WO2023000173A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023000173A1
WO2023000173A1 PCT/CN2021/107412 CN2021107412W WO2023000173A1 WO 2023000173 A1 WO2023000173 A1 WO 2023000173A1 CN 2021107412 W CN2021107412 W CN 2021107412W WO 2023000173 A1 WO2023000173 A1 WO 2023000173A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
channel
target
terminal device
downlink channel
Prior art date
Application number
PCT/CN2021/107412
Other languages
English (en)
French (fr)
Inventor
徐伟杰
左志松
贺传峰
邵帅
胡荣贻
崔胜江
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/107412 priority Critical patent/WO2023000173A1/zh
Priority to CN202180100612.6A priority patent/CN117652192A/zh
Priority to EP21950438.8A priority patent/EP4376519A1/en
Publication of WO2023000173A1 publication Critical patent/WO2023000173A1/zh
Priority to US18/407,355 priority patent/US20240155566A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a wireless communication method, a terminal device, and a network device.
  • Zero-power terminals need to collect radio waves sent by network devices to obtain energy before they can drive themselves to work. Therefore, before obtaining energy, the zero-power consumption terminal is in the "off" state, that is, it cannot receive signals sent by network devices at this time.
  • the zero-power terminal When multiple channels are deployed in the system, the zero-power terminal usually only supports single-channel reception due to its simple structure, that is, it can only transmit and receive signals on one channel at the same time. How the zero-power terminal communicates with network devices is an important issue. Problems that need to be solved urgently.
  • the present application provides a wireless communication method, terminal equipment and network equipment, which is beneficial to ensure that the terminal equipment communicates with the network equipment through a suitable downlink channel and/or uplink channel.
  • a wireless communication method including: a terminal device determines a target downlink channel for receiving a downlink signal, and/or determines a target uplink channel for sending a backscatter signal.
  • a wireless communication method including: a network device determining a target downlink channel for sending downlink signals, and/or determining a target uplink channel for receiving backscatter signals.
  • a terminal device configured to execute the method in the foregoing first aspect or various implementation manners thereof.
  • the terminal device includes a functional module for executing the method in the above first aspect or its various implementation manners.
  • a network device configured to execute the method in the foregoing second aspect or various implementation manners thereof.
  • the network device includes a functional module for executing the method in the above second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above first aspect or its various implementations.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above second aspect or its various implementations.
  • a chip is provided for implementing any one of the above first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first to second aspects or any of the implementations thereof. method.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a ninth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute any one of the above first to second aspects or the method in each implementation manner.
  • a computer program which, when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner.
  • the terminal device can determine the target downlink channel for receiving downlink signals, and/or the target uplink channel for sending backscatter signals, and correspondingly, the network device can also determine the target downlink channel for sending downlink signals
  • the channel, and/or the target uplink channel for receiving the backscatter signal is beneficial to ensure that the terminal device communicates with the network device through a suitable downlink channel and/or uplink channel.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a zero-power communication system according to an example of the present application.
  • Figure 3 is a schematic diagram of energy harvesting.
  • Figure 4 is a schematic diagram of backscatter communication.
  • Figure 5 is a circuit schematic diagram of resistive load modulation.
  • Fig. 6 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • FIG. 7 is a positional relationship diagram between a target downlink channel and a downlink channel corresponding to a first downlink signal.
  • FIG. 8 is another positional relationship diagram between the target downlink channel and the downlink channel corresponding to the first downlink signal.
  • Fig. 9 is a schematic diagram of an uplink channel deployment manner according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of an uplink channel deployment manner according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a positional relationship between a target uplink channel and a target downlink channel.
  • Fig. 12 is a schematic diagram of another positional relationship between the target uplink channel and the target downlink channel.
  • Fig. 13 is a schematic diagram of a positional relationship between a target uplink channel and a downlink channel corresponding to a first downlink signal.
  • Fig. 14 is a schematic diagram of another positional relationship between the target uplink channel and the downlink channel corresponding to the first downlink signal.
  • Fig. 15 is a schematic flowchart of another wireless communication method according to an embodiment of the present application.
  • Fig. 16 is a schematic flowchart of a method for deploying an uplink channel according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a chip provided according to an embodiment of the present application.
  • Fig. 21 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunications System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • 5G fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, may also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and may also be applied to an independent (Standalone, SA) deployment Web scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent deployment Web scene
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered as non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite or a balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, water, and other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, terminal equipment in the cellular Internet of Things, terminal equipment in the cellular passive Internet of Things, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which is not limited in the present application.
  • Zero-power communication uses energy harvesting and backscatter communication technologies.
  • the zero-power communication network consists of network devices and zero-power terminals.
  • the network device is used to send wireless power supply signals to zero-power terminals, downlink communication signals and receive backscattered signals from zero-power terminals.
  • a basic zero-power terminal includes an energy harvesting module, a backscatter communication module, and a low-power computing module.
  • the zero-power consumption terminal can also have a memory or a sensor for storing some basic information (such as item identification, etc.) or obtaining sensing data such as ambient temperature and ambient humidity.
  • the radio frequency energy collection module realizes the collection of space electromagnetic wave energy based on the principle of electromagnetic induction, and then obtains the energy required to drive zero-power terminals, such as driving low-power demodulation and modulation modules, sensors and memory read, etc. Therefore, zero-power terminals do not require traditional batteries.
  • the zero-power terminal receives the wireless signal sent by the network device, modulates the wireless signal, loads the information to be sent, and radiates the modulated signal from the antenna.
  • This information transmission process is called for backscatter communication.
  • Backscatter and load modulation functions are inseparable.
  • Load modulation adjusts and controls the circuit parameters of the oscillation circuit of the zero-power terminal according to the beat of the data flow, so that the parameters such as the impedance of the electronic tag change accordingly, thereby completing the modulation process.
  • the load modulation technology mainly includes resistive load modulation and capacitive load modulation.
  • the load In resistive load modulation, the load is connected in parallel with a resistor that is switched on or off based on the control of the binary data stream, as shown in Figure 5.
  • the on-off of the resistance will lead to the change of the circuit voltage, so the amplitude keying modulation (ASK) is realized, that is, the modulation and transmission of the signal is realized by adjusting the amplitude of the backscattering signal of the zero-power terminal.
  • ASK amplitude keying modulation
  • FSK frequency keying modulation
  • zero-power terminal performs information modulation on the incoming signal by means of load modulation, thereby realizing the backscatter communication process. Therefore, zero-power terminals have significant advantages:
  • the terminal does not actively transmit signals, so there is no need for complex radio frequency links, such as PAs, radio frequency filters, etc.;
  • the terminal does not need to actively generate high-frequency signals, so high-frequency crystal oscillators are not required;
  • RFID systems typically use one of the following encoding methods: reverse non-return-to-zero (NRZ) encoding, Manchester encoding, unipolar return-to-zero (Unipolar RZ) encoding, differential biphase (DBP) encoding, Differential encoding, pulse interval encoding (PIE), two-way spatial encoding (FM0), Miller (Miller) encoding and differential encoding, etc.
  • NRZ reverse non-return-to-zero
  • Manchester encoding Manchester encoding
  • unipolar return-to-zero (Unipolar RZ) encoding unipolar return-to-zero
  • DBP differential biphase
  • Differential encoding Differential encoding
  • PIE pulse interval encoding
  • FM0 two-way spatial encoding
  • Miller (Miller) encoding and differential encoding
  • zero-power terminals can be divided into the following types:
  • the zero-power terminal does not need a built-in battery.
  • the zero-power terminal When the zero-power terminal is close to a network device (such as a reader of an RFID system), the zero-power terminal is within the near-field range formed by the antenna radiation of the network device. Therefore, the antenna of the zero-power terminal generates an induced current through electromagnetic induction, and the induced current drives the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the passive zero-power terminal does not need a built-in battery to drive it, whether it is a forward link or a reverse link, and is a real zero-power terminal.
  • Passive zero-power terminals do not require batteries, and the RF circuit and baseband circuit are very simple, such as low-noise amplifier (LNA), power amplifier (PA), crystal oscillator, and analog-to-digital converter (Analog-to-Digital Converter, ADC). And other devices, so it has many advantages such as small size, light weight, very cheap price, and long service life.
  • LNA low-noise amplifier
  • PA power amplifier
  • ADC analog-to-digital converter
  • the semi-passive zero-power terminal itself does not install a conventional battery, but it can use the RF energy harvesting module to collect radio wave energy, and store the collected energy in an energy storage unit (such as a capacitor). After the energy storage unit obtains energy, it can drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. For the backscatter link, the zero-power terminal uses the backscatter implementation to transmit signals.
  • the semi-passive zero-power terminal does not need a built-in battery to drive either the forward link or the reverse link.
  • the energy stored in the capacitor is used in the work, the energy comes from the radio collected by the energy harvesting module. Energy, so it is also a true zero-power terminal.
  • Semi-passive zero-power terminals inherit many advantages of passive zero-power terminals, so they have many advantages such as small size, light weight, very cheap price, and long service life.
  • the zero-power terminals used in some scenarios can also be active zero-power terminals, and such terminals can have built-in batteries.
  • the battery is used to drive the low-power chip circuit of the zero-power terminal. Realize the demodulation of the forward link signal and the signal modulation of the reverse link. But for the backscatter link, the zero-power terminal uses the backscatter implementation to transmit the signal. Therefore, the zero power consumption of this type of terminal is mainly reflected in the fact that the signal transmission of the reverse link does not require the power of the terminal itself, but uses backscattering.
  • passive IoT devices can be based on zero-power communication technology, such as RFID technology, and extended on this basis to apply to cellular IoT.
  • Zero-power terminals need to collect radio waves sent by network devices to obtain energy before they can drive themselves to work. Therefore, before obtaining energy, the zero-power consumption terminal is in the "off" state, that is, it cannot receive signals sent by network devices at this time. Therefore, when multiple channels are deployed in the system, the zero-power terminal usually only supports single-channel reception due to its simple structure, that is, it can only transmit and receive signals on one channel at a time. How the zero-power terminal communicates with network devices is A problem that needs to be solved urgently.
  • FIG. 6 is a schematic interaction diagram of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 6, the method 200 includes the following content:
  • the terminal device determines a target downlink channel for receiving a downlink signal, and/or determines a target uplink channel for sending a backscatter signal.
  • the terminal device is a device that does not actively transmit signals and uses signals sent by network devices or other devices to carry information, for example, a zero-power consumption terminal.
  • the embodiments of the present application can be applied to a cellular Internet of Things system, such as a cellular passive Internet of Things system, or can also be applied to other scenarios where a terminal device sends information to a network device through zero-power communication or battery-free communication. This application is not limited thereto.
  • the zero-power communication method may include the backscatter communication method, or may also include other communication methods for zero-power terminals introduced in standard evolution. Communication with a network device is described as an example, but the present application is not limited thereto.
  • the capability collection module of the terminal device may support broadband reception, that is, the terminal device may receive wireless signals within a relatively wide bandwidth range and perform energy collection.
  • the terminal device can collect energy to obtain energy, and activate the internal chip circuit of the terminal device based on the obtained energy to enter the "activated" state.
  • the terminal device after the terminal device enters the "active" state, it can receive the downlink signal (or forward link signal) sent by the network device.
  • the channel bandwidth for data communication of the terminal device is usually limited, for example, the channel The bandwidth is 200KHz.
  • the terminal device needs to determine the target downlink channel for receiving the downlink signal, so as to receive the downlink signal sent by the network device and obtain the downlink information sent by the network device.
  • the target downlink channel may be an initial downlink channel, which is used for receiving downlink signals during the process of establishing an initial connection between the terminal device and the network device, or may also be a downlink channel after the initial connection is established, used by the terminal The downlink signal reception after the connection between the device and the network device is established.
  • the downlink signal may include at least one of the following:
  • Synchronization signal for synchronization between terminal equipment and network equipment
  • the data signal is used to carry data information
  • the control signal is used to carry control signaling.
  • the signal source used to generate the backscatter signal may refer to an unmodulated signal, such as a sine wave, a square wave, a triangle wave, a pulse, or a rectangular wave.
  • the data signal can also be used as a signal source of the backscatter signal.
  • control signal can also be used as a signal source of the backscatter signal.
  • the terminal device may generate a backscatter signal based on an unmodulated signal, a data signal, or a control signal, and this embodiment of the present application does not specifically limit the signal source that generates the backscatter signal.
  • the terminal device may receive signals on multiple candidate downlink channels, and determine the target downlink channel used by the network device to send the downlink signal according to the characteristics of the received signals.
  • the terminal device tries to receive signals on multiple candidate downlink channels, and determines whether the network device has sent a downlink signal according to the characteristics of the received signals (for example, a specific signal coding sequence).
  • the multiple candidate downlink channels have different center frequencies and/or channel bandwidths.
  • the terminal device may also determine a specific downlink channel as a target downlink channel for receiving downlink signals.
  • the network device can send a downlink signal on the specific downlink channel, that is, the terminal device and the network device have the same understanding of the frequency position of the downlink signal, so that normal communication between the two can be realized.
  • the terminal device may determine the target downlink channel for receiving downlink signals according to preset rules, and correspondingly, the network device may also determine the target downlink channel for sending downlink signals according to preset rules. Further, the network The device sends a downlink signal on the target downlink channel, and the terminal device receives the downlink signal on the target downlink channel, thereby ensuring normal communication between the terminal device and the network device.
  • the terminal device may determine the frequency position of the target downlink channel based on the downlink signaling of the network device, and further, the network device sends the downlink signal on the target downlink channel indicated by the downlink signaling, and the terminal device The downlink signal is received on the target downlink channel, thereby ensuring normal communication between the terminal device and the network device.
  • the terminal device may determine a target downlink channel for receiving downlink signals according to at least one of the following:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to power the terminal device;
  • the first downlink signal is used to power the terminal device, that is, the first downlink signal may be a power supply signal of the terminal device.
  • the first downlink signal may also be a signal source for generating a backscatter signal, for example, the terminal device may modulate the first downlink signal to obtain a backscatter signal .
  • Embodiment 1 Determine the target downlink channel according to the downlink channel corresponding to the first downlink signal.
  • the terminal device may determine the frequency position of the target downlink channel according to the frequency position of the first downlink signal.
  • the terminal device determines the target downlink channel according to the downlink channel corresponding to the first downlink signal, which may include:
  • the terminal device may determine the frequency position of the target downlink channel according to the frequency position of the downlink channel corresponding to the first downlink signal.
  • the terminal device may determine the frequency position of the target downlink channel according to the frequency position of the downlink channel corresponding to the first downlink signal.
  • the positional relationship between the target downlink channel and the downlink channel corresponding to the first downlink signal, the target downlink channel and the first downlink signal may also have other positional relationships, and the present application is not limited thereto.
  • Embodiment 1-1 the target downlink channel is the same as the downlink channel corresponding to the first downlink signal.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal are the same.
  • the channel bandwidth of the target downlink channel may be predefined or configured by the network device.
  • the channel bandwidth of the initial downlink channel may be determined according to predefined information.
  • the channel bandwidth of the target downlink channel may be determined according to predefined information or downlink signaling of the network device.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • the channel numbers of the target downlink channel and the downlink channel corresponding to the first downlink signal are the same.
  • each downlink channel corresponds to a corresponding center frequency point and channel bandwidth, and each downlink channel is identified by a channel number.
  • the same channel number of the target downlink channel and the downlink channel corresponding to the first downlink signal may mean that the terminal device can determine the downlink channel corresponding to the first downlink signal as the target downlink channel.
  • the embodiment of the present application only uses the channel number to identify the downlink channel as an example.
  • the downlink channel may also be identified by other identification information, and the present application is not limited thereto.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • the center frequency point of the target downlink channel and the downlink channel corresponding to the first downlink signal are the same, and
  • the channel bandwidth of the target downlink channel is the same as that of the downlink channel corresponding to the first downlink signal.
  • the terminal device may determine the downlink channel corresponding to the first downlink signal as the target downlink channel.
  • the terminal device can determine the center frequency point of the downlink channel corresponding to the first downlink signal as the center frequency point of the target downlink channel, and according to the predefined information, or the downlink signaling of the network device, or the first downlink channel
  • the channel bandwidth of the downlink channel corresponding to the signal determines the channel bandwidth of the target downlink channel.
  • Embodiment 1-2 the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval, including: the target downlink channel and the downlink channel corresponding to the first downlink signal The center frequency points of have the first frequency interval.
  • the target downlink channel and the center frequency point of the downlink channel corresponding to the first downlink signal have a first frequency interval may refer to:
  • the difference between the center frequency point of the target downlink channel (marked as CH_DL) and the center frequency point of the downlink channel corresponding to the first downlink signal is the first frequency interval (marked as F offset1 ), as shown in Figure 7 In (a) shown.
  • the target downlink channel and the center frequency point of the downlink channel corresponding to the first downlink signal have a first frequency interval may refer to:
  • the absolute value of the difference between the center frequency point of the target downlink channel (denoted as CH_DL) and the center frequency point of the downlink channel corresponding to the first downlink signal is the first frequency interval (denoted as F offset1 ), As shown in (b) in Figure 7.
  • the first frequency interval is predefined, or configured by the network device.
  • the first frequency interval is configured by the network device through the first downlink signal.
  • the network device may carry the information of the first frequency interval by modulating the first downlink signal.
  • the terminal device may select any one of the multiple downlink channels as the target downlink channel ; Alternatively, the plurality of downlink channels may also be searched to determine a target downlink channel for receiving downlink signals. For example, the terminal device can determine which downlink channel the network device has sent the downlink signal on based on the characteristics of the signals received on the multiple downlink channels, and further use the downlink channel on which the network device sends the downlink signal as the target downlink channel. channel.
  • Embodiment 1-3 the channel numbers of the target downlink channel and the downlink channel corresponding to the first downlink signal have a first channel number offset.
  • each downlink channel corresponds to a corresponding center frequency point and channel bandwidth, and each downlink channel is identified by a channel number.
  • the target downlink channel and the channel number of the downlink channel corresponding to the first downlink signal have a first channel number offset may refer to:
  • the difference between the channel number (CH_DL(n+N offset1 )) of the target downlink channel and the channel number (CH_DL(n)) of the downlink channel corresponding to the first downlink signal is the first channel number offset (recorded as N offset1 ), as shown in (a) in FIG. 8 .
  • the target downlink channel and the channel number of the downlink channel corresponding to the first downlink signal have a first channel number offset may refer to:
  • the absolute value is the offset of the first channel number (denoted as N offset1 ), as shown in (b) in FIG. 8 .
  • the first channel number offset is predefined, or configured by the network device.
  • the first channel number offset is configured by the network device through the first downlink signal.
  • the network device may modulate the first downlink signal to carry the information about the offset of the first channel number.
  • the terminal device may select any one of the multiple downlink channels as the target a downlink channel; or, the plurality of downlink channels may also be searched to determine a target downlink channel for receiving downlink signals. For example, the terminal device can determine which downlink channel the network device has sent the downlink signal on based on the characteristics of the signals received on the multiple downlink channels, and further use the downlink channel on which the network device sends the downlink signal as the target downlink channel. channel.
  • Embodiment 2 Determine the frequency position of the target downlink channel according to the working frequency band of the terminal device.
  • the terminal device determines the frequency position of the target downlink channel according to the working frequency band of the terminal device.
  • the terminal device determines the frequency position of the target downlink channel according to the working frequency band of the terminal device.
  • the terminal device may determine the downlink channel corresponding to the center frequency point of the working frequency band of the terminal device as the target downlink channel.
  • the network device is deployed with multiple downlink channels, and each downlink channel corresponds to a corresponding center frequency point and channel bandwidth. If there is no downlink channel, the first downlink channel may be determined as the target downlink channel. That is, the center frequency point and channel bandwidth of the first downlink channel may be determined as the center frequency point and channel bandwidth of the target downlink channel.
  • the terminal device may determine the center frequency point of the target downlink channel according to the center frequency point of the working frequency band of the terminal device. For example, the center frequency point of the working frequency band of the terminal device is determined as the center frequency point of the target downlink channel.
  • the terminal device may determine the channel bandwidth of the target downlink channel according to predefined information or downlink signaling of the network device.
  • the network device may modulate the first downlink signal to bear the channel bandwidth information of the target downlink channel.
  • the network device may carry the channel bandwidth information of the target downlink channel through a data signal or a control signal.
  • the terminal device may determine the frequency position of the target downlink channel according to the downlink signaling of the network device.
  • the terminal device determines the frequency position of the target downlink channel according to downlink signaling of the network device.
  • the terminal device determining the frequency position of the target downlink channel according to the downlink signaling of the network device may include:
  • the terminal device determines the center frequency point and/or channel bandwidth of the target downlink channel according to the downlink signaling of the network device.
  • the center frequency point and/or channel bandwidth of the target downlink channel may be configured by the network device.
  • the terminal device may receive the first downlink signaling, and determine the frequency position of the target downlink channel according to the first downlink signaling.
  • the first downlink signaling may be used to indicate the channel number of the target downlink channel.
  • each downlink channel corresponds to the corresponding center frequency point and channel bandwidth.
  • Each downlink channel is identified by the channel number.
  • the network device can indicate the target downlink channel to the terminal device by indicating the channel number of the target downlink channel. The frequency position of the channel.
  • the first downlink signaling may be used to indicate the frequency position of the target downlink channel.
  • the first downlink signaling is used to indicate the center frequency position and/or channel bandwidth of the target downlink channel.
  • the first downlink signaling is used to indicate a second frequency interval
  • the second frequency may be a frequency interval relative to a specific downlink channel, or a frequency interval relative to a specific frequency point.
  • the second frequency interval is a frequency interval of the target downlink channel relative to the downlink channel corresponding to the first downlink signal.
  • the second frequency interval may be the frequency interval between the center frequency point of the target downlink channel and the center frequency point of the downlink channel corresponding to the first downlink signal.
  • the terminal device may correspond to The center frequency point of the downlink channel and the second frequency interval are used to determine the center frequency point position of the target downlink channel.
  • the second frequency interval is a frequency interval between a center frequency point of the target downlink channel and a center frequency point of a working frequency band of the terminal device.
  • the terminal device may determine the position of the center frequency point of the target downlink channel according to the center frequency point of the working frequency band of the terminal device and the second frequency interval.
  • the first downlink signaling is used to indicate a second channel number offset
  • the second channel number offset is used to indicate the channel number of the target downlink channel relative to a specific downlink channel Channel number offset.
  • the specific downlink channel may be a downlink channel corresponding to the first downlink signal.
  • the terminal device may determine the channel bandwidth indicated by the network device as the channel bandwidth of the target downlink channel.
  • the terminal device may determine the channel bandwidth of the target downlink channel according to predefined information, or the channel bandwidth of the downlink channel corresponding to the first downlink signal For example, the channel bandwidth of the downlink channel corresponding to the first downlink signal may be determined as the channel bandwidth of the target downlink channel.
  • the frequency position of the target downlink channel is determined by the network device according to at least one of the following information:
  • the type of the terminal device The type of the terminal device, the service type of the terminal device, the identification ID of the terminal device, and the first capability information reported by the terminal device, where the first capability information is used to indicate the downlink channel information supported by the terminal device.
  • the information about the downlink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device.
  • the terminal device may report first capability information to the network device, where the first capability information is used to indicate the downlink channel information supported by the terminal device, and the network device may report the first capability information according to the first capability information Determine the frequency position of the target downlink channel indicated by the first downlink signaling.
  • the network device Since the target downlink channel supported by different terminal devices may be different, the network device indicates the frequency position of the target downlink channel based on the first capability information reported by the terminal device, which is beneficial to ensure that the terminal device communicates with the network device through a suitable downlink channel.
  • the system configures multiple downlink channels, and configures different types of terminal devices to receive downlink signals on different downlink channels, that is, it can be considered that the terminal type and the downlink channel have a corresponding relationship. Therefore, the network device can be based on the terminal The type of device determines the target downstream channel.
  • the types of the terminal devices may be classified based on energy sources of the terminal devices. For example, configure passive zero-power terminals on downlink channel X, configure semi-passive terminals on downlink channel Y, and configure active zero-power terminals on downlink channel Z, etc., where X, Y, and Z represent downlink channels channel number.
  • the type of the terminal device may also be classified based on the first capability information of the terminal device.
  • the terminals By configuring terminals with different capabilities to receive downlink signals on different downlink channels, it is beneficial to ensure that the terminal equipment communicates with the network equipment through a suitable downlink channel.
  • the system configures multiple downlink channels, and configures terminal devices with different UE IDs on different downlink channels, that is, it can be considered that UE IDs and downlink channels have a corresponding relationship.
  • the ID determines the target downlink channel used by the terminal device to communicate with the network device.
  • terminal devices corresponding to UE IDs corresponding to the same downlink channel may be considered to have the same or similar first capability information.
  • the terminal devices corresponding to the UE ID corresponding to the same downlink channel can be considered as the same type of terminal devices, for example, they are all passive zero-power terminals, or semi-passive zero-power terminals, or active zero-power terminals terminal etc.
  • Embodiment 4 The terminal device determines the frequency position of the target downlink channel according to the predefined information.
  • the terminal device determines the frequency position of the target downlink channel according to predefined information.
  • the terminal device determines the frequency position of the target downlink channel according to predefined information.
  • the terminal device determines the frequency position of the target downlink channel according to predefined information, which may include:
  • the terminal device determines the center frequency point and/or channel bandwidth of the target downlink channel according to the predefined information.
  • the center frequency point and/or channel bandwidth of the target downlink channel may be predefined.
  • the number of downlink channels determined according to the predefined information may be one or more.
  • the terminal device may select any one of the multiple downlink channels as the target downlink channel; or, may search and determine the multiple downlink channels for The target downlink channel for receiving downlink signals. For example, the terminal device can determine whether the network device has sent the downlink signal on which downlink channel among the multiple downlink channels according to the characteristics of the signals received on the multiple downlink channels, and further target the downlink channel on which the network device sends the downlink channel downstream channel.
  • the terminal device may determine the center frequency point position of the target downlink channel according to the manners described in Embodiment 1 to Embodiment 3 above.
  • the terminal device may also determine the channel bandwidth information of the target downlink channel according to the manner described in Embodiment 1 to Embodiment 3 above.
  • the target uplink channel may be an initial uplink channel, which is used for sending backscattered signals (or reverse link signals) during the initial connection process between terminal equipment and network equipment, or may also be The uplink channel after the initial connection is used for backscatter signal transmission after the connection between the terminal device and the network device is established.
  • the number of the target uplink channel is one, or may also be multiple.
  • the uplink channel can be deployed according to the capability information and type of the terminal device, and the terminal device can be further configured to send backscatter signals on different uplink channels.
  • the capability information of the terminal device includes information that the second capability information of the terminal device is used to indicate the uplink channel supported by the terminal device, such as frequency position, channel bandwidth, number of channels, and so on. Deploying the multiple uplink channels according to the capability information of the terminal device is beneficial to ensure that terminal devices with different capabilities send backscatter signals on appropriate uplink channels.
  • the type of the terminal device can be classified according to the energy source of the terminal device, for example, it can be classified into a passive zero-power terminal, a semi-passive zero-power terminal, or an active zero-power terminal. Deploying uplink channels according to the type of terminal equipment is beneficial to ensure that different types of terminal equipment send backscattered signals on appropriate uplink channels.
  • the system is deployed with multiple uplink channels, and the multiple uplink channels have different frequency intervals relative to the reference frequency point.
  • each uplink channel corresponds to a corresponding center frequency point and channel bandwidth, and the channel number Identify each upstream channel.
  • this embodiment of the present application only uses the channel number to identify the uplink channel as an example. In other embodiments, other identification information may also be used to identify the uplink channel, and the present application is not limited thereto.
  • the reference frequency point may be the center frequency point of the signal used for backscattering, that is, the center frequency point of the multiple uplink channels relative to the signal used for backscattering with different frequency intervals.
  • each uplink channel may be the same or different.
  • the terminal device can obtain a backscatter signal at a frequency position, where In some cases, the terminal device may map the backscatter signal to the uplink channel designed in the manner shown in FIG. 9 for transmission.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • the terminal device can obtain the backscatter signal at two frequency positions, if the terminal device filters out the backscatter signal through filtering When receiving a backscatter signal at one frequency position, the terminal device may also map the remaining backscatter signal to the uplink channel designed in the manner shown in FIG. 9 for transmission.
  • FSK frequency shift keying
  • the system deploys multiple groups of uplink channels, each group of uplink channels includes a pair of uplink channels that are symmetrical with respect to the reference frequency point, and the multiple groups of uplink channels have different frequency intervals relative to the reference frequency point .
  • the uplink channels of the same group have the same frequency interval relative to the reference frequency point, and the uplink channels of different groups have different frequency intervals relative to the reference frequency point.
  • each group of uplink channels includes a pair of uplink channels that are symmetrical with respect to the reference frequency point, which may mean that the center frequency points of the pair of uplink channels are symmetrical with respect to the reference frequency point. And the channel bandwidth of the pair of uplink channels is the same.
  • the channel bandwidths of uplink channels in different groups may be the same or different.
  • the reference frequency point may be a center frequency point of the backscattered signal.
  • each group of uplink channels is identified by a channel number, that is, the channel numbers corresponding to the uplink channels in the same group are the same.
  • the terminal device can obtain the backscattered signal at two frequency positions.
  • the terminal device can obtain the backscattered signal
  • the backscattered signals at the two frequency positions are mapped to a pair of uplink channels designed in the manner shown in Fig. 10 for transmission.
  • the target uplink channel may be determined in the plurality of uplink channels, or may also be determined in the plurality of groups of uplink channels. Alternatively, in some other embodiments, the target uplink channel may also be determined based on other auxiliary information, and the present application is not limited thereto.
  • the position of the uplink channel of the system can be predefined.
  • the center frequency point and channel bandwidth of the uplink channel are determined.
  • the method in FIG. 9 or 10 can be used Design the uplink channel.
  • the position of the uplink channel of the system can be adjusted flexibly, that is, the uplink channel may not have a fixed center frequency and/or channel bandwidth.
  • other auxiliary information can be used Determine the center frequency point and/or channel bandwidth of the uplink channel.
  • the terminal device may determine a specific uplink channel as a target uplink channel for sending backscatter signals.
  • the network device can receive the backscatter signal on the specific uplink channel, that is, the terminal device and the network device have the same understanding of the frequency position of the backscatter signal, so that normal communication between the two can be realized.
  • the terminal device may determine the target uplink channel for sending the backscatter signal according to preset rules, and correspondingly, the network device may also determine the target uplink channel for receiving the backscatter signal according to the preset rule, Further, the terminal device sends the backscatter signal on the target uplink channel, and the network device receives the backscatter signal on the target uplink channel, thereby ensuring normal communication between the terminal device and the network device.
  • the terminal device may determine the frequency position of the target uplink channel based on the downlink signaling of the network device, and further, the terminal device may transmit the backscattered channel at the frequency position of the target uplink channel indicated by the downlink signaling The network device receives the backscattered signal on the target uplink channel indicated by the downlink signaling, thereby ensuring normal communication between the terminal device and the network device.
  • the terminal device determines the target uplink channel for sending the backscatter signal according to at least one of the following:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to power the terminal device;
  • Embodiment 5 Determine the frequency position of the target uplink channel according to the frequency position of the target downlink channel.
  • the frequency position of the target downlink channel may be determined by any determination method in Embodiment 1 to Embodiment 4 above.
  • the terminal device determines the frequency position of the target uplink channel according to the frequency position of the target downlink channel.
  • the terminal device determines the frequency position of the target uplink channel according to the frequency position of the target downlink channel.
  • the positional relationship between the target uplink channel and the target downlink channel is described, and the target uplink channel and the target downlink channel may also have other positional relationships, This application is not limited thereto.
  • the terminal device determines the frequency position of the target uplink channel according to the frequency position of the target downlink channel, including:
  • Embodiment 5-1 the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the target downlink channel.
  • the channel bandwidth of the target uplink channel may be predefined or configured by the network device.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel, including:
  • the channel number of the target uplink channel is the same as the channel number of the target downlink channel.
  • the channel number of the target downlink channel may be used as the channel number of the target uplink channel.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the target downlink channel
  • the channel bandwidth of the target uplink channel is the same as the channel bandwidth of the target downlink channel.
  • the terminal device can determine the center frequency point of the target downlink channel as the center frequency point of the target uplink channel, and determine the target uplink channel according to the predefined information, or the downlink signaling of the network device, or the channel bandwidth of the target downlink channel channel bandwidth.
  • Embodiment 5-2 There is a third frequency interval between the frequency position of the target uplink channel and the frequency position of the target downlink channel.
  • the central frequency point of the target uplink channel and the target downlink channel having a third frequency interval may refer to:
  • the difference between the center frequency point of the target uplink channel (marked as CH_UL) and the center frequency point of the target downlink channel is the third frequency interval (marked as F offset3 ), as shown in (a) in FIG. 11 Show.
  • F offset3 the third frequency interval
  • the number of target uplink channels is one.
  • the terminal device when the terminal device modulates the backscatter signal in an ASK or PSK modulation manner, it may map the modulated backscatter signal to the target downlink channel.
  • the central frequency points of the target uplink channel and the target downlink channel have a third frequency interval may refer to:
  • the absolute value of the difference between the center frequency point of the target uplink channel (marked as CH_UL) and the center frequency point of the target downlink channel is the third frequency interval (marked as F offset3 ), as shown in Figure 11 ( b) as shown.
  • F offset3 the third frequency interval
  • the number of target uplink channels is a pair.
  • the terminal device when the terminal device modulates the backscatter signal in the FSK modulation mode, it may map the pair of backscatter signals generated by modulation to the pair of target downlink channels.
  • the third frequency interval is predefined or configured by the network device.
  • the third frequency interval is configured by the network device through the first downlink signal.
  • the network device may carry the information of the third frequency interval by modulating the first downlink signal.
  • the third frequency interval may be configured by the network device through downlink signaling, where the downlink signaling is used to indicate the third frequency interval.
  • the channel bandwidth of the target uplink channel may be predefined, or configured by the network device, or may also be determined according to the channel bandwidth of the target downlink channel, for example, the The channel bandwidth of the target downlink channel is determined as the channel bandwidth of the target uplink channel.
  • Embodiment 5-3 the channel numbers of the target uplink channel and the target downlink channel have a third channel number offset.
  • multiple uplink channels are predefined, each uplink channel corresponds to a corresponding center frequency point and channel bandwidth, and each uplink channel is identified by a channel number.
  • multiple groups of uplink channels are predefined, each group of uplink channels corresponds to a corresponding center frequency point and channel bandwidth, and each group of uplink channels is identified by a channel number.
  • the channel numbers of the target uplink channel and the target downlink channel have a third channel number offset may refer to:
  • the difference between the channel number (CH_UL(k+N offset3 )) of the target uplink channel and the channel number (CH_DL(k)) of the target downlink channel is the offset of the third channel number (denoted as N offset3 ) , as shown in (a) in Figure 12.
  • N offset3 the third channel number
  • the number of target uplink channels is one.
  • the terminal device when the terminal device modulates the backscatter signal in an ASK or PSK modulation manner, it may map the modulated backscatter signal to the target downlink channel.
  • the channel numbers of the target uplink channel and the target downlink channel have a third channel number offset may refer to:
  • the absolute value of the difference between the channel numbers of the target uplink channel (CH_UL(kN offset1 ) and CH_UL(k+N offset3 )) and the channel number of the target downlink channel (CH_DL(k)) is the first Three channel number offsets (denoted as N offset3 ), as shown in (b) in FIG. 12 .
  • N offset3 Three channel number offsets
  • the number of target uplink channels is a pair.
  • the terminal device when the terminal device modulates the backscatter signal in the FSK modulation mode, it may map the pair of backscatter signals generated by modulation to the pair of target downlink channels.
  • the third channel number offset is predefined, or configured by the network device.
  • the third channel number offset is configured by the network device through the first downlink signal.
  • the network device may modulate the first downlink signal to carry the information about the offset of the third channel number.
  • Embodiment 6 The frequency position of the target uplink channel is determined according to the frequency position of the downlink channel corresponding to the first downlink signal.
  • the terminal device may determine the frequency position of the target uplink channel according to the frequency position of the first downlink signal.
  • the terminal device determines the target uplink channel according to the downlink channel corresponding to the first downlink signal, which may include:
  • the terminal device determines the frequency position of the target uplink channel according to the frequency position of the downlink channel corresponding to the first downlink signal.
  • the terminal device determines the frequency position of the target uplink channel according to the frequency position of the downlink channel corresponding to the first downlink signal.
  • the positional relationship between the target uplink channel and the downlink channel corresponding to the first downlink signal, the target uplink channel and the first downlink signal may also have other positional relationships, and the present application is not limited thereto.
  • Embodiment 6-1 the target uplink channel is the same as the downlink channel corresponding to the first downlink signal.
  • the target uplink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • Center frequencies of the target uplink channel and the downlink channel corresponding to the first downlink signal are the same.
  • the channel bandwidth of the target uplink channel may be predefined or configured by the network device.
  • the channel bandwidth of the initial downlink channel may be determined according to predefined information.
  • the channel bandwidth of the target uplink channel may be determined according to predefined information or downlink signaling of the network device.
  • the target uplink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • the center frequency point of the target uplink channel and the downlink channel corresponding to the first downlink signal are the same, and
  • the target uplink channel and the downlink channel corresponding to the first downlink signal have the same channel bandwidth.
  • the terminal device may determine the center frequency point of the downlink channel corresponding to the first downlink signal as the center frequency point of the target uplink channel, and according to the predefined information, or the downlink signaling of the network device, or the first downlink channel
  • the channel bandwidth of the downlink channel corresponding to the signal determines the channel bandwidth of the target uplink channel.
  • Embodiment 6-2 the target uplink channel and the downlink channel corresponding to the first downlink signal have a fourth frequency interval.
  • the target uplink channel and the downlink channel corresponding to the first downlink signal have a fourth frequency interval, including:
  • the center frequency point of the target uplink channel and the center frequency point of the downlink channel corresponding to the first downlink signal have the fourth frequency interval.
  • the target uplink channel and the center frequency point of the downlink channel corresponding to the first downlink signal have a fourth frequency interval may refer to:
  • the difference between the center frequency point of the target uplink channel (marked as CH_DL) and the center frequency point of the downlink channel corresponding to the first downlink signal is the fourth frequency interval (marked as F offset4 ), as shown in Figure 13 In (a) shown.
  • F offset4 the fourth frequency interval
  • the number of target uplink channels is one.
  • the terminal device when the terminal device modulates the backscatter signal in an ASK or PSK modulation manner, it may map the modulated backscatter signal to the target downlink channel.
  • the center frequency points of the target uplink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval may refer to:
  • the absolute value of the difference between the center frequency point of the target uplink channel (denoted as CH_DL) and the center frequency point of the downlink channel corresponding to the first downlink signal is the fourth frequency interval (denoted as F offset4 ), As shown in (b) in FIG. 13 .
  • the number of target uplink channels is a pair.
  • the terminal device when the terminal device modulates the backscatter signal in the FSK modulation mode, it may map the pair of backscatter signals generated by modulation to the pair of target downlink channels.
  • the fourth frequency interval is predefined, or configured by the network device.
  • the fourth frequency interval is configured by the network device through the first downlink signal.
  • the network device may carry the information of the fourth frequency interval by modulating the first downlink signal.
  • the fourth frequency interval is configured by the network device through downlink signaling.
  • the channel bandwidth of the target uplink channel may be predefined, or configured by the network device, or may also be based on the channel bandwidth of the downlink channel corresponding to the first downlink signal To determine, for example, the channel bandwidth of the downlink channel corresponding to the first downlink signal may be determined as the channel bandwidth of the target uplink channel.
  • Embodiment 6-3 the channel numbers of the target uplink channel and the target downlink channel have a fourth channel number offset.
  • multiple uplink channels are predefined, each uplink channel corresponds to a corresponding center frequency point and channel bandwidth, and each uplink channel is identified by a channel number.
  • multiple groups of uplink channels are predefined, each group of uplink channels corresponds to a corresponding center frequency point and channel bandwidth, and each group of uplink channels is identified by a channel number.
  • the channel numbers of the target uplink channel and the downlink channel corresponding to the first downlink signal have a fourth channel number offset may refer to:
  • the difference between the channel number of the target uplink channel (CH_UL(n+N offset4 )) and the channel number of the downlink channel (CH_DL(n)) corresponding to the first downlink signal is the offset of the fourth channel number shift (denoted as N offset4 ), as shown in (a) in FIG. 14 .
  • N offset4 the fourth channel number shift
  • the number of target uplink channels is one.
  • the terminal device when the terminal device modulates the backscatter signal in an ASK or PSK modulation manner, it may map the modulated backscatter signal to the target downlink channel.
  • the channel numbers of the target uplink channel and the downlink channel corresponding to the first downlink signal have a fourth channel number offset may refer to:
  • the channel number of the target uplink channel (respectively (CH_UL(n+N offset4 )) and (CH_UL(nN offset4 ))) and the channel of the downlink channel (CH_DL(n)) corresponding to the first downlink signal
  • the absolute value of the signal difference is the fourth channel signal offset (denoted as N offset4 ), as shown in (b) in FIG. 14 .
  • N offset4 the fourth channel signal offset
  • the number of target uplink channels is a pair.
  • the terminal device may map the pair of backscatter signals generated by modulation to the pair of target downlink channels.
  • the fourth channel number offset is predefined, or configured by the network device.
  • the fourth channel number offset is configured by the network device through the first downlink signal.
  • the network device may modulate the first downlink signal to carry the information about the offset of the fourth channel number.
  • Embodiment 7 Determine the frequency position of the target uplink channel according to the working frequency band of the terminal device.
  • the terminal device determines the frequency position of the target uplink channel according to the working frequency band of the terminal device.
  • the terminal device determines the frequency position of the target uplink channel according to the working frequency band of the terminal device.
  • the terminal device may determine the uplink channel corresponding to the central frequency point of the working frequency band of the terminal device as the target uplink channel.
  • the system deploys multiple uplink channels, and each uplink channel corresponds to a corresponding center frequency point and channel bandwidth. If the center frequency point of the operating frequency band of the terminal device falls into the first uplink channel among the multiple uplink channels, then The first uplink channel may be determined as the target uplink channel. That is, the center frequency point and channel bandwidth of the first uplink channel may be determined as the center frequency point and channel bandwidth of the target uplink channel.
  • the terminal device may determine the center frequency point of the target uplink channel according to the center frequency point of the working frequency band of the terminal device. For example, the center frequency point of the working frequency band of the terminal device is determined as the center frequency point of the target uplink channel.
  • the terminal device may determine the channel bandwidth of the target uplink channel according to predefined information or downlink signaling of the network device.
  • the network device may modulate the first downlink signal to carry the channel bandwidth information of the target uplink channel.
  • the network device may carry the channel bandwidth information of the target uplink channel through a data signal or a control signal.
  • Embodiment 8 Determine the frequency position of the target uplink channel according to the downlink signaling of the network device.
  • the terminal device determines the frequency position of the target uplink channel according to the downlink signaling of the network device.
  • the terminal device determining the frequency position of the target uplink channel according to the downlink signaling of the network device may include:
  • the terminal device determines the center frequency point and/or channel bandwidth of the target uplink channel according to the downlink signaling of the network device.
  • the center frequency point and/or channel bandwidth of the target uplink channel may be configured by the network device.
  • the terminal device may receive the second downlink signaling, and determine the frequency position of the target uplink channel according to the second downlink signaling.
  • the second downlink signaling may be used to indicate the channel number of the target uplink channel.
  • multiple uplink channels are predefined, each uplink channel corresponds to a corresponding center frequency point and channel bandwidth, and each uplink channel is identified by a channel number.
  • multiple groups of uplink channels are predefined, each group of uplink channels corresponds to a corresponding center frequency point and channel bandwidth, and each group of uplink channels is identified by a channel number.
  • the network device may indicate the frequency position of the target uplink channel to the terminal device by indicating the channel number of the target uplink channel.
  • the second downlink signaling may be used to indicate the frequency position of the target uplink channel.
  • the second downlink signaling is used to indicate the center frequency position and/or channel bandwidth of the target uplink channel.
  • the second downlink signaling is used to indicate a fifth frequency interval
  • the fifth frequency may be a frequency interval relative to a specific downlink channel, or a frequency interval relative to a specific frequency point.
  • the fifth frequency interval is a frequency interval between the target uplink channel and the downlink channel corresponding to the first downlink signal.
  • the fifth frequency interval may be the frequency interval between the center frequency point of the target uplink channel and the center frequency point of the downlink channel corresponding to the first downlink signal.
  • the terminal device may correspond to The center frequency point of the downlink channel and the fifth frequency interval are used to determine the center frequency point position of the target uplink channel.
  • the fifth frequency interval is a frequency interval between the center frequency point of the target uplink channel and the center frequency point of the target downlink channel.
  • the terminal device may determine the center frequency point position of the target uplink channel according to the center frequency point of the target downlink channel and the fifth frequency interval.
  • the fifth frequency interval is a frequency interval between a center frequency point of the target uplink channel and a center frequency point of a working frequency band of the terminal device.
  • the terminal device may determine the position of the center frequency point of the target uplink channel according to the center frequency point of the working frequency band of the terminal device and the fifth frequency interval.
  • the second downlink signaling is used to indicate a fifth channel number offset
  • the fifth channel number offset is used to indicate that the channel number of the target uplink channel is relative to the channel number of a specific downlink channel number offset.
  • the specific downlink channel may be a downlink channel corresponding to the first downlink signal, or the target downlink channel.
  • the terminal device may determine the channel bandwidth indicated by the network device as the channel bandwidth of the target uplink channel.
  • the terminal device may use the predefined information, or the channel bandwidth of the downlink channel corresponding to the first downlink signal, or the channel bandwidth of the target downlink channel The channel bandwidth determines the channel bandwidth of the target uplink channel.
  • the network device may determine the frequency position of the target uplink channel according to at least one of the following:
  • the type of the terminal device The type of the terminal device, the service type of the terminal device, the identification ID of the terminal device, and the second capability information reported by the terminal device.
  • the second capability information is used to indicate the uplink channel information supported by the terminal device, and the network device can determine the target indicated by the second downlink signaling according to the second capability information The frequency position of the uplink channel.
  • the information about the uplink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device.
  • the network device Since the uplink channels supported by different terminal devices may be different, the network device indicates the frequency position of the target uplink channel based on the second capability information reported by the terminal device, which is beneficial to ensure that the terminal device communicates with the network device through an appropriate uplink channel.
  • the system configures multiple uplink channels, and configures different types of terminal devices on different uplink channels, that is, it can be considered that the terminal type and the uplink channel have a corresponding relationship, so the network device can be determined based on the type of terminal device Target uplink channel.
  • the types of the terminal devices may be classified based on energy sources of the terminal devices. For example, configure passive zero-power terminals on uplink channel L, configure semi-passive terminals on uplink channel M, and configure active zero-power terminals on uplink channel N, etc., where L, M and N are integers, Indicates the number of the uplink channel.
  • the type of the terminal device may also be classified based on the second capability information of the terminal device.
  • the terminals By configuring terminals with different capabilities to send reflection and scattering signals on different uplink channels, it is beneficial to ensure that the terminal equipment communicates with network equipment through a suitable uplink channel.
  • the system configures multiple uplink channels, and configures terminal devices with different UE IDs on different uplink channels, that is, it can be considered that UE IDs and uplink channels have a corresponding relationship. Therefore, UE IDs based on terminal devices can be Determine the target uplink channel used by the terminal device to communicate with the network device.
  • terminal devices corresponding to UE IDs corresponding to the same uplink channel may be considered to have the same or similar second capability information.
  • the terminal devices corresponding to the UE ID corresponding to the same uplink channel can be considered as the same type of terminal devices, for example, they are all passive zero-power terminals, or semi-passive zero-power terminals, or active zero-power terminals terminal etc.
  • Embodiment 9 The terminal device determines the frequency position of the target uplink channel according to the predefined information.
  • the terminal device determines the frequency position of the target uplink channel according to predefined information.
  • the terminal device determines the frequency position of the target uplink channel according to predefined information.
  • the terminal device determines the frequency position of the target uplink channel according to predefined information, which may include:
  • the terminal device determines the center frequency point and/or channel bandwidth of the target uplink channel according to the predefined information.
  • the center frequency point and/or channel bandwidth of the target uplink channel may be predefined.
  • the number of uplink channels determined according to the predefined information may be one or more.
  • the terminal device may determine the center frequency point position of the target uplink channel according to the manners described in Embodiment 5 to Embodiment 8 above.
  • the terminal device may also determine the channel bandwidth information of the target uplink channel according to the methods described in Embodiment 5 to Embodiment 8 above.
  • the terminal device may determine the target downlink channel according to the downlink channel corresponding to the power supply signal and determine the target uplink channel according to the downlink channel corresponding to the power supply signal, or determine the target downlink channel according to predefined information. channel and determine the target uplink channel according to the predefined information.
  • the terminal device may determine the initial uplink channel as the uplink channel after the initial connection according to determining the initial downlink channel as the downlink channel after the initial connection, that is, continue to Use the initial uplink channel and the initial downlink channel for communication.
  • the terminal device can determine the target downlink channel according to the downlink signaling and the target uplink channel according to the downlink signaling, which is beneficial to avoid continuing to use the initial downlink channel and the initial uplink channel after the connection is established Carrying out the communication results in a problem of overloading the initial downstream channel and the initial upstream channel.
  • the terminal device can determine the target downlink channel for receiving downlink signals according to preset rules or downlink signaling.
  • the network device can also determine the target downlink channel for sending downlink signals according to preset rules or downlink signaling instructions.
  • the target downlink channel is beneficial to ensure the normal communication between the terminal equipment and the network equipment through the appropriate downlink channel.
  • the terminal device can determine the target uplink channel for sending backscatter signals according to preset rules or downlink signaling.
  • the network device can also determine the target uplink channel for receiving backscatter signals according to preset rules or downlink signaling.
  • the channel is beneficial to ensure the normal communication between the terminal equipment and the network equipment through the appropriate uplink channel.
  • FIG. 15 is a schematic flowchart of a wireless communication method 300 according to another embodiment of the present application.
  • the method 300 can be executed by the network device in the communication system shown in FIG. 1 .
  • the method 300 includes As follows:
  • the network device determines a target downlink channel for sending downlink signals, and/or determines a target uplink channel for receiving backscattered signals.
  • the network device may determine the target downlink channel for sending downlink signals according to the preset rule.
  • the terminal device may also determine the target downlink channel for receiving the downlink signal according to the preset rule. channel, further, the network device sends a downlink signal on the target downlink channel, and the terminal device receives the downlink signal on the target downlink channel, so as to ensure that the terminal device communicates with the network device through a suitable downlink channel.
  • the network device determines a target downlink channel for sending downlink signals, including:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to supply energy to the terminal device;
  • the network device determines the frequency position of the target downlink channel according to the downlink channel corresponding to the first downlink signal. repeat.
  • the network device determines the frequency position of the target downlink channel according to the operating frequency band of the terminal device for specific implementation, refer to the relevant description in Embodiment 2 of the method 200, and for the sake of brevity, details are not repeated here.
  • the network device determines the frequency position of the target downlink channel according to the operating frequency band of the terminal device.
  • the relevant description in Embodiment 4 of the method 200 For the sake of brevity, details are not repeated here.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal are the same.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal have the first frequency interval.
  • the first frequency interval is predefined.
  • the location of the target downlink channel is predefined.
  • the position of the target downlink channel is predefined, including: the position of the center frequency point of the target downlink channel is predefined.
  • the target downlink channel is a channel where a center frequency point of a working frequency band of the terminal device is located.
  • the network device may also send the first downlink signaling to the terminal device, for the terminal device to determine the frequency position of the target downlink channel.
  • the frequency position of the target downlink channel is determined by the network device, for example, determined by the network device according to a preset rule.
  • first downlink signaling refers to related descriptions of the first downlink signaling in method 200, and details are not repeated here for brevity.
  • the first downlink signaling is used to indicate a second frequency interval, where the second frequency interval is the frequency interval of the target downlink channel relative to the downlink channel corresponding to the first downlink signal , the first downlink signal is used to power the terminal device.
  • the frequency position of the target downlink channel is determined according to first capability information reported by the terminal device, where the first capability information is used to indicate information about downlink channels supported by the terminal device.
  • the information about the downlink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device.
  • the network device can determine the target uplink channel for receiving the backscatter signal according to the preset rule.
  • the terminal device can also determine the target uplink channel for sending the backscatter signal according to the preset rule.
  • the target uplink channel of the signal further, the terminal device sends the backscatter signal on the target uplink channel, and the network device receives the backscatter signal on the target uplink channel, so as to ensure the normal communication between the terminal device and the network device .
  • the determining the target uplink channel for receiving the backscatter signal includes:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to supply energy to the terminal device;
  • the network device determines the frequency position of the target uplink channel according to the target downlink channel.
  • the relevant description in Embodiment 5 of the method 200 For the sake of brevity, details are not repeated here.
  • the network device determines the frequency position of the target uplink channel according to the downlink channel corresponding to the first downlink signal. repeat.
  • the network device determines the frequency position of the target downlink channel according to the operating frequency band of the terminal device for specific implementation, refer to the relevant description in Embodiment 7 of the method 200, and for the sake of brevity, details are not repeated here.
  • the network device determines the frequency position of the target downlink channel according to the operating frequency band of the terminal device for specific implementation, refer to the relevant description in Embodiment 9 of the method 200, and for the sake of brevity, details are not repeated here.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the target downlink channel.
  • the third frequency interval is predefined.
  • the frequency position of the target uplink channel is the same as the frequency position of the downlink channel corresponding to the first downlink signal.
  • the frequency position of the target uplink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the downlink channel corresponding to the first downlink signal.
  • the fourth frequency interval is predefined.
  • the network device may also send the second downlink signaling to the terminal device, for the terminal device to determine the frequency position of the target uplink channel.
  • the frequency position of the target uplink channel is determined by the network device, for example, determined by the network device according to a preset rule.
  • the second downlink signaling is used to indicate a fifth frequency interval, where the fifth frequency interval is the target uplink channel corresponding to the target downlink channel or the first downlink signal The frequency interval of the downlink channel, the first downlink signal is used to power the terminal equipment
  • the frequency position of the target uplink channel is determined by the network device according to at least one of the following information:
  • the information about the uplink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device.
  • the network device can also determine the target downlink channel for sending downlink signals according to preset rules or instructions of downlink signaling.
  • the terminal device can determine the target downlink channel for receiving downlink signals according to preset rules or downlink signaling.
  • the target downlink channel is beneficial to ensure the normal communication between the terminal equipment and the network equipment through the appropriate downlink channel.
  • the network device can also determine the target uplink channel for receiving backscatter signals according to preset rules or downlink signaling, and correspondingly, the terminal device can determine the target uplink channel for sending backscatter signals according to preset rules or downlink signaling
  • the channel is beneficial to ensure the normal communication between the terminal equipment and the network equipment through the appropriate uplink channel.
  • Fig. 16 is a schematic flowchart of a wireless communication method 800 according to another embodiment of the present application. As shown in Fig. 16, the method 800 includes the following content:
  • each group of uplink channels includes a pair of uplink channels that are symmetrical with respect to the reference frequency point, and the multiple groups of uplink channels have different frequency intervals.
  • the method 800 may be executed by a network device, or may also be executed by an entity having management control in the communication system, or may also be a design manner of a predefined uplink channel, which is not limited in the present application.
  • the first frequency point is a center frequency point of the backscattered signal.
  • FIG. 10 is a schematic diagram of the multiple groups of uplink channels.
  • each group of uplink channels includes a pair of uplink channels that are symmetrical with respect to the reference frequency point, which may mean that the center frequency points of the pair of uplink channels are symmetrical with respect to the reference frequency point.
  • the channel bandwidths of uplink channels in different groups may be the same or different.
  • the multiple groups of uplink channels are deployed according to types of terminal devices.
  • the multiple groups of uplink channels are deployed according to the second capability information of the terminal device, where the second capability information is used to indicate information about the uplink channels supported by the terminal device.
  • the information about the uplink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device.
  • the target uplink channel in the method 200 and the method 300 may be determined in the multiple groups of uplink channels.
  • the target uplink channel in the method 200 and the method 300 may be determined in the multiple groups of uplink channels.
  • Fig. 16 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine a target downlink channel for receiving downlink signals, and/or determine a target uplink channel for sending backscatter signals.
  • the processing unit 410 is specifically configured to:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to power the terminal device;
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal are the same.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal have the first frequency interval.
  • the first frequency interval is predefined, or configured by the network device.
  • the first frequency interval is configured by the network device through the first downlink signal.
  • the location of the target downlink channel is predefined.
  • the location of the target downlink channel is predefined, including:
  • the center frequency point of the target downlink channel is predefined.
  • the target downlink channel is a channel corresponding to a central frequency point of a working frequency band of the terminal device.
  • the downlink signaling sent by the network device includes first downlink signaling, and the first downlink signaling is used to indicate the frequency position of the target downlink channel, or, the first downlink The uplink signaling is used to indicate a second frequency interval, where the second frequency interval is a frequency interval between the target downlink channel and the downlink channel corresponding to the first downlink signal.
  • the frequency position of the target downlink channel indicated by the first downlink signaling is determined according to the first capability information reported by the terminal device, and the first capability information is used to indicate that the terminal device supports downlink channel information.
  • the information about the downlink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device.
  • the channel bandwidth of the target downlink channel is predefined, or configured by the network device, or determined according to the channel bandwidth of the downlink channel corresponding to the first downlink signal.
  • processing unit 410 is further configured to:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to power the terminal device;
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the target downlink channel.
  • the third frequency interval is predefined or configured by the network device.
  • the frequency position of the target uplink channel is the same as the frequency position of the downlink channel corresponding to the first downlink signal.
  • the frequency position of the target uplink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the downlink channel corresponding to the first downlink signal.
  • the fourth frequency interval is predefined or configured by the network device.
  • the downlink signaling sent by the network device includes second downlink signaling, and the second downlink signaling is used to indicate the frequency position of the target uplink channel, or the second downlink signaling uses The fifth frequency interval is indicated, wherein the fifth frequency interval is the frequency interval of the target uplink channel relative to the target downlink channel or the downlink channel corresponding to the first downlink signal.
  • the target uplink channel is determined by the network device according to at least one of the following information:
  • the type of the terminal device The type of the terminal device, the service type of the terminal device, the identification ID of the terminal device, the second capability information reported by the terminal device, where the second capability information is used to indicate the uplink supported by the terminal device channel information.
  • the information about the uplink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the uplink channel supported by the terminal device.
  • the terminal device 400 further includes:
  • a communication unit configured to receive a second downlink signal on the target downlink channel.
  • the terminal device 400 further includes:
  • a communication unit configured to send a backscatter signal on the target uplink channel.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to realize the For the sake of brevity, the corresponding process of the terminal device in the shown method 200 will not be repeated here.
  • Fig. 18 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of Figure 18 includes:
  • the processing unit 510 is configured to determine a target downlink channel for sending downlink signals, and/or determine a target uplink channel for receiving backscatter signals.
  • processing unit 510 is further configured to:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to supply energy to the terminal device;
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal.
  • the target downlink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal are the same.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval.
  • the target downlink channel and the downlink channel corresponding to the first downlink signal have a first frequency interval, including:
  • Center frequencies of the target downlink channel and the downlink channel corresponding to the first downlink signal have the first frequency interval.
  • the first frequency interval is predefined.
  • the location of the target downlink channel is predefined.
  • the location of the target downlink channel is predefined, including:
  • the position of the center frequency point of the target downlink channel is predefined.
  • the target downlink channel is a channel where a center frequency point of a working frequency band of the terminal device is located.
  • the network device also includes:
  • a communication unit configured to send first downlink signaling, where the first downlink signaling is used to determine the frequency position of the target downlink channel.
  • the first downlink signaling is used to indicate a second frequency interval, where the second frequency interval is the frequency interval of the target downlink channel relative to the downlink channel corresponding to the first downlink signal , the first downlink signal is used to power the terminal device.
  • the frequency position of the target downlink channel is determined according to first capability information reported by the terminal device, where the first capability information is used to indicate information about downlink channels supported by the terminal device.
  • the information about the downlink channel supported by the terminal device includes at least one of the following:
  • the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device are the frequency position, channel bandwidth, and channel quantity of the downlink channel supported by the terminal device.
  • processing unit 510 is further configured to:
  • the terminal device a downlink channel corresponding to the first downlink signal, wherein the first downlink signal is used to supply energy to the terminal device;
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel.
  • the frequency position of the target uplink channel is the same as the frequency position of the target downlink channel, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the target downlink channel.
  • the third frequency interval is predefined.
  • the frequency position of the target uplink channel is the same as the frequency position of the downlink channel corresponding to the first downlink signal.
  • the frequency position of the target uplink channel is the same as the downlink channel corresponding to the first downlink signal, including:
  • the center frequency point of the target uplink channel is the same as the center frequency point of the downlink channel corresponding to the first downlink signal.
  • the fourth frequency interval is predefined.
  • the network device also includes:
  • a communication unit configured to send second downlink signaling, where the second downlink signaling is used to determine the frequency position of the target uplink channel.
  • the second downlink signaling is used to indicate a fifth frequency interval, where the fifth frequency interval is the target uplink channel corresponding to the target downlink channel or the first downlink signal
  • the frequency interval of the downlink channel, the first downlink signal is used to supply energy to the terminal equipment.
  • the frequency position of the target uplink channel is determined by the network device according to at least one of the following information:
  • the information about the uplink channel supported by the terminal device includes at least one of the following: frequency position, channel bandwidth, and number of channels of the uplink channel supported by the terminal device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are to realize the For the sake of brevity, the corresponding flow of the network device in the shown method will not be repeated here.
  • FIG. 19 is a schematic structural diagram of a communication device 600 provided in an embodiment of the present application.
  • the communication device 600 shown in FIG. 19 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • FIG. 20 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 20 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may also include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may also include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can implement the corresponding processes implemented by the network device in the methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • Fig. 21 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 21 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program executes each method in the embodiment of the present application to be implemented by the mobile terminal/terminal device
  • the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,有利于保证终端设备通过合适的下行信道和/或上行信道与网络设备进行通信,该方法包括:终端设备确定用于接收下行信号的目标下行信道,和/或,确定用于发送反向散射信号的目标上行信道。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
随着科技的发展,零功耗终端的应用越来越广泛,零功耗终端需要采集网络设备发送的无线电波获得能量后才可以驱动自身进行工作。因此,在获得能量之前,零功耗终端是处于“关机”状态的,即此时不能接收网络设备发送的信号。当系统中部署多个信道时,零功耗终端由于结构简单,通常仅支持单信道接收,即同一时间仅可以在一个信道上进行信号收发,零功耗终端如何和网络设备进行通信是一项亟需解决的问题。
发明内容
本申请提供了一种无线通信的方法、终端设备和网络设备,有利于保证终端设备通过合适的下行信道和/或上行信道与网络设备进行通信。
第一方面,提供了一种无线通信的方法,包括:终端设备确定用于接收下行信号的目标下行信道,和/或,确定用于发送反向散射信号的目标上行信道。
第二方面,提供了一种无线通信的方法,包括:网络设备确定用于发送下行信号的目标下行信道,和/或,确定用于接收反向散射信号的目标上行信道。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以确定用于接收下行信号的目标下行信道,和/或用于发送反向散射信号的目标上行信道,对应地,网络设备也可以确定用于发送下行信号的目标下行信道,和/或用于接收反向散射信号的目标上行信道,有利于保证终端设备通过合适的下行信道和/或上行信道与网络设备进行通信。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是根据本申请一个示例的零功耗通信系统的示意图。
图3是能量采集的原理图。
图4是反向散射通信的原理图。
图5是电阻负载调制的电路原理图。
图6是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图7是目标下行信道和第一下行信号对应的下行信道的一种位置关系图。
图8是目标下行信道和第一下行信号对应的下行信道的另一种位置关系图。
图9是根据本申请一个实施例的上行信道的部署方式示意图。
图10是根据本申请另一实施例的上行信道的部署方式示意图。
图11是目标上行信道和目标下行信道的一种位置关系示意图。
图12是目标上行信道和目标下行信道的另一种位置关系示意图。
图13是目标上行信道和第一下行信号对应的下行信道的一种位置关系示意图。
图14是目标上行信道和第一下行信号对应的下行信道的另一种位置关系示意图。
图15是根据本申请实施例的另一种无线通信的方法的示意性流程图。
图16是根据本申请实施例的上行信道的部署方法示意性流程图。
图17是根据本申请实施例提供的一种终端设备的示意性框图。
图18是根据本申请实施例提供的一种网络设备的示意性框图。
图19是根据本申请实施例提供的一种通信设备的示意性框图。
图20是根据本申请实施例提供的一种芯片的示意性框图。
图21是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统,蜂窝物联网系统,蜂窝无源物联网系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者,蜂窝物联网中的网络设备,或者,蜂窝无源物联网中的网络设备,或者,未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小 区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,蜂窝物联网中的终端设备,蜂窝无源物联网中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预定义"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,对本申请的相关技术进行说明。
一、零功耗通信
零功耗通信采用能量采集和反向散射通信技术。零功耗通信网络由网络设备和零功耗终端构成。
如图2所示,网络设备用于向零功耗终端发送无线供能信号,下行通信信号以及接收零功耗终端的反向散射信号。一个基本的零功耗终端包含能量采集模块,反向散射通信模块以及低功耗计算模块。此外,零功耗终端还可具备一个存储器或传感器,用于存储一些基本信息(如物品标识等)或获取环境温度、环境湿度等传感数据。
以下,对零功耗通信中的关键技术进行说明。
1、射频能量采集(RF Power Harvesting)
如图3所示,射频能量采集模块基于电磁感应原理实现对空间电磁波能量的采集,进而获得驱动零功耗终端工作所需的能量,例如用于驱动低功耗解调以及调制模块、传感器以及内存读取等。因此,零功耗终端无需传统电池。
2、反向散射通信(Back Scattering)
如图4所示,零功耗终端接收网络设备发送的无线信号,并对所述无线信号进行调制,加载需要发送的信息并将调制后的信号从天线辐射出去,这一信息传输过程称之为反向散射通信。反向散射和负载调制功能密不可分。负载调制通过对零功耗终端的振荡回路的电路参数按照数据流的节拍进行调节和控制,使电子标签阻抗的大小等参数随之改变,从而完成调制的过程。负载调制技术主要包括电阻负载调制和电容负载调制两种方式。在电阻负载调制中,负载并联一个电阻,该电阻基于二进制数据流的控制接通或断开,如图5所示。电阻的通断会导致电路电压的变化,因此实现幅度键控调制(ASK),即通过调整零功耗终端的反向散射信号的幅度大小实现信号的调制与传输。类似地,在电容负载调制中,通过电容的通断可以实现电路谐振频率的变化,实现频率键控调制(FSK),即通过调整零功耗终端的反向散射信号的工作频率实现信号的调制与传输。
可见,零功耗终端借助于负载调制的方式,对来波信号进行信息调制,从而实现反向散射通信过程。因此,零功耗终端具有显著的优点:
(1)终端不主动发射信号,因此不需要复杂的射频链路,如PA、射频滤波器等;
(2)终端不需要主动产生高频信号,因此不需要高频晶振;
(3)借助反向散射通信,终端信号传输不需要消耗终端自身能量。2、射频能量采集(RF Power Harvesting)。
3、编码技术
电子标签传输的数据,可以用不同形式的代码来表示二进制的“1”和“0”。无线射频识别系统通常使用下列编码方法中的一种:反向不归零(NRZ)编码、曼彻斯特(Manchester)编码、单极性归零(Unipolar RZ)编码、差动双相(DBP)编码、差动编码、脉冲间隔编码(PIE)、双向空间编码(FM0)、米勒(Miller)编码利差动编码等。通俗来说,是采用不同的脉冲信号表示0和1。
在一些场景中,基于零功耗终端的能量来源以及使用方式,可以将零功耗终端分为如下类型:
1、无源零功耗终端
零功耗终端不需要内装电池,零功耗终端接近网络设备(如RFID系统的读写器)时,零功耗终端处于网络设备天线辐射形成的近场范围内。因此,零功耗终端天线通过电磁感应产生感应电流,感应电流驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,是一种真正意义的零功耗终端。
无源零功耗终端不需要电池,射频电路以及基带电路都非常简单,例如不需要低噪放(LNA),功放(PA),晶振,模数转换器(Analog-to-Digital Converter,ADC)等器件,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
2、半无源零功耗终端
半无源零功耗终端自身也不安装常规电池,但可使用RF能量采集模块采集无线电波能量,同时将采集的能量存储于一个储能单元(如电容)中。储能单元获得能量后,可以驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。
可以看出,半无源零功耗终端无论是前向链路还是反向链路都不需要内置电池来驱动,虽然工作中使用了电容储存的能量,但能量来源于能量采集模块采集的无线电能量,因此也是一种真正意义的零功耗终端。
半无源零功耗终端继承了无源零功耗终端的诸多优点,因此具有体积小、重量轻、价格非常便宜、使用寿命长等诸多优点。
3、有源零功耗终端
有些场景下使用的零功耗终端也可以为有源零功耗终端,此类终端可以内置电池。电池用于驱动零功耗终端的低功耗芯片电路。实现对前向链路信号的解调,以及反向链路的信号调制等工作。但对于反向散射链路,零功耗终端使用反向散射实现方式进行信号的传输。因此,这类终端的零功耗主要体现于反向链路的信号传输不需要终端自身功率,而是使用反向散射的方式。
二、蜂窝无源物联网
随着5G行业应用的增加,连接物的种类和应用场景越来越多,对通信终端的成本和功耗也将有更高要求,免电池、低成本的无源物联网设备的应用成为蜂窝物联网的关键技术,充实5G网络链接终端类型和数量,真正实现万物互联。其中无源物联网设备可以基于零功耗通信技术,如RFID技术,并在此基础上进行延伸,以适用于蜂窝物联网。
零功耗终端需要采集网络设备发送的无线电波获得能量后才可以驱动自身进行工作。因此,在获得能量之前,零功耗终端是处于“关机”状态的,即此时不能接收网络设备发送的信号。因此,当系统中部署多个信道时,零功耗终端由于结构简单,通常仅支持单信道接收,即同一时间仅可以在一个信道上进行信号收发,零功耗终端如何和网络设备进行通信是一项亟需解决的问题。
以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图6是根据本申请实施例的无线通信的方法200的示意性交互图,如图6所示,该方法200包括如下内容:
S210,终端设备确定用于接收下行信号的目标下行信道,和/或,确定用于发送反向散射信号的目标上行信道。
在本申请实施例中,所述终端设备为不主动发射信号,利用网络设备或者其他设备发送的信号来承载信息的设备,例如,零功耗终端。
应理解,本申请实施例可以应用于蜂窝物联网系统,例如蜂窝无源物联网系统,或者,也可以应用于终端设备通过零功耗通信或免电池通信方式向网络设备发送信息的其他场景,本申请并不限于此。
需要说明的是,所述零功耗通信方式可以包括反向散射通信方式,或者也可以包括标准演进中引入的用于零功耗终端进行通信的其他方式,以下,以终端设备通过反向散射方式与网络设备进行通信为例进行说明,但本申请并不限于此。
在本申请实施例中,终端设备的能力采集模块可以支持宽带接收,即终端设备可以在相对宽的带宽范围内接收无线信号并进行能量采集。这样,网络设备在终端设备支持的带宽范围内发射了下行信号,终端设备即可进行能力采集获得能量,并基于获得的能量激活该终端设备内部的芯片电路,进入“激活”状态。
在一些实施例中,在终端设备进入“激活”状态之后,可以接收网络设备发送的下行信号(或称前向链路信号),终端设备进行数据通信的信道带宽通常是有限的,例如,信道带宽为200KHz。在网络设备部署有多个下行信道的情况下,终端设备需要确定接收下行信号的目标下行信道,以接收网络设备发送的下行信号,获取网络设备发送的下行信息。
在一些实施例中,所述目标下行信道可以为初始下行信道,用于终端设备和网络设备建立初始连接过程中的下行信号接收,或者,也可以为建立初始连接之后的下行信道,用于终端设备和网络设备建立连接之后的下行信号接收。
作为示例而非限定,所述下行信号可以包括以下中的至少一种:
同步信号,用于终端设备和网络设备之间的同步;
数据信号,用于承载数据信息;
用于产生反向散射信号的信号源;
控制信号,用于承载控制信令。
在一些实施例中,用于产生反向散射信号的信号源可以指未调制过的信号,例如正弦波、方波、三角波、脉冲或矩形波等信号。
在另一些实施例中,数据信号也可以作为反向散射信号的信号源。
在又一些实施例中,控制信号也可以作为反向散射信号的信号源。
即,终端设备可以基于未调制过的信号、数据信号或控制信号产生反向散射信号,本申请实施例对于产生反向散射信号的信号源不作具体限定。
在本申请一些实施例中,终端设备可以在多个候选的下行信道上进行信号接收,根据接收到的信号的特征确定网络设备发送下行信号所使用的目标下行信道。
例如,终端设备尝试在多个候选的下行信道上进行信号接收,根据接收到的信号的特征(例如,特定的信号编码序列)确定网络设备是否发送了下行信号。可选地,所述多个候选的下行信道的中心频点和/或信道带宽不同。
在本申请另一些实施例中,终端设备也可以确定特定下行信道为用于接收下行信号的目标下行信道。对应地,网络设备可以在所述特定下行信道上发送下行信号,即终端设备和网络设备对于下行信号的频率位置理解一致,从而能够实现二者之间的正常通信。
在一些实施例中,终端设备可以根据预设规则确定用于接收下行信号的目标下行信道,对应地,网络设备也可以根据预设规则确定用于发送下行信号的目标下行信道,进一步地,网络设备在该目标下行信道上发送下行信号,终端设备在该目标下行信道上接收下行信号,从而能够保证终端设备和网络设备之间的正常通信。
在另一些实施例中,终端设备可以基于网络设备的下行信令,确定目标下行信道的频率位置,进一步地,网络设备在下行信令所指示的目标下行信道上发送下行信号,终端设备在该目标下行信道上接收下行信号,从而能够保证终端设备和网络设备之间的正常通信。
在一些实施例中,所述终端设备可以根据以下中的至少一项,确定用于接收下行信号的目标下行信道:
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
所述终端设备的工作频段;
预定义信息;
所述网络设备的下行信令。
在本申请实施例中,所述第一下行信号用于给所述终端设备供能,也就是说,所述第一下行信号可以为所述终端设备的供能信号。
在一些实施例中,所述第一下行信号也可以为用于产生反向散射信号的信号源,例如,所述终端设备可以对所述第一下行信号进行调制,得到反向散射信号。
以下,结合具体实施例,分别说明所述目标下行信道的确定方式。
实施例1:根据第一下行信号所对应的下行信道,确定目标下行信道。
换言之,终端设备可以根据第一下行信号的频率位置,确定目标下行信道的频率位置。
在一些实施例中,终端设备根据第一下行信号所对应的下行信道,确定目标下行信道,可以包括:
根据第一下行信号所对应的下行信道的中心频点,确定所述目标下行信道的中心频点;和/或,
根据第一下行信号所对应的下行信道的信道带宽,确定所述目标下行信道的信道带宽。
可选地,在目标下行信道为初始下行信道的情况下,终端设备可以根据第一下行信号所对应的下行信道的频率位置确定目标下行信道的频率位置。
可选地,在目标下行信道为建立初始连接之后的下行信道的情况下,终端设备可以根据第一下行信号所对应的下行信道的频率位置确定目标下行信道的频率位置。
以下,结合实施例1-1和实施例1-2,说明所述目标下行信道和所述第一下行信号对应的下行信道的位置关系,所述目标下行信道和所述第一下行信号对应的下行信道也可以具有其他的位置关系,本申请并不限于此。
实施例1-1:所述目标下行信道与所述第一下行信号所对应的下行信道相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
此情况下,所述目标下行信道的信道带宽可以是预定义的,或者是网络设备配置的。
例如,若所述目标下行信道为初始下行信道,可以根据预定义信息确定初始下行信道的信道带宽。
又例如,若所述目标下行信道为初始连接之后的下行信道,此情况下,可以根据预定义信息或者网络设备的下行信令确定该目标下行信道的信道带宽。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的信道号相同。
例如,预定义有多个下行信道,每个下行信道对应相应的中心频点和信道带宽,通过信道号标识每个下行信道。所述目标下行信道和所述第一下行信号的所对应的下行信道的信道号相同可以指终端设备可以将所述第一下行信号所对应的下行信道确定为所述目标下行信道。
需要说明的是,本申请实施例仅以信道号标识下行信道为例进行说明,在其他实施例中,也可以通过其他标识信息标识下行信道,本申请并不限于此。
在另一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同,以及
所述目标下行信道和所述第一下行信号所对应的下行信道的信道带宽相同。
即终端设备可以将所述第一下行信号所对应的下行信道确定为所述目标下行信道。
综上,终端设备可以将第一下行信号对应的下行信道的中心频点确定为目标下行信道的中心频点,根据预定义信息,或者,网络设备的下行信令,或者,第一下行信号所对应的下行信道的信道带宽确定目标下行信道的信道带宽。
实施例1-2:所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
在一些实施例中,所述目标下行信道和所述第一下行信号对应的下行信道的中心频点具有第一频率间隔可以指:
所述目标下行信道(记为CH_DL)的中心频点和所述第一下行信号对应的下行信道的中心频点的差值为所述第一频率间隔(记为F offset1),如图7中的(a)所示。
在另一些实施例中,所述目标下行信道和所述第一下行信号对应的下行信道的中心频点具有第一频率间隔可以指:
所述目标下行信道(记为CH_DL)的中心频点和所述第一下行信号对应的下行信道的中心频点的差值的绝对值为所述第一频率间隔(记为F offset1),如图7中的(b)所示。
在一些实施例中,所述第一频率间隔是预定义的,或者,是所述网络设备配置的。
作为示例,所述第一频率间隔是所述网络设备通过所述第一下行信号配置的。例如,网络设备可以通过对第一下行信号进行调制以承载所述第一频率间隔的信息。
在一些实施例中,若有多个下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,终端设备可以在该多个下行信道中选择任意一个下行信道作为目标下行信道;或者,也可以对所述多个下行信道进行搜索确定用于接收下行信号的目标下行信道。例如,终端设备可以根据多个下行信道上接收的信号的特征,确定网络设备在该多个下行信道中的哪个下行信道上发送了下行信号,进一步将网络设备发送下行信号的下行信道作为目标下行信道。
实施例1-3:所述目标下行信道与所述第一下行信号所对应的下行信道的信道号具有第一信道号偏移。
在一些实施例中,预定义有多个下行信道,每个下行信道对应相应的中心频点和信道带宽,通过信道号标识每个下行信道。
在一些实施例中,所述目标下行信道和所述第一下行信号对应的下行信道的信道号具有第一信道号偏移可以指:
所述目标下行信道的信道号(CH_DL(n+N offset1))和所述第一下行信号对应的下行信道的信道号(CH_DL(n))的差值为所述第一信道号偏移(记为N offset1),如图8中的(a)所示。
在另一些实施例中,所述目标下行信道和所述第一下行信号对应的下行信道的信道号具有第一信道号偏移可以指:
所述目标下行信道的信道号(分别为CH_DL(n-N offset1)和CH_DL(n+N offset1))和所述第一下行信号对应的下行信道的信道号(CH_DL(n))的差值的绝对值为所述第一信道号偏移(记为N offset1),如图8中的(b)所示。
在一些实施例中,所述第一信道号偏移是预定义的,或者,是所述网络设备配置的。
作为示例,所述第一信道号偏移是所述网络设备通过所述第一下行信号配置的。例如,网络设备可以通过对第一下行信号进行调制以承载所述第一信道号偏移的信息。
在一些实施例中,若有多个下行信道与所述第一下行信号所对应的下行信道具有第一信道号偏移,终端设备可以在该多个下行信道中选择任意一个下行信道作为目标下行信道;或者,也可以对所述多个下行信道进行搜索确定用于接收下行信号的目标下行信道。例如,终端设备可以根据多个下行信道上接收的信号的特征,确定网络设备在该多个下行信道中的哪个下行信道上发送了下行信号,进一步将网络设备发送下行信号的下行信道作为目标下行信道。
实施例2:根据所述终端设备的工作频段,确定目标下行信道的频率位置。
可选地,在目标下行信道为初始下行信道的情况下,终端设备根据终端设备的工作频段确定目标下行信道的频率位置。
可选地,在目标下行信道为初始连接之后的下行信道的情况下,终端设备根据终端设备的工作频段确定目标下行信道的频率位置。
在一些实施例中,终端设备可以将终端设备的工作频段的中心频点对应的下行信道确定为目标下行信道。
例如,所述网络设备部署有多个下行信道,每个下行信道对应相应的中心频点和信道带宽,若终端设备的工作频段的中心频点落入所述多个下行信道中的第一下行信道,则可以将该第一下行信道确定为目标下行信道。即可以将第一下行信道的中心频点和信道带宽确定为目标下行信道的中心频点和信道带宽。
在另一些实施例中,终端设备可以根据终端设备的工作频段的中心频点确定所述目标下行信道的中心频点。例如,将终端设备的工作频段的中心频点确定为目标下行信道的中心频点。
进一步地,终端设备可以根据预定义信息,或网络设备的下行信令确定目标下行信道的信道带宽。
例如,网络设备可以通过对第一下行信号进行调制以承载所述目标下行信道的信道带宽信息。
又例如,在网络设备和终端设备建立连接之后,网络设备可以通过数据信号或控制信号承载所述目标下行信道的信道带宽信息。
实施例3:终端设备可以根据网络设备的下行信令确定目标下行信道的频率位置。
可选地,在目标下行信道为初始连接之后的下行信道的情况下,终端设备根据网络设备的下行信令确定目标下行信道的频率位置。
在一些实施例中,所述终端设备根据网络设备的下行信令确定目标下行信道的频率位置可以包括:
终端设备根据网络设备的下行信令确定目标下行信道的中心频点和/或信道带宽。
即,所述目标下行信道的中心频点和/或信道带宽可以是网络设备配置的。
例如,所述终端设备可以接收第一下行信令,根据第一下行信令确定目标下行信道的频率位置。
在一些实施例中,所述第一下行信令可以用于指示所述目标下行信道的信道号。
例如,预定义有多个下行信道,每个下行信道对应相应的中心频点和信道带宽,通过信道号标识每个下行信道,网络设备可以通过指示目标下行信道的信道号向终端设备指示目标下行信道的频率位置。
在另一些实施例中,所述第一下行信令可以用于指示所述目标下行信道的频率位置。
例如,所述第一下行信令用于指示所述目标下行信道的中心频点位置和/或信道带宽。
在又一些实施例中,所述第一下行信令用于指示第二频率间隔,所述第二频率可以是相对于特定下行信道的频率间隔,或者,相对于特定频点的频率间隔。
作为一个示例,所述第二频率间隔为所述目标下行信道相对于所述第一下行信号对应的下行信道的频率间隔。例如,所述第二频率间隔可以是目标下行信道的中心频点相对于第一下行信号对应的下行信道的中心频点的频率间隔,此情况下,终端设备可以根据第一下行信号对应的下行信道的中心频点和所述第二频率间隔,确定所述目标下行信道的中心频点位置。
作为又一示例,所述第二频率间隔为所述目标下行信道的中心频点相对于所述终端设备的工作频段的中心频点的频率间隔。此情况下,终端设备可以根据终端设备的工作频段的中心频点和所述第二频率间隔,确定所述目标下行信道的中心频点位置。
在又一些实施例中,所述第一下行信令用于指示第二信道号偏移,所述第二信道号偏移用于指示所述目标下行信道的信道号相对于特定下行信道的信道号的偏移。可选地,所述特定下行信道可以为第一下行信号对应的下行信道。
在一些实施例中,在网络设备指示目标下行信道的信道带宽的情况下,终端设备可以将网络设备指示的信道带宽确定为目标下行信道的信道带宽。
在另一些实施例中,在网络设备未指示目标下行信道的信道带宽的情况下,终端设备可以根据预定义信息,或者第一下行信号对应的下行信道的信道带宽确定目标下行信道的信道带宽,例如,可以将第一下行信号对应的下行信道的信道带宽确定为目标下行信道的信道带宽。
在一些实施例中,所述目标下行信道的频率位置是所述网络设备根据以下信息中的至少一项确定的:
终端设备的类型,终端设备的业务类型,终端设备的标识ID,终端设备上报的第一能力信息,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
在一些实施例中,所述终端设备支持的下行信道的信息包括以下中的至少一项:
所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
在一些实施例中,终端设备可以向网络设备上报第一能力信息,所述第一能力信息用于指示所述终端设备支持的下行信道的信息,所述网络设备可以根据所述第一能力信息确定所述第一下行信令所指示的目标下行信道的频率位置。
由于不同的终端设备支持的目标下行信道的情况可能不同,网络设备基于终端设备上报的第一能力信息指示目标下行信道的频率位置,有利于保证终端设备通过合适的下行信道和网络设备进行通信。
在一些实施例中,系统配置了多个下行信道,并且将不同类型的终端设备配置在不同的下行信道接收下行信号,即可以认为终端类型和下行信道具有对应关系,因此,网络设备可以基于终端设备的类型确定目标下行信道。
可选地,该终端设备的类型可以是基于终端设备的能量来源划分的。例如,将无源零功耗终端配置在下行信道X,将半无源终端配置在下行信道Y,将有源零功耗终端配置在下行信道Z等,其中,X,Y,Z表示下行信道的信道号。
可选地,该终端设备的类型也可以是基于终端设备的第一能力信息划分的。通过将不同能力的终端配置在不同的下行信道上接收下行信号,有利于保证终端设备通过合适的下行信道与网络设备进行通信。
在一些实施例中,系统配置了多个下行信道,并且将具有不同UE ID的终端设备配置在不同的下行信道,即可以认为UE ID和下行信道具有对应关系,因此,可以基于终端设备的UE ID确定该终端设备与网络设备进行通信所使用的目标下行信道。
可选地,对应同一下行信道的UE ID所对应的终端设备可以认为具有相同或相近的第一能力信息。
可选地,对应同一下行信道的UE ID所对应的终端设备可以认为是同一类型的终端设备,例如均为无源零功耗终端,或者半无源零功耗终端,或者有源零功耗终端等。
实施例4:终端设备根据预定义信息确定目标下行信道的频率位置。
可选地,在目标下行信道为初始下行信道的情况下,终端设备根据预定义信息确定目标下行信道的频率位置。
可选地,在目标下行信道为初始连接之后的下行信道的情况下,终端设备根据预定义信息确定目标下行信道的频率位置。
在一些实施例中,所述终端设备根据预定义信息确定目标下行信道的频率位置,可以包括:
终端设备根据预定义信息确定目标下行信道的中心频点和/或信道带宽。
即,所述目标下行信道的中心频点和/或信道带宽可以是预定义的。
在一些实施例中,根据预定义信息确定的下行信道的数量可以是一个或多个。
当根据预定义信息确定出多个下行信道的情况下,终端设备可以在该多个下行信道中选择任意一个下行信道作为目标下行信道;或者,也可以对所述多个下行信道进行搜索确定用于接收下行信号的目标下行信道。例如,终端设备可以根据多个下行信道上接收的信号的特征,确定网络设备是否在该多个下行信道中的哪个下行信道上发送了下行信号,进一步将网络设备发送下行信道的下行信道作为目标下行信道。
应理解,当未定义目标下行信道的中心频点信息时,终端设备可以根据前述所述的实施例1至实施例3中所述的方式确定目标下行信道的中心频点位置。当未定义目标下行信道的信道带宽信息时,终端设备也可以根据前述所述的实施例1至实施例3中所述的方式确定目标下行信道的信道带宽信息。
在本申请实施例中,所述目标上行信道可以为初始上行信道,用于终端设备和网络设备初始连接过程中的反向散射信号(或称反向链路信号)发送,或者,也可以为初始连接之后的上行信道,用于终端设备和网络设备建立连接之后的反向散射信号发送。
在一些实施例中,所述目标上行信道的数量为一个,或者也可以为多个。
以下,对相关系统中的上行信道设计做一说明。
在一些实施例中,可以根据终端设备的能力信息,类型等,部署上行信道,进一步将终端设备配置在不同的上行信道上发送反向散射信号。
可选地,所述终端设备的能力信息包括终端设备的第二能力信息用于指示所述终端设备支持的上行信道的信息,例如频率位置,信道带宽,信道数量等。根据终端设备的能力信息部署该多个上行信道,有利于保证不同能力的终端设备在合适的上行信道上发送反向散射信号。
可选地,所述终端设备的类型,例如可以根据终端设备的能量来源分类,例如可以划分为无源零功耗终端,半无源零功耗终端或有源零功耗终端等。根据终端设备的类型部署上行信道,有利于保证不同类型的终端设备在合适的上行信道上发送反向散射信号。
在一些实现方式中,系统部署有多个上行信道,所述多个上行信道相对于参考频点具有不同的频率间隔,例如,每个上行信道对应相应的中心频点和信道带宽,通过信道号标识每个上行信道。
需要说明的是,本申请实施例仅以信道号标识上行信道为例进行说明,在其他实施例中,也可以通过其他标识信息标识上行信道,本申请并不限于此。
可选地,如图9所示,所述参考频点可以是用于反向散射的信号的中心频点,即所述多个上行信道相对于该用于反向散射的信号的中心频点具有不同的频率间隔。
应理解,每个上行信道的信道带宽可以相同,或者也可以不同。
在一些实施例中,若终端设备采用幅移键控(ASK)或相移键控(PSK)调制方式调制得到反向散射信号时,终端设备可以得到一个频率位置上的反向散射信号,此情况下,终端设备可以将该反向散射信号映射到采用图9方式设计的上行信道上传输。
在另一些实施例中,若终端设备采用频移键控(FSK)调制方式调制得到反向散射信号,终端设备可以得到两个频率位置上的反向散射信号,如果终端设备通过滤波滤除了其中一个频率位置的反向散射信号时,终端设备也可以将剩下的一个反向散射信号映射到采用图9方式设计的上行信道上传输。
在另一些实现方式中,系统部署有多组上行信道,每组上行信道包括相对于参考频点对称的一对上行信道,所述多组上行信道相对于所述参考频点具有不同的频率间隔。
即同一组的上行信道相对于参考频点具有相同的频率间隔,不同组的上行信道相对于所述参考频点具有不同的频率间隔。
应理解,每组上行信道包括一对上行信道相对于参考频点对称,可以指这一对上行信道的中心频点相对于所述参考频点对称。并且这一对上行信道的信道带宽相同。
可选地,不同组的上行信道的信道带宽可以相同,或者也可以不同。
可选地,所述参考频点可以是用于反向散射的信号的中心频点。
在一些实施例中,通过信道号标识每组上行信道,即同一组中的上行信道对应的信道号相同。
如图10所示,相对于用于反向散射的信号的中心频点对称的CH1、CH2、…,CH(n+1)分别构成一组上行信道。
在一些实施例中,若终端设备采用频移键控(FSK)调制方式调制得到反向散射信号,终端设备可以得到两个频率位置上的反向散射信号,此情况下,终端设备可以将这两个频率位置上的反向散射信号映射到采用图10方式设计的一对上行信道上传输。
在一些实施例中,所述目标上行信道可以是在所述多个上行信道中确定的,或者也可以是在所述多组上行信道中确定的。或者,在另一些实施例中,所述目标上行信道也可以是基于其他辅助信息确定的,本申请并不限于此。
综上,在一些情况中,系统的上行信道的位置可以是预定义好的,此情况下,上行信道的中心频点和信道带宽是确定的,例如,可以按照图9或图10中的方式设计上行信道,在另一些情况中,系统的上行信道的位置可以是灵活调整的,也就是说,上行信道可能没有固定的中心频点和/或信道带宽,此情况下,可以根据其他辅助信息确定上行信道的中心频点和/或信道带宽。
在本申请一些实施例中,终端设备可以确定特定上行信道为用于发送反向散射信号的目标上行信道。对应地,网络设备可以在所述特定上行信道上接收反向散射信号,即终端设备和网络设备对于反向散射信号的频率位置理解一致,从而能够实现二者之间的正常通信。
在一些实施例中,终端设备可以根据预设规则确定用于发送反向散射信号的目标上行信道,对应地,网络设备也可以根据预设规则确定用于接收反向散射信号的目标上行信道,进一步地,终端设备在该目标上行信道上发送反向散射信号,网络设备在该目标上行信道上接收反向散射信号,从而能够保证终端设备和网络设备之间的正常通信。
在另一些实施例中,终端设备可以基于网络设备的下行信令,确定目标上行信道的频率位置,进一步地,终端设备可以在下行信令所指示的目标上行信道的频率位置上发送反向散射信号,网络设备在下行信令所指示的目标上行信道上接收反向散射信号,从而能够保证终端设备和网络设备之间的正常通信。
在一些实施例中,所述终端设备根据以下中的至少一项,确定用于发送反向散射信号的目标上行信道:
所述目标下行信道的频率位置;
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
网络设备的下行信令;
所述终端设备的工作频段;
预定义信息。
其中,所述目标下行信道的频率位置的确定方式参考前述实施例的相关实现,这里不再赘述。
以下,结合具体实施例,说明所述目标上行信道的确定方式。
实施例5:根据目标下行信道的频率位置确定目标上行信道的频率位置。
应理解,在该实施例5中,所述目标下行信道的频率位置可以是采用前述实施例1至实施例4中任意确定方式确定的。
可选地,在目标上行信道为初始上行信道的情况下,终端设备根据目标下行信道的频率位置确定目标上行信道的频率位置。
可选地,在目标上行信道为建立初始连接之后的下行信道的情况下,终端设备根据目标下行信道的频率位置确定目标上行信道的频率位置。
以下,结合实施例5-1和实施例5-2,说明所述目标上行信道和所述目标下行信道的位置关系,所述目标上行信道和所述目标下行信道也可以具有其他的位置关系,本申请并不限于此。
在一些实施例中,所述终端设备根据目标下行信道的频率位置确定目标上行信道的频率位置,包括:
根据所述目标下行信道的中心频点确定所述目标上行信道的中心频点;和/或
根据所述目标下行信道的信道带宽确定所述目标上行信道的信道带宽。
实施例5-1:所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
此情况下,所述目标上行信道的信道带宽可以是预定义的,或者是网络设备配置的。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
所述目标上行信道的信道号和所述目标下行信道的信道号相同。
即可以将目标下行信道的信道号作为目标上行信道的信道号。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点相同;以及
所述目标上行信道的信道带宽和所述目标下行信道的信道带宽相同。
综上,终端设备可以将目标下行信道的中心频点确定为目标上行信道的中心频点,根据预定义信息,或者,网络设备的下行信令,或者,目标下行信道的信道带宽确定目标上行信道的信道带宽。
实施例5-2:所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
在一些实施例中,所述目标上行信道和所述目标下行信道的中心频点具有第三频率间隔可以指:
所述目标上行信道(记为CH_UL)的中心频点和所述目标下行信道的中心频点的差值为所述第三频率间隔(记为F offset3),如图11中的(a)所示。此情况下,可以认为目标上行信道的数量为一个。例如,终端设备在采用ASK或PSK调制方式调制反向散射信号时,可以将调制产生的反向散射信号映射到这一个目标下行信道上。
在另一些实施例中,所述目标上行信道和所述目标下行信道的中心频点具有第三频率间隔可以指:
所述目标上行信道(记为CH_UL)的中心频点和所述目标下行信道的中心频点的差值的绝对值为所述第三频率间隔(记为F offset3),如图11中的(b)所示。此情况下,可以认为目标上行信道的数量为一对。例如,终端设备在采用FSK调制方式调制反向散射信号时,可以将调制产生的一对反向散射信号映射到这一对目标下行信道上。
在一些实施例中,所述第三频率间隔是预定义的,或者是所述网络设备配置的。
作为示例,所述第三频率间隔是所述网络设备通过所述第一下行信号配置的。例如,网络设备可以通过对第一下行信号进行调制以承载所述第三频率间隔的信息。
作为示例,所述第三频率间隔可以是网络设备通过下行信令配置的,所述下行信令用于指示所述第三频率间隔。
在该实施例5-2中,所述目标上行信道的信道带宽可以是预定义的,或者,是网络设备配置的,或者,也可以根据所述目标下行信道的信道带宽确定,例如,可以将目标下行信道的信道带宽确定为目标上行信道的信道带宽。
实施例5-3:所述目标上行信道与所述目标下行信道的信道号具有第三信道号偏移。
在一些实施例中,预定义有多个上行信道,每个上行信道对应相应的中心频点和信道带宽,通过信道号标识每个上行信道。或者,预定义有多组上行信道,每组上行信道对应相应的中心频点和信道 带宽,通过信道号标识每组上行信道。
在一些实施例中,所述目标上行信道与所述目标下行信道的信道号具有第三信道号偏移可以指:
所述目标上行信道的信道号(CH_UL(k+N offset3))和所述目标下行信道的信道号(CH_DL(k))的差值为所述第三信道号偏移(记为N offset3),如图12中的(a)所示。此情况下,可以认为目标上行信道的数量为一个。例如,终端设备在采用ASK或PSK调制方式调制反向散射信号时,可以将调制产生的反向散射信号映射到这一个目标下行信道上。
在另一些实施例中,所述目标上行信道与所述目标下行信道的信道号具有第三信道号偏移可以指:
所述目标上行信道的信道号(分别为CH_UL(k-N offset1)和CH_UL(k+N offset3))和所述目标下行信道的信道号(CH_DL(k))的差值的绝对值为所述第三信道号偏移(记为N offset3),如图12中的(b)所示。此情况下,可以认为目标上行信道的数量为一对。例如,终端设备在采用FSK调制方式调制反向散射信号时,可以将调制产生的一对反向散射信号映射到这一对目标下行信道上。
在一些实施例中,所述第三信道号偏移是预定义的,或者,是所述网络设备配置的。
作为示例,所述第三信道号偏移是所述网络设备通过所述第一下行信号配置的。例如,网络设备可以通过对第一下行信号进行调制以承载所述第三信道号偏移的信息。
实施例6:根据第一下行信号所对应的下行信道的频率位置确定目标上行信道的频率位置。
换言之,终端设备可以根据第一下行信号的频率位置,确定目标上行信道的频率位置。
在一些实施例中,终端设备根据第一下行信号所对应的下行信道,确定目标上行信道,可以包括:
根据第一下行信号所对应的下行信道的中心频点,确定所述目标上行信道的中心频点;和/或,
根据第一下行信号所对应的下行信道的信道带宽,确定所述目标上行信道的信道带宽。
可选地,在目标上行信道为初始上行信道的情况下,终端设备根据第一下行信号所对应的下行信道的频率位置确定目标上行信道的频率位置。
可选地,在目标上行信道为建立初始连接之后的上行信道的情况下,终端设备根据第一下行信号所对应的下行信道的频率位置确定目标上行信道的频率位置。
以下,结合实施例6-1和实施例6-2,说明所述目标上行信道和所述第一下行信号对应的下行信道的位置关系,所述目标上行信道和所述第一下行信号对应的下行信道也可以具有其他的位置关系,本申请并不限于此。
实施例6-1:所述目标上行信道与所述第一下行信号所对应的下行信道相同。
在一些实施例中,所述目标上行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标上行信道和所述第一下行信号所对应的下行信道的中心频点相同。
此情况下,所述目标上行信道的信道带宽可以是预定义的,或者是网络设备配置的。
例如,若所述目标上行信道为初始下行信道,可以根据预定义信息确定初始下行信道的信道带宽。
又例如,若所述目标上行信道为初始连接之后的下行信道,此情况下,可以根据预定义信息或者网络设备的下行信令确定该目标上行信道的信道带宽。
在另一些实施例中,所述目标上行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标上行信道和所述第一下行信号所对应的下行信道的中心频点相同,以及
所述目标上行信道和所述第一下行信号所对应的下行信道的信道带宽相同。
综上,终端设备可以将第一下行信号对应的下行信道的中心频点确定为目标上行信道的中心频点,根据预定义信息,或者,网络设备的下行信令,或者,第一下行信号所对应的下行信道的信道带宽确定目标上行信道的信道带宽。
实施例6-2:所述目标上行信道与所述第一下行信号所对应的下行信道具有第四频率间隔。
在一些实施例中,所述目标上行信道与所述第一下行信号所对应的下行信道具有第四频率间隔,包括:
所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点具有所述第四频率间隔。
在一些实施例中,所述目标上行信道和所述第一下行信号对应的下行信道的中心频点具有第四频率间隔可以指:
所述目标上行信道(记为CH_DL)的中心频点和所述第一下行信号对应的下行信道的中心频点的差值为所述第四频率间隔(记为F offset4),如图13中的(a)所示。此情况下,可以认为目标上行信道的数量为一个。例如,终端设备在采用ASK或PSK调制方式调制反向散射信号时,可以将调制产生的反向散射信号映射到这一个目标下行信道上。
在另一些实施例中,所述目标上行信道和所述第一下行信号对应的下行信道的中心频点具有第一频率间隔可以指:
所述目标上行信道(记为CH_DL)的中心频点和所述第一下行信号对应的下行信道的中心频点的差值的绝对值为所述第四频率间隔(记为F offset4),如图13中的(b)所示。此情况下,可以认为目标上行信道的数量为一对。例如,终端设备在采用FSK调制方式调制反向散射信号时,可以将调制产生的一对反向散射信号映射到这一对目标下行信道上。
在一些实施例中,所述第四频率间隔是预定义的,或者,是所述网络设备配置的。
作为示例,所述第四频率间隔是所述网络设备通过所述第一下行信号配置的。例如,网络设备可以通过对第一下行信号进行调制以承载所述第四频率间隔的信息。
作为示例,所述第四频率间隔是网络设备通过下行信令配置的。
在该实施例6-2中,所述目标上行信道的信道带宽可以是预定义的,或者,是网络设备配置的,或者,也可以根据所述第一下行信号对应的下行信道的信道带宽确定,例如,可以将第一下行信号对应的下行信道的信道带宽确定为目标上行信道的信道带宽。
实施例6-3:所述目标上行信道与所述目标下行信道的信道号具有第四信道号偏移。
在一些实施例中,预定义有多个上行信道,每个上行信道对应相应的中心频点和信道带宽,通过信道号标识每个上行信道。或者,预定义有多组上行信道,每组上行信道对应相应的中心频点和信道带宽,通过信道号标识每组上行信道。
在一些实施例中,所述目标上行信道和所述第一下行信号所对应的下行信道的信道号具有第四信道号偏移可以指:
所述目标上行信道(CH_UL(n+N offset4))的信道号和所述第一下行信号所对应的下行信道(CH_DL(n))的信道号的差值为所述第四信道号偏移(记为N offset4),如图14中的(a)所示。此情况下,可以认为目标上行信道的数量为一个。例如,终端设备在采用ASK或PSK调制方式调制反向散射信号时,可以将调制产生的反向散射信号映射到这一个目标下行信道上。
在另一些实施例中,所述目标上行信道和所述第一下行信号所对应的下行信道的信道号具有第四信道号偏移可以指:
所述目标上行信道(分别为(CH_UL(n+N offset4))和(CH_UL(n-N offset4)))的信道号和所述第一下行信号所对应的下行信道(CH_DL(n))的信道号的差值的绝对值为所述第四信道号偏移(记为N offset4),如图14中的(b)所示。此情况下,可以认为目标上行信道的数量为一对。例如,终端设备在采用FSK调制方式调制反向散射信号时,可以将调制产生的一对反向散射信号映射到这一对目标下行信道上。
在一些实施例中,所述第四信道号偏移是预定义的,或者,是所述网络设备配置的。
作为示例,所述第四信道号偏移是所述网络设备通过所述第一下行信号配置的。例如,网络设备可以通过对第一下行信号进行调制以承载所述第四信道号偏移的信息。
实施例7:根据所述终端设备的工作频段,确定目标上行信道的频率位置。
可选地,在目标上行信道为初始上行信道的情况下,终端设备根据终端设备的工作频段确定目标上行信道的频率位置。
可选地,在目标上行信道为初始连接之后的上行信道的情况下,终端设备根据终端设备的工作频段确定目标上行信道的频率位置。
在一些实施例中,终端设备可以将终端设备的工作频段的中心频点对应的上行信道确定为目标上行信道。
例如,系统部署有多个上行信道,每个上行信道对应相应的中心频点和信道带宽,若终端设备的工作频段的中心频点落入所述多个上行信道中的第一上行信道,则可以将该第一上行信道确定为目标上行信道。即可以将第一上行信道的中心频点和信道带宽确定为目标上行信道的中心频点和信道带宽。
在另一些实施例中,终端设备可以根据终端设备的工作频段的中心频点确定所述目标上行信道的中心频点。例如,将终端设备的工作频段的中心频点确定为目标上行信道的中心频点。
进一步地,终端设备可以根据预定义信息,或网络设备的下行信令确定目标上行信道的信道带宽。
例如,网络设备可以通过对第一下行信号进行调制以承载所述目标上行信道的信道带宽信息。
又例如,在网络设备和终端设备建立连接之后,网络设备可以通过数据信号或控制信号承载所述目标上行信道的信道带宽信息。
实施例8:根据网络设备的下行信令确定目标上行信道的频率位置。
可选地,在目标上行信道为初始连接之后的上行信道的情况下,终端设备根据网络设备的下行信 令确定目标上行信道的频率位置。
在一些实施例中,所述终端设备根据网络设备的下行信令确定目标上行信道的频率位置可以包括:
终端设备根据网络设备的下行信令确定目标上行信道的中心频点和/或信道带宽。
即,所述目标上行信道的中心频点和/或信道带宽可以是网络设备配置的。
例如,所述终端设备可以接收第二下行信令,根据第二下行信令确定目标上行信道的频率位置。
在一些实施例中,所述第二下行信令可以用于指示所述目标上行信道的信道号。
在一些实施例中,预定义有多个上行信道,每个上行信道对应相应的中心频点和信道带宽,通过信道号标识每个上行信道。或者,预定义有多组上行信道,每组上行信道对应相应的中心频点和信道带宽,通过信道号标识每组上行信道。此情况下,网络设备可以通过指示目标上行信道的信道号向终端设备指示目标上行信道的频率位置。
在另一些实施例中,所述第二下行信令可以用于指示所述目标上行信道的频率位置。
例如,所述第二下行信令用于指示所述目标上行信道的中心频点位置和/或信道带宽。
在又一些实施例中,所述第二下行信令用于指示第五频率间隔,所述第五频率可以是相对于特定下行信道的频率间隔,或者,相对于特定频点的频率间隔。
作为一个示例,所述第五频率间隔为所述目标上行信道相对于所述第一下行信号对应的下行信道的频率间隔。例如,所述第五频率间隔可以是目标上行信道的中心频点相对于第一下行信号对应的下行信道的中心频点的频率间隔,此情况下,终端设备可以根据第一下行信号对应的下行信道的中心频点和所述第五频率间隔,确定所述目标上行信道的中心频点位置。
作为另一示例,所述第五频率间隔为所述目标上行信道的中心频点相对于所述目标下行信道的中心频点的频率间隔。此情况下,终端设备可以根据目标下行信道的中心频点和所述第五频率间隔,确定所述目标上行信道的中心频点位置。
作为又一示例,所述第五频率间隔为所述目标上行信道的中心频点相对于所述终端设备的工作频段的中心频点的频率间隔。此情况下,终端设备可以根据终端设备的工作频段的中心频点和所述第五频率间隔,确定所述目标上行信道的中心频点位置。
在又一些实施例中,所述第二下行信令用于指示第五信道号偏移,所述第五信道号偏移用于指示所述目标上行信道的信道号相对于特定下行信道的信道号的偏移。可选地,所述特定下行信道可以为第一下行信号对应的下行信道,或者,所述目标下行信道。
在一些实施例中,在网络设备指示目标上行信道的信道带宽的情况下,终端设备可以将网络设备指示的信道带宽确定为目标上行信道的信道带宽。
在另一些实施例中,在网络设备未指示目标上行信道的信道带宽的情况下,终端设备可以根据预定义信息,或者第一下行信号对应的下行信道的信道带宽,或者,目标下行信道的信道带宽确定目标上行信道的信道带宽。
在一些实施例中,所述网络设备可以根据以下中的至少一项,确定目标上行信道的频率位置:
终端设备的类型,终端设备的业务类型,终端设备的标识ID,终端设备上报的第二能力信息。
在一些实施例中,所述第二能力信息用于指示所述终端设备支持的上行信道的信息,所述网络设备可以根据所述第二能力信息确定所述第二下行信令所指示的目标上行信道的频率位置。
在一些实施例中,所述终端设备支持的上行信道的信息包括以下中的至少一项:
所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
由于不同的终端设备支持的上行信道的情况可能不同,网络设备基于终端设备上报的第二能力信息指示目标上行信道的频率位置,有利于保证终端设备通过合适的上行信道与网络设备进行通信。
在一些实施例中,系统配置了多个上行信道,将不同类型的终端设备配置在不同的上行信道,即可以认为终端类型和上行信道具有对应关系,因此,网络设备可以基于终端设备的类型确定目标上行信道。
可选地,该终端设备的类型可以是基于终端设备的能量来源划分的。例如,将无源零功耗终端配置在上行信道L,将半无源终端配置在上行信道M,将有源零功耗终端配置在上行信道N等,其中,L,M和N为整数,表示上行信道的编号。
可选地,该终端设备的类型也可以是基于终端设备的第二能力信息划分的。通过将不同能力的终端配置在不同的上行信道上发送反射散射信号,有利于保证终端设备通过合适的上行信道与网络设备进行通信。
在一些实施例中,系统配置了多个上行信道,将具有不同UE ID的终端设备配置在不同的上行信道,即可以认为UE ID和上行信道具有对应关系,因此,可以基于终端设备的UE ID确定该终端设 备与网络设备进行通信所使用的目标上行信道。
可选地,对应同一上行信道的UE ID所对应的终端设备可以认为具有相同或相近的第二能力信息。
可选地,对应同一上行信道的UE ID所对应的终端设备可以认为是同一类型的终端设备,例如均为无源零功耗终端,或者半无源零功耗终端,或者有源零功耗终端等。
实施例9:终端设备根据预定义信息确定目标上行信道的频率位置。
可选地,在目标上行信道为初始上行信道的情况下,终端设备根据预定义信息确定目标上行信道的频率位置。
可选地,在目标上行信道为初始连接之后的上行信道的情况下,终端设备根据预定义信息确定目标上行信道的频率位置。
在一些实施例中,所述终端设备根据预定义信息确定目标上行信道的频率位置,可以包括:
终端设备根据预定义信息确定目标上行信道的中心频点和/或信道带宽。
即,所述目标上行信道的中心频点和/或信道带宽可以是预定义的。
在一些实施例中,根据预定义信息确定的上行信道的数量可以是一个或多个。
应理解,当未定义目标上行信道的中心频点信息时,终端设备可以根据前述所述的实施例5至实施例8中所述的方式确定目标上行信道的中心频点位置。当未定义目标上行信道的信道带宽信息时,终端设备也可以根据前述所述的实施例5至实施例8中所述的方式确定目标上行信道的信道带宽信息。
需要说明的是,以上目标下行信道的确定方式和目标上行信道的确定方式可以独立实施,或者,也可以结合实施,本申请对此不作限定。
例如,对于初始下行信道和初始上行信道,终端设备可以根据供能信号所对应的下行信道确定目标下行信道以及根据供能信号对应的下行信道确定目标上行信道,或者,根据预定义信息确定目标下行信道以及根据预定义信息确定目标上行信道。
又例如,对于初始连接之后的下行信道和上行信道,终端设备可以根据将初始下行信道确定为初始连接之后的下行信道,将初始上行信道确定为初始连接之后的上行信道,即在建立连接之后继续使用初始上行信道和初始下行信道进行通信。
再例如,对于初始连接之后的下行信道和上行信道,终端设备可以根据下行信令确定目标下行信道以及根据下行信令确定目标上行信道,有利于避免建立连接之后继续使用初始下行信道和初始上行信道进行通信导致初始下行信道和初始上行信道的负荷过高问题。
综合上述实施例,终端设备可以根据预设规则或下行信令确定用于接收下行信号的目标下行信道,对应地,网络设备也可以根据预设规则或下行信令的指示确定用于发送下行信号的目标下行信道,有利于保证终端设备通过合适的下行信道与网络设备之间的正常通信。
终端设备可以根据预设规则或下行信令确定用于发送反向散射信号的目标上行信道,对应地,网络设备也可以根据预设规则或下行信令确定用于接收反向散射信号的目标上行信道,有利于保证终端设备通过合适的上行信道与网络设备之间的正常通信。
上文结合图6至图14,从终端设备的角度详细描述了根据本申请实施例的无线通信的方法,下文结合图15,从网络设备的角度详细描述根据本申请另一实施例的无线通信的方法。应理解,网络设备侧的描述与终端设备侧的描述相互对应,相似的描述可以参见上文,为避免重复,此处不再赘述。
图15是根据本申请另一实施例的无线通信的方法300的示意性流程图,该方法300可以由图1所示的通信系统中的网络设备执行,如图15所示,该方法300包括如下内容:
S310,网络设备确定用于发送下行信号的目标下行信道,和/或,确定用于接收反向散射信号的目标上行信道。
应理解,该方法300中的终端设备、网络设备、下行信号、目标下行信道和目标上行信道的相关说明参见方法200中的相关描述,为了简洁,这里不再赘述。
在本申请一些实施例中,网络设备可以根据预设规则确定预设规则确定用于发送下行信号的目标下行信道,对应地,终端设备也可以根据预设规则确定用于接收下行信号的目标下行信道,进一步地,网络设备在该目标下行信道上发送下行信号,终端设备在该目标下行信道上接收下行信号,从而能够保证终端设备通过合适的下行信道和网络设备进行通信。
在一些实施例中,所述网络设备确定用于发送下行信号的目标下行信道,包括:
根据以下中的至少一项,确定用于发送下行信号的目标下行信道:
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
所述终端设备的工作频段;
预定义信息。
应理解,在该方法300中,网络设备根据第一下行信号对应的下行信道确定目标下行信道的频率位置的具体实现参考方法200中的实施例1中的相关描述,为了简洁,这里不再赘述。
应理解,在该方法300中,网络设备根据终端设备的工作频段确定目标下行信道的频率位置的具体实现参考方法200中的实施例2中的相关描述,为了简洁,这里不再赘述。
应理解,在该方法300中,网络设备根据终端设备的工作频段确定目标下行信道的频率位置的具体实现参考方法200中的实施例4中的相关描述,为了简洁,这里不再赘述。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
在一些实施例中,所述第一频率间隔是预定义的。
在一些实施例中,所述目标下行信道的位置是预定义的。
在一些实施例中,所述目标下行信道的位置是预定义的,包括:所述目标下行信道的中心频点位置是预定义的。
在一些实施例中,所述目标下行信道为所述终端设备的工作频段的中心频点所在的信道。
在本申请另一些实施例中,网络设备也可以向终端设备发送第一下行信令,用于终端设备确定目标下行信道的频率位置。该目标下行信道的频率位置是网络设备确定的,例如网络设备根据预设规则确定的。
应理解,所述第一下行信令的具体说明参考方法200中第一下行信令的相关说明,为了简洁,这里不再赘述。
在一些实施例中,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
在一些实施例中,所述目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
在一些实施例中,所述终端设备支持的下行信道的信息包括以下中的至少一项:
所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
在本申请一些实施例中,网络设备可以根据预设规则确定预设规则确定用于接收反向散射信号的目标上行信道,对应地,终端设备也可以根据预设规则确定用于发送反向散射信号的目标上行信道,进一步地,终端设备在该目标上行信道上发送反向散射信号,网络设备在该目标上行信道上接收反向散射信号,从而能够保证终端设备和网络设备之间的正常通信。
在一些实施例中,所述确定用于接收反向散射信号的目标上行信道,包括:
根据以下中的至少一项,确定用于接收反向散射信号的目标上行信道:
所述目标下行信道的频率位置;
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
所述终端设备的工作频段;
预定义信息。
应理解,在该方法300中,网络设备根据目标下行信道确定目标上行信道的频率位置的具体实现参考方法200中的实施例5中的相关描述,为了简洁,这里不再赘述。
应理解,在该方法300中,网络设备根据第一下行信号对应的下行信道确定目标上行信道的频率位置的具体实现参考方法200中的实施例6中的相关描述,为了简洁,这里不再赘述。
应理解,在该方法300中,网络设备根据终端设备的工作频段确定目标下行信道的频率位置的具体实现参考方法200中的实施例7中的相关描述,为了简洁,这里不再赘述。
应理解,在该方法300中,网络设备根据终端设备的工作频段确定目标下行信道的频率位置的具体实现参考方法200中的实施例9中的相关描述,为了简洁,这里不再赘述。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
在一些实施例中,所述第三频率间隔是预定义的。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
在一些实施例中,所述第四频率间隔是预定义的。
在本申请另一些实施例中,网络设备也可以向终端设备发送第二下行信令,用于终端设备确定目标上行信道的频率位置。该目标上行信道的频率位置是网络设备确定的,例如网络设备根据预设规则确定的。
应理解,所述第二下行信令的具体说明参考方法200中第二下行信令的相关说明,为了简洁,这里不再赘述。
在一些实施例中,所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能
在一些实施例中,所述目标上行信道的频率位置是所述网络设备根据以下信息中的至少一项确定的:
终端设备的类型,终端设备的业务类型,终端设备的标识ID,终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
在一些实施例中,所述终端设备支持的上行信道的信息包括以下中的至少一项:
所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
综合上述实施例,网络设备也可以根据预设规则或下行信令的指示确定用于发送下行信号的目标下行信道,对应地,终端设备可以根据预设规则或下行信令确定用于接收下行信号的目标下行信道,有利于保证终端设备通过合适的下行信道与网络设备之间的正常通信。
网络设备也可以根据预设规则或下行信令确定用于接收反向散射信号的目标上行信道,对应地,终端设备可以根据预设规则或下行信令确定用于发送反向散射信号的目标上行信道,有利于保证终端设备通过合适的上行信道与网络设备之间的正常通信。
图16是根据本申请另一实施例的无线通信的方法800的示意性流程图,如图16所示,该方法800包括如下内容:
S810,以第一频点为参考,部署多组上行信道,其中,每组上行信道包括相对于参考频点对称的一对上行信道,所述多组上行信道相对于所述第一频点具有不同的频率间隔。
应理解,该方法800可以由网络设备执行,或者,也可以由通信系统中的具有管理控制的实体执行,或者,也可以是预定义的上行信道的设计方式,本申请对此不作限定。
在一些实施例中,所述第一频点是用于反向散射的信号的中心频点。图10是该多组上行信道的一种示意图。
应理解,每组上行信道包括一对上行信道相对于参考频点对称,可以指这一对上行信道的中心频点相对于所述参考频点对称。
可选地,不同组的上行信道的信道带宽可以相同,或者也可以不同。
在一些实施例中,根据终端设备的类型部署所述多组上行信道。
在一些实施例中,根据终端设备的第二能力信息部署所述多组上行信道,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
在一些实施例中,所述终端设备支持的上行信道的信息包括以下中的至少一项:
所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
应理解,在一些实施例中,所述方法200以及方法300中的所述目标上行信道可以是在该多组上行信道中确定的。具体确定方式参考方法200、方法300中的相关描述,为了简洁,这里不再赘述。
上文结合图6至图16,详细描述了本申请的方法实施例,下文结合图16至图21,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图16示出了根据本申请实施例的终端设备400的示意性框图。如图16所示,该终端设备400包括:
处理单元410,用于确定用于接收下行信号的目标下行信道,和/或,确定用于发送反向散射信号的目标上行信道。
在一些实施例中,所述处理单元410具体用于:
根据以下中的至少一项,确定用于接收下行信号的目标下行信道:
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
所述终端设备的工作频段;
预定义信息;
网络设备的下行信令。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
在一些实施例中,所述第一频率间隔是预定义的,或者,是所述网络设备配置的。
在一些实施例中,所述第一频率间隔是所述网络设备通过所述第一下行信号配置的。
在一些实施例中,所述目标下行信道的位置是预定义的。
在一些实施例中,所述目标下行信道的位置是预定义的,包括:
所述目标下行信道的中心频点是预定义的。
在一些实施例中,所述目标下行信道为所述终端设备的工作频段的中心频点对应的信道。
在一些实施例中,所述网络设备发送的下行信令包括第一下行信令,所述第一下行信令用于指示所述目标下行信道的频率位置,或者,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于所述第一下行信号对应的下行信道的频率间隔。
在一些实施例中,所述第一下行信令所指示的目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
在一些实施例中,所述终端设备支持的下行信道的信息包括以下中的至少一项:
所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
在一些实施例中,所述目标下行信道的信道带宽是预定义的,或者,是由所述网络设备配置的,或者根据所述第一下行信号所对应的下行信道的信道带宽确定。
在一些实施例中,所述处理单元410还用于:
根据以下中的至少一项,确定用于发送反向散射信号的目标上行信道:
所述目标下行信道的频率位置;
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
网络设备的下行信令;
所述终端设备的工作频段;
预定义信息。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
在一些实施例中,所述第三频率间隔是预定义的,或者是所述网络设备配置的。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
在一些实施例中,所述第四频率间隔是预定义的,或者是所述网络设备配置的。
在一些实施例中,所述网络设备发送的下行信令包括第二下行信令,所述第二下行信令用于指示所述目标上行信道的频率位置,或者所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或所述第一下行信号对应的下行信道的频率间隔。
在一些实施例中,所述目标上行信道是所述网络设备根据以下信息中的至少一项确定的:
所述终端设备的类型,所述终端设备的业务类型,所述终端设备的标识ID,所述终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
在一些实施例中,所述终端设备支持的上行信道的信息包括以下中的至少一项:
所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
在一些实施例中,所述终端设备400还包括:
通信单元,用于在所述目标下行信道上接收第二下行信号。
在一些实施例中,所述终端设备400还包括:
通信单元,用于在所述目标上行信道上发送反向散射信号。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6至图14所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图18是根据本申请实施例的网络设备的示意性框图。图18的网络设备500包括:
处理单元510,用于确定用于发送下行信号的目标下行信道,和/或,确定用于接收反向散射信号的目标上行信道。
在一些实施例中,所述处理单元510还用于:
根据以下中的至少一项,确定用于发送下行信号的目标下行信道:
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
所述终端设备的工作频段;
预定义信息。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
在一些实施例中,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
在一些实施例中,所述第一频率间隔是预定义的。
在一些实施例中,所述目标下行信道的位置是预定义的。
在一些实施例中,所述目标下行信道的位置是预定义的,包括:
所述目标下行信道的中心频点位置是预定义的。
在一些实施例中,所述目标下行信道为所述终端设备的工作频段的中心频点所在的信道。
在一些实施例中,所述网络设备还包括:
通信单元,用于发送第一下行信令,所述第一下行信令用于确定所述目标下行信道的频率位置。
在一些实施例中,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
在一些实施例中,所述目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
在一些实施例中,所述终端设备支持的下行信道的信息包括以下中的至少一项:
所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
在一些实施例中,所述处理单元510还用于:
根据以下中的至少一项,确定用于接收反向散射信号的目标上行信道:
所述目标下行信道的频率位置;
第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
所述终端设备的工作频段;
预定义信息。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
在一些实施例中,所述第三频率间隔是预定义的。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
在一些实施例中,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
在一些实施例中,所述第四频率间隔是预定义的。
在一些实施例中,所述网络设备还包括:
通信单元,用于发送第二下行信令,所述第二下行信令用于确定所述目标上行信道的频率位置。
在一些实施例中,所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
在一些实施例中,所述目标上行信道的频率位置是所述网络设备根据以下信息中的至少一项确定的:
终端设备的类型,终端设备的业务类型,终端设备的标识ID,终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
在一些实施例中,所述终端设备支持的上行信道的信息包括以下中的至少一项:所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图6至图15所示方法中网络设备的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例提供的一种通信设备600示意性结构图。图19所示的通信设备600包括处 理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图19所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图13所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图20是本申请实施例的芯片的示意性结构图。图20所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图20所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图21是本申请实施例提供的一种通信系统900的示意性框图。如图21所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (130)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备确定用于接收下行信号的目标下行信道,和/或,确定用于发送反向散射信号的目标上行信道。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备确定用于接收下行信号的目标下行信道,包括:
    根据以下中的至少一项,确定用于接收下行信号的目标下行信道:
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
    所述终端设备的工作频段;
    预定义信息;
    网络设备的下行信令。
  3. 根据权利要求2所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
  4. 根据权利要求3所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
  5. 根据权利要求2所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
  6. 根据权利要求5所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一频率间隔是预定义的,或者,是所述网络设备配置的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一频率间隔是所述网络设备通过所述第一下行信号配置的。
  9. 根据权利要求2所述的方法,其特征在于,所述目标下行信道的位置是预定义的。
  10. 根据权利要求9所述的方法,其特征在于,所述目标下行信道的位置是预定义的,包括:所述目标下行信道的中心频点是预定义的。
  11. 根据权利要求2所述的方法,其特征在于,所述目标下行信道为所述终端设备的工作频段的中心频点对应的信道。
  12. 根据权利要求2所述的方法,其特征在于,所述网络设备发送的下行信令包括第一下行信令,所述第一下行信令用于指示所述目标下行信道的频率位置,或者,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于所述第一下行信号对应的下行信道的频率间隔。
  13. 根据权利要求12所述的方法,其特征在于,所述第一下行信令所指示的目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备支持的下行信道的信息包括以下中的至少一项:
    所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
  15. 根据权利要求2-14中任一项所述的方法,其特征在于,所述目标下行信道的信道带宽是预定义的,或者,是由所述网络设备配置的,或者根据所述第一下行信号所对应的下行信道的信道带宽确定。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述确定用于发送反向散射信号的目标上行信道,包括:
    根据以下中的至少一项,确定用于发送反向散射信号的目标上行信道:
    所述目标下行信道的频率位置;
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
    网络设备的下行信令;
    所述终端设备的工作频段;
    预定义信息。
  17. 根据权利要求16所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行 信道的频率位置相同。
  18. 根据权利要求17所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
  19. 根据权利要求16所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
  20. 根据权利要求19所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第三频率间隔是预定义的,或者是所述网络设备配置的。
  22. 根据权利要求17所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
  23. 根据权利要求22所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
    所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
  24. 根据权利要求16所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
  25. 根据权利要求24所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
    所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
  26. 根据权利要求24或25所述的方法,其特征在于,所述第四频率间隔是预定义的,或者是所述网络设备配置的。
  27. 根据权利要求16所述的方法,其特征在于,所述网络设备发送的下行信令包括第二下行信令,所述第二下行信令用于指示所述目标上行信道的频率位置,或者所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或所述第一下行信号对应的下行信道的频率间隔。
  28. 根据权利要求27所述的方法,其特征在于,所述目标上行信道是所述网络设备根据以下信息中的至少一项确定的:
    所述终端设备的类型,所述终端设备的业务类型,所述终端设备的标识ID,所述终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
  29. 根据权利要求28所述的方法,其特征在于,所述终端设备支持的上行信道的信息包括以下中的至少一项:
    所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
  30. 根据权利要求1-29中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述目标下行信道上接收第二下行信号。
  31. 根据权利要求1-30中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述目标上行信道上发送反向散射信号。
  32. 一种无线通信的方法,其特征在于,包括:
    网络设备确定用于发送下行信号的目标下行信道,和/或,确定用于接收反向散射信号的目标上行信道。
  33. 根据权利要求32所述的方法,其特征在于,所述网络设备确定用于发送下行信号的目标下行信道,包括:
    根据以下中的至少一项,确定用于发送下行信号的目标下行信道:
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
    所述终端设备的工作频段;
    预定义信息。
  34. 根据权利要求33所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
  35. 根据权利要求34所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
  36. 根据权利要求33所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
  37. 根据权利要求36所述的方法,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
  38. 根据权利要求36或37所述的方法,其特征在于,所述第一频率间隔是预定义的。
  39. 根据权利要求33所述的方法,其特征在于,所述目标下行信道的位置是预定义的。
  40. 根据权利要求39所述的方法,其特征在于,所述目标下行信道的位置是预定义的,包括:所述目标下行信道的中心频点位置是预定义的。
  41. 根据权利要求33所述的方法,其特征在于,所述目标下行信道为所述终端设备的工作频段的中心频点所在的信道。
  42. 根据权利要求32-41中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一下行信令,所述第一下行信令用于确定所述目标下行信道的频率位置。
  43. 根据权利要求42所述的方法,其特征在于,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
  44. 根据权利要求42或43所述的方法,其特征在于,所述目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
  45. 根据权利要求44所述的方法,其特征在于,所述终端设备支持的下行信道的信息包括以下中的至少一项:
    所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
  46. 根据权利要求32-45中任一项所述的方法,其特征在于,所述确定用于接收反向散射信号的目标上行信道,包括:
    根据以下中的至少一项,确定用于接收反向散射信号的目标上行信道:
    所述目标下行信道的频率位置;
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
    所述终端设备的工作频段;
    预定义信息。
  47. 根据权利要求46所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
  48. 根据权利要求47所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
  49. 根据权利要求46所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
  50. 根据权利要求49所述的方法,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
  51. 根据权利要求49或50所述的方法,其特征在于,所述第三频率间隔是预定义的。
  52. 根据权利要求46所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
  53. 根据权利要求52所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
    所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
  54. 根据权利要求46所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
  55. 根据权利要求54所述的方法,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
    所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
  56. 根据权利要求54或55所述的方法,其特征在于,所述第四频率间隔是预定义的。
  57. 根据权利要求32-56中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二下行信令,所述第二下行信令用于确定所述目标上行信道的频率位置。
  58. 根据权利要求57所述的方法,其特征在于,所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
  59. 根据权利要求57或58所述的方法,其特征在于,所述目标上行信道的频率位置是所述网络设备根据以下信息中的至少一项确定的:
    终端设备的类型,终端设备的业务类型,终端设备的标识ID,终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
  60. 根据权利要求59所述的方法,其特征在于,所述终端设备支持的上行信道的信息包括以下中的至少一项:
    所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
  61. 一种终端设备,其特征在于,包括:
    处理单元,用于确定用于接收下行信号的目标下行信道,和/或,确定用于发送反向散射信号的目标上行信道。
  62. 根据权利要求61所述的终端设备,其特征在于,所述处理单元具体用于:
    根据以下中的至少一项,确定用于接收下行信号的目标下行信道:
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
    所述终端设备的工作频段;
    预定义信息;
    网络设备的下行信令。
  63. 根据权利要求62所述的终端设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
  64. 根据权利要求63所述的终端设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
  65. 根据权利要求62所述的终端设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
  66. 根据权利要求65所述的终端设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
  67. 根据权利要求65或66所述的终端设备,其特征在于,所述第一频率间隔是预定义的,或者,是所述网络设备配置的。
  68. 根据权利要求67所述的终端设备,其特征在于,所述第一频率间隔是所述网络设备通过所述第一下行信号配置的。
  69. 根据权利要求62所述的终端设备,其特征在于,所述目标下行信道的位置是预定义的。
  70. 根据权利要求69所述的终端设备,其特征在于,所述目标下行信道的位置是预定义的,包括:所述目标下行信道的中心频点是预定义的。
  71. 根据权利要求62所述的终端设备,其特征在于,所述目标下行信道为所述终端设备的工作频段的中心频点对应的信道。
  72. 根据权利要求62所述的终端设备,其特征在于,所述网络设备发送的下行信令包括第一下行信令,所述第一下行信令用于指示所述目标下行信道的频率位置,或者,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于所述第一下行信号对应的下行信道的频率间隔。
  73. 根据权利要求72所述的终端设备,其特征在于,所述第一下行信令所指示的目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
  74. 根据权利要求73所述的终端设备,其特征在于,所述终端设备支持的下行信道的信息包括以下中的至少一项:
    所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
  75. 根据权利要求62-74中任一项所述的终端设备,其特征在于,所述目标下行信道的信道带宽是预定义的,或者,是由所述网络设备配置的,或者根据所述第一下行信号所对应的下行信道的信道 带宽确定。
  76. 根据权利要求61-75中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据以下中的至少一项,确定用于发送反向散射信号的目标上行信道:
    所述目标下行信道的频率位置;
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给所述终端设备供能;
    网络设备的下行信令;
    所述终端设备的工作频段;
    预定义信息。
  77. 根据权利要求76所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
  78. 根据权利要求77所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
  79. 根据权利要求76所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
  80. 根据权利要求79所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
  81. 根据权利要求79或80所述的终端设备,其特征在于,所述第三频率间隔是预定义的,或者是所述网络设备配置的。
  82. 根据权利要求77所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
  83. 根据权利要求82所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
    所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
  84. 根据权利要求76所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
  85. 根据权利要求84所述的终端设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
    所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
  86. 根据权利要求84或85所述的终端设备,其特征在于,所述第四频率间隔是预定义的,或者是所述网络设备配置的。
  87. 根据权利要求86所述的终端设备,其特征在于,所述网络设备发送的下行信令包括第二下行信令,所述第二下行信令用于指示所述目标上行信道的频率位置,或者所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或所述第一下行信号对应的下行信道的频率间隔。
  88. 根据权利要求87所述的终端设备,其特征在于,所述目标上行信道是所述网络设备根据以下信息中的至少一项确定的:
    所述终端设备的类型,所述终端设备的业务类型,所述终端设备的标识ID,所述终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
  89. 根据权利要求88所述的终端设备,其特征在于,所述终端设备支持的上行信道的信息包括以下中的至少一项:
    所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
  90. 根据权利要求61-89中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于在所述目标下行信道上接收第二下行信号。
  91. 根据权利要求61-90中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    通信单元,用于在所述目标上行信道上发送反向散射信号。
  92. 一种网络设备,其特征在于,包括:
    处理单元,用于确定用于发送下行信号的目标下行信道,和/或,确定用于接收反向散射信号的目标上行信道。
  93. 根据权利要求92所述的网络设备,其特征在于,所述处理单元还用于:
    根据以下中的至少一项,确定用于发送下行信号的目标下行信道:
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
    所述终端设备的工作频段;
    预定义信息。
  94. 根据权利要求93所述的网络设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同。
  95. 根据权利要求94所述的网络设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道相同,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点相同。
  96. 根据权利要求93所述的网络设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔。
  97. 根据权利要求96所述的网络设备,其特征在于,所述目标下行信道与所述第一下行信号所对应的下行信道具有第一频率间隔,包括:
    所述目标下行信道和所述第一下行信号所对应的下行信道的中心频点具有所述第一频率间隔。
  98. 根据权利要求96或97所述的网络设备,其特征在于,所述第一频率间隔是预定义的。
  99. 根据权利要求93所述的网络设备,其特征在于,所述目标下行信道的位置是预定义的。
  100. 根据权利要求99所述的网络设备,其特征在于,所述目标下行信道的位置是预定义的,包括:所述目标下行信道的中心频点位置是预定义的。
  101. 根据权利要求93所述的网络设备,其特征在于,所述目标下行信道为所述终端设备的工作频段的中心频点所在的信道。
  102. 根据权利要求32-41中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    通信单元,用于发送第一下行信令,所述第一下行信令用于确定所述目标下行信道的频率位置。
  103. 根据权利要求102所述的网络设备,其特征在于,所述第一下行信令用于指示第二频率间隔,其中,所述第二频率间隔为所述目标下行信道相对于第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
  104. 根据权利要求102或103所述的网络设备,其特征在于,所述目标下行信道的频率位置根据所述终端设备上报的第一能力信息确定,所述第一能力信息用于指示所述终端设备支持的下行信道的信息。
  105. 根据权利要求104所述的网络设备,其特征在于,所述终端设备支持的下行信道的信息包括以下中的至少一项:
    所述终端设备支持的下行信道的频率位置、信道带宽、信道数量。
  106. 根据权利要求92-105中任一项所述的网络设备,其特征在于,所述处理单元还用于:
    根据以下中的至少一项,确定用于接收反向散射信号的目标上行信道:
    所述目标下行信道的频率位置;
    第一下行信号所对应的下行信道,其中,所述第一下行信号用于给终端设备供能;
    所述终端设备的工作频段;
    预定义信息。
  107. 根据权利要求106所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同。
  108. 根据权利要求107所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置相同,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点相同。
  109. 根据权利要求106所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔。
  110. 根据权利要求109所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述目标下行信道的频率位置之间具有第三频率间隔,包括:
    所述目标上行信道的中心频点和所述目标下行信道的中心频点之间具有所述第三频率间隔。
  111. 根据权利要求109或110所述的网络设备,其特征在于,所述第三频率间隔是预定义的。
  112. 根据权利要求106所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置相同。
  113. 根据权利要求112所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道相同,包括:
    所述目标上行信道的中心频点和所述第一下行信号对应的下行信道的中心频点相同。
  114. 根据权利要求106所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔。
  115. 根据权利要求114所述的网络设备,其特征在于,所述目标上行信道的频率位置和所述第一下行信号所对应的下行信道的频率位置之间具有第四频率间隔,包括:
    所述目标上行信道的中心频点和所述第一下行信号所对应的下行信道的中心频点之间具有所述第四频率间隔。
  116. 根据权利要求114或115所述的网络设备,其特征在于,所述第四频率间隔是预定义的。
  117. 根据权利要求92-116中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    通信单元,用于发送第二下行信令,所述第二下行信令用于确定所述目标上行信道的频率位置。
  118. 根据权利要求117所述的网络设备,其特征在于,所述第二下行信令用于指示第五频率间隔,其中,所述第五频率间隔为所述目标上行信道相对于所述目标下行信道或第一下行信号对应的下行信道的频率间隔,所述第一下行信号用于给终端设备供能。
  119. 根据权利要求117或118所述的网络设备,其特征在于,所述目标上行信道的频率位置是所述网络设备根据以下信息中的至少一项确定的:
    终端设备的类型,终端设备的业务类型,终端设备的标识ID,终端设备上报的第二能力信息,所述第二能力信息用于指示所述终端设备支持的上行信道的信息。
  120. 根据权利要求119所述的网络设备,其特征在于,所述终端设备支持的上行信道的信息包括以下中的至少一项:所述终端设备支持的上行信道的频率位置、信道带宽、信道数量。
  121. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至31中任一项所述的方法,或者如权利要求22至32中任一项所述的方法。
  122. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至21中任一项所述的方法,或者如权利要求1至31中任一项所述的方法。
  123. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至31中任一项所述的方法,或者如权利要求1至31中任一项所述的方法。
  124. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至21中任一项所述的方法,或者如权利要求1至31中任一项所述的方法。
  125. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至31中任一项所述的方法,或者如权利要求22至32中任一项所述的方法。
  126. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求32至60中任一项所述的方法。
  127. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求32至60中任一项所述的方法。
  128. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求32至60中任一项所述的方法。
  129. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求32至60中任一项所述的方法。
  130. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求32至6032至60中任一项所述的方法。
PCT/CN2021/107412 2021-07-20 2021-07-20 无线通信的方法、终端设备和网络设备 WO2023000173A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/107412 WO2023000173A1 (zh) 2021-07-20 2021-07-20 无线通信的方法、终端设备和网络设备
CN202180100612.6A CN117652192A (zh) 2021-07-20 2021-07-20 无线通信的方法、终端设备和网络设备
EP21950438.8A EP4376519A1 (en) 2021-07-20 2021-07-20 Wireless communication method, terminal device and network device
US18/407,355 US20240155566A1 (en) 2021-07-20 2024-01-08 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107412 WO2023000173A1 (zh) 2021-07-20 2021-07-20 无线通信的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/407,355 Continuation US20240155566A1 (en) 2021-07-20 2024-01-08 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2023000173A1 true WO2023000173A1 (zh) 2023-01-26

Family

ID=84979800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107412 WO2023000173A1 (zh) 2021-07-20 2021-07-20 无线通信的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20240155566A1 (zh)
EP (1) EP4376519A1 (zh)
CN (1) CN117652192A (zh)
WO (1) WO2023000173A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN106961734A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 信息的传输方法及装置
CN109547183A (zh) * 2018-12-06 2019-03-29 电子科技大学 一种全双工环境反向散射通信系统、传输方法及资源分配方法
US10251159B1 (en) * 2014-07-30 2019-04-02 X Development Llc Remote storage over backscatter radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
US10251159B1 (en) * 2014-07-30 2019-04-02 X Development Llc Remote storage over backscatter radio
CN106961734A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 信息的传输方法及装置
CN109547183A (zh) * 2018-12-06 2019-03-29 电子科技大学 一种全双工环境反向散射通信系统、传输方法及资源分配方法

Also Published As

Publication number Publication date
EP4376519A1 (en) 2024-05-29
US20240155566A1 (en) 2024-05-09
CN117652192A (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2023122975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023015572A1 (zh) 无线通信的方法和设备
WO2023000173A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023272442A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023004714A1 (zh) 无线通信方法及设备
WO2023070260A1 (zh) 无线通信的方法及设备
WO2023065336A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023193192A1 (zh) 无线通信的方法及设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
EP4391661A1 (en) Wireless communication method, and device
WO2023193255A1 (zh) 无线通信的方法和设备
WO2023184534A1 (zh) 无线通信的方法及设备
US20240214957A1 (en) Wireless communication method, terminal device and network device
WO2023039754A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024007312A1 (zh) 无线通信的方法和终端设备
WO2023070453A1 (zh) 无线通信方法、第一设备和第二设备
WO2024026771A1 (zh) 接入认证的方法和设备
WO2023039709A1 (zh) 资源配置方法、网络设备和零功耗终端
WO2023044780A1 (zh) 无线通信方法及设备
WO2023279236A1 (zh) 无线通信的方法和设备
WO2023024073A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023225788A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024065700A1 (zh) 无线通信的方法和设备
WO2023060596A1 (zh) 信息指示方法、网络设备、终端、芯片和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100612.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021950438

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021950438

Country of ref document: EP

Effective date: 20240220