents

Publication Publication Date Title
CN111357361B (zh) 信息传输的方法和通信设备
CN110350957B (zh) 通信的方法和通信装置
WO2022036720A1 (zh) 码本处理方法、终端设备和网络设备
WO2019191970A1 (zh) 通信方法、通信装置和系统
CN116208308A (zh) 用于确定上行传输参数的方法和终端设备
CN112399402A (zh) 一种通信方法、装置及设备
US20240007250A1 (en) Wireless communication method, terminal device, and network device
US20230261835A1 (en) Wireless communication method and device
WO2022199346A1 (zh) 指示方法及相关产品
WO2023070459A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022188253A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022183378A1 (zh) 码本上报的方法、终端设备和网络设备
WO2023102814A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023015529A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023123409A1 (zh) 无线通信的方法、终端设备和网络设备
CN118140430A (zh) 无线通信的方法、终端设备和网络设备
US20240187051A1 (en) Wireless communication method, terminal device, and network device
WO2023240566A1 (zh) 生成序列的方法和设备
WO2024011579A1 (zh) 无线通信的方法、终端设备和网络设备
CN118160231A (zh) 无线通信的方法、终端设备和网络设备
WO2024087120A1 (zh) 无线通信的方法、终端设备和网络设备
US20240098738A1 (en) Uplink transmission method, terminal device, and network device
WO2024016118A1 (zh) 通信系统、终端设备及网络设备
WO2023201643A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961825

Country of ref document: EP

Kind code of ref document: A1