WO2023015529A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023015529A1
WO2023015529A1 PCT/CN2021/112333 CN2021112333W WO2023015529A1 WO 2023015529 A1 WO2023015529 A1 WO 2023015529A1 CN 2021112333 W CN2021112333 W CN 2021112333W WO 2023015529 A1 WO2023015529 A1 WO 2023015529A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
precoding matrix
elements
column
tpmi
Prior art date
Application number
PCT/CN2021/112333
Other languages
English (en)
French (fr)
Inventor
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/112333 priority Critical patent/WO2023015529A1/zh
Priority to CN202180100147.6A priority patent/CN117616699A/zh
Publication of WO2023015529A1 publication Critical patent/WO2023015529A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • uplink transmission supports codebooks with 2-antenna ports and 4-antenna ports, and network devices transmit precoding matrix indications (Transmit Precoding Matrix) Indicator, TPMI), the terminal device determines the precoding matrix corresponding to the TPMI from the codebook according to the TPMI.
  • precoding matrix indications Transmit Precoding Matrix
  • TPMI Transmit Precoding Matrix Indicator
  • the embodiment of the present application provides a wireless communication method, terminal equipment, and network equipment.
  • a codebook that supports more than 4 antenna ports is designed, and the transmission power can be concentrated on some antenna ports with the highest efficiency, thereby improving uplink transmission. performance.
  • a wireless communication method includes:
  • the terminal device determines a precoding matrix from a preconfigured codebook according to the TPMI indicated by the network device; wherein, the precoding matrix includes N rows, N is a multiple of 2 and N>4, and the precoding matrix satisfies the first condition or The second condition, the first condition is that each column of the precoding matrix includes two non-zero elements, and the second condition is that each column of the precoding matrix includes four non-zero elements;
  • the terminal device uses the precoding matrix to precode data
  • the terminal device sends the precoded data.
  • a wireless communication method in a second aspect, includes:
  • the network device determines a precoding matrix from a preconfigured codebook; wherein, the precoding matrix includes N rows, N is a multiple of 2 and N>4, the precoding matrix satisfies the first condition or the second condition, and the first The condition is that each column of the precoding matrix includes two nonzero elements, and the second condition is that each column of the precoding matrix includes four nonzero elements;
  • the network device sends the TPMI corresponding to the precoding matrix to the terminal device, and the TPMI is used by the terminal device to determine the precoding matrix from the codebook.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of codebook-based PUSCH transmission provided by the present application.
  • Fig. 3 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a mapping relationship between antennas and antenna ports according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another mapping relationship between antennas and antenna ports according to an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • Precoding processing is generally divided into two parts: analog domain processing and digital domain processing.
  • Analog domain processing is aimed at transmitting analog signals, and generally adopts beamforming to map radio frequency signals to physical antennas.
  • Digital domain processing is aimed at digital signals, generally at baseband, using a precoding matrix to precode digital signals, and mapping data at the transport layer to radio frequency ports. Due to the limited number of radio frequency channels of the terminal, two processing methods are generally used at the same time, that is, precoding the digital signal and beamforming the analog signal.
  • PUSCH transmission is divided into codebook-based transmission and non-codebook-based transmission according to different precoding methods.
  • the network side configures a sounding reference signal (Sounding Reference Signal, SRS) resource set dedicated to codebook transmission for the terminal.
  • SRS Sounding Reference Signal
  • the terminal will send SRS on multiple SRS resources in the set, and the SRS on each SRS resource uses a different beam, and the network side selects the best SRS resource to obtain uplink channel state information (Channel State Information, CSI),
  • CSI uplink channel state information
  • the resource index is indicated to the terminal through the SRS resource indicator (SRS resource indicator, SRI), so that the terminal uses the corresponding beam of the SRS resource to perform analog beamforming on the data.
  • the network side will indicate the Rank Indication (RI) and TPMI through the downlink control information (Downlink Control Information, DCI), and the terminal determines the uplink precoding matrix corresponding to the TPMI from the codebook according to the RI and TPMI.
  • RI Rank Indication
  • DCI Downlink Control Information
  • gNB determines an SRI corresponding to an SRS resource, selects a precoding matrix indicator (Precoding Matrix Indicator, PMI) from the codebook, and determines RI or channel quality indicator (Channel Quantity Indicator, CQI) based on the selected PMI;
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • gNB sends SRI/RI/PMI/modulation and coding scheme (Modulation and Coding Scheme, MCS) to UE;
  • MCS Modulation and Coding Scheme
  • the UE determines the number of layers based on the RI, and determines the precoder based on the PMI;
  • the UE sends precoded data and a demodulation reference signal (Demodulation Reference Signal, DMRS) to the gNB.
  • DMRS Demodulation Reference Signal
  • the uplink supports the transmission of PUSCH with 2 ports and 4 ports.
  • the codebook used by 2 antenna ports and 1 transmission layer is shown in Table 1, 2 antenna ports and 1 transmission layer (corresponding to Discrete Fourier Transform-spread spectrum-OFDM (Discrete Fourier Transform-Spread -Orthogonal Frequency Division Multiplexing, DFT-S-OFDM))
  • the codebook used is shown in Table 2
  • 4 antenna ports and 1 transmission layer corresponding to Cyclic Prefix-Orthogonal Frequency Division Multiplexing (Cyclic Prefix-Orthogonal Frequency
  • the codebook used by Division Multiplexing, CP-OFDM) is shown in Table 3
  • the codebook used by 2 antenna ports and 2 transmission layers (corresponding to DFT-S-OFDM) is shown in Table 4 antennas
  • the codebook used by the port and 2 transmission layers is shown in Table 5
  • the codebook used by 4 antenna ports and 3 transmission layers is shown in Table 5
  • a customer premise equipment (Customer Premise Equipment, CPE) terminal usually has 8 antennas.
  • CPE Customer Premise Equipment
  • the current uplink codebook is designed based on a single antenna array block (panel), which is not suitable for CPE terminals that usually use multi-panel antenna configurations, so the codebooks for 2-antenna ports and 4-antenna ports cannot be extended to A codebook of 8 antenna ports is obtained.
  • the codebook of the downlink 8-antenna port is reused, a large amount of DCI overhead is required to indicate the corresponding TPMI, which will significantly affect the detection performance of the DCI.
  • this application proposes an uplink codebook design scheme, which transmits PUSCH by selecting the antenna port corresponding to the adjacent polarization pair, and concentrates the transmission power on the part of the antenna with the best transmission performance. port, thereby improving the performance of uplink transmission.
  • the performance of codebook transmission can be further improved by introducing the relative phase between polarized antenna groups.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 3 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device determines a precoding matrix from a preconfigured codebook according to the TPMI indicated by the network device; wherein, the precoding matrix includes N rows, N is a multiple of 2 and N>4, and the precoding matrix satisfies the first A condition or a second condition, the first condition is that each column of the precoding matrix includes two non-zero elements, and the second condition is that each column of the precoding matrix includes four nonzero elements;
  • the terminal device uses the precoding matrix to precode data
  • the terminal device sends the precoded data.
  • the terminal device only transmits data on antenna ports corresponding to non-zero elements, and does not transmit data on antenna ports corresponding to zero elements.
  • N is a multiple of 2 and N>4, that is, the precoding matrix may correspond to a codebook that supports a number of antenna ports greater than 4. Further, each column of the precoding matrix satisfies the first condition or the second condition, that is, the transmission power can be concentrated on some antenna ports with the highest efficiency, thereby improving the performance of uplink transmission.
  • the terminal device when the terminal device is configured with multiple groups of polarized antennas or multiple panels, only the ports corresponding to a group of polarized antennas (or a panel) facing the network device or two adjacent groups can be used Ports corresponding to polarized antennas (or two panels) transmit uplink data, thereby concentrating power on some antenna ports with the highest efficiency and improving uplink transmission performance.
  • an antenna port having a coherent relationship may also be selected for data transmission.
  • N 6, that is, the precoding matrix may correspond to a codebook that supports 6 antenna ports.
  • N 8, that is, the precoding matrix may correspond to a codebook that supports eight antenna ports.
  • N 12, that is, the precoding matrix may correspond to a codebook that supports 12 antenna ports.
  • N 16, that is, the precoding matrix may correspond to a codebook that supports 16 antenna ports.
  • N 32, that is, the precoding matrix may correspond to a codebook that supports 32 antenna ports.
  • N may also take other values, which are not limited in this application.
  • the limitation of the precoding matrix in this embodiment of the present application can only be applied to some codewords in the preconfigured codebook, that is, it is not required that the precoding matrix determined according to any TPMI all meet the requirements of the embodiment of this application. Conditions. In other words, as long as some codewords in the pre-configured codebook meet the limitations of this application, all codewords are not required to meet the limitations of this application.
  • the preconfigured codebook may be preconfigured by the network device, or the preconfigured codebook may be stipulated in a protocol.
  • the terminal device before S210, sends an SRS for uplink codebook transmission, wherein the SRS is used for the network device to determine the TPMI. That is, the network device may determine the TPMI based on the SRS used for uplink codebook transmission.
  • the SRS is an SRS for N antenna ports. That is, the SRS resource of the SRS is configured with N antenna ports. And the usage (usage) of the SRS resource is configured as a codebook (codebook).
  • part of the information of the precoding matrix is indicated by the wideband TPMI in the TPMI, and another part of the information of the precoding matrix is indicated by the TPMI of the subband in the TPMI.
  • the positions of the non-zero elements in different columns of the precoding matrix are different.
  • the positions of the non-zero elements in different columns of the precoding matrix are the same.
  • the first condition is specifically that each column of the precoding matrix includes two non-zero elements and the two non-zero elements correspond to different antenna ports of a group of polarized antennas.
  • the second condition is specifically that each column of the precoding matrix includes four non-zero elements and the four non-zero elements correspond to different antenna ports of two adjacent groups of polarized antennas.
  • the mapping relationship between antennas and antenna ports can also be shown in Figure 5, that is, the antenna ports are sorted in order according to the polarized antenna groups, that is, the antenna ports ⁇ 0,1 ⁇ 2,3 ⁇ 4,5 ⁇ 6,7 ⁇ correspond to a set of polarized antennas respectively, or the ⁇ 1,2 ⁇ 3,4 ⁇ 5,6 ⁇ 74,8 ⁇ elements of the precoding matrix correspond to a set of polarized antennas respectively antenna.
  • the two non-zero elements in the first condition are respectively the kth element and the [k+N/2]th element in a column, where k is less than or equal to N/2 positive integer.
  • the first condition in S210 can also be described as:
  • each column of the precoding matrix includes two non-zero elements, and the two non-zero elements are respectively the kth element and the [k+N/2]th element in a column.
  • the positions of non-zero elements in different columns may be different.
  • the ⁇ 1,4 ⁇ th element of the i-th column of the precoding matrix is non-zero, and the other elements are zero; the i+1th element of the precoding matrix The ⁇ 2,5 ⁇ th element of the column is non-zero, the other elements are zero.
  • the positions of non-zero elements in different columns are the same.
  • the ⁇ 1,4 ⁇ th element of each column of the precoding matrix is non-zero, and other elements are zero; or, each column of the precoding matrix The ⁇ 2,5 ⁇ th element of one column is non-zero, and the other elements are zero; or, the ⁇ 3,6 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero.
  • the ⁇ 1,5 ⁇ th element of each column of the precoding matrix is non-zero, and other elements are zero; or, the precoding matrix The ⁇ 2,6 ⁇ th element of each column is non-zero, and the other elements are zero; or, the ⁇ 3,7 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or, the precoding The ⁇ 4,8 ⁇ th element of each column of the matrix is non-zero, and the other elements are zero.
  • the four non-zero elements in the second condition are respectively the mth element, the [(m mod N/2)+1]th element, the [m+N/2th ] element and the [(m mod N/2)+N/2+1]th element, where m is a positive integer less than or equal to N/2, and mod represents a modulo operation.
  • each column of the precoding matrix includes four non-zero elements and the four non-zero elements are respectively the mth element, the [(m mod N/2)+1]th element, The [m+N/2]th element and the [(m mod N/2)+N/2+1]th element, where m is a positive integer less than or equal to N/2, and mod represents a modulo operation.
  • the mth element is obtained by multiplying the first element in the first vector by the first weight
  • the [m+N/2]th element is obtained by multiplying the second element in the first vector by Obtained with the first weight
  • the first weight is a real number or an imaginary number or a complex number
  • the [(m mod N/2)+1]th element is multiplied by the first element in the second vector Obtained by the second weight
  • the [(m mod N/2)+N/2+1]th element is obtained by multiplying the second element in the second vector by the second weight
  • the second weight is a real or imaginary or complex number.
  • both the first vector and the second vector are 2x1 vectors.
  • the first vector v1 represents the weights of different antenna ports in one group of polarized antennas
  • the second vector v2 represents the weights of different antenna ports in another group of polarized antennas.
  • [w 1 w 2 ] represents the relative phase (weight value) between two groups of polarized antennas
  • w 1 represents the first weight value
  • w 2 represents the second weight value.
  • the precoding matrix contains one column, then the precoding matrix can be expressed as: in, is the power normalization coefficient.
  • the weights of different antenna ports in a polarized antenna group are indicated by broadband TPMI, that is, the weights are the same over the entire transmission bandwidth; the phases between polarized antenna groups are indicated by subband TPMIs, that is The phase can be different on different subbands.
  • the weights of different antenna ports in the polarized antenna group are indicated by the TPMI of the subband, that is, the phase can be different on different subbands; the phases between polarized antenna groups are indicated by the TPMI of the broadband, that is, the weight is the same over the entire transmission bandwidth.
  • the first vector and the second vector are indicated by a broadband TPMI in the TPMI, and the first weight and the second weight are indicated by a subband TPMI in the TPMI. That is, the first vector and the second vector are the same on the entire transmission bandwidth, and the first weight and the second weight may be different on different subbands.
  • the first vector and the second vector are indicated by a subband TPMI in the TPMI, and the first weight and the second weight are indicated by a broadband TPMI in the TPMI. That is, the first weight and the second weight are the same on the entire transmission bandwidth, and the first vector and the second vector may be different on different subbands.
  • the wideband TPMI and the subband TPMI may be indicated to the terminal device through the same DCI.
  • the positions of non-zero elements in different columns are the same.
  • N 8
  • the element ⁇ 1, 2, 5, 6 ⁇ in each column of the precoding matrix is non-zero, and the other elements are zero; or, the precoding matrix
  • the ⁇ 2,3,6,7 ⁇ th element of each column of the encoding matrix is non-zero, and the other elements are zero; or, the ⁇ 3,4,7,8 ⁇ th element of each column of the precoding matrix is non-zero , the other elements are zero; or, the ⁇ 1,4,5,8 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero.
  • the example of the precoding matrix mainly uses 8 antenna ports as an example, and the precoding matrix of other numbers of antenna ports (such as 6, 12, 16, etc.) can be generated by the same method.
  • the preconfigured codebook includes a first precoding matrix
  • the first precoding matrix includes only one column and satisfies the first condition, that is, it contains two non-zero elements and the two non-zero elements correspond to a Different antenna ports for group polarized antennas.
  • the first precoding matrix may be: or, or, or, in, is the power normalization coefficient.
  • the first precoding matrix may be: or, or, in, is the power normalization coefficient.
  • the preconfigured codebook includes a second precoding matrix
  • the second precoding matrix includes multiple columns (that is, the rank (Rank) is greater than 1) and each column satisfies the first condition, but different columns
  • the positions of the nonzero elements can vary.
  • the second precoding matrix may be: or, in, is the power normalization coefficient.
  • the pre-configured codebook includes a third pre-coding matrix
  • the third pre-pre-coding matrix includes multiple columns, each column satisfies the first condition, and positions of non-zero elements in different columns are the same.
  • the third precoding matrix may be: or, in, is the power normalization coefficient.
  • the preconfigured codebook includes a fourth precoding matrix
  • the fourth precoding matrix includes only one column and satisfies the second condition, that is, it includes four non-zero elements and the four non-zero elements correspond to Different antenna ports of adjacent two sets of polarized antennas.
  • the fourth precoding matrix may be: or, or, or, in, is the power normalization coefficient.
  • the preconfigured codebook includes a fifth precoding matrix
  • the fifth precoding matrix includes multiple columns and each column satisfies the second condition, that is, contains four non-zero elements and the four non-zero
  • the elements correspond to different antenna ports of two adjacent groups of polarized antennas, but the positions of non-zero elements in different columns may be different.
  • the fifth precoding matrix may be: is the power normalization coefficient, or, is the power normalization coefficient, or, is the power normalization coefficient.
  • the preconfigured codebook includes a sixth precoding matrix
  • the sixth precoding matrix includes multiple columns, each column satisfies the second condition, and positions of non-zero elements in different columns are the same.
  • the sixth precoding matrix may be: is the power normalization coefficient, or, is the power normalization coefficient, or, is the power normalization coefficient.
  • the sixth precoding matrix may be: is the power normalization coefficient, or, is the power normalization coefficient, or, is the power normalization coefficient.
  • the preconfigured codebook includes a seventh precoding matrix.
  • N 8
  • the ⁇ 1th of each column of the seventh precoding matrix ,5 ⁇ elements are non-zero, and other elements are 0; or, corresponding to the mapping relationship shown in Figure 5, the ⁇ 1,2 ⁇ th element of each column of the seventh precoding matrix is non-zero, and other elements are 0 .
  • the preconfigured codebook includes an eighth precoding matrix.
  • N 8
  • the ⁇ 2th ,6 ⁇ elements are non-zero, and other elements are 0
  • the ⁇ 3,4 ⁇ th element of each column of the eighth precoding matrix is non-zero, and other elements are 0 .
  • the preconfigured codebook includes a ninth precoding matrix.
  • N 8
  • the first ⁇ 3 of each column of the ninth precoding matrix ,7 ⁇ elements are non-zero, and other elements are 0; or, corresponding to the mapping relationship shown in Figure 5, the ⁇ 5,6 ⁇ th element of each column of the ninth precoding matrix is non-zero, and other elements are 0 .
  • the pre-configured codebook includes the tenth precoding matrix.
  • N 8
  • the ⁇ 4th ,8 ⁇ elements are non-zero, and other elements are 0
  • the ⁇ 7,8 ⁇ th element of each column of the tenth precoding matrix is non-zero, and other elements are 0 .
  • the preconfigured codebook includes an eleventh precoding matrix.
  • N 8
  • the first of each column of the eleventh precoding matrix ⁇ 1,2,5,6 ⁇ elements are non-zero, and other elements are 0; or, corresponding to the mapping relationship shown in Figure 5, the first ⁇ 1,2,3, 4 ⁇ elements are non-zero and the others are 0.
  • the preconfigured codebook contains the twelfth precoding matrix.
  • N 8
  • the twelfth precoding matrix in each column of the twelfth precoding matrix ⁇ 2,3,6,7 ⁇ elements are non-zero, and other elements are 0; or, corresponding to the mapping relationship shown in Figure 5, the ⁇ 3,4,5, 6 ⁇ elements are non-zero and the others are 0.
  • the pre-configured codebook contains the thirteenth precoding matrix.
  • N 8
  • the thirteenth precoding matrix in each column of the thirteenth precoding matrix ⁇ 3,4,7,8 ⁇ elements are non-zero, and other elements are 0; or, corresponding to the mapping relationship shown in Figure 5, the ⁇ 5,6,7, 8 ⁇ elements are non-zero and the others are 0.
  • the preconfigured codebook includes a fourteenth precoding matrix.
  • N 8
  • the fourteenth precoding matrix in each column of the fourteenth precoding matrix ⁇ 1,4,5,8 ⁇ elements are non-zero, and other elements are 0; or, corresponding to the mapping relationship shown in Figure 5, the ⁇ 1,2,7, 8 ⁇ elements are non-zero and the others are 0.
  • the codebook subset restriction when the network device configures a codebook subset restriction (CSR) for the terminal device, the codebook subset restriction only restricts antenna ports in one polarized antenna group.
  • CSR codebook subset restriction
  • the pre-configured codebook includes a first set of codewords, a second set of codewords and a third set of codewords, wherein the elements on the antenna ports corresponding to the first polarized antenna group in the first set of codewords are non-zero, The elements on other antenna ports are 0; the elements on the antenna ports corresponding to the second polarization antenna group in the second codeword set are non-zero, and the elements on other antenna ports are 0; the first polarization in the second codeword set The elements on the antenna ports corresponding to the antenna group and the second polarized antenna group are non-zero, and the elements on other antenna ports are 0. If the codebook subset constraint is configured, the constrained codebook subset is the first codeword set, or the second codeword set, that is, only one polarized antenna group has a non-zero antenna port.
  • the terminal device when the terminal device is configured with multiple groups of polarized antennas or multiple panels, only the ports corresponding to a group of polarized antennas (or a panel) facing the network device or two adjacent groups can be used Ports corresponding to polarized antennas (or two panels) transmit uplink data, thereby concentrating power on some antenna ports with the highest efficiency and improving uplink transmission performance.
  • an antenna port having a coherent relationship may also be selected for data transmission.
  • a codebook that supports more than 4 antenna ports is designed, and the transmit power can be concentrated on some antenna ports with the highest efficiency, thereby improving the performance of uplink transmission.
  • FIG. 6 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 6, the wireless communication method 300 may include at least part of the following content:
  • the network device determines a precoding matrix from a preconfigured codebook; wherein, the precoding matrix includes N rows, N is a multiple of 2 and N>4, the precoding matrix satisfies the first condition or the second condition, the The first condition is that each column of the precoding matrix includes two non-zero elements, and the second condition is that each column of the precoding matrix includes four non-zero elements;
  • the network device sends the TPMI corresponding to the precoding matrix to the terminal device, where the TPMI is used by the terminal device to determine the precoding matrix from the codebook.
  • the terminal device only transmits data on antenna ports corresponding to non-zero elements, and does not transmit data on antenna ports corresponding to zero elements.
  • N is a multiple of 2 and N>4, that is, the precoding matrix may correspond to a codebook that supports a number of antenna ports greater than 4. Further, each column of the precoding matrix satisfies the first condition or the second condition, that is, the transmit power can be concentrated on the antenna port with the highest efficiency, thereby improving the performance of uplink transmission.
  • the terminal device when the terminal device is configured with multiple groups of polarized antennas or multiple panels, only the ports corresponding to a group of polarized antennas (or a panel) facing the network device or two adjacent groups can be used.
  • the port corresponding to the polarized antenna (or two panels) transmits uplink data, so that the power is concentrated on the antenna port with the highest efficiency, and the performance of uplink transmission is improved.
  • an antenna port having a coherent relationship may also be selected for data transmission.
  • N 6, that is, the precoding matrix may correspond to a codebook that supports 6 antenna ports.
  • N 8, that is, the precoding matrix may correspond to a codebook that supports eight antenna ports.
  • N 12, that is, the precoding matrix may correspond to a codebook that supports 12 antenna ports.
  • N 16, that is, the precoding matrix may correspond to a codebook that supports 16 antenna ports.
  • N 32, that is, the precoding matrix may correspond to a codebook that supports 32 antenna ports.
  • N may also take other values, which are not limited in this application.
  • the limitation of the precoding matrix in this embodiment of the present application can only be applied to some codewords in the preconfigured codebook, that is, it is not required that the precoding matrix determined according to any TPMI all meet the requirements of the embodiment of this application. Conditions. In other words, as long as some codewords in the pre-configured codebook meet the limitations of this application, all codewords are not required to meet the limitations of this application.
  • the preconfigured codebook may be preconfigured by the network device, or the preconfigured codebook may be stipulated in a protocol.
  • the network device before S320, the network device receives the SRS sent by the terminal device for uplink codebook transmission; and the network device determines the precoding matrix from the codebook according to the SRS.
  • the network device before S320, receives the SRS sent by the terminal device for uplink codebook transmission; and the network device determines the TPMI according to the SRS.
  • the SRS is an SRS for N antenna ports. That is, the SRS resource of the SRS is configured with N antenna ports. And the usage (usage) of the SRS resource is configured as a codebook (codebook).
  • part of the information of the precoding matrix is indicated by the wideband TPMI in the TPMI, and another part of the information of the precoding matrix is indicated by the TPMI of the subband in the TPMI.
  • the positions of the non-zero elements in different columns of the precoding matrix are different.
  • the positions of the non-zero elements in different columns of the precoding matrix are the same.
  • the first condition is specifically that each column of the precoding matrix includes two non-zero elements and the two non-zero elements correspond to different antenna ports of a group of polarized antennas.
  • the second condition is specifically that each column of the precoding matrix includes four non-zero elements and the four non-zero elements correspond to different antenna ports of two adjacent groups of polarized antennas.
  • the mapping relationship between antennas and antenna ports can also be shown in Figure 5, that is, the antenna ports are sorted in order according to the polarized antenna groups, that is, the antenna ports ⁇ 0,1 ⁇ 2,3 ⁇ 4,5 ⁇ 6,7 ⁇ correspond to a set of polarized antennas respectively, or the ⁇ 1,2 ⁇ 3,4 ⁇ 5,6 ⁇ 74,8 ⁇ elements of the precoding matrix correspond to a set of polarized antennas respectively antenna.
  • the two non-zero elements in the first condition are respectively the kth element and the [k+N/2]th element in a column, where k is less than or equal to N/2 positive integer.
  • the first condition in S210 can also be described as:
  • each column of the precoding matrix includes two non-zero elements, and the two non-zero elements are respectively the kth element and the [k+N/2]th element in a column.
  • the positions of non-zero elements in different columns may be different.
  • the ⁇ 1,4 ⁇ th element of the i-th column of the precoding matrix is non-zero, and the other elements are zero; the i+1th element of the precoding matrix The ⁇ 2,5 ⁇ th element of the column is non-zero, the other elements are zero.
  • the positions of non-zero elements in different columns are the same.
  • the ⁇ 1,4 ⁇ th element of each column of the precoding matrix is non-zero, and other elements are zero; or, each column of the precoding matrix The ⁇ 2,5 ⁇ th element of one column is non-zero, and the other elements are zero; or, the ⁇ 3,6 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero.
  • the ⁇ 1,5 ⁇ th element of each column of the precoding matrix is non-zero, and other elements are zero; or, the precoding matrix The ⁇ 2,6 ⁇ th element of each column is non-zero, and the other elements are zero; or, the ⁇ 3,7 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or, the precoding The ⁇ 4,8 ⁇ th element of each column of the matrix is non-zero, and the other elements are zero.
  • the four non-zero elements in the second condition are respectively the mth element, the [(m mod N/2)+1]th element, the [m+N/2th ] element and the [(m mod N/2)+N/2+1]th element, where m is a positive integer less than or equal to N/2, and mod represents a modulo operation.
  • each column of the precoding matrix includes four non-zero elements and the four non-zero elements are respectively the mth element, the [(m mod N/2)+1]th element, The [m+N/2]th element and the [(m mod N/2)+N/2+1]th element, where m is a positive integer less than or equal to N/2, and mod represents a modulo operation.
  • the mth element is obtained by multiplying the first element in the first vector by the first weight
  • the [m+N/2]th element is obtained by multiplying the second element in the first vector by Obtained with the first weight
  • the first weight is a real number or an imaginary number or a complex number
  • the [(m mod N/2)+1]th element is multiplied by the first element in the second vector Obtained by the second weight
  • the [(m mod N/2)+N/2+1]th element is obtained by multiplying the second element in the second vector by the second weight
  • the second weight is a real or imaginary or complex number.
  • both the first vector and the second vector are 2x1 vectors.
  • the first vector v1 represents the weights of different antenna ports in one group of polarized antennas
  • the second vector v2 represents the weights of different antenna ports in another group of polarized antennas.
  • [w 1 w 2 ] represents the relative phase (weight value) between two groups of polarized antennas
  • w 1 represents the first weight value
  • w 2 represents the second weight value.
  • the precoding matrix contains one column, then the precoding matrix can be expressed as: in, is the power normalization coefficient.
  • the weights of different antenna ports in a polarized antenna group are indicated by broadband TPMI, that is, the weights are the same over the entire transmission bandwidth; the phases between polarized antenna groups are indicated by subband TPMIs, that is The phase can be different on different subbands.
  • the weights of different antenna ports in the polarized antenna group are indicated by the TPMI of the subband, that is, the phase can be different on different subbands; the phases between polarized antenna groups are indicated by the TPMI of the broadband, that is, the weight is the same over the entire transmission bandwidth.
  • the first vector and the second vector are indicated by a broadband TPMI in the TPMI, and the first weight and the second weight are indicated by a subband TPMI in the TPMI. That is, the first vector and the second vector are the same on the entire transmission bandwidth, and the first weight and the second weight may be different on different subbands.
  • the first vector and the second vector are indicated by a subband TPMI in the TPMI, and the first weight and the second weight are indicated by a broadband TPMI in the TPMI. That is, the first weight and the second weight are the same on the entire transmission bandwidth, and the first vector and the second vector may be different on different subbands.
  • the wideband TPMI and the subband TPMI may be indicated to the terminal device through the same DCI.
  • the codebook subset restriction when the network device configures a codebook subset restriction (CSR) for the terminal device, the codebook subset restriction only restricts antenna ports in one polarized antenna group.
  • CSR codebook subset restriction
  • the pre-configured codebook includes a first set of codewords, a second set of codewords and a third set of codewords, wherein the elements on the antenna ports corresponding to the first polarized antenna group in the first set of codewords are non-zero, The elements on other antenna ports are 0; the elements on the antenna ports corresponding to the second polarization antenna group in the second codeword set are non-zero, and the elements on other antenna ports are 0; the first polarization in the second codeword set The elements on the antenna ports corresponding to the antenna group and the second polarized antenna group are non-zero, and the elements on other antenna ports are 0. If the codebook subset constraint is configured, the constrained codebook subset is the first codeword set, or the second codeword set, that is, only one polarized antenna group has a non-zero antenna port.
  • the network device receives data sent by the terminal device that is precoded by using the precoding matrix.
  • the terminal device when the terminal device is configured with multiple groups of polarized antennas or multiple panels, only the ports corresponding to a group of polarized antennas (or a panel) facing the network device or two adjacent groups can be used Ports corresponding to polarized antennas (or two panels) transmit uplink data, thereby concentrating power on some antenna ports with the highest efficiency and improving uplink transmission performance.
  • an antenna port having a coherent relationship may also be selected for data transmission.
  • a codebook that supports more than 4 antenna ports is designed, and the transmit power can be concentrated on some antenna ports with the highest efficiency, thereby improving the performance of uplink transmission.
  • Fig. 7 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine a precoding matrix from a preconfigured codebook according to the transmission precoding matrix indication TPMI indicated by the network device; wherein, the precoding matrix includes N rows, N is a multiple of 2 and N>4, And the precoding matrix satisfies the first condition or the second condition, the first condition is that each column of the precoding matrix includes two non-zero elements and the two non-zero elements correspond to different antenna ports of a group of polarized antennas, The second condition is that each column of the precoding matrix includes four non-zero elements and the four non-zero elements correspond to different antenna ports of adjacent two groups of polarized antennas;
  • the processing unit 410 is further configured to perform data precoding by using the precoding matrix
  • the communication unit 420 is configured to send the precoded data.
  • the positions of the non-zero elements in different columns of the precoding matrix are the same.
  • the first condition is specifically that each column of the precoding matrix includes two non-zero elements and the two non-zero elements correspond to different antenna ports of a group of polarized antennas.
  • the second condition is specifically that each column of the precoding matrix includes four non-zero elements and the four non-zero elements correspond to different antenna ports of two adjacent groups of polarized antennas.
  • the two non-zero elements in the first condition are respectively the kth element and the [k+N/2]th element in a column, where k is less than or equal to N/2 positive integer.
  • the ⁇ 1,5 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 2,6 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 3,7 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 4,8 ⁇ th element of each column of the precoding matrix is non-zero, and other elements are zero.
  • the four non-zero elements in the second condition are respectively the mth element, the [(m mod N/2)+1]th element, the [m+N/2th ] element and the [(m mod N/2)+N/2+1]th element, where m is a positive integer less than or equal to N/2, and mod represents a modulo operation.
  • the mth element is obtained by multiplying the first element in the first vector by the first weight
  • the [m+N/2]th element is obtained by multiplying the second element in the first vector by obtained with the first weight
  • the [(m mod N/2)+1]th element is obtained by multiplying the first element in the second vector by the second weight, and the [(m mod N/2)+N/2+1]th element The element is obtained by multiplying the second element in the second vector by the second weight;
  • the first vector and the second vector are both 2 ⁇ 1 vectors
  • the first weight is a real number or an imaginary number or a complex number
  • the second weight is a real number or an imaginary number or a complex number
  • the first vector and the second vector are indicated by the TPMI of the broadband in the TPMI, and the first weight and the second weight are indicated by the TPMI of the subband in the TPMI; or,
  • the first vector and the second vector are indicated by the TPMI of the subband in the TPMI, and the first weight and the second weight are indicated by the TPMI of the broadband in the TPMI.
  • the ⁇ 1, 2, 5, 6 ⁇ elements of each column of the precoding matrix are non-zero, and the other elements are zero; or,
  • the ⁇ 2,3,6,7 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 3,4,7,8 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • part of the information of the precoding matrix is indicated by the wideband TPMI in the TPMI, and another part of the information of the precoding matrix is indicated by the TPMI of the subband in the TPMI.
  • the codebook subset constraints when the network device configures codebook subset constraints for the terminal device, only restrict antenna ports in one polarized antenna group.
  • the communication unit 420 is further configured to send a Sounding Reference Signal SRS for uplink codebook transmission, where the SRS is used by the network device to determine the TPMI.
  • the SRS is an SRS for N antenna ports.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are for realizing the method shown in FIG. 3
  • the corresponding process of the terminal device in 200 will not be repeated here.
  • Fig. 8 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • a processing unit 510 configured to determine a precoding matrix from a preconfigured codebook; wherein, the precoding matrix includes N rows, N is a multiple of 2 and N>4, and the precoding matrix satisfies the first condition or the second condition , the first condition is that each column of the precoding matrix includes two non-zero elements, and the second condition is that each column of the precoding matrix includes four nonzero elements;
  • the communication unit 520 is configured to send a transmit precoding matrix indication TPMI corresponding to the precoding matrix to the terminal device, where the TPMI is used by the terminal device to determine the precoding matrix from the codebook.
  • the positions of the non-zero elements in different columns of the precoding matrix are the same.
  • the first condition is specifically that each column of the precoding matrix includes two non-zero elements and the two non-zero elements correspond to different antenna ports of a group of polarized antennas.
  • the second condition is specifically that each column of the precoding matrix includes four non-zero elements and the four non-zero elements correspond to different antenna ports of two adjacent groups of polarized antennas.
  • the two non-zero elements in the first condition are respectively the kth element and the [k+N/2]th element in a column, where k is less than or equal to N/2 positive integer.
  • the ⁇ 1,5 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 2,6 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 3,7 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 4,8 ⁇ th element of each column of the precoding matrix is non-zero, and other elements are zero.
  • the four non-zero elements in the second condition are respectively the mth element, the [(m mod N/2)+1]th element, the [m+N/2th ] element and the [(m mod N/2)+N/2+1]th element, where m is a positive integer less than or equal to N/2, and mod represents a modulo operation.
  • the mth element is obtained by multiplying the first element in the first vector by the first weight
  • the [m+N/2]th element is obtained by multiplying the second element in the first vector by Obtained by the first weight
  • the [(m mod N/2)+1]th element is obtained by multiplying the first element in the second vector by the second weight
  • the [(m mod N/2)+N/2+1] elements are obtained by multiplying the second element in the second vector by the second weight
  • the first vector and the second vector are both 2 ⁇ 1 vectors
  • the first weight is a real number or an imaginary number or a complex number
  • the second weight is a real number or an imaginary number or a complex number
  • the first vector and the second vector are indicated by the TPMI of the broadband in the TPMI, and the first weight and the second weight are indicated by the TPMI of the subband in the TPMI; or,
  • the first vector and the second vector are indicated by the TPMI of the subband in the TPMI, and the first weight and the second weight are indicated by the TPMI of the broadband in the TPMI.
  • the ⁇ 1,2,5,6 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 2,3,6,7 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • the ⁇ 3,4,7,8 ⁇ th element of each column of the precoding matrix is non-zero, and the other elements are zero; or,
  • part of the information of the precoding matrix is indicated by the wideband TPMI in the TPMI, and another part of the information of the precoding matrix is indicated by the TPMI of the subband in the TPMI.
  • the communication unit 520 is also configured to receive a Sounding Reference Signal SRS sent by the terminal device for uplink codebook transmission;
  • the processing unit 510 is specifically configured to: determine the precoding matrix from the codebook according to the SRS.
  • the SRS is an SRS for N antenna ports.
  • the codebook subset constraints when the network device configures codebook subset constraints for the terminal device, only restrict antenna ports in one polarized antenna group.
  • the communication unit 520 is further configured to receive data sent by the terminal device after being precoded by using the precoding matrix.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are for realizing the method shown in FIG. 6
  • the corresponding processes of the network devices in 300 will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 9 includes a processor 610, and the processor 610 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 600 may specifically be the terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. Let me repeat.
  • Fig. 10 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 10 includes a processor 710, and the processor 710 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the device 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 11 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 11 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,设计了支持天线端口数量大于 4 的码本,将发送功率集中在效率最高的部分天线端口上,提升了上行传输的性能。无线通信的方法包括:终端设备根据网络设备指示的 TPMI,从预配置的码本中确定预编码矩阵; 该预编码矩阵包括 N 行,N 为 2 的倍数且 N>4,该预编码矩阵满足第一条件或第二条件,该第一条件为预编码矩阵的每一列包括两个非零元素,该第二条件为预编码矩阵的每一列包括四个非零元素; 该终端设备采用该预编码矩阵进行数据的预编码; 该终端设备发送预编码之后的数据。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
现阶段,在基于码本的预编码方式中,上行传输支持2天线端口和4天线端口的码本,网络设备通过下行控制信息(Downlink Control Information,DCI)指示发送预编码矩阵指示(Transmit Precoding Matrix Indicator,TPMI),终端设备根据TPMI从码本中确定TPMI对应的预编码矩阵。然而,对于一些特殊的终端,其可以支持更多的天线端口,如何设计支持更多天线端口的码本,是一项亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,设计了支持天线端口数量大于4的码本,可以将发送功率集中在效率最高的部分天线端口上,从而提升了上行传输的性能。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备根据网络设备指示的TPMI,从预配置的码本中确定预编码矩阵;其中,该预编码矩阵包括N行,N为2的倍数且N>4,该预编码矩阵满足第一条件或第二条件,该第一条件为该预编码矩阵的每一列包括两个非零元素,该第二条件为该预编码矩阵的每一列包括四个非零元素;
该终端设备采用该预编码矩阵进行数据的预编码;
该终端设备发送预编码之后的数据。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备从预配置的码本中确定预编码矩阵;其中,该预编码矩阵包括N行,N为2的倍数且N>4,该预编码矩阵满足第一条件或第二条件,该第一条件为该预编码矩阵的每一列包括两个非零元素,该第二条件为该预编码矩阵的每一列包括四个非零元素;
该网络设备向终端设备发送该预编码矩阵对应的TPMI,该TPMI用于该终端设备从该码本中确定该预编码矩阵。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,设计了支持天线端口数量大于4的码本,可以将发送功率集中在效率最高的部分天线端口上,从而提升了上行传输的性能。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种基于码本的PUSCH传输的示意性图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图4是根据本申请实施例提供的一种天线与天线端口的映射关系的示意性图。
图5是根据本申请实施例提供的另一种天线与天线端口的映射关系的示意性图。
图6是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图7是根据本申请实施例提供的一种终端设备的示意性框图。
图8是根据本申请实施例提供的一种网络设备的示意性框图。
图9是根据本申请实施例提供的一种通信设备的示意性框图。
图10是根据本申请实施例提供的一种装置的示意性框图。
图11是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功 能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于更好的理解本申请实施例,对本申请相关的上行码本传输进行说明。
终端设备发送上行数据(如物理上行共享信道(Physical Uplink Shared Channel,PUSCH))时,需要对上行数据进行预编码处理,以获得上行预编码增益。预编码处理一般分为两个部分:模拟域处理和数字域处理。模拟域处理针对发送的模拟信号,一般采用波束赋形的方式把射频信号映射到物理天线上。数字域处理针对数字信号,一般在基带进行,采用预编码矩阵对数字信号进行预编码,将传 输层的数据映射到射频端口上。由于终端的射频通道数量有限,一般要同时采用两种处理方式,即对数字信号进行预编码,再对模拟信号采用波束进行赋形。PUSCH传输根据预编码方式的不同分为基于码本的传输和基于非码本的传输。
在上行基于码本的预编码方式中,网络侧会为终端配置一个专用于码本传输的探测参考信号(Sounding Reference Signal,SRS)资源集合。终端会在集合中的多个SRS资源上发送SRS,每个SRS资源上的SRS采用不同的波束,网络侧从中选择最好的SRS资源用于获得上行信道状态信息(Channel State Information,CSI),同时将资源索引通过SRS资源指示(SRS resource indicator,SRI)指示给终端,令终端采用SRS资源相应的波束对数据进行模拟波束赋形。同时,网络侧会通过下行控制信息(Downlink Control Information,DCI)指示秩指示(Rank Indication,RI)和TPMI,终端根据RI和TPMI从码本中确定TPMI对应的上行的预编码矩阵。
如图2所示,在基于码本的PUSCH传输中,可以包括如下步骤:
S11,UE在N个SRS资源上发送SRS;
S12,gNB确定一个SRS资源对应的SRI,并从码本中选择预编码矩阵指示(Precoding Matrix Indicator,PMI),以及基于选择的PMI确定RI或信道质量指示(Channel Quantity Indicator,CQI);
S13,gNB向UE发送SRI/RI/PMI/调制编码方案(Modulation and Coding Scheme,MCS);
S14,UE基于RI确定层数,以及基于PMI确定预编码器;
S15,UE向gNB发送预编码数据和解调参考信号(Demodulation Reference Signal,DMRS)。
为便于更好的理解本申请实施例,对本申请相关的上行码本进行说明。
目前上行支持2端口和4端口的PUSCH的传输。2个天线端口且1个传输层所使用的码本如表1所示,2个天线端口且1个传输层(对应离散傅立叶变换-扩频-正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing,DFT-S-OFDM))所使用的码本如表2所示,4个天线端口且1个传输层(对应循环前缀-正交分频复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM))所使用的码本如表3所示,2个天线端口且2个传输层(对应DFT-S-OFDM)所使用的码本如表4所示,4个天线端口且2个传输层(对应CP-OFDM)所使用的码本如表5所示,4个天线端口且3个传输层(对应CP-OFDM)所使用的码本如表6所示,4个天线端口且4个传输层(对应CP-OFDM)所使用的码本如表7所示。
表1
Figure PCTCN2021112333-appb-000001
表2
Figure PCTCN2021112333-appb-000002
表3
Figure PCTCN2021112333-appb-000003
表4
Figure PCTCN2021112333-appb-000004
表5
Figure PCTCN2021112333-appb-000005
表6
Figure PCTCN2021112333-appb-000006
表7
Figure PCTCN2021112333-appb-000007
现阶段,支持2天线端口和4天线端口的码本。但是,客户终端设备(Customer Premise Equipment,CPE)类型的终端通常有8个天线,为了支持这类终端的上行码本传输,需要引入8天线端口的码本。如何设计8天线端口的码本,以使这类终端获得良好的传输性能是需要解决问题。现阶段的上行码本都是基于单个天线阵列块(panel)设计的,对于通常采用多panel天线配置的CPE类型终端并不适用,因此无法对2天线端口和4天线端口的码本进行扩展来得到8天线端口的码本。而如果重用下行8天线端口的码本,则需要大量的DCI开销来指示相应的TPMI,会明显影响DCI的检测性能。
基于上述问题,本申请提出了一种上行码本设计方案,通过选择相邻的极化天线组(polarization pair)所对应的天线端口来传输PUSCH,将发送功率集中在传输性能最好的部分天线端口上,从而提高上行传输的性能。同时,通过引入极化天线组之间的相对相位,可以进一步提高码本传输的性能。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,如图3所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备根据网络设备指示的TPMI,从预配置的码本中确定预编码矩阵;其中,该预编码矩阵包括N行,N为2的倍数且N>4,且该预编码矩阵满足第一条件或第二条件,该第一条件为该预编码矩阵的每一列包括两个非零元素,该第二条件为该预编码矩阵的每一列包括四个非零元素;
S220,该终端设备采用该预编码矩阵进行数据的预编码;
S230,该终端设备发送预编码之后的数据。
在本申请实施例中,该终端设备只在非零元素对应的天线端口上传输数据,不在零元素对应的天线端口上传输数据。
在本申请实施例中,N为2的倍数且N>4,也即,预编码矩阵可以对应支持天线端口数量大于4的码本。进一步地,预编码矩阵的每一列都满足第一条件或第二条件,也即可以将发送功率集中在效率最高的部分天线端口上,从而提升了上行传输的性能。
在本申请实施例中,当终端设备配置了多组极化天线或者多个panel时,可以只采用对着网络设备的一组极化天线(或一个panel)对应的端口或者相邻的两组极化天线(或者两个panel)对应的端口传输上行数据,从而把功率集中在效率最高的部分天线端口上,提高上行传输的性能。同时,如果终端设备不支持相干传输,基于本申请也可以选择其中存在相干关系的天线端口用于传输数据。
在一些实施例中,N=2n,其中,n为大于2的整数,例如,N=4,6,8,10,12,14,…,2n。
在一些实施例中,N=6,也即,预编码矩阵可以对应支持天线端口数量为6的码本。
在一些实施例中,N=8,也即,预编码矩阵可以对应支持天线端口数量为8的码本。
在一些实施例中,N=12,也即,预编码矩阵可以对应支持天线端口数量为12的码本。
在一些实施例中,N=16,也即,预编码矩阵可以对应支持天线端口数量为16的码本。
在一些实施例中,N=32,也即,预编码矩阵可以对应支持天线端口数量为32的码本。
当然,N也可以取其他值,本申请对此并不限定。
在一些实施例中,本申请实施例对预编码矩阵的限定可以只适用于预配置的码本中的部分码字,即不要求根据任意TPMI确定出的预编码矩阵都满足本申请实施例的限定条件。换句话说,预配置的码本中只要部分码字满足本申请的限定条件即可,不要求所有的码字都满足本申请的限定。
在一些实施例中,该预配置的码本可以是网络设备预配置的,或者,该预配置的码本可以是协议约定的。
在一些实施例中,在S210之前,该终端设备发送用于上行码本传输的SRS,其中,该SRS用于该网络设备确定该TPMI。也即,网络设备可以基于用于上行码本传输的SRS,确定该TPMI。
在一些实施例中,该SRS为N天线端口的SRS。也即,该SRS的SRS资源被配置了N个天线端口。且该SRS资源的用途(usage)被配置成了码本(codebook)。
在一些实施例中,该预编码矩阵的一部分信息通过该TPMI中宽带的TPMI指示,该预编码矩阵的另一部分信息通过该TPMI中子带的TPMI指示。
在一些实施例中,该预编码矩阵的不同列中非零元素的位置不同。
在一些实施例中,该预编码矩阵的不同列中非零元素的位置相同。
在一些实施例中,该第一条件具体为该预编码矩阵的每一列包括两个非零元素且该两个非零元素对应一组极化天线的不同天线端口。
在一些实施例中,该第二条件具体为该预编码矩阵的每一列包括四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口。
在一些实施例中,本申请假设天线端口的排序方式为先排一个极化方向的天线端口,再排另一个极化方向的天线端口,例如在N=8时,天线与天线端口的映射关系可以如图4所示。如果实际的天线端口排列方式与本申请的假设不同,则本申请中描述的端口索引需要相应修改,以保证端口{0,4}{1,5}{2,6}{3,7}分别对应一组极化天线,或者预编码矩阵的第{1,5}{2,6}{3,7}{4,8}个元素分别对应一组极化天线。另外,预编码矩阵的第M行,即每一列的第M个元素,对应天线端口M-1。
在一些实施例中,天线与天线端口的映射关系也可以如图5所示,即天线端口的排序方式为按照极化天线组依次排列,即天线端口{0,1}{2,3}{4,5}{6,7}分别对应一组极化天线,或者预编码矩阵的第{1,2}{3,4}{5,6}{74,8}个元素分别对应一组极化天线。
在一些实施例中,该第一条件中的该两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
由于物理天线和天线端口的映射是不确定的,可以只考虑天线端口与预编码矩阵之间的对应关系,因此S210中的第一条件也可以描述为:
该第一条件为该预编码矩阵的每一列包括两个非零元素且该两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素。
在一些实施例中,对于满足第一条件的预编码矩阵,不同列中非零元素的位置可以不同。
例如,当N=6时,对应如图4所示的映射关系,预编码矩阵的第i列的第{1,4}个元素非零,其他元素为零;预编码矩阵的第i+1列的第{2,5}个元素非零,其他元素为零。
又例如,当N=8时,对应如图4所示的映射关系,预编码矩阵的第i列的第{1,5}个元素非零,其他元素为零;预编码矩阵的第i+1列的第{2,6}个元素非零,其他元素为零。
在一些实施例中,对于满足第一条件的预编码矩阵,不同列中非零元素的位置相同。
例如,当N=6时,对应如图4所示的映射关系,该预编码矩阵的每一列的第{1,4}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{2,5}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{3,6}个元素非零,其他元素为零。
又例如,当N=8时,对应如图4所示的映射关系,该预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
在一些实施例中,该第二条件中的该四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
由于物理天线和天线端口的映射是不确定的,可以只考虑天线端口与预编码矩阵之间的对应关系,因此S210中的第二条件也可以描述为:
该第二条件为该预编码矩阵的每一列包括四个非零元素且该四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
具体例如,在N=8的情况下,对应如图4所示的映射关系,当m=1时,该四个非零元素为一列的第{1,2,5,6}个元素;当m=2时,该四个非零元素为一列的第{2,3,6,7}个元素;当m=3时,该四个非零元素为一列的第{3,4,7,8}个元素;当m=4时,该四个非零元素为一列的第{1,4,5,8}个元素。
在一些实施例中,该第m个元素由第一向量中的第一元素乘以第一权值得到,该第[m+N/2]个元素由该第一向量中的第二元素乘以该第一权值得到,该第一权值为一个实数或虚数或复数;和/或,该第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,该第[(m mod N/2)+N/2+1]个元素由该第二向量中的第二元素乘以该第二权值得到,该第二权值为一个实数或虚数或复数。
在一些实施例中,该第一向量和该第二向量都是2x1的向量。
在一些实施例中,该第一向量v 1表示一组极化天线内不同天线端口的权值,该第二向量v 2表示另一组极化天线内不同天线端口的权值。[w 1 w 2]表示两组极化天线之间的相对相位(加权值),w 1表示该第一权值,w 2表示该第二权值。
具体例如,在N=8的情况下,对应如图4所示的映射关系,假设
Figure PCTCN2021112333-appb-000008
[w1 w2]=[1j],m=1,预编码矩阵包含一列,则该预编码矩阵可以表示为:
Figure PCTCN2021112333-appb-000009
其中,
Figure PCTCN2021112333-appb-000010
为功率归一化系数。
在一些实施例中,极化天线组内不同天线端口的权值通过宽带的TPMI指示,即权值在整个传输带宽上是相同的;极化天线组间的相位通过子带的TPMI指示,即相位在不同子带上可以不同。
在一些实施例中,极化天线组内不同天线端口的权值通过子带的TPMI指示,即相位在不同子带上可以不同;极化天线组间的相位通过宽带的TPMI指示,即权值在整个传输带宽上是相同的。
在一些实施例中,该第一向量和该第二向量通过该TPMI中宽带的TPMI指示,该第一权值和该第二权值通过该TPMI中子带的TPMI指示。也即,该第一向量和该第二向量在整个传输带宽上是相同的,该第一权值和该第二权值在不同子带上可以不同。
在一些实施例中,该第一向量和该第二向量通过该TPMI中子带的TPMI指示,该第一权值和该第二权值通过该TPMI中宽带的TPMI指示。也即,该第一权值和该第二权值在整个传输带宽上是相同的,该第一向量和该第二向量在不同子带上可以不同。
在一些实施例中,宽带的TPMI和子带的TPMI可以通过同一个DCI指示给终端设备。
在一些实施例中,对于满足第二条件的预编码矩阵,不同列中非零元素的位置可以不同。例如,当N=8时,对应如图4所示的映射关系,预编码矩阵的第i列的第{1,2,5,6}个元素非零,其他元素为零;预编码矩阵的第i+1列的第{2,3,6,7}个元素非零,其他元素为零。
在一些实施例中,对于满足第一条件的预编码矩阵,不同列中非零元素的位置相同。例如,当N=8时,对应如图4所示的映射关系,该预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
在下面的实施例中,预编码矩阵的举例主要以8天线端口为例,其他数量的天线端口(如6,12,16等)的预编码矩阵可以采用相同方法生成。
在一些实施例中,预配置的码本中包含第一预编码矩阵,该第一预编码矩阵只包含一列且满足第一条件,即包含两个非零元素且该两个非零元素对应一组极化天线的不同天线端口。
例如,在N=8的情况下,对应如图4所示的映射关系,第一预编码矩阵可以是:
Figure PCTCN2021112333-appb-000011
或,
Figure PCTCN2021112333-appb-000012
或,
Figure PCTCN2021112333-appb-000013
或,
Figure PCTCN2021112333-appb-000014
其中,
Figure PCTCN2021112333-appb-000015
为功率归一化系数。在N=6的情况下,对应如图4所示的映射关系,第一预编码矩阵可以是:
Figure PCTCN2021112333-appb-000016
或,
Figure PCTCN2021112333-appb-000017
或,
Figure PCTCN2021112333-appb-000018
其中,
Figure PCTCN2021112333-appb-000019
为功率归一化系数。
在一些实施例中,预配置的码本中包含第二预编码矩阵,该第二预编码矩阵包含多列(即阶(Rank)大于1)且每一列都满足第一条件,但不同列的非零元素的位置可以不同。
例如,在N=8的情况下,对应如图4所示的映射关系,第二预编码矩阵可以是:
Figure PCTCN2021112333-appb-000020
或,
Figure PCTCN2021112333-appb-000021
其中,
Figure PCTCN2021112333-appb-000022
为功率归一化系数。
在一些实施例中,预配置的码本中包含第三预编码矩阵,该第三预预编码矩阵包含多列且每一列都满足第一条件,且不同列的非零元素的位置均相同。
例如,在N=8的情况下,对应如图4所示的映射关系,第三预编码矩阵可以是:
Figure PCTCN2021112333-appb-000023
或,
Figure PCTCN2021112333-appb-000024
其中,
Figure PCTCN2021112333-appb-000025
为功率归一化系数。
在一些实施例中,预配置的码本中包含第四预编码矩阵,该第四预编码矩阵只包含一列且满足第二条件,即包含四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口。
例如,在N=8的情况下,对应如图4所示的映射关系,第四预编码矩阵可以是:
Figure PCTCN2021112333-appb-000026
或,
Figure PCTCN2021112333-appb-000027
或,
Figure PCTCN2021112333-appb-000028
或,
Figure PCTCN2021112333-appb-000029
其中,
Figure PCTCN2021112333-appb-000030
为功率归一化系数。
在一些实施例中,预配置的码本中包含第五预编码矩阵,该第五预编码矩阵包含多列且每一列都满足第二条件,即包含四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口,但不同列的非零元素的位置可以不同。
例如,在N=8的情况下,对应如图4所示的映射关系,第五预编码矩阵可以是:
Figure PCTCN2021112333-appb-000031
Figure PCTCN2021112333-appb-000032
为功率归一化系数,或,
Figure PCTCN2021112333-appb-000033
Figure PCTCN2021112333-appb-000034
为功率归一化系数,或,
Figure PCTCN2021112333-appb-000035
Figure PCTCN2021112333-appb-000036
为功率归一化系数。
在一些实施例中,预配置的码本中包含第六预编码矩阵,该第六预预编码矩阵包含多列且每一列都满足第二条件,且不同列的非零元素的位置均相同。
例如,在N=8的情况下,对应如图4所示的映射关系,第六预编码矩阵可以是:
Figure PCTCN2021112333-appb-000037
Figure PCTCN2021112333-appb-000038
为功率归一化系数,或,
Figure PCTCN2021112333-appb-000039
Figure PCTCN2021112333-appb-000040
为功率归一化系数,或,
Figure PCTCN2021112333-appb-000041
Figure PCTCN2021112333-appb-000042
为功率归一化系数。例如,在N=6的情况下,对应如图4所示的映射关系,第六预编码矩阵可以是:
Figure PCTCN2021112333-appb-000043
Figure PCTCN2021112333-appb-000044
为功率归一化系数,或,
Figure PCTCN2021112333-appb-000045
Figure PCTCN2021112333-appb-000046
为 功率归一化系数,或,
Figure PCTCN2021112333-appb-000047
Figure PCTCN2021112333-appb-000048
为功率归一化系数。
在一些实施例中,预配置的码本中包含第七预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第七预编码矩阵的每一列的第{1,5}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第七预编码矩阵的每一列的第{1,2}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第八预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第八预编码矩阵的每一列的第{2,6}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第八预编码矩阵的每一列的第{3,4}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第九预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第九预编码矩阵的每一列的第{3,7}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第九预编码矩阵的每一列的第{5,6}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第十预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第十预编码矩阵的每一列的第{4,8}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第十预编码矩阵的每一列的第{7,8}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第十一预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第十一预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第十一预编码矩阵的每一列的第{1,2,3,4}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第十二预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第十二预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第十二预编码矩阵的每一列的第{3,4,5,6}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第十三预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第十三预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第十三预编码矩阵的每一列的第{5,6,7,8}个元素非零,其他元素为0。
在一些实施例中,预配置的码本中包含第十四预编码矩阵,在N=8的情况下,对应如图4所示的映射关系,该第十四预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为0;或者,对应如图5所示的映射关系,该第十四预编码矩阵的每一列的第{1,2,7,8}个元素非零,其他元素为0。
在一些实施例中,在该网络设备为该终端设备配置了码本子集约束(CSR)的情况下,该码本子集约束仅约束一个极化天线组内的天线端口。
例如,预配置的码本包含第一码字集合,第二码字集合和第三码字集合,其中,第一码字集合中第一极化天线组对应的天线端口上的元素非零,其他天线端口上的元素为0;第二码字集合中第二极化天线组对应的天线端口上的元素非零,其他天线端口上的元素为0;第二码字集合中第一极化天线组和第二极化天线组对应的天线端口上的元素非零,其他天线端口上的元素为0。如果配置了码本子集约束,则约束后的码本子集为第一码字集合,或者为第二码字集合,即只包含一个极化天线组的天线端口为非零的码字。
在本申请实施例中,当终端设备配置了多组极化天线或者多个panel时,可以只采用对着网络设备的一组极化天线(或一个panel)对应的端口或者相邻的两组极化天线(或者两个panel)对应的端口传输上行数据,从而把功率集中在效率最高的部分天线端口上,提高上行传输的性能。同时,如果终端设备不支持相干传输,基于本申请也可以选择其中存在相干关系的天线端口用于传输数据。
因此,在本申请实施例中,设计了支持天线端口数量大于4的码本,可以将发送功率集中在效率最高的部分天线端口上,从而提升了上行传输的性能。
上文结合图3至图5,详细描述了本申请的终端设备侧实施例,下文结合图6,详细描述本申请的网络设备侧实施例,应理解,网络设备侧实施例与终端设备侧实施例相互对应,类似的描述可以参照终端设备侧实施例。
图6是根据本申请实施例的无线通信的方法300的示意性流程图,如图6所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,网络设备从预配置的码本中确定预编码矩阵;其中,该预编码矩阵包括N行,N为2的倍数且N>4,该预编码矩阵满足第一条件或第二条件,该第一条件为该预编码矩阵的每一列包括两个 非零元素,该第二条件为该预编码矩阵的每一列包括四个非零元素;
S320,该网络设备向终端设备发送该预编码矩阵对应的TPMI,该TPMI用于该终端设备从该码本中确定该预编码矩阵。
在本申请实施例中,该终端设备只在非零元素对应的天线端口上传输数据,不在零元素对应的天线端口上传输数据。
在本申请实施例中,N为2的倍数且N>4,也即,预编码矩阵可以对应支持天线端口数量大于4的码本。进一步地,预编码矩阵的每一列都满足第一条件或第二条件,也即可以将发送功率集中在效率最高的天线端口上,从而提升了上行传输的性能。
在本申请实施例中,当终端设备配置了多组极化天线或者多个panel时,可以只采用对着网络设备的一组极化天线(或一个panel)对应的端口或者相邻的两组极化天线(或者两个panel)对应的端口传输上行数据,从而把功率集中在效率最高的天线端口上,提高上行传输的性能。同时,如果终端设备不支持相干传输,基于本申请也可以选择其中存在相干关系的天线端口用于传输数据。
在一些实施例中,N=2n,其中,n为大于2的整数,例如,N=4,6,8,10,12,14,…,2n。
在一些实施例中,N=6,也即,预编码矩阵可以对应支持天线端口数量为6的码本。
在一些实施例中,N=8,也即,预编码矩阵可以对应支持天线端口数量为8的码本。
在一些实施例中,N=12,也即,预编码矩阵可以对应支持天线端口数量为12的码本。
在一些实施例中,N=16,也即,预编码矩阵可以对应支持天线端口数量为16的码本。
在一些实施例中,N=32,也即,预编码矩阵可以对应支持天线端口数量为32的码本。
当然,N也可以取其他值,本申请对此并不限定。
在一些实施例中,本申请实施例对预编码矩阵的限定可以只适用于预配置的码本中的部分码字,即不要求根据任意TPMI确定出的预编码矩阵都满足本申请实施例的限定条件。换句话说,预配置的码本中只要部分码字满足本申请的限定条件即可,不要求所有的码字都满足本申请的限定。
在一些实施例中,该预配置的码本可以是网络设备预配置的,或者,该预配置的码本可以是协议约定的。
在一些实施例中,在S320之前,网络设备接收终端设备发送的用于上行码本传输的SRS;以及该网络设备根据该SRS从该码本中确定该预编码矩阵。
在一些实施例中,在S320之前,网络设备接收终端设备发送的用于上行码本传输的SRS;以及该网络设备根据该SRS确定该TPMI。
在一些实施例中,该SRS为N天线端口的SRS。也即,该SRS的SRS资源被配置了N个天线端口。且该SRS资源的用途(usage)被配置成了码本(codebook)。
在一些实施例中,该预编码矩阵的一部分信息通过该TPMI中宽带的TPMI指示,该预编码矩阵的另一部分信息通过该TPMI中子带的TPMI指示。
在一些实施例中,该预编码矩阵的不同列中非零元素的位置不同。
在一些实施例中,该预编码矩阵的不同列中非零元素的位置相同。
在一些实施例中,该第一条件具体为该预编码矩阵的每一列包括两个非零元素且该两个非零元素对应一组极化天线的不同天线端口。
在一些实施例中,该第二条件具体为该预编码矩阵的每一列包括四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口。
在一些实施例中,本申请假设天线端口的排序方式为先排一个极化方向的天线端口,再排另一个极化方向的天线端口,例如在N=8时,天线与天线端口的映射关系可以如图4所示。如果实际的天线端口排列方式与本申请的假设不同,则本申请中描述的端口索引需要相应修改,以保证端口{0,4}{1,5}{2,6}{3,7}分别对应一组极化天线,或者预编码矩阵的第{1,5}{2,6}{3,7}{4,8}个元素分别对应一组极化天线。另外,预编码矩阵的第M行,即每一列的第M个元素,对应天线端口M-1。
在一些实施例中,天线与天线端口的映射关系也可以如图5所示,即天线端口的排序方式为按照极化天线组依次排列,即天线端口{0,1}{2,3}{4,5}{6,7}分别对应一组极化天线,或者预编码矩阵的第{1,2}{3,4}{5,6}{74,8}个元素分别对应一组极化天线。
在一些实施例中,该第一条件中的该两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
由于物理天线和天线端口的映射是不确定的,可以只考虑天线端口与预编码矩阵之间的对应关系,因此S210中的第一条件也可以描述为:
该第一条件为该预编码矩阵的每一列包括两个非零元素且该两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素。
在一些实施例中,对于满足第一条件的预编码矩阵,不同列中非零元素的位置可以不同。
例如,当N=6时,对应如图4所示的映射关系,预编码矩阵的第i列的第{1,4}个元素非零,其他元素为零;预编码矩阵的第i+1列的第{2,5}个元素非零,其他元素为零。
又例如,当N=8时,对应如图4所示的映射关系,预编码矩阵的第i列的第{1,5}个元素非零,其他元素为零;预编码矩阵的第i+1列的第{2,6}个元素非零,其他元素为零。
在一些实施例中,对于满足第一条件的预编码矩阵,不同列中非零元素的位置相同。
例如,当N=6时,对应如图4所示的映射关系,该预编码矩阵的每一列的第{1,4}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{2,5}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{3,6}个元素非零,其他元素为零。
又例如,当N=8时,对应如图4所示的映射关系,该预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,该预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
在一些实施例中,该第二条件中的该四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
由于物理天线和天线端口的映射是不确定的,可以只考虑天线端口与预编码矩阵之间的对应关系,因此S210中的第二条件也可以描述为:
该第二条件为该预编码矩阵的每一列包括四个非零元素且该四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
具体例如,在N=8的情况下,对应如图4所示的映射关系,当m=1时,该四个非零元素为一列的第{1,2,5,6}个元素;当m=2时,该四个非零元素为一列的第{2,3,6,7}个元素;当m=3时,该四个非零元素为一列的第{3,4,7,8}个元素;当m=4时,该四个非零元素为一列的第{1,4,5,8}个元素。
在一些实施例中,该第m个元素由第一向量中的第一元素乘以第一权值得到,该第[m+N/2]个元素由该第一向量中的第二元素乘以该第一权值得到,该第一权值为一个实数或虚数或复数;和/或,该第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,该第[(m mod N/2)+N/2+1]个元素由该第二向量中的第二元素乘以该第二权值得到,该第二权值为一个实数或虚数或复数。
在一些实施例中,该第一向量和该第二向量都是2x1的向量。
在一些实施例中,该第一向量v 1表示一组极化天线内不同天线端口的权值,该第二向量v 2表示另一组极化天线内不同天线端口的权值。[w 1 w 2]表示两组极化天线之间的相对相位(加权值),w 1表示该第一权值,w 2表示该第二权值。
具体例如,在N=8的情况下,对应如图4所示的映射关系,假设
Figure PCTCN2021112333-appb-000049
[w1 w2]=[1j],m=1,预编码矩阵包含一列,则该预编码矩阵可以表示为:
Figure PCTCN2021112333-appb-000050
其中,
Figure PCTCN2021112333-appb-000051
为功率归一化系数。
在一些实施例中,极化天线组内不同天线端口的权值通过宽带的TPMI指示,即权值在整个传输带宽上是相同的;极化天线组间的相位通过子带的TPMI指示,即相位在不同子带上可以不同。
在一些实施例中,极化天线组内不同天线端口的权值通过子带的TPMI指示,即相位在不同子带上可以不同;极化天线组间的相位通过宽带的TPMI指示,即权值在整个传输带宽上是相同的。
在一些实施例中,该第一向量和该第二向量通过该TPMI中宽带的TPMI指示,该第一权值和该第二权值通过该TPMI中子带的TPMI指示。也即,该第一向量和该第二向量在整个传输带宽上是相同的,该第一权值和该第二权值在不同子带上可以不同。
在一些实施例中,该第一向量和该第二向量通过该TPMI中子带的TPMI指示,该第一权值和该 第二权值通过该TPMI中宽带的TPMI指示。也即,该第一权值和该第二权值在整个传输带宽上是相同的,该第一向量和该第二向量在不同子带上可以不同。
在一些实施例中,宽带的TPMI和子带的TPMI可以通过同一个DCI指示给终端设备。
在一些实施例中,在该网络设备为该终端设备配置了码本子集约束(CSR)的情况下,该码本子集约束仅约束一个极化天线组内的天线端口。
例如,预配置的码本包含第一码字集合,第二码字集合和第三码字集合,其中,第一码字集合中第一极化天线组对应的天线端口上的元素非零,其他天线端口上的元素为0;第二码字集合中第二极化天线组对应的天线端口上的元素非零,其他天线端口上的元素为0;第二码字集合中第一极化天线组和第二极化天线组对应的天线端口上的元素非零,其他天线端口上的元素为0。如果配置了码本子集约束,则约束后的码本子集为第一码字集合,或者为第二码字集合,即只包含一个极化天线组的天线端口为非零的码字。
在一些实施例中,该网络设备接收该终端设备发送的采用该预编码矩阵进行预编码之后的数据。
在本申请实施例中,当终端设备配置了多组极化天线或者多个panel时,可以只采用对着网络设备的一组极化天线(或一个panel)对应的端口或者相邻的两组极化天线(或者两个panel)对应的端口传输上行数据,从而把功率集中在效率最高的部分天线端口上,提高上行传输的性能。同时,如果终端设备不支持相干传输,基于本申请也可以选择其中存在相干关系的天线端口用于传输数据。
因此,在本申请实施例中,设计了支持天线端口数量大于4的码本,可以将发送功率集中在效率最高的部分天线端口上,从而提升了上行传输的性能。
上文结合图3至图6,详细描述了本申请的方法实施例,下文结合图7至图8,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图7示出了根据本申请实施例的终端设备400的示意性框图。如图7所示,该终端设备400包括:
处理单元410,用于根据网络设备指示的发送预编码矩阵指示TPMI,从预配置的码本中确定预编码矩阵;其中,该预编码矩阵包括N行,N为2的倍数且N>4,且该预编码矩阵满足第一条件或第二条件,该第一条件为该预编码矩阵的每一列包括两个非零元素且该两个非零元素对应一组极化天线的不同天线端口,该第二条件为该预编码矩阵的每一列包括四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口;
该处理单元410,还用于采用该预编码矩阵进行数据的预编码;
通信单元420,用于发送预编码之后的数据。
在一些实施例中,该预编码矩阵的不同列中非零元素的位置相同。
在一些实施例中,该第一条件具体为该预编码矩阵的每一列包括两个非零元素且该两个非零元素对应一组极化天线的不同天线端口。
在一些实施例中,该第二条件具体为该预编码矩阵的每一列包括四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口。
在一些实施例中,该第一条件中的该两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
在一些实施例中,当N=8时,
该预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
在一些实施例中,该第二条件中的该四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
在一些实施例中,该第m个元素由第一向量中的第一元素乘以第一权值得到,该第[m+N/2]个元素由该第一向量中的第二元素乘以该第一权值得到;和/或,
该第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,该第[(m mod N/2)+N/2+1]个元素由该第二向量中的第二元素乘以该第二权值得到;
其中,该第一向量和该第二向量都是2x1的向量,该第一权值为一个实数或虚数或复数,该第二权值为一个实数或虚数或复数。
在一些实施例中,该第一向量和该第二向量通过该TPMI中宽带的TPMI指示,该第一权值和该第二权值通过该TPMI中子带的TPMI指示;或者,
该第一向量和该第二向量通过该TPMI中子带的TPMI指示,该第一权值和该第二权值通过该 TPMI中宽带的TPMI指示。
在一些实施例中,该预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
在一些实施例中,该预编码矩阵的一部分信息通过该TPMI中宽带的TPMI指示,该预编码矩阵的另一部分信息通过该TPMI中子带的TPMI指示。
在一些实施例中,在该网络设备为该终端设备配置了码本子集约束的情况下,该码本子集约束仅约束一个极化天线组内的天线端口。
在一些实施例中,该通信单元420还用于发送用于上行码本传输的探测参考信号SRS,其中,该SRS用于该网络设备确定该TPMI。
在一些实施例中,该SRS为N天线端口的SRS。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图8示出了根据本申请实施例的网络设备500的示意性框图。如图8所示,该网络设备500包括:
处理单元510,用于从预配置的码本中确定预编码矩阵;其中,该预编码矩阵包括N行,N为2的倍数且N>4,该预编码矩阵满足第一条件或第二条件,该第一条件为该预编码矩阵的每一列包括两个非零元素,该第二条件为该预编码矩阵的每一列包括四个非零元素;
通信单元520,用于向终端设备发送该预编码矩阵对应的发送预编码矩阵指示TPMI,该TPMI用于该终端设备从该码本中确定该预编码矩阵。
在一些实施例中,该预编码矩阵的不同列中非零元素的位置相同。
在一些实施例中,该第一条件具体为该预编码矩阵的每一列包括两个非零元素且该两个非零元素对应一组极化天线的不同天线端口。
在一些实施例中,该第二条件具体为该预编码矩阵的每一列包括四个非零元素且该四个非零元素对应相邻的两组极化天线的不同天线端口。
在一些实施例中,该第一条件中的该两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
在一些实施例中,当N=8时,
该预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
在一些实施例中,该第二条件中的该四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
在一些实施例中,该第m个元素由第一向量中的第一元素乘以第一权值得到,该第[m+N/2]个元素由该第一向量中的第二元素乘以该第一权值得到;和/或,该第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,该第[(m mod N/2)+N/2+1]个元素由该第二向量中的第二元素乘以该第二权值得到;
其中,该第一向量和该第二向量都是2x1的向量,该第一权值为一个实数或虚数或复数,该第二权值为一个实数或虚数或复数。
在一些实施例中,该第一向量和该第二向量通过该TPMI中宽带的TPMI指示,该第一权值和该第二权值通过该TPMI中子带的TPMI指示;或者,
该第一向量和该第二向量通过该TPMI中子带的TPMI指示,该第一权值和该第二权值通过该TPMI中宽带的TPMI指示。
在一些实施例中,当N=8时,
该预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,
该预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
在一些实施例中,该预编码矩阵的一部分信息通过该TPMI中宽带的TPMI指示,该预编码矩阵的另一部分信息通过该TPMI中子带的TPMI指示。
在一些实施例中,该通信单元520还用于接收终端设备发送的用于上行码本传输的探测参考信号SRS;
该处理单元510具体用于:根据该SRS从该码本中确定该预编码矩阵。
在一些实施例中,该SRS为N天线端口的SRS。
在一些实施例中,在该网络设备为该终端设备配置了码本子集约束的情况下,该码本子集约束仅约束一个极化天线组内的天线端口。
在一些实施例中,该通信单元520还用于接收该终端设备发送的采用该预编码矩阵进行预编码之后的数据。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例提供的一种通信设备600示意性结构图。图9所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图9所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,如图9所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的装置的示意性结构图。图10所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图10所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统800的示意性框图。如图11所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application  Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信 连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (68)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备根据网络设备指示的发送预编码矩阵指示TPMI,从预配置的码本中确定预编码矩阵;其中,所述预编码矩阵包括N行,N为2的倍数且N>4,且所述预编码矩阵满足第一条件或第二条件,所述第一条件为所述预编码矩阵的每一列包括两个非零元素,所述第二条件为所述预编码矩阵的每一列包括四个非零元素;
    所述终端设备采用所述预编码矩阵进行数据的预编码;
    所述终端设备发送预编码之后的数据。
  2. 如权利要求1所述的方法,其特征在于,所述预编码矩阵的不同列中非零元素的位置相同。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一条件具体为所述预编码矩阵的每一列包括两个非零元素且所述两个非零元素对应一组极化天线的不同天线端口。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一条件中的所述两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
  6. 如权利要求1或2所述的方法,其特征在于,所述第二条件具体为所述预编码矩阵的每一列包括四个非零元素且所述四个非零元素对应相邻的两组极化天线的不同天线端口。
  7. 如权利要求1、2或6所述的方法,其特征在于,所述第二条件中的所述四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
  8. 如权利要求7所述的方法,其特征在于,
    所述第m个元素由第一向量中的第一元素乘以第一权值得到,所述第[m+N/2]个元素由所述第一向量中的第二元素乘以所述第一权值得到;和/或,
    所述第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,所述第[(m mod N/2)+N/2+1]个元素由所述第二向量中的第二元素乘以所述第二权值得到;
    其中,所述第一向量和所述第二向量都是2x1的向量,所述第一权值为一个实数或虚数或复数,所述第二权值为一个实数或虚数或复数。
  9. 如权利要求8所述的方法,其特征在于,
    所述第一向量和所述第二向量通过所述TPMI中宽带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中子带的TPMI指示;或者,
    所述第一向量和所述第二向量通过所述TPMI中子带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中宽带的TPMI指示。
  10. 如权利要求1、2、6、7、8或9所述的方法,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,
    所述预编码矩阵的一部分信息通过所述TPMI中宽带的TPMI指示,所述预编码矩阵的另一部分信息通过所述TPMI中子带的TPMI指示。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,在所述网络设备为所述终端设备配置了码本子集约束的情况下,所述码本子集约束仅约束一个极化天线组内的天线端口。
  13. 如权利要求1至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送用于上行码本传输的探测参考信号SRS,其中,所述SRS用于所述网络设备确定所述TPMI。
  14. 如权利要求13所述的方法,其特征在于,所述SRS为N天线端口的SRS。
  15. 一种无线通信的方法,其特征在于,包括:
    网络设备从预配置的码本中确定预编码矩阵;其中,所述预编码矩阵包括N行,N为2的倍数且N>4,所述预编码矩阵满足第一条件或第二条件,所述第一条件为所述预编码矩阵的每一列包括两个 非零元素,所述第二条件为所述预编码矩阵的每一列包括四个非零元素;
    所述网络设备向终端设备发送所述预编码矩阵对应的发送预编码矩阵指示TPMI,所述TPMI用于所述终端设备从所述码本中确定所述预编码矩阵。
  16. 如权利要求15所述的方法,其特征在于,所述预编码矩阵的不同列中非零元素的位置相同。
  17. 如权利要求15或16所述的方法,其特征在于,所述第一条件具体为所述预编码矩阵的每一列包括两个非零元素且所述两个非零元素对应一组极化天线的不同天线端口。
  18. 如权利要求15至17中任一项所述的方法,其特征在于,所述第一条件中的所述两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
  19. 如权利要求15至18中任一项所述的方法,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
  20. 如权利要求15或16所述的方法,其特征在于,所述第二条件具体为所述预编码矩阵的每一列包括四个非零元素且所述四个非零元素对应相邻的两组极化天线的不同天线端口。
  21. 如权利要求15、16或20所述的方法,其特征在于,所述第二条件中的所述四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
  22. 如权利要求21所述的方法,其特征在于,
    所述第m个元素由第一向量中的第一元素乘以第一权值得到,所述第[m+N/2]个元素由所述第一向量中的第二元素乘以所述第一权值得到;和/或,
    所述第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,所述第[(m mod N/2)+N/2+1]个元素由所述第二向量中的第二元素乘以所述第二权值得到;
    其中,所述第一向量和所述第二向量都是2x1的向量,所述第一权值为一个实数或虚数或复数,所述第二权值为一个实数或虚数或复数。
  23. 如权利要求22所述的方法,其特征在于,
    所述第一向量和所述第二向量通过所述TPMI中宽带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中子带的TPMI指示;或者,
    所述第一向量和所述第二向量通过所述TPMI中子带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中宽带的TPMI指示。
  24. 如权利要求16、20、21、22或23所述的方法,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
  25. 如权利要求15至24中任一项所述的方法,其特征在于,
    所述预编码矩阵的一部分信息通过所述TPMI中宽带的TPMI指示,所述预编码矩阵的另一部分信息通过所述TPMI中子带的TPMI指示。
  26. 如权利要求15至25中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备发送的用于上行码本传输的探测参考信号SRS;
    所述网络设备从预配置的码本中确定预编码矩阵,包括:
    所述网络设备根据所述SRS从所述码本中确定所述预编码矩阵。
  27. 如权利要求26所述的方法,其特征在于,所述SRS为N天线端口的SRS。
  28. 如权利要求15至27中任一项所述的方法,其特征在于,在所述网络设备为所述终端设备配置了码本子集约束的情况下,所述码本子集约束仅约束一个极化天线组内的天线端口。
  29. 如权利要求15至28中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的采用所述预编码矩阵进行预编码之后的数据。
  30. 一种终端设备,其特征在于,包括:
    处理单元,用于根据网络设备指示的发送预编码矩阵指示TPMI,从预配置的码本中确定预编码矩阵;其中,所述预编码矩阵包括N行,N为2的倍数且N>4,且所述预编码矩阵满足第一条件或第二条件,所述第一条件为所述预编码矩阵的每一列包括两个非零元素,所述第二条件为所述预编码矩阵的每一列包括四个非零元素;
    所述处理单元,还用于采用所述预编码矩阵进行数据的预编码;
    通信单元,用于发送预编码之后的数据。
  31. 如权利要求30所述的终端设备,其特征在于,所述预编码矩阵的不同列中非零元素的位置相同。
  32. 如权利要求30或31所述的终端设备,其特征在于,所述第一条件具体为所述预编码矩阵的每一列包括两个非零元素且所述两个非零元素对应一组极化天线的不同天线端口。
  33. 如权利要求30至32中任一项所述的终端设备,其特征在于,所述第一条件中的所述两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
  34. 如权利要求30至33中任一项所述的终端设备,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
  35. 如权利要求30或31所述的终端设备,其特征在于,所述第二条件具体为所述预编码矩阵的每一列包括四个非零元素且所述四个非零元素对应相邻的两组极化天线的不同天线端口。
  36. 如权利要求30、31或35所述的终端设备,其特征在于,所述第二条件中的所述四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
  37. 如权利要求36所述的终端设备,其特征在于,
    所述第m个元素由第一向量中的第一元素乘以第一权值得到,所述第[m+N/2]个元素由所述第一向量中的第二元素乘以所述第一权值得到;和/或,
    所述第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,所述第[(m mod N/2)+N/2+1]个元素由所述第二向量中的第二元素乘以所述第二权值得到;
    其中,所述第一向量和所述第二向量都是2x1的向量,所述第一权值为一个实数或虚数或复数,所述第二权值为一个实数或虚数或复数。
  38. 如权利要求37所述的终端设备,其特征在于,
    所述第一向量和所述第二向量通过所述TPMI中宽带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中子带的TPMI指示;或者,
    所述第一向量和所述第二向量通过所述TPMI中子带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中宽带的TPMI指示。
  39. 如权利要求30、31、35、36、37或38所述的终端设备,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
  40. 如权利要求30至39中任一项所述的终端设备,其特征在于,
    所述预编码矩阵的一部分信息通过所述TPMI中宽带的TPMI指示,所述预编码矩阵的另一部分信息通过所述TPMI中子带的TPMI指示。
  41. 如权利要求30至40中任一项所述的终端设备,其特征在于,在所述网络设备为所述终端设备配置了码本子集约束的情况下,所述码本子集约束仅约束一个极化天线组内的天线端口。
  42. 如权利要求30至41中任一项所述的终端设备,其特征在于,
    所述通信单元还用于发送用于上行码本传输的探测参考信号SRS,其中,所述SRS用于所述网络设备确定所述TPMI。
  43. 如权利要求42所述的终端设备,其特征在于,所述SRS为N天线端口的SRS。
  44. 一种网络设备,其特征在于,包括:
    处理单元,用于从预配置的码本中确定预编码矩阵;其中,所述预编码矩阵包括N行,N为2的倍数且N>4,所述预编码矩阵满足第一条件或第二条件,所述第一条件为所述预编码矩阵的每一列包括两个非零元素,所述第二条件为所述预编码矩阵的每一列包括四个非零元素;
    通信单元,用于向终端设备发送所述预编码矩阵对应的发送预编码矩阵指示TPMI,所述TPMI用于所述终端设备从所述码本中确定所述预编码矩阵。
  45. 如权利要求44所述的网络设备,其特征在于,所述预编码矩阵的不同列中非零元素的位置相同。
  46. 如权利要求44或45所述的网络设备,其特征在于,所述第一条件具体为所述预编码矩阵的每一列包括两个非零元素且所述两个非零元素对应一组极化天线的不同天线端口。
  47. 如权利要求44至46中任一项所述的网络设备,其特征在于,所述第一条件中的所述两个非零元素分别为一列中的第k个元素和第[k+N/2]个元素,其中,k为小于或等于N/2的正整数。
  48. 如权利要求44至47中任一项所述的网络设备,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,5}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{4,8}个元素非零,其他元素为零。
  49. 如权利要求44或45所述的网络设备,其特征在于,所述第二条件具体为所述预编码矩阵的每一列包括四个非零元素且所述四个非零元素对应相邻的两组极化天线的不同天线端口。
  50. 如权利要求44或45或49所述的网络设备,其特征在于,所述第二条件中的所述四个非零元素分别为一列中的第m个元素、第[(m mod N/2)+1]个元素、第[m+N/2]个元素和第[(m mod N/2)+N/2+1]个元素,其中,m为小于或等于N/2的正整数,mod表示取模运算。
  51. 如权利要求50所述的网络设备,其特征在于,
    所述第m个元素由第一向量中的第一元素乘以第一权值得到,所述第[m+N/2]个元素由所述第一向量中的第二元素乘以所述第一权值得到;和/或,
    所述第[(m mod N/2)+1]个元素由第二向量中的第一元素乘以第二权值得到,所述第[(m mod N/2)+N/2+1]个元素由所述第二向量中的第二元素乘以所述第二权值得到;
    其中,所述第一向量和所述第二向量都是2x1的向量,所述第一权值为一个实数或虚数或复数,所述第二权值为一个实数或虚数或复数。
  52. 如权利要求51所述的网络设备,其特征在于,
    所述第一向量和所述第二向量通过所述TPMI中宽带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中子带的TPMI指示;或者,
    所述第一向量和所述第二向量通过所述TPMI中子带的TPMI指示,所述第一权值和所述第二权值通过所述TPMI中宽带的TPMI指示。
  53. 如权利要求44、45、49、50、51或52所述的网络设备,其特征在于,当N=8时,
    所述预编码矩阵的每一列的第{1,2,5,6}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{2,3,6,7}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{3,4,7,8}个元素非零,其他元素为零;或者,
    所述预编码矩阵的每一列的第{1,4,5,8}个元素非零,其他元素为零。
  54. 如权利要求44至53中任一项所述的网络设备,其特征在于,
    所述预编码矩阵的一部分信息通过所述TPMI中宽带的TPMI指示,所述预编码矩阵的另一部分信息通过所述TPMI中子带的TPMI指示。
  55. 如权利要求44至54中任一项所述的网络设备,其特征在于,
    所述通信单元还用于接收终端设备发送的用于上行码本传输的探测参考信号SRS;
    所述处理单元具体用于:
    根据所述SRS从所述码本中确定所述预编码矩阵。
  56. 如权利要求55所述的网络设备,其特征在于,所述SRS为N天线端口的SRS。
  57. 如权利要求44至56中任一项所述的网络设备,其特征在于,在所述网络设备为所述终端设备配置了码本子集约束的情况下,所述码本子集约束仅约束一个极化天线组内的天线端口。
  58. 如权利要求44至57中任一项所述的网络设备,其特征在于,
    所述通信单元还用于接收所述终端设备发送的采用所述预编码矩阵进行预编码之后的数据。
  59. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  60. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求15至29中任一项所述的方法。
  61. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至14中任一项所述的方法。
  62. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装 有所述芯片的设备执行如权利要求15至29中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  64. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求15至29中任一项所述的方法。
  65. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  66. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求15至29中任一项所述的方法。
  67. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  68. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15至29中任一项所述的方法。
PCT/CN2021/112333 2021-08-12 2021-08-12 无线通信的方法、终端设备和网络设备 WO2023015529A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/112333 WO2023015529A1 (zh) 2021-08-12 2021-08-12 无线通信的方法、终端设备和网络设备
CN202180100147.6A CN117616699A (zh) 2021-08-12 2021-08-12 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112333 WO2023015529A1 (zh) 2021-08-12 2021-08-12 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/426,268 Continuation US20240187051A1 (en) 2024-01-29 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2023015529A1 true WO2023015529A1 (zh) 2023-02-16

Family

ID=85199777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112333 WO2023015529A1 (zh) 2021-08-12 2021-08-12 无线通信的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN117616699A (zh)
WO (1) WO2023015529A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067819A1 (zh) * 2011-11-10 2013-05-16 电信科学技术研究院 一种预编码矩阵指示pmi信息的传输方法及装置
CN108631831A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 信息的传输方法和设备
CN110535589A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067819A1 (zh) * 2011-11-10 2013-05-16 电信科学技术研究院 一种预编码矩阵指示pmi信息的传输方法及装置
CN108631831A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 信息的传输方法和设备
CN110535589A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 指示方法、信息确定方法、装置、基站、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); Special conformance testing functions for User Equipment (UE) (Release 15)", 3GPP DRAFT; 36509-F40, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 30 September 2020 (2020-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051936450 *

Also Published As

Publication number Publication date
CN117616699A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
US20190149214A1 (en) Method and apparatus to enable multi-resolution csi reporting in advanced wireless communication systems
WO2018028310A1 (zh) 用于确定预编码矩阵的方法和装置
WO2020038154A1 (zh) 指示和确定预编码向量的方法以及通信装置
US8848818B2 (en) Apparatus and method for generating codebook in wireless communication system
US20140072068A1 (en) Enhanced performance multi-user multiple input output (mu-mimo) radio links
US20220263560A1 (en) Channel state information reporting method and communications apparatus
CN111886809A (zh) 上行天线的选择方法和装置
CN110350957B (zh) 通信的方法和通信装置
EP3637713B1 (en) Nr uplink codebook configuration method and related device
WO2022036720A1 (zh) 码本处理方法、终端设备和网络设备
US8995551B2 (en) Apparatus and method for generating codebook in a wireless communication system
EP2989726B1 (en) Wireless transmission precoding
WO2018196230A1 (zh) 上行多天线信号传输方法、相关设备及系统
CN115315906B (zh) 一种信道测量方法和通信装置
WO2023015529A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102814A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023070459A1 (zh) 无线通信的方法、终端设备和网络设备
US20240187051A1 (en) Wireless communication method, terminal device, and network device
CN116868515A (zh) 码本上报的方法、终端设备和网络设备
CN109802712B (zh) 一种用户设备、接入设备和预编码方法
WO2018171622A1 (zh) 数据发送方法和装置以及数据接收方法和装置
WO2023123409A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011579A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024077446A1 (zh) 无线通信的方法、终端设备和网络设备
CN118160231A (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953146

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100147.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE