WO2023070313A1 - 飞行时间相机模组及显示设备 - Google Patents

飞行时间相机模组及显示设备 Download PDF

Info

Publication number
WO2023070313A1
WO2023070313A1 PCT/CN2021/126396 CN2021126396W WO2023070313A1 WO 2023070313 A1 WO2023070313 A1 WO 2023070313A1 CN 2021126396 W CN2021126396 W CN 2021126396W WO 2023070313 A1 WO2023070313 A1 WO 2023070313A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
infrared laser
laser emitting
camera module
flight camera
Prior art date
Application number
PCT/CN2021/126396
Other languages
English (en)
French (fr)
Other versions
WO2023070313A9 (zh
Inventor
曲国健
李响
赵锬鸿
陈亚伟
李刚
严韶明
王伯长
周乔珂
薄亮
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/126396 priority Critical patent/WO2023070313A1/zh
Priority to CN202180003077.2A priority patent/CN117321381A/zh
Publication of WO2023070313A1 publication Critical patent/WO2023070313A1/zh
Publication of WO2023070313A9 publication Critical patent/WO2023070313A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • Embodiments of the present disclosure relate to a time-of-flight camera module and a display device.
  • the Time of Flight (ToF) method is a method of calculating distance by measuring the time of flight (i.e., the time it takes for light to return from reflection).
  • a ToF camera is a camera configured to capture depth information of an object using a ToF method.
  • time-of-flight methods can be divided into D-ToF (Direct-ToF) direct measurement and I-ToF (Indirect-ToF) indirect measurement; among them, D-ToF direct measurement is to measure the light from emission to return. The time difference is then multiplied by the speed of light and divided by 2 to obtain depth information; while the I-ToF indirect measurement is to measure the phase difference between the emitted light wave and the return light wave to obtain depth information.
  • TOF technology was mainly used in the field of distance measurement.
  • the resolution of TOF cameras has increased and power consumption has increased. Reduced, with more miniaturized and miniaturized designs.
  • TOF cameras are widely used on mobile terminals to provide auxiliary imaging for mobile devices such as mobile phones.
  • the time-of-flight camera module includes: a first bearing board, a second bearing board, a structural support, an infrared laser emitting module, a lens, and a time-of-flight sensor; wherein, the first bearing board, the structural support and the second The bearing plates are stacked, and the first bearing plate and the second bearing plate are respectively fixed on both sides of the structural support, and the infrared laser emitting module is arranged on the first bearing plate away from the structural support
  • the first bearing plate includes a lens through hole on one side of the infrared laser emitting module
  • the structural bracket includes a bracket through hole corresponding to the lens through hole, and the lens passes through the bracket Through holes
  • the time-of-flight sensor is disposed on the second carrier board and configured to sense infrared light collected by the lens to generate depth information.
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a housing; wherein, the structural support includes a plurality of wedge angles, and the housing includes wedge angle installation parts corresponding to the plurality of wedge angles , the structural support is fixed to the housing through the cooperation of the plurality of wedge angles and the plurality of wedge angle installation parts.
  • the infrared laser emitting module includes a first infrared laser emitting module and a second infrared laser emitting module, and the first infrared laser emitting module and the second infrared laser emitting module Two infrared laser emitting modules are arranged side by side on the side of the first bearing plate away from the structural support, and the lens through hole is located on a side of the second infrared laser emitting module that is far away from the first infrared laser emitting module side.
  • the center of the first infrared laser emitting module, the center of the second infrared laser emitting module and the center of the lens are all within the center of the first infrared laser emitting module.
  • Orthographic projections on a carrier plate lie on the same straight line.
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a front case; wherein, the front case includes a front surface, and the front surface includes a first groove recessed toward the direction of the structural support and The second groove; the first groove includes a first opening corresponding to the first infrared laser emitting module and a second opening corresponding to the second infrared laser emitting module, and the second groove includes a first opening corresponding to the second infrared laser emitting module.
  • the third opening corresponding to the lens; the time-of-flight camera module also includes a first filter, the first filter covers the second groove, and the first filter allows to communicate with the Infrared light in the same band as the infrared light emitted by the first infrared laser emitting module and the second infrared laser emitting module passes through.
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a second optical filter, wherein the second optical filter covers the first groove, and the second optical filter allows the Infrared light of the same wavelength band as the infrared light emitted by the first infrared laser emitting module and the second infrared laser emitting module passes through.
  • the center distance between the first infrared laser emitting module and the second infrared laser emitting module is d
  • the distance between the first infrared laser emitting module and the second infrared laser emitting module is The distances from the second infrared laser emitting module to the second filter are h
  • the horizontal emission angles of the first infrared laser emitting module and the second infrared laser emitting module are a
  • the vertical emission angles of the infrared laser emitting module and the second infrared laser emitting module are both b
  • the first cover is connected parallel to the center of the first infrared laser emitting module and the second infrared laser emitting module.
  • the dimension c1 in the direction of the line and the dimension c2 of the second filter in the direction perpendicular to the line connecting the centers of the first infrared laser emitting module and the second infrared laser emitting module respectively satisfy the following formula : c1>2h*tan(a/2)+d, c2>2h*tan(b/2).
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a connection board, a second flexible circuit board, and a cable; wherein, the connection board and the first carrier board pass through the second flexible circuit board
  • the cable is electrically connected to the connection board, and the cable is used to connect to at least one of an external power supply and an external device.
  • the structural support further includes a fourth opening and a limiting ring, and the limiting ring is located on a side of the structural support that is far away from the first bearing plate. On one side, the second flexible circuit board is bent through the fourth opening and the limiting ring.
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a front case and a rear case; Realize complete machine coverage; the front shell includes a front surface, the front surface is inclined relative to the rear surface, and the value range of the inclination angle of the front surface relative to the rear surface is [20°, 40° ].
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a rear shell and a rear shell cover; wherein, the rear shell includes a fifth opening, and the connecting plate is fixed to the rear shell and Corresponding to the fifth opening; the rear casing cover is used to block the fifth opening, the rear casing cover is a hollow structure, and the cable passes through the middle hole structure and is electrically connected to the connecting plate.
  • the time-of-flight camera module further includes: an infrared laser circuit module and a casing; wherein, the infrared laser circuit module is disposed on a side of the first carrier plate away from the structural support; A side of the infrared laser circuit module far away from the first carrier board is provided with thermally conductive glue, the thermally conductive glue is configured to be in contact with the housing, and the material of the housing includes metal.
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a first flexible circuit board; wherein, both the first carrier board and the second carrier board are printed circuit boards, and the first carrier board It is electrically connected with the second carrier board through the first flexible circuit board.
  • the time-of-flight camera module provided by some embodiments of the present disclosure further includes: a computing component; wherein, the computing component is arranged on the first carrier board, and the computing component is configured to, according to the depth information, determine At least one of the number of human bodies in the field of view of the time-of-flight camera module, the distance, the total activity time in the field of view, and the residence time in the field of view, and the number of people in the field of view of the time-of-flight camera module Human body set logotype.
  • the center distance between the first infrared laser emitting module and the second infrared laser emitting module is 15-30mm.
  • the center distance between the second infrared laser emitting module and the lens is 20-60mm.
  • the horizontal field of view of the lens is greater than 100°, and the vertical field of view of the lens is greater than 80°.
  • each of the first infrared laser emitting module and the second infrared laser emitting module includes a vertical cavity surface emitting laser and a beam expander, and the vertical The emission power of the cavity surface emitting laser is 1-1.4W, the horizontal emission angle of the vertical cavity surface emitting laser is greater than or equal to 95°, the vertical emission angle of the vertical cavity surface emitting laser is greater than or equal to 75°, and the flight The maximum detection distance of the time camera module is 5-7m.
  • the installation height of the time-of-flight camera module is H
  • the vertical field of view of the lens is ⁇
  • the lens of the time-of-flight camera module The pitch angle is ⁇
  • the detection distance range of the time-of-flight camera module is [L1, L2]
  • the detection height range of the time-of-flight camera module at the detection distance L1 is [h1, h2]
  • the following Formula relationship tan( ⁇ /2- ⁇ )*L1+H>h2, H-tan( ⁇ /2+ ⁇ )*L1 ⁇ h1.
  • the value range of L1 is 0.3-0.7m
  • the value range of L2 is 5-7m
  • the value range of h1 is 1-1.2m
  • h2 The range of value is 1.9-2.3m.
  • At least some embodiments of the present disclosure also provide an application method of the above-mentioned time-of-flight camera module.
  • the application method includes: determining the detection distance range [L1, L2] required by the application scene and the detection height range [h1, h2] at the detection distance L1; according to the following formula: tan( ⁇ /2- ⁇ )*L1 +H>h2, H-tan( ⁇ /2+ ⁇ )*L1 ⁇ h1, determine the installation height H of the time-of-flight camera module, the vertical field of view ⁇ of the lens and the time-of-flight camera module and determine the emission power of the first infrared laser emitting module and the second infrared laser emitting module according to the detection distance L2.
  • the value range of L1 is 0.3-0.7m
  • the value range of L2 is 5-7m
  • the value range of h1 is 1-1.2m
  • the value range of h2 The range is 1.9-2.3m.
  • At least some embodiments of the present disclosure further provide a display device, including: a device body and the above-mentioned time-of-flight camera module; wherein, the time-of-flight camera module is arranged on the top of the device body, and the device body includes a display screen .
  • the time-of-flight camera module is configured to detect whether there is a person in a predetermined detection area; In the case of a person, the advertisement content is displayed, and in the case of a person in the predetermined detection area, the product information is displayed.
  • the display screen is configured to display advertisement content;
  • the time-of-flight camera module is configured to: detect whether there is a person in a predetermined detection area, and If there are people in the predetermined detection area, an independent identification is provided for each person in the predetermined detection area, and each person is tracked, and the residence time of each person in the predetermined detection area is counted.
  • the advertisement reading amount is increased by 1; and if the independent mark disappears and appears repeatedly within a specified time interval, the advertisement reading amount is not counted repeatedly.
  • FIGS. 1A-1B are schematic diagrams of the internal structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • 1C-1D are schematic diagrams of the external structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1E is a schematic diagram of a front housing installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1F is a schematic diagram of a structural bracket of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1G is a schematic diagram of the internal structure of the front case of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1H is a side view of a front housing installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1I is a schematic diagram of the front surface of a front case of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1J is a schematic diagram of the internal structure of another time-of-flight camera module provided by some embodiments of the present disclosure.
  • FIG. 1K is a schematic diagram of a rear shell installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1L is a schematic diagram of a second flexible circuit board installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1M is a schematic diagram of a connecting plate installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1N is a schematic diagram of connection boards and cables of a time-of-flight camera module provided by some embodiments of the present disclosure
  • 2A-2B are schematic diagrams of the size setting of the first cover plate in a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 3A is a schematic diagram of an installation position of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 3B is a schematic diagram of the installation of a time-of-flight camera module provided by some embodiments of the present disclosure
  • Fig. 4 is a flowchart of an application method of a time-of-flight camera module provided by some embodiments of the present disclosure
  • 5 is a side view of the detection area of the time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 6 is a top view of the detection area of the time-of-flight camera module provided by some embodiments of the present disclosure
  • Fig. 7 is a schematic block diagram of a display device provided by some embodiments of the present disclosure.
  • Fig. 8 is an example diagram of a detection effect of a display device provided by some embodiments of the present disclosure.
  • 3D depth information for object recognition and behavior detection
  • 3D depth cameras are widely used in fields such as machine vision.
  • Common 3D depth cameras include 3D cameras based on the principle of binocular stereo vision, 3D cameras based on the principle of structured light, and 3D cameras based on time-of-flight distance.
  • the principle of binocular stereo vision and the principle of structured light are based on RGB/
  • the additional projection calculation of the grayscale image obtains the depth information, and the device itself will process the high-resolution image during the process of obtaining the depth information, so it cannot meet the privacy protection requirements.
  • the TOF technology directly measures the time/phase difference between emitted light and received light to obtain a point cloud image.
  • the acquisition of depth information does not rely on two-dimensional images, so it can meet the needs of privacy protection.
  • the time-of-flight camera module includes: a first bearing board, a second bearing board, a structural support, an infrared laser emitting module, a lens, and a time-of-flight sensor.
  • the first bearing plate, the structural support and the second bearing plate are stacked, and the first bearing plate and the second bearing plate are respectively fixed on both sides of the structural support, and the infrared laser emitting module is arranged on the first bearing plate away from the structural support.
  • the first carrier board includes a lens through hole located on one side of the infrared laser emitting module
  • the structural bracket includes a bracket through hole corresponding to the lens through hole
  • the lens passes through the bracket through hole
  • the time-of-flight sensor is arranged on the second carrier board The side close to the structural support and is configured to sense infrared light collected by the lens to generate depth information.
  • Some embodiments of the present disclosure also provide an application method and a display device corresponding to the above-mentioned time-of-flight camera module.
  • the time-of-flight camera module provided by the embodiments of the present disclosure can rationally arrange the components (devices) in each camera module through the three-layer stacked structure design of the first carrier board, the structural support and the second carrier board, At the same time, it is beneficial to the compactness, stability and heat dissipation of the overall structure.
  • Figure 1A-1B is a schematic diagram of the internal structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • Figure 1C-1D is a schematic diagram of the external structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • Figure 1E A schematic diagram of a front housing installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1F is a schematic diagram of a structural bracket of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1G is a schematic diagram of the present disclosure A schematic diagram of the internal structure of the front case of a time-of-flight camera module provided by some embodiments
  • FIG. 1H is a side view of the front case installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1I is a view of the present disclosure
  • FIG. 1I is a view of the present disclosure
  • FIG. 1J is a schematic diagram of the internal structure of another time-of-flight camera module provided by some embodiments of the present disclosure
  • FIG. 1K is a schematic diagram of some implementations of the present disclosure
  • FIG. 1L is a schematic diagram of a second flexible circuit board installation structure of a time-of-flight camera module provided by some embodiments of the present disclosure
  • FIGS. 2A-2B are schematic diagrams of the size setting of the first cover plate in a time-of-flight camera module provided by some embodiments of the present disclosure.
  • the time-of-flight camera module includes a first carrier board 203, a second carrier board 207, a structural support 304, infrared laser emitting modules (201 and 202), a lens 205, and a time-of-flight sensor 206 .
  • the first loading plate 203 , the structural support 304 and the second loading plate 207 are stacked, and the first loading plate 203 and the second loading plate 207 are respectively fixed on both sides of the structural support 304 .
  • the first carrying plate 203 can be fixed together with the structural support 304 through a plurality (for example, 8, but not limited to) screw holes 303; similarly, the second carrying plate 207 can also be fixed through multiple A number (for example, 8, but not limited thereto) of screw holes 303 are fixed together with the structural support 304; it should be noted that, embodiments of the present disclosure include but are not limited thereto.
  • the infrared laser emitting modules are arranged on the side away from the structural support 304 of the first carrying plate 203, and the first carrying plate includes infrared laser emitting modules (201 and 202) A lens through hole 204 on one side.
  • the number of infrared laser emitting modules may be one or more, and embodiments of the present disclosure include but are not limited thereto.
  • the infrared laser emitting module may include a first infrared laser emitting module 201 and a second infrared laser emitting module 202 .
  • the embodiments of the present disclosure are described by taking two infrared laser emitting modules (ie, the first infrared laser emitting module 201 and the second infrared laser emitting module 202) as an example, it should not be regarded as a limitation of the present disclosure. limit. In practical applications, the number of infrared laser emitting modules can be set according to actual needs.
  • the first infrared laser emitting module 201 and the second infrared laser emitting module 202 are arranged side by side on the first carrier board 203, and are located on the side of the first carrier board 203 away from the structural support 304 .
  • the first carrier board 203 includes a lens through hole 204 located on a side of the second infrared laser emitting module 202 away from the first infrared laser emitting module 201 .
  • the structural bracket 304 includes a bracket through hole 302 corresponding to the lens through hole 204 , and the lens 205 passes through the bracket through hole 302 .
  • the lens 205 may be fixed via the lens through hole 204 and/or the bracket through hole 302 , embodiments of the present disclosure include but are not limited thereto.
  • the lens 205 can be fixed to the lens through hole 204 through a lens rubber ring, so as to achieve fixing, cushioning, dustproofing and reducing interference light of the lens 205 .
  • the center of the first infrared laser emitting module 201, the center of the second infrared laser emitting module 202 and the center of the lens 205 are on the first carrier board 203.
  • the orthographic projections are located on the same straight line, so that the laser coverage of the first infrared laser emitting module 201 and the second infrared laser emitting module 202 overlaps or roughly overlaps with the field of view of the lens 205, which is conducive to meeting the ultra-wide-angle and long-distance range detection requirements.
  • the orthographic projections of the three on the first carrier plate 203 are located on the same straight line, which may include the orthographic projection of the center of one of them on the first carrier plate 203 and the center of the other two on the first carrier plate 203.
  • the first Orthographic projections of the center of the first infrared laser emitting module 201 , the center of the second infrared laser emitting module 202 and the center of the lens 205 (that is, the center of the lens through hole 204 ) on the first carrier board 203 are located on the same straight line.
  • a time-of-flight sensor (ToF Sensor) 206 is disposed on the second carrier board 207 and is configured to sense infrared light collected by the lens 205 to generate depth information.
  • the time-of-flight sensor 206 can sense infrared light collected by the lens 205 (for example, the infrared light is emitted by the first infrared laser emitting module 201 and the second infrared laser emitting module 202, reflected by external objects and Infrared light collected by the lens after being filtered by an infrared filter), measuring the infrared light from the emitting unit of the infrared laser emitting module (ie, the first infrared laser emitting module 201 and the second infrared laser emitting module 202) to the sensing unit (such as , the sensing unit of the time-of-flight sensor 206 is arranged on a side of the second carrier plate 207 close to the structural support
  • the time-of-flight sensor 206 may measure the phase difference between the emitted light wave and the returned light wave to obtain depth information.
  • the time-of-flight sensor 206 includes a CCD/CMOS chip or the like for sensing infrared light. It should be understood that in order to meet the needs of medium and long-distance detection, the time-of-flight sensor can choose a high-resolution sensor with a high QE value (such as a TOF CCD with 640*480 pixels).
  • the time-of-flight camera module may also include computing components.
  • the computing components include a system-on-chip (System on Chip, SoC, also known as "system on chip", such as a visual processor) 208, a random access memory (such as a DDR chip), a Flash flash memory chip, etc. .
  • SoC System on Chip
  • a random access memory such as a DDR chip
  • Flash flash memory chip etc.
  • the above-mentioned computing components are arranged on the first carrier board 203.
  • FIGS. 1A-1B the above-mentioned computing components are arranged on the first carrier board 203.
  • the computing component may be located on a side of the first infrared laser emitting module 201 away from the second infrared laser emitting module 202 , and embodiments of the present disclosure include but are not limited thereto.
  • the calculation component is configured to determine the number of human bodies within the field of view of the time-of-flight camera module, the distance, the total activity time in the field of view, and the dwell time in the field of view according to the depth information generated by the time-of-flight sensor 206.
  • ID identification
  • the computing component and the time-of-flight sensor 206 are located on different carrier boards, which is beneficial to the heat dissipation of the internal structure of the time-of-flight camera module.
  • the time-of-flight camera module may further include a first flexible circuit board 211 .
  • both the first carrier board 203 and the second carrier board 207 are printed circuit boards, and the first carrier board 203 and the second carrier board 207 are electrically connected through the first flexible circuit board 211 .
  • the two sides of the first flexible circuit board 211 can be overlapped with the first carrier board 203 and the second carrier board 207 respectively, and the first flexible circuit board 211 can be bent around the first carrier board 207.
  • the emitting unit ie, the first infrared laser emitting module 201 and the second infrared laser emitting module 202 and the sensing unit (ie, the time-of-flight sensor 206) They are respectively integrated on two different printed circuit boards; the upper and lower layers of printed circuit boards are stacked, and the upper printed circuit board (that is, the first carrier board 203, correspondingly, the lower printed circuit board is the second carrier board 205)
  • the upper printed circuit board that is, the first carrier board 203, correspondingly, the lower printed circuit board is the second carrier board 205
  • Providing the lens through hole 204 to install the lens 205 can reduce the thickness of the internal structure of the time-of-flight camera module, and at the same time make the overall time-of-flight camera module more compact.
  • a structural bracket 304 is provided between the upper and lower printed circuit boards to lock the upper and lower printed circuit boards, which is beneficial to the stability of the internal structure of the time-of-flight camera module.
  • the time-of-flight camera module may also include a casing; for example, the casing may include a front casing 1 and a rear casing 5 , and the front casing 1 and the rear casing 5 cooperate to realize complete machine coverage.
  • the structural support 304 can include a plurality of wedge angles
  • the housing can include wedge angle installation parts corresponding to the plurality of wedge angles
  • the structural support 304 can be fixed through the cooperation of the multiple wedge angles and the plurality of wedge angle installation parts. in the shell.
  • the structure bracket 304 is fixed to the front case 1 as an example for description, but it should not be regarded as a limitation to the embodiments of the present disclosure.
  • the front shell 1 includes a receiving chamber for accommodating the laminated structure formed by the first carrier board 203 , the structural support 304 and the second carrier board 207 .
  • structural support 304 may include multiple wedges (shown as fixed wedge 307 and alignment wedge 308 in FIG. 1F ), each of which has a through hole.
  • three pairs of fixed wedge angles 307 and one pair of alignment wedge angles 308 are shown in FIG. 1F , and embodiments of the present disclosure include but are not limited thereto.
  • FIG. 1F three pairs of fixed wedge angles 307 and one pair of alignment wedge angles 308 are shown in FIG. 1F , and embodiments of the present disclosure include but are not limited thereto.
  • the front shell 1 includes wedge angle installation parts corresponding to the multiple wedge angles (as shown by the wedge angle fixing screw holes 107 and the wedge angle alignment parts 108 in FIG. 1G ).
  • Fig. 1G shows 3 pairs of wedge angle fixing screw holes 107 and 1 pair of wedge angle alignment parts 108 (the wedge angle alignment part 108 on the right side in Fig. position, and the specific structure is not shown), which respectively correspond to the three pairs of fixed wedge angles 307 and one pair of alignment wedge angles 308 in FIG. 1F .
  • Embodiments of the present disclosure include, but are not limited to.
  • the structural support 304 can be fixed to the front shell 1 through screws, fixed wedge angles 307 and wedge angle fixing screw holes 107;
  • the included angle of the main part of the angle (for example, the part where the fixed wedge angle 307 is in contact with the wedge angle fixing screw hole 107 is the main part of the fixed wedge angle) can adjust the inclination angle of the main part of the structural support, so that the time-of-flight camera module can be quickly adjusted
  • the pitch angle of the lens can be adjusted to suit different scenes.
  • the structural bracket 304 and the front shell 1 can be aligned and fitted through the alignment wedge angle 308 and the wedge angle alignment portion 108 to facilitate assembly and fixing.
  • the wedge angle alignment part 108 can be a columnar structure, and when the alignment wedge angle 308 and the wedge angle alignment part 108 are aligned, the columnar structure can pass through the alignment wedge angle 208 The through hole, so as to achieve alignment fit.
  • Embodiments of the present disclosure do not limit the specific shape and structure of the columnar structure, as long as it can match and align with the through hole on the alignment wedge 208 .
  • the fixed wedge angle 307 can be arranged on the upper and lower sides of the structural support 304 (the upper and lower sides of the structural support 304 are parallel or substantially parallel to the first infrared laser emitting module 201 and the second infrared laser emitting module 201 ).
  • the center line of the emitting module 202), and the alignment wedge angle 308 can be arranged on the left and right sides of the structural support 304 (the left and right sides of the structural support 304 are vertical or approximately perpendicular to the first infrared laser emitting module 201 and the second infrared laser emitting module 202), embodiments of the present disclosure include but are not limited thereto.
  • the aligning wedge angle 308 on the structural support 304 and the wedge angle aligning portion 108 on the front shell 1 may be omitted.
  • fixed wedge angles 307 can be set on the left and right sides of the structural bracket 304, and wedge angle fixing screw holes 107 can be set at the corresponding positions of the front shell 1, so as to realize the connection between the structural bracket 304 and the front shell 1. Fixed, so that the horizontal detection range of the lens of the time-of-flight camera module can be quickly adjusted to suit different scenarios.
  • the numbers of fixed wedge angles 307 and alignment wedge angles 308 in FIG. 1F and the numbers of wedge angle fixing screw holes 107 and wedge angle alignment parts 108 in FIG. 1G are schematic, and the disclosure The embodiment does not limit this.
  • the front case 1 may include a front surface (ie, the surface where the optical filter 2 and the optical filter 3 are located).
  • the front surface may be perpendicular to the stacking direction of the first carrier board 203, the structural support 304 and the second carrier board 207 (that is, the front surface is parallel to the plane where the first carrier board 203 is located and the plane where the second carrier board 207 is located), But not limited to this.
  • the front surface is parallel to the surface of filter 2 and/or filter 3 .
  • the front surface of the front case 1 includes a first groove G1 and a second groove G2 that are recessed toward the structural support 304 .
  • the front surface of the front case 1 includes a first groove G1 and a second groove G2 that are recessed toward the structural support 304 .
  • the first groove G1 includes a first opening corresponding to the first infrared laser emitting module 201 and a second opening corresponding to the second infrared laser emitting module 202, the first opening is used to expose the emitting unit of the first infrared laser emitting module 201 , the second opening is used to expose the emitting unit of the second infrared laser emitting module 202 ; the second groove includes a third opening corresponding to the lens 205 , and the third opening is used to expose the lens 205 .
  • the first groove G1 is at least partly bowl-shaped and recessed inward (that is, recessed toward the inside of the housing), thereby facilitating the emitting unit of the first infrared laser emitting module 201 and the emitting unit of the exposed second infrared laser emitting module 202 to emit light. Direct emission of infrared light.
  • the second groove G2 is also recessed inward.
  • the isolation part SP can prevent the infrared light emitted by the emitting unit of the infrared laser emitting module from directly entering the lens 205 through internal reflection, refraction, scattering, etc.
  • the first opening and the second opening may also be the same opening for exposing the emitting unit of the first infrared laser emitting module 201 and the emitting unit of the second infrared laser emitting module 202 . It should be noted that when the number of infrared laser emitting modules is not two, grooves and openings can also be provided according to the actual number.
  • the time-of-flight camera module also includes an optical filter that allows the infrared light of the same wavelength band as the infrared light emitted by the first infrared laser emitting module 201 and the second infrared laser emitting module 202 to pass through (in this disclosure , also referred to as the "first filter")3.
  • the filter 3 covers the second groove G2 to play a sealing role.
  • the filter 3 may be an infrared filter to reduce interference such as ambient light.
  • the filter 3 may include a transparent substrate (for example, a PMMA substrate, but not limited thereto) and an infrared coating, and embodiments of the present disclosure include but not limited thereto.
  • the filter 3 allows infrared light to pass through and prevents light in other wavelength bands from passing through.
  • the filter 3 may be a bandpass filter, such as a narrowband filter, but is not limited thereto.
  • the optical filter 3 can be a narrow-band filter; for example, in a specific example, the narrow-band filter
  • the time-of-flight camera module also includes an optical filter (in this disclosure, also referred to as "Second Filter”)2.
  • the filter 2 covers the first groove G1 to play a sealing role.
  • the filter 2 can also be an infrared filter to improve the monochromaticity of the infrared light emitted by the first infrared laser emitting module 201 and the second infrared laser emitting module 202, eliminate stray light, and Reduce interference such as ambient light.
  • the filter 2 allows infrared light to pass through and prevents light in other wavelength bands from passing through.
  • the material and type of the optical filter 2 and the optical filter 3 may be the same, and specific details may refer to the relevant description of the aforementioned optical filter 3 , which will not be repeated here.
  • the time-of-flight camera module may further include an infrared laser circuit module 212; for example, the infrared laser circuit module 212 may provide power for the infrared laser emitting module or be used to control the infrared laser emitting module.
  • the infrared laser circuit module 212 is disposed on a side of the first carrier board 203 away from the structural support 304 .
  • the infrared laser circuit module 212 is close to the infrared laser emitting module; for example, as shown in FIG.
  • the infrared laser circuit module 212 is located between the first infrared laser emitting module 201 and the second infrared laser emitting module 202 .
  • the side of the infrared laser circuit module 212 away from the first carrier board 203 is coated with thermal conductive glue, and the thermal conductive glue is configured to be in contact with the casing (eg, the front casing 1 ).
  • the thermal conductive adhesive contacts the front case 1 .
  • the material of the housing (such as the front housing 1 ) can be metal, including but not limited to aluminum, aluminum alloy and the like.
  • the time-of-flight camera module may further include a rear case 5 .
  • the rear case includes a rear surface, and the rear case 5 is fixed with the front case 1 through the rear surface so as to jointly realize complete machine coverage.
  • the rear surface is the plane where the main structure of the rear shell is located; for example, the rear shell can be projected from various directions, wherein the projection direction with the largest projected area is perpendicular to the rear surface.
  • the front surface is disposed at an angle relative to the rear surface.
  • the inclination angle of the front surface relative to the rear surface may range from [20°, 40°], so that the time-of-flight camera module is suitable for various common human detection application scenarios after installation. But not limited to this.
  • the front surface can also be parallel to the rear surface.
  • the inclination angle of the front surface relative to the back surface may range from [0°, 40°], but it is not limited thereto.
  • multiple screw slots can be reserved on the front shell 1, and multiple screw holes corresponding to the multiple screw slots can be reserved on the rear surface of the rear shell 5, so that the front shell 1 and the rear shell 5 One-piece installation can be realized by multiple screws.
  • the rear surface is usually perpendicular to the ground. Taking the direction perpendicular to the ground as the vertical direction, the rear surface is parallel to the vertical direction; correspondingly, the stacked structure formed by the first bearing plate 203, the structural support 304 and the second bearing plate 207 is arranged obliquely relative to the vertical direction.
  • the inclination angle of the above-mentioned stacked structure relative to the above-mentioned vertical direction can be adjusted by adjusting the aforementioned wedge angle 301; of course, the pitch angle of the front surface and The pitch angles of the above stacked structures can be kept consistent, so that the plane where the first carrier board 203 is located is parallel to the front surface. It should be understood that, the pitch angle of the above-mentioned front surface and the pitch angle of the stacked structure can be set according to the needs of the actual application scene.
  • the time-of-flight camera module may further include a connection board 215 , a second flexible circuit board 221 and a cable 4 .
  • the connection board 215 is electrically connected to the first carrier board 203 through the second flexible circuit board 211; the cable 4 is electrically connected to the connection board 215, and the cable 4 is used for at least one of an external power supply and an external device (such as a PC). connect.
  • the connection board 215 is used for switching power signals and data transmission signals, and the like.
  • the structural support 304 includes a fourth opening and a limiting ring 310 , and the limiting ring 310 is located on a side of the structural support 304 away from the first bearing plate 203 .
  • the second flexible circuit board 221 overlaps the side of the first carrier board 203 close to the structural support 304 , and bends through the fourth opening and the limiting ring 310 .
  • the fourth opening on the structural support 304 and the limit ring 310 are conducive to the mass production stability of the assembly position of the second flexible circuit board 221, and in actual use, the amount of activity is reduced by the limit, and the vibration caused by the vibration during actual use is reduced. The risk of falling off of the second flexible circuit board 221 .
  • the rear case 5 includes a fifth opening (in Figure 1D, blocked by the rear case cover 6), the connecting plate 215 is fixed to the rear case 5 and corresponds to the fifth opening; the cable 4 passes through It is electrically connected to the connection board 215 through the fifth opening.
  • the cable 4 may include a power supply line and a data line for providing power supply and data transmission, respectively;
  • connection board 215 has a cable interface 218 , and the cable 4 is electrically connected to the cable interface 218 .
  • the bending part of the cable 4 is wrapped with a bending protection part 41 , and the bending protecting part 41 is used to protect the bending part of the cable 4 to prolong the service life of the cable 4 .
  • the time-of-flight camera module may further include a rear casing cover 6 .
  • the rear casing cover 6 is a hollow structure, and the cable 4 passes through the hollow structure and is electrically connected to the connecting plate 215 .
  • the rear case cover 6 is used to block the above-mentioned fifth opening; meanwhile, the rear case cover 6 can additionally fix and protect the cable 4 , and the quick replacement of the cable 4 can be completed by removing the rear case cover 6 .
  • the rear case 6 also includes a module mounting part 7, which is used to install and fix the time-of-flight camera module on the top of some equipment (such as the display device that will be introduced later) Or directly above some equipment doors (such as elevator doors, refrigerator doors, etc.).
  • the module mounting portion 7 may be located on both sides of the rear casing cover 6 .
  • the module mounting portion 7 may protrude from the rear surface of the rear case 5 .
  • FIG. 1D the module mounting portion 7 may protrude from the rear surface of the rear case 5 .
  • the module mounting portion 7 may include a mounting plate 71; for example, the mounting plate 71 is perpendicular or substantially perpendicular to the rear surface of the rear shell 6, and the extending direction of the mounting plate 71 is in line with the rear surface of the rear shell 5.
  • the extending directions of the two can be the same, and the mounting plate 71 has a plurality of through holes for fixing and/or positioning, so as to facilitate the installation and fixing of the time-of-flight camera module.
  • the module installation part 7 may further include a reinforcing part 72 connected with the installation plate 71 to improve the strength of the module installation part.
  • each module installation part 7 can comprise two reinforcing parts 72, but not limited to this;
  • the quantity of the reinforcement part 72 in each module installation part 7 also can be one (refer to 3B) or more, the embodiments of the present disclosure are not limited thereto. It should be noted that the embodiment of the present disclosure does not limit the specific shape and structure of the module installation part 7 , as long as it can realize the installation and fixation of the time-of-flight camera module.
  • each of the first infrared laser emitting module and the second infrared laser emitting module includes a vertical-cavity surface-emitting laser (Vertical-Cavity Surface-Emitting Laser, VCSEL) and a beam expander.
  • a vertical cavity surface emitting laser is a semiconductor laser from which laser light can be emitted from the top surface.
  • common infrared laser emission wavelengths are 850nm, 940nm, etc.
  • a beam expander usually includes a beam expander lens or a diffuser, etc.
  • the infrared laser emission module of the time-of-flight camera module needs to cover a wide-angle range.
  • the horizontal emission angle of the vertical cavity surface emitting laser is greater than or equal to 95°, for example, the horizontal emission angle is 100°, 110° or 120°, etc.; the vertical emission angle of the vertical cavity surface emitting laser is Greater than or equal to 75°, for example, the vertical emission angle is 80°, 85° or 90°, etc.
  • the lens 205 of the time-of-flight camera module needs to select an ultra-wide-angle lens to collect infrared light.
  • the horizontal viewing angle of the lens 205 is larger than 100°
  • the vertical viewing angle of the lens 205 is larger than 80°.
  • the lens 205 may have the characteristics of large relative aperture and low distortion and high resolution, so as to meet the requirements of the modulation transfer function (Modulation Transfer Function, MTF) of the high-resolution ToF Sensor.
  • MTF Modulation Transfer Function
  • the emission angle of the infrared laser emission module is usually close to the field of view of the lens, that is to say, the horizontal emission angle of the vertical cavity surface emitting laser is close to the horizontal field of view of the lens 205, and the vertical cavity surface emitting laser The vertical emission angle of the laser is close to the vertical viewing angle of the lens 205 .
  • the ratio of the horizontal field of view to the vertical field of view of the lens 205 is generally similar to the horizontal/vertical ratio of the resolution of the TOF Sensor.
  • the laser intensity of a single infrared laser transmitter module is often difficult to meet the detection needs of medium and long-distance target objects (the energy density of infrared light reflected by medium- and long-distance target objects is too low), resulting in the detection of medium- and long-distance target objects. Information accuracy is poor. In this case, it may be considered to increase the emission power of a single infrared laser emission module to meet the detection requirements of medium and long-distance target objects, but this solution is less practical.
  • the emission power of a single infrared laser emission module is too strong (for example, exceeding its normal working capacity), and its heat generation is often serious and concentrated, and the resulting heat dissipation problem is not conducive to the compact design of the time-of-flight camera module; on the other hand
  • the emission power of a single infrared laser emission module is too strong, which may cause damage to human eyes in practical applications, so it may not pass the human eye safety certification.
  • two or more infrared laser emitting modules may be used. It should be noted that, the drawings only exemplarily show a time-of-flight camera module including two infrared laser emitting modules, but it should not be regarded as a limitation to the present disclosure.
  • the effective detection area is the overlapping area of the laser projection surface of the infrared laser emitting module (as shown in FIG. 2A ).
  • the non-overlapping areas irradiated by multiple infrared laser emitting modules that is, the dispersed areas, as shown in FIG. 2A ) will be very small.
  • the dispersion area is parallel to the first infrared laser emitting module 201 and the second infrared laser emitting module.
  • the total size in the direction of the line connecting the centers of the two infrared laser emitting modules 202 is only 2d. Since the vertical cavity surface emitting lasers are placed at centimeter-level intervals, in a long-distance state, the emitted light of two infrared laser emitting modules can basically achieve effective overlap. Therefore, in the structural design of the time-of-flight camera module, it is important to pay attention to that the first cover plate 2 can effectively emit the infrared light emitted by the two infrared laser emitting modules.
  • the center distance AB between the first infrared laser emitting module 201 and the second infrared laser emitting module 202 (A and B respectively represent the centers of the two infrared laser emitting modules)
  • the distances from the first infrared laser emitting module 201 and the second infrared laser emitting module 202 to the first cover plate 2 (as shown by the black thick solid line in FIG.
  • the horizontal emission angles of the second infrared laser emission module 202 are a, the vertical emission angles of the first infrared laser emission module 201 and the second infrared laser emission module 202 are b, then the first cover plate 2 is parallel to
  • the dimension c1 in the direction of the center line between the first infrared laser emitting module 201 and the second infrared laser emitting module 202 and the first cover plate 2 are perpendicular to the first infrared laser emitting module 201 and the second infrared laser emitting module 202
  • the dimension c2 in the direction of the center connecting line respectively satisfies the following formulas: c1>2h*tan(a/2)+d, c2>2h*tan(b/2).
  • each infrared The distance between the laser emitting modules should be as small as possible.
  • the distance d between the centers of the first infrared laser emitting module 201 and the second infrared laser emitting module 202 is 15-30 mm, such as 20 mm.
  • the center distance between the second infrared laser emitting module 202 and the lens 205 is 20-60 mm.
  • the size of the first infrared laser emitting module 201 and the second infrared laser emitting module 202 is about 3-5 mm, and the diameter of the lens 205 is about 10-20 mm.
  • the center distance between the first infrared laser emitting module 201 and the second infrared laser emitting module 202 and the center distance between the second infrared laser emitting module 202 and the lens 205 can be set according to actual needs.
  • the maximum detection distance of the time-of-flight camera module may be 5-7m.
  • the emission power of the first infrared laser emitting module 201 and the second infrared laser emitting module 202 can be set to, for example, 1-1.4 W, embodiments of the present disclosure include but are not limited thereto.
  • the installation height of the time-of-flight camera module is H
  • the vertical field of view angle of the lens is ⁇
  • the pitch angle of the lens of the time-of-flight camera module is ⁇
  • the detection distance range of the time-of-flight camera module is [L1, L2]
  • the detection height range of the time-of-flight camera module at the detection distance L1 is [h1, h2]
  • the following formula relationship is satisfied: tan( ⁇ /2- ⁇ )*L1+H>h2, H -tan( ⁇ /2+ ⁇ )*L1 ⁇ h1.
  • the value range of L1 is 0.3-0.7m
  • the value range of L2 is 5-7m
  • the value range of h1 is 1-1.2m
  • the value range of h2 is 1.9-2.3m.
  • the embodiments of the present disclosure include but are not limited thereto. That is to say, the installation height H of the time-of-flight camera module, the vertical field of view ⁇ of the lens, and the pitch angle ⁇ of the lens of the time-of-flight camera module can be set according to actual needs, thereby adjusting the values of L1, h1, and h2.
  • the value of L2 is generally preset according to detection needs, and further, an infrared laser emitting module with a suitable emission power can be selected according to the value of L2.
  • the time-of-flight camera module can detect objects (including human bodies, etc.) within the detection height range [h1, h2] or the part of the object within the detection height range [h1, h2] Detection should be understood as the time-of-flight camera module can detect the existence of the object, but whether to perform functions such as counting (for example, counting the number of people) needs to be determined according to the algorithm design, which is not limited in this application. It should be noted that both detection distances L1 and L2 are horizontal distances.
  • the working principle of the time-of-flight camera module is roughly as follows: the infrared emission module (the first infrared laser emission module 201 and the second infrared laser emission module 202) emits laser pulses according to the set modulation frequency, and the laser The pulse is projected to the external environment through the infrared filter (that is, the first cover plate 2 with the infrared coating), and after being reflected by the target object in the external environment, the pulsed light passes through the infrared filter (that is, the second cover plate with the infrared coating).
  • the cover plate 3) enters the lens 205, and enters the TOF Sensor through the lens 205; the depth information generated by the TOF Sensor is processed by a digital signal and then reaches the computing unit, which can further process the depth information and interact with external devices.
  • Some embodiments of the present disclosure also provide an application method of a time-of-flight camera module.
  • the time-of-flight camera module is the time-of-flight camera module provided by any embodiment of the present disclosure, and the time-of-flight camera module can be widely used in various scenarios that require object recognition and/or behavior detection, while taking into account privacy protection.
  • FIG. 3A is a schematic diagram of an installation position of a time-of-flight camera module provided by some embodiments of the present disclosure, and FIG.
  • FIG. 3B is a schematic diagram of an installation location of a time-of-flight camera module provided by some embodiments of the present disclosure.
  • the time-of-flight camera module can be installed on the top of some equipment (such as the display equipment that will be introduced later) or some equipment doors (such as elevator doors, refrigerator doors) through its module installation part. etc.), and the front surface of the front shell of the time-of-flight camera module faces the detection area, so that the time-of-flight camera module can identify and/or detect the user of these devices or device doors, and at the same time level to meet the needs of privacy protection.
  • Fig. 4 is a flow chart of an application method of a time-of-flight camera module provided by some embodiments of the present disclosure
  • Fig. 5 is a side view of the detection area of the time-of-flight camera module provided by some embodiments of the present disclosure
  • Fig. 6 is the present disclosure
  • a top view of the detection area of the time-of-flight camera module provided by some embodiments is disclosed.
  • the application method shown in FIG. 4 will be described in detail with reference to FIGS. 5-6 .
  • the application method may include the following steps S10 to S30.
  • Step S10 Determine the detection distance range [L1, L2] required by the application scene and the detection height range [h1, h2] at the detection distance L1.
  • the value range of L1 is 0.3-0.7m
  • the value range of L2 is 5-7m
  • the value range of h1 is 1-1.2m
  • the value range of h2 is 1.9-2.3m .
  • the embodiments of the present disclosure include but are not limited thereto. That is to say, the values of L1, L2, h1, and h2 can be set according to actual needs.
  • Step S20 According to the formula: tan( ⁇ /2- ⁇ )*L1+H>h2, H-tan( ⁇ /2+ ⁇ )*L1 ⁇ h1, determine the installation height H of the time-of-flight camera module and the vertical angle of the lens The angle of view ⁇ and the pitch angle ⁇ of the lens of the time-of-flight camera module.
  • the installation height H of the time-of-flight camera module, the vertical field of view ⁇ of the lens, and the pitch angle ⁇ of the lens of the time-of-flight camera module can all be shown in FIG. 5 .
  • the pitch angle ⁇ of the lens of the time-of-flight camera module is the pitch angle of the above-mentioned front surface, that is, the pitch angle of the above-mentioned stacked structure.
  • the installation height H of the time-of-flight camera module determined in step S20, the vertical field of view angle ⁇ of the lens, and the lens pitch angle ⁇ of the time-of-flight camera module can ensure that the time-of-flight camera module can be positioned at the detection distance L1 to detect Objects (including human bodies, etc.) within the height range [h1, h2] or parts of objects within the detection height range [h1, h2] are detected.
  • Step S30 Determine the emission power of the first infrared laser emission module and the second infrared laser emission module according to the detection distance L2.
  • the emission power of the first infrared laser emitting module and the second infrared laser emitting module should meet the requirement that the detection distance range can reach the detection distance L2, and at the same time take into account the safety certification of human eyes. Therefore, the detection distance L2 is usually also Reasonable settings should be made according to the actual application scenario. For example, after the value of L2 is set according to the actual application scenario, an infrared laser emitting module with appropriate emission power can be selected according to the value of L2.
  • the detection area of the time-of-flight camera module is located in a fan-shaped area with a radius of L2, and the central angle of the fan-shaped area with a radius of L2 is close to or equal to the horizontal field of view of the lens.
  • the fan-shaped area with a radius of L2 includes a blind area and a detection area.
  • the blind area is a fan-shaped area with a radius of L1.
  • the detection area is a radius of is the area except the blind area in the fan-shaped area of L2, and the central angle of the fan-shaped area with a radius of L1 is the same as that of the fan-shaped area with a radius of L2.
  • an appropriate time-of-flight camera module can be manufactured or selected according to the parameters determined in the above steps S20 and S30, so as to adapt to various application scenarios.
  • Fig. 7 is a schematic block diagram of a display device provided by some embodiments of the present disclosure.
  • the display device includes a device main body and a time-of-flight camera module provided by any embodiment of the present disclosure.
  • the time-of-flight camera module is arranged on the top of the main body of the device.
  • the installation and configuration of the time-of-flight camera module can refer to the relevant description of the aforementioned application method, which will not be repeated here.
  • the device body may include a display screen.
  • the display screen can display advertisement content or commodity information and the like.
  • the display screen may be a touch screen, and embodiments of the present disclosure include but are not limited thereto.
  • the display screen may include an LCD display screen, an OLED display screen, etc., which are not limited in the embodiments of the present disclosure.
  • the time-of-flight camera module is configured to detect whether there is a person in a predetermined detection area; the display screen is configured to display advertisement content when there is no person in the predetermined detection area, and Display product information when there are people in the detection area.
  • the display device can be, for example, a container machine, etc., and the time-of-flight camera module realizes the function of the distance sensor. Since the placement position of the container machine is fixed, the field of view of the front time-of-flight camera module is determined, and the predetermined detection area can be freely set within the fan-shaped area corresponding to the aforementioned detection distance L2 (hereinafter referred to as the "maximum detection area") Certainly.
  • the human body contour (such as the whole body contour or the upper body contour, etc., but not limited to this) can be used as the judgment basis, and the ground shall prevail, and the human body behavior shall be performed after the human body is recognized in the maximum detection area.
  • Trajectory tracking when the human body enters the predetermined detection area, switch the playback screen on the display screen, such as switching the advertisement content to commodity information; when the human body leaves the predetermined detection area, it can also switch the playback screen on the display screen, such as switching The product information is switched to the advertisement content.
  • the predetermined detection area may generally also include the above-mentioned blind area, and the situation in the following embodiments is similar to this, and will not be repeated here.
  • the display screen is configured to display advertisement content;
  • the time-of-flight camera module is configured to: detect whether there is a person in the predetermined detection area; Provide an independent identification for each person in the detection area, and track each person, and count the stay time of each person in the predetermined detection area.
  • the advertisement reading amount will increase by 1; and, if within the specified time If the independent logo disappears and appears repeatedly within the interval, the number of advertisement views will not be counted repeatedly.
  • the display device may be, for example, an advertising machine or the like.
  • the human detection logic can be as follows: 1) When the display device is running, first obtain the background depth image through the time-of-flight camera module; of course, the background depth image can also be pre-shot; 2) Then, through the time-of-flight camera module Obtain a depth image and compare it with the background depth image to screen newly emerging individuals in a predetermined detection area; wherein, human body features (for example, human body contours, such as full body contours or upper body contours, etc., but not limited to this) can be used As a screening standard; 3) when it is determined that the individual meets the characteristics of the human body, it is marked and tracked.
  • human body features for example, human body contours, such as full body contours or upper body contours, etc., but not limited to this
  • the counting logic can be as follows: judge whether counting has been carried out according to this individual; disappear within 1 second, but not limited to this), and clear the record information of the individual; if not counted, continue to track, when the individual stops moving in the predetermined detection area, start counting, when the individual’s residence time
  • the threshold for example, 3s, but not limited thereto
  • the count is increased by 1 (that is, the advertisement reading amount is increased by 1), and the tracking continues until the individual walks out of the predetermined detection area.
  • the definition of effective advertising reading volume can be based on customer needs. For example, in a specific example, items that meet the following conditions can be read as an effective advertisement: 1) a person is in the predetermined detection area; 2) the person stays in the predetermined detection area for at least 3 seconds; 3) the person is in the predetermined detection area; No double counting will be performed when people are active in the predetermined detection area. In order to avoid repeated counting in a short period of time, it is necessary to track the behavior of people who enter the predetermined detection area.
  • a detection method may include: start tracking after detecting a human body in a predetermined detection area, and then count the residence time of the individual in the predetermined detection area, if the residence time in this area exceeds 3s , then count according to the individual; after counting according to the individual, continue to track its behavior trajectory, and when the counted individual moves within the predetermined detection area, it will not repeat the count.
  • ToF the working principle of ToF, an occluded human body cannot be recognized.
  • the detection algorithm may perform the counting operation again. error count.
  • an independent identification for example, an independent ID
  • an independent ID can be provided for each individual detected within the field of view of the time-of-flight camera module (i.e., the detected individual).
  • Individuals reappearing can be determined to be the same person, so that they can no longer be counted repeatedly, at least within a certain time frame.
  • the upper body can usually be detected. Therefore, in order to increase the detection range, at the algorithm level, the human body of the individual in the blind area and near the blind area can be determined
  • the standard is set to the upper body silhouette, so the depth information acquired by the time-of-flight camera module is sufficient for human detection. In this case, people who enter the short-distance detection range from the side of the display device can be counted.
  • Fig. 8 is an example diagram of a detection effect of a display device provided by some embodiments of the present disclosure.
  • the four sub-pictures in Figure 8 show the detection patterns when the detection distance is 3m, 4m, 5m, and 6m respectively.
  • the number of people in the field of view and distance information can be displayed in real time in the chromium detection pattern.
  • the variables involved in the detection algorithm may include: the number of people in the current field of view, the total number of people, the total activity time of the current individual in the field of view, the time the current individual stays in the field of view, the current Individual identification (individual ID), etc.
  • the predetermined detection area can be freely set within the fan-shaped area corresponding to the aforementioned detection distance L2 (hereinafter referred to as "maximum detection area").
  • maximum detection area both the foregoing threshold and the prescribed time interval may be set according to actual needs, which is not limited in the embodiments of the present disclosure.
  • the erection height of the actual flight camera module and the pitch angle of the lens can also be set according to actual needs to adapt to various application scenarios.
  • the time-of-flight camera module in the display device can reduce blind spots and perform wider coverage and detection in complex and diverse environments.
  • the display device uses a time-of-flight camera module instead of an RGB camera, so that, under the premise of satisfying privacy protection, the detection algorithm can effectively perform human body tracking statistics and real-time distance feedback.
  • the display device provided by the embodiments of the present disclosure is exemplary rather than restrictive. According to actual application requirements, the display device may also include other conventional components or structures, for example, to realize the necessary functions, those skilled in the art may configure other conventional components or structures according to specific application scenarios, which are not limited by the embodiments of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种飞行时间相机模组及显示设备。飞行时间相机模组包括:第一承载板(203)、第二承载板(207)、结构支架(304)、红外激光发射模块(201,202)、镜头(205)、飞行时间传感器(206)。第一承载板(203)、结构支架(304)和第二承载板(207)层叠设置,且第一承载板(203)和第二承载板(207)分别固定于结构支架(304)的两侧,红外激光发射模块(201,202)设置于第一承载板(203)的远离结构支架(304)的一侧,第一承载板(203)包括位于红外激光发射模块(201,202)一侧的镜头通孔(204),结构支架(304)包括对应于镜头通孔(204)的支架通孔(302),镜头(205)穿过支架通孔(302),飞行时间传感器(206)设置于第二承载板(207)上,并被配置为感测镜头(205)收集的红外光以生成深度信息。

Description

飞行时间相机模组及显示设备 技术领域
本公开的实施例涉及一种飞行时间相机模组及显示设备。
背景技术
飞行时间(Time of Flight,ToF)方法是一种通过测量飞行时间(即,测量光从反射到返回的时间)来计算距离的方法。ToF相机是一种被配置成使用ToF方法来捕获物体的深度信息的相机。根据测量原理的不同,飞行时间方法可以分为D-ToF(Direct-ToF)直接测量和I-ToF(Indirect-ToF)间接测量;其中,D-ToF直接测量是测量光从发射到返回需要的时间差,然后乘以光速并除以2,以得出深度信息;而I-ToF间接测量是测量发射光波和返回光波之间的相位差,以得出深度信息。
最初,TOF技术主要应用在测距领域,目前随着技术精度的提高和人工智能等算法和算力的提升,尤其是TOF CCD/CMOS芯片工艺的提升,使TOF相机的分辨率提升而功耗降低,有了更多小型化微型化的设计。现在,TOF相机广泛应用在移动端,为手机等移动设备提供辅助成像。
发明内容
本公开至少一些实施例提供一种飞行时间相机模组。该飞行时间相机模组包括:第一承载板、第二承载板、结构支架、红外激光发射模块、镜头、飞行时间传感器;其中,所述第一承载板、所述结构支架和所述第二承载板层叠设置,且所述第一承载板和所述第二承载板分别固定于所述结构支架的两侧,所述红外激光发射模块设置于所述第一承载板的远离所述结构支架的一侧,所述第一承载板包括位于所述红外激光发射模块一侧的镜头通孔,所述结构支架包括对应于所述镜头通孔的支架通孔,所述镜头穿过所述支架通孔,所述飞行时间传感器设置于所述第二承载板上,并被配置为感测所述镜头收集的红外光以生成深度信息。
例如,本公开一些实施例提供的飞行时间相机模组还包括:外壳;其中,所述结构支架包括多个楔角,所述外壳包括与所述多个楔角一一对应的楔角安装部,所述结构支架通过所述多个楔角与所述多个楔角安装部的配合固定于所述外壳。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述红外激光发射模块包括第一红外激光发射模块和第二红外激光发射模块,所述第一红外激光发射模块和所述第二红外激光发射模块并排设置于所述第一承载板的远离所述结构支架的一侧,所述镜头通孔位于所述第二红外激光发射模块的远离所述第一红外激光发射模块的一侧。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述第一红外激光发射模块的中心、所述第二红外激光发射模块的中心和所述镜头的中心三者在所述第一承载板上的 正投影位于同一直线上。
例如,本公开一些实施例提供的飞行时间相机模组还包括:前壳;其中,所述前壳包括前表面,所述前表面包括向朝向所述结构支架的方向凹陷的第一凹槽和第二凹槽;所述第一凹槽包括与所述第一红外激光发射模块对应的第一开口以及与所述第二红外激光发射模块对应的第二开口,所述第二凹槽包括与所述镜头对应的第三开口;所述飞行时间相机模组还包括第一滤光片,所述第一滤光片覆盖所述第二凹槽,所述第一滤光片允许与所述第一红外激光发射模块和所述第二红外激光发射模块发射的红外光相同波段的红外光透过。
例如,本公开一些实施例提供的飞行时间相机模组还包括:第二滤光片,其中,所述第二滤光片覆盖所述第一凹槽,所述第二滤光片允许与所述第一红外激光发射模块和所述第二红外激光发射模块发射的红外光相同波段的红外光透过。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述第一红外激光发射模块与所述第二红外激光发射模块的中心距离为d,所述第一红外激光发射模块与所述第二红外激光发射模块到所述第二滤光片的距离均为h,所述第一红外激光发射模块与所述第二红外激光发射模块的水平发射角均为a,所述第一红外激光发射模块与所述第二红外激光发射模块的垂直发射角均为b,所述第一盖板在平行于所述第一红外激光发射模块与所述第二红外激光发射模块的中心连线的方向上的尺寸c1和所述第二滤光片在垂直于所述第一红外激光发射模块与所述第二红外激光发射模块的中心连线的方向上的尺寸c2分别满足下述公式:c1>2h*tan(a/2)+d,c2>2h*tan(b/2)。
例如,本公开一些实施例提供的飞行时间相机模组还包括:连接板、第二柔性电路板和线缆;其中,所述连接板与所述第一承载板通过所述第二柔性电路板进行电连接,所述线缆与所述连接板电连接,所述线缆用于与外部电源和外部设备至少之一连接。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述结构支架还包括第四开口以及限位环,所述限位环位于所述结构支架的远离所述第一承载板的一侧,所述第二柔性电路板弯折穿过所述第四开口和所述限位环。
例如,本公开一些实施例提供的飞行时间相机模组还包括:前壳和后壳;其中,所述后壳包括后表面,所述后壳通过所述后表面与所述前壳固定以共同实现整机覆盖;所述前壳包括前表面,所述前表面相对于所述后表面倾斜设置,所述前表面相对于所述后表面的倾斜角的取值范围为[20°,40°]。
例如,本公开一些实施例提供的飞行时间相机模组还包括:后壳和后壳堵盖;其中,所述后壳包括第五开口,所述连接板固定于所述后壳且与所述第五开口对应;所述后壳堵盖用于封堵所述第五开口,所述后壳堵盖为中空结构,所述线缆穿过所述中孔结构与所述连接板电连接。
例如,本公开一些实施例提供的飞行时间相机模组还包括:红外激光电路模块和外壳;其中,所述红外激光电路模块设置于所述第一承载板的远离所述结构支架的一侧;所述红 外激光电路模块的远离所述第一承载板的一侧设置有导热胶,所述导热胶被配置为与所述外壳接触,所述外壳的材料包括金属。
例如,本公开一些实施例提供的飞行时间相机模组还包括:第一柔性电路板;其中,所述第一承载板与所述第二承载板均为印刷电路板,所述第一承载板与所述第二承载板通过所述第一柔性电路板进行电连接。
例如,本公开一些实施例提供的飞行时间相机模组还包括:运算部件;其中,所述运算部件设置于所述第一承载板上,所述运算部件被配置为根据所述深度信息,确定在所述飞行时间相机模组的视野内的人体的数量、距离、在视野内的总活动时间、在视野内的停留时间至少之一,以及为在所述飞行时间相机模组的视野内的人体设置标识。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述第一红外激光发射模块与所述第二红外激光发射模块的中心距离为15-30mm。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述第二红外激光发射模块与所述镜头的中心距离为20-60mm。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述镜头的水平视场角大于100°,所述镜头的垂直视场角大于80°。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述第一红外激光发射模块与所述第二红外激光发射模块各自均包括垂直腔面发射激光器和扩束器,所述垂直腔面发射激光器的发射功率为1~1.4W,所述垂直腔面发射激光器的水平发射角大于或等于95°,所述垂直腔面发射激光器的垂直发射角大于或等于75°,所述飞行时间相机模组的最大探测距离为5-7m。
例如,在本公开一些实施例提供的飞行时间相机模组中,所述飞行时间相机模组的安装高度为H,所述镜头的垂直视场角为α,所述飞行时间相机模组的镜头俯仰角为θ,所述飞行时间相机模组的探测距离范围为[L1,L2],所述飞行时间相机模组在探测距离L1处的探测高度范围为[h1,h2],且满足下述公式关系:tan(α/2-θ)*L1+H>h2,H-tan(α/2+θ)*L1<h1。
例如,在本公开一些实施例提供的飞行时间相机模组中,L1的取值范围为0.3-0.7m,L2的取值范围为5-7m,h1的取值范围为1-1.2m,h2的取值范围为1.9-2.3m。
本公开至少一些实施例还提供一种上述飞行时间相机模组的应用方法。该应用方法包括:确定应用场景所需的探测距离范围[L1,L2]以及在探测距离L1处的探测高度范围[h1,h2];根据下述公式:tan(α/2-θ)*L1+H>h2,H-tan(α/2+θ)*L1<h1,确定所述飞行时间相机模组的安装高度H、所述镜头的垂直视场角α及所述飞行时间相机模组的镜头俯仰角θ;以及根据探测距离L2确定所述第一红外激光发射模块与所述第二红外激光发射模块的发射功率。
例如,在本公开一些实施例提供的应用方法中,L1的取值范围为0.3-0.7m,L2的取值范围为5-7m,h1的取值范围为1-1.2m,h2的取值范围为1.9-2.3m。
本公开至少一些实施例还提供一种显示设备,包括:设备主体和上述飞行时间相机模 组;其中,所述飞行时间相机模组设置于所述设备主体的顶部,所述设备主体包括显示屏。
例如,在本公开一些实施例提供的显示设备中,所述飞行时间相机模组被配置为检测在预定的检测区内是否有人;所述显示屏被配置为在所述预定的检测区内没有人的情况下显示广告内容,以及在所述预定的检测区内有人的情况下显示商品信息。
例如,在本公开一些实施例提供的显示设备中,所述显示屏被配置为显示广告内容;所述飞行时间相机模组被配置为:检测在预定的检测区内是否有人,在所述预定的检测区内有人的情况下,为所述预定的检测区内的每个人提供独立标识,并对每个人进行追踪,统计每个人在所述预定的检测区内的停留时间,当停留时间大于阈值时,广告阅读量增加1;以及若在规定时间间隔内,所述独立标识消失并重复出现,则广告阅读量不进行重复计数。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A-1B为本公开一些实施例提供的一种飞行时间相机模组的内部结构示意图;
图1C-1D为本公开一些实施例提供的一种飞行时间相机模组的外部结构示意图;
图1E为本公开一些实施例提供的一种飞行时间相机模组的前壳安装结构的示意图;
图1F为本公开一些实施例提供的一种飞行时间相机模组的结构支架示意图;
图1G为本公开一些实施例提供的一种飞行时间相机模组的前壳内部结构示意图;
图1H为本公开一些实施例提供的一种飞行时间相机模组的前壳安装结构的侧视图;
图1I为本公开一些实施例提供的一种飞行时间相机模组的前壳前表面的示意图;
图1J为本公开一些实施例提供的另一种飞行时间相机模组的内部结构示意图;
图1K为本公开一些实施例提供的一种飞行时间相机模组的后壳安装结构的示意图;
图1L为本公开一些实施例提供的一种飞行时间相机模组的第二柔性电路板安装结构示意图;
图1M为本公开一些实施例提供的一种飞行时间相机模组的连接板安装结构示意图;
图1N为本公开一些实施例提供的一种飞行时间相机模组的连接板和线缆的连接示意图;
图2A-2B为本公开一些实施例提供的一种飞行时间相机模组中的第一盖板的尺寸设置示意图;
图3A为本公开一些实施例提供的一种飞行时间相机模组的安装位置示意图;
图3B为本公开一些实施例提供的一种飞行时间相机模组的安装示意图;
图4为本公开一些实施例提供的一种飞行时间相机模组的应用方法的流程图;
图5为本公开一些实施例提供的飞行时间相机模组的检测区域的侧视图;
图6为本公开一些实施例提供的飞行时间相机模组的检测区域的俯视图;
图7为本公开一些实施例提供的一种显示设备的示意性框图;以及
图8为本公开一些实施例提供的一种显示设备的检测效果示例图。
具体实施方式
为了使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着物联网技术的发展,以大数据和人工智能为基础的新零售模式逐渐在世界范围内兴起。企业在向普通人群提供数字化服务的同时,也希望能够获取消费者信息。例如,对广告进行播放的同时采集观看者的反馈,得到广告有效阅读量,据此可以对广告策略进行调整以实现更好的商业广告布局。虽然以人脸识别为依托的人体识别可以通过相机得到人群的详细属性,但此种方法在获取信息的同时,势必带来个人包括面部特征在内的属性信息记录。近些年来,关于隐私泄露带来的问题越来越引起人们的关注。为了兼顾个人隐私的保护,唯一的解决方法就是在硬件层面不涉及任何个人信息的采集。
近些年利用3D深度信息进行物体识别、行为检测的场景越来越多,3D深度相机被广泛应用于机器视觉等领域。常见的3D深度相机包括基于双目立体视觉原理的3D相机、基于结构光原理的3D相机、以及基于飞行时间远离的3D相机,其中,双目立体视觉原理和结构光原理都是依托于RGB/灰度图像的额外投射计算得到深度信息,设备本身在获取深度信息的过程中会进行高分辨率图像的处理,因此无法满足隐私保护需求。而TOF技术是直接测量发射光与接收光的时间/相位差得到点云图,深度信息的获取不依托二维图像,因此可以满足隐私保护的需求。
本公开至少一些实施例提供一种飞行时间相机模组。该飞行时间相机模组包括:第一承载板、第二承载板、结构支架、红外激光发射模块、镜头、飞行时间传感器。其中,第一承载板、结构支架和第二承载板层叠设置,且第一承载板和第二承载板分别固定于结构支架的两侧,红外激光发射模块设置于第一承载板的远离结构支架的一侧,第一承载板包括位于红外激光发射模块一侧的镜头通孔,结构支架包括对应于镜头通孔的支架通孔,镜 头穿过支架通孔,飞行时间传感器设置于第二承载板的靠近结构支架的一侧,并被配置为感测镜头收集的红外光以生成深度信息。
本公开的一些实施例还提供对应于上述飞行时间相机模组的应用方法及显示设备。
本公开的实施例提供的飞行时间相机模组,通过第一承载板、结构支架和第二承载板的三层层叠结构设计,可以对各相机模组中的各元件(器件)进行合理布局,同时有利于整体结构的紧凑、稳固和散热。
下面结合附图对本公开的几个实施例进行详细说明。需要说明的是,为了保持本公开实施例的说明的清楚和简要,可省略已知功能和已知部(元)件的详细说明。当本公开实施例的任一部(元)件在一个以上的附图中出现时,该部(元)件在每个附图中由相同或类似的参考标号表示。
图1A-1B为本公开一些实施例提供的一种飞行时间相机模组的内部结构示意图;图1C-1D为本公开一些实施例提供的一种飞行时间相机模组的外部结构示意图;图1E为本公开一些实施例提供的一种飞行时间相机模组的前壳安装结构的示意图;图1F为本公开一些实施例提供的一种飞行时间相机模组的结构支架示意图;图1G为本公开一些实施例提供的一种飞行时间相机模组的前壳内部结构示意图;图1H为本公开一些实施例提供的一种飞行时间相机模组的前壳安装结构的侧视图;图1I为本公开一些实施例提供的一种飞行时间相机模组的前壳前表面的示意图;图1J为本公开一些实施例提供的另一种飞行时间相机模组的内部结构示意图;图1K为本公开一些实施例提供的一种飞行时间相机模组的后壳安装结构的示意图;图1L为本公开一些实施例提供的一种飞行时间相机模组的第二柔性电路板安装结构示意图;图1M为本公开一些实施例提供的一种飞行时间相机模组的连接板安装结构示意图;图2A-2B为本公开一些实施例提供的一种飞行时间相机模组中的第一盖板的尺寸设置示意图。
例如,如图1A-1B所示,该飞行时间相机模组包括第一承载板203、第二承载板207、结构支架304、红外激光发射模块(201和202)、镜头205、飞行时间传感器206。
例如,如图1A-1B所示,第一承载板203、结构支架304和第二承载板207层叠设置,且第一承载板203和第二承载板207分别固定于结构支架304的两侧。例如,在一些示例中,第一承载板203可以通过多个(例如8个,但不限于此)螺丝孔位303与结构支架304固定在一起;类似地,第二承载板207也可以通过多个(例如8个,但不限于此)螺丝孔位303与结构支架304固定在一起;需要说明的是,本公开的实施例包括但不限于此。
例如,如图1A-1B所示,红外激光发射模块(201和202)设置于第一承载板203的远离结构支架304的一侧,第一承载板包括位于红外激光发射模块(201和202)一侧的镜头通孔204。例如,红外激光发射模块的数量可以为一个或多个,本公开的实施例包括但不限于此。例如,如图1A-1B所示,红外激光发射模块可以包括第一红外激光发射模块201和第二红外激光发射模块202。需要说明的是,虽然本公开的实施例均以两个红外激光发射模块(即第一红外激光发射模块201和第二红外激光发射模块202)为例进行说明,但不应视 作对本公开的限制。在实际应用中,红外激光发射模块的数量可以根据实际需要进行设置。
例如,如图1A-1B所示,第一红外激光发射模块201和第二红外激光发射模块202并排设置于第一承载板203上,且位于第一承载板203的远离结构支架304的一侧。第一承载板203包括位于第二红外激光发射模块202的远离第一红外激光发射模块201一侧的镜头通孔204。结构支架304包括对应于镜头通孔204的支架通孔302,镜头205穿过支架通孔302。例如,镜头205可以经由镜头通孔204和/或支架通孔302进行固定,本公开的实施例包括但不限于此。例如,在一些示例中,镜头205可以通过透镜胶圈固定于镜头通孔204,从而实现镜头205的固定、缓震、防尘以及减少干扰光。
例如,在一些示例中,第一红外激光发射模块201的中心、第二红外激光发射模块202的中心和镜头205的中心(即镜头通孔204的中心)三者在第一承载板203上的正投影位于同一直线上,从而可以使得第一红外激光发射模块201和第二红外激光发射模块202的激光覆盖范围与镜头205的视野范围重叠或大致重叠,有利于满足超广角和远距离范围检测的要求。值得注意的是,所述三者在第一承载板203上的正投影位于同一直线上,可以包括其中一者的中心在第一承载板203上的正投影与另外两者的中心在第一承载板203上的正投影连线所在直线轻微偏离的情况。当其中任意一者的中心在第一承载板203上的正投影与另外两者的中心在第一承载板203上的正投影连线所在直线之间的距离小于或等于10mm时,可以认为第一红外激光发射模块201的中心、第二红外激光发射模块202的中心和镜头205的中心(即镜头通孔204的中心)三者在第一承载板203上的正投影位于同一直线上。
例如,如图1A-1B所示,飞行时间传感器(ToF Sensor)206设置于第二承载板207上,并被配置为感测镜头205收集的红外光以生成深度信息。例如,在一些示例中,飞行时间传感器206可以感测镜头205收集的红外光(例如,该红外光是由第一红外激光发射模块201和第二红外激光发射模块202发射、经过外界物体反射并且经过红外滤光片过滤后被镜头收集的红外光),测量红外光从红外激光发射模块(即第一红外激光发射模块201和第二红外激光发射模块202)的发射单元到感测单元(例如,飞行时间传感器206的感测单元设置于第二承载板207的靠近结构支架304的一侧)的时间,同时记录被拍物体的红外灰度图像;其中,红外滤光片仅允许发射单元发射的相应波长的红外光通过,过滤掉其它波长的光学干扰。需要说明的是,本公开的实施例包括但不限于此;例如,在另一些示例中,飞行时间传感器206可以测量发射光波和返回光波之间的相位差以得出深度信息。例如,飞行时间传感器206包括用于感测红外光的CCD/CMOS芯片等。应当理解的是,为了满足中远距离检测的需要,飞行时间传感器可以选择高QE值的高分辨率传感器(例如640*480像素的TOF CCD)。
例如,该飞行时间相机模组还可以包括运算部件。例如,如图1A-1B所示,运算部件包括系统级芯片(System on Chip,SoC,也称为“片上系统”,例如视觉处理器)208、随机存储器(例如DDR芯片)、Flash闪存芯片等。例如,如图1A-1B所示,上述运算部件设 置于第一承载板203上。例如,如图1A-1B所示,运算部件可以位于第一红外激光发射模块201的远离第二红外激光发射模块202的一侧,本公开的实施例包括但不限于此。例如,运算部件被配置为根据飞行时间传感器206生成的深度信息,确定在飞行时间相机模组的视野内的人体的数量、距离、在视野内的总活动时间、在视野内的停留时间至少之一,以及为在飞行时间相机模组的视野内的人体设置标识(ID)。在本公开的实施例中,运算部件和飞行时间传感器206位于不同的承载板上,有利于飞行时间相机模组的内部结构的散热。
例如,如图1A-1B所示,该飞行时间相机模组还可以包括第一柔性电路板211。例如,第一承载板203和第二承载板207均为印刷电路板,且第一承载板203与第二载板207通过第一柔性电路板211进行电连接。例如,参见图1B和图1J所示,第一柔性电路板211的两侧可以分别与第一承载板203和第二承载板207搭接,且第一柔性电路板211可以弯折绕过第一承载板203和第二承载板207之间的结构支架304。
也就是说,在本公开的实施例提供的飞行时间相机模组中,发射单元(即第一红外激光发射模块201和第二红外激光发射模块202)和感测单元(即飞行时间传感器206)分别集成在两块不同的印刷电路板上;通过层叠设置上下两层印刷电路板,并在上层印刷电路板(即第一承载板203,相应地,下层印刷电路板为第二承载板205)设置镜头通孔204以安装镜头205,可以减小飞行时间相机模组内部结构的厚度,同时使得飞行时间相机模组整体更加紧凑。另外,在上下两层印刷电路板之间设置结构支架304以锁定上下两层印刷电路板,有利于飞行时间相机模组内部结构的稳固。
例如,如图1C-1E所示,该飞行时间相机模组还可以包括外壳;例如,外壳可以包括前壳1和后壳5,前壳1和后壳5配合以共同实现整机覆盖。例如,结构支架304可以包括多个楔角,外壳可以包括与该多个楔角一一对应的楔角安装部,结构支架304通过该多个楔角与该多个楔角安装部的配合固定于外壳。以下,以结构支架304固定于前壳1为例进行说明,但不应视作对本公开的实施例的限制。
例如,如图1E和1G所示,前壳1包括容纳腔,用于容纳第一承载板203、结构支架304和第二承载板207形成的层叠结构。例如,如图1F所示,结构支架304可以包括多个楔角(如图1F中的固定楔角307和对位楔角308所示),每个楔角上具有通孔。示例性地,图1F中示出了3对固定楔角307和1对对位楔角308,本公开的实施例包括但不限于此。例如,如图1G所示,前壳1包括与该多个楔角一一对应的楔角安装部(如图1G中的楔角固定螺丝孔107和楔角对位部108所示)。示例性地,图1G中示出了3对楔角固定螺丝孔107和1对楔角对位部108(在图1G中靠右侧的楔角对位部108被遮挡,因此仅指示出其位置,而未示出其具体结构),分别对应于图1F中的3对固定楔角307和1对对位楔角308。本公开的实施例包括但不限于此。例如,如图1H所示,可以通过螺丝、固定楔角307和楔角固定螺丝孔107将结构支架304固定于前壳1;结构支架主体部分可以倾斜设置,通过调节结构支架主体部分与固定楔角主体部分(例如,固定楔角307与楔角固定螺丝孔107接 触的部分为固定楔角主体部分)的夹角,可以调节结构支架主体部分的倾斜角,从而可以快速调节飞行时间相机模组的镜头俯仰角以适应不同的场景。例如,可以通过对位楔角308和楔角对位部108将结构支架304与前壳1进行对位配合,以方便组装和固定。例如,如图1G所示,楔角对位部108可以为柱状结构,在将对位楔角308和楔角对位部108进行对位时,该柱状结构可以穿过对位楔角208上的通孔,从而实现对位配合。本公开的实施例对该柱状结构的具体形状和结构不作限制,只要其能与对位楔角208上的通孔匹配对位即可。
例如,在一些示例中,如图1F所示,固定楔角307可以设置于结构支架304的上下两边(结构支架304的上下两边平行或大致平行于第一红外激光发射模块201和第二红外激光发射模块202的中心连线),而对位楔角308可以设置于结构支架304的左右两边(结构支架304的左右两边垂直或大致垂直于第一红外激光发射模块201和第二红外激光发射模块202的中心连线),本公开的实施例包括但不限于此。应当理解的是,在一些实施例中,结构支架304上的对位楔角308以及前壳1上的楔角对位部108可以省略。例如,在一些实施例中,可以在结构支架304的左右两边设置固定楔角307,并在前壳1的对应位置设置楔角固定螺丝孔107,以实现结构支架304与前壳1之间的固定,从而,可以快速调节飞行时间相机模组的镜头水平方向的探测范围以适应不同的场景。需要说明的是,图1F中的固定楔角307和对位楔角308的数量以及图1G中的楔角固定螺丝孔107和楔角对位部108的数量均是示意性的,本公开的实施例对此不作限制。
例如,如图1C所示,前壳1可以包括前表面(即滤光片2和滤光片3所在表面)。例如,前表面可以垂直于第一承载板203、结构支架304和第二承载板207的层叠方向(也即,前表面平行于第一承载板203所在平面和第二承载板207所在平面),但不限于此。例如,前表面与滤光片2和/或滤光片3的表面平行。
例如,如图1I所示,前壳1的前表面包括向朝向结构支架304的方向凹陷的第一凹槽G1和第二凹槽G2。例如,第一凹槽G1和第二凹槽G2之间具有隔离部SP。第一凹槽G1包括与第一红外激光发射模块201对应的第一开口以及与第二红外激光发射模块202对应的第二开口,第一开口用于暴露第一红外激光发射模块201的发射单元,第二开口用于暴露第二红外激光发射模块202的发射单元;第二凹槽包括与镜头205对应的第三开口,第三开口用于暴露镜头205。例如,第一凹槽G1至少部分呈碗状且向内凹陷(即向外壳内部凹陷),从而有利于第一红外激光发射模块201的发射单元和暴露第二红外激光发射模块202的发射单元发出的红外光的直接出射。例如,第二凹槽G2也向内凹陷。隔离部SP可以防止红外激光发射模块的发射单元发出的红外光经过内部反射、折射、散射等直接进入镜头205(即红外光未经外接环境中的目标物体的反射)而形成的干扰。在一些实施例中,第一开口和第二开口也可以为同一开口,用于暴露第一红外激光发射模块201的发射单元和第二红外激光发射模块202的发射单元。值得注意的是,当红外激光发射模块的数量不为2个时,也可以根据实际数量设置凹槽和开口。
例如,如图1C示,飞行时间相机模组还包括允许与第一红外激光发射模块201和第二红外激光发射模块202发射的红外光相同波段的红外光透过的滤光片(在本公开中,也称为“第一滤光片”)3。滤光片3覆盖第二凹槽G2,以起到密封作用。例如,在一些示例中,滤光片3可以为红外滤光片,以减小环境光等干扰。例如,滤光片3可以包括透明衬底(例如,PMMA衬底,但不限于此)以及红外镀膜,本公开的实施例包括但不限于此。例如,滤光片3允许红外光透过而阻止其他波段的光透过。例如,滤光片3可以为带通滤光片,例如窄带滤光片,但不限于此。以第一红外激光发射模块201和第二红外激光发射模块202发射的红外光的中心波长为850nm为例,滤光片3可以为窄带滤光片;例如,在一个具体示例中,该窄带滤光片对于波长在840nm至880nm之间的红外光的透过率不小于90%,对于波长小于830nm的红外光以及波长大于890nm的红外光的透过率均接近于0。
例如,如图1C所示,飞行时间相机模组还包括允许第一红外激光发射模块201和第二红外激光发射模块202发射的红外光透过的滤光片(在本公开中,也称为“第二滤光片”)2。滤光片2覆盖第一凹槽G1,以起到密封作用。例如,在一些示例中,滤光片2也可以为红外滤光片,以改善第一红外激光发射模块201和第二红外激光发射模块202发射的红外光的单色性,消除杂散光,并减小环境光等干扰。例如,滤光片2允许红外光透过而阻止其他波段的光透过。例如,滤光片2与滤光片3的材质及种类可以相同,具体细节可以参考前述滤光片3的相关描述,在此不再重复赘述。
例如,如图1A所示,该飞行时间相机模组还可以包括红外激光电路模块212;例如,红外激光电路模块212可以为红外激光发射模块提供电源或者用于控制红外激光发射模块。例如,如图1A所示,红外激光电路模块212设置于第一承载板203的远离结构支架304的一侧。例如,红外激光电路模块212靠近红外激光发射模块;例如,如图1A所示,红外激光电路模块212位于第一红外激光发射模块201和第二红外激光发射模块202之间。例如,红外激光电路模块212的远离第一承载板203的一侧涂覆有导热胶,导热胶被配置为与外壳(例如前壳1)接触。例如,当结构支架304固定于前壳1时,导热胶与前壳1接触。例如,外壳(例如前壳1)的材料可以为金属,包括但不限于铝、铝合金等。
例如,如图1C-1D所示,该飞行时间相机模组还可以包括后壳5。后壳包括后表面,后壳5通过后表面与前壳1固定以共同实现整机覆盖。例如,后表面为后壳主体结构所在平面;例如,可以从各个方向对后壳进行投影,其中,投影面积最大时的投影方向与后表面垂直。例如,如图1C-1D所示,前表面相对于后表面倾斜设置。例如,在一些示例中,前表面相对于后表面的倾斜角的范围可以为[20°,40°],以使得该飞行时间相机模组在安装后适用于各种常见的人体检测应用场景。但不限于此。当然,在一些实施例中,前表面也可以平行于后表面。例如,在一些示例中,前表面相对于后表面的倾斜角的范围可以为[0°,40°],但不限于此。例如,在一些示例中,前壳1上可以预留多个螺丝槽,后壳5的后表面上可以预留与该多个螺丝槽对应的多个螺丝孔,从而,前壳1和后壳5可以通过多个螺丝实现一体式安装。需要说明的是,在安装飞行时间相机模组时,后表面通常垂直于地面。 以垂直于地面的方向为竖直方向,则后表面平行于竖直方向;相应地,第一承载板203、结构支架304和第二承载板207形成的层叠结构相对于竖直方向倾斜设置。应当理解的是,在实际应用中,可以通过调整前述楔角301而调节上述层叠结构相对于上述竖直方向的倾斜角(也即上述层叠结构的俯仰角);当然,前表面的俯仰角和上述层叠结构的俯仰角可以保持一致,以使得第一承载板203所在平面与前表面平行。应当理解的是,上述前表面的俯仰角及层叠结构的俯仰角均可以根据实际应用场景的需要进行设置。
例如,如图1C-1D和1J-1L所示,该飞行时间相机模组还可以包括连接板215、第二柔性电路板221和线缆4。例如,连接板215与第一承载板203通过第二柔性电路板211进行电连接;线缆4与连接板215电连接,线缆4用于与外部电源和外部设备(例如PC)至少之一连接。例如,连接板215用于电源信号和数据传输信号的转接等。
例如,如图1L所示,结构支架304包括第四开口和限位环310,限位环310位于结构支架304的远离第一承载板203的一侧。第二柔性电路板221搭接于第一承载板203的靠近结构支架304的一侧,且弯折穿过第四开口和限位环310。结构支架304上的第四开口和限位环310有利于第二柔性电路板221组装位置的量产稳定性,且在实际使用中通过限位减少了其活动量,降低实际使用时震动引起的第二柔性电路板221的脱落风险。
例如,如图1M所示,后壳5包括第五开口(在图1D中,被后壳堵盖6封堵),连接板215固定于后壳5且与第五开口对应;线缆4穿过第五开口与连接板215电连接。例如,在一些示例中,线缆4可以包括供电线和数据线,以分别用于提供电源供电和数据传输等;连接板215可以通过线缆4与外部电源和外部设备(例如PC)连接。
例如,如图1N所示,连接板215上具有线缆接口218,线缆4与该线缆接口218电连接。线缆4的弯折处包裹有弯折保护部41,该弯折保护部41用于保护线缆4的弯折处,以延长线缆4的使用寿命。
例如,如图1D所示,该飞行时间相机模组还可以包括后壳堵盖6。例如,后壳堵盖6为中空结构,线缆4穿过该中空结构与连接板215电连接。后壳堵盖6用于封堵上述第五开口;同时后壳堵盖6还可以对线缆4进行额外的固定和保护,通过拆卸后壳堵盖6可以完成线缆4的快速更换。
例如,如图1D所示,后壳6还包括模组安装部7,该模组安装部7用于将飞行时间相机模组安装固定于某些设备(例如后续将要介绍的显示设备)的顶部或者某些设备门(例如电梯门、冰箱门等)的正上方。例如,如图1D所示,该模组安装部7可以位于后壳堵盖6的两侧。例如,如图1D所示,该模组安装部7可以突出于后壳5的后表面。例如,如图1D所示,该模组安装部7可以包括安装板71;例如,安装板71垂直或大致垂直于后壳6的后表面,安装板71的延伸方向与后壳5的后表面的延伸方向可以相同,安装板71上具有多个通孔以用于固定和/或限位,以便于飞行时间相机模组的安装固定。例如,如图1D所示,该模组安装部7还可以包括与安装板71连接的加强部72,以提高模组安装部的强度。例如,加强部72可以设置为垂直或大致垂直于后壳6的后表面,并且垂直或大致垂直于安 装板71。例如,如图1D所示,每个模组安装部7可以包括两个加强部72,但不限于此;例如,每个模组安装部7中的加强部72的数量也可以为一个(参考图3B所示)或更多个,本公开的实施例对此不作限制。需要说明的是,本公开的实施例对模组安装部7的具体形状和结构不作限制,只要能实现飞行时间相机模组的安装固定即可。
例如,在一些实施例中,第一红外激光发射模块与所述第二红外激光发射模块各自均包括垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,VCSEL)和扩束器。垂直腔面发射激光器是一种半导体激光器,激光可以从其顶面射出。例如,常见的红外激光发射波长为850nm、940nm等。例如,扩束器通常包括扩束透镜或扩散片等。
为了满足超广角和远距离范围检测的要求,飞行时间相机模组的红外激光发射模块需要覆盖广角范围。例如,在一些实施例中,上述垂直腔面发射激光器的水平发射角大于或等于95°,例如水平发射角为100°、110°或120°等等;上述垂直腔面发射激光器的垂直发射角大于或等于75°,例如垂直发射角为80°、85°或90°等等。相应地,为了满足超广角和远距离范围检测的要求,飞行时间相机模组的镜头205需要选用超广角镜头以收集红外光线。例如,在一些实施例中,镜头205的水平视场角大于100°,镜头205的垂直视场角大于80°。应当理解的是,为了实现更佳的性能,镜头205可以具备大相对孔径和低畸变高分辨率的特点,以满足高分辨率ToF Sensor的调制传递函数(Modulation Transfer Function,MTF)的要求。另外,在实际应用中,红外激光发射模块的发射角通常接近于镜头的视场角,也就是说,垂直腔面发射激光器的水平发射角接近于镜头205的水平视场角,垂直腔面发射激光器的垂直发射角接近于镜头205的垂直视场角。还应当理解的是,镜头205的水平视场角与垂直视场角的比例一般近似于TOF Sensor分辨率的水平/垂直比。
在实际应用中,单个红外激光发射模块的激光强度往往难以满足中远距离目标物体的检测需要(中远距离目标物体反射的红外光能量密度太低),导致中远距离目标物体的检测易受干扰且采集信息准确性差。在此情况下,可以考虑增强单个红外激光发射模块的发射功率以满足中远距离目标物体的检测需要,但是,这种方案的实用性较差。一方面,单个红外激光发射模块的发射功率过强(例如,超过其常规工作能力),其发热往往严重且集中,由此导致的散热问题不利于飞行时间相机模组的紧凑化设计;另一方面,单个红外激光发射模块的发射功率过强,在实际应用中可能会对人眼造成伤害,因此也很可能无法通过人眼安全认证。为了解决上述问题,在本公开的实施例提供的飞行时间相机模组中,可以采用两个或更多个红外激光发射模块。需要说明的是,在附图中仅示例性地示出了包括两个红外激光发射模块的飞行时间相机模组,但不应视作对本公开的限制。
在使用多个红外激光发射模块增强发射光强的情况下,需要保证多个红外激光发射模块的激光投射面覆盖镜头205的视野(即镜头205的视场角对应区域)。例如,有效检测区域为红外激光发射模块的激光投射面的交叠区(如图2A所示)。在中远距离下,多个红外激光发射模块照射的非交叠区域(即分散区,如图2A所示)会很小。以选用具有相同发射角的两个红外激光发射模块为例,当两个红外激光发射模块的中心距离为d时,在远距 离状态下,分散区在平行于第一红外激光发射模块201与第二红外激光发射模块202的中心连线的方向上的总尺寸仅为2d。由于垂直腔面发射激光器摆放位置的间距为厘米级间距,从而在远距离状态下,两个红外激光发射模块的发射光基本可以达到有效的交叠。因此,在飞行时间相机模组的结构设计上,重点需要关注的是第一盖板2能够使得两个红外激光发射模块发出的红外光均能够有效射出。
例如,在一些实施例中,如图2A-2B所示,第一红外激光发射模块201与第二红外激光发射模块202的中心距离AB(A、B分别表示两个红外激光发射模块的中心)为d,第一红外激光发射模块201与第二红外激光发射模块202到第一盖板2(如图2A中的黑色粗实线所示)的距离均为h,第一红外激光发射模块201与第二红外激光发射模块的202的水平发射角均为a,第一红外激光发射模块201与第二红外激光发射模块的202的垂直发射角均为b,则第一盖板2在平行于第一红外激光发射模块201与第二红外激光发射模块202的中心连线的方向上的尺寸c1和第一盖板2在垂直于第一红外激光发射模块201与第二红外激光发射模块202的中心连线的方向上的尺寸c2分别满足下述公式:c1>2h*tan(a/2)+d,c2>2h*tan(b/2)。
在采用多个红外激光发射模块时,各个红外激光发射模块发出的红外光之间可能存在非常小的相位差,因此在保证良好散热且不影响印刷电路板的走线布局的前提下,各个红外激光发射模块之间的距离应当尽量小。例如,在一些实施例中,第一红外激光发射模块201与第二红外激光发射模块202的中心距离d为15-30mm,例如20mm等。例如,在一些实施例中,第二红外激光发射模块202与镜头205的中心距离为20-60mm。例如,第一红外激光发射模块201与第二红外激光发射模块202(即垂直腔面发射激光器)的尺寸大约为3-5mm,镜头205的直径大约为10-20mm。
应当理解的是,在本公开的实施例中,在综合考虑第一红外激光发射模块201与第二红外激光发射模块202的尺寸、镜头205的直径、以及散热和紧凑化设计等因素的情况下,第一红外激光发射模块201与第二红外激光发射模块202的中心距离以及第二红外激光发射模块202与镜头205的中心距离均可以根据实际需要进行设置。
例如,在一些实施例中,飞行时间相机模组的最大探测距离可以为5-7m。例如,为了达到上述最大探测距离,同时兼顾人眼安全认证,第一红外激光发射模块201与第二红外激光发射模块202(即垂直腔面发射激光器)的发射功率可以设定为例如1~1.4W,本公开的实施例包括但不限于此。
例如,在一些实施例中,飞行时间相机模组的安装高度为H,镜头的垂直视场角为α,飞行时间相机模组的镜头俯仰角为θ,飞行时间相机模组的探测距离范围为[L1,L2],飞行时间相机模组在探测距离L1处的探测身高范围为[h1,h2],且满足下述公式关系:tan(α/2-θ)*L1+H>h2,H-tan(α/2+θ)*L1<h1。例如,在一些示例中,L1的取值范围为0.3-0.7m,L2的取值范围为5-7m,h1的取值范围为1-1.2m,h2的取值范围为1.9-2.3m。需要说明的是,本公开的实施例包括但不限于此。也就是说,可以根据实际需要设置飞行时间相 机模组的安装高度H、镜头的垂直视场角α、飞行时间相机模组的镜头俯仰角θ,从而调节L1、h1、h2的取值。例如,L2的取值一般是根据检测需要预先设定的,进而,可以根据L2的取值选择具有合适的发射功率的红外激光发射模块。值得注意的是,飞行时间相机模组在探测距离L1处能够对位于探测高度范围[h1,h2]内的物体(包括人体等)或物体位于该探测高度范围[h1,h2]内的部分进行检测,应当理解为飞行时间相机模组可以探测到所述物体的存在,但是否执行计数(例如,统计人数)等功能需要根据算法设计确定,本申请不对此进行限制。值得注意的是,探测距离L1和L2都为水平距离。
例如,本公开的实施例提供的飞行时间相机模组的工作原理大致如下:红外发射模块(第一红外激光发射模块201与第二红外激光发射模块202)按照设置的调制频率发射激光脉冲,激光脉冲经过红外滤光片(即设置有红外镀膜的第一盖板2)投射到外部环境,经外部环境中的目标物体反射后,脉冲光经过红外滤光片(即设置有红外镀膜的第二盖板3)进入镜头205,透过镜头205进入TOF Sensor;TOF Sensor生成的深度信息经过数字信号处理后到达运算部件,运算部件可以对深度信息进行进一步处理并与外部设备交互。本公开的一些实施例还提供一种飞行时间相机模组的应用方法。例如,该飞行时间相机模组为本公开任一实施例提供的飞行时间相机模组,该飞行时间相机模组可以广泛应用于各种需要进行物体识别和/或行为检测的场景,同时可以兼顾隐私保护。图3A为本公开一些实施例提供的一种飞行时间相机模组的安装位置示意图,图3B为本公开一些实施例提供的一种飞行时间相机模组的安装示意图。例如,如图3A-3B所示,飞行时间相机模组可以通过其模组安装部安装在某些设备(例如后续将要介绍的显示设备)的顶部或者某些设备门(例如电梯门、冰箱门等)的正上方,且飞行时间相机模组的前壳的前表面面对检测区域,从而,飞行时间相机模组可以对这些设备或设备门的用户进行识别和/或行为检测,同时在硬件层面满足隐私保护的需求。
图4为本公开一些实施例提供的一种飞行时间相机模组的应用方法的流程图,图5为本公开一些实施例提供的飞行时间相机模组的检测区域的侧视图;图6为本公开一些实施例提供的飞行时间相机模组的检测区域的俯视图。以下,结合图5-6对图4所示的应用方法进行详细说明。
例如,如图4所示,该应用方法可以包括以下步骤S10至步骤S30。
步骤S10:确定应用场景所需的探测距离范围[L1,L2]以及在探测距离L1处的探测高度范围[h1,h2]。
例如,在一些实施例中,L1的取值范围为0.3-0.7m,L2的取值范围为5-7m,h1的取值范围为1-1.2m,h2的取值范围为1.9-2.3m。需要说明的是,本公开的实施例包括但不限于此。也就是说,L1、L2、h1、h2的取值可以根据实际需要进行设置。
步骤S20:根据公式:tan(α/2-θ)*L1+H>h2,H-tan(α/2+θ)*L1<h1,确定飞行时间相机模组的安装高度H、镜头的垂直视场角α及飞行时间相机模组的镜头俯仰角θ。
例如,飞行时间相机模组的安装高度H、镜头的垂直视场角α及飞行时间相机模组的 镜头俯仰角θ均可以参考图5所示。
应当理解的是,飞行时间相机模组的镜头俯仰角θ为上述前表面的俯仰角,也即上述层叠结构的俯仰角。
步骤S20中确定的飞行时间相机模组的安装高度H、镜头的垂直视场角α及飞行时间相机模组的镜头俯仰角θ,可以确保飞行时间相机模组在探测距离L1处能够对位于探测高度范围[h1,h2]内的物体(包括人体等)或物体位于该探测高度范围[h1,h2]内的部分进行检测。
步骤S30:根据探测距离L2确定第一红外激光发射模块与第二红外激光发射模块的发射功率。
应当理解的是,第一红外激光发射模块与第二红外激光发射模块的发射功率应当满足探测距离范围能够达到探测距离L2的需要,同时还要兼顾人眼安全认证,因此,探测距离L2通常也应当根据实际应用场景进行合理设置。例如,可以在根据实际应用场景设置L2的数值后,根据L2的数值选择具有合适的发射功率的红外激光发射模块。
例如,如图6所示,飞行时间相机模组的检测区域位于一个半径为L2的扇形区域内,该半径为L2的扇形区域的圆心角接近于或等于镜头的水平视场角。例如,该半径为L2的扇形区域包括盲区和检测区,其中,盲区为半径为L1的扇形区域,身高不超过h1的人位于盲区中时无法被飞行时间相机模组检测到;检测区为半径为L2的扇形区域中除了盲区之外的区域,且半径为L1的扇形区域与半径为L2的扇形区域圆心角相同。
在实际应用中,可以根据上述步骤S20和步骤S30确定的参数制造或选用合适的飞行时间相机模组,以适应各种不同的应用场景。
本公开的一些实施例还提供一种显示设备。图7为本公开一些实施例提供的一种显示设备的示意性框图。例如,如图7所示,该显示设备包括设备主体和本公开任一实施例提供的飞行时间相机模组。例如,该飞行时间相机模组设置于设备主体的顶部,例如,飞行时间相机模组的安装和配置可以参考前述应用方法的相关描述,在此不再重复赘述。
例如,如图7所示,设备主体可以包括显示屏。例如,该显示屏可以显示广告内容或者商品信息等。例如,该显示屏可以为触摸屏,本公开的实施例包括但不限于此。例如,该显示屏可以包括LCD显示屏、OLED显示屏等,本公开的实施例对此不作限制。
例如,在一些实施例中,飞行时间相机模组被配置为检测在预定的检测区内是否有人;显示屏被配置为在预定的检测区内没有人的情况下显示广告内容,以及在预定的检测区内有人的情况下显示商品信息。在此情况下,显示设备可以为例如货柜机等,飞行时间相机模组实现距离传感器的功能。由于货柜机摆放位置固定,其前置飞行时间相机模组的视野区域是确定的,预定的检测区可以在前述探测距离L2对应的扇形区域(以下称为“最大探测区域”)内自由设定。由于TOF Sensor可以直接输出距离信息,因此,可以以人体轮廓(例如全身轮廓或上半身轮廓等,但不限于此)作为判定依据,以地面为准,在最大探测区域内识别到人体后进行人体行为轨迹跟踪,当人体进入预定的检测区内,切换显示屏中的播 放画面,例如将广告内容切换为商品信息;当人体离开预定的检测区时,也可以切换显示屏中的播放画面,例如将商品信息切换为广告内容。应当理解的是,由于可以以上半身轮廓作为判定依据,因此,对于一个正常身高(例如大于前述h1)的成年人,即使其位于前述盲区(如图6所示)内,其通常也可以被识别和检测。从而,预定的检测区通常还可以包括上述盲区,以下实施例的情形与此类似,不再重复赘述。
例如,在另一些实施例中,显示屏被配置为显示广告内容;飞行时间相机模组被配置为:检测在预定的检测区内是否有人;在预定的检测区内有人的情况下,为预定的检测区内的每个人提供独立标识,并对每个人进行追踪,统计每个人在预定的检测区内的停留时间,当停留时间大于阈值时,广告阅读量增加1;以及,若在规定时间间隔内,该独立标识消失并重复出现,则广告阅读量不进行重复计数。在此情况下,显示设备可以为例如广告机等。
例如,人体检测逻辑可以如下:1)显示设备运行时,先通过飞行时间相机模组获取背景深度图像;当然,背景深度图像也可以是预先拍摄的;2)然后,通过飞行时间相机模组不断获取深度图像,并可与背景深度图像进行对比,以筛选预定的检测区内新出现的个体;其中,可以利用人体特征(例如,人体轮廓,例如全身轮廓或上半身轮廓等,但不限于此)作为筛选标准;3)当判定该个体符合人体特征时将其标记,并对其进行跟踪。例如,计数逻辑可以如下:判断是否已根据该个体进行计数;若已计数,则持续跟踪直到其走出预定的检测区(例如,从预定的检测区内消失一定时间以上,例如从预定的检测区内消失1s以上,但不限于此),并清除该个体的记录信息;若未计数,则持续跟踪,在该个体在预定的检测区内停止移动时,开始进行计时,当该个体的停留时间大于阈值(例如3s,但不限于此)时,计数增加1(即,广告阅读量增加1),并持续跟踪直到该个体走出预定的检测区。
在实际应用中,有效的广告阅读量的定义可以以客户需求为准。例如,在一个具体示例中,可以将符合以下条件的事项作为一次有效的广告阅读:1)某人处于预定的检测区内;2)该人在预定的检测区内至少停留3s;3)该人在预定的检测区内活动时不进行重复计数。为避免短时间内重复计数,需要对进入预定的检测区的人进行行为轨迹跟踪。
例如,在实际应用中,一种检测方式可以包括:在预定的检测区内检测到人体后开始追踪,然后统计该个体在预定的检测区内的停留时间,若在该区域内停留时间超过3s,则根据该个体进行计数;根据该个体进行计数后,继续追踪其行为轨迹,已计数个体在预定的检测区范围内活动时,不再重复计数。根据ToF的工作原理,被遮挡的人体是无法进行识别的,但是,当该人体从被遮挡状态重新进入飞行时间相机模组的视野后,检测算法可能会重新进行计数作业,由此可能存在一定的错误计数。为改善检测精度,可以给飞行时间相机模组的视野内的每个检测个体(即被检测到的个体)提供独立标识(例如,独立ID),对飞行时间相机模组的视野内突然消失又再出现的个体可判定为同一人,从而可以至少在一定时间范围内不再重复计数。特别地,对于位于飞行时间相机模组的盲区及盲区附近的 个体,其上半身通常可以被检测到,因此,为了增大检测范围,在算法层面上,可以将盲区及盲区附近的个体的人体判定标准设定为上半身轮廓,从而,飞行时间相机模组获取的深度信息足够用于实现人体检测。在此情况下,可以将从显示设备的侧面进入到近距离检测范围内的人统计进去。
图8为本公开一些实施例提供的一种显示设备的检测效果示例图。图8中的四幅子图分别示出了检测距离为3m、4m、5m、6m时的检测图样,铬检测图样中可以实时显示视野内人数和距离信息等。例如,为了更加精确的进行行为分析和统计,检测算法涉及的变量可以包括:当前视野内的人数、总统计人数、当前个体在视野内的总活动时间、当前个体在视野内的停留时间,当前个体的独立标识(独立ID)等。
例如,预定的检测区可以在前述探测距离L2对应的扇形区域(以下称为“最大探测区域”)内自由设定。例如,上述阈值和规定时间间隔均可以根据实际需要进行设置,本公开的实施例对此不作限制。例如,飞行实际相机模组的架设高度以及镜头俯仰角等也可以根据实际需要进行设置,以适应各种不同的应用场景。
本公开的实施例提供的显示设备中的飞行时间相机模组可以满足在复杂多元的环境下减少盲区,进行更广范围的覆盖和检测。显示设备中采用飞行时间相机模组,而不采用RGB摄像头,从而,可以在满足隐私保护的前提下,通过检测算法有效地进行人体跟踪统计和实时的距离反馈。
需要说明的是,本公开的实施例提供的显示设备是示例性的,而非限制性的,根据实际应用需要,该显示设备还可以包括其他常规部件或结构,例如,为实现显示设备的必要功能,本领域技术人员可以根据具体应用场景设置其他的常规部件或结构,本公开的实施例对此不作限制。
对于本公开,有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种飞行时间相机模组,包括:第一承载板、第二承载板、结构支架、红外激光发射模块、镜头、飞行时间传感器;其中,
    所述第一承载板、所述结构支架和所述第二承载板层叠设置,且所述第一承载板和所述第二承载板分别固定于所述结构支架的两侧,
    所述红外激光发射模块设置于所述第一承载板的远离所述结构支架的一侧,
    所述第一承载板包括位于所述红外激光发射模块一侧的镜头通孔,所述结构支架包括对应于所述镜头通孔的支架通孔,所述镜头穿过所述支架通孔,
    所述飞行时间传感器设置于所述第二承载板上,并被配置为感测所述镜头收集的红外光以生成深度信息。
  2. 根据权利要求1所述的飞行时间相机模组,还包括:外壳;其中,
    所述结构支架包括多个楔角,所述外壳包括与所述多个楔角一一对应的楔角安装部,所述结构支架通过所述多个楔角与所述多个楔角安装部的配合固定于所述外壳。
  3. 根据权利要求1或2所述的飞行时间相机模组,其中,所述红外激光发射模块包括第一红外激光发射模块和第二红外激光发射模块,
    所述第一红外激光发射模块和所述第二红外激光发射模块并排设置于所述第一承载板的远离所述结构支架的一侧,所述镜头通孔位于所述第二红外激光发射模块的远离所述第一红外激光发射模块的一侧。
  4. 根据权利要求3所述的飞行时间相机模组,其中,所述第一红外激光发射模块的中心、所述第二红外激光发射模块的中心和所述镜头的中心三者在所述第一承载板上的正投影位于同一直线上。
  5. 根据权利要求3或4所述的飞行时间相机模组,还包括:前壳;其中,
    所述前壳包括前表面,所述前表面包括向朝向所述结构支架的方向凹陷的第一凹槽和第二凹槽;
    所述第一凹槽包括与所述第一红外激光发射模块对应的第一开口以及与所述第二红外激光发射模块对应的第二开口,所述第二凹槽包括与所述镜头对应的第三开口;
    所述飞行时间相机模组还包括第一滤光片,所述第一滤光片覆盖所述第二凹槽,所述第一滤光片允许与所述第一红外激光发射模块和所述第二红外激光发射模块发射的红外光相同波段的红外光透过。
  6. 根据权利要求5所述的飞行时间相机模组,还包括:第二滤光片,其中,所述第二滤光片覆盖所述第一凹槽,所述第二滤光片允许与所述第一红外激光发射模块和所述第二红外激光发射模块发射的红外光相同波段的红外光透过。
  7. 根据权利要求6所述的飞行时间相机模组,其中,所述第一红外激光发射模块与所述第二红外激光发射模块的中心距离为d,所述第一红外激光发射模块与所述第二红外激光发射模块到所述第二滤光片的距离均为h,所述第一红外激光发射模块与所述第二红外激光 发射模块的水平发射角均为a,所述第一红外激光发射模块与所述第二红外激光发射模块的垂直发射角均为b,
    所述第一盖板在平行于所述第一红外激光发射模块与所述第二红外激光发射模块的中心连线的方向上的尺寸c1和所述第二滤光片在垂直于所述第一红外激光发射模块与所述第二红外激光发射模块的中心连线的方向上的尺寸c2分别满足下述公式:
    c1>2h*tan(a/2)+d,c2>2h*tan(b/2)。
  8. 根据权利要求1-7任一项所述的飞行时间相机模组,还包括:连接板、第二柔性电路板和线缆;其中,
    所述连接板与所述第一承载板通过所述第二柔性电路板进行电连接,
    所述线缆与所述连接板电连接,所述线缆用于与外部电源和外部设备至少之一连接。
  9. 根据权利要求8所述的飞行时间相机模组,其中,所述结构支架还包括第四开口以及限位环,所述限位环位于所述结构支架的远离所述第一承载板的一侧,所述第二柔性电路板弯折穿过所述第四开口和所述限位环。
  10. 根据权利要求1-9任一项所述的飞行时间相机模组,包括:前壳和后壳;其中,
    所述后壳包括后表面,所述后壳通过所述后表面与所述前壳固定以共同实现整机覆盖;
    所述前壳包括前表面,所述前表面相对于所述后表面倾斜设置,所述前表面相对于所述后表面的倾斜角的取值范围为[20°,40°]。
  11. 根据权利要求8所述的飞行时间相机模组,还包括:后壳和后壳堵盖;其中,
    所述后壳包括第五开口,所述连接板固定于所述后壳且与所述第五开口对应;
    所述后壳堵盖用于封堵所述第五开口,所述后壳堵盖为中空结构,所述线缆穿过所述中孔结构与所述连接板电连接。
  12. 根据权利要求1-11任一项所述的飞行时间相机模组,还包括:红外激光电路模块和外壳;其中,
    所述红外激光电路模块设置于所述第一承载板的远离所述结构支架的一侧;
    所述红外激光电路模块的远离所述第一承载板的一侧设置有导热胶,所述导热胶被配置为与所述外壳接触,所述外壳的材料包括金属。
  13. 根据权利要求1-12任一项所述的飞行时间相机模组,还包括:第一柔性电路板;其中,
    所述第一承载板与所述第二承载板均为印刷电路板,所述第一承载板与所述第二承载板通过所述第一柔性电路板进行电连接。
  14. 根据权利要求1-13任一项所述的飞行时间相机模组,还包括:运算部件;其中,
    所述运算部件设置于所述第一承载板上,
    所述运算部件被配置为根据所述深度信息,确定在所述飞行时间相机模组的视野内的人体的数量、距离、在视野内的总活动时间、在视野内的停留时间至少之一,以及为在所述飞行时间相机模组的视野内的人体设置标识。
  15. 根据权利要求1-14任一项所述的飞行时间相机模组,其中,所述镜头的水平视场角大于100°,所述镜头的垂直视场角大于80°。
  16. 根据权利要求1-15任一项所述的飞行时间相机模组,其中,所述第一红外激光发射模块与所述第二红外激光发射模块各自均包括垂直腔面发射激光器和扩束器,
    所述垂直腔面发射激光器的发射功率为1~1.4W,所述垂直腔面发射激光器的水平发射角大于或等于95°,所述垂直腔面发射激光器的垂直发射角大于或等于75°,
    所述飞行时间相机模组的最大探测距离为5-7m。
  17. 根据权利要求1-16任一项所述的飞行时间相机模组,其中,所述飞行时间相机模组的安装高度为H,所述镜头的垂直视场角为α,所述飞行时间相机模组的镜头俯仰角为θ,所述飞行时间相机模组的探测距离范围为[L1,L2],所述飞行时间相机模组在探测距离L1处的探测高度范围为[h1,h2],且满足下述公式关系:tan(α/2-θ)*L1+H>h2,H-tan(α/2+θ)*L1<h1。
  18. 根据权利要求17所述的飞行时间相机模组,其中,L1的取值范围为0.3-0.7m,L2的取值范围为5-7m,h1的取值范围为1-1.2m,h2的取值范围为1.9-2.3m。
  19. 一种显示设备,包括:设备主体和根据权利要求1-18任一项所述的飞行时间相机模组,其中,所述飞行时间相机模组设置于所述设备主体的顶部,所述设备主体包括显示屏。
  20. 根据权利要求19所述的显示设备,其中,
    所述飞行时间相机模组被配置为检测在预定的检测区内是否有人,
    所述显示屏被配置为在所述预定的检测区内没有人的情况下显示广告内容,以及在所述预定的检测区内有人的情况下显示商品信息。
  21. 根据权利要求19所述的显示设备,其中,
    所述显示屏被配置为显示广告内容;
    所述飞行时间相机模组被配置为:
    检测在预定的检测区内是否有人,
    在所述预定的检测区内有人的情况下,为所述预定的检测区内的每个人提供独立标识,并对每个人进行追踪,统计每个人在所述预定的检测区内的停留时间,当停留时间大于阈值时,广告阅读量增加1;以及
    若在规定时间间隔内,所述独立标识消失并重复出现,则广告阅读量不进行重复计数。
PCT/CN2021/126396 2021-10-26 2021-10-26 飞行时间相机模组及显示设备 WO2023070313A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/126396 WO2023070313A1 (zh) 2021-10-26 2021-10-26 飞行时间相机模组及显示设备
CN202180003077.2A CN117321381A (zh) 2021-10-26 2021-10-26 飞行时间相机模组及显示设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126396 WO2023070313A1 (zh) 2021-10-26 2021-10-26 飞行时间相机模组及显示设备

Publications (2)

Publication Number Publication Date
WO2023070313A1 true WO2023070313A1 (zh) 2023-05-04
WO2023070313A9 WO2023070313A9 (zh) 2023-07-27

Family

ID=86158964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126396 WO2023070313A1 (zh) 2021-10-26 2021-10-26 飞行时间相机模组及显示设备

Country Status (2)

Country Link
CN (1) CN117321381A (zh)
WO (1) WO2023070313A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291574A (zh) * 2016-09-10 2017-01-04 北醒(北京)光子科技有限公司 一种小型红外测距装置
CN108174075A (zh) * 2018-02-28 2018-06-15 信利光电股份有限公司 一种tof摄像模组以及电子设备
CN207650913U (zh) * 2017-09-11 2018-07-24 深圳市三通特发科技有限公司 一种触控型数字智能玻璃显示的自动售货机
CN208014266U (zh) * 2018-01-02 2018-10-26 广东奥森智能科技有限公司 一种智能型广告机
CN109005348A (zh) * 2018-08-22 2018-12-14 Oppo广东移动通信有限公司 电子装置和电子装置的控制方法
CN109040556A (zh) * 2018-08-22 2018-12-18 Oppo广东移动通信有限公司 成像装置及电子设备
CN109737868A (zh) * 2018-12-21 2019-05-10 华为技术有限公司 飞行时间模组及电子设备
CN110412540A (zh) * 2019-07-30 2019-11-05 Oppo广东移动通信有限公司 光发射模组、飞行时间相机和电子装置
WO2019214973A1 (de) * 2018-05-09 2019-11-14 Zf Friedrichshafen Ag Lidar messsystem und verfahren zur montage eines lidar messsystems
CN110568418A (zh) * 2018-06-06 2019-12-13 南昌欧菲生物识别技术有限公司 光电模组及电子装置
CN111050029A (zh) * 2018-10-11 2020-04-21 南昌欧菲生物识别技术有限公司 成像模组和电子装置
CN111919432A (zh) * 2018-03-20 2020-11-10 Lg伊诺特有限公司 相机模块和包括相机模块的光学设备
CN212992427U (zh) * 2020-09-24 2021-04-16 深圳福鸽科技有限公司 一种图像采集模组

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291574A (zh) * 2016-09-10 2017-01-04 北醒(北京)光子科技有限公司 一种小型红外测距装置
CN207650913U (zh) * 2017-09-11 2018-07-24 深圳市三通特发科技有限公司 一种触控型数字智能玻璃显示的自动售货机
CN208014266U (zh) * 2018-01-02 2018-10-26 广东奥森智能科技有限公司 一种智能型广告机
CN108174075A (zh) * 2018-02-28 2018-06-15 信利光电股份有限公司 一种tof摄像模组以及电子设备
CN111919432A (zh) * 2018-03-20 2020-11-10 Lg伊诺特有限公司 相机模块和包括相机模块的光学设备
WO2019214973A1 (de) * 2018-05-09 2019-11-14 Zf Friedrichshafen Ag Lidar messsystem und verfahren zur montage eines lidar messsystems
CN110568418A (zh) * 2018-06-06 2019-12-13 南昌欧菲生物识别技术有限公司 光电模组及电子装置
CN109040556A (zh) * 2018-08-22 2018-12-18 Oppo广东移动通信有限公司 成像装置及电子设备
CN109005348A (zh) * 2018-08-22 2018-12-14 Oppo广东移动通信有限公司 电子装置和电子装置的控制方法
CN111050029A (zh) * 2018-10-11 2020-04-21 南昌欧菲生物识别技术有限公司 成像模组和电子装置
CN109737868A (zh) * 2018-12-21 2019-05-10 华为技术有限公司 飞行时间模组及电子设备
CN110412540A (zh) * 2019-07-30 2019-11-05 Oppo广东移动通信有限公司 光发射模组、飞行时间相机和电子装置
CN212992427U (zh) * 2020-09-24 2021-04-16 深圳福鸽科技有限公司 一种图像采集模组

Also Published As

Publication number Publication date
CN117321381A (zh) 2023-12-29
WO2023070313A9 (zh) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2020057208A1 (zh) 电子设备
US11222190B2 (en) Fingerprint identification apparatus and electronic device
WO2020057204A1 (zh) 补偿显示屏、屏下光学系统及电子设备
WO2020057205A1 (zh) 屏下光学系统、衍射光学元件的设计方法及电子设备
WO2020038068A1 (zh) 成像装置及电子设备
CN110099226B (zh) 阵列摄像模组及其深度信息采集方法和电子设备
CN109791610A (zh) 指纹识别装置和电子设备
WO2020057207A1 (zh) 电子设备
WO2020098344A1 (zh) 电子装置
CN112640113A (zh) 具有多个光电二极管的像素单元
US11665334B2 (en) Rolling shutter camera pipeline exposure timestamp error determination
WO2021227504A1 (zh) 一种深度计算系统、方法及计算机可读存储介质
US20220229298A1 (en) Wearable electronic device including small camera
CN108885696A (zh) 屏下生物特征识别装置和电子设备
US20230421679A1 (en) Handheld electronic device
US11681148B2 (en) Compact catadioptric projector
WO2023070313A1 (zh) 飞行时间相机模组及显示设备
CN113260951A (zh) 基于指距或手接近的淡入用户界面显示
US20240127566A1 (en) Photography apparatus and method, electronic device, and storage medium
CN209460780U (zh) 指纹识别装置和电子设备
CN217849517U (zh) 摄像模组、多目摄像模组装置及电子设备
CN211060850U (zh) 深度检测系统及其支架和电子装置
CN116134401A (zh) 包括热辐射结构的可穿戴电子装置
CN209625656U (zh) 屏幕组件及终端设备
US20240192488A1 (en) Electronic Device With Protected Light Sources

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180003077.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 17927388

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961691

Country of ref document: EP

Kind code of ref document: A1