WO2023123409A1 - 无线通信的方法、终端设备和网络设备 - Google Patents
无线通信的方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2023123409A1 WO2023123409A1 PCT/CN2021/143819 CN2021143819W WO2023123409A1 WO 2023123409 A1 WO2023123409 A1 WO 2023123409A1 CN 2021143819 W CN2021143819 W CN 2021143819W WO 2023123409 A1 WO2023123409 A1 WO 2023123409A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sri
- subbands
- srs resource
- srs
- bits
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 128
- 238000004891 communication Methods 0.000 title claims abstract description 93
- 230000005540 biological transmission Effects 0.000 claims description 126
- 230000015654 memory Effects 0.000 claims description 51
- 238000004590 computer program Methods 0.000 claims description 49
- 230000011664 signaling Effects 0.000 claims description 22
- 238000012545 processing Methods 0.000 description 26
- 230000008569 process Effects 0.000 description 18
- 230000006870 function Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 12
- 230000001360 synchronised effect Effects 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101100151946 Caenorhabditis elegans sars-1 gene Proteins 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000001774 stimulated Raman spectroscopy Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
Definitions
- the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
- Precoding processing is generally divided into two parts: analog domain processing and digital domain processing.
- Analog domain processing is aimed at transmitting analog signals, and generally adopts beamforming to map radio frequency signals to physical antennas.
- the digital domain processing is aimed at the digital signal, generally in the baseband, and uses the precoding matrix to precode the digital signal, and maps the data of the transmission layer to the radio frequency port. Due to the limited number of radio frequency channels of the terminal equipment, two processing methods are generally used at the same time, that is, precoding the digital signal and beamforming the analog signal.
- Uplink data transmission is divided into codebook-based transmission and non-codebook-based transmission according to different precoding methods.
- the network side configures a sounding reference signal (Sounding Reference Signal, SRS) resource set dedicated to non-codebook transmission for the terminal device.
- SRS Sounding Reference Signal
- the terminal device estimates the precoding matrix through the channel state information reference signal (CSI-RS), and assigns it to each SRS port, and the terminal device will send SRS on multiple SRS resources in the set,
- CSI-RS channel state information reference signal
- the SRS on each SRS resource adopts different types, and the network side selects the best SRS resource, and at the same time indicates the resource index to the terminal device through the SRS resource indicator (SRI), so that the terminal device uses the SRS resource corresponding beamforming the data.
- SRI SRS resource indicator
- the SRI may indicate at least one SRS resource for uplink broadband, where each transmission layer of uplink data corresponds to at most one SRS resource. Therefore, how to flexibly indicate SRI is an urgent problem to be solved.
- Embodiments of the present application provide a wireless communication method, a terminal device, and a network device, which can flexibly indicate an SRI, thereby improving the efficiency of wireless communication.
- a wireless communication method includes:
- the terminal device receives a first sounding reference signal SRS resource indication SRI, where the first SRI is used to determine at least one first SRS resource.
- a wireless communication method in a second aspect, includes:
- the network device sends a first sounding reference signal SRS resource indication SRI, where the first SRI is used to determine at least one first SRS resource.
- a terminal device configured to execute the method in the first aspect above.
- the terminal device includes a functional module for executing the method in the first aspect above.
- a network device configured to execute the method in the second aspect above.
- the network device includes a functional module for executing the method in the second aspect above.
- a terminal device including a processor and a memory.
- the memory is used to store a computer program
- the processor is used to invoke and run the computer program stored in the memory to execute the method in the first aspect above.
- a sixth aspect provides a network device, including a processor and a memory.
- the memory is used to store a computer program
- the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
- an apparatus for implementing the method in any one of the first aspect to the second aspect above.
- the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
- a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
- a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
- a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
- At least one SRS resource through the SRI, for example, at least one first SRS resource of the broadband and/or at least one second SRS resource of the subband, so that the SRI can be flexibly indicated, which is beneficial to improve Efficiency of wireless communication.
- FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
- Fig. 2 is a schematic diagram of non-codebook based transmission.
- Fig. 3 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
- Fig. 4 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
- Fig. 5 is a schematic block diagram of a network device provided according to an embodiment of the present application.
- Fig. 6 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
- Fig. 7 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
- Fig. 8 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
- the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
- GSM Global System of Mobile
- D2D Device to Device
- M2M Machine to Machine
- MTC Machine Type Communication
- V2V Vehicle to Vehicle
- V2X Vehicle to everything
- the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
- Carrier Aggregation, CA Carrier Aggregation
- DC Dual Connectivity
- SA independent meshing scene
- the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
- the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
- user equipment User Equipment, UE
- access terminal user unit
- user station mobile station
- mobile station mobile station
- remote station remote terminal
- mobile device user terminal
- terminal wireless communication device
- wireless communication device user agent or user device
- the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
- PLMN Public Land Mobile Network
- the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
- the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
- a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
- wireless terminal equipment in industrial control wireless terminal equipment in self driving
- wireless terminal equipment in remote medical wireless terminal equipment in smart grid
- wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
- the terminal device may also be a wearable device.
- Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
- a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
- Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
- the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
- AP Access Point
- BTS Base Transceiver Station
- NodeB, NB base station
- Evolutional Node B, eNB or eNodeB evolved base station
- LTE Long Term Evolution
- eNB evolved base station
- gNB base station
- the network device may have a mobile feature, for example, the network device may be a mobile device.
- the network equipment may be a satellite, balloon station.
- the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
- the network device may also be a base station installed on land, in water, or other locations.
- the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
- the transmission resources for example, frequency domain resources, or spectrum resources
- the cell may be a network device (
- the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
- the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
- the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
- the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
- FIG. 1 exemplarily shows one network device and two terminal devices.
- the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
- the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
- a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
- the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
- the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
- the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
- the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
- a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
- the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
- predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
- the implementation method is not limited.
- pre-defined may refer to defined in the protocol.
- the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
- Precoding processing is generally divided into two parts: analog domain processing and digital domain processing.
- Analog domain processing is aimed at transmitting analog signals, and generally adopts beamforming to map radio frequency signals to physical antennas.
- the digital domain processing is aimed at the digital signal, generally in the baseband, and uses the precoding matrix to precode the digital signal, and maps the data of the transmission layer to the radio frequency port. Due to the limited number of radio frequency channels of the terminal equipment, two processing methods are generally used at the same time, that is, precoding the digital signal and beamforming the analog signal.
- Uplink data transmission is divided into codebook-based transmission and non-codebook-based transmission according to different precoding methods.
- Fig. 2 shows a schematic diagram of non-codebook based transmission.
- the network device is, for example, a gNB
- the terminal device is, for example, a UE.
- the gNB configures a set of Sounding Reference Signal (SRS) resources dedicated to non-codebook transmission for the UE, including SRS1 to SRS 4, for example.
- SRS Sounding Reference Signal
- the gNB can send a channel state information reference signal (channel state information reference signal, CSI-RS) to the UE, and the UE estimates the precoding matrix through the CSI-RS, and forms it on each SRS port. This process may be called precoder estimation (Estimation of procoder).
- CSI-RS channel state information reference signal
- the UE sends the SRS on multiple SRS resources in the SRS resource set, and the SRS on each SRS resource adopts a different format.
- the gNB selects the best one or more SRS resources, and indicates the resource index of the SRS resources to the UE through the SRI, so that the UE uses the corresponding beams of the SRS resources to perform beamforming on the data.
- the UE performs uplink data transmission according to the SRI.
- the transmission layer 1 (Layer 1) of the Physical Uplink Shared Channel (PUSCH) can use the SRS 2 beam
- the transmission layer 2 (Layer 2) can use the SRS3 beam. Perform beamforming.
- each SRS port corresponds to a demodulation reference signal (demodulation reference signal, DMRS) port.
- DMRS demodulation reference signal
- the number of SRS resources in the SRS resource set may be N srs .
- N srs may be the number of SRS resources in the SRS resource set configured by the higher layer parameter srs-ResourceSetToAddModList (N SRS is the number of configured SRS resources in the SRS resource set configured by higher layer parameter srs-ResourceSetToAddModList).
- the number of transmission layers (also referred to as the maximum number of transmission layers) of the PUSCH may be L max .
- L max can be given by this parameter (if UE supports operation with maxMIMO- Layers and the higher layer parameter maxMIMO-Layers of PUSCH-ServingCellConfig of the serving cell is configured, L max is given by that parameter).
- L max may be given by the maximum number of layers of the PUSCH transmission layer supported by the UE for the serving cell for non-codebook transmission (L max is given by the maximum number of layers for PUSCH supported by the UE for the serving cell for non- codebook based operation)
- the SRI may include at least two bit field mapped to index (Bit field mapped to index), and the resource index of the SRS resource corresponding to each Bit field mapped to index.
- Bit field mapped to index When the number of transmission layers of PUSCH is greater than 1, each Bit field mapped to index can correspond to the resource index of the SRS resource of each transmission layer.
- Table 1 shows an example of SRI indication for non-codebook based PUSCH transmission.
- L max 1
- N srs are 2, 3, and 4, respectively.
- Table 2 shows another example of SRI indication for non-codebook based PUSCH transmission.
- L max 2
- N srs are 2, 3, and 4, respectively.
- Table 3 shows another example of SRI indication for non-codebook based PUSCH transmission.
- L max 3
- N srs are 2, 3, and 4, respectively.
- Table 4 shows another example of SRI indication for non-codebook based PUSCH transmission.
- L max 4
- N srs are 2, 3, and 4, respectively.
- the SRI indicates at least one SRS resource of the uplink broadband, and each transmission layer of the uplink data corresponds to at most one SRS resource.
- the way the SRI is indicated is not flexible enough.
- an embodiment of the present application provides a wireless communication method, in which at least one SRS resource is indicated by SRI, for example, at least one first SRS resource for broadband and/or at least one second SRS resource for a subband resource. Therefore, the embodiment of the present application can flexibly indicate the SRI, which is beneficial to improving the efficiency of wireless communication.
- FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3 , the method 200 may include at least part of the following content:
- the network device sends a first sounding reference signal SRS resource indication SRI to the terminal device, where the first SRI is used to determine at least one first SRS resource.
- the terminal device receives the first sounding reference signal SRS resource indication SRI.
- the first SRI may be used to determine at least one first SRS resource of a broadband (for example, uplink broadband).
- the first SRS resource may include at least one SRS resource of a broadband (for example, uplink broadband).
- the first SRI may also be called a broadband SRI, which is not limited in this application.
- the terminal device may determine at least one first SRS resource according to the first SRI.
- the terminal device may further determine at least one beam for uplink data transmission according to the at least one first SRS resource, and send the uplink data to the network device according to the beam.
- the uplink data includes PUSCH, which is not limited in this application.
- the uplink data sent by the terminal device to the network device may correspond to at least one transport layer, and each transport layer may correspond to at least one first SRS resource.
- each SRS resource in the at least one first SRS resource may include at least one (that is, one or more) SRS ports.
- the first SRI indicates at least one first SRS resource, for example, at least one first SRS resource of uplink broadband, so that the SRI can be indicated flexibly, thereby improving the efficiency of wireless communication.
- the network device may send DCI for scheduling the PUSCH to the terminal device, and the DCI may include the first SRI.
- the terminal device may receive the DCI for scheduling the PUSCH sent by the network device, and obtain the first SRI therefrom.
- the at least one first SRS resource is determined from N srs SRS resources configured for the terminal device.
- N srs is the number of SRS resources in the SRS resource set configured by the network device for the terminal device.
- the SRS resource set corresponding to the N srs SRS resources may include M SRS resource groups, each SRS resource group includes X SRS resources, M is less than or equal to N srs , and N srs , M, and X are positive integers .
- the network device may configure the N srs SRS resources for the terminal device, and each SRS resource may include one or more SRS ports.
- the N srs SRS resources may be divided into M SRS resource groups in a predefined manner, and each SRS resource group may include X SRS resources (or SRS ports).
- the M groups of SRS resources may not overlap (overlap), or partially overlap, which is not limited in this application.
- N srs 8 SRS resources can be divided into 4 SRS groups, namely ⁇ 0,1,2,3 ⁇ , ⁇ 2,3,4,5 ⁇ , ⁇ 4,5,6,7 ⁇ , ⁇ 6,7,0,1 ⁇ .
- N srs 8 SRS resources can be divided into 4 SRS groups, namely ⁇ 0,1 ⁇ , ⁇ 2,3 ⁇ , ⁇ 4,5 ⁇ , ⁇ 6,7 ⁇ .
- N srs 8 SRS resources can be divided into 4 SRS groups, namely ⁇ 0,4 ⁇ , ⁇ 1,5 ⁇ , ⁇ 2,6 ⁇ , ⁇ 3,7 ⁇ .
- N srs 8 SRS resources can be divided into 2 SRS groups, namely ⁇ 0, 1, 2, 3 ⁇ , ⁇ 4, 5, 6, 7 ⁇ .
- N srs 8 SRS resources can be divided into 2 SRS groups, namely ⁇ 0, 2, 4, 6 ⁇ , ⁇ 1, 3, 5, 7 ⁇ .
- 0-7 represent resource indexes of the eight SRS resources respectively.
- the at least one first SRS resource includes Q SRS resource groups among the M SRS resource groups, and Q is a positive integer less than or equal to M. That is to say, when the N srs SRS resources are divided into M SRS resource groups, at least one first SRS resource used by the first SRI to determine is the SRS resource in the Q SRS resource groups in the M resource groups .
- Q may be 1, 2, 3, or other numerical values, which are not limited.
- At least one of M, X, and Q is determined according to the number of transmission layers of the above-mentioned uplink data.
- the method 200 further includes step 220: the network device sends a second SRI to the terminal device, where the second SRI is used to determine at least one second SRS resource.
- the terminal device receives the second SRI.
- the second SRI may be used to determine at least one second SRS resource of a subband (for example, an uplink subband).
- the second SRS resource may include at least one SRS resource of a subband (for example, an uplink subband).
- the second SRI may also be called a subband SRI, which is not limited in this application.
- the subband may be a subband occupied by uplink data (such as PUSCH).
- the terminal device may determine at least one second SRS resource according to the second SRI.
- the terminal device may further determine at least one beam for uplink data transmission according to the at least one second SRS resource, and send the uplink data to the network device according to the beam.
- the uplink data includes PUSCH, which is not limited in this application.
- the uplink data sent by the terminal device to the network device may correspond to at least one transport layer, and each transport layer may correspond to at least one second SRS resource.
- each SRS resource in the at least one second SRS resource may include at least one (that is, one or more) SRS ports.
- the second SRI indicates at least one second SRS resource, for example, at least one second SRS resource of the uplink subband, while being able to flexibly indicate the SRI, it can also support subband precoding, Therefore, it can help to increase the gain of precoding and improve the efficiency of wireless communication.
- the second SRI may also be included in the DCI sent by the network device to the terminal device for scheduling the PUSCH.
- the terminal device obtains the second SRI from the received DCI for scheduling the PUSCH.
- the DCI includes the first SRI and the second SRI
- the first SRI and the second SRI may be collectively referred to as SRI.
- the at least one second SRS resource is determined from the foregoing at least one first SRS resource.
- the DCI for scheduling the PUSCH may include the second SRI and the first SRI.
- the terminal device may further determine the second SRS resource among the at least one first SRS resource according to the second SRI.
- the terminal device may determine the at least one SRS resource according to the above-mentioned first SRI, and then further according to the second SRI, Determine at least one second SRS resource from the at least one SRS resource.
- the terminal device may determine the Q SRS resource groups according to the first SRI, and then further The at least one second SRS resource is determined from the Q SRS resource groups according to the second SRI.
- At least one first SRS resource of the uplink broadband is determined through the first SRI
- at least one second SRS resource of the uplink subband is determined in the at least one first SRS resource through the second SRI. While indicating the SRI, it can also support subband precoding, which can help to improve the gain of precoding and improve the efficiency of wireless communication.
- At least one second SRS resource used by the second SRI is determined from the above N srs SRS resources, or M SRS resource groups.
- the above-mentioned DCI for scheduling the PUSCH may include the second SRI instead of the first SRI.
- N srs 8 SRS resources, for example, the set of SRS resources is ⁇ 0,1,2,3,4,5,6,7 ⁇
- the second SRI indicates at least one second SRS resource, for example, at least one second SRS resource of an uplink subband, so that the SRI can be flexibly indicated, thereby improving the efficiency of wireless communication.
- the network device may also send transmission rank information (TransmissionRankInformation, TRI) to the terminal device, where the TRI is used to indicate the number of transmission layers of uplink data (such as PUSCH).
- the terminal device receives the TRI.
- the terminal device may determine the number of transmission layers of the uplink data according to the TRI.
- the TRI may also indicate a rank value, and the rank value is the same as the number of transmission layers of the uplink data.
- the DCI for scheduling the PUSCH sent by the network device to the terminal device may include the TRI.
- the terminal device can acquire the TRI according to the DCI.
- the TRI and the SRI for example, the first SRI and/or the second SRI
- the TRI and the SRI may be jointly coded, for example, may be indicated by an information field.
- the quantity of the at least one second SRS resource is determined according to the number of transmission layers of the uplink data.
- the terminal device may determine the quantity of the at least one second SRS resource according to the foregoing TRI.
- the number of second SRS resources is the same as the number of transmission layers of uplink data.
- the number of transmission layers may be the same as the value of rank, that is, the number of second SRS resources, the number of transmission layers of uplink data, and the value of rank may be the same.
- the number of bits of the first SRI is determined according to the number of transmission layers of uplink data.
- the terminal device may determine the number Q v of the at least one first SRS resource according to the TRI, and further determine the number of bits of the first SRI according to the number Q v of the second SRS resource .
- the Q v first SRS resources may include all the SRS resources in the above Q SRS resource groups, in other words, the value of Q v may be the product of Q and X.
- a group of TRIs may correspond to the same number of first SRS resources Q v .
- the first group of ranks such as rank1 and rank2
- the second group of ranks such as rank3 and rank4
- At least one rank in a group of TRIs corresponds to the same number Qv of first SRS resources, which can help reduce the number of bits of TRIs.
- the terminal device may determine the division of the SRS resource groups of the above N srs SRS resources according to TRI, for example, determine the number M of SRS resource groups, the number Q of SRS resource groups indicated by the first SRI, and each SRS One or more of the number X of SRS resources in the resource group.
- M, X, and Q can refer to the above description.
- the number of bits of the first SRI may be a preset value.
- the number of bits of the first SRI has nothing to do with the TRI, that is, the number of bits of the first SRI does not need to be determined according to the TRI.
- the number of bits of the second SRI may be determined according to the number of transmission layers of the uplink data.
- the terminal device may determine the number of bits of the second SRI according to the TRI. That is to say, when the number of transmission layers of the uplink data is different, the number of bits of the second SRI is different.
- the DCI includes the first SRI and the second SRI
- the number of transmission layers indicated by the TRI when the number of transmission layers indicated by the TRI is 1, that is, when the rank is 1, the second SRI corresponding to each subband is 1 bit or 2 bits;
- the number of transmission layers is 2, that is, when the rank is 2, the second SRI corresponding to each subband is 1 bit or 2 bits;
- the number of transmission layers indicated by TRI when the number of transmission layers indicated by TRI is 3, that is, when the rank is 3, the second SRI corresponding to each subband is 0bit or 1bit;
- the number of transmission layers indicated by the TRI when the number of transmission layers indicated by the TRI is 4, that is, when the rank is 4, the second SRI corresponding to each subband is 02bit.
- the number of bits of the second SRI may be determined according to the number of transmission layers of uplink data and/or the number N srs of SRS resources in the SRS resource set configured for the terminal device by the network device .
- the second SRI can pass Indication, where N srs is the number of SRS resources in the SRS resource set configured by the network device for the terminal device, for details, refer to the description above.
- the content indicated by the second SRI is determined according to the number of transmission layers of the uplink data.
- the terminal device may determine the content indicated by the second SRI according to the TRI, that is, the second SRS is used to determine at least one second SRS resource, and specifically may include a resource index of the at least one second SRS resource, this Applications are not limited to this. That is to say, when the number of transmission layers of the uplink data is different, the number of bits of the second SRI is different, and the SRS resources indicated by the second SRI are also different.
- the second SRI may be used to determine at least one second SRS resource for each of the P subbands, where P is a positive integer.
- the P subbands may be all or part of the subbands occupied by uplink data, which is not limited.
- the number of bits of the second SRI may be determined according to the number of subbands occupied by uplink data and/or the number of bits of SRIs of subbands corresponding to different transmission layers.
- the number of bits of the SRI of the subband corresponding to different numbers of transmission layers is determined according to the number of transmission layers of the uplink data, that is, the number of bits of the SRI of the subband is related to the number of transmission layers of the uplink data.
- the SRI of the subband may refer to the SRI used to indicate the SRS resource of the subband.
- the number of bits occupied by the second SRI can be the product of P and Mv , where P is The number of subbands occupied by the uplink data, and Mv is the number of bits of the SRI of the subbands corresponding to different transmission layers.
- Mv may refer to the number of bits of the SRI of each subband corresponding to v
- the SRI of each subband is used to determine at least one second SRS resource of each subband
- v is the number of bits of the uplink data indicated by TRI The number of transport layers.
- M v may be determined according to the number of transmission layers of uplink data.
- the terminal device may determine M v according to TRI. For example, when the number of transmission layers indicated by the TRI is different, the number of bits of the corresponding SRI (for example, the SRI used to indicate at least one SRS resource of the subband) on each subband is different.
- Mv may be determined according to the number of transmission layers of uplink data and the SRI of at least one SRS resource used to determine the uplink bandwidth, which is not limited in this application.
- SRI such as the SRI used to determine at least one SRS resource of the uplink broadband
- the corresponding SRI on each subband such as the SRI used to indicate the subband
- the number of bits of the SRI of at least one SRS resource of the band is different.
- different numbers of transmission layers correspond to the number of bits of SRI of different subbands, which can help reduce the number of bits of SRI information of subbands while ensuring subband precoding gain.
- the number of transmission layers corresponding to some subbands with smaller precoding gain less number of bits may be required.
- the network device may also send indication information to the terminal device, where the indication information is used to indicate the number of subbands from the candidate values, for example, indicate the value of P.
- the terminal device may receive the indication information, and determine the number of subbands from the candidate values according to the indication information.
- the candidate value is predefined, or determined according to high-layer signaling, or determined according to the bandwidth part (Band Width Part, BWP) where the uplink data is located.
- the indication information may be sent through high-level signaling, that is, the indication information may be carried in high-level signaling, which is not limited in this application.
- the high-layer signaling may be radio resource control (Radio Resource Control, RRC) signaling, medium access control (Medium Access Control, MAC) layer signaling, etc., which is not limited.
- RRC Radio Resource Control
- MAC Medium Access Control
- high-layer signaling used to determine the foregoing candidate value may be RRC signaling, or MAC layer signaling, etc., without limitation.
- the network device may send a radio resource control (Radio Resource Control, RRC) signaling to the terminal device, which includes several candidate values for the number of subbands, and then indicates the currently used the number of subbands.
- RRC Radio Resource Control
- the possible values of the number of subbands are 1-16
- 4 or 8 values from 1-16 may be selected as candidate values through the RRC signaling, and then the 2-3bit MAC
- the layer signaling indicates the number of currently used subbands from 4 or 8 candidate values, for example, 2 or 3, which is not limited.
- the number of subbands currently used may be indicated from the candidate value through RRC signaling.
- the number of subbands currently used may be indicated from the candidate value through RRC signaling.
- the value of the candidate value of the number of subbands is also different.
- the bandwidth of the BWP where the PUSCH is located is 5M
- the candidate values for the number of subbands are ⁇ 1,2,3,4,5,6,7,8 ⁇
- the bandwidth of the BWP where the PUSCH is located is 20M
- the subband number Candidate values with numbers are ⁇ 2,4,6,8,10,12,14,16 ⁇ . Therefore, when the uplink data corresponds to different BWPs, the values of the number of subbands indicated by the same RRC signaling are different.
- the number of bits reserved for the second SRI in the DCI is based on the number of subbands (for example, the maximum number ) and/or the number of bits (for example, the maximum number of bits) of the SRI of the subbands corresponding to different numbers of transmission layers.
- the number of bits reserved for the second SRI may be expressed as a product of P m and Max(M v ).
- P m is the number of subbands indicated by high-level signaling, or the maximum number of subbands allowed under the bandwidth of the BWP where the uplink data is located
- Max(M v ) indicates the maximum SRI of each subband corresponding to different TRIs number of bits.
- the positions of SRS resources not used to indicate subbands among the bits reserved for the second SRI may be set to zero. For example, assuming that for the current TRI, the number of bits occupied by the SRI of all subbands is A, and the number of bits reserved in DCI is B, then the first A bits of the B bits correspond to the SRI of the subband, and the latter (B-A) bits can be set to zero, where B is greater than or equal to A, and A and B are positive integers.
- the number of bits reserved for the second SRI is not used to indicate the position of the SRS resource of the subband may be used for other purposes, for example, may be used to indicate other information , which is not limited in this application.
- the number of subbands such as the maximum number
- the number of bits such as the maximum number of bits
- the number of bits can enable the terminal to pre-determine the size of the DCI before detecting the DCI, which helps to avoid the different DCI lengths caused by the different information lengths of the second SRI, thereby helping to reduce the complexity of the blind detection of the PDCCH by the terminal device , and can improve the reliability of PDCCH detection.
- the subbands occupied by the uplink data may include the first part of subbands. If at least one of the following conditions is met, the above-mentioned second SRI indicates at least one SRS resource of the first partial subband (that is, the second SRI indicates at least one second SRS Resources):
- the number of bits of the second SRI satisfies the first condition
- the code rate of the downlink channel carrying the DCI of the second SRI satisfies the second condition.
- the first condition may refer to: the number of bits of the second SRI exceeds a first threshold, and/or the ratio of the number of bits of the second SRI to the total number of bits of DCI carrying the second SRI exceeds a second threshold, And/or the ratio of the number of bits of the second SRI to the total number of bits of information other than the second SRI in the DCI carrying the second SRI exceeds the third threshold.
- the second condition may refer to: the code rate of the channel (such as PDCCH) carrying the DCI of the second SRI is greater than or equal to the fourth threshold.
- the above judgment conditions may be used independently or in combination.
- the second SRI indicates at least one of each subband in the partial subbands Second SRS resource.
- the second SRI indicates that the partial at least one second SRS resource for each subband in the band.
- the above at least one threshold value may be configured by the network device, or predefined by the network device and the terminal device.
- At least one of the first threshold, the second threshold, the third threshold and the fourth threshold is determined according to the format of the DCI carrying the second SRI. That is to say, for the DCI that bears the second SRI, the set threshold value may be different for different DCI formats. For example, the threshold value corresponding to DCI format 1_2 may be lower than the threshold value corresponding to DCI format 1_1, so as to ensure the performance of Ultra-Reliable Low Latency Communications (Ultra-Reliable Low Latency Communications, URLLC).
- Ultra-Reliable Low Latency Communications Ultra-Reliable Low Latency Communications
- the above-mentioned first part of subbands may include even subbands, odd subbands, first half subbands, second half subbands, and high priority subbands in the subbands occupied by uplink data. at least one.
- the number n of the first part of subbands may be the maximum number of subbands that make the above-mentioned first condition and/or the second condition unable to be met, for example, it may be that the code rate of the PUCCH carrying the second SRI does not exceed the first
- the maximum number of subbands of the four thresholds, or the maximum number of subbands in which the number of bits of the second SRI does not exceed the first threshold, is not limited in this application.
- the SRI corresponding to the odd subband for indicating the SRS resource is discarded.
- the SRI corresponding to the even subband for indicating the SRS resource is discarded.
- the second SRI indicates at least one SRS resource of n subbands with higher priority
- the SRS information corresponding to other subbands with lower priority among the subbands is discarded.
- even subbands may be prioritized over odd subbands, or odd subbands may be prioritized over even subbands.
- a subband with a smaller subband index has a higher priority than a subband with a larger subband index, which is not limited in the present application.
- the number of bits of the second SRI can be reduced, and the number of bits of DCI carrying the second SRI can be reduced, thereby improving the transmission performance of the PDCCH.
- the subbands occupied by the uplink data may further include a second part of subbands, wherein at least one SRS resource of the second part of subbands is the same as at least one SRS resource of the first part of subbands Similarly, the first part of subbands and the second part of subbands are different subbands.
- the terminal device may assume that in the subbands occupied by the uplink data, at least one SRS resource subband (an example of the second part of subbands) that does not indicate a subband is the closest to the subband that indicates an SRS resource.
- the SRS resources on the subbands are the same.
- the terminal device can assume the second part of subbands, that is, odd subbands, such as subbands
- the SRS resource of each subband in the subbands with indexes 1, 3, 5, ..., etc. is the SRS resource of the previous subband or the subsequent subband of the subband.
- the terminal device assumes that the SRS resource of subband 1 and the subband index are 0 (that is, subband 0) , or the SRS resource with subband index 1 (ie, subband 1) is the same.
- the terminal device can assume the second part of subbands, that is, even subbands, such as subbands
- the SRS resource of each subband in the subbands with indexes 0, 2, 4, ..., etc. is the SRS resource of the previous subband or the subsequent subband of the subband.
- the terminal device assumes that the SRS resource of subband 2 is related to the subband index 1 (that is, subband 1). , or the SRS resources with subband index 3 (ie, subband 3) are the same.
- the SRS resource of each subband occupied by the uplink data can be obtained under the premise of ensuring the precoding gain. SRS resources.
- Fig. 4 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
- the terminal device 300 includes:
- the communication unit 310 is configured to receive a first sounding reference signal SRS resource indication SRI, where the first SRI is used to determine at least one first SRS resource.
- the terminal device 300 may further include a processing unit 320, configured to process the first SRI, for example, determine the at least one first SRS resource according to the first SRI.
- a processing unit 320 configured to process the first SRI, for example, determine the at least one first SRS resource according to the first SRI.
- the at least one first SRS resource is determined from N srs SRS resources configured for the terminal device, where the N srs SRS resources include M SRS resource groups, each of the The SRS resource group includes X SRS resources, M is less than or equal to N srs , and N srs , M, and X are respectively positive integers.
- the at least one first SRS resource includes Q SRS resource groups in the M SRS resource groups, and Q is a positive integer less than or equal to M.
- At least one of M and X is determined according to the number of transmission layers of uplink data.
- Q is determined according to the number of transmission layers of uplink data.
- the communication unit 310 is also used for:
- the at least one second SRS resource includes subband SRS resources.
- the processing unit 320 is further configured to process the second SRI, for example, determine the at least one second SRS resource according to the second SRI.
- the at least one second SRS resource is determined from the at least one first SRS resource.
- the quantity of the at least one second SRS resource is determined according to the number of transmission layers of uplink data.
- the number of bits of the second SRI is based on the number of transmission layers of uplink data, the number N srs of SRS resources configured for the terminal device, the number of subbands, and subbands corresponding to different numbers of transmission layers determined by at least one of the bit numbers of the SRI.
- the communication unit 310 is also used for:
- indication information where the indication information is used to indicate the number of subbands from candidate values, wherein the candidate values are predefined, or determined according to high-level signaling, or according to the bandwidth part where the uplink data is located BWP OK.
- the processing unit 320 is further configured to determine the number of subbands from candidate values according to the indication information.
- the second SRI is carried in downlink control information DCI, wherein the number of bits reserved for the second SRI in the DCI corresponds to the number of subbands and/or the number of different transmission layers The number of bits of the subband SRI is determined.
- the subbands include a first part of subbands
- the second SRI indicates at least one SRS resource in the first part of subbands:
- the number of bits of the second SRI exceeds a first threshold
- the ratio of the number of bits of the second SRI to the total number of bits of DCI carrying the second SRI exceeds a second threshold
- the ratio of the number of bits of the second SRI to the total number of bits of information other than the second SRI in the DCI carrying the second SRI exceeds a third threshold
- the code rate of the downlink channel carrying the DCI of the second SRI exceeds the fourth threshold.
- At least one of the first threshold, the second threshold, the third threshold, and the fourth threshold is determined according to a format of the DCI carrying the second SRI.
- the first part of subbands includes at least one of an even subband, an odd subband, a first half subband, a second half subband, and a high priority subband among the subbands.
- the subbands further include a second part of subbands, wherein at least one SRS resource of the second part of subbands is the same as at least one SRS resource of the first part of subbands, wherein the first part The subbands are different from the second part of subbands.
- the number of bits of the first SRI is determined according to the number of transmission layers of the uplink data, or is a preset value.
- the communication unit 310 is further configured to receive transmission rank information TRI, where the TRI is used to indicate the number of transmission layers of uplink data.
- the processing unit 320 is further configured to determine the number of transmission layers of the uplink data according to the TRI.
- the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
- the aforementioned processing unit may be one or more processors.
- terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are for realizing the method shown in FIG. 3
- the corresponding process of the terminal device in 200 will not be repeated here.
- Fig. 5 shows a schematic block diagram of a network device 400 according to an embodiment of the present application.
- the network device 400 includes:
- a communication unit configured to send a first sounding reference signal SRS resource indication SRI, where the first SRI is used to determine at least one first SRS resource.
- the network device 400 may further include a processing unit 420, configured to determine the first SRI.
- the at least one first SRS resource is determined from N srs SRS resources configured for the terminal device, where the N srs SRS resources include M SRS resource groups, each of the The SRS resource group includes X SRS resources, M is less than or equal to N srs , and N srs , M, and X are respectively positive integers.
- the at least one first SRS resource includes Q SRS resource groups in the M SRS resource groups, and Q is a positive integer less than or equal to M.
- At least one of M and X is determined according to the number of transmission layers of uplink data.
- Q is determined according to the number of transmission layers of uplink data.
- the communication unit 410 is further configured to send a second SRI, where the second SRI is used to determine at least one second SRS resource.
- the at least one second SRS resource includes subband SRS resources.
- the processing unit 420 is further configured to determine the second SRI.
- the at least one second SRS resource is determined from the at least one first SRS resource.
- the quantity of the at least one second SRS resource is determined according to the number of transmission layers of uplink data.
- the number of bits of the second SRI is based on the number of transmission layers of uplink data, the number N srs of SRS resources configured for the terminal device, the number of subbands, and subbands corresponding to different numbers of transmission layers determined by at least one of the bit numbers of the SRI.
- the communication unit 410 is further configured to send indication information, where the indication information is used to indicate the number of subbands from candidate values, where the candidate values are predefined, or according to high-layer signaling determined, or determined according to the bandwidth part BWP where the uplink data resides.
- the processing unit 420 is further configured to determine the indication information.
- the second SRI is carried in downlink control information DCI, wherein the number of bits reserved for the second SRI in the DCI corresponds to the number of subbands and/or the number of different transmission layers The number of bits of the subband SRI is determined.
- the subbands include a first part of subbands
- the second SRI indicates at least one SRS resource in the first part of subbands:
- the number of bits of the second SRI exceeds a first threshold
- the ratio of the number of bits of the second SRI to the total number of bits of DCI carrying the second SRI exceeds a second threshold
- the ratio of the number of bits of the second SRI to the total number of bits of information other than the second SRI in the DCI carrying the second SRI exceeds a third threshold
- the code rate of the downlink channel carrying the DCI of the second SRI exceeds the fourth threshold.
- At least one of the first threshold, the second threshold, the third threshold, and the fourth threshold is determined according to a format of the DCI carrying the second SRI.
- the first part of subbands includes at least one of an even subband, an odd subband, a first half subband, a second half subband, and a high priority subband among the subbands.
- the subbands further include a second part of subbands, wherein at least one SRS resource of the second part of subbands is the same as at least one SRS resource of the first part of subbands, wherein the first part The subbands are different from the second part of subbands.
- the number of bits of the first SRI is determined according to the number of transmission layers of the uplink data, or is a preset value.
- the communication unit 410 is further configured to send transmission rank information TRI, where the TRI is used to indicate the number of transmission layers of uplink data.
- processing unit 420 is further configured to determine the TRI.
- the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
- the aforementioned processing unit may be one or more processors.
- the network device 400 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 400 are to realize the method shown in FIG. 3
- the corresponding processes of the network devices in 200 will not be repeated here.
- FIG. 6 is a schematic structural diagram of a communication device 500 provided in an embodiment of the present application.
- the communication device 500 shown in FIG. 6 includes a processor 510, and the processor 510 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
- the communication device 500 may further include a memory 520 .
- the processor 510 can invoke and run a computer program from the memory 520, so as to implement the method in the embodiment of the present application.
- the memory 520 may be an independent device independent of the processor 510 , or may be integrated in the processor 510 .
- the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices, specifically, to send information or data to other devices, or Receive information or data from other devices.
- the transceiver 530 may include a transmitter and a receiver.
- the transceiver 530 may further include antennas, and the number of antennas may be one or more.
- the communication device 500 may specifically be the network device of the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
- the communication device 500 may specifically be the terminal device in the embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
- the Let me repeat the Let me repeat.
- Fig. 7 is a schematic structural diagram of a device according to an embodiment of the present application.
- the apparatus 600 shown in FIG. 7 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
- the device 600 may further include a memory 620 .
- the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
- the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
- the device 600 may further include an input interface 630 .
- the processor 610 can control the input interface 630 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
- the device 600 may further include an output interface 640 .
- the processor 610 can control the output interface 640 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
- the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
- the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
- the device mentioned in the embodiment of the present application may also be a chip.
- it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
- FIG. 8 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 8 , the communication system 700 includes a terminal device 710 and a network device 720 .
- the terminal device 710 can be used to realize the corresponding functions realized by the terminal device in the above method
- the network device 720 can be used to realize the corresponding functions realized by the network device in the above method.
- the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
- each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
- the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
- the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
- the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
- the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
- the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
- the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
- RAM Static Random Access Memory
- SRAM Static Random Access Memory
- DRAM Dynamic Random Access Memory
- Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
- SDRAM double data rate synchronous dynamic random access memory
- Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
- Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
- Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
- Direct Rambus RAM Direct Rambus RAM
- the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
- the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
- the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
- the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, I won't repeat them here.
- the embodiment of the present application also provides a computer program product, including computer program instructions.
- the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
- the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
- the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
- the embodiment of the present application also provides a computer program.
- the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
- the computer program can be applied to the terminal device in the embodiment of the present application.
- the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
- the disclosed systems, devices and methods may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种无线通信的方法、终端设备和网络设备。该无线通信的方法,包括:终端设备接收第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。本申请实施例能够实现通过SRI指示至少一个SRS资源,例如宽带的至少一个第一SRS资源和/或子带的至少一个第二SRS资源,从而能够灵活地对SRI进行指示,从而有利于提高无线通信的效率。
Description
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
