WO2023070260A1 - 无线通信的方法及设备 - Google Patents

无线通信的方法及设备 Download PDF

Info

Publication number
WO2023070260A1
WO2023070260A1 PCT/CN2021/126070 CN2021126070W WO2023070260A1 WO 2023070260 A1 WO2023070260 A1 WO 2023070260A1 CN 2021126070 W CN2021126070 W CN 2021126070W WO 2023070260 A1 WO2023070260 A1 WO 2023070260A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
network device
terminal device
terminal
power
Prior art date
Application number
PCT/CN2021/126070
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180103383.3A priority Critical patent/CN118215856A/zh
Priority to EP21961650.5A priority patent/EP4425212A1/en
Priority to PCT/CN2021/126070 priority patent/WO2023070260A1/zh
Priority to MX2024004794A priority patent/MX2024004794A/es
Publication of WO2023070260A1 publication Critical patent/WO2023070260A1/zh
Priority to US18/644,679 priority patent/US20240276435A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and device.
  • one application scenario is to realize the positioning function through zero-power terminals, such as cargo positioning in logistics scenarios, animal positioning in animal husbandry farms, and low-power positioning of individual users and items. How to achieve positioning through zero-power terminals is a problem that needs to be solved.
  • the embodiment of the present application provides a method and device for wireless communication.
  • the location information of the terminal device can be determined, so that low-power or zero-power consumption positioning can be realized. , with low implementation complexity.
  • a wireless communication method includes:
  • the first network device receives the first signal sent by the terminal device through backscattering
  • the first network device determines the location information of the terminal device according to the received power of the first signal.
  • a wireless communication method in a second aspect, includes:
  • the control device receives first information sent by the first network device; wherein the first information includes received power of a first signal, and the first signal is a signal received by the first network device and sent by a terminal device through backscattering;
  • the control device determines the location information of the terminal device according to the received power of the first signal.
  • a wireless communication method includes:
  • the terminal device sends the first signal to the first network device through backscattering
  • the received power of the first signal is used by the first network device to determine the location information of the terminal device.
  • a network device configured to execute the method in the first aspect above.
  • the network device includes a functional module for executing the method in the first aspect above.
  • a control device configured to execute the method in the second aspect above.
  • control device includes a functional module for executing the method in the second aspect above.
  • a terminal device configured to execute the method in the third aspect above.
  • the terminal device includes a functional module for executing the method in the above third aspect.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a control device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • a ninth aspect provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the third aspect above.
  • an apparatus for implementing the method in any one of the above first to third aspects.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in any one of the first to third aspects above.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above first to third aspects.
  • a computer program product including computer program instructions, the computer program instructions cause a computer to execute the method in any one of the above first to third aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the first to third aspects above.
  • the first network device determines the location information of the terminal device according to the received power of the first signal sent by the terminal device through backscattering, and the information required by the terminal device to send the first signal Energy is obtained through energy harvesting, so that low-power or zero-power positioning can be achieved, and the implementation complexity is low.
  • control device determines the location information of the terminal device according to the received power of the first signal sent by the terminal device through backscattering, and the energy required by the terminal device to send the first signal is obtained through energy harvesting, Therefore, positioning with low power consumption or zero power consumption can be realized, and the implementation complexity is low.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • Figure 3 is a schematic diagram of energy harvesting.
  • Figure 4 is a schematic diagram of backscatter communication.
  • Figure 5 is a circuit schematic diagram of resistive load modulation.
  • Fig. 6 is a schematic diagram of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a wireless function provided according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a propagation loss provided according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of three network devices performing positioning according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of two network devices performing positioning according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of positioning by another three network devices according to an embodiment of the present application.
  • Fig. 12 is a schematic diagram of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 13 is a schematic diagram of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a control device provided according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • 5G fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, terminal equipment in the cellular Internet of Things, terminal equipment in the cellular passive Internet of Things, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • predefined can refer to those defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which is not limited in the present application.
  • Zero-power communication uses energy harvesting and backscatter communication technologies.
  • the zero-power communication network consists of network devices and zero-power terminals.
  • the network device is used to send wireless power supply signals to zero-power terminals, downlink communication signals and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • the zero-power consumption terminal can also have a memory or a sensor for storing some basic information (such as item identification, etc.) or obtaining sensing data such as ambient temperature and ambient humidity.
  • the radio frequency energy collection module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive zero-power terminals, such as driving low-power demodulation and modulation modules, sensors and memory read, etc. Therefore, zero-power terminals do not require traditional batteries.
  • the zero-power terminal receives the carrier signal sent by the network device, modulates the carrier signal, loads the information to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communication.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the parameters such as the impedance of the electronic tag change accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • the load In resistive load modulation, the load is connected in parallel with a resistor that is switched on or off based on the control of the binary data stream, as shown in Figure 5.
  • the on-off of the resistance will lead to the change of the circuit voltage, so the amplitude keying modulation (ASK) is realized, that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattering signal of the zero-power terminal.
  • ASK amplitude keying modulation
  • FSK frequency keying modulation
  • zero-power terminal performs information modulation on the incoming signal by means of load modulation, thereby realizing the backscatter communication process. Therefore, zero-power terminals have significant advantages:
  • the terminal does not actively transmit signals, so there is no need for complex radio frequency links, such as PAs, radio frequency filters, etc.;
  • the terminal does not need to actively generate high-frequency signals, so high-frequency crystal oscillators are not required;
  • RFID systems typically use one of the following encoding methods: reverse non-return-to-zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Differential encoding, pulse interval encoding (PIE), two-way spatial encoding (FM0), Miller (Miller) encoding and differential encoding, etc.
  • NRZ reverse non-return-to-zero
  • Manchester encoding Manchester encoding
  • unipolar return-to-zero (Unipolar RZ) encoding unipolar return-to-zero
  • DBP differential biphase
  • Differential encoding Differential encoding
  • PIE pulse interval encoding
  • FM0 two-way spatial encoding
  • Miller (Miller) encoding and differential encoding
  • zero-power terminals can be divided into the following types:
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal When the zero-power terminal is close to a network device (such as a reader of an RFID system), the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). And other devices, so it has many advantages such as small size, light weight, very cheap price, and long service life.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but it can use the RF energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the radio collected by the energy harvesting module. Energy, so it is also a true zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals, and such terminals can have built-in batteries.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • Active zero-power consumption terminal built-in battery powers the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication. Therefore, it can be applied in some scenarios that require relatively high communication distance and read delay.
  • RSS positioning technology is a kind of method to achieve positioning based on the variation of signal strength with propagation distance.
  • the core of its positioning is to determine the target position according to the signal strength received by multiple reference nodes from the same target source.
  • RSS positioning technology is currently widely used in indoor positioning.
  • the traditional RSS positioning technology based on the geometric measurement method first needs to measure the signal strength RSS of the target received by each monitoring node, and then reversely calculate the propagation distance d between each node and the target according to the signal transmission attenuation model, and then estimate the signal source to be located relative geographic location.
  • one application scenario is to realize the positioning function through zero-power terminals, such as cargo positioning in logistics scenarios, animal positioning in animal husbandry farms, and low-power positioning of individual users and items. How to achieve positioning through zero-power terminals is a problem that needs to be solved.
  • FIG. 6 is a schematic diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 6 , the wireless communication method 200 includes at least part of the following:
  • the first network device receives the first signal sent by the terminal device through backscattering
  • the first network device determines location information of the terminal device according to the received power of the first signal.
  • the terminal device obtains energy through energy collection for communication and information collection. That is, before the network device communicates with the terminal device, it is first necessary to ensure that the terminal device receives radio waves for wireless energy supply and obtains wireless energy through energy harvesting.
  • the energy required by the terminal device to send the first signal is obtained through energy harvesting.
  • the terminal device is a zero-power consumption terminal.
  • the terminal device may obtain energy through wireless energy supply methods such as radio frequency signals, solar energy, pressure or temperature.
  • the wireless radio frequency signal can be regarded as a power supply signal, and the power supply signal is sent by a power supply device, and the power supply device can be a network device, or a third-party device, and the third-party device can It is a dedicated energy supply node in the community.
  • the energy supply device can continuously or intermittently send energy supply signals, so that the terminal equipment can collect energy, and after obtaining enough energy, it can perform corresponding communication processes, such as measurement, signal transmission, channel transmission, and signal transmission. Reception, channel reception, etc., can also perform information collection process.
  • the terminal device is equipped with an energy collection module for energy collection, such as collecting energy from radio waves, solar energy, etc., and further storing the obtained energy in an energy storage unit.
  • the energy storage unit After the energy storage unit obtains enough energy, it can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link, and can also be used for the terminal device to perform information collection.
  • the terminal device may collect energy at the same time when collecting information, or may collect enough energy before collecting information, which is not limited in this application.
  • the terminal device can be combined with a sensor, and the sensor can be used to generate sensor data, such as temperature data, pressure data, etc., and the terminal device can collect the data generated by the sensor. Further, the terminal device can serve as a communication device and report the collected sensor data to the network device.
  • the sensor can be powered by the terminal device, that is, the energy obtained by the terminal device through energy harvesting is also used to power the sensor, or the sensor can also be powered by other devices.
  • This application is concerned with the energy supply of the sensor The method is not limited.
  • the terminal device can collect data from an internal sensor module, or collect data from an external sensor module.
  • the embodiment of the present application does not limit the combination of the terminal device and the sensor.
  • the terminal device obtains wireless power supply through a network device, as in example 1 in FIG. 7 .
  • the terminal device can obtain wireless energy supply through other nodes in the network, such as smart phones, relay nodes, dedicated energy supply nodes, etc. in the network, and the wireless signals sent by these nodes can also be used for terminal energy supply, such as Example 2 in Figure 7.
  • the strength of the energy supply signal reaching the terminal needs to meet a certain threshold, such as -20dBm, which results in the energy supply signal transmitted by the network equipment when the transmission power of the energy supply signal is limited.
  • the range that can be covered is small, generally in the range of tens of meters. Wireless power supply through more network nodes can significantly improve coverage.
  • the power supply signal may be a wireless signal having a wireless power supply function, such as a carrier signal, a signal carrying information, and the like.
  • the terminal device when the terminal device does not receive the power supply signal, it cannot actively send a signal to the network, and when the network needs to find and locate the terminal device, it "activates" the terminal device by sending a power supply signal , after receiving the power supply signal, the terminal device can send the signal through backscattering.
  • the network node receives the backscatter signal, it calculates the power attenuation caused by the round-trip signal according to its received power and combined with the transmission power of the energy supply signal sent by the network node, so as to obtain the location information of the terminal device.
  • the energy supply signal is usually a carrier signal.
  • the terminal device receives the carrier signal, uses the energy provided by the carrier signal to perform load modulation on the carrier signal, and forms a backscattered signal carrying information and sends it to the network device.
  • the powers of backscattered signals from terminals with different distances from the network device are different, and their powers reaching the network device are also different.
  • the network device can determine the path loss generated by the round-trip transmission path through the difference between the transmit power of the power supply signal and the received power of the backscatter signal of the terminal device, thereby determining the path loss generated by the unidirectional transmission path. Since the propagation path loss of the wireless signal is related to the propagation distance, the network device can determine the location information of the terminal according to the power of the received backscattered signal.
  • the manner in which the powering signal is sent is network configurable.
  • the identification information of the power supply signal may be carried by the power supply signal itself, or may be carried by a channel or signal associated with the power supply signal.
  • the embodiment of the present application can be applied to any network device with positioning or energy supply, which may be a base station or an energy supply node, or may be a terminal.
  • the first signal is a signal obtained after the second signal is backscattered by the terminal device, wherein the second signal is sent by the first network device, or the second signal is sent by another network device send.
  • the second signal carries identification information of the second signal. That is, the second signal itself carries its identification information, so that the terminal device receiving the second signal can identify the second signal.
  • the carrier of the second signal is modulated to carry the identification information of the second signal.
  • the resources occupied by the second signal are used to indicate identification information of the second signal. That is, the second signal may implicitly carry its identification information, so that a terminal device receiving the second signal can identify the second signal.
  • the resources occupied by the second signal include at least one of the following: frequency domain resources, time domain resources, and code domain resources.
  • the second signal is used to power the terminal device. That is, the second signal is a function signal.
  • the second signal is used to trigger the terminal device to send a signal through backscattering.
  • the second signal includes at least identification information of the terminal device.
  • the second signal is modulated by a carrier to carry the identification information of the terminal device.
  • the second signal is used to trigger a terminal group including the terminal device to send a signal in a backscatter manner.
  • the second signal includes at least identification information of the terminal group.
  • the second signal is modulated by a carrier to carry the identification information of the terminal group.
  • the second signal is a positioning signal.
  • the second signal is inquiry information for inquiring terminal devices in the first area.
  • some or all of the terminal devices in the first area may send a signal carrying response information to the query information in a backscattering manner (that is, the first signal may carry response information to the query information) .
  • This application does not limit the specific content of the inquiry information.
  • the first area may be determined by a device that sends the second signal.
  • the device sending the second signal is a base station
  • the first area is a serving cell corresponding to the base station.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal is carried by an energizing signal, or the second signal is carried by a de-energizing signal external signal or channel bearer.
  • the second signal when the second signal is used to trigger the terminal group including the terminal device to send a signal through backscattering, the second signal is carried by a power supply signal, or the second signal Carried by a signal or channel other than the Powering Signal.
  • the second signal when the second signal is a positioning signal, the second signal is carried by an energy supply signal, or, the second signal is carried by a signal or channel other than the energy supply signal.
  • the second signal when the second signal is inquiry information for inquiring terminal devices in the first area, the second signal is carried by an enabling signal, or the second signal is carried by a de-energizing signal other than signal or channel bearer.
  • the first signal includes but is not limited to at least one of the following:
  • the identification information of the terminal device the identification information of the second signal, and the backscatter loss of the terminal device.
  • the first signal is modulated by a carrier to carry at least one of the following: identification information of the terminal device, identification information of the second signal, and backscatter loss of the terminal device.
  • the first network device determines the location information of the terminal device according to the received power of the first signal and the transmitted power of the second signal . That is, in the above S220, the first network device determines the location information of the terminal device according to the received power of the first signal and the transmitted power of the second signal.
  • Embodiment 1 when the second signal is sent by the first network device, the first network device determines the relationship between the first network device and the first network device according to the received power of the first signal and the transmitted power of the second signal the distance between the terminal devices; and the first network device determines the location information of the terminal device according to the distance between the first network device and the terminal device.
  • the first network device determines the one-way transmission loss between the first network device and the terminal device according to the received power of the first signal and the transmitted power of the second signal; And the first network device determines the distance between the first network device and the terminal device according to the one-way transmission loss between the first network device and the terminal device.
  • the terminal device when the terminal device receives the second signal, it identifies the identification information of the second signal, and sends the first signal through backscattering, and the first signal carries at least one of the following: the terminal The identification information of the device, the identification information of the second signal, and the backscatter loss of the terminal device.
  • the first network device After the first network device receives the backscatter signal from the terminal device, based on the identification information of the second signal carried in the first signal, it determines that the second signal is a signal sent by the network device, then the first network device The device determines the path loss caused by the transmission path between the first network device and the terminal device based on the received power of the first signal and the transmitted power of the second signal, thereby determining a one-way transmission path The generated path loss determines the distance between the terminal device and the first network device according to the relationship between the path loss and the transmission distance.
  • the path loss of the signal will also cause loss to the power of the signal during the backscattering process through the terminal, which is called backscattering loss here.
  • the path loss generated by the signal transmission path between the first network device and the terminal device includes bidirectional propagation loss and backscattering loss.
  • the first network device determines the unidirectional transmission loss between the first network device and the terminal device according to the following formula 1.
  • PL 1 represents the one-way transmission loss between the first network device and the terminal device
  • PT1 represents the transmit power of the second signal
  • PR1 represents the received power of the first signal
  • represents the backscattering loss .
  • the second signal is a functional signal
  • the transmission loss between the first network device and the terminal device may be as shown in FIG. 8 .
  • the positioning of the terminal device depends on one network device (that is, the first network device).
  • the first network device When the power supply signal coverage of the first network device is small, the positioning accuracy can be guaranteed.
  • the positioning of the terminal needs to be realized in a larger range, the accuracy of positioning based on a single network device is poor.
  • Positioning can be assisted by three network devices whose locations are known. The terminal device measures the signal strength of the three reference nodes, calculates three distance values according to the physical model, and uses the geometric solution method to obtain the positioning point.
  • the first network device determines the relationship between the first network device and the first network device according to the received power of the first signal and the transmitted power of the second signal the distance between terminal devices; and the first network device determines the location information of the terminal device according to the distance between the first network device and the terminal device, and the distance between at least one other network device and the terminal device.
  • At least one other network device may be added to assist the first network device in locating the terminal.
  • the distance between the at least one other network device and the terminal device may be obtained by the first network device from the at least one other network device respectively.
  • the at least one other network device includes a second network device and a third network device.
  • the first network device is based on the distance between the first network device and the terminal device, the distance between the second network device and the terminal device, and the distance between the third network device and the terminal device. to determine the location information of the terminal device.
  • the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal; wherein the third signal is the first
  • the second network device sends a signal to the terminal device, and the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the second network device determines the one-way transmission loss between the second network device and the terminal device according to the transmission power of the third signal and the reception power of the fourth signal; and the second The network device determines the distance between the second network device and the terminal device according to the one-way transmission loss between the second network device and the terminal device.
  • the second network device determines the unidirectional transmission loss between the second network device and the terminal device according to the following formula 2.
  • PL 2 represents the one-way transmission loss between the second network device and the terminal device
  • PT2 represents the transmit power of the third signal
  • P R2 represents the received power of the fourth signal
  • represents the backscattering loss
  • the distance between the second network device and the terminal device is acquired by the first network device from the second network device. That is, the second network device can determine the one-way transmission loss between the second network device and the terminal device based on the above formula 2, and the second network device can determine the one-way transmission loss between the second network device and the terminal device according to The one-way transmission loss is used to determine the distance between the second network device and the terminal device.
  • the distance between the second network device and the terminal device is obtained by the first network device from a control device, where the control device is at least connected to the first network device and the second network device.
  • the control device obtains the transmission power of the third signal and the reception power of the fourth signal from the second network device, and then, the control device can determine the relationship between the second network device and the terminal device based on the above formula 2
  • the one-way transmission loss between the second network device and the terminal device and the control device determines the distance between the second network device and the terminal device according to the one-way transmission loss between the second network device and the terminal device.
  • the distance between the third network device and the terminal device is determined by the third network device based on the transmit power of the fifth signal and the receive power of the sixth signal; wherein the fifth signal is the The signal sent by the third network device to the terminal device, the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the third network device determines the one-way transmission loss between the third network device and the terminal device according to the transmission power of the fifth signal and the reception power of the sixth signal; and the third network device The network device determines the distance between the third network device and the terminal device according to the one-way transmission loss between the third network device and the terminal device.
  • the third network device determines the unidirectional transmission loss between the third network device and the terminal device according to the following formula 3.
  • PL 3 represents the one-way transmission loss between the third network device and the terminal device
  • PT3 represents the transmit power of the fifth signal
  • P R3 represents the received power of the sixth signal
  • represents the backscattering loss
  • the distance between the third network device and the terminal device is acquired by the first network device from the third network device. That is, the third network device can determine the one-way transmission loss between the third network device and the terminal device based on the above formula 3, and the third network device can determine the one-way transmission loss between the third network device and the terminal device according to The one-way transmission loss is used to determine the distance between the third network device and the terminal device.
  • the distance between the third network device and the terminal device is acquired by the first network device from a control device; wherein the control device is at least connected to the first network device and the third network device.
  • the control device obtains the transmission power of the fifth signal and the reception power of the sixth signal from the third network device, and then, the control device can determine the relationship between the third network device and the terminal device based on the above formula 3
  • the one-way transmission loss between the third network device and the terminal device and the control device determines the distance between the third network device and the terminal device according to the one-way transmission loss between the third network device and the terminal device.
  • three network devices respectively transmit power supply signals to obtain backscattered signals of terminal devices.
  • the three network devices can respectively estimate the distance between the terminal and the network device, and the positioning point can be obtained through the geometric solution method.
  • the three network devices respectively determine distance curves satisfying the measured path loss, and the intersection of the three distance curves is the estimated positioning point of the terminal.
  • the network devices participating in positioning have an interface for information exchange, and can jointly calculate the position of the terminal according to their respective positioning information based on the received power of backscattered signals.
  • each of the three network devices has an interface for information exchange with one control device, and the control device locates the terminal according to reporting the location information of the network devices participating in the location.
  • the second signal is sent by the first network device.
  • the backscatter signal measured by the network device does not necessarily correspond to the backscatter signal of the signal transmitted by the network device, but corresponds to the signal transmitted by another network device.
  • Embodiment 3 in the case that the second signal is sent by the fourth network device, the first network device according to the receiving power of the first signal, the transmitting power of the second signal, the first network device and the fourth The location relationship between network devices determines the location information of the terminal device.
  • the transmission power of the second signal is obtained by the first network device from the fourth network device, or, the transmission power of the second signal is obtained by the first network device from the control device where the control device is at least connected to the first network device and the fourth network device.
  • network node 1 transmits an energy supply signal, and the terminal reaches network node 1 and network node 2 based on backscattered signals of the energy supply signal.
  • the power of the energy supply signal transmitted by the network node 1 can be obtained through an information interface between the network node 2 and the network node 1 .
  • the total path loss of the energy supply signal from network node 1 to network node 2 through backscattering of the terminal can be obtained, that is, PL1+PL3+ ⁇ .
  • Network node 2 can further obtain the location of the terminal that satisfies the total path loss by using the geographic location information of itself and network node 1 through a geometric solution method.
  • the network node 2 can also obtain the path loss PL4 by directly measuring the received power of the energy supply signal of the network node 1, and then calculate the position of the terminal according to PL1, PL3 and PL4, and ⁇ , so as to obtain the terminal location.
  • network node 1 corresponds to the above-mentioned fourth network device
  • network node 2 corresponds to the above-mentioned first network device
  • one of the three network nodes transmits a power supply signal.
  • the terminal's backscattered signals are received by three network nodes and the received power is measured.
  • there is an information interface between the three network nodes and the received power of the backscattered signal can be obtained comprehensively to solve the position of the terminal, thereby obtaining the location of the terminal.
  • the first network device determines the location information of the terminal device according to the received power of the first signal sent by the terminal device through backscattering, and the energy required for the terminal device to send the first signal is obtained through energy harvesting. Obtained, so that positioning with low power consumption or zero power consumption can be realized, and the implementation complexity is low.
  • the network device side embodiment of the present application is described in detail above with reference to FIG. 6 to FIG. 11 , and the control device side embodiment of the present application is described in detail below in conjunction with FIG. 12 . It should be understood that the implementation of the control device side embodiment and the network device side The examples correspond to each other, and similar descriptions may refer to the embodiments on the network device side.
  • FIG. 12 is a schematic diagram of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 12 , the wireless communication method 300 includes at least part of the following:
  • the control device receives the first information sent by the first network device; wherein the first information includes the received power of the first signal, and the first signal is sent by the terminal device received by the first network device through backscattering Signal;
  • the control device determines location information of the terminal device according to the received power of the first signal.
  • control device can forward the signal transmission power, signal reception power, and location information determined or acquired by the network device, and can also receive these information.
  • the control device can forward it to other network devices, You can also complete the positioning of the terminal by yourself according to the information.
  • the terminal device obtains energy through energy collection for communication and information collection. That is, before the network device communicates with the terminal device, it is first necessary to ensure that the terminal device receives radio waves for wireless energy supply and obtains wireless energy through energy harvesting.
  • the energy required by the terminal device to send the first signal is obtained through energy harvesting.
  • the terminal device is a zero-power consumption terminal.
  • the terminal device may obtain energy through wireless energy supply methods such as radio frequency signals, solar energy, pressure or temperature.
  • the wireless radio frequency signal can be regarded as a power supply signal, and the power supply signal is sent by a power supply device, and the power supply device can be a network device, or a third-party device, and the third-party device can It is a dedicated energy supply node in the community.
  • the energy supply device can continuously or intermittently send energy supply signals, so that the terminal equipment can collect energy, and after obtaining enough energy, it can perform corresponding communication processes, such as measurement, signal transmission, channel transmission, and signal transmission. Reception, channel reception, etc., can also perform information collection process.
  • the terminal device is equipped with an energy collection module for energy collection, such as collecting energy from radio waves, solar energy, etc., and further storing the obtained energy in an energy storage unit.
  • the energy storage unit After the energy storage unit obtains enough energy, it can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link, and can also be used for the terminal device to perform information collection.
  • the terminal device may collect energy at the same time when collecting information, or may collect enough energy before collecting information, which is not limited in this application.
  • the terminal device can be combined with a sensor, and the sensor can be used to generate sensor data, such as temperature data, pressure data, etc., and the terminal device can collect the data generated by the sensor. Further, the terminal device can serve as a communication device and report the collected sensor data to the network device.
  • the sensor can be powered by the terminal device, that is, the energy obtained by the terminal device through energy harvesting is also used to power the sensor, or the sensor can also be powered by other devices.
  • This application is concerned with the energy supply of the sensor The method is not limited.
  • the terminal device may collect data from an internal sensor module, or may collect data from an external sensor module.
  • the embodiment of the present application does not limit the combination of the terminal device and the sensor.
  • the terminal device obtains wireless power supply through a network device, as in example 1 in FIG. 7 .
  • the terminal device can obtain wireless energy supply through other nodes in the network, such as smart phones, relay nodes, dedicated energy supply nodes, etc. in the network, and the wireless signals sent by these nodes can also be used for terminal energy supply, such as Example 2 in Figure 7.
  • Energy is obtained through wireless energy supply, and the strength of the energy supply signal reaching the terminal needs to meet a certain threshold, such as -20dBm, which causes the energy supply signal transmitted by the network device to be limited when the transmission power of the energy supply signal is limited.
  • the range that can be covered is small, generally in the range of tens of meters. Wireless power supply through more network nodes can significantly improve coverage.
  • the power supply signal may be a wireless signal having a wireless power supply function, such as a carrier signal, a signal carrying information, and the like.
  • the terminal device when the terminal device does not receive the power supply signal, it cannot actively send a signal to the network, and when the network needs to find and locate the terminal device, it "activates" the terminal device by sending a power supply signal , after receiving the power supply signal, the terminal device can send the signal through backscattering.
  • the network node receives the backscattered signal, it calculates the power attenuation caused by the round-trip signal according to its received power and combined with the transmission power of the energy supply signal sent by the network node, so as to obtain the location information of the terminal device.
  • the energy supply signal is usually a carrier signal.
  • the terminal device receives the carrier signal, uses the energy provided by the carrier signal to perform load modulation on the carrier signal, and forms a backscattered signal carrying information and sends it to the network device.
  • the powers of backscattered signals from terminals with different distances from the network device are different, and their powers reaching the network device are also different.
  • the network device can determine the path loss generated by the round-trip transmission path through the difference between the transmit power of the power supply signal and the received power of the backscatter signal of the terminal device, thereby determining the path loss generated by the unidirectional transmission path. Since the propagation path loss of the wireless signal is related to the propagation distance, the network device can determine the location information of the terminal according to the power of the received backscattered signal.
  • the manner in which the powering signal is sent is network configurable.
  • the identification information of the power supply signal may be carried by the power supply signal itself, or may be carried by a channel or signal associated with the power supply signal.
  • the embodiment of the present application can be applied to any network device with positioning or energy supply, which may be a base station or an energy supply node, or may be a terminal.
  • the first signal is a signal obtained after the second signal is backscattered by the terminal device, wherein the second signal is sent by the first network device, or the second signal is sent by another network device send.
  • the second signal carries identification information of the second signal. That is, the second signal itself carries its identification information, so that the terminal device receiving the second signal can identify the second signal.
  • the carrier of the second signal is modulated to carry the identification information of the second signal.
  • the resources occupied by the second signal are used to indicate identification information of the second signal. That is, the second signal may implicitly carry its identification information, so that a terminal device receiving the second signal can identify the second signal.
  • the resources occupied by the second signal include at least one of the following: frequency domain resources, time domain resources, and code domain resources.
  • the second signal is used to power the terminal device. That is, the second signal is a function signal.
  • the second signal is used to trigger the terminal device to send a signal through backscattering.
  • the second signal includes at least identification information of the terminal device.
  • the second signal is modulated by a carrier to carry the identification information of the terminal device.
  • the second signal is used to trigger a terminal group including the terminal device to send a signal in a backscatter manner.
  • the second signal includes at least identification information of the terminal group.
  • the second signal is modulated by a carrier to carry the identification information of the terminal group.
  • the second signal is a positioning signal.
  • the second signal is inquiry information for inquiring terminal devices in the first area.
  • some or all of the terminal devices in the first area may send a signal carrying response information to the query information in a backscattering manner (that is, the first signal may carry response information to the query information) .
  • This application does not limit the specific content of the inquiry information.
  • the first area may be determined by a device that sends the second signal.
  • the device sending the second signal is a base station
  • the first area is a serving cell corresponding to the base station.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal is carried by an energizing signal, or the second signal is carried by a de-energizing signal external signal or channel bearer.
  • the second signal when the second signal is used to trigger the terminal group including the terminal device to send a signal through backscattering, the second signal is carried by a power supply signal, or the second signal Carried by a signal or channel other than the Powering Signal.
  • the second signal when the second signal is a positioning signal, the second signal is carried by an energy supply signal, or, the second signal is carried by a signal or channel other than the energy supply signal.
  • the second signal when the second signal is inquiry information for inquiring terminal devices in the first area, the second signal is carried by an enabling signal, or the second signal is carried by a de-energizing signal other than signal or channel bearer.
  • the first signal includes but is not limited to at least one of the following:
  • the identification information of the terminal device the identification information of the second signal, and the backscatter loss of the terminal device.
  • the first signal is modulated by a carrier to carry at least one of the following: identification information of the terminal device, identification information of the second signal, and backscatter loss of the terminal device.
  • the first information when the second signal is sent by the first network device, the first information further includes the transmission power of the second signal.
  • the control device determines the location information of the terminal device according to the received power of the first signal and the transmitted power of the second signal.
  • control device determines the distance between the first network device and the terminal device according to the received power of the first signal and the transmit power of the second signal; and the control device determines the distance between the first network device and the terminal device according to the first network The distance between the device and the terminal device determines the location information of the terminal device.
  • control device determines the distance between the first network device and the terminal device according to the received power of the first signal and the transmit power of the second signal; and the control device determines the distance between the first network device and the terminal device according to the first network The distance between the device and the terminal device and the distance between at least one other network device and the terminal device determine the location information of the terminal device.
  • the at least one other network device includes a second network device and a third network device.
  • the control device according to the distance between the first network device and the terminal device, the distance between the second network device and the terminal device, the distance between the third network device and the terminal device , to determine the location information of the terminal device.
  • the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal; wherein the third signal is the first
  • the second network device sends a signal to the terminal device, and the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the distance between the second network device and the terminal device is determined by the control device based on the transmission power of the third signal and the reception power of the fourth signal; wherein the third signal is the second network
  • the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the second network device and the terminal device when the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal, the second The distance between the network device and the terminal device is acquired by the control device from the second network device.
  • the control device is at least connected to the first network device and the second network device.
  • the control device when the distance between the second network device and the terminal device is determined by the control device based on the transmission power of the third signal and the reception power of the fourth signal, the third signal The transmitting power and the receiving power of the fourth signal are acquired by the control device from the second network device; wherein the control device is at least connected to the first network device and the second network device.
  • the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal.
  • the fifth signal is a signal sent by the third network device to the terminal device
  • the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the distance between the third network device and the terminal device is determined by the control device based on the transmission power of the fifth signal and the reception power of the sixth signal; wherein the fifth signal is the third network
  • the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the third network device when the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal, the third The distance between the network device and the terminal device is acquired by the control device from the third network device; wherein the control device is at least connected to the first network device and the third network device.
  • the fifth signal when the distance between the third network device and the terminal device is determined by the control device based on the transmission power of the fifth signal and the reception power of the sixth signal, the fifth signal The transmitting power and the receiving power of the sixth signal are acquired by the control device from the third network device; wherein the control device is at least connected to the first network device and the third network device.
  • control device determines the one-way transmission loss between the first network device and the terminal device according to the received power of the first signal and the transmit power of the second signal; and the control device determines the one-way transmission loss according to the The one-way transmission loss between the first network device and the terminal device determines the distance between the first network device and the terminal device.
  • control device determines the unidirectional transmission loss between the first network device and the terminal device according to the following formula:
  • PL 1 represents the one-way transmission loss between the first network device and the terminal device
  • PT1 represents the transmit power of the second signal
  • PR1 represents the received power of the first signal
  • represents the backscattering loss .
  • control device determines the location information of the terminal device according to the received power of the first signal, the transmitted power of the second signal, and the location relationship between the first network device and the fourth network device .
  • the transmission power of the second signal is acquired by the control device from the fourth network device; wherein the control device is at least connected to the first network device and the fourth network device.
  • the control device determines the location information of the terminal device according to the received power of the first signal sent by the terminal device through backscattering, and the energy required by the terminal device to send the first signal is obtained through energy harvesting, Therefore, positioning with low power consumption or zero power consumption can be realized, and the implementation complexity is low.
  • the network device side embodiment of the present application is described in detail above in conjunction with FIG. 6 to FIG. 11
  • the terminal device side embodiment of the present application is described in detail below in conjunction with FIG. 13 . It should be understood that the terminal device side embodiment and the network device side implementation The examples correspond to each other, and similar descriptions may refer to the embodiments on the network device side.
  • FIG. 13 is a schematic diagram of a wireless communication method 400 according to an embodiment of the present application. As shown in FIG. 13 , the wireless communication method 400 includes at least part of the following:
  • the terminal device sends a first signal to the first network device in a backscattering manner; wherein, the received power of the first signal is used by the first network device to determine the location information of the terminal device.
  • the terminal device obtains energy through energy collection for communication and information collection. That is, before the network device communicates with the terminal device, it is first necessary to ensure that the terminal device receives radio waves for wireless energy supply and obtains wireless energy through energy harvesting.
  • the energy required by the terminal device to send the first signal is obtained through energy harvesting.
  • the terminal device is a zero-power consumption terminal.
  • the terminal device may obtain energy through wireless energy supply methods such as radio frequency signals, solar energy, pressure or temperature.
  • the wireless radio frequency signal can be regarded as a power supply signal, and the power supply signal is sent by a power supply device, and the power supply device can be a network device, or a third-party device, and the third-party device can It is a dedicated energy supply node in the community.
  • the energy supply device can continuously or intermittently send energy supply signals, so that the terminal equipment can collect energy, and after obtaining enough energy, it can perform corresponding communication processes, such as measurement, signal transmission, channel transmission, and signal transmission. Reception, channel reception, etc., can also perform information collection process.
  • the terminal device is equipped with an energy collection module for energy collection, such as collecting energy from radio waves, solar energy, etc., and further storing the obtained energy in an energy storage unit.
  • the energy storage unit After the energy storage unit obtains enough energy, it can drive the chip circuit inside the terminal device to perform operations such as signal demodulation of the forward link and signal modulation of the reverse link, and can also be used for the terminal device to perform information collection.
  • the terminal device may collect energy at the same time when collecting information, or may collect enough energy before collecting information, which is not limited in this application.
  • the terminal device can be combined with a sensor, and the sensor can be used to generate sensor data, such as temperature data, pressure data, etc., and the terminal device can collect the data generated by the sensor. Further, the terminal device can serve as a communication device and report the collected sensor data to the network device.
  • the sensor can be powered by the terminal device, that is, the energy obtained by the terminal device through energy harvesting is also used to power the sensor, or the sensor can also be powered by other devices.
  • This application is concerned with the energy supply of the sensor The method is not limited.
  • the terminal device may collect data from an internal sensor module, or may collect data from an external sensor module.
  • the embodiment of the present application does not limit the combination of the terminal device and the sensor.
  • the terminal device obtains wireless power supply through a network device, as in example 1 in FIG. 7 .
  • the terminal device can obtain wireless energy supply through other nodes in the network, such as smart phones, relay nodes, dedicated energy supply nodes, etc. in the network, and the wireless signals sent by these nodes can also be used for terminal energy supply, such as Example 2 in Figure 7.
  • the strength of the energy supply signal reaching the terminal needs to meet a certain threshold, such as -20dBm, which results in the energy supply signal transmitted by the network equipment when the transmission power of the energy supply signal is limited.
  • the range that can be covered is small, generally in the range of tens of meters. Wireless power supply through more network nodes can significantly improve coverage.
  • the power supply signal may be a wireless signal having a wireless power supply function, such as a carrier signal, a signal carrying information, and the like.
  • the terminal device when the terminal device does not receive the power supply signal, it cannot actively send a signal to the network, and when the network needs to find and locate the terminal device, it "activates" the terminal device by sending a power supply signal , after receiving the power supply signal, the terminal device can send the signal through backscattering.
  • the network node receives the backscatter signal, it calculates the power attenuation caused by the round-trip signal according to its received power and combined with the transmission power of the energy supply signal sent by the network node, so as to obtain the location information of the terminal device.
  • the energy supply signal is usually a carrier signal.
  • the terminal device receives the carrier signal, uses the energy provided by the carrier signal to perform load modulation on the carrier signal, and forms a backscattered signal carrying information and sends it to the network device.
  • the powers of backscattered signals from terminals with different distances from the network device are different, and their powers reaching the network device are also different.
  • the network device can determine the path loss generated by the round-trip transmission path through the difference between the transmit power of the power supply signal and the received power of the backscatter signal of the terminal device, thereby determining the path loss generated by the unidirectional transmission path. Since the propagation path loss of the wireless signal is related to the propagation distance, the network device can determine the location information of the terminal according to the power of the received backscattered signal.
  • the manner in which the powering signal is sent is network configurable.
  • the identification information of the power supply signal may be carried by the power supply signal itself, or may be carried by a channel or signal associated with the power supply signal.
  • the embodiment of the present application can be applied to any network device with positioning or energy supply, which may be a base station or an energy supply node, or may be a terminal.
  • the first signal is a signal obtained after the second signal is backscattered by the terminal device, wherein the second signal is sent by the first network device, or the second signal is sent by another network device send.
  • the second signal carries identification information of the second signal. That is, the second signal itself carries its identification information, so that the terminal device receiving the second signal can identify the second signal.
  • the carrier of the second signal is modulated to carry the identification information of the second signal.
  • the resources occupied by the second signal are used to indicate identification information of the second signal. That is, the second signal may implicitly carry its identification information, so that a terminal device receiving the second signal can identify the second signal.
  • the resources occupied by the second signal include at least one of the following: frequency domain resources, time domain resources, and code domain resources.
  • the second signal is used to power the terminal device. That is, the second signal is a function signal.
  • the second signal is used to trigger the terminal device to send a signal through backscattering.
  • the second signal includes at least identification information of the terminal device.
  • the second signal is modulated by a carrier to carry the identification information of the terminal device.
  • the second signal is used to trigger a terminal group including the terminal device to send a signal in a backscatter manner.
  • the second signal includes at least identification information of the terminal group.
  • the second signal is modulated by a carrier to carry the identification information of the terminal group.
  • the second signal is a positioning signal.
  • the second signal is inquiry information for inquiring terminal devices in the first area.
  • some or all of the terminal devices in the first area may send a signal carrying response information to the query information in a backscattering manner (that is, the first signal may carry response information to the query information) .
  • This application does not limit the specific content of the inquiry information.
  • the first area may be determined by a device that sends the second signal.
  • the device sending the second signal is a base station
  • the first area is a serving cell corresponding to the base station.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal is carried by an energizing signal, or the second signal is carried by a de-energizing signal external signal or channel bearer.
  • the second signal when the second signal is used to trigger the terminal group including the terminal device to send a signal through backscattering, the second signal is carried by a power supply signal, or the second signal Carried by a signal or channel other than the Powering Signal.
  • the second signal when the second signal is a positioning signal, the second signal is carried by an energy supply signal, or, the second signal is carried by a signal or channel other than the energy supply signal.
  • the second signal when the second signal is inquiry information for inquiring terminal devices in the first area, the second signal is carried by an enabling signal, or the second signal is carried by a de-energizing signal other than signal or channel bearer.
  • the first signal includes but is not limited to at least one of the following:
  • the identification information of the terminal device the identification information of the second signal, and the backscatter loss of the terminal device.
  • the first signal is modulated by a carrier to carry at least one of the following: identification information of the terminal device, identification information of the second signal, and backscatter loss of the terminal device.
  • the received power of the first signal and the transmit power of the second signal are used by the first network device to determine the first network device
  • the distance to the terminal device and the distance between the first network device and the terminal device are used by the first network device to determine the location information of the terminal device.
  • the received power of the first signal and the transmit power of the second signal are used by the first network device to determine the first network device
  • the distance between the terminal device and the first network device and the terminal device are used for the first network device combined with the distance between the second network device and the terminal device, the third network device and the The distance between terminal devices determines the location information of the terminal devices.
  • the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal; wherein, the third signal is the first
  • the second network device sends a signal to the terminal device, and the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the distance between the second network device and the terminal device is obtained by the first network device from the second network device, or, the distance between the second network device and the terminal device is obtained by The first network device is obtained from a control device; wherein the control device is at least connected to the first network device and the second network device.
  • the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal; wherein the fifth signal is the The signal sent by the third network device to the terminal device, the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the distance between the third network device and the terminal device is obtained by the first network device from the third network device, or, the distance between the third network device and the terminal device is obtained by The first network device is obtained from a control device; wherein the control device is at least connected to the first network device and the third network device.
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the one-way transmission loss between the first network device and the terminal device, and the first The one-way transmission loss between the network device and the terminal device is used by the first network device to determine the distance between the first network device and the terminal device.
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the one-way transmission loss between the first network device and the terminal device according to the following formula:
  • PL 1 represents the one-way transmission loss between the first network device and the terminal device
  • PT1 represents the transmit power of the second signal
  • PR1 represents the received power of the first signal
  • represents the backscattering loss .
  • the received power of the first signal and the transmit power of the second signal are used by the first network device to combine the first network device with The location relationship between the fourth network devices determines the location information of the terminal device.
  • the transmission power of the second signal is obtained by the first network device from the fourth network device, or, the transmission power of the second signal is obtained by the first network device from a control device; wherein , the control device is at least connected to the first network device and the fourth network device.
  • the first network device determines the location information of the terminal device according to the received power of the first signal sent by the terminal device through backscattering, and the energy required for the terminal device to send the first signal is obtained through energy harvesting. Obtained, so that positioning with low power consumption or zero power consumption can be realized, and the implementation complexity is low.
  • Fig. 14 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 is a first network device, and the network device 500 includes:
  • a communication unit 510 configured to receive a first signal sent by the terminal device through backscattering
  • the processing unit 520 is configured to determine the location information of the terminal device according to the received power of the first signal.
  • the first signal is a signal obtained after the second signal is backscattered by the terminal device, wherein the second signal is sent by the first network device, or the second signal is sent by another network device send.
  • the processing unit 520 when the second signal is sent by the first network device, the processing unit 520 is specifically configured to:
  • the location information of the terminal device is determined according to the received power of the first signal and the transmitted power of the second signal.
  • the processing unit 520 is specifically used for:
  • the processing unit 520 is specifically used for:
  • the location information of the terminal device is determined according to the distance between the first network device and the terminal device, and the distance between at least one other network device and the terminal device.
  • the at least one other network device includes a second network device and a third network device
  • the processing unit 520 is specifically used for:
  • the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal;
  • the third signal is a signal sent by the second network device to the terminal device
  • the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the distance between the second network device and the terminal device is obtained by the first network device from the second network device, or, the distance between the second network device and the terminal device is obtained by The first network device acquires it from the control device;
  • control device is at least connected to the first network device and the second network device.
  • the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal;
  • the fifth signal is a signal sent by the third network device to the terminal device
  • the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the distance between the third network device and the terminal device is obtained by the first network device from the third network device, or, the distance between the third network device and the terminal device is obtained by The first network device acquires it from the control device;
  • control device is at least connected to the first network device and the third network device.
  • the processing unit 520 is specifically used for:
  • the processing unit 520 is specifically used for:
  • PL 1 represents the one-way transmission loss between the first network device and the terminal device
  • PT1 represents the transmit power of the second signal
  • PR1 represents the received power of the first signal
  • represents the backscattering loss .
  • the processing unit 520 when the second signal is sent by the fourth network device, the processing unit 520 is specifically configured to:
  • the location information of the terminal device is determined according to the received power of the first signal, the transmitted power of the second signal, and the location relationship between the first network device and the fourth network device.
  • the transmission power of the second signal is obtained by the first network device from the fourth network device, or, the transmission power of the second signal is obtained by the first network device from a control device; wherein , the control device is at least connected to the first network device and the fourth network device.
  • the second signal is used to power the terminal device, or the second signal is used to trigger the terminal device to send a signal through backscattering, or the second signal is used to trigger the
  • the terminal group including the terminal device sends a signal in a backscattering manner, or the second signal is a positioning signal, or the second signal is query information for querying the terminal devices in the first area.
  • the second signal carries identification information of the second signal, or, resources occupied by the second signal are used to indicate the identification information of the second signal.
  • the resource occupied by the second signal includes at least one of the following:
  • Frequency domain resources time domain resources, code domain resources.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal includes identification information of the terminal device; or,
  • the second signal In a case where the second signal is used to trigger a terminal group including the terminal device to send a signal in a backscattering manner, the second signal includes identification information of the terminal group.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal is carried by an energizing signal, or the second signal is carried by a de-energizing signal external signal or channel bearer; or,
  • the second signal is used to trigger the terminal group including the terminal device to send a signal through backscattering
  • the second signal is carried by the power supply signal, or the second signal is carried by the power supply signal external signal or channel bearer; or,
  • the second signal is a positioning signal
  • the second signal is carried by an enabling signal, or, the second signal is carried by a signal or channel other than the enabling signal; or,
  • the second signal is inquiry information for interrogating terminal devices in the first area
  • the second signal is carried by the power supply signal, or the second signal is carried by a signal or channel other than the power supply signal bearer.
  • the first signal includes at least one of the following:
  • the identification information of the terminal device the identification information of the second signal, and the backscatter loss of the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the first network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively in order to realize the The corresponding process of the first network device in the method 200 is shown, and for the sake of brevity, details are not repeated here.
  • Fig. 15 shows a schematic block diagram of a control device 600 according to an embodiment of the present application.
  • the control device 600 includes:
  • the communication unit 610 is configured to receive the first information sent by the first network device; wherein the first information includes the received power of the first signal, and the first signal is received by the first network device through the backscatter method of the terminal device the signal sent;
  • the processing unit 620 is configured to determine the location information of the terminal device according to the received power of the first signal.
  • the first signal is a signal obtained after the second signal is backscattered by the terminal device, wherein the second signal is sent by the first network device, or the second signal is sent by another network device send.
  • the first information when the second signal is sent by the first network device, the first information further includes the transmit power of the second signal
  • the processing unit 620 is specifically used for:
  • the location information of the terminal device is determined according to the received power of the first signal and the transmitted power of the second signal.
  • the processing unit 620 is specifically used for:
  • the processing unit 620 is specifically used for:
  • the location information of the terminal device is determined according to the distance between the first network device and the terminal device, and the distance between at least one other network device and the terminal device.
  • the at least one other network device includes a second network device and a third network device
  • the processing unit 620 is specifically used for:
  • the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal; or,
  • the distance between the second network device and the terminal device is determined by the control device based on the transmission power of the third signal and the reception power of the fourth signal;
  • the third signal is a signal sent by the second network device to the terminal device
  • the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the second network device and the terminal device when the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal, the second The distance between the network device and the terminal device is obtained by the control device from the second network device;
  • the transmission power of the third signal and the fourth signal The received power of the signal is obtained by the control device from the second network device;
  • control device is at least connected to the first network device and the second network device.
  • the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal; or,
  • the distance between the third network device and the terminal device is determined by the control device based on the transmission power of the fifth signal and the reception power of the sixth signal;
  • the fifth signal is a signal sent by the third network device to the terminal device
  • the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the third network device when the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal, the third The distance between the network device and the terminal device is acquired by the control device from the third network device;
  • the transmission power of the fifth signal and the sixth signal The received power of the signal is obtained by the control device from the third network device;
  • control device is at least connected to the first network device and the third network device.
  • the processing unit 620 is specifically used for:
  • the processing unit 620 is specifically used for:
  • PL 1 represents the one-way transmission loss between the first network device and the terminal device
  • PT1 represents the transmit power of the second signal
  • PR1 represents the received power of the first signal
  • represents the backscattering loss .
  • the processing unit 620 when the second signal is sent by the fourth network device, the processing unit 620 is specifically configured to:
  • the location information of the terminal device is determined according to the received power of the first signal, the transmitted power of the second signal, and the location relationship between the first network device and the fourth network device.
  • the transmission power of the second signal is acquired by the control device from the fourth network device; wherein the control device is at least connected to the first network device and the fourth network device.
  • the second signal is used to power the terminal device, or the second signal is used to trigger the terminal device to send a signal through backscattering, or the second signal is used to trigger the
  • the terminal group including the terminal device sends a signal in a backscattering manner, or the second signal is a positioning signal, or the second signal is query information for querying the terminal devices in the first area.
  • the second signal carries identification information of the second signal, or, resources occupied by the second signal are used to indicate the identification information of the second signal.
  • the resource occupied by the second signal includes at least one of the following:
  • Frequency domain resources time domain resources, code domain resources.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal includes identification information of the terminal device; or,
  • the second signal In a case where the second signal is used to trigger a terminal group including the terminal device to send a signal in a backscattering manner, the second signal includes identification information of the terminal group.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal is carried by an energizing signal, or the second signal is carried by a de-energizing signal external signal or channel bearer; or,
  • the second signal is used to trigger the terminal group including the terminal device to send a signal through backscattering
  • the second signal is carried by the power supply signal, or the second signal is carried by the power supply signal external signal or channel bearer; or,
  • the second signal is a positioning signal
  • the second signal is carried by an enabling signal, or, the second signal is carried by a signal or channel other than the enabling signal; or,
  • the second signal is inquiry information for interrogating terminal devices in the first area
  • the second signal is carried by the power supply signal, or the second signal is carried by a signal or channel other than the power supply signal bearer.
  • the first signal includes at least one of the following:
  • the identification information of the terminal device the identification information of the second signal, and the backscatter loss of the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • control device 600 may correspond to the control device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the control device 600 are to realize the method shown in FIG. 12 For the sake of brevity, the corresponding process of controlling the device in 300 will not be repeated here.
  • Fig. 16 shows a schematic block diagram of a terminal device 700 according to an embodiment of the present application.
  • the terminal device 700 includes:
  • a communication unit 710 configured to send the first signal to the first network device by backscattering
  • the received power of the first signal is used by the first network device to determine the location information of the terminal device.
  • the first signal is a signal obtained after the second signal is backscattered by the terminal device, wherein the second signal is sent by the first network device, or the second signal is sent by another network device send.
  • the received power of the first signal is used by the first network device to determine the location information of the terminal device, including:
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the distance between the first network device and the terminal device, and the distance between the first network device and the terminal device The distance is used by the first network device to determine the location information of the terminal device.
  • the received power of the first signal is used by the first network device to determine the location information of the terminal device, including:
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the distance between the first network device and the terminal device, and the distance between the first network device and the terminal device The distance is used by the first network device to determine the location information of the terminal device in combination with the distance between the second network device and the terminal device and the distance between the third network device and the terminal device.
  • the distance between the second network device and the terminal device is determined by the second network device based on the transmission power of the third signal and the reception power of the fourth signal;
  • the third signal is a signal sent by the second network device to the terminal device
  • the fourth signal is a signal received by the second network device after the third signal is backscattered by the terminal device.
  • the distance between the second network device and the terminal device is obtained by the first network device from the second network device, or, the distance between the second network device and the terminal device is obtained by The first network device acquires it from the control device;
  • control device is at least connected to the first network device and the second network device.
  • the distance between the third network device and the terminal device is determined by the third network device based on the transmission power of the fifth signal and the reception power of the sixth signal;
  • the fifth signal is a signal sent by the third network device to the terminal device
  • the sixth signal is a signal received by the third network device after the fifth signal is backscattered by the terminal device.
  • the distance between the third network device and the terminal device is obtained by the first network device from the third network device, or, the distance between the third network device and the terminal device is obtained by The first network device acquires it from the control device;
  • control device is at least connected to the first network device and the third network device.
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the distance between the first network device and the terminal device, including:
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the one-way transmission loss between the first network device and the terminal device, and the first network device and the terminal device
  • the one-way transmission loss is used by the first network device to determine the distance between the first network device and the terminal device.
  • the received power of the first signal and the transmitted power of the second signal are used by the first network device to determine the one-way transmission loss between the first network device and the terminal device according to the following formula:
  • PL 1 represents the one-way transmission loss between the first network device and the terminal device
  • PT1 represents the transmit power of the second signal
  • PR1 represents the received power of the first signal
  • represents the backscattering loss .
  • the received power of the first signal is used by the first network device to determine the location information of the terminal device, including:
  • the receiving power of the first signal and the transmitting power of the second signal are used by the first network device to determine the location information of the terminal device in combination with the location relationship between the first network device and the fourth network device.
  • the transmission power of the second signal is obtained by the first network device from the fourth network device, or, the transmission power of the second signal is obtained by the first network device from a control device; wherein , the control device is at least connected to the first network device and the fourth network device.
  • the second signal is used to power the terminal device, or the second signal is used to trigger the terminal device to send a signal through backscattering, or the second signal is used to trigger the
  • the terminal group including the terminal device sends a signal in a backscattering manner, or the second signal is a positioning signal, or the second signal is query information for querying the terminal devices in the first area.
  • the second signal carries identification information of the second signal, or, resources occupied by the second signal are used to indicate the identification information of the second signal.
  • the resource occupied by the second signal includes at least one of the following:
  • Frequency domain resources time domain resources, code domain resources.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal includes identification information of the terminal device; or,
  • the second signal In a case where the second signal is used to trigger a terminal group including the terminal device to send a signal in a backscattering manner, the second signal includes identification information of the terminal group.
  • the second signal when the second signal is used to trigger the terminal device to send a signal through backscattering, the second signal is carried by an energizing signal, or the second signal is carried by a de-energizing signal external signal or channel bearer; or,
  • the second signal is used to trigger the terminal group including the terminal device to send a signal through backscattering
  • the second signal is carried by the power supply signal, or the second signal is carried by the power supply signal external signal or channel bearer; or,
  • the second signal is a positioning signal
  • the second signal is carried by an enabling signal, or, the second signal is carried by a signal or channel other than the enabling signal; or,
  • the second signal is inquiry information for interrogating terminal devices in the first area
  • the second signal is carried by the power supply signal, or the second signal is carried by a signal or channel other than the power supply signal bearer.
  • the first signal includes at least one of the following:
  • the identification information of the terminal device the identification information of the second signal, and the backscatter loss of the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • terminal device 700 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 700 are for realizing the method shown in FIG. 13
  • the corresponding process of the terminal device in 400 will not be repeated here.
  • FIG. 17 is a schematic structural diagram of a communication device 800 provided in an embodiment of the present application.
  • the communication device 800 shown in FIG. 17 includes a processor 810, and the processor 810 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820 .
  • the processor 810 can call and run a computer program from the memory 820, so as to implement the method in the embodiment of the present application.
  • the memory 820 may be an independent device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of antennas may be one or more.
  • the communication device 800 may specifically be the network device of the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the first network device in each method of the embodiment of the present application. For brevity, in This will not be repeated here.
  • the communication device 800 may specifically be the control device in the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the control device in each method of the embodiment of the present application. Let me repeat.
  • the communication device 800 may specifically be the terminal device in the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • Fig. 18 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 900 shown in FIG. 18 includes a processor 910, and the processor 910 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 900 may further include a memory 920 .
  • the processor 910 can invoke and run a computer program from the memory 920, so as to implement the method in the embodiment of the present application.
  • the memory 920 may be an independent device independent of the processor 910 , or may be integrated in the processor 910 .
  • the device 900 may further include an input interface 930 .
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 900 may further include an output interface 940 .
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the first network device in the methods of the embodiments of the present application.
  • the repeat for the sake of brevity, the repeat.
  • the device can be applied to the control device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the control device in the various methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 19 is a schematic block diagram of a communication system 1000 provided by an embodiment of the present application. As shown in FIG. 19 , the communication system 1000 includes a terminal device 1010 and a network device 1020 .
  • the terminal device 1010 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1020 can be used to realize the corresponding functions realized by the first network device in the above method.
  • the terminal device 1010 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 1020 can be used to realize the corresponding functions realized by the first network device in the above method.
  • the communication system 1000 also includes a control device, which can be connected to at least one network device (including the network device 1020), and the control device can be used to implement the corresponding functions implemented by the control device in the above methods .
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the first network device in the methods of the embodiments of the present application, in order It is concise and will not be repeated here.
  • the computer-readable storage medium can be applied to the control device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the control device in the various methods of the embodiments of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the first network device in the methods of the embodiments of the present application.
  • the computer program instructions enable the computer to execute the corresponding processes implemented by the first network device in the methods of the embodiments of the present application.
  • the computer program product can be applied to the control device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the control device in the various methods of the embodiments of the present application. For the sake of brevity, the This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding method implemented by the first network device in the methods of the embodiment of the present application. For the sake of brevity, the process will not be repeated here.
  • the computer program can be applied to the control device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the control device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请实施例提供了一种无线通信的方法及设备,通过测量终端设备基于反向散射方式发送的信号的接收功率,确定终端设备的位置信息,从而可以实现低功耗或者零功耗的定位,实现复杂度低。该无线通信的方法,包括:第一网络设备接收终端设备通过反向散射方式发送的第一信号;该第一网络设备根据该第一信号的接收功率确定该终端设备的位置信息。

Description

无线通信的方法及设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法及设备。
背景技术
对于蜂窝无源物联网场景,一种应用场景是通过零功耗终端实现定位功能,如物流场景的货物定位,畜牧业的农场中的动物定位,个人用户、物品的低功耗定位等场景。如何通过零功耗终端实现定位,是需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法及设备,通过测量终端设备基于反向散射方式发送的信号的接收功率,确定终端设备的位置信息,从而可以实现低功耗或者零功耗的定位,实现复杂度低。
第一方面,提供了一种无线通信的方法,该方法包括:
第一网络设备接收终端设备通过反向散射方式发送的第一信号;
该第一网络设备根据该第一信号的接收功率确定该终端设备的位置信息。
第二方面,提供了一种无线通信的方法,该方法包括:
控制设备接收第一网络设备发送的第一信息;其中,该第一信息包括第一信号的接收功率,该第一信号为该第一网络设备接收的终端设备通过反向散射方式发送的信号;
该控制设备根据该第一信号的接收功率确定该终端设备的位置信息。
第三方面,提供了一种无线通信的方法,该方法包括:
终端设备通过反向散射方式向第一网络设备发送第一信号;
其中,该第一信号的接收功率用于该第一网络设备确定该终端设备的位置信息。
第四方面,提供了一种网络设备,用于执行上述第一方面中的方法。
具体地,该网络设备包括用于执行上述第一方面中的方法的功能模块。
第五方面,提供了一种控制设备,用于执行上述第二方面中的方法。
具体地,该控制设备包括用于执行上述第二方面中的方法的功能模块。
第六方面,提供了一种终端设备,用于执行上述第三方面中的方法。
具体地,该终端设备包括用于执行上述第三方面中的方法的功能模块。
第七方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第八方面,提供了一种控制设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第九方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第三方面中的方法。
第十方面,提供了一种装置,用于实现上述第一方面至第三方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
通过上述第一方面和第三方面的技术方案,第一网络设备根据终端设备通过反向散射方式发送的第一信号的接收功率确定终端设备的位置信息,且终端设备发送第一信号所需的能量通过能量采集获得,从而可以实现低功耗或者零功耗的定位,实现复杂度低。
通过上述第二方面的技术方案,控制设备根据终端设备通过反向散射方式发送的第一信号的接收功率确定终端设备的位置信息,且终端设备发送第一信号所需的能量通过能量采集获得,从而可以实现低功耗或者零功耗的定位,实现复杂度低。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请一个示例的零功耗通信系统的示意图。
图3是能量采集的原理图。
图4是反向散射通信的原理图。
图5是电阻负载调制的电路原理图。
图6是根据本申请实施例提供的一种无线通信的方法的示意性图。
图7是根据本申请实施例提供的一种无线功能的示意性图。
图8是根据本申请实施例提供的一种传播损耗的示意性图。
图9是根据本申请实施例提供的一种三个网络设备进行定位的示意性图。
图10是根据本申请实施例提供的一种二个网络设备进行定位的示意性图。
图11是根据本申请实施例提供的另一种三个网络设备进行定位的示意性图。
图12是根据本申请实施例提供的另一种无线通信的方法的示意性图。
图13是根据本申请实施例提供的再一种无线通信的方法的示意性图。
图14是根据本申请实施例提供的一种网络设备的示意性框图。
图15是根据本申请实施例提供的一种控制设备的示意性框图。
图16是根据本申请实施例提供的一种终端设备的示意性框图。
图17是根据本申请实施例提供的一种通信设备的示意性框图。
图18是根据本申请实施例提供的一种装置的示意性框图。
图19是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统,蜂窝物联网系统,蜂窝无源物联网系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动 的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如 预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
零功耗通信采用能量采集和反向散射通信技术。零功耗通信网络由网络设备和零功耗终端构成。
如图2所示,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗终端接收网络设备发送的载波信号,并对所述载波信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使电子标签阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
(1)终端不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)终端不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。2、射频能量采集(RF Power Harvesting)。
3、编码技术
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为如下类型:
1、无源零功耗终端
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,此类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
有源零功耗终端,内置电池向RFID芯片供电,以增加标签的读写距离,提高通信的可靠性。因此在一些对通信距离,读取时延等方面要求相对较高的场景得以应用。
二、接收信号强度(Received Signal Strength,RSS)定位
RSS定位技术是依据信号强度随传播距离的变化规律实现定位的一类方法,其定位核心是根据多个参考节点接收同一目标源的信号强度来实现目标位置的确定。RSS定位技术目前被广泛应用于室内定位。传统的基于几何测量法的RSS定位技术首先需要测出各监测节点接收到目标的信号强度RSS,然后根据信号传输衰减模型逆向推算出各节点与目标间的传播距离d,进而估算待定位信号源的相对地理位置。
对于蜂窝无源物联网场景,一种应用场景是通过零功耗终端实现定位功能,如物流场景的货物定位,畜牧业的农场中的动物定位,个人用户、物品的低功耗定位等场景。如何通过零功耗终端实现定位,是需要解决的问题。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图6是根据本申请实施例的无线通信的方法200的示意性图,如图6所示,该无线通信的方法200包括如下至少部分内容:
S210,第一网络设备接收终端设备通过反向散射方式发送的第一信号;
S220,该第一网络设备根据该第一信号的接收功率确定该终端设备的位置信息。
在本申请实施例中,终端设备通过能量采集获得能量以用于通信和信息采集。也即,网络设备在与终端设备通信之前,首选需要保证终端设备接收到用于无线供能的无线电波并通过能量采集的方式获得无线能量。
在一些实施例中,该终端设备发送该第一信号所需的能量通过能量采集获得。
在一些实施例中,该终端设备为零功耗终端。
应理解,本申请并不限定终端设备通过能量采集获得能量的具体方式。作为示例而非限定,终端设备可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
在一些实施例中,该无线射频信号可以认为是供能信号,该供能信号是供能设备发送的,该供能设备可以是网络设备,或者也可以是第三方设备,该第三方设备可以是小区中的专用供能节点。供能设备可以持续地或间歇性地发送供能信号,从而终端设备可以进行能量采集,在获得足够能量之后,可以执行相应的通信过程,例如,测量,信号的发送,信道的发送,信号的接收,信道的接收等,还可以执行信息采集过程。
在一些实施例中,该终端设备上配置有能量采集模块,用于能量采集,例如对无线电波、太阳能等进行能量收集,进一步将获得的能量储存于储能单元中。储能单元获得足够的能量后,可以驱动终端设备内部的芯片电路工作以进行前向链路的信号解调以及反向链路的信号调制等操作,也可以用于终端设备执行信息采集过程。
在本申请实施例中,终端设备在信息采集时,可以同时进行能量采集,或者,也可以在采集足够的能量后再进行信息采集,本申请对此不作限定。
在本申请实施例中,该终端设备可以与传感器结合,该传感器可以用于产生传感器数据,例如温度数据,压力数据等,终端设备可以对传感器产生的数据进行采集。进一步地,该终端设备可以作为通信设备,将采集的传感器数据上报给网络设备。
在本申请实施例中,传感器可以是由终端设备供能,即终端设备通过能量采集获得的能量还用于给传感器供电,或者,传感器也可以由其他设备供能,本申请对于传感器的供能方式不作限定。
在一些实施例中,终端设备可以从内部的传感器模块采集数据,也可以从外部的传感器模块采集 数据,本申请实施例对于终端设备和传感器的结合方式不作限定。
在一些实施例中,该终端设备通过网络设备获得无线供能,如图7中的示例1。该终端设备可以通过网络中的其他节点获得无线供能,如网络中的智能手机、中继(Relay)节点、专用供能节点等,这些节点发送的无线信号也可以用于终端供能,如图7中的示例2。通过无线供能的方式获得能量,供能信号到达终端的强度需要满足一定的门限,如-20dBm,这就造成了在供能信号发射功率受限的情况下,网路设备发射的供能信号可以覆盖的范围较小,一般在几十米的范围。通过更多的网络节点实现无线供能可以显著提高覆盖范围。在一些实施例中,供能信号可以是具有无线供能作用的无线信号,如载波信号、承载信息的信号等。
在一些实施例中,当该终端设备没有收到供能信号时,其并不能够主动向网络发送信号,当网络需要寻找、定位该终端设备时,通过发送供能信号“激活”该终端设备,该终端设备在收到供能信号后,可以通过反向散射的方式发送信号。网络节点在收到反向散射信号时,根据其接收功率,结合网络节点发送的供能信号的发射功率,计算信号往返产生的功率衰减,从而获得该终端设备的位置信息。
具体例如,供能信号通常为一个载波信号,该终端设备接收到该载波信号,利用该载波信号提供的能量对该载波信号进行负载调制,形成携带信息的反向散射的信号发送给网络设备。在这个过程中,距离网络设备远近不同的终端进行反向散射的信号的功率是不同的,它们到达网络设备的功率也是不同的。网络设备可以通过供能信号的发射功率和终端设备的反向散射信号的接收功率的差值,确定往返的传输路径产生的路径损耗,从而确定单向的传输路径产生的路径损耗。由于无线信号的传播的路径损耗与传播距离是相关的,网络设备可以根据收到的反向散射信号的功率确定终端的位置信息。
在一些实施例中,供能信号的发送方式是网络可配置的。在一些实施例中,供能信号的标识信息,可以通过供能信号本身携带,也可以通过与供能信号关联的信道或信号携带。
本申请实施例可以应用于任意一个具有定位或者供能的网络设备,可以是基站或者供能节点,还可以是终端。
在一些实施例中,该第一信号为第二信号经该终端设备反向散射之后得到的信号,其中,该第二信号由该第一网络设备发送,或者,该第二信号由其他网络设备发送。
在一些实施例中,该第二信号携带该第二信号的标识信息。也即,该第二信号本身携带其标识信息,以使收到该第二信号的终端设备可以识别该第二信号。例如,对该第二信号的载波进行调制以承载该第二信号的标识信息。
在一些实施例中,该第二信号所占用的资源用于指示该第二信号的标识信息。也即,该第二信号可以隐式携带其标识信息,以使收到该第二信号的终端设备可以识别该第二信号。可选地,该第二信号所占用的资源包括以下至少之一:频域资源,时域资源,码域资源。
在一些实施例中,该第二信号用于为该终端设备供能。也即,该第二信号为功能信号。
在一些实施例中,该第二信号用于触发该终端设备通过反向散射方式发送信号。可选地,该第二信号至少包括该终端设备的标识信息。例如,该第二信号通过载波调制以携带该终端设备的标识信息。
在一些实施例中,该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号。可选地,该第二信号至少包括该终端组的标识信息。例如,该第二信号通过载波调制以携带该终端组的标识信息。
在一些实施例中,该第二信号为定位信号。
在一些实施例中,该第二信号为用于询问第一区域内的终端设备的询问信息。可选地,该第一区域内的部分或全部终端设备可以通过反向散射方式发送携带有针对该询问信息的响应信息的信号(也即,第一信号可以携带有针对询问信息的响应信息)。本申请对询问信息所询问的具体内容不作限定。
可选地,该第一区域可以由发送该第二信号的设备确定。例如,发送该第二信号的设备为基站,则该第一区域为该基站对应的服务小区。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号为定位信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号为用于询问第一区域内的终端设备的询问信息的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,该第一信号包括但不限于以下至少之一:
该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
具体例如,该第一信号通过载波调制以携带以下至少之一:该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一网络设备根据该第一信号的接收功率和该第二信号的发射功率确定该终端设备的位置信息。也即,在上述S220中,该第一网络设备根据该第一信号的接收功率和该第二信号的发射功率确定该终端设备的位置信息。
实施例1,在该第二信号由该第一网络设备发送的情况下,该第一网络设备根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;以及该第一网络设备根据该第一网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在实施例1的一些实现方式中,该第一网络设备根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的单向传输损耗;以及该第一网络设备根据该第一网络设备与该终端设备之间的单向传输损耗,确定该第一网络设备与该终端设备之间的距离。
具体例如,该终端设备在收到该第二信号时,识别该第二信号的标识信息,并通过反向散射的方式发送该第一信号,且该第一信号携带以下至少之一:该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。该第一网络设备收到该终端设备的反向散射信号后,基于该第一信号携带的该第二信号的标识信息,确定该第二信号为本网络设备发送的信号,则该第一网络设备根据该第一信号的接收功率,以及根据该第二信号的发射功率,确定信号往返于该第一网络设备和该终端设备之间的传输路径产生的路径损耗,从而确定单向的传输路径产生的路径损耗,根据路径损耗和传输距离之间的关系,确定该终端设备与该第一网络设备之间的距离。
需要说明的是,信号的路径损耗除了空间传输造成的损耗之外,在经过终端的反向散射过程中,对信号的功率同样会造成损耗,这里我们称为反向散射损耗。那么信号往返于第一网络设备和终端设备之间的传输路径产生的路径损耗则包括了双向的传播损耗和反向散射损耗。
在实施例1的一些实现方式中,该第一网络设备根据以下公式1,确定该第一网络设备与该终端设备之间的单向传输损耗。
PL 1=(P T1-P R1-α)/2    公式1
其中,PL 1表示该第一网络设备与该终端设备之间的单向传输损耗,P T1表示该第二信号的发射功率,P R1表示该第一信号的接收功率,α表示反向散射损耗。
具体例如,该第二信号为功能信号,第一网络设备与终端设备之间的传输损耗可以如图8所示。
需要说明的是,在上述实施例1中,依赖于一个网络设备(即第一网络设备)对终端设备进行定位。当第一网络设备的供能信号覆盖范围较小时,定位的精度可以保证。当需要在更大的范围内实现终端的定位时,基于单个网络设备定位的方式的精度较差。可以通过三个位置已知的网络设备来协助定位。终端设备测量三个参考节点的信号强度,依据物理学模型计算出三个距离值,采用几何求解方法,即可以得到定位点。
实施例2,在该第二信号由该第一网络设备发送的情况下,该第一网络设备根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;以及该第一网络设备根据该第一网络设备与该终端设备之间的距离、至少一个其他网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
也即,可以增加至少一个其他网络设备来辅助第一网络设备进行终端定位。
在实施例2的一些实现方式中,该至少一个其他网络设备与该终端设备之间的距离可以是该第一网络设备分别从该至少一个其他网络设备处获取的。
在实施例2的一些实现方式中,该至少一个其他网络设备包括第二网络设备和第三网络设备。此种情况下,该第一网络设备根据该第一网络设备与该终端设备之间的距离、该第二网络设备与该终端设备之间的距离、该第三网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
具体的,该第一网络设备与该终端设备之间的距离的确定方式可以参见上述实施例1的相关描述,在此不再赘述。
在一些实现方式中,该第二网络设备与该终端设备之间的距离由该第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实现方式中,该第二网络设备根据该第三信号的发射功率和该第四信号的接收功率,确定该第二网络设备与该终端设备之间的单向传输损耗;以及该第二网络设备根据该第二网络设备与该终端设备之间的单向传输损耗,确定该第二网络设备与该终端设备之间的距离。
具体例如,该第二网络设备根据以下公式2,确定该第二网络设备与该终端设备之间的单向传输损耗。
PL 2=(P T2-P R2-α)/2     公式2
其中,PL 2表示该第二网络设备与该终端设备之间的单向传输损耗,P T2表示该第三信号的发射功率,P R2表示该第四信号的接收功率,α表示反向散射损耗。
在一些实现方式中,该第二网络设备与该终端设备之间的距离由该第一网络设备从该第二网络设备处获取。也即,该第二网络设备可以基于上述公式2确定该第二网络设备与该终端设备之间的单向传输损耗,以及,该第二网络设备根据该第二网络设备与该终端设备之间的单向传输损耗,确定该第二网络设备与该终端设备之间的距离。
在一些实现方式中,该第二网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取,其中,该控制设备至少连接该第一网络设备和该第二网络设备。具体例如,该控制设备从该第二网络设备获取该第三信号的发射功率和该第四信号的接收功率,进而,该控制设备可以基于上述公式2确定该第二网络设备与该终端设备之间的单向传输损耗,以及,该控制设备根据该第二网络设备与该终端设备之间的单向传输损耗,确定该第二网络设备与该终端设备之间的距离。
在一些实现方式中,该第三网络设备与该终端设备之间的距离由该第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实现方式中,该第三网络设备根据该第五信号的发射功率和该第六信号的接收功率,确定该第三网络设备与该终端设备之间的单向传输损耗;以及该第三网络设备根据该第三网络设备与该终端设备之间的单向传输损耗,确定该第三网络设备与该终端设备之间的距离。
具体例如,该第三网络设备根据以下公式3,确定该第三网络设备与该终端设备之间的单向传输损耗。
PL 3=(P T3-P R3-α)/2     公式3
其中,PL 3表示该第三网络设备与该终端设备之间的单向传输损耗,P T3表示该第五信号的发射功率,P R3表示该第六信号的接收功率,α表示反向散射损耗。
在一些实现方式中,该第三网络设备与该终端设备之间的距离由该第一网络设备从该第三网络设备处获取。也即,该第三网络设备可以基于上述公式3确定该第三网络设备与该终端设备之间的单向传输损耗,以及,该第三网络设备根据该第三网络设备与该终端设备之间的单向传输损耗,确定该第三网络设备与该终端设备之间的距离。
在一些实现方式中,该第三网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第三网络设备。具体例如,该控制设备从该第三网络设备获取该第五信号的发射功率和该第六信号的接收功率,进而,该控制设备可以基于上述公式3确定该第三网络设备与该终端设备之间的单向传输损耗,以及,该控制设备根据该第三网络设备与该终端设备之间的单向传输损耗,确定该第三网络设备与该终端设备之间的距离。
具体例如,如图9所示,三个网络设备分别发射供能信号,得到终端设备的反向散射信号。通过反向散射信号接收功率,三个网络设备可以分别估计终端距离网络设备的距离,通过几何求解方法,即可以得到定位点。例如三个网络设备分别确定满足测得的路径损耗的距离曲线,三条距离曲线的交点即为估计的终端的定位点。参与定位的网络设备之间具有信息交互的接口,可以根据各自的基于反向散射信号接收功率的定位信息,联合计算终端的位置。或者,三个网络设备均与一个控制设备具有信息交互的接口,由控制设备根据参与定位的网络设备的定位信息上报,进行终端的定位。
需要说明的是,在上述实施例1和实施例2中,该第二信号由该第一网络设备发送。然而,在一些情况下,网络设备测量的反向散射信号并不一定对应于本网络设备发射的信号的反向散射信号,而是对应于另一个网络设备发射的信号。
实施例3,在该第二信号由第四网络设备发送的情况下,该第一网络设备根据该第一信号的接收功率、该第二信号的发射功率、该第一网络设备与该第四网络设备之间的位置关系,确定该终端设备的位置信息。
在实施例3的一些实现方式中,该第二信号的发射功率由该第一网络设备从该第四网络设备处获取,或者,该第二信号的发射功率由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第四网络设备。
具体例如,如图10所示,网络节点1发射供能信号,终端基于供能信号的反向散射信号到达网络节点1和网络节点2。对于网络节点2来说,可以通过其与网络节点1之间的信息接口,获得网络节点1发射的供能信号的功率。然后,根据收到的反向散射信号的接收功率,可以得到供能信号从网络节点1,经过终端的反向散射到达网络节点2的总的路径损耗,即PL1+PL3+α。网络节点2可以进一步通过自己和网络节点1的地理位置信息,通过几何求解方法,得到满足该总路径损耗的终端的 位置。网络节点2还可以通过直接测量网络节点1的供能信号的接收功率,得到路径损耗PL4,然后根据PL1、PL3和PL4,以及α,对终端的位置进行求解,从而得到终端的定位。需要说明的是,在图10中,网络节点1对应上述第四网络设备,网络节点2对应上述第一网络设备,
具体又例如,对于多个网络节点实现对终端的定位的过程,如图11所示,三个网络节点中的一个网络节点发射供能信号。终端的反向散射信号被三个网络节点接收并测量接收功率。同时,三个网络节点之间具有信息接口,可以综合获得的反向散射信号的接收功率,对终端的位置进行求解,从而得到终端的定位。
因此,在本申请实施例中,第一网络设备根据终端设备通过反向散射方式发送的第一信号的接收功率确定终端设备的位置信息,且终端设备发送第一信号所需的能量通过能量采集获得,从而可以实现低功耗或者零功耗的定位,实现复杂度低。
上文结合图6至图11,详细描述了本申请的网络设备侧实施例,下文结合图12,详细描述本申请的控制设备侧实施例,应理解,控制设备侧实施例与网络设备侧实施例相互对应,类似的描述可以参照网络设备侧实施例。
图12是根据本申请实施例的无线通信的方法300的示意性图,如图12所示,该无线通信的方法300包括如下至少部分内容:
S310,控制设备接收第一网络设备发送的第一信息;其中,该第一信息包括第一信号的接收功率,该第一信号为该第一网络设备接收的终端设备通过反向散射方式发送的信号;
S320,该控制设备根据该第一信号的接收功率确定该终端设备的位置信息。
在本申请实施例中,控制设备可以转发网络设备所确定或获取的信号发射功率、信号接收功率、位置信息,也可以接收这些信息,当接收这些信息时,控制设备可以转发给其他网络设备,也可以根据这些信息自己完成终端的定位。
在本申请实施例中,终端设备通过能量采集获得能量以用于通信和信息采集。也即,网络设备在与终端设备通信之前,首选需要保证终端设备接收到用于无线供能的无线电波并通过能量采集的方式获得无线能量。
在一些实施例中,该终端设备发送该第一信号所需的能量通过能量采集获得。
在一些实施例中,该终端设备为零功耗终端。
应理解,本申请并不限定终端设备通过能量采集获得能量的具体方式。作为示例而非限定,终端设备可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
在一些实施例中,该无线射频信号可以认为是供能信号,该供能信号是供能设备发送的,该供能设备可以是网络设备,或者也可以是第三方设备,该第三方设备可以是小区中的专用供能节点。供能设备可以持续地或间歇性地发送供能信号,从而终端设备可以进行能量采集,在获得足够能量之后,可以执行相应的通信过程,例如,测量,信号的发送,信道的发送,信号的接收,信道的接收等,还可以执行信息采集过程。
在一些实施例中,该终端设备上配置有能量采集模块,用于能量采集,例如对无线电波、太阳能等进行能量收集,进一步将获得的能量储存于储能单元中。储能单元获得足够的能量后,可以驱动终端设备内部的芯片电路工作以进行前向链路的信号解调以及反向链路的信号调制等操作,也可以用于终端设备执行信息采集过程。
在本申请实施例中,终端设备在信息采集时,可以同时进行能量采集,或者,也可以在采集足够的能量后再进行信息采集,本申请对此不作限定。
在本申请实施例中,该终端设备可以与传感器结合,该传感器可以用于产生传感器数据,例如温度数据,压力数据等,终端设备可以对传感器产生的数据进行采集。进一步地,该终端设备可以作为通信设备,将采集的传感器数据上报给网络设备。
在本申请实施例中,传感器可以是由终端设备供能,即终端设备通过能量采集获得的能量还用于给传感器供电,或者,传感器也可以由其他设备供能,本申请对于传感器的供能方式不作限定。
在一些实施例中,终端设备可以从内部的传感器模块采集数据,也可以从外部的传感器模块采集数据,本申请实施例对于终端设备和传感器的结合方式不作限定。
在一些实施例中,该终端设备通过网络设备获得无线供能,如图7中的示例1。该终端设备可以通过网络中的其他节点获得无线供能,如网络中的智能手机、中继(Relay)节点、专用供能节点等,这些节点发送的无线信号也可以用于终端供能,如图7中的示例2。通过无线供能的方式获得能量,供能信号到达终端的强度需要满足一定的门限,如-20dBm,这就造成了在供能信号发射功率受限的情况下,网路设备发射的供能信号可以覆盖的范围较小,一般在几十米的范围。通过更多的网络节点实现无线供能可以显著提高覆盖范围。在一些实施例中,供能信号可以是具有无线供能作用的无线信号, 如载波信号、承载信息的信号等。
在一些实施例中,当该终端设备没有收到供能信号时,其并不能够主动向网络发送信号,当网络需要寻找、定位该终端设备时,通过发送供能信号“激活”该终端设备,该终端设备在收到供能信号后,可以通过反向散射的方式发送信号。网络节点在收到反向散射信号时,根据其接收功率,结合网络节点发送的供能信号的发射功率,计算信号往返产生的功率衰减,从而获得该终端设备的位置信息。
具体例如,供能信号通常为一个载波信号,该终端设备接收到该载波信号,利用该载波信号提供的能量对该载波信号进行负载调制,形成携带信息的反向散射的信号发送给网络设备。在这个过程中,距离网络设备远近不同的终端进行反向散射的信号的功率是不同的,它们到达网络设备的功率也是不同的。网络设备可以通过供能信号的发射功率和终端设备的反向散射信号的接收功率的差值,确定往返的传输路径产生的路径损耗,从而确定单向的传输路径产生的路径损耗。由于无线信号的传播的路径损耗与传播距离是相关的,网络设备可以根据收到的反向散射信号的功率确定终端的位置信息。
在一些实施例中,供能信号的发送方式是网络可配置的。在一些实施例中,供能信号的标识信息,可以通过供能信号本身携带,也可以通过与供能信号关联的信道或信号携带。
本申请实施例可以应用于任意一个具有定位或者供能的网络设备,可以是基站或者供能节点,还可以是终端。
在一些实施例中,该第一信号为第二信号经该终端设备反向散射之后得到的信号,其中,该第二信号由该第一网络设备发送,或者,该第二信号由其他网络设备发送。
在一些实施例中,该第二信号携带该第二信号的标识信息。也即,该第二信号本身携带其标识信息,以使收到该第二信号的终端设备可以识别该第二信号。例如,对该第二信号的载波进行调制以承载该第二信号的标识信息。
在一些实施例中,该第二信号所占用的资源用于指示该第二信号的标识信息。也即,该第二信号可以隐式携带其标识信息,以使收到该第二信号的终端设备可以识别该第二信号。可选地,该第二信号所占用的资源包括以下至少之一:频域资源,时域资源,码域资源。
在一些实施例中,该第二信号用于为该终端设备供能。也即,该第二信号为功能信号。
在一些实施例中,该第二信号用于触发该终端设备通过反向散射方式发送信号。可选地,该第二信号至少包括该终端设备的标识信息。例如,该第二信号通过载波调制以携带该终端设备的标识信息。
在一些实施例中,该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号。可选地,该第二信号至少包括该终端组的标识信息。例如,该第二信号通过载波调制以携带该终端组的标识信息。
在一些实施例中,该第二信号为定位信号。
在一些实施例中,该第二信号为用于询问第一区域内的终端设备的询问信息。可选地,该第一区域内的部分或全部终端设备可以通过反向散射方式发送携带有针对该询问信息的响应信息的信号(也即,第一信号可以携带有针对询问信息的响应信息)。本申请对询问信息所询问的具体内容不作限定。
可选地,该第一区域可以由发送该第二信号的设备确定。例如,发送该第二信号的设备为基站,则该第一区域为该基站对应的服务小区。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号为定位信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号为用于询问第一区域内的终端设备的询问信息的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,该第一信号包括但不限于以下至少之一:
该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
具体例如,该第一信号通过载波调制以携带以下至少之一:该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一信息还包括该第二信号的发射功率。在上述S320中,该控制设备根据该第一信号的接收功率和该第二信号的发射功率确定该终端设备的位置信息。
在一些实施例中,该控制设备根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;以及该控制设备根据该第一网络设备与该终端设备之间的距离, 确定该终端设备的位置信息。
在一些实施例中,该控制设备根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;以及该控制设备根据该第一网络设备与该终端设备之间的距离、至少一个其他网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该至少一个其他网络设备包括第二网络设备和第三网络设备。此种情况下,该控制设备根据该第一网络设备与该终端设备之间的距离、该第二网络设备与该终端设备之间的距离、该第三网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该控制设备基于第三信号的发射功率和第四信号的接收功率确定;其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实施例中,在该第二网络设备与该终端设备之间的距离由该第二网络设备基于该第三信号的发射功率和该第四信号的接收功率确定的情况下,该第二网络设备与该终端设备之间的距离由该控制设备从该第二网络设备处获取。其中,该控制设备至少连接该第一网络设备和该第二网络设备。
在一些实施例中,在该第二网络设备与该终端设备之间的距离由该控制设备基于该第三信号的发射功率和该第四信号的接收功率确定的情况下,该第三信号的发射功率和该第四信号的接收功率由该控制设备从该第二网络设备处获取;其中,该控制设备至少连接该第一网络设备和该第二网络设备。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该第三网络设备基于第五信号的发射功率和第六信号的接收功率确定。其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该控制设备基于第五信号的发射功率和第六信号的接收功率确定;其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实施例中,在该第三网络设备与该终端设备之间的距离由该第三网络设备基于该第五信号的发射功率和该第六信号的接收功率确定的情况下,该第三网络设备与该终端设备之间的距离由该控制设备从该第三网络设备处获取;其中,该控制设备至少连接该第一网络设备和该第三网络设备。
在一些实施例中,在该第三网络设备与该终端设备之间的距离由该控制设备基于该第五信号的发射功率和该第六信号的接收功率确定的情况下,该第五信号的发射功率和该第六信号的接收功率由该控制设备从该第三网络设备处获取;其中,该控制设备至少连接该第一网络设备和该第三网络设备。
在一些实施例中,该控制设备根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的单向传输损耗;以及该控制设备根据该第一网络设备与该终端设备之间的单向传输损耗,确定该第一网络设备与该终端设备之间的距离。
在一些实施例中,该控制设备根据以下公式,确定该第一网络设备与该终端设备之间的单向传输损耗:
PL 1=(P T1-P R1-α)/2;
其中,PL 1表示该第一网络设备与该终端设备之间的单向传输损耗,P T1表示该第二信号的发射功率,P R1表示该第一信号的接收功率,α表示反向散射损耗。
在一些实施例中,该控制设备根据该第一信号的接收功率、该第二信号的发射功率、该第一网络设备与该第四网络设备之间的位置关系,确定该终端设备的位置信息。
在一些实施例中,该第二信号的发射功率由该控制设备从该第四网络设备处获取;其中,该控制设备至少连接该第一网络设备和该第四网络设备。
因此,在本申请实施例中,控制设备根据终端设备通过反向散射方式发送的第一信号的接收功率确定终端设备的位置信息,且终端设备发送第一信号所需的能量通过能量采集获得,从而可以实现低功耗或者零功耗的定位,实现复杂度低。
上文结合图6至图11,详细描述了本申请的网络设备侧实施例,下文结合图13,详细描述本申请的终端设备侧实施例,应理解,终端设备侧实施例与网络设备侧实施例相互对应,类似的描述可以参照网络设备侧实施例。
图13是根据本申请实施例的无线通信的方法400的示意性图,如图13所示,该无线通信的方法400包括如下至少部分内容:
S410,终端设备通过反向散射方式向第一网络设备发送第一信号;其中,该第一信号的接收功率 用于该第一网络设备确定该终端设备的位置信息。
在本申请实施例中,终端设备通过能量采集获得能量以用于通信和信息采集。也即,网络设备在与终端设备通信之前,首选需要保证终端设备接收到用于无线供能的无线电波并通过能量采集的方式获得无线能量。
在一些实施例中,该终端设备发送该第一信号所需的能量通过能量采集获得。
在一些实施例中,该终端设备为零功耗终端。
应理解,本申请并不限定终端设备通过能量采集获得能量的具体方式。作为示例而非限定,终端设备可以通过无线射频信号,太阳能,压力或温度等无线供能方式获得能量。
在一些实施例中,该无线射频信号可以认为是供能信号,该供能信号是供能设备发送的,该供能设备可以是网络设备,或者也可以是第三方设备,该第三方设备可以是小区中的专用供能节点。供能设备可以持续地或间歇性地发送供能信号,从而终端设备可以进行能量采集,在获得足够能量之后,可以执行相应的通信过程,例如,测量,信号的发送,信道的发送,信号的接收,信道的接收等,还可以执行信息采集过程。
在一些实施例中,该终端设备上配置有能量采集模块,用于能量采集,例如对无线电波、太阳能等进行能量收集,进一步将获得的能量储存于储能单元中。储能单元获得足够的能量后,可以驱动终端设备内部的芯片电路工作以进行前向链路的信号解调以及反向链路的信号调制等操作,也可以用于终端设备执行信息采集过程。
在本申请实施例中,终端设备在信息采集时,可以同时进行能量采集,或者,也可以在采集足够的能量后再进行信息采集,本申请对此不作限定。
在本申请实施例中,该终端设备可以与传感器结合,该传感器可以用于产生传感器数据,例如温度数据,压力数据等,终端设备可以对传感器产生的数据进行采集。进一步地,该终端设备可以作为通信设备,将采集的传感器数据上报给网络设备。
在本申请实施例中,传感器可以是由终端设备供能,即终端设备通过能量采集获得的能量还用于给传感器供电,或者,传感器也可以由其他设备供能,本申请对于传感器的供能方式不作限定。
在一些实施例中,终端设备可以从内部的传感器模块采集数据,也可以从外部的传感器模块采集数据,本申请实施例对于终端设备和传感器的结合方式不作限定。
在一些实施例中,该终端设备通过网络设备获得无线供能,如图7中的示例1。该终端设备可以通过网络中的其他节点获得无线供能,如网络中的智能手机、中继(Relay)节点、专用供能节点等,这些节点发送的无线信号也可以用于终端供能,如图7中的示例2。通过无线供能的方式获得能量,供能信号到达终端的强度需要满足一定的门限,如-20dBm,这就造成了在供能信号发射功率受限的情况下,网路设备发射的供能信号可以覆盖的范围较小,一般在几十米的范围。通过更多的网络节点实现无线供能可以显著提高覆盖范围。在一些实施例中,供能信号可以是具有无线供能作用的无线信号,如载波信号、承载信息的信号等。
在一些实施例中,当该终端设备没有收到供能信号时,其并不能够主动向网络发送信号,当网络需要寻找、定位该终端设备时,通过发送供能信号“激活”该终端设备,该终端设备在收到供能信号后,可以通过反向散射的方式发送信号。网络节点在收到反向散射信号时,根据其接收功率,结合网络节点发送的供能信号的发射功率,计算信号往返产生的功率衰减,从而获得该终端设备的位置信息。
具体例如,供能信号通常为一个载波信号,该终端设备接收到该载波信号,利用该载波信号提供的能量对该载波信号进行负载调制,形成携带信息的反向散射的信号发送给网络设备。在这个过程中,距离网络设备远近不同的终端进行反向散射的信号的功率是不同的,它们到达网络设备的功率也是不同的。网络设备可以通过供能信号的发射功率和终端设备的反向散射信号的接收功率的差值,确定往返的传输路径产生的路径损耗,从而确定单向的传输路径产生的路径损耗。由于无线信号的传播的路径损耗与传播距离是相关的,网络设备可以根据收到的反向散射信号的功率确定终端的位置信息。
在一些实施例中,供能信号的发送方式是网络可配置的。在一些实施例中,供能信号的标识信息,可以通过供能信号本身携带,也可以通过与供能信号关联的信道或信号携带。
本申请实施例可以应用于任意一个具有定位或者供能的网络设备,可以是基站或者供能节点,还可以是终端。
在一些实施例中,该第一信号为第二信号经该终端设备反向散射之后得到的信号,其中,该第二信号由该第一网络设备发送,或者,该第二信号由其他网络设备发送。
在一些实施例中,该第二信号携带该第二信号的标识信息。也即,该第二信号本身携带其标识信息,以使收到该第二信号的终端设备可以识别该第二信号。例如,对该第二信号的载波进行调制以承载该第二信号的标识信息。
在一些实施例中,该第二信号所占用的资源用于指示该第二信号的标识信息。也即,该第二信号可以隐式携带其标识信息,以使收到该第二信号的终端设备可以识别该第二信号。可选地,该第二信号所占用的资源包括以下至少之一:频域资源,时域资源,码域资源。
在一些实施例中,该第二信号用于为该终端设备供能。也即,该第二信号为功能信号。
在一些实施例中,该第二信号用于触发该终端设备通过反向散射方式发送信号。可选地,该第二信号至少包括该终端设备的标识信息。例如,该第二信号通过载波调制以携带该终端设备的标识信息。
在一些实施例中,该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号。可选地,该第二信号至少包括该终端组的标识信息。例如,该第二信号通过载波调制以携带该终端组的标识信息。
在一些实施例中,该第二信号为定位信号。
在一些实施例中,该第二信号为用于询问第一区域内的终端设备的询问信息。可选地,该第一区域内的部分或全部终端设备可以通过反向散射方式发送携带有针对该询问信息的响应信息的信号(也即,第一信号可以携带有针对询问信息的响应信息)。本申请对询问信息所询问的具体内容不作限定。
可选地,该第一区域可以由发送该第二信号的设备确定。例如,发送该第二信号的设备为基站,则该第一区域为该基站对应的服务小区。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号为定位信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,在该第二信号为用于询问第一区域内的终端设备的询问信息的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,该第一信号包括但不限于以下至少之一:
该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
具体例如,该第一信号通过载波调制以携带以下至少之一:该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的距离,以及该第一网络设备与该终端设备之间的距离用于该第一网络设备确定该终端设备的位置信息。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的距离,以及该第一网络设备与该终端设备之间的距离用于该第一网络设备结合第二网络设备与该终端设备之间的距离、第三网络设备与该终端设备之间的距离确定该终端设备的位置信息。
在一些实施例中,该第二网络设备与该终端设备之间的距离为该第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该第一网络设备从该第二网络设备处获取,或者,该第二网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第二网络设备。
在一些实施例中,该第三网络设备与该终端设备之间的距离为该第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该第一网络设备从该第三网络设备处获取,或者,该第三网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第三网络设备。
在一些实施例中,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的单向传输损耗,以及该第一网络设备与该终端设备之间的单向传输损耗用于该第一网络设备确定该第一网络设备与该终端设备之间的距离。
在一些实施例中,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备根据以下公式确定该第一网络设备与该终端设备之间的单向传输损耗:
PL 1=(P T1-P R1-α)/2;
其中,PL 1表示该第一网络设备与该终端设备之间的单向传输损耗,P T1表示该第二信号的发射功率,P R1表示该第一信号的接收功率,α表示反向散射损耗。
在一些实施例中,在该第二信号由第四网络设备发送的情况下,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备结合该第一网络设备与该第四网络设备之间的位置关系,确定该终端设备的位置信息。
在一些实施例中,该第二信号的发射功率由该第一网络设备从该第四网络设备处获取,或者,该第二信号的发射功率由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第四网络设备。
因此,在本申请实施例中,第一网络设备根据终端设备通过反向散射方式发送的第一信号的接收功率确定终端设备的位置信息,且终端设备发送第一信号所需的能量通过能量采集获得,从而可以实现低功耗或者零功耗的定位,实现复杂度低。
上文结合图6至图13,详细描述了本申请的方法实施例,下文结合图14至图16,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图14示出了根据本申请实施例的网络设备500的示意性框图。如图14所示,该网络设备500为第一网络设备,该网络设备500包括:
通信单元510,用于接收终端设备通过反向散射方式发送的第一信号;
处理单元520,用于根据该第一信号的接收功率确定该终端设备的位置信息。
在一些实施例中,该第一信号为第二信号经该终端设备反向散射之后得到的信号,其中,该第二信号由该第一网络设备发送,或者,该第二信号由其他网络设备发送。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该处理单元520具体用于:
根据该第一信号的接收功率和该第二信号的发射功率确定该终端设备的位置信息。
在一些实施例中,该处理单元520具体用于:
根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;
根据该第一网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该处理单元520具体用于:
根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;
根据该第一网络设备与该终端设备之间的距离、至少一个其他网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该至少一个其他网络设备包括第二网络设备和第三网络设备;
该处理单元520具体用于:
根据该第一网络设备与该终端设备之间的距离、该第二网络设备与该终端设备之间的距离、该第三网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;
其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该第一网络设备从该第二网络设备处获取,或者,该第二网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;
其中,该控制设备至少连接该第一网络设备和该第二网络设备。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;
其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该第一网络设备从该第三网络设备处获取,或者,该第三网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;
其中,该控制设备至少连接该第一网络设备和该第三网络设备。
在一些实施例中,该处理单元520具体用于:
根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的单向传输损耗;
根据该第一网络设备与该终端设备之间的单向传输损耗,确定该第一网络设备与该终端设备之间 的距离。
在一些实施例中,该处理单元520具体用于:
根据以下公式,确定该第一网络设备与该终端设备之间的单向传输损耗:
PL 1=(P T1-P R1-α)/2;
其中,PL 1表示该第一网络设备与该终端设备之间的单向传输损耗,P T1表示该第二信号的发射功率,P R1表示该第一信号的接收功率,α表示反向散射损耗。
在一些实施例中,在该第二信号由第四网络设备发送的情况下,该处理单元520具体用于:
根据该第一信号的接收功率、该第二信号的发射功率、该第一网络设备与该第四网络设备之间的位置关系,确定该终端设备的位置信息。
在一些实施例中,该第二信号的发射功率由该第一网络设备从该第四网络设备处获取,或者,该第二信号的发射功率由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第四网络设备。
在一些实施例中,该第二信号用于为该终端设备供能,或者,该第二信号用于触发该终端设备通过反向散射方式发送信号,或者,该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号,或者,该第二信号为定位信号,或者,该第二信号为用于询问第一区域内的终端设备的询问信息。
在一些实施例中,该第二信号携带该第二信号的标识信息,或者,该第二信号所占用的资源用于指示该第二信号的标识信息。
在一些实施例中,该第二信号所占用的资源包括以下至少之一:
频域资源,时域资源,码域资源。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号包括该终端设备的标识信息;或者,
在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号包括该终端组的标识信息。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号为定位信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号为用于询问第一区域内的终端设备的询问信息的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,该第一信号包括以下至少之一:
该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的第一网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6所示方法200中第一网络设备的相应流程,为了简洁,在此不再赘述。
图15示出了根据本申请实施例的控制设备600的示意性框图。如图15所示,该控制设备600包括:
通信单元610,用于接收第一网络设备发送的第一信息;其中,该第一信息包括第一信号的接收功率,该第一信号为该第一网络设备接收的终端设备通过反向散射方式发送的信号;
处理单元620,用于根据该第一信号的接收功率确定该终端设备的位置信息。
在一些实施例中,该第一信号为第二信号经该终端设备反向散射之后得到的信号,其中,该第二信号由该第一网络设备发送,或者,该第二信号由其他网络设备发送。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一信息还包括该第二信号的发射功率;
该处理单元620具体用于:
根据该第一信号的接收功率和该第二信号的发射功率确定该终端设备的位置信息。
在一些实施例中,该处理单元620具体用于:
根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的 距离;
根据该第一网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该处理单元620具体用于:
根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的距离;
根据该第一网络设备与该终端设备之间的距离、至少一个其他网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该至少一个其他网络设备包括第二网络设备和第三网络设备;
该处理单元620具体用于:
根据该第一网络设备与该终端设备之间的距离、该第二网络设备与该终端设备之间的距离、该第三网络设备与该终端设备之间的距离,确定该终端设备的位置信息。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;或者,
该第二网络设备与该终端设备之间的距离由该控制设备基于第三信号的发射功率和第四信号的接收功率确定;
其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实施例中,在该第二网络设备与该终端设备之间的距离由该第二网络设备基于该第三信号的发射功率和该第四信号的接收功率确定的情况下,该第二网络设备与该终端设备之间的距离由该控制设备从该第二网络设备处获取;
在该第二网络设备与该终端设备之间的距离由该控制设备基于该第三信号的发射功率和该第四信号的接收功率确定的情况下,该第三信号的发射功率和该第四信号的接收功率由该控制设备从该第二网络设备处获取;
其中,该控制设备至少连接该第一网络设备和该第二网络设备。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;或者,
该第三网络设备与该终端设备之间的距离由该控制设备基于第五信号的发射功率和第六信号的接收功率确定;
其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实施例中,在该第三网络设备与该终端设备之间的距离由该第三网络设备基于该第五信号的发射功率和该第六信号的接收功率确定的情况下,该第三网络设备与该终端设备之间的距离由该控制设备从该第三网络设备处获取;
在该第三网络设备与该终端设备之间的距离由该控制设备基于该第五信号的发射功率和该第六信号的接收功率确定的情况下,该第五信号的发射功率和该第六信号的接收功率由该控制设备从该第三网络设备处获取;
其中,该控制设备至少连接该第一网络设备和该第三网络设备。
在一些实施例中,该处理单元620具体用于:
根据该第一信号的接收功率和该第二信号的发射功率,确定该第一网络设备与该终端设备之间的单向传输损耗;
根据该第一网络设备与该终端设备之间的单向传输损耗,确定该第一网络设备与该终端设备之间的距离。
在一些实施例中,该处理单元620具体用于:
根据以下公式,确定该第一网络设备与该终端设备之间的单向传输损耗:
PL 1=(P T1-P R1-α)/2;
其中,PL 1表示该第一网络设备与该终端设备之间的单向传输损耗,P T1表示该第二信号的发射功率,P R1表示该第一信号的接收功率,α表示反向散射损耗。
在一些实施例中,在该第二信号由第四网络设备发送的情况下,该处理单元620具体用于:
根据该第一信号的接收功率、该第二信号的发射功率、该第一网络设备与该第四网络设备之间的位置关系,确定该终端设备的位置信息。
在一些实施例中,该第二信号的发射功率由该控制设备从该第四网络设备处获取;其中,该控制设备至少连接该第一网络设备和该第四网络设备。
在一些实施例中,该第二信号用于为该终端设备供能,或者,该第二信号用于触发该终端设备通过反向散射方式发送信号,或者,该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号,或者,该第二信号为定位信号,或者,该第二信号为用于询问第一区域内的终端设备的询问信息。
在一些实施例中,该第二信号携带该第二信号的标识信息,或者,该第二信号所占用的资源用于指示该第二信号的标识信息。
在一些实施例中,该第二信号所占用的资源包括以下至少之一:
频域资源,时域资源,码域资源。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号包括该终端设备的标识信息;或者,
在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号包括该终端组的标识信息。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号为定位信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号为用于询问第一区域内的终端设备的询问信息的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,该第一信号包括以下至少之一:
该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的控制设备600可对应于本申请方法实施例中的控制设备,并且控制设备600中的各个单元的上述和其它操作和/或功能分别为了实现图12所示方法300中控制设备的相应流程,为了简洁,在此不再赘述。
图16示出了根据本申请实施例的终端设备700的示意性框图。如图16所示,该终端设备700包括:
通信单元710,用于通过反向散射方式向第一网络设备发送第一信号;
其中,该第一信号的接收功率用于该第一网络设备确定该终端设备的位置信息。
在一些实施例中,该第一信号为第二信号经该终端设备反向散射之后得到的信号,其中,该第二信号由该第一网络设备发送,或者,该第二信号由其他网络设备发送。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一信号的接收功率用于该第一网络设备确定该终端设备的位置信息,包括:
该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的距离,以及该第一网络设备与该终端设备之间的距离用于该第一网络设备确定该终端设备的位置信息。
在一些实施例中,在该第二信号由该第一网络设备发送的情况下,该第一信号的接收功率用于该第一网络设备确定该终端设备的位置信息,包括:
该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的距离,以及该第一网络设备与该终端设备之间的距离用于该第一网络设备结合第二网络设备与该终端设备之间的距离、第三网络设备与该终端设备之间的距离确定该终端设备的位置信息。
在一些实施例中,该第二网络设备与该终端设备之间的距离为该第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;
其中,该第三信号为该第二网络设备向该终端设备发送的信号,该第四信号为该第三信号经该终端设备反向散射之后由该第二网络设备接收到的信号。
在一些实施例中,该第二网络设备与该终端设备之间的距离由该第一网络设备从该第二网络设备处获取,或者,该第二网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;
其中,该控制设备至少连接该第一网络设备和该第二网络设备。
在一些实施例中,该第三网络设备与该终端设备之间的距离为该第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;
其中,该第五信号为该第三网络设备向该终端设备发送的信号,该第六信号为该第五信号经该终端设备反向散射之后由该第三网络设备接收到的信号。
在一些实施例中,该第三网络设备与该终端设备之间的距离由该第一网络设备从该第三网络设备处获取,或者,该第三网络设备与该终端设备之间的距离由该第一网络设备从控制设备处获取;
其中,该控制设备至少连接该第一网络设备和该第三网络设备。
在一些实施例中,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的距离,包括:
该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备确定该第一网络设备与该终端设备之间的单向传输损耗,以及该第一网络设备与该终端设备之间的单向传输损耗用于该第一网络设备确定该第一网络设备与该终端设备之间的距离。
在一些实施例中,该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备根据以下公式确定该第一网络设备与该终端设备之间的单向传输损耗:
PL 1=(P T1-P R1-α)/2;
其中,PL 1表示该第一网络设备与该终端设备之间的单向传输损耗,P T1表示该第二信号的发射功率,P R1表示该第一信号的接收功率,α表示反向散射损耗。
在一些实施例中,在该第二信号由第四网络设备发送的情况下,
该第一信号的接收功率用于该第一网络设备确定该终端设备的位置信息,包括:
该第一信号的接收功率和该第二信号的发射功率用于该第一网络设备结合该第一网络设备与该第四网络设备之间的位置关系,确定该终端设备的位置信息。
在一些实施例中,该第二信号的发射功率由该第一网络设备从该第四网络设备处获取,或者,该第二信号的发射功率由该第一网络设备从控制设备处获取;其中,该控制设备至少连接该第一网络设备和该第四网络设备。
在一些实施例中,该第二信号用于为该终端设备供能,或者,该第二信号用于触发该终端设备通过反向散射方式发送信号,或者,该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号,或者,该第二信号为定位信号,或者,该第二信号为用于询问第一区域内的终端设备的询问信息。
在一些实施例中,该第二信号携带该第二信号的标识信息,或者,该第二信号所占用的资源用于指示该第二信号的标识信息。
在一些实施例中,该第二信号所占用的资源包括以下至少之一:
频域资源,时域资源,码域资源。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号包括该终端设备的标识信息;或者,
在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号包括该终端组的标识信息。
在一些实施例中,在该第二信号用于触发该终端设备通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号用于触发包括该终端设备在内的终端组通过反向散射方式发送信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号为定位信号的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载;或者,
在该第二信号为用于询问第一区域内的终端设备的询问信息的情况下,该第二信号由供能信号承载,或者,该第二信号由除供能信号之外的信号或信道承载。
在一些实施例中,该第一信号包括以下至少之一:
该终端设备的标识信息,该第二信号的标识信息,该终端设备的反向散射损耗。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的终端设备700可对应于本申请方法实施例中的终端设备,并且终端设备700中的各个单元的上述和其它操作和/或功能分别为了实现图13所示方法400中终端设备的相应流程,为了简洁,在此不再赘述。
图17是本申请实施例提供的一种通信设备800示意性结构图。图17所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图17所示,通信设备800还可以包括存储器820。其中,处理器810可以从 存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一些实施例中,如图17所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由第一网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备800具体可为本申请实施例的控制设备,并且该通信设备800可以实现本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是本申请实施例的装置的示意性结构图。图18所示的装置900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图18所示,装置900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一些实施例中,该装置900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由第一网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的控制设备,并且该装置可以实现本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统1000的示意性框图。如图19所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由第一网络设备实现的相应的功能,为了简洁,在此不再赘述。
在一些实施例中,该通信系统1000还包括控制设备,该控制设备可以连接至少一个网络设备(包括网络设备1020),以及该控制设备可以用于实现上述方法中由控制设备实现的相应的功能。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic  RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由第一网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的控制设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由第一网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的控制设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由第一网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的控制设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (68)

  1. 一种无线通信的方法,其特征在于,包括:
    第一网络设备接收终端设备通过反向散射方式发送的第一信号;
    所述第一网络设备根据所述第一信号的接收功率确定所述终端设备的位置信息。
  2. 如权利要求1所述的方法,其特征在于,
    所述第一信号为第二信号经所述终端设备反向散射之后得到的信号,其中,所述第二信号由所述第一网络设备发送,或者,所述第二信号由其他网络设备发送。
  3. 如权利要求2所述的方法,其特征在于,在所述第二信号由所述第一网络设备发送的情况下,所述第一网络设备根据所述第一信号的接收功率确定所述终端设备的位置信息,包括:
    所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率确定所述终端设备的位置信息。
  4. 如权利要求3所述的方法,其特征在于,所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率确定所述终端设备的位置信息,包括:
    所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的距离;
    所述第一网络设备根据所述第一网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息。
  5. 如权利要求3所述的方法,其特征在于,所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率确定所述终端设备的位置信息,包括:
    所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的距离;
    所述第一网络设备根据所述第一网络设备与所述终端设备之间的距离、至少一个其他网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息。
  6. 如权利要求5所述的方法,其特征在于,
    所述至少一个其他网络设备包括第二网络设备和第三网络设备;
    所述第一网络设备根据所述第一网络设备与所述终端设备之间的距离、至少一个其他网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息,包括:
    所述第一网络设备根据所述第一网络设备与所述终端设备之间的距离、所述第二网络设备与所述终端设备之间的距离、所述第三网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息。
  7. 如权利要求6所述的方法,其特征在于,
    所述第二网络设备与所述终端设备之间的距离由所述第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;
    其中,所述第三信号为所述第二网络设备向所述终端设备发送的信号,所述第四信号为所述第三信号经所述终端设备反向散射之后由所述第二网络设备接收到的信号。
  8. 如权利要求6或7所述的方法,其特征在于,
    所述第二网络设备与所述终端设备之间的距离由所述第一网络设备从所述第二网络设备处获取,或者,所述第二网络设备与所述终端设备之间的距离由所述第一网络设备从控制设备处获取;
    其中,所述控制设备至少连接所述第一网络设备和所述第二网络设备。
  9. 如权利要求6所述的方法,其特征在于,
    所述第三网络设备与所述终端设备之间的距离由所述第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;
    其中,所述第五信号为所述第三网络设备向所述终端设备发送的信号,所述第六信号为所述第五信号经所述终端设备反向散射之后由所述第三网络设备接收到的信号。
  10. 如权利要求6或9所述的方法,其特征在于,
    所述第三网络设备与所述终端设备之间的距离由所述第一网络设备从所述第三网络设备处获取,或者,所述第三网络设备与所述终端设备之间的距离由所述第一网络设备从控制设备处获取;
    其中,所述控制设备至少连接所述第一网络设备和所述第三网络设备。
  11. 如权利要求4至10中任一项所述的方法,其特征在于,所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的距离,包括:
    所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的单向传输损耗;
    所述第一网络设备根据所述第一网络设备与所述终端设备之间的单向传输损耗,确定所述第一网 络设备与所述终端设备之间的距离。
  12. 如权利要求11所述的方法,其特征在于,
    所述第一网络设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的单向传输损耗,包括:
    所述第一网络设备根据以下公式,确定所述第一网络设备与所述终端设备之间的单向传输损耗:
    PL 1=(P T1-P R1-α)/2;
    其中,PL 1表示所述第一网络设备与所述终端设备之间的单向传输损耗,P T1表示所述第二信号的发射功率,P R1表示所述第一信号的接收功率,α表示反向散射损耗。
  13. 如权利要求2所述的方法,其特征在于,在所述第二信号由第四网络设备发送的情况下,所述第一网络设备根据所述第一信号的接收功率确定所述终端设备的位置信息,包括:
    所述第一网络设备根据所述第一信号的接收功率、所述第二信号的发射功率、所述第一网络设备与所述第四网络设备之间的位置关系,确定所述终端设备的位置信息。
  14. 如权利要求13所述的方法,其特征在于,所述第二信号的发射功率由所述第一网络设备从所述第四网络设备处获取,或者,所述第二信号的发射功率由所述第一网络设备从控制设备处获取;其中,所述控制设备至少连接所述第一网络设备和所述第四网络设备。
  15. 如权利要求2至14中任一项所述的方法,其特征在于,所述第二信号用于为所述终端设备供能,或者,所述第二信号用于触发所述终端设备通过反向散射方式发送信号,或者,所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号,或者,所述第二信号为定位信号,或者,所述第二信号为用于询问第一区域内的终端设备的询问信息。
  16. 如权利要求2至15中任一项所述的方法,其特征在于,
    所述第二信号携带所述第二信号的标识信息,或者,所述第二信号所占用的资源用于指示所述第二信号的标识信息。
  17. 如权利要求16所述的方法,其特征在于,所述第二信号所占用的资源包括以下至少之一:
    频域资源,时域资源,码域资源。
  18. 如权利要求2至17中任一项所述的方法,其特征在于,
    在所述第二信号用于触发所述终端设备通过反向散射方式发送信号的情况下,所述第二信号包括所述终端设备的标识信息;或者,
    在所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号的情况下,所述第二信号包括所述终端组的标识信息。
  19. 如权利要求2至18中任一项所述的方法,其特征在于,
    在所述第二信号用于触发所述终端设备通过反向散射方式发送信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号为定位信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号为用于询问第一区域内的终端设备的询问信息的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载。
  20. 如权利要求2至19中任一项所述的方法,其特征在于,所述第一信号包括以下至少之一:
    所述终端设备的标识信息,所述第二信号的标识信息,所述终端设备的反向散射损耗。
  21. 一种无线通信的方法,其特征在于,包括:
    控制设备接收第一网络设备发送的第一信息;其中,所述第一信息包括第一信号的接收功率,所述第一信号为所述第一网络设备接收的终端设备通过反向散射方式发送的信号;
    所述控制设备根据所述第一信号的接收功率确定所述终端设备的位置信息。
  22. 如权利要求21所述的方法,其特征在于,
    所述第一信号为第二信号经所述终端设备反向散射之后得到的信号,其中,所述第二信号由所述第一网络设备发送,或者,所述第二信号由其他网络设备发送。
  23. 如权利要求22所述的方法,其特征在于,在所述第二信号由所述第一网络设备发送的情况下,所述第一信息还包括所述第二信号的发射功率;
    所述控制设备根据所述第一信号的接收功率确定所述终端设备的位置信息,包括:
    所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率确定所述终端设备的位置信息。
  24. 如权利要求23所述的方法,其特征在于,所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率确定所述终端设备的位置信息,包括:
    所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的距离;
    所述控制设备根据所述第一网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息。
  25. 如权利要求23所述的方法,其特征在于,所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率确定所述终端设备的位置信息,包括:
    所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的距离;
    所述控制设备根据所述第一网络设备与所述终端设备之间的距离、至少一个其他网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息。
  26. 如权利要求25所述的方法,其特征在于,
    所述至少一个其他网络设备包括第二网络设备和第三网络设备;
    所述控制设备根据所述第一网络设备与所述终端设备之间的距离、至少一个其他网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息,包括:
    所述控制设备根据所述第一网络设备与所述终端设备之间的距离、所述第二网络设备与所述终端设备之间的距离、所述第三网络设备与所述终端设备之间的距离,确定所述终端设备的位置信息。
  27. 如权利要求26所述的方法,其特征在于,
    所述第二网络设备与所述终端设备之间的距离由所述第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;或者,
    所述第二网络设备与所述终端设备之间的距离由所述控制设备基于第三信号的发射功率和第四信号的接收功率确定;
    其中,所述第三信号为所述第二网络设备向所述终端设备发送的信号,所述第四信号为所述第三信号经所述终端设备反向散射之后由所述第二网络设备接收到的信号。
  28. 如权利要求27所述的方法,其特征在于,
    在所述第二网络设备与所述终端设备之间的距离由所述第二网络设备基于所述第三信号的发射功率和所述第四信号的接收功率确定的情况下,所述第二网络设备与所述终端设备之间的距离由所述控制设备从所述第二网络设备处获取;
    在所述第二网络设备与所述终端设备之间的距离由所述控制设备基于所述第三信号的发射功率和所述第四信号的接收功率确定的情况下,所述第三信号的发射功率和所述第四信号的接收功率由所述控制设备从所述第二网络设备处获取;
    其中,所述控制设备至少连接所述第一网络设备和所述第二网络设备。
  29. 如权利要求26所述的方法,其特征在于,
    所述第三网络设备与所述终端设备之间的距离由所述第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;或者,
    所述第三网络设备与所述终端设备之间的距离由所述控制设备基于第五信号的发射功率和第六信号的接收功率确定;
    其中,所述第五信号为所述第三网络设备向所述终端设备发送的信号,所述第六信号为所述第五信号经所述终端设备反向散射之后由所述第三网络设备接收到的信号。
  30. 如权利要求29所述的方法,其特征在于,
    在所述第三网络设备与所述终端设备之间的距离由所述第三网络设备基于所述第五信号的发射功率和所述第六信号的接收功率确定的情况下,所述第三网络设备与所述终端设备之间的距离由所述控制设备从所述第三网络设备处获取;
    在所述第三网络设备与所述终端设备之间的距离由所述控制设备基于所述第五信号的发射功率和所述第六信号的接收功率确定的情况下,所述第五信号的发射功率和所述第六信号的接收功率由所述控制设备从所述第三网络设备处获取;
    其中,所述控制设备至少连接所述第一网络设备和所述第三网络设备。
  31. 如权利要求24至30中任一项所述的方法,其特征在于,所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的距离,包括:
    所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的单向传输损耗;
    所述控制设备根据所述第一网络设备与所述终端设备之间的单向传输损耗,确定所述第一网络设 备与所述终端设备之间的距离。
  32. 如权利要求31所述的方法,其特征在于,
    所述控制设备根据所述第一信号的接收功率和所述第二信号的发射功率,确定所述第一网络设备与所述终端设备之间的单向传输损耗,包括:
    所述控制设备根据以下公式,确定所述第一网络设备与所述终端设备之间的单向传输损耗:
    PL 1=(P T1-P R1-α)/2;
    其中,PL 1表示所述第一网络设备与所述终端设备之间的单向传输损耗,P T1表示所述第二信号的发射功率,P R1表示所述第一信号的接收功率,α表示反向散射损耗。
  33. 如权利要求22所述的方法,其特征在于,在所述第二信号由第四网络设备发送的情况下,所述控制设备根据所述第一信号的接收功率确定所述终端设备的位置信息,包括:
    所述控制设备根据所述第一信号的接收功率、所述第二信号的发射功率、所述第一网络设备与所述第四网络设备之间的位置关系,确定所述终端设备的位置信息。
  34. 如权利要求33所述的方法,其特征在于,所述第二信号的发射功率由所述控制设备从所述第四网络设备处获取;其中,所述控制设备至少连接所述第一网络设备和所述第四网络设备。
  35. 如权利要求22至34中任一项所述的方法,其特征在于,所述第二信号用于为所述终端设备供能,或者,所述第二信号用于触发所述终端设备通过反向散射方式发送信号,或者,所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号,或者,所述第二信号为定位信号,或者,所述第二信号为用于询问第一区域内的终端设备的询问信息。
  36. 如权利要求22至35中任一项所述的方法,其特征在于,
    所述第二信号携带所述第二信号的标识信息,或者,所述第二信号所占用的资源用于指示所述第二信号的标识信息。
  37. 如权利要求36所述的方法,其特征在于,所述第二信号所占用的资源包括以下至少之一:
    频域资源,时域资源,码域资源。
  38. 如权利要求22至37中任一项所述的方法,其特征在于,
    在所述第二信号用于触发所述终端设备通过反向散射方式发送信号的情况下,所述第二信号包括所述终端设备的标识信息;或者,
    在所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号的情况下,所述第二信号包括所述终端组的标识信息。
  39. 如权利要求22至38中任一项所述的方法,其特征在于,
    在所述第二信号用于触发所述终端设备通过反向散射方式发送信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号为定位信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号为用于询问第一区域内的终端设备的询问信息的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载。
  40. 如权利要求22至39中任一项所述的方法,其特征在于,所述第一信号包括以下至少之一:
    所述终端设备的标识信息,所述第二信号的标识信息,所述终端设备的反向散射损耗。
  41. 一种无线通信的方法,其特征在于,包括:
    终端设备通过反向散射方式向第一网络设备发送第一信号;
    其中,所述第一信号的接收功率用于所述第一网络设备确定所述终端设备的位置信息。
  42. 如权利要求41所述的方法,其特征在于,
    所述第一信号为第二信号经所述终端设备反向散射之后得到的信号,其中,所述第二信号由所述第一网络设备发送,或者,所述第二信号由其他网络设备发送。
  43. 如权利要求42所述的方法,其特征在于,在所述第二信号由所述第一网络设备发送的情况下,所述第一信号的接收功率用于所述第一网络设备确定所述终端设备的位置信息,包括:
    所述第一信号的接收功率和所述第二信号的发射功率用于所述第一网络设备确定所述第一网络设备与所述终端设备之间的距离,以及所述第一网络设备与所述终端设备之间的距离用于所述第一网络设备确定所述终端设备的位置信息。
  44. 如权利要求42所述的方法,其特征在于,在所述第二信号由所述第一网络设备发送的情况下,所述第一信号的接收功率用于所述第一网络设备确定所述终端设备的位置信息,包括:
    所述第一信号的接收功率和所述第二信号的发射功率用于所述第一网络设备确定所述第一网络设备与所述终端设备之间的距离,以及所述第一网络设备与所述终端设备之间的距离用于所述第一网络设备结合第二网络设备与所述终端设备之间的距离、第三网络设备与所述终端设备之间的距离确定所述终端设备的位置信息。
  45. 如权利要求44所述的方法,其特征在于,
    所述第二网络设备与所述终端设备之间的距离为所述第二网络设备基于第三信号的发射功率和第四信号的接收功率确定;
    其中,所述第三信号为所述第二网络设备向所述终端设备发送的信号,所述第四信号为所述第三信号经所述终端设备反向散射之后由所述第二网络设备接收到的信号。
  46. 如权利要求44或45所述的方法,其特征在于,
    所述第二网络设备与所述终端设备之间的距离由所述第一网络设备从所述第二网络设备处获取,或者,所述第二网络设备与所述终端设备之间的距离由所述第一网络设备从控制设备处获取;
    其中,所述控制设备至少连接所述第一网络设备和所述第二网络设备。
  47. 如权利要求44所述的方法,其特征在于,
    所述第三网络设备与所述终端设备之间的距离为所述第三网络设备基于第五信号的发射功率和第六信号的接收功率确定;
    其中,所述第五信号为所述第三网络设备向所述终端设备发送的信号,所述第六信号为所述第五信号经所述终端设备反向散射之后由所述第三网络设备接收到的信号。
  48. 如权利要求44或47所述的方法,其特征在于,
    所述第三网络设备与所述终端设备之间的距离由所述第一网络设备从所述第三网络设备处获取,或者,所述第三网络设备与所述终端设备之间的距离由所述第一网络设备从控制设备处获取;
    其中,所述控制设备至少连接所述第一网络设备和所述第三网络设备。
  49. 如权利要求43至48中任一项所述的方法,其特征在于,所述第一信号的接收功率和所述第二信号的发射功率用于所述第一网络设备确定所述第一网络设备与所述终端设备之间的距离,包括:
    所述第一信号的接收功率和所述第二信号的发射功率用于所述第一网络设备确定所述第一网络设备与所述终端设备之间的单向传输损耗,以及所述第一网络设备与所述终端设备之间的单向传输损耗用于所述第一网络设备确定所述第一网络设备与所述终端设备之间的距离。
  50. 如权利要求49所述的方法,其特征在于,
    所述第一信号的接收功率和所述第二信号的发射功率用于所述第一网络设备根据以下公式确定所述第一网络设备与所述终端设备之间的单向传输损耗:
    PL 1=(P T1-P R1-α)/2;
    其中,PL 1表示所述第一网络设备与所述终端设备之间的单向传输损耗,P T1表示所述第二信号的发射功率,P R1表示所述第一信号的接收功率,α表示反向散射损耗。
  51. 如权利要求42所述的方法,其特征在于,在所述第二信号由第四网络设备发送的情况下,
    所述第一信号的接收功率用于所述第一网络设备确定所述终端设备的位置信息,包括:
    所述第一信号的接收功率和所述第二信号的发射功率用于所述第一网络设备结合所述第一网络设备与所述第四网络设备之间的位置关系,确定所述终端设备的位置信息。
  52. 如权利要求51所述的方法,其特征在于,所述第二信号的发射功率由所述第一网络设备从所述第四网络设备处获取,或者,所述第二信号的发射功率由所述第一网络设备从控制设备处获取;其中,所述控制设备至少连接所述第一网络设备和所述第四网络设备。
  53. 如权利要求42至52中任一项所述的方法,其特征在于,所述第二信号用于为所述终端设备供能,或者,所述第二信号用于触发所述终端设备通过反向散射方式发送信号,或者,所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号,或者,所述第二信号为定位信号,或者,所述第二信号为用于询问第一区域内的终端设备的询问信息。
  54. 如权利要求42至53中任一项所述的方法,其特征在于,
    所述第二信号携带所述第二信号的标识信息,或者,所述第二信号所占用的资源用于指示所述第二信号的标识信息。
  55. 如权利要求54所述的方法,其特征在于,所述第二信号所占用的资源包括以下至少之一:
    频域资源,时域资源,码域资源。
  56. 如权利要求42至55中任一项所述的方法,其特征在于,
    在所述第二信号用于触发所述终端设备通过反向散射方式发送信号的情况下,所述第二信号包括所述终端设备的标识信息;或者,
    在所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号的情况下,所述第二信号包括所述终端组的标识信息。
  57. 如权利要求42至56中任一项所述的方法,其特征在于,
    在所述第二信号用于触发所述终端设备通过反向散射方式发送信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号用于触发包括所述终端设备在内的终端组通过反向散射方式发送信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号为定位信号的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载;或者,
    在所述第二信号为用于询问第一区域内的终端设备的询问信息的情况下,所述第二信号由供能信号承载,或者,所述第二信号由除供能信号之外的信号或信道承载。
  58. 如权利要求42至57中任一项所述的方法,其特征在于,所述第一信号包括以下至少之一:
    所述终端设备的标识信息,所述第二信号的标识信息,所述终端设备的反向散射损耗。
  59. 一种网络设备,其特征在于,所述网络设备为第一网络设备,所述网络设备包括:
    通信单元,用于接收终端设备通过反向散射方式发送的第一信号;
    处理单元,用于根据所述第一信号的接收功率确定所述终端设备的位置信息。
  60. 一种控制设备,其特征在于,包括:
    通信单元,用于接收第一网络设备发送的第一信息;其中,所述第一信息包括第一信号的接收功率,所述第一信号为所述第一网络设备接收的终端设备通过反向散射方式发送的信号;
    处理单元,用于根据所述第一信号的接收功率确定所述终端设备的位置信息。
  61. 一种终端设备,其特征在于,包括:
    通信单元,用于通过反向散射方式向第一网络设备发送第一信号;
    其中,所述第一信号的接收功率用于所述第一网络设备确定所述终端设备的位置信息。
  62. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至20中任一项所述的方法。
  63. 一种控制设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求21至40中任一项所述的方法。
  64. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求41至58中任一项所述的方法。
  65. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至20中任一项所述的方法,或者,执行如权利要求21至40中任一项所述的方法,或者,执行如权利要求41至58中任一项所述的方法。
  66. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法,或者,执行如权利要求21至40中任一项所述的方法,或者,执行如权利要求41至58中任一项所述的方法。
  67. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至20中任一项所述的方法,或者,执行如权利要求21至40中任一项所述的方法,或者,执行如权利要求41至58中任一项所述的方法。
  68. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法,或者,执行如权利要求21至40中任一项所述的方法,或者,执行如权利要求41至58中任一项所述的方法。
PCT/CN2021/126070 2021-10-25 2021-10-25 无线通信的方法及设备 WO2023070260A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180103383.3A CN118215856A (zh) 2021-10-25 2021-10-25 无线通信的方法及设备
EP21961650.5A EP4425212A1 (en) 2021-10-25 2021-10-25 Wireless communication method and device
PCT/CN2021/126070 WO2023070260A1 (zh) 2021-10-25 2021-10-25 无线通信的方法及设备
MX2024004794A MX2024004794A (es) 2021-10-25 2021-10-25 Metodo para la comunicacion inalambrica y dispositivo.
US18/644,679 US20240276435A1 (en) 2021-10-25 2024-04-24 Method for wireless communication and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/126070 WO2023070260A1 (zh) 2021-10-25 2021-10-25 无线通信的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/644,679 Continuation US20240276435A1 (en) 2021-10-25 2024-04-24 Method for wireless communication and device

Publications (1)

Publication Number Publication Date
WO2023070260A1 true WO2023070260A1 (zh) 2023-05-04

Family

ID=86159919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126070 WO2023070260A1 (zh) 2021-10-25 2021-10-25 无线通信的方法及设备

Country Status (5)

Country Link
US (1) US20240276435A1 (zh)
EP (1) EP4425212A1 (zh)
CN (1) CN118215856A (zh)
MX (1) MX2024004794A (zh)
WO (1) WO2023070260A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215408A1 (en) * 2005-08-09 2009-08-27 Siemens Aktiengesellschaft Locatable and Autonomously Powered Backscatter Transponder for Registering Measured Variables
CN107544054A (zh) * 2017-08-15 2018-01-05 西京学院 一种基于环境反向散射的室内定位方法和装置
CN112485759A (zh) * 2020-11-13 2021-03-12 北京理工大学重庆创新中心 一种基于蓝牙反向散射的室内定位方法和装置
CN112986905A (zh) * 2021-02-05 2021-06-18 电子科技大学 一种基于环境反向散射的多反射设备定位方法
US20210231792A1 (en) * 2020-01-28 2021-07-29 Nec Laboratories America, Inc. Locating objects in indoor spaces using radio frequency backscatter tags
WO2021164024A1 (zh) * 2020-02-21 2021-08-26 Oppo广东移动通信有限公司 物品定位方法、终端、无源rfid标签及rfid读卡器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215408A1 (en) * 2005-08-09 2009-08-27 Siemens Aktiengesellschaft Locatable and Autonomously Powered Backscatter Transponder for Registering Measured Variables
CN107544054A (zh) * 2017-08-15 2018-01-05 西京学院 一种基于环境反向散射的室内定位方法和装置
US20210231792A1 (en) * 2020-01-28 2021-07-29 Nec Laboratories America, Inc. Locating objects in indoor spaces using radio frequency backscatter tags
WO2021164024A1 (zh) * 2020-02-21 2021-08-26 Oppo广东移动通信有限公司 物品定位方法、终端、无源rfid标签及rfid读卡器
CN112485759A (zh) * 2020-11-13 2021-03-12 北京理工大学重庆创新中心 一种基于蓝牙反向散射的室内定位方法和装置
CN112986905A (zh) * 2021-02-05 2021-06-18 电子科技大学 一种基于环境反向散射的多反射设备定位方法

Also Published As

Publication number Publication date
MX2024004794A (es) 2024-05-09
US20240276435A1 (en) 2024-08-15
EP4425212A1 (en) 2024-09-04
CN118215856A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
US20240349223A1 (en) Method for wireless communication, terminal device, and network device
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023015572A1 (zh) 无线通信的方法和设备
WO2023070260A1 (zh) 无线通信的方法及设备
WO2024148511A1 (zh) 无线通信的方法和设备
WO2023019571A1 (zh) 无线通信的方法和设备
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备
WO2024113172A1 (zh) 无线通信的方法和设备
WO2023044780A1 (zh) 无线通信方法及设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000173A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023065336A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023044779A1 (zh) 无线通信方法及设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
WO2024065700A1 (zh) 无线通信的方法和设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2024082267A1 (zh) 无线通信的方法和设备
WO2024159522A1 (zh) 无线通信的方法和设备
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024192606A1 (zh) 无线通信的方法和设备
WO2024187384A1 (zh) 无线通信的方法、环境能amp设备和网络设备
WO2023044781A1 (zh) 无线通信方法及设备
WO2024197621A1 (zh) 无线通信的方法、网络设备和环境能amp设备
WO2024197623A1 (zh) 无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180103383.3

Country of ref document: CN

Ref document number: MX/A/2024/004794

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2021961650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021961650

Country of ref document: EP

Effective date: 20240527