终端设备发送上行数据时,需要对上行数据进行预编码处理,以获得上行预编码增益。预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对发送的模拟信号,一般采用波束赋形的方式把射频信号映射到物理天线上。数字域处理针对数字信号,一般在基带进行,采用预编码矩阵对数字信号进行预编码,将传输层的数据映射到射频端口上。由于终端设备的射频通道数量有限,一般要同时采用两种处理方式,即对数字信号进行预编码,再对模拟信号采用波束进行赋形。上行数据传输根据预编码方式的不同分为基于码本的传输和基于非码本的传输。
在上行基于非码本的预编码方式中,网络侧会为终端设备配置一个专用于非码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集合。终端设备通过信道状态信息参考信号(channel state information reference signal,CSI-RS)估计出预编码矩阵,并且赋型到每个SRS端口上,终端设备会在集合中的多个SRS资源上发送SRS,每个SRS资源上的SRS采用不同的赋型,网络侧从中选择最好的SRS资源,同时将资源索引通过SRS资源指示(SRS resource indicator,SRI)指示给终端设备,令终端设备采用SRS资源相应的波束对数据进行波束赋形。
目前,基于非码本的上行数据传输中,SRI可以指示上行宽带的至少一个SRS资源,其中上行数据的每个传输层对应至多一个SRS资源。因此,如何灵活地向指示SRI,是亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,能够灵活地对SRI进行指示,从而有利于提高无线通信的效率。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备接收第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备发送第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,能够实现通过SRI指示至少一个SRS资源,例如宽带的至少一个第一SRS资源和/或子带的至少一个第二SRS资源,从而能够灵活地对SRI进行指示,从而有利于提高无线通信的效率。
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是基于非码本的传输的一个示意图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图4是根据本申请实施例提供的一种终端设备的示意性框图。
图5是根据本申请实施例提供的一种网络设备的示意性框图。
图6是根据本申请实施例提供的一种通信设备的示意性框图。
图7是根据本申请实施例提供的一种装置的示意性框图。
图8是根据本申请实施例提供的一种通信系统的示意性框图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联 对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于更好的理解本申请实施例,对现有的上行非码本传输过程进行说明。
终端设备发送上行数据时,需要对上行数据进行预编码处理,以获得上行预编码增益。预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对发送的模拟信号,一般采用波束赋形的方式把射频信号映射到物理天线上。数字域处理针对数字信号,一般在基带进行,采用预编码矩阵对数字信号进行预编码,将传输层的数据映射到射频端口上。由于终端设备的射频通道数量有限,一般要同时采用两种处理方式,即对数字信号进行预编码,再对模拟信号采用波束进行赋形。上行数据传输根据预编码方式的不同分为基于码本的传输和基于非码本的传输。
图2示出了基于非码本的传输的一个示意图。如图2所示,网络设备例如为gNB,终端设备例如为UE。首先,gNB会为UE配置一个专用于非码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集合,例如包括SRS1~SRS 4。参见图2,gNB可以向UE发送信道状态信息参考信号(channel state information reference signal,CSI-RS),UE通过该CSI-RS估计出预编码矩阵,并且赋型到每个SRS端口上。该过程可以称为预编码器估计(Estimationofprocoder)。之后,UE在SRS资源集合中的多个SRS资源上发送SRS,每个SRS资源上的SRS采用不同的赋型。gNB从中选择最好的一个或多个SRS资源,并将SRS资源的资源索引通过SRI指示给UE,令UE采用SRS资源相应的波束对数据进行波束赋形。然后,UE根据SRI进行上行数据传输,例如可以在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的传输层1(Layer 1)采用SRS 2的波束,传输层2(Layer 2)采用SRS3的波束进行波束赋形。其中,每个SRS端口对应到一个解调参考信号(demodulation reference signal,DMRS)端口。
示例性的,SRS资源集合中SRS资源的数量可以为N
srs。作为示例,N
srs可以为高层参数srs-ResourceSetToAddModList配置的SRS资源集合中SRS资源的数量(N
SRS is the number of configured SRS resources in the SRS resource set configured by higher layer parameter srs-ResourceSetToAddModList)。
示例性的,PUSCH的传输层数(也可以称为最大传输层数)可以为L
max。示例性的,如果了UE支持处理最大MIMO层数,并且配置了服务小区的PUSCH服务小区配置的最大MIMO层数的高层参数,那么L
max可以由该参数给出(if UE supports operation with maxMIMO-Layers and the higher layer parameter maxMIMO-Layers of PUSCH-ServingCellConfig of the serving cell is configured,L
max is given by that parameter)。否则,L
max可以由UE支持的服务小区的非码本传输的PUSCH的传输层的最大值给出(L
max is given by the maximum number of layers for PUSCH supported by the UE for the serving cell for non-codebook based operation)
示例性的,SRI可以包括至少两个位域映射索引(Bit field mapped to index),以及每个Bit field mapped to index对应的SRS资源的资源索引。当PUSCH的传输层数大于1时,每个Bit field mapped to index可以对应每个传输层的SRS资源的资源索引。
表1示出了基于非码本的PUSCH传输的SRI指示的一个示例。在表1中L
max=1,N
srs分别为2、3、4。
表1
表2示出了基于非码本的PUSCH传输的SRI指示的另一个示例。在表2中L
max=2,N
srs分别为2、3、4。
表2
表3示出了基于非码本的PUSCH传输的SRI指示的另一个示例。在表3中L
max=3,N
srs分别为2、3、4。
表3
表4示出了基于非码本的PUSCH传输的SRI指示的另一个示例。在表4中L
max=4,N
srs分别为2、3、4。
表4
根据上述描述可知,SRI指示上行宽带的至少一个SRS资源,其中上行数据的每个传输层对应至多一个SRS资源。该SRI指示的方式还不够灵活。
有鉴于此,本申请实施例提供了一种无线通信的方法,在该方法中,通过SRI指示至少一个SRS资源,例如宽带的至少一个第一SRS资源和/或子带的至少一个第二SRS资源。因此,本申请实施例能够实现灵活地对SRI进行指示,从而有利于提高无线通信的效率。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,如图3所示,该方法200可以包括如下内容中的至少部分内容:
S210,网络设备向终端设备发送第一探测参考信号SRS资源指示SRI,该第一SRI用于确定至少一个第一SRS资源。对应的,终端设备接收该第一探测参考信号SRS资源指示SRI。
在本申请实施例中,该第一SRI可以用于确定宽带(例如上行宽带)的至少一个第一SRS资源。换言之,第一SRS资源可以包括宽带(例如上行宽带)的至少一个SRS资源。在一些实施例中,该第一SRI还可以被称为宽带SRI,本申请对此不作限定。
在一些实施例中,终端设备可以根据该第一SRI,确定至少一个第一SRS资源。可选的,终端设备可以进一步可以根据该至少一个第一SRS资源,确定上行数据传输的至少一个波束,并根据该波束向网络设备发送上行数据。示例性的,该上行数据包括PUSCH,本申请对此不作限定。
示例性的,本申请实施例中终端设备向网络设备发送的上行数据的可以对应至少一个传输层,每个传输层可以对应至少一个该第一SRS资源。
示例性的,该至少一个第一SRS资源中的每个SRS资源可以包括至少一个(即一个或多个)SRS端口。
因此,本申请实施例通过第一SRI指示至少一个第一SRS资源,例如上行宽带的至少一个第一SRS资源,能够实现灵活地对SRI进行指示,从而有利于提高无线通信的效率。
在一些可选的实施例中,网络设备可以向终端设备发送用于调度PUSCH的DCI,该DCI中可以包括该第一SRI。相应的,终端设备可以接收该网络设备发送的该用于调度PUSCH的DCI,并从中获取该第一SRI。
在一些可选的实施例中,该至少一个第一SRS资源是从为该终端设备配置的N
srs个SRS资源中确定的。示例性的,N
srs为网络设备为终端设备配置的SRS资源集合中的SRS资源的个数,具体可以参见上文中的描述。其中,该N
srs个SRS资源对应的SRS资源集合中可以包括M个SRS资源组,每个SRS资源组包括X个SRS资源,M小于或等于N
srs,N
srs、M、X分别为正整数。
示例性的,网络设备可以为终端设备配置该N
srs个SRS资源,每个SRS资源可以包含一个或多个SRS端口。在一些实施例中,可以通过预定义的方式,将该N
srs个SRS资源分为M个SRS资源组,每个SRS资源组中可以包括X个SRS资源(或SRS端口)。该M组SRS资源之间可以不重叠(overlap),或者部分overlap,本申请对此不作限定。
作为一个示例,N
srs=8个SRS资源可以分为4个SRS组,分别为{0,1,2,3},{2,3,4,5},{4,5,6,7},{6,7,0,1}。
作为另一个示例,N
srs=8个SRS资源可以分为4个SRS组,分别为{0,1},{2,3},{4,5},{6,7}。
作为另一个示例,N
srs=8个SRS资源可以分为4个SRS组,分别为{0,4},{1,5},{2,6},{3,7}。
作为另一个示例,N
srs=8个SRS资源可以分为2个SRS组,分别为{0,1,2,3},{4,5,6,7}。
作为另一个示例,N
srs=8个SRS资源可以分为2个SRS组,分别为{0,2,4,6},{1,3,5,7}。
其中,0~7分别表示该8个SRS资源的资源索引。
在一些可选的实施例中,上述至少一个第一SRS资源包括M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。也就是说,当将N
srs个SRS资源分为M个SRS资源组时,第一SRI用于确定的至少一个第一SRS资源为该M个资源组中的Q个SRS资源组中的SRS资源。示例性的,Q可以为1,2,3,或者其他数值,不作限定。
示例性的,M、X、Q中的至少一个是根据上述上行数据的传输层数确定的。
在一些可选的实施例中,方法200还包括步骤220:网络设备向终端设备发送第二SRI,该第二SRI用于确定至少一个第二SRS资源。对应的,终端设备接收该第二SRI。
本申请实施例中,该第二SRI可以用于确定子带(例如上行子带)的至少一个第二SRS资源。换言之,第二SRS资源可以包括子带(例如上行子带)的至少一个SRS资源。在一些实施例中,该第二SRI还可以被称为子带SRI,本申请对此不作限定。示例性的,该子带可以为上行数据(比如PUSCH)占用的子带。
在一些实施例中,终端设备可以根据该第二SRI,确定至少一个第二SRS资源。可选的,终端设备可以进一步可以根据该至少一个第二SRS资源,确定上行数据传输的至少一个波束,并根据该波束向网络设备发送上行数据。示例性的,该上行数据包括PUSCH,本申请对此不作限定。
示例性的,本申请实施例中终端设备向网络设备发送的上行数据的可以对应至少一个传输层,每个传输层可以对应至少一个该第二SRS资源。
示例性的,该至少一个第二SRS资源中的每个SRS资源可以包括至少一个(即一个或多个)SRS端口。
因此,本申请实施例通过第二SRI指示至少一个第二SRS资源,例如上行子带的至少一个第二SRS资源,在能够灵活地对SRI进行指示的同时,还能够支持子带的预编码,从而能够有助于提高预编码的增益,提高无线通信的效率。
在一些可选的实施例中,网络设备向终端设备发送用于调度PUSCH的DCI中还可以包括该第二SRI。相应的,终端设备在接收的用于调度PUSCH的DCI中获取该第二SRI。可选的,当该DCI中包括上述第一SRI和该第二SRI时,该第一SRI和第二SRI可以合称为SRI。
在一些可选的实施例中,该至少一个第二SRS资源是从上述至少一个第一SRS资源中确定的。此时,该用于调度PUSCH的DCI中可以包括该第二SRI和第一SRI。示例性的,终端设备在根据第一SRI,确定了至少一个第一SRS资源之后,可以进一步根据该第二SRI,在该至少一个第一SRS资源中确定第二SRS资源。
作为一个示例,当上述至少一个第一SRS资源包括N
srs个SRS资源中的至少一个SRS资源时,终端设备可以根据上述第一SRI,确定该至少一个SRS资源,然后进一步根据该第二SRI,从该至少一个SRS资源中确定至少一个第二SRS资源。
作为一个具体的例子,对于秩(rank)为2(即k=2),N
srs=8的情况,第一SRI可以指示从N
srs=8个SRS资源集合中确定Q=4个第一SRS资源作为第一资源集合,第二SRI可以指示从该4个SRS第一资源的第一资源集合中进一步确定k=2个第二SRS资源作为第二资源集合。示例性的,第一SRI可以通过
比特(bit)确定Q=4个第一SRS资源作为第一资源集合,例如{0,1,2,3},第二SRI通过
或者Qbit的位图(bitmap),确定k=2个第二SRS资源,作为第二资源集合,例如{0,1}。
作为另一个示例,当上述至少一个第一SRS资源包括M个SRS资源组中的Q个SRS资源组中的SRS资源时,终端设备可以根据第一SRI,确定该Q个SRS资源组,然后进一步根据该第二SRI,从该Q个SRS资源组中确定该 至少一个第二SRS资源。
作为一个具体的例子,对于k=2,N
srs=8,并且根据预定义的方式将该N
srs=8个SRS资源分为M=3组SRS资源,即M=3个SRS资源组,例如分别为{0,1,2,3},{2,3,4,5},{4,5,6,7},每个SRS资源组中包括X=4个SRS资源。其中,第一SRI可以指示从M=3个SRS资源中中确定Q=1个SRS资源组作为第一资源集合,第二SRI可以指示从该第一资源集合,即该Q=1个SRS资源组中进一步确定k=2个第二SRS资源作为第二资源集合。示例性的,第一SRI可以通过
或者Mbit的bitmap确定Q=1个SRS资源组,即第一资源集合,例如{0,1,2,3},第二SRI可以通过
或者X bit的bitmap确定k=2个第二SRS资源,作为第二资源集合,例如{0,1}。
作为另一个具体的例子,对于k=2,N
srs=8,并且根据预定义的方式将该N
srs=8个SRS资源分为M=4组SRS资源,即M=4个SRS资源组,例如分别为{0,1},{2,3},{4,5},{6,7},每个SRS资源组中包括X=2个SRS资源。其中,第一SRI可以指示从M=4个SRS资源中中确定Q=2个SRS资源组作为第一资源集合,第二SRI可以指示从该第一资源集合,即该Q=2个SRS资源组中进一步确定k=2个第二SRS资源作为第二资源集合。示例性的,第一SRI可以通过
或者Mbit的bitmap确定Q=2个SRS资源组,即第一资源集合,例如{0,1}U{2,3},第二SRI可以通过
或者QX bit的bitmap确定k=2个第二SRS资源,作为第二资源集合,例如{0,1}。或者,第二SRI可以通过
从每个SRS组中选择1个SRS资源,即k=2个第二SRS资源作为第二资源集合,例如{0,2}。
因此,本申请实施例通过第一SRI确定上行宽带的至少一个第一SRS资源,进而通过第二SRI在该至少一个第一SRS资源中确定上行子带的至少一个第二SRS资源,在能够灵活地对SRI进行指示的同时,还能够支持子带的预编码,从而能够有助于提高预编码的增益,提高无线通信的效率。
在一些可选的实施例中,该第二SRI用于确定的的至少一个第二SRS资源是从上述N
srs个SRS资源,或M个SRS资源组中确定的。此时,上述用于调度PUSCH的DCI中可以包括该第二SRI,而不包括第一SRI。
因此,本申请实施例通过第二SRI指示至少一个第二SRS资源,例如上行子带的至少一个第二SRS资源,能够实现灵活地对SRI进行指示,从而有利于提高无线通信的效率。
在一些可选的实施例中,网络设备还可以向终端设备发送传输秩信息(TransmissionRankInformation,TRI),该TRI用于指示上行数据(例如PUSCH)的传输层数。对应的,终端设备接收该TRI。在一些实施例中,终端设备可以根据该TRI,确定上行数据的传输层数。示例性的,TRI还可以指示rank的值,该rank的值与该上行数据的传输层数相同。
在一些实施例中,网络设备向终端设备发送的用于调度PUSCH的DCI中可以包括该TRI。相应的,终端设备可以根据该DCI,获取该TRI。作为一种可能的实现方式,在该DCI中,该TRI和SRI(例如上述第一SRI和/或第二SRI)可以分别独立指示,例如二者可以占用不同的信息域。作为另一种可能的实现方式,在该DCI中,该TRI和SRI(例如上述第一SRI和/或第二SRI)可以联合编码,例如可以通过一个信息域指示。
在一些可选的实施例中,上述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。作为一种可能的实现方式,终端设备可以根据上述TRI,确定该至少一个第二SRS资源的个数。示例性的,第二SRS资源的个数与上行数据的传输层数相同。另外,传输层数可以与rank的值相同,即第二SRS资源的个数、上行数据的传输层数、rank的值三者可以相同。作为一个具体的例子,当rank=2时,上行数据的传输层数为2,相应的,该第二SRS资源的数量也为2。
在一些可选的实施例中,所述第一SRI的比特数是根据上行数据的传输层数确定的。
作为一种可能的实现方式,终端设备可以根据TRI,确定上述至少一个第一SRS资源的个数Q
v,进一步可以根据该第二SRS资源的个数Q
v,确定该第一SRI的比特数。示例性的,该Q
v个第一SRS资源可以包括上文中的Q个SRS资源组中的所有SRS资源,换言之,Q
v的值可以为Q与X的乘积。
示例性的,对于一组TRI,可以对应相同数量的第一SRS资源的个数Q
v。例如对于第一组rank(比如rank1和rank2),对应Q
1个第一SRS资源;对于第二组rank(比如rank3和rank4),对应Q
2个第一SRS资源,以此类推。
本申请实施例通过对一组TRI中的至少一个rank对应相同的第一SRS资源的个数Q
v,能够有助于降低TRI的比特数。
示例性的,终端设备可以根据TRI,确定上述N
srs个SRS资源的SRS资源组的划分,例如确定SRS资源组的个数M、第一SRI指示的SRS资源组的个数Q、每个SRS资源组中的SRS资源的个数X中的一个或多个。具体的,M、X、Q中的至少一个可以参见上文中的描述。作为一个具体的例子,对于N
srs=8的情况,当根据TRI确定rank为1,即上行数据的传输层数为1时,M=4,Q=1,X=3;当根据TRI确定rank为2,即上行数据的传输层数为2时,M=2,Q=1,X=4,或者M、X、Q可以取其他值,本申请对此不作限定。
在一些可选的实施例中,所述第一SRI的比特数可以为预设定值。当第一SRI的比特数为预设定值时,该第一SRI的比特数与TRI无关,即不需要根据该TRI来确定该第一SRI的比特数。
在一些可选的实施例中,第二SRI的比特数可以是根据上行数据的传输层数确定的。例如,终端设备可以根据TRI,确定该第二SRI的比特数。也就是说,上行数据的传输层数不同时,第二SRI的比特数不同。
作为一个示例,当DCI中包括第一SRI和第二SRI时,当TRI指示的传输层数为1,即rank为1时,每个子带对应的第二SRI为1bit或2bit;当TRI指示的传输层数为2,即rank为2时,每个子带对应的第二SRI为1bit或2bit;当TRI指示的传输层数为3,即rank为3时,每个子带对应的第二SRI为0bit或1bit;当TRI指示的传输层数为4,即rank为4时,每个子带对应的第二SRI为02bit。
在一些可选的实施例中,第二SRI的比特数可以是根据上行数据的传输层数确和/或为网络设备为终端设备配置的 SRS资源集合中的SRS资源的个数N
srs确定的。
作为一个示例,当DCI中包括第二SRI,不包括第一SRI时,当TRI指示的传输层数为k,即rank为k时,第二SRI可以通过
指示,其中N
srs为网络设备为终端设备配置的SRS资源集合中的SRS资源的个数,具体可以参见上文中的描述。
可选的,所述第二SRI所指示的内容是根据上行数据的传输层数确定的。示例性的,终端设备可以根据TRI,确定第二SRI所指示的内容,即该第二SRS用于确定的至少一个第二SRS资源,具体可以包括该至少一个第二SRS资源的资源索引,本申请对此不作限定。也就是说,当上行数据的传输层数不同时,第二SRI的比特数不同,并且第二SRI所指示的SRS资源也不同。
在一些实施例中,第二SRI可以用于确定P个子带中每个子带的至少一个第二SRS资源,其中P为正整数。示例性的,该P个子带可以上行数据占用的子带中的全部或部分子带,不作限定。
在一些可选的实施中,第二SRI的比特数可以是根据上行数据占用的子带的数量和/或不同传输层对应的子带的SRI的比特数确定的。示例性的,不同传输层数对应的子带的SRI的比特数是根据上行数据的传输层数确定的,即子带的SRI的比特数与上行数据的传输层数相关。示例性的,子带的SRI可以指用于指示子带的SRS资源的SRI。
作为一种可能的实现方式,当第二SRI用于确定P个子带中每个子带的至少一个第二SRS资源时,第二SRI占用的比特数可以为P与M
v的乘积,其中P为上行数据占用的子带的数量,M
v为不同传输层对应的子带的SRI的比特数。具体而言,M
v可以指与v对应的每个子带的SRI的比特数,该每个子带的SRI用于确定每个子带的至少一个第二SRS资源,v为TRI所指示的上行数据的传输层数。
示例性的,M
v可以是根据上行数据的传输层数确定的。示例性的,终端设备可以根据TRI,确定M
v。例如,当TRI指示的传输层数不同时,对应的每个子带上的SRI(例如用于指示子带的至少一个SRS资源的SRI)的比特数不同。
或者,M
v可以是根据上行数据的传输层数和用于确定上行宽带的至少一个SRS资源的SRI确定的,本申请对此不作限定。例如,TRI和SRI(例如用于确定上行宽带的至少一个SRS资源的SRI)联合编码时,该联合编码的信息域指示的取值不同时,对应每个子带上的SRI(例如用于指示子带的至少一个SRS资源的SRI)的比特数不同。
本申请实施例通过不同的传输层数对应不同的子带的SRI的比特数,可以有助于在保证子带预编码增益的同时,降低子带的SRI的信息的比特数。示例性的,对于一些预编码增益较小的子带对应的传输层数,可以需要较少的比特数。
在一些可选的实施例中,网络设备还可以向终端设备发送指示信息,该指示信息用于从候选值中指示上述子带的数量,例如指示P的值。相应的,终端设备可以接收该指示信息,并根据该指示信息,从候选值中确定子带的数量。示例性的,该候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分(Band Width Part,BWP)确定的。
作为一种可能的实现方式,该指示信息可以通过高层信令发送,即该指示信息可以承载于高层信令中,本申请对此不作限定。示例性的,该高层信令可以为无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Medium Access Control,MAC)层信令等,不作限定。另外,用于确定上述候选值的高层信令可以为RRC信令,或MAC层信令等,不作限定。
作为一个示例,网络设备可以向终端设备发送无线资源控制(Radio Resource Control,RRC)信令,其中包括若干个子带数量的候选值,然后再通过MAC层信令从该候选值中指示当前所使用的子带数量。示例性的,当子带数量的可能取值为1-16时,可以通过该RRC信令从1-16中选择4个,或者8个取值作为候选值,然后再通过2-3bit的MAC层信令从4个或8个候选值中指示当前使用的子带的数量,例如2个,或3个,不作限定。
作为一个示例,例如当候选值是预定义的情况下,可以通过RRC信令从该候选值中指示当前使用的子带的数量。
作为一个示例,当候选值是根据上行数据所在的BWP确定的情况下,可以通过RRC信令从该候选值中指示当前使用的子带的数量。
示例性的,上行数据所在的BWP的带宽不同,则子带数量的候选值的取值也不同。例如,当PUSCH所在的BWP的带宽为5M时,子带数量的候选值为{1,2,3,4,5,6,7,8};当PUSCH所在的BWP的带宽为20M时,子带数量的候选值为{2,4,6,8,10,12,14,16}。从而,当上行数据对应不同的BWP,相同的RRC信令所指示的子带的数量的取值不同。
在一些可选的实施例中,当第二SRI承载于用于调度PUSCH的DCI中的情况下,该DCI中为该第二SRI预留的比特数是根据该子带的数量(例如最大数量)和/或不同传输层数对应的子带的SRI的比特数(例如最大比特数)确定的。
示例性的,为该第二SRI预留的比特数可以表示为P
m与Max(M
v)的乘积。其中,P
m为高层信令指示的子带的数量,或者上行数据所在的BWP的宽带下允许的最大的子带的数量,Max(M
v)表示不同TRI对应的每个子带的SRI的最大比特数。例如,P
m可以为上行数据所在BWP的带宽上,网络设备能够调度的最大的子带数量,Max(M
v)=max{M
1,M
2,M
3,M
4},其中TRI指示的传输层数为1~4时,对应的每个子带的SRI的比特数分别为{M
1,M
2,M
3,M
4}。
在一些实施例中,在用于调度PUSCH的DCI中,为该第二SRI预留的比特数中不用于指示子带的SRS资源的位置可以置零。例如,假设对于当前TRI,所有子带的SRI占用的比特数为A,而在DCI中预留的比特数为B,则B比特中的前A个比特对应子带的SRI,后(B-A)个比特可以置零,其中B大于或等于A,A、B为正整数。
在另一些实施例中,在用于调度PUSCH的DCI中,为该第二SRI预留的比特数中不用于指示子带的SRS资源的位置可以用于其他用途,例如可以用于指示其他信息,本申请对此不作限定。
因此,本申请实施例通过根据子带的数量(例如最大数量)和/或不同传输层数对应的子带的SRI的比特数(例如最大比特数),确定在DCI中为第二SRI预留的比特数,能够使得终端在检测该DCI之前预先确定DCI的大小,有助于避免因为第二SRI的信息长度不同导致的DCI长度不同,从而可以有助于降低终端设备盲检PDCCH的复杂度,并可以提高PDCCH检测的可靠性。
在一些可选的实施例中,上行数据所占的子带可以包括第一部分子带。若满足以下条件中的至少一种,则上述第 二SRI指示该第一部分子带的至少一个SRS资源(即该第二SRI指示子带中的部分子带中的每个子带的至少一个第二SRS资源):
该第二SRI的比特数满足第一条件;
承载该第二SRI的DCI的下行信道的码率满足第二条件。
示例性的,该第一条件可以指:第二SRI的比特数超过第一门限,和/或第二SRI的比特数与承载该第二SRI的DCI的总比特数的比值超过第二门限,和/或第二SRI的比特数与承载该第二SRI的DCI的中的除该第二SRI之外的其他信息的总比特数的比值超过第三门限。
示例性的,第二条件可以指:承载该第二SRI的DCI的信道(比如PDCCH)的码率大于或等于第四门限。
示例性的,上述判断条件可以独立使用,或者组合使用。例如,如果承载第二SRI的DCI的PDCCH的码率超过第四门限,或者,该第二SRI的比特数超过第一门限,则该第二SRI指示部分子带中的每个子带的至少一个第二SRS资源。又例如,如果第二SRI的比特数超导第一门限,且第二SRI的比特数与承载该第二SRI的DCI的总比特数的比值超过第二门限,则该第二SRI指示部分子带中的每个子带的至少一个第二SRS资源。
在一些实施例中,上述至少一个门限值可以由网络设备配置,或者网络设备与终端设备预先定义。
在一些实施例中,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。也就是说,对于承载该第二SRI的DCI,针对不同的DCI格式,设置的门限值可以不同。例如,DCI format 1_2对应的门限值可以比DCI format 1_1对应的门限值更低,从而保障超高可靠低延迟通信相关业务(Ultra-Reliable Low Latency Communications,URLLC)的性能。
在一些可选的实施例中,上述第一部分子带可以包括上行数据所占子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
示例性的,该第一部分子带的数量n可以为使得上述第一条件和/或第二条件不能满足的最大的子带数量,例如可以是使承载第二SRI的PUCCH的码率不超过第四门限的最大子带数量,或者是是第二SRI的比特数不超过第一门限的最大子带数量,本申请对此不作限定。
例如,当第二SRI指示偶数子带的至少一个SRS资源,不指示奇数子带的至少一个SRS资源时,奇数子带对应的用于指示SRS资源的SRI被丢弃。
例如,当第二SRI指示奇数子带的至少一个SRS资源,不指示偶数子带的至少一个SRS资源时,偶数子带对应的用于指示SRS资源的SRI被丢弃。
例如,当第二SRI指示优先级较高的n个子带的至少一个SRS资源时,子带中的其他优先级较低的子带对应的SRS信息被丢弃。作为一个例子,偶数子带的优先级可以高于奇数子带,或者奇数子带的优先级可以高于偶数子带。作为另一个例子,在偶数子带或奇数子带中,子带索引值较小的子带的优先级高于子带索引值较大的子带,本申请对此不作限定。
本申请实施例通过对一部分子带的用于指示SRS资源的SRI进行丢弃,能够减小第二SRI的比特数,进而能够降低承载第二SRI的DCI的比特数,从而提高PDCCH的传输性能。
在一些可选的实施例中,上行数据所占的子带中还可以包括第二部分子带,其中,该第二部分子带的至少一个SRS资源与上述第一部分子带的至少一个SRS资源相同,该第一部分子带与该第二部分子带为不同的子带。
示例性的,终端设备可以假设上行数据占用的子带中,未指示子带的至少一个SRS资源的子带(第二部分子带的一个示例)与该子带最邻近的指示了SRS资源的子带(第一部分子带的一个示例)上的SRS资源相同。
示例性的,当第一部分子带为偶数子带,例如子带索引为0,2,4,…等的子带,则终端设备可以假设第二部分子带,即奇数子带,例如子带索引为1,3,5,…等的子带中的每个子带的SRS资源为该子带的前一个子带,或后一个子带的SRS资源。作为一个具体的例子,如果子带索引为1(即子带1)的子带没有被指示SRS资源,则终端设备假设该子带1的SRS资源与子带索引为0(即子带0),或子带索引为1(即子带1)的SRS资源相同。
示例性的,当第一部分子带为奇数子带,例如子带索引为1,3,5,…等的子带,则终端设备可以假设第二部分子带,即偶数子带,例如子带索引为0,2,4,…等的子带中的每个子带的SRS资源为该子带的前一个子带,或后一个子带的SRS资源。作为一个具体的例子,如果子带索引为2(即子带2)的子带没有被指示SRS资源,则终端设备假设该子带2的SRS资源与子带索引为1(即子带1),或子带索引为3(即子带3)的SRS资源相同。
因此,本申请实施例通过确定第二部分子带的至少一个SRS资源与第一部分子带的至少一个SRS资源相同,可以在保证预编码增益的前提下,得到上行数据所占的每个子带的SRS资源。
上文结合图3,详细描述了本申请的方法实施例,下文结合图4至图8,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的终端设备300的示意性框图。如图4所示,该终端设备300包括:
通信单元310,用于接收第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
可选的,终端设备300还可以包括处理单元320,用于对所述第一SRI进行处理,例如根据所述第一SRI,确定所述至少一个第一SRS资源。
可选的,所述至少一个第一SRS资源是从为所述终端设备配置的N
srs个SRS资源中确定的,其中,所述N
srs个SRS资源包括M个SRS资源组,每个所述SRS资源组包括X个SRS资源,M小于或等于N
srs,N
srs、M、X分别为正整数。
可选的,所述至少一个第一SRS资源包括所述M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。
可选的,M、X中的至少一个是根据上行数据的传输层数确定的。
可选的,Q是根据上行数据的传输层数确定的。
可选的,所述通信单元310还用于:
接收第二SRI,所述第二SRI用于确定至少一个第二SRS资源。
可选的,所述至少一个第二SRS资源包括子带的SRS资源。
可选的,处理单元320还用于对所述第二SRI进行处理,例如根据所述第二SRI,确定所述至少一个第二SRS资源。
可选的,所述至少一个第二SRS资源是从所述至少一个第一SRS资源中确定的。
可选的,所述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。
可选的,所述第二SRI的比特数是根据上行数据的传输层数、为所述终端设备配置的SRS资源的数量N
srs、所述子带的数量、不同传输层数对应的子带的SRI的比特数中的至少一种确定的。
可选的,所述通信单元310还用于:
接收指示信息,所述指示信息用于从候选值中指示所述子带的数量,其中,所述候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分BWP确定的。
可选的,所述处理单元320还用于根据所述指示信息,从候选值中确定所述子带的数量。
可选的,所述第二SRI承载于下行控制信息DCI中,其中,所述DCI中为所述第二SRI预留的比特数是根据所述子带的数量和/或不同传输层数对应的子带的SRI的比特数确定的。
可选的,所述子带包括第一部分子带;
若满足以下条件中的至少一种,则所述第二SRI指示所述第一部分子带中的至少一个SRS资源:
所述第二SRI的比特数超过第一门限;
所述第二SRI的比特数与承载所述第二SRI的DCI的总比特数的比值超过第二门限;
所述第二SRI的比特数与承载所述第二SRI的DCI中除所述第二SRI之外的其他信息的总比特数的比值超过第三门限;
承载所述第二SRI的DCI的下行信道的码率超过第四门限。
可选的,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。
可选的,所述第一部分子带包括所述子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
可选的,所述子带还包括第二部分子带,其中,所述第二部分子带的至少一个SRS资源与所述第一部分子带的至少一个SRS资源相同,其中,所述第一部分子带与所述第二部分子带为不同的子带。
可选的,所述第一SRI的比特数是根据上行数据的传输层数确定的,或者为预设定值。
可选的,所述通信单元310还用于接收传输秩信息TRI,所述TRI用于指示上行数据的传输层数。
可选的,处理单元320还用于根据所述TRI,确定上行数据的传输层数。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图5示出了根据本申请实施例的网络设备400的示意性框图。如图5所示,该网络设备400包括:
通信单元,用于发送第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
可选的,网络设备400还可以包括处理单元420,用于确定所述第一SRI。
可选的,所述至少一个第一SRS资源是从为所述终端设备配置的N
srs个SRS资源中确定的,其中,所述N
srs个SRS资源包括M个SRS资源组,每个所述SRS资源组包括X个SRS资源,M小于或等于N
srs,N
srs、M、X分别为正整数。
可选的,所述至少一个第一SRS资源包括所述M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。
可选的,M、X中的至少一个是根据上行数据的传输层数确定的。
可选的,Q是根据上行数据的传输层数确定的。
可选的,所述通信单元410还用于发送第二SRI,所述第二SRI用于确定至少一个第二SRS资源。
可选的,所述至少一个第二SRS资源包括子带的SRS资源。
可选的,所述处理单元420还用于确定所述第二SRI。
可选的,所述至少一个第二SRS资源是从所述至少一个第一SRS资源中确定的。
可选的,所述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。
可选的,所述第二SRI的比特数是根据上行数据的传输层数、为所述终端设备配置的SRS资源的数量N
srs、所述子带的数量、不同传输层数对应的子带的SRI的比特数中的至少一种确定的。
可选的,所述通信单元410还用于发送指示信息,所述指示信息用于从候选值中指示所述子带的数量,其中,所述候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分BWP确定的。
可选的,所述处理单元420还用于确定所述指示信息。
可选的,所述第二SRI承载于下行控制信息DCI中,其中,所述DCI中为所述第二SRI预留的比特数是根据所述子带的数量和/或不同传输层数对应的子带的SRI的比特数确定的。
可选的,所述子带包括第一部分子带;
若满足以下条件中的至少一种,则所述第二SRI指示所述第一部分子带中的至少一个SRS资源:
所述第二SRI的比特数超过第一门限;
所述第二SRI的比特数与承载所述第二SRI的DCI的总比特数的比值超过第二门限;
所述第二SRI的比特数与承载所述第二SRI的DCI中除所述第二SRI之外的其他信息的总比特数的比值超过第三门限;
承载所述第二SRI的DCI的下行信道的码率超过第四门限。
可选的,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。
可选的,所述第一部分子带包括所述子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
可选的,所述子带还包括第二部分子带,其中,所述第二部分子带的至少一个SRS资源与所述第一部分子带的至少一个SRS资源相同,其中,所述第一部分子带与所述第二部分子带为不同的子带。
可选的,所述第一SRI的比特数是根据上行数据的传输层数确定的,或者为预设定值。
可选的,所述通信单元410还用于发送传输秩信息TRI,所述TRI用于指示上行数据的传输层数。
可选的,所述处理单元420还用于确定所述TRI。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例提供的一种通信设备500示意性结构图。图6所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图6所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
在一些实施例中,如图6所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备500具体可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的装置的示意性结构图。图7所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图7所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统700的示意性框图。如图8所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
Claims (78)
- 一种无线通信的方法,其特征在于,包括:终端设备接收第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
- 根据权利要求1所述的方法,其特征在于,所述至少一个第一SRS资源是从为所述终端设备配置的N srs个SRS资源中确定的,其中,所述N srs个SRS资源包括M个SRS资源组,每个所述SRS资源组包括X个SRS资源,M小于或等于N srs,N srs、M、X分别为正整数。
- 根据权利要求2所述的方法,其特征在于,所述至少一个第一SRS资源包括所述M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。
- 根据权利要求2所述的方法,其特征在于,M、X中的至少一个是根据上行数据的传输层数确定的。
- 根据权利要求3所述的方法,其特征在于,Q是根据上行数据的传输层数确定的。
- 根据权利要求1-5任一项所述的方法,其特征在于,还包括:所述终端设备接收第二SRI,所述第二SRI用于确定至少一个第二SRS资源。
- 根据权利要求6所述的方法,其特征在于,所述至少一个第二SRS资源是从所述至少一个第一SRS资源中确定的。
- 根据权利要求6或7所述的方法,其特征在于,所述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。
- 根据权利要求6-8任一项所述的方法,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源,所述第二SRI的比特数是根据上行数据的传输层数、为所述终端设备配置的SRS资源的数量N srs、所述子带的数量、不同传输层数对应的子带的SRI的比特数中的至少一种确定的。
- 根据权利要求9所述的方法,其特征在于,还包括:所述终端设备接收指示信息,所述指示信息用于从候选值中指示所述子带的数量,其中,所述候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分BWP确定的。
- 根据权利要求9或10所述的方法,其特征在于,所述第二SRI承载于下行控制信息DCI中,其中,所述DCI中为所述第二SRI预留的比特数是根据所述子带的数量和/或不同传输层数对应的子带的SRI的比特数确定的。
- 根据权利要求6-11任一项所述的方法,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源;所述子带包括第一部分子带;若满足以下条件中的至少一种,则所述第二SRI指示所述第一部分子带中的至少一个SRS资源:所述第二SRI的比特数超过第一门限;所述第二SRI的比特数与承载所述第二SRI的DCI的总比特数的比值超过第二门限;所述第二SRI的比特数与承载所述第二SRI的DCI中除所述第二SRI之外的其他信息的总比特数的比值超过第三门限;承载所述第二SRI的DCI的下行信道的码率超过第四门限。
- 根据权利要求12所述的方法,其特征在于,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。
- 根据权利要求12或13所述的方法,其特征在于,所述第一部分子带包括所述子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
- 根据权利要求12-14任一项所述的方法,其特征在于,所述子带还包括第二部分子带,其中,所述第二部分子带的至少一个SRS资源与所述第一部分子带的至少一个SRS资源相同,其中,所述第一部分子带与所述第二部分子带为不同的子带。
- 根据权利要求1-15任一项所述的方法,其特征在于,所述第一SRI的比特数是根据上行数据的传输层数确定的,或者为预设定值。
- 根据权利要求1-16任一项所述的方法,其特征在于,还包括:所述终端设备接收传输秩信息TRI,所述TRI用于指示上行数据的传输层数。
- 一种无线通信的方法,其特征在于,包括:网络设备发送第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
- 根据权利要求18所述的方法,其特征在于,所述至少一个第一SRS资源是从为所述终端设备配置的N srs个SRS资源中确定的,其中,所述N srs个SRS资源包括M个SRS资源组,每个所述SRS资源组包括X个SRS资源,M小于或等于N srs,N srs、M、X分别为正整数。
- 根据权利要求19所述的方法,其特征在于,所述至少一个第一SRS资源包括所述M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。
- 根据权利要求19所述的方法,其特征在于,M、X中的至少一个是根据上行数据的传输层数确定的。
- 根据权利要求20所述的方法,其特征在于,Q是根据上行数据的传输层数确定的。
- 根据权利要求18-22任一项所述的方法,其特征在于,还包括:所述网络设备发送第二SRI,所述第二SRI用于确定至少一个第二SRS资源。
- 根据权利要求23所述的方法,其特征在于,所述至少一个第二SRS资源是从所述至少一个第一SRS资源中确定的。
- 根据权利要求23或24所述的方法,其特征在于,所述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。
- 根据权利要求23-25任一项所述的方法,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源,所述第二SRI的比特数是根据上行数据的传输层数、为所述终端设备配置的SRS资源的数量N srs、所述子带的数量、不同传输层数对应的子带的SRI的比特数中的至少一种确定的。
- 根据权利要求26所述的方法,其特征在于,还包括:所述网络设备发送指示信息,所述指示信息用于从候选值中指示所述子带的数量,其中,所述候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分BWP确定的。
- 根据权利要求26或27所述的方法,其特征在于,所述第二SRI承载于下行控制信息DCI中,其中,所述DCI中为所述第二SRI预留的比特数是根据所述子带的数量和/或不同传输层数对应的子带的SRI的比特数确定的。
- 根据权利要求23-28任一项所述的方法,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源;所述子带包括第一部分子带;若满足以下条件中的至少一种,则所述第二SRI指示所述第一部分子带中的至少一个SRS资源:所述第二SRI的比特数超过第一门限;所述第二SRI的比特数与承载所述第二SRI的DCI的总比特数的比值超过第二门限;所述第二SRI的比特数与承载所述第二SRI的DCI中除所述第二SRI之外的其他信息的总比特数的比值超过第三门限;承载所述第二SRI的DCI的下行信道的码率超过第四门限。
- 根据权利要求29所述的方法,其特征在于,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。
- 根据权利要求29或30所述的方法,其特征在于,所述第一部分子带包括所述子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
- 根据权利要求29-31任一项所述的方法,其特征在于,所述子带还包括第二部分子带,其中,所述第二部分子带的至少一个SRS资源与所述第一部分子带的至少一个SRS资源相同,其中,所述第一部分子带与所述第二部分子带为不同的子带。
- 根据权利要求18-32任一项所述的方法,其特征在于,所述第一SRI的比特数是根据上行数据的传输层数确定的,或者为预设定值。
- 根据权利要求18-33任一项所述的方法,其特征在于,还包括:所述网络设备发送传输秩信息TRI,所述TRI用于指示上行数据的传输层数。
- 一种终端设备,其特征在于,包括:通信单元,用于接收第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源。
- 根据权利要求35所述的终端设备,其特征在于,所述至少一个第一SRS资源是从为所述终端设备配置的N srs个SRS资源中确定的,其中,所述N srs个SRS资源包括M个SRS资源组,每个所述SRS资源组包括X个SRS资源,M小于或等于N srs,N srs、M、X分别为正整数。
- 根据权利要求36所述的终端设备,其特征在于,所述至少一个第一SRS资源包括所述M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。
- 根据权利要求36所述的终端设备,其特征在于,M、X中的至少一个是根据上行数据的传输层数确定的。
- 根据权利要求37所述的终端设备,其特征在于,Q是根据上行数据的传输层数确定的。
- 根据权利要求35-39任一项所述的终端设备,其特征在于,所述通信单元还用于:接收第二SRI,所述第二SRI用于确定至少一个第二SRS资源。
- 根据权利要求40所述的终端设备,其特征在于,所述至少一个第二SRS资源是从所述至少一个第一SRS资源中确定的。
- 根据权利要求40或41所述的终端设备,其特征在于,所述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。
- 根据权利要求40-42任一项所述的终端设备,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源;所述第二SRI的比特数是根据上行数据的传输层数、为所述终端设备配置的SRS资源的数量N srs、所述子带的数量、不同传输层数对应的子带的SRI的比特数中的至少一种确定的。
- 根据权利要求43所述的终端设备,其特征在于,所述通信单元还用于:接收指示信息,所述指示信息用于从候选值中指示所述子带的数量,其中,所述候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分BWP确定的。
- 根据权利要求43或44所述的终端设备,其特征在于,所述第二SRI承载于下行控制信息DCI中,其中,所述DCI中为所述第二SRI预留的比特数是根据所述子带的数量和/或不同传输层数对应的子带的SRI的比特数确定的。
- 根据权利要求40-45任一项所述的终端设备,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源;所述子带包括第一部分子带;若满足以下条件中的至少一种,则所述第二SRI指示所述第一部分子带中的至少一个SRS资源:所述第二SRI的比特数超过第一门限;所述第二SRI的比特数与承载所述第二SRI的DCI的总比特数的比值超过第二门限;所述第二SRI的比特数与承载所述第二SRI的DCI中除所述第二SRI之外的其他信息的总比特数的比值超过第三门限;承载所述第二SRI的DCI的下行信道的码率超过第四门限。
- 根据权利要求46所述的终端设备,其特征在于,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。
- 根据权利要求46或47所述的终端设备,其特征在于,所述第一部分子带包括所述子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
- 根据权利要求46-48任一项所述的终端设备,其特征在于,所述子带还包括第二部分子带,其中,所述第二部分子带的至少一个SRS资源与所述第一部分子带的至少一个SRS资源相同,其中,所述第一部分子带与所述第二 部分子带为不同的子带。
- 根据权利要求35-49任一项所述的终端设备,其特征在于,所述第一SRI的比特数是根据上行数据的传输层数确定的,或者为预设定值。
- 根据权利要求15-50任一项所述的终端设备,其特征在于,所述通信单元还用于:接收传输秩信息TRI,所述TRI用于指示上行数据的传输层数。
- 一种网络设备,其特征在于,包括:通信单元,用于发送第一探测参考信号SRS资源指示SRI,所述第一SRI用于确定至少一个第一SRS资源
- 根据权利要求52所述的网络设备,其特征在于,所述至少一个第一SRS资源是从为所述终端设备配置的N srs个SRS资源中确定的,其中,所述N srs个SRS资源包括M个SRS资源组,每个所述SRS资源组包括X个SRS资源,M小于或等于N srs,N srs、M、X分别为正整数。
- 根据权利要求53所述的网络设备,其特征在于,所述至少一个第一SRS资源包括所述M个SRS资源组中的Q个SRS资源组,Q为小于或等于M的正整数。
- 根据权利要求53所述的网络设备,其特征在于,M、X中的至少一个是根据上行数据的传输层数确定的。
- 根据权利要求54所述的网络设备,其特征在于,Q是根据上行数据的传输层数确定的。
- 根据权利要求52-56任一项所述的网络设备,其特征在于,所述通信单元还用于:发送第二SRI,所述第二SRI用于确定至少一个第二SRS资源。
- 根据权利要求57所述的网络设备,其特征在于,所述至少一个第二SRS资源是从所述至少一个第一SRS资源中确定的。
- 根据权利要求57或58所述的网络设备,其特征在于,所述至少一个第二SRS资源的数量是根据上行数据的传输层数确定的。
- 根据权利要求57-59任一项所述的网络设备,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源;所述第二SRI的比特数是根据上行数据的传输层数、为所述终端设备配置的SRS资源的数量N srs、所述子带的数量、不同传输层数对应的子带的SRI的比特数中的至少一种确定的。
- 根据权利要求60所述的网络设备,其特征在于,所述通信单元还用于:发送指示信息,所述指示信息用于从候选值中指示所述子带的数量,其中,所述候选值为预定义,或是根据高层信令确定的,或者是根据上行数据所在的带宽部分BWP确定的。
- 根据权利要求60或61所述的网络设备,其特征在于,所述第二SRI承载于下行控制信息DCI中,其中,所述DCI中为所述第二SRI预留的比特数是根据所述子带的数量和/或不同传输层数对应的子带的SRI的比特数确定的。
- 根据权利要求57-62任一项所述的网络设备,其特征在于,所述至少一个第二SRS资源包括子带的SRS资源;所述子带包括第一部分子带;若满足以下条件中的至少一种,则所述第二SRI指示所述第一部分子带中的至少一个SRS资源:所述第二SRI的比特数超过第一门限;所述第二SRI的比特数与承载所述第二SRI的DCI的总比特数的比值超过第二门限;所述第二SRI的比特数与承载所述第二SRI的DCI中除所述第二SRI之外的其他信息的总比特数的比值超过第三门限;承载所述第二SRI的DCI的下行信道的码率超过第四门限。
- 根据权利要求63所述的网络设备,其特征在于,所述第一门限、所述第二门限、所述第三门限和所述第四门限中的至少一种是根据承载所述第二SRI的DCI的格式确定的。
- 根据权利要求63或64所述的网络设备,其特征在于,所述第一部分子带包括所述子带中的偶数子带、奇数子带、前半部分子带、后半部分子带、高优先级子带中的至少一种。
- 根据权利要求63-65任一项所述的网络设备,其特征在于,所述子带还包括第二部分子带,其中,所述第二部分子带的至少一个SRS资源与所述第一部分子带的至少一个SRS资源相同,其中,所述第一部分子带与所述第二部分子带为不同的子带。
- 根据权利要求52-66任一项所述的网络设备,其特征在于,所述第一SRI的比特数是根据上行数据的传输层数确定的,或者为预设定值。
- 根据权利要求52-67任一项所述的网络设备,其特征在于,所述通信单元还用于:发送传输秩信息TRI,所述TRI用于指示上行数据的传输层数。
- 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至17中任一项所述的方法。
- 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18至34中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至17中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18至34中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求18至34中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至17中任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求18至34中任一项所述的方法。
- 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至17中任一项所述的方法。
- 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求18至34中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180103840.9A CN118202599A (zh) | 2021-12-31 | 2021-12-31 | 无线通信的方法、终端设备和网络设备 |
PCT/CN2021/143819 WO2023123409A1 (zh) | 2021-12-31 | 2021-12-31 | 无线通信的方法、终端设备和网络设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/143819 WO2023123409A1 (zh) | 2021-12-31 | 2021-12-31 | 无线通信的方法、终端设备和网络设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023123409A1 true WO2023123409A1 (zh) | 2023-07-06 |
Family
ID=86997106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/143819 WO2023123409A1 (zh) | 2021-12-31 | 2021-12-31 | 无线通信的方法、终端设备和网络设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118202599A (zh) |
WO (1) | WO2023123409A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110768768A (zh) * | 2018-07-27 | 2020-02-07 | 上海华为技术有限公司 | 探测参考信号的资源配置方法及通信装置 |
CN111464273A (zh) * | 2019-01-18 | 2020-07-28 | 中国移动通信有限公司研究院 | 基于码本传输的探测参考信号资源的指示方法及设备 |
US20210044385A1 (en) * | 2019-08-06 | 2021-02-11 | Qualcomm Incorporated | Uplink repetition configuration |
CN113196865A (zh) * | 2018-12-14 | 2021-07-30 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
CN113747599A (zh) * | 2016-02-02 | 2021-12-03 | 北京三星通信技术研究有限公司 | 用户设备、基站及其方法 |
-
2021
- 2021-12-31 CN CN202180103840.9A patent/CN118202599A/zh active Pending
- 2021-12-31 WO PCT/CN2021/143819 patent/WO2023123409A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113747599A (zh) * | 2016-02-02 | 2021-12-03 | 北京三星通信技术研究有限公司 | 用户设备、基站及其方法 |
CN110768768A (zh) * | 2018-07-27 | 2020-02-07 | 上海华为技术有限公司 | 探测参考信号的资源配置方法及通信装置 |
CN113196865A (zh) * | 2018-12-14 | 2021-07-30 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
CN111464273A (zh) * | 2019-01-18 | 2020-07-28 | 中国移动通信有限公司研究院 | 基于码本传输的探测参考信号资源的指示方法及设备 |
US20210044385A1 (en) * | 2019-08-06 | 2021-02-11 | Qualcomm Incorporated | Uplink repetition configuration |
Also Published As
Publication number | Publication date |
---|---|
CN118202599A (zh) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240098738A1 (en) | Uplink transmission method, terminal device, and network device | |
CN116208308B (zh) | 用于确定上行传输参数的方法和终端设备 | |
WO2020073257A1 (zh) | 无线通信方法和终端设备 | |
WO2023015529A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
US20240007250A1 (en) | Wireless communication method, terminal device, and network device | |
US20240023076A1 (en) | Method for channel estimation, terminal device, and network device | |
US20220394503A1 (en) | Wireless communication method and device | |
WO2022188081A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2023060449A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2022056870A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2023123409A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2022036523A1 (zh) | 数据传输的方法及设备 | |
WO2022141106A1 (zh) | 重复传输数据信道的方法和设备 | |
WO2022082511A1 (zh) | 无线通信的方法及设备 | |
WO2022016342A1 (zh) | 信道加扰方法和终端设备 | |
WO2023050320A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2023070459A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2023050337A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2024011579A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2023201594A1 (zh) | 一种指示方法、终端设备和网络设备 | |
WO2023108555A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2024077446A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2023108638A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
WO2023123399A1 (zh) | 无线通信的方法、终端设备和网络设备 | |
US20240333359A1 (en) | Wireless communication method, terminal device, and network device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21969756 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180103840.9 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |