WO2023068890A1 - 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 - Google Patents

원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 Download PDF

Info

Publication number
WO2023068890A1
WO2023068890A1 PCT/KR2022/016200 KR2022016200W WO2023068890A1 WO 2023068890 A1 WO2023068890 A1 WO 2023068890A1 KR 2022016200 W KR2022016200 W KR 2022016200W WO 2023068890 A1 WO2023068890 A1 WO 2023068890A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
battery
cylindrical battery
electrode
tab
Prior art date
Application number
PCT/KR2022/016200
Other languages
English (en)
French (fr)
Inventor
임재원
최수지
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CA3235322A priority Critical patent/CA3235322A1/en
Priority to EP22884111.0A priority patent/EP4395026A1/en
Publication of WO2023068890A1 publication Critical patent/WO2023068890A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cylindrical battery, a battery pack including the cylindrical battery, and a vehicle.
  • the present invention relates to a cylindrical battery having a structure capable of preventing force from being concentrated on a welding part between parts even when an external shock or vibration is applied during use of the battery, and a battery pack including the same and a vehicle it's about
  • the present invention relates to an anode for an electrochemical device having improved electrochemical properties and an electrode assembly including the anode.
  • Secondary batteries which are highly applicable to each product group and have electrical characteristics such as high energy density, are used not only in portable devices but also in electric vehicles (EVs) and hybrid electric vehicles (HEVs) driven by electrical sources. It is universally applied.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • a battery pack is formed by connecting a plurality of batteries in series.
  • a battery pack is configured by connecting a plurality of batteries in parallel according to a charge/discharge capacity required for the battery pack. Accordingly, the number of batteries included in the battery pack and the type of electrical connection may be variously set according to a required output voltage and/or charge/discharge capacity.
  • a separator which is an insulator, is interposed between a positive electrode and a negative electrode, and the electrode assembly in the form of a jelly roll is formed by winding the separator, and the electrode assembly is inserted together with an electrolyte into the battery housing to form a battery.
  • strip-shaped electrode tabs may be connected to the uncoated portions of the positive electrode and the negative electrode, and the electrode tab electrically connects the electrode assembly and the electrode terminal exposed to the outside.
  • the positive electrode terminal is a cap plate of a sealing body sealing the opening of the battery housing
  • the negative electrode terminal is the battery housing.
  • a cylindrical battery having a structure in which the positive and negative uncoated regions are located at the upper and lower ends of the jelly roll type electrode assembly, and a current collecting plate is welded to the uncoated region to improve the current collection efficiency. (a so-called tab-less cylindrical battery) was presented.
  • FIG. 1 to 3 are views showing a manufacturing process of a tab-less cylindrical battery.
  • 1 shows the structure of an electrode
  • FIG. 2 shows a winding process of an electrode
  • FIG. 3 shows a process of welding a current collector plate to a bent surface of an uncoated portion
  • 4 is a cross-sectional view of the tab-less cylindrical battery cut in the longitudinal direction (Y).
  • the positive electrode 500 includes a positive electrode active material portion 520 in a positive electrode sheet 500S and a positive electrode uncoated portion 530 on one long side along a winding direction
  • the negative electrode 400 The negative electrode sheet 400S has a structure including the negative electrode active material portion 420 and the negative electrode uncoated portion 430 on one long side along the winding direction.
  • the electrode assembly 300 is manufactured by sequentially stacking the positive electrode 500 and the negative electrode 400 together with two sheets of the separator 600 as shown in FIG. 2 and then winding them in one direction (X). At this time, the uncoated portion 530 of the positive electrode 500 and the uncoated portion 430 of the negative electrode 400 are disposed in opposite directions.
  • the uncoated portion 530 of the positive electrode 500 and the uncoated portion 430 of the negative electrode 400 are bent toward the core. After that, the current collector plates 50 and 30 are welded and coupled to the uncoated portions 530 and 430 , respectively.
  • Electrode tabs are not coupled to the positive uncoated portion 530 and the negative uncoated portion 430, the current collector plates 50 and 30 are connected to external electrode terminals, and a current path winds the electrode assembly 300. Since it is formed with a large cross-sectional area along the axial direction (see arrow), it has the advantage of lowering the resistance of the battery. This is because resistance is inversely proportional to the cross-sectional area of the path through which current flows.
  • the conventional tab-less cylindrical battery 1 includes a battery housing 20 and a sealing body A as shown in FIG. 4 .
  • the sealing body (A) includes a cap plate (40), a sealing gasket (G1) and a connection plate (C1).
  • the sealing gasket G1 surrounds the edge of the cap plate 40 and is fixed by the crimping part 22 .
  • the electrode assembly 300 is fixed within the battery housing 20 by the beading part 21 to prevent vertical movement.
  • the positive terminal is the cap plate 40 of the sealing body (A) and the negative terminal is the battery housing 20.
  • the second collector plate 50 coupled to the uncoated portion 530 of the anode 500 is electrically connected to the connection plate C1 attached to the cap plate 40 through the strip-shaped lead L.
  • the first collector plate 30 coupled to the uncoated portion 430 of the negative electrode 400 is electrically connected to the bottom of the battery housing 20 .
  • the insulator S covers the second collector plate 50 to prevent a short circuit from being caused by contact between the battery housing 20 having a different polarity and the non-coated portion 530 of the positive electrode 500 .
  • a lead L in the form of a strip is used.
  • the lead L is separately attached to the second current collector 50 or manufactured integrally with the second current collector 50 .
  • the lead L is in the form of a strip having a thin thickness, a large amount of heat is generated when a rapid charging current flows because the cross-sectional area is small.
  • excessive heat generated in the lead L is transferred to the side of the electrode assembly 300 and causes the separation membrane 600 to shrink, thereby causing an internal short circuit, which is a major cause of thermal runaway.
  • the lid (L) also occupies a significant installation space within the battery housing (20). Therefore, the cylindrical battery 1 including the lead L has low space efficiency and thus has limitations in increasing energy density.
  • conventional cylindrical batteries generally have a structure in which a tab connecting an electrode assembly and an external terminal is welded to a foil of the electrode assembly.
  • a cylindrical battery having such a structure has a limited current path and has a very high self-resistance of the electrode assembly.
  • the application of the electrode assembly and the current collector plate of this new structure is more necessary for devices that require a battery pack having high output/high capacity, such as, for example, an electric vehicle.
  • a battery pack having such a large capacity and high output may include, for example, a cylindrical battery as a unit cell.
  • electrode tabs may be provided on both sides of the jelly roll to increase current collection efficiency, and current collector plates may be coupled to both sides of the jelly roll.
  • a positive electrode active material in the form of a single particle or quasi-single particle having a relatively large primary particle size has been developed.
  • the electrode was broken in a state where the porosity was not achieved to a target level, and there was a problem in that the resistance characteristics and charge/discharge efficiency of the lithium secondary battery were not good.
  • the present invention has been devised in consideration of the above problems, and an object of the present invention is to provide a current collector plate having a structure suitable for an electrode assembly having a low resistance structure and a cylindrical battery including the same.
  • an object of the present invention is to provide a current collector plate having a structure capable of improving the bonding strength of a coupling portion between the current collector plate and a battery housing, and a cylindrical battery including the same.
  • an object of the present invention is to provide a current collector having a structure capable of improving the energy density of a cylindrical battery and a cylindrical battery including the same.
  • the present invention provides a current collector having a structure capable of improving productivity by increasing the convenience of a welding process for electrically connecting a battery housing and a current collector plate in manufacturing a cylindrical battery, and a cylindrical battery including the same. aims to do
  • the shock and / or vibration can be dispersed without being concentrated in a specific area, thereby preventing damage to the joint between parts. do.
  • the present invention allows the current collector plate itself to perform the current blocking function without additional installation of a current blocking member, so that the current is quickly cut off when an overcurrent occurs due to a short circuit, etc., so that safety in battery use can be secured. It serves another purpose.
  • Another technical problem of the present invention is to provide an electrode that can implement excellent thermal stability, high electrical conductivity and high rolling characteristics by applying a single particle or quasi-single particle as a cathode active material, and an electrode assembly including the same.
  • Another technical problem of the present invention is to provide an electrode assembly with improved energy density by including a silicon-based negative electrode active material in the negative electrode.
  • Another technical problem of the present invention is to provide an electrode assembly in which the section of the cathode active material section is increased without worrying about precipitation of lithium.
  • Another technical problem of the present invention is to provide a cylindrical battery that can exhibit excellent thermal stability even when the volume of the battery increases due to an increase in form factor.
  • the present invention provides a cylindrical lithium secondary battery capable of exhibiting excellent thermal stability even when its volume increases.
  • a cylindrical battery according to an embodiment of the present invention for solving the above problems includes an electrode assembly including a first electrode tab and a second electrode tab; a battery housing accommodating the electrode assembly through an open portion formed at one side and electrically connected to the first electrode tab; A support portion disposed on one surface of the electrode assembly, at least one first tab coupling portion extending from the support portion and coupled to the first electrode tab, and extending from an end of the first tab coupling portion on the inner surface of the battery housing.
  • a first current collector plate including at least one housing coupling part coupled to the housing; An edge portion disposed on the other surface opposite to one surface of the electrode assembly, a second tab coupling portion extending inward from the edge portion and coupled to the second electrode tab, and spaced apart from the second tab coupling portion a second current collecting plate having a terminal coupling portion positioned thereon; a cap plate configured to seal an opening of the battery housing; and a battery terminal electrically connected to the second electrode tab by being coupled to the terminal coupling part.
  • the battery housing may include a beading portion formed at an end adjacent to the opening portion and press-fitted toward the inside.
  • the housing coupling part may be coupled to the beading part of the battery housing.
  • the housing coupling part may include a contact part coupled to the beading part of the battery housing; and a first connection portion connecting between the first tab coupling portion and the contact portion.
  • the cylindrical battery may include a sealing gasket provided between the battery housing and the cap plate.
  • the contact portion may be interposed and fixed between the beading portion of the battery housing and the sealing gasket.
  • a welding portion may be formed between the beading portion of the battery housing and the contact portion of the first current collector plate.
  • the first tab coupling part may be disposed inside a region having a circumference of the electrode assembly as a rim.
  • the cylindrical battery may include a plurality of first tab coupling parts and a plurality of housing coupling parts, respectively.
  • the first connection part may include at least one bending part whose extension direction is changed.
  • the contact portion may have an arc shape extending along the beading portion of the battery housing.
  • the first connection part may have an arc shape extending along the contact part.
  • the edge portion may have a rim shape with an empty center.
  • the second tab coupling portion and the terminal coupling portion may be electrically connected by the edge portion.
  • the terminal coupling part may be located in the center of the inner space of the rim part.
  • the second current collector plate may further include a second connection portion extending inwardly from the edge portion and connected to the terminal coupling portion.
  • At least a portion of the second connection portion may have a smaller width than that of the second tab coupling portion.
  • the second connection part may include a tapered part whose width gradually decreases in a direction from an inner surface of the edge part toward the terminal coupling part.
  • a plurality of second tab coupling parts may be provided.
  • the plurality of second tab coupling parts may be disposed at equal intervals from each other along an extending direction of the edge part.
  • Extension lengths of each of the plurality of second tab coupling parts may be formed to be the same as each other.
  • the terminal coupling portion may be disposed to be surrounded by a plurality of second tab coupling portions.
  • the second connection part is located between a pair of second tap-coupled parts adjacent to each other, and a distance from the second connection part to any one of the pair of second tap-coupled parts along the extension direction of the edge part is The distance from the second connection part to the other one of the pair of second tap coupling parts along the extending direction of the edge part may be the same.
  • the second connection unit may be provided in plurality.
  • Each of the plurality of second connection parts may be disposed between a pair of second tab coupling parts adjacent to each other.
  • the plurality of second connection parts may be disposed at equal intervals from each other along an extension direction of the edge part.
  • the second connection part may include a notching part formed to reduce a width of the second connection part.
  • the second connection portion may include a notching portion formed to reduce a width of the second connection portion, and the notching portion may be located closer to the tapered portion than the terminal coupling portion.
  • the terminal coupling part may be disposed at a position corresponding to a hole formed in the winding center of the jelly roll.
  • the second electrode tab may extend toward a closed portion positioned on the opposite side of the open portion of the battery housing.
  • the second tab coupling part may be coupled to a coupling surface formed by bending an end portion of the second electrode tab along a direction parallel to the second current collector plate.
  • the cap plate may be configured not to have a polarity because it is not connected to the electrode assembly.
  • the battery terminal may pass through a closed portion positioned on the opposite side of the open portion of the battery housing.
  • the cylindrical battery may further include an insulator interposed between the closure part and the second current collector plate.
  • the battery terminal may pass through the insulator and be coupled to the terminal coupling portion of the second current collecting plate.
  • the second collector plate is interposed between the battery housing closure of the cylindrical battery and the electrode assembly, and is coupled to one surface of the electrode assembly.
  • the second current collector may include an edge portion; a second tab coupling portion extending inwardly from the edge portion and coupled to an electrode tab of a second polarity provided in the electrode assembly; and a terminal coupling portion spaced apart from the second tab coupling portion.
  • the active material layer of the second electrode includes a positive electrode active material including a single particle, a quasi-single particle, or a combination thereof, and D min , which is a minimum particle size in a cumulative volume distribution of the positive electrode active material, is 1.0 ⁇ m or more;
  • D min which is a minimum particle size in a cumulative volume distribution of the positive electrode active material, is 1.0 ⁇ m or more;
  • the particle size D 50 when the volume cumulative amount is 50% may be 5.0 ⁇ m or less, and the maximum particle size D max appearing in the volume cumulative distribution of the positive electrode active material may be 12 ⁇ m to 17 ⁇ m. there is.
  • the cathode active material has a unimodal particle size distribution showing a single peak in a volume cumulative particle size distribution graph, and a particle size distribution (PSD) represented by the following formula may be 3 or less.
  • PSD particle size distribution
  • the single particle, quasi-single particle, or a combination thereof may be included in an amount of 95wt% to 100wt% based on the total weight of the positive electrode active material included in the active material layer of the second electrode.
  • the cathode active material may include a lithium nickel-based oxide containing 80 mol% or more of Ni based on the total number of moles of the transition metal.
  • the active material layer of the second electrode may have a porosity of 15% to 23%, and the active material layer of the second electrode may include flaky graphite in a weight ratio of 0.05wt% to 5wt%.
  • the active material layer of the second electrode may further include carbon nanotubes.
  • the active material layer of the first electrode may include a silicon-based negative active material and a carbon-based negative active material, and the silicon-based negative active material and the carbon-based negative active material may be included in a weight ratio of 1:99 to 20:80.
  • a battery pack according to an embodiment of the present invention includes the above-described cylindrical battery according to an embodiment of the present invention.
  • An automobile according to an embodiment of the present invention includes the battery pack according to an embodiment of the present invention as described above.
  • resistance can be greatly reduced in electrical connection between the electrode assembly and the battery housing.
  • the bonding strength of the coupling portion between the current collector plate and the battery housing can be improved.
  • the energy density of a cylindrical battery can be improved.
  • the convenience of a welding process for electrically connecting the battery housing and the current collector plate is increased, thereby improving productivity.
  • the shock and / or vibration can be dispersed without being concentrated on a specific part, so that damage occurs at the joint between parts can prevent it from happening.
  • the thermal stability of the battery can be further improved by including the positive electrode active material powder having D min of 1.0 ⁇ m or more in the positive electrode.
  • the positive electrode active material powder having D min of 1.0 ⁇ m or more in the positive electrode.
  • D min minimum particle size
  • the positive electrode includes a positive electrode active material powder in which D 50 , D max , and particle size distribution (PSD) are appropriately adjusted, thereby minimizing an increase in resistance due to application of single particles, Excellent capacitance and output characteristics can be realized.
  • D 50 , D max , and particle size distribution (PSD) are appropriately adjusted, thereby minimizing an increase in resistance due to application of single particles, Excellent capacitance and output characteristics can be realized.
  • the conductivity of the electrode may be improved by including a single-grain cathode active material coated with a conductive coating layer or by containing novel CNTs as a conductive material.
  • the flaky graphite is included in the cathode active material layer, when the cathode active material layer is rolled, the flaky graphite provides a sliding effect to the cathode active material to improve the rolling characteristics of the electrode, the electrode The porosity can be reduced to a target level. Accordingly, stability, initial resistance characteristics, and charge/discharge efficiency of the cylindrical battery are improved.
  • a higher energy density can be realized by including a silicon-based negative electrode active material having a large capacity in the negative electrode.
  • the loading reduction portion having a small loading amount of the cathode active material is included in the cathode, the section of the cathode active material portion may be increased without worrying about lithium precipitation.
  • 1 is a plan view showing the structure of an electrode used in a conventional tap-less cylindrical battery cell.
  • FIG. 2 is a view showing a winding process of an electrode assembly included in a conventional tab-less cylindrical battery cell.
  • FIG. 3 is a view showing a process of welding a current collector plate to a curved surface of an uncoated portion in the electrode assembly of FIG. 2 .
  • FIG. 4 is a cross-sectional view of a conventional tab-less cylindrical battery cell cut in a longitudinal direction (Y).
  • FIG. 5 is a view showing part of a longitudinal cross-sectional view of a cylindrical battery according to an embodiment of the present invention.
  • FIG. 6 is a view showing part of a longitudinal cross-sectional view of a cylindrical battery according to another embodiment of the present invention.
  • FIG. 7 is a view showing part of a longitudinal cross-sectional view of a cylindrical battery according to still another embodiment of the present invention.
  • FIG. 8 is a view for explaining a first collector plate included in the cylindrical battery of FIG. 7 .
  • FIG. 9 is a diagram for explaining a first current collector according to another embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a first current collecting plate according to still another embodiment of the present invention.
  • FIG. 11 is a perspective view illustrating a cylindrical battery and a bus bar for electrically connecting a plurality of cylindrical batteries according to an embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing an upper structure of a cylindrical battery according to an embodiment of the present invention.
  • FIG. 13 is a partial cross-sectional view showing a cylindrical battery according to an embodiment of the present invention.
  • FIG. 14 is a view showing the combination of the electrode assembly and the second current collector according to the present invention.
  • 15 to 18 are views illustrating various shapes of a second current collector according to an embodiment of the present invention.
  • 19 and 20 are views illustrating various forms of a second current collector according to another embodiment of the present invention.
  • 21 is a partial cross-sectional view showing a lower structure of a cylindrical battery according to an embodiment of the present invention.
  • FIG. 22 is a view showing a lower surface of a cylindrical battery according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram illustrating a battery pack according to an embodiment of the present invention.
  • FIG. 24 is a diagram showing a vehicle according to an embodiment of the present invention.
  • 26 is a scanning micrograph of a novel CNT according to an embodiment of the present invention.
  • 27 is a table showing a comparison of physical properties of reference CNTs and new CNTs.
  • 28 to 31 are graphs showing sheet resistance and high-temperature lifespan characteristics for each conductive material ratio when single-grain active material particles are applied as the positive electrode active material.
  • 33A is a SEM picture of the positive electrode active material used in Example 2-1 of the present invention.
  • 33B is a SEM picture of the positive electrode active material used in Example 2-2 of the present invention.
  • 33c is a SEM picture of the cathode active material used in Comparative Example 2-2 of the present invention.
  • 34A is a graph showing hot box test results of 4680 cells manufactured according to Example 1 of the present invention.
  • 34B is a graph showing hot box test results of 4680 cells manufactured according to Comparative Example 1 of the present invention.
  • 34C is a graph showing hot box test results of 4680 cells manufactured by Sample 1 of Example 2-1 and Comparative Example 2-1 of the present invention.
  • 34D is a graph showing hot box test results of 4680 cells manufactured by Samples 2 and 3 of Example 2-1, Samples 1 and 2 of Example 2-2, and Comparative Example 2-2 of the present invention.
  • 35A is a cross-sectional SEM image of an anode prepared in Example 2-1 of the present invention.
  • 35B is a cross-sectional SEM image of a positive electrode prepared in Comparative Example 2-1.
  • 36a is a graph showing the results of measuring resistance characteristics according to SOC while charging coin half cells including positive electrodes according to Examples 3-3, Comparative Example 3-1, and Comparative Example 3-2 of the present invention up to 4.2V; am.
  • 36B is a graph of capacity retention and resistance increase (DCIR increase) obtained through charge/discharge cycle experiments for 4680 cells according to Examples 3-1, 3-3, and Comparative Example 3-1 of the present invention. It is a graph showing the measurement result.
  • FIG. 37 is a view showing an electrode assembly according to an embodiment of the present invention.
  • FIG. 38 is a cross-sectional view showing a cross section taken along the cutting line A-A' of FIG. 37;
  • 39 and 40 are diagrams illustrating a process of manufacturing an anode according to an embodiment of the present invention.
  • 41 is a perspective view showing a negative electrode according to an embodiment of the present invention.
  • 42 and 43 are diagrams illustrating a process of manufacturing an anode according to an embodiment of the present invention.
  • 44 is a perspective view showing an anode according to an embodiment of the present invention.
  • 45 is a view showing an electrode assembly according to a comparative example of the present invention.
  • 46 is a cross-sectional view showing a cross section taken along the cutting line BB' of FIG. 45;
  • 47 is a view showing a process of manufacturing a negative electrode according to a comparative example of the present invention.
  • FIG. 48 is a view showing a process of manufacturing a positive electrode according to a comparative example of the present invention.
  • FIG. 49 is a graph showing changes in energy density according to the content of the silicon-based negative active material and the presence or absence of doping of the silicon-based negative active material in a battery using a mixture of a silicon-based negative active material and a carbon-based negative active material as the negative electrode active material.
  • a part such as a layer, film, region, plate, etc. is said to be “on” or “on” another part, this includes not only the case where it is “directly on” the other part, but also the case where there is another part in the middle. . Conversely, when a part is said to be “directly on” another part, it means that there is no other part in between.
  • a reference part means to be located above or below the reference part, and to necessarily be located “on” or “on” in the opposite direction of gravity does not mean no.
  • planar image it means when the target part is viewed from above, and when it is referred to as “cross-sectional image”, it means when a cross section of the target part cut vertically is viewed from the side.
  • a cylindrical battery 1 includes an electrode assembly 300, a battery housing 20, a first collector plate 30, a cap plate 40, and a battery terminal 60. ).
  • the cylindrical battery 1 may further include a sealing gasket G1 and/or an insulating gasket G2 and/or a second current collector 50 and/or an insulator S.
  • the electrode assembly 300 includes a first electrode tab 11 and a second electrode tab 12 .
  • the electrode assembly 300 includes a first electrode having a first polarity, a second electrode having a second polarity, and a separator interposed between the first electrode and the second electrode.
  • the first electrode is a cathode or an anode
  • the second electrode corresponds to an electrode having a polarity opposite to that of the first electrode.
  • the electrode assembly 300 may be manufactured by winding a laminate formed by sequentially stacking a first electrode, a separator, a second electrode, and a separator at least once. That is, the electrode assembly 300 applied to the present invention may be a jelly-roll type electrode assembly.
  • the jelly-roll type electrode assembly 300 has a winding center hole H1 formed at its center and extending along a height direction (a direction parallel to the height direction of the cylindrical battery 1 shown in FIG. 5). can be provided Meanwhile, an additional separator may be provided on the outer circumferential surface of the electrode assembly 300 for insulation from the battery housing 20 .
  • the first electrode includes a first electrode current collector and a first electrode active material layer applied on one or both surfaces of the first electrode current collector. At one end of the first electrode current collector in the width direction (a direction parallel to the height direction of the cylindrical battery 1 shown in FIG. 5 ), there is a non-coated portion to which the first electrode active material is not coated.
  • the first electrode uncoated portion has a shape extending from one end to the other end along the longitudinal direction of the first electrode when viewed from the unfolded state of the first electrode.
  • the first electrode uncoated portion functions as the first electrode tab 11 as described above.
  • the first electrode tab 11 is provided above the electrode assembly 300 accommodated in the battery housing 20 in the height direction (a direction parallel to the height direction of the cylindrical battery 1 shown in FIG. 5).
  • the first electrode tab 11 may be, for example, a negative electrode tab.
  • the second electrode includes a second electrode current collector and a second electrode active material layer applied on one or both surfaces of the second electrode current collector. At the other end of the second electrode collector in the width direction (a direction parallel to the height direction of the cylindrical battery 1 shown in FIG. 5 ), there is a non-coated portion to which the second electrode active material is not applied.
  • the second electrode uncoated portion has a shape extending from one end to the other end along the longitudinal direction of the second electrode when viewed from the unfolded state of the second electrode.
  • the second electrode uncoated portion functions as the second electrode tab 12 as described above.
  • the second electrode tab 12 is provided below the electrode assembly 300 accommodated in the battery housing 20 in the height direction.
  • the second electrode tab 12 may be, for example, a positive electrode tab.
  • first electrode tab 11 and the second electrode tab 12 extend and protrude in opposite directions along the height direction of the cylindrical battery 1 .
  • the present invention is not limited to this form of the electrode assembly 300.
  • the battery housing 20 is a substantially cylindrical receptor having an open portion formed on one side thereof, and is made of a conductive metal material.
  • a side surface of the battery housing 20 and a lower surface (lower surface with reference to FIG. 5 ) located on the opposite side of the opening may be integrally formed. That is, the battery housing 20 may have an open upper end and a closed lower end in the height direction.
  • a lower surface of the battery housing 20 may have a substantially flat shape.
  • the battery housing 20 accommodates the electrode assembly 300 through an opening formed on one side in the height direction thereof.
  • the battery housing 20 may also accommodate electrolyte through the opening.
  • the present invention is not limited to this form of the battery housing 20.
  • the battery housing 20 is electrically connected to the electrode assembly 300 .
  • the battery housing 20 is connected to the first electrode tab 11 of the electrode assembly 300 . Accordingly, the battery housing 20 has the same polarity as the first electrode tab 11 electrically.
  • the battery housing 20 may include a beading portion 21 formed at an end adjacent to the opening portion and press-fitted toward the inside.
  • the battery housing 20 may have a beading portion 21 formed at an upper end.
  • the battery housing 20 may further include a crimping portion 22 formed above the beading portion 21 .
  • the beading part 21 has a shape in which the circumference of the outer circumferential surface of the battery housing 20 is press-fitted to a predetermined depth.
  • the beading part 21 is formed on the upper part of the electrode assembly 300 .
  • the inner diameter of the battery housing 20 in the area where the beading part 21 is formed is smaller than the diameter of the electrode assembly 300 .
  • the beading part 21 provides a support surface on which the cap plate 40 can be seated.
  • the beading part 21 may provide a support surface on which at least a part of the edge circumference of the first current collector plate 30, which will be described later, can be seated and coupled. That is, at least a part of the periphery of the first current collector 30 and/or the periphery of the cap plate 40 may be seated on the upper surface of the beading part 21 .
  • the beading portion 21 At least a portion of the upper surface may extend along a direction substantially parallel to the lower surface of the battery housing 20 , that is, along a direction substantially perpendicular to the sidewall of the battery housing 20 .
  • the crimping part 22 is formed on the upper part of the beading part 21 .
  • the crimping part 22 has an extended and bent shape to surround the periphery of the cap plate 40 disposed above the beading part 21 . Due to the shape of the crimping portion 22 , the cap plate 40 is fixed on the beading portion 21 .
  • the first collector plate 30 according to an embodiment of the present invention is accommodated inside the battery housing 20, is electrically connected to the electrode assembly 300, and also the battery housing ( 20) is electrically connected. That is, the first collector plate 30 electrically connects the electrode assembly 300 and the battery housing 20 to each other.
  • the first current collector plate 30 includes a support portion 31 disposed on one surface of the electrode assembly 300 and at least one first tab coupling extending from the support portion 31 and coupled to the first electrode tab 11. portion 32 and at least one housing coupling portion 33 extending from the end of the first tab coupling portion 32 and coupled to the inner surface of the battery housing 20 and located within the battery housing.
  • the support part 31 and the at least one first tab coupling part 32 are disposed on the electrode assembly 300, and in the case where the beading part 21 is formed in the battery housing 20, the beading part 21 ) may be located lower than
  • the support part 31 may have a first collector plate hole H2 formed at a position corresponding to the winding hole H1 formed at the approximate center of the electrode assembly 300 .
  • the winding hole H1 and the first collector plate hole H2 communicating with each other are welded between the battery terminal 60 and the second collector plate 50 or between the battery terminal 60 and a lead tab (not shown), which will be described later. It can function as a passage for insertion of a welding rod for welding or irradiation of a laser.
  • the support part 31 may have a substantially circular plate shape.
  • the support part 31 may have a ring-shaped plate shape having a first current collector hole H2 at its center.
  • the at least one first tab coupling part 32 may have a shape extending substantially radially from the support part 31 toward the sidewall of the battery housing 20 .
  • the first tab coupling part 32 may be provided in plural numbers, for example.
  • each of the plurality of first tab coupling parts 32 may be spaced apart from each other along the circumference of the support part 31 .
  • the bonding area with the first electrode tab 11 can be increased. Accordingly, bonding force between the first electrode tab 11 and the first tab coupling part 32 may be secured and electrical resistance may be reduced.
  • An end of the first tab coupling part 32 in the longitudinal direction may be positioned further inside than an innermost part of the beading part 21 formed in the battery housing 20 . More specifically, the boundary area between the first tab coupling portion 32 and the housing coupling portion 33 is directed toward the winding hole H1 rather than the innermost portion of the beading portion 21 formed on the battery housing 20. can be located further inside. According to this structure, damage to the joint between parts that may occur due to excessive bending of the first collector plate 30 to place the end of the housing coupling portion 33 on the beading portion 21 is prevented. can do.
  • the first tab coupling part 32 not only the first tab coupling part 32 but also the support part 31 is provided with the first electrode. It can also be combined with the tab (11).
  • An end of the first electrode tab 11 may be formed in a bent shape parallel to the first tab coupling part 32 . In this way, when the end of the first electrode tab 11 is formed and coupled to the first tab coupling portion 32 in parallel with the first tab coupling portion 32, the bonding area is increased to improve bonding force and reduce electrical resistance. can be obtained, and the energy density improvement effect can be obtained by minimizing the total height of the electrode assembly 300.
  • the housing coupling portion 33 may extend from an end of the first tab coupling portion 32 and be coupled to an inner surface of the battery housing 20 .
  • the housing coupling part 33 may have a shape extending from the end of the first tab coupling part 32 toward the sidewall of the battery housing 20 .
  • the housing coupling part 33 may be provided in plural numbers, for example.
  • each of the plurality of housing coupling parts 33 may be spaced apart from each other along the circumference of the support part 31 .
  • the housing coupling part 33 may be coupled to the beading part 21 of the inner surface of the battery housing 20 . As shown in FIGS.
  • the upper surface of the beading part 21 has a form extending in a direction substantially parallel to the lower surface of the battery housing 20, that is, in a direction substantially perpendicular to the sidewall of the battery housing 20, and the housing
  • the coupling part 33 also has a shape extending along the same direction, so that the housing coupling part 33 can stably contact the beading part 21 .
  • welding between the two components can be performed smoothly, thereby improving the coupling force between the two components and minimizing the increase in resistance at the coupling portion. You can get it.
  • the first collector plate 30 is coupled to the beading portion 21 of the battery housing 20 instead of the inner surface of the cylindrical portion of the battery housing 20, the first collector plate 30 The distance between the beading part 21 may be reduced. Thus, the dead space inside the battery housing 20 is minimized, and the energy density of the cylindrical battery 1 can be improved.
  • the housing coupling portion 33 connects the contact portion 33a coupled to the inner surface of the battery housing 20 and the first tab coupling portion 32 and the contact portion 33a. It includes a first connection portion (33b) to.
  • the contact portion 33a is coupled to the inner surface of the battery housing 20 .
  • the contact part 33a may be coupled to the beading part 21 as described above.
  • both the beading portion 21 and the contact portion 33a are aligned in a direction substantially parallel to the lower surface of the battery housing 20, that is, substantially perpendicular to the sidewall of the battery housing 20, for stable contact and coupling. It may have an elongated shape along the direction.
  • the first connection portion 33b may include at least one bending portion B whose extension direction is switched between the support portion 31 and the contact portion 33a. That is, the first connection portion 33b may have a spring-like structure or a bellows-like structure capable of contraction and extension within a certain range, for example.
  • the structure of the first connection portion 33b accommodates the electrode assembly 300 to which the first collector plate 30 is coupled within the battery housing 20 even though there is a height distribution of the electrode assembly 300 within a certain range. In the process of doing so, the contact portion 33a is brought into close contact with the beading portion 21.
  • the vertical distance D between the contact portion 33a and the support portion 31 in a state in which no external force is applied to the first current collector 30 and no deformation occurs, 30) is the same as the distance in the vertical direction between the upper surface of the beading part 21 and the support part 31 when the electrode assembly 300 in a coupled state is seated in the battery housing 20, or the distance of the first connection part 33b It is preferable to form smaller within the stretchable range.
  • the contact portion 33a is a beading portion. (21) It can be naturally adhered to.
  • the structure capable of contraction and extension of the first connection portion 33b is constant even when the electrode assembly 300 moves up and down due to vibration and/or shock during use of the cylindrical battery 1 (see FIG. 5). Within the range, the shock caused by the movement of the electrode assembly 300 is alleviated.
  • the bending portion B may protrude in a direction toward the winding center of the electrode assembly 300, unlike shown in the drawings. there is.
  • the bending direction of the first connection portion 33b is the joint between the first collector plate 30 and the electrode assembly 300 and/or the first collector plate 30 and the battery housing ( This is to prevent damage to the binding site of 20).
  • the sizing process is a compression process for reducing the height occupied by the beading portion 21 area of the battery housing 20 in order to reduce the total height of the cylindrical battery 1 in manufacturing the cylindrical battery 1. .
  • the bending portion (B) As a result of checking whether or not the bending portion (B) is formed and the degree of damage to the welded portion after the sizing process by changing the protruding direction of the bending portion (B), the bending portion (B) is directed toward the center of the cylindrical battery (1) It was confirmed that almost no damage occurs in the cylindrical battery 1 having a structure in which the first connector 33b is bent so as to protrude.
  • the first collector plate 30 according to another embodiment of the present invention has a difference in the shape of the contact portion 33a compared to the first collector plate 30 of FIG. 8 described above, and the others are described above.
  • the structure of the first current collector 30 may be substantially the same.
  • the contact portion 33a may extend along the inner circumferential surface of the battery housing 20 .
  • the contact portion 33a may have an arc shape extending along the beading portion 21 .
  • the first collector plate 30 in order to maximize the contact area, the first collector plate 30, the sum of the extended lengths of the contact portions 33a of each of the at least one housing coupling portion 33 is the battery housing. It may be configured to be approximately the same as the inner circumference of (20). Accordingly, it is possible to have an effect of improving bonding force and reducing electrical resistance due to maximization of bonding area.
  • a first collector plate 30 according to another embodiment of the present invention is shown.
  • the first collector plate 30 according to another embodiment of the present invention is different from the first collector plate 30 of FIG. 9 only in the shape of the first connector 33b, except for the above
  • the described structure of the first collector plate 30 may be applied in substantially the same way.
  • the first connection portion 33b may extend along the inner circumferential surface of the battery housing 20 .
  • the contact portion 33a may have an arc shape extending along the battery housing beading portion 21, and the first connection portion 33b may have an arc shape extending along the contact portion 33a.
  • the first current collector 30 may not have a bending portion B unlike the first current collector 30 shown in FIG. 8 or 9 . In this way, when the bending portion B is not provided, raw materials required for manufacturing the first current collector 30 can be reduced. Accordingly, the manufacturing cost of the first current collector 30 can be saved.
  • the first current collector 30 may have a plurality of irregularities (not shown) formed radially on a surface facing the first electrode tab 11 . When the unevenness is formed, the first current collector plate 30 may be pressed to press-fit the unevenness into the first electrode tab 11 . Ends of the first collector plate 30 and the first electrode tab 11 may be joined by welding, for example, laser welding.
  • the cap plate 40 covers the opening formed on one side of the battery housing 20 .
  • the cap plate 40 may be seated on the beading part 21 formed in the battery housing 20 .
  • the cap plate 40 may be fixed by the crimping portion 22 .
  • a sealing gasket G1 may be interposed between the battery housing 20 and the cap plate 40 to improve fixing force and sealing of the battery housing 20 .
  • the cap plate 40 is not a part that should function as a passage of current.
  • the sealing gasket G1 Application is not essential.
  • the battery housing 20 of the present invention may not have the beading part 21 and/or the crimping part 22, in which case the airtight gasket G1 is the battery housing 20 It may be interposed between the cap plate 40 and a structure for fixing provided on the open side of the battery housing 20 to ensure airtightness.
  • the cap plate 40 may be made of, for example, a metal material to secure rigidity.
  • the cap plate 40 may not have a polarity even if it is made of a conductive metal material. Having no polarity may mean that the cap plate 40 is electrically insulated from the battery housing 20 and the battery terminal 60 to be described below. Accordingly, the cap plate 40 does not function as a positive or negative terminal. Accordingly, the cap plate 40 does not need to be electrically connected to the electrode assembly 300 and the battery housing 20, and the material does not necessarily have to be a conductive metal.
  • the sealing gasket G1 may have a substantially ring shape surrounding the cap plate 40 .
  • the sealing gasket G1 may simultaneously cover the upper, lower and side surfaces of the cap plate 40 .
  • the radial length of the part covering the lower surface of the cap plate 40 is greater than the radial length of the part of the sealing gasket G1 that covers the upper surface of the cap plate 40.
  • the sealing gasket G1 covering the lower surface of the cap plate 40 can be less than or equal to If the radial length of a portion of the sealing gasket G1 covering the lower surface of the cap plate 40 is excessively long, the sealing gasket G1 may be damaged by the first collector plate ( 30), there is a possibility that the first collector plate 30 may be damaged or the battery housing 20 may be damaged. Accordingly, it is necessary to keep the radial length of the portion of the sealing gasket G1 covering the lower surface of the cap plate 40 small at a certain level. For example, as shown in FIG. 5 , the radial length of a portion of the sealing gasket G1 covering the lower surface of the cap plate 40 extends beyond the upper surface of the cap plate 40 among the portions of the sealing gasket G1. It may be formed smaller than the radial length of the area to be covered.
  • the radial length of the portion of the sealing gasket G1 covering the lower surface of the cap plate 40 is the upper surface of the cap plate 40 among the portions of the sealing gasket G1. It may be the same as the radial length of the region covering the .
  • the contact portion 33a may be interposed and fixed between the beading portion 21 and the sealing gasket G1. That is, the contact portion 33a may be fixed due to the crimping force of the crimping portion 22 while the contact portion 33a is interposed between the beading portion 21 and the sealing gasket G1.
  • a welding portion may be formed between the beading portion 21 and the contact portion 33a.
  • the fixation of the contact portion 33a may not be achieved with only crimping force.
  • the sealing gasket G1 is shrunk by heat or the crimping portion 22 is deformed due to an external impact, there is a possibility that the bonding force between the current collector plate and the battery housing 20 is reduced.
  • the first current collector plate 30 may be fixed to the battery housing 20 through welding while the contact portion 33a is placed on the beading portion 21 .
  • the cylindrical battery 1 may be completed by placing a cap plate covered by the sealing gasket G1 on the top of the contact portion 33a and forming the crimping portion 22 .
  • a welding method for example, laser welding, resistance welding, ultrasonic welding, etc. are possible, but the welding method is not limited thereto.
  • the cap plate 40 may include a venting portion 41 formed to prevent an increase in internal pressure due to gas generated inside the battery housing 20 .
  • the venting portion 41 is formed on a part of the cap plate 40 and corresponds to an area structurally weaker than the surrounding area so that it can be easily broken when internal pressure is applied.
  • the venting part 41 may be a region having a thinner thickness than the peripheral region. Therefore, when an abnormality occurs in the cylindrical battery 1 and the internal pressure of the battery housing 20 increases to a certain level or more, the venting part 41 is broken and the gas generated inside the battery housing 20 is discharged. It can be.
  • the venting portion 41 may be formed by partially reducing the thickness of the battery housing 20 by notching one side or both sides of the cap plate 40 , for example.
  • the battery terminal 60 is electrically connected to the second electrode tab 12 .
  • the battery terminal 60 may be electrically connected to the second electrode tab 12 of the electrode assembly 300 by penetrating the battery housing 20 on the opposite side of the open portion of the battery housing 20 .
  • the battery terminal 60 may pass through a substantially central portion of a lower surface of the battery housing 20 .
  • the battery terminal 60 may include a terminal exposed portion 60a and a terminal inserted portion 60b.
  • the terminal exposed portion 60a is exposed to the outside of the closed surface of the battery housing 20 .
  • the terminal exposed portion 60a may be positioned approximately at the center of the closed surface of the battery housing 20 .
  • the maximum diameter of the terminal exposed portion 60a may be greater than the maximum diameter of the through hole formed in the battery housing 20 .
  • the terminal insertion portion 60b may be electrically connected to the second electrode tab 12 through a substantially central portion of the closed surface of the battery housing 20 .
  • the terminal insertion portion 60b may be rivet-coupled on the inner surface of the battery housing 20 . That is, an end of the terminal insertion portion 60b may have a curved shape toward the inner surface of the battery housing 20 .
  • the maximum diameter of the end of the terminal insertion portion 60b may be greater than the maximum diameter of the through hole of the battery housing 20 .
  • a portion of the battery terminal 60 may be exposed to the outside of the battery housing 20 and the remaining portion may be located inside the battery housing 20 .
  • the battery terminal 60 is, for example, coupled to the second current collector plate 50 coupled to the second electrode tab 12, which will be described later, or a lead tab (not shown) coupled to the second electrode tab 12. By being coupled with, it can be electrically connected to the electrode assembly 300.
  • An inner surface of the terminal insertion portion 60b may be welded to the second current collector plate 50 connected to the second electrode tab 12 .
  • An insulator S which will be described later, may be interposed between the second collector plate 50 and the inner surface of the battery housing 20 .
  • the battery terminal 60 must maintain an insulated state from the battery housing 20 having a polarity opposite thereto.
  • an insulating gasket G2 may be applied between the battery terminal 60 and the battery housing 20 .
  • insulation may be realized by coating a portion of the surface of the battery terminal 60 with an insulating material.
  • the battery terminals 60 and the battery housing 20 may be arranged in a spaced apart state so that contact is impossible, but a method of structurally firmly fixing the battery terminals 60 may be applied.
  • a plurality of methods among the methods described above may be applied together.
  • the insulating gasket G2 includes a gasket exposed portion G2a and a gasket inserted portion G2b.
  • the gasket exposed portion G2a is interposed between the terminal exposed portion 60a of the battery terminal 60 and the battery housing 20 .
  • the gasket insertion portion G2b is interposed between the terminal insertion portion 60b of the rivet terminal 60 and the battery housing 20 .
  • the gasket inserting portion G2b may be deformed together during riveting of the terminal inserting portion 60b and come into close contact with the inner surface of the battery housing 20 .
  • the insulating gasket G2 may be made of, for example, a polymer resin having insulating properties.
  • the gasket exposed portion G2a of the insulating gasket G2 may have an extended shape to cover the outer circumferential surface of the terminal exposed portion 60a of the rivet terminal 60 .
  • a short circuit occurs in the process of coupling an electrical connecting component such as a bus bar to the outer surface of the battery housing 20 and/or to the rivet terminal 60. can prevent it from happening.
  • the gasket exposed portion G2a may have an extended shape to cover not only the outer circumferential surface of the terminal exposed portion 60a but also a part of the outer circumferential surface thereof.
  • the insulating gasket G2 may be coupled to the battery housing 20 and the battery terminal 60 by thermal fusion. In this case, airtightness at the bonding interface between the insulating gasket G2 and the battery terminal 60 and at the bonding interface between the insulating gasket G2 and the battery housing 20 may be enhanced. Meanwhile, in the case where the gasket exposed portion G2a of the insulating gasket G2 has a shape extending to the upper surface of the terminal exposed portion 60a, the battery terminal 60 is integrated with the insulating gasket G2 by insert molding. can be combined with
  • the remaining area except for the area occupied by the rivet terminal 60 and the insulating gasket G2 corresponds to the negative terminal having a polarity opposite to that of the rivet terminal 60.
  • the cylindrical battery 1 of the present invention has a structure in which a pair of electrode terminals 60 and T1 are located in the same direction. Therefore, in the case of electrically connecting a plurality of cylindrical batteries 1 , it is possible to dispose an electrical connection component such as a bus bar on only one side of the cylindrical battery 1 . This can lead to simplification of the battery pack structure and improvement of energy density.
  • the cylindrical battery 1 has a structure in which one surface of the battery housing 20 having a substantially flat shape can be used as the first electrode terminal T1, so that electrical connection parts such as bus bars are connected to the first When bonding to the electrode terminal T1, a sufficient bonding area can be secured. Accordingly, in the cylindrical battery 1, sufficient bonding strength between the electrical connection component and the first electrode terminal T1 may be secured, and resistance at the bonding portion may be reduced to a desired level.
  • the insulating gasket G2 when the insulating gasket G2 is applied for electrical insulation and riveting is applied to fix the battery terminals 60, the insulating gasket G2 is deformed together during riveting of the battery terminals 60, and the battery terminals 60 are deformed together. It may be bent toward the inner surface of the top closure of the housing 20 .
  • the insulating gasket G2 is made of a resin material, the insulating gasket G2 may be coupled to the battery housing 20 and the battery terminal 60 by thermal fusion. In this case, airtightness at the bonding interface between the insulating gasket G2 and the battery terminal 60 and at the bonding interface between the insulating gasket G2 and the battery housing 20 may be enhanced.
  • the entire surface of the battery housing 20 may function as the first electrode terminal T1.
  • the first electrode terminal T1 may be a negative electrode terminal.
  • the battery terminal 60 exposed on the lower surface opposite the opening of the battery housing 20 and the battery terminal 60 among the lower surfaces of the battery housing 20 are It has a structure in which areas other than the area occupied can be used as the second electrode terminal T2 and the first electrode terminal T1, respectively. Therefore, in the cylindrical battery 1 according to the present invention, both positive and negative electrodes can be connected in one direction in electrically connecting the plurality of cylindrical batteries 1, thereby simplifying the electrical connection structure.
  • the cylindrical battery 1 according to the present invention has a structure in which most of the lower surface located on the opposite side of the open portion of the battery housing 20 can be used as an electrode terminal, sufficient parts for electrical connection can be welded. It has the advantage of securing an area.
  • a cylindrical battery 1 according to one sealing of the present invention includes an electrode assembly 300, a battery housing 20, a cap plate 40, a second collector plate 50, and a battery terminal. (60).
  • the cylindrical battery 1 may further include an airtight gasket G1 and/or an insulating gasket G2 and/or an insulator S and/or a first collector plate 30 in addition to the above-described components. may be
  • the electrode assembly 300 includes a first electrode tab 11 and a second electrode tab 12 .
  • the second electrode tab 12 may be provided above the electrode assembly 300 accommodated in the battery housing 20 in a height direction (direction parallel to the Z-axis).
  • the first electrode tab 11 may be provided below the electrode assembly 300 accommodated in the battery housing 20 in a height direction (a direction parallel to the Z-axis).
  • the second electrode tab 12 and the first electrode tab 11 extend in opposite directions along the width direction of the electrode assembly 300, that is, the height direction (parallel to the Z-axis) of the cylindrical battery 1. It can be.
  • the second electrode tab 12 may extend toward the closed portion of the battery housing 20
  • the first electrode tab 11 may extend toward the open portion of the battery housing 20 .
  • the battery housing 20 is a substantially cylindrical container having an open portion formed below, and is made of, for example, a conductive material such as metal. An open part may be formed at a lower end of the height of the battery housing 20 and a closed part may be formed at an upper end.
  • the battery housing 20 accommodates the electrode assembly 300 through an opening formed at the lower side and can also accommodate the electrolyte.
  • the battery housing 20 may include a beading portion 21 and a crimping portion 22 formed at a lower end thereof.
  • the beading part 21 may be located under the electrode assembly 300 .
  • the beading portion 21 is formed by press-fitting the outer circumference of the battery housing 20 .
  • the beading portion 21 prevents the electrode assembly 300, which may have a size substantially corresponding to the width of the battery housing 20, from escaping through the opening formed at the bottom of the battery housing 20, and the cap plate ( 40) can function as a support to be seated.
  • the crimping part 22 may be formed below the beading part 21 .
  • the crimping part 22 has a shape extended and bent to cover the outer circumferential surface of the cap plate 40 disposed under the beading part 21 and a part of the lower surface of the cap plate 40 .
  • the present invention does not exclude the case where the battery housing 20 does not have such a beading portion 21 and/or crimping portion 22.
  • the electrode assembly 300 is fixed and/or the cap plate 40 is fixed and/or the battery
  • the sealing of the housing 20 is, for example, a further application of a part that can function as a stopper for the electrode assembly 300 and/or a further application of a structure on which the cap plate 40 can be seated and/or a battery housing It can be realized through welding between (20) and the cap plate (40).
  • the area constituting the closed end of the battery housing 20 may have a thickness ranging from about 0.5 mm to about 1.0 mm, more preferably from about 0.6 mm to about 0.8 mm.
  • the battery housing 20 may have a thickness of a side wall portion constituting an outer circumferential surface of about 0.3 mm to about 0.8 mm, more preferably about 0.30 mm to about 0.60 mm.
  • a plating layer may be formed on the battery housing 20 .
  • the plating layer may include, for example, nickel (Ni).
  • the plating layer may have a thickness of about 1.5 ⁇ m to about 6.0 ⁇ m.
  • the cap plate 40 may seal an opening formed at a lower end of the battery housing 20 . That is, the cap plate 40 may form the lower surface of the cylindrical battery 1 .
  • the cylindrical battery 1 may have a structure in which both a positive terminal and a negative terminal are present. Because of this, the upper structure may be more complex than the lower structure. Accordingly, a vent 41 may be formed on the cap plate 40 forming the lower surface of the cylindrical battery 1 to smoothly discharge the gas generated inside the battery housing 20 . As shown in FIG. 19 , the lower end of the cap plate 40 is preferably disposed higher than the lower end of the battery housing 20 . In this case, even if the lower end of the battery housing 20 touches the ground or the bottom surface of the housing for configuring the module or pack, the cap plate 40 does not touch the ground or the bottom surface of the housing for configuring the module or pack. do not reach Therefore, it is possible to prevent a phenomenon in which the pressure required for rupture of the venting part 41 differs from the design value due to the weight of the cylindrical battery 1, and accordingly, the smoothness of the rupture of the venting part 41 can be secured. .
  • the venting part 41 has a closed loop shape as shown in FIGS. 21 and 22 , the greater the distance from the center of the cap plate 40 to the venting part 41, the more favorable it is in terms of ease of breakage. do. This is because, when the same venting pressure is applied, as the distance from the central portion of the cap plate 40 to the bent portion 41 increases, the force acting on the bent portion 41 increases, making it easier to break the cap plate 40 . In addition, in terms of smooth discharge of the venting gas, the greater the distance from the center of the cap plate 40 to the venting part 41, the more advantageous it is.
  • the venting part 41 is formed along the periphery of a substantially flat area protruding downward from the periphery of the edge of the cap plate 40 (in a downward direction with reference to FIG. 19 ). It can be advantageous to be
  • venting part 41 is continuously formed on the cap plate 40 in an approximate circle, but the present invention is not limited thereto.
  • the venting portion 41 may be discontinuously formed on the cap plate 40 in a substantially circular shape, or may be formed in a substantially straight line shape or other shapes.
  • the second current collector 50 is coupled to an upper portion of the electrode assembly 300 .
  • the second current collecting plate 50 is made of a conductive metal material and is connected to the second electrode tab 12 .
  • the second collector plate 50 may be coupled to a coupling surface formed by bending an end portion of the second electrode tab 12 in a direction parallel to the second collector plate 50 .
  • the bending direction of the second electrode tab 12 may be, for example, a direction toward the winding center hole H1 of the electrode assembly 300 .
  • the second electrode tab 12 has a bent shape as described above, a space occupied by the second electrode tab 12 is reduced, thereby improving energy density.
  • bonding force may be improved and resistance may be reduced.
  • the second collector plate 50 includes an edge portion 51, a second tab coupling portion 52, and a terminal coupling portion 53.
  • the edge portion 51 may have a substantially rim shape in which an empty space E is formed in the center. In the drawings of the present invention, only the case where the rim portion 51 has a substantially circular rim shape is shown, but the present invention is not limited thereto.
  • the edge portion 51 may have a substantially square rim shape or other shapes, unlike those shown.
  • the second tab coupling portion 52 extends inwardly from the edge portion 51 and is coupled to the second electrode tab 12 .
  • the terminal coupling portion 53 is spaced apart from the second tab coupling portion 52 and is located inside the edge portion 51 .
  • the terminal coupling part 53 may be coupled to the battery terminal 60 by welding.
  • the terminal coupling part 53 may be located, for example, at the center of the inner space of the edge part 51 .
  • the terminal coupling part 53 may be disposed at a position corresponding to the winding center hole H1 of the electrode assembly 300 .
  • the second tab coupling portion 52 and the terminal coupling portion 53 are not directly connected but disposed to be spaced apart from each other and electrically connected by an edge portion 51 .
  • the second tab coupling portion 52 and the terminal coupling portion 53 are not directly connected to each other, but are connected through the edge portion 51.
  • the second collector plate 50 of the present invention has a structure in which stress can be concentrated in the connection portion of the edge portion 51 and the terminal coupling portion 53 when an external impact is applied. Since the welding part for joining is not formed, it is possible to prevent product defects due to damage to the welding part due to external impact.
  • the second current collector 50 may further include a second connection portion 54 extending inwardly from the edge portion 51 and connected to the terminal coupling portion 53 . At least a portion of the second connection portion 54 may have a smaller width than that of the second tab coupling portion 52 . In this case, the electrical resistance increases in the second connection portion 54, and when current flows through the second connection portion 54, a greater resistance occurs compared to other parts, and as a result, when an overcurrent occurs, the second connection portion A part of (54) is broken so that overcurrent can be blocked.
  • the width of the second connection portion 54 may be adjusted to an appropriate level in consideration of the overcurrent blocking function.
  • the second connection portion 54 may include a tapered portion 54a whose width gradually decreases in a direction from the inner surface of the edge portion 51 toward the terminal coupling portion 53 .
  • the stiffness of the component may be improved at a connection portion between the second connection portion 54 and the edge portion 51 .
  • a plurality of second tab coupling parts 52 may be provided.
  • the plurality of second tab coupling parts 52 may be arranged at equal intervals along the extension direction of the edge part 51 . Extension lengths of each of the plurality of second tab coupling parts 52 may be the same as each other.
  • the terminal coupling portion 53 may be disposed to be surrounded by a plurality of second tab coupling portions 52 .
  • the second connection part 54 may be located between a pair of second tab coupling parts 52 adjacent to each other.
  • the distance from the second connection part 54 to any one of the pair of second tap coupling parts 52 along the extension direction of the edge part 51 is from the second connection part 54 to the edge part ( 51) may be the same as the distance to the other one of the pair of second tap coupling parts 52 along the extending direction.
  • a plurality of second connection parts 54 may be provided. Each of the plurality of second connection parts 54 may be disposed between a pair of second tab coupling parts 52 adjacent to each other. The plurality of second connection parts 54 may be arranged at equal intervals along the extension direction of the edge part 51 .
  • the distance between the second tap coupling parts 52 and/or the second connection parts 54 When the distance between the tab coupling portion 52 and the second connection portion 54 is formed constant, the current directed from the second tab coupling portion 52 to the second connection portion 54 or the second connection portion A flow of current from 54 toward the second tap coupling portion 52 can be smoothly formed.
  • the second connection portion 54 may include a notched portion N formed to partially reduce a width of the second connection portion 54 .
  • the electrical resistance in the region where the notching portion N is formed increases, thereby enabling rapid current interruption when overcurrent occurs.
  • the notched portion N may be located closer to the tapered portion 54a than the terminal coupling portion 53.
  • the notched portion N is located in an area adjacent to an area with a high heating value, so that more rapid overcurrent blocking is possible.
  • the second current collector 50 may include a plurality of irregularities (not shown) formed radially on a surface facing the second electrode tab 12 . When the unevenness is formed, the second current collector plate 50 may be pressed to press-fit the unevenness into the second electrode tab 12 . Ends of the second current collector plate 50 and the second electrode tab 12 may be joined by welding, for example, laser welding.
  • the battery terminal 60 is made of a conductive metal material and coupled to the terminal coupling portion 53 of the second collector plate 50 .
  • the battery terminal 60 may be configured to pass through a closed portion located on the opposite side of the open portion of the battery housing 20 .
  • the cylindrical battery 1 of the present invention includes an insulator S, which will be described later, the battery terminal 60 passes through the insulator S and is coupled to the terminal coupling portion 53 of the second collector plate 50. is configured to
  • the battery terminal 60 is electrically connected to the second electrode tab 12 of the electrode assembly 300 through the second collector plate 50, and thus has a second polarity.
  • the battery terminal 60 can function as a second electrode terminal of the cylindrical battery 1 of the present invention.
  • a substantially flat surface formed on the side of the closed portion of the battery housing 20 having the first polarity may function as the first electrode terminal T1.
  • a bus bar U is connected to each of the second electrode terminal T2 and the first electrode terminal T1 of the cylindrical battery 1 of the present invention.
  • the battery housing 20 among the second electrode terminals T2 may be set in a range of approximately 10% to 60%.
  • the insulator S may be provided between the second current collector 50 and the inner surface of the battery housing 20 .
  • the insulator S prevents contact between the second collector plate 50 and the battery housing 20 .
  • the insulator S covers the upper portion of the second current collector 50 and the upper edge portion of the electrode assembly 300 . Accordingly, it is possible to prevent a short circuit from being caused by contacting the outer circumferential uncoated portion of the electrode assembly 300 with the inner surface of the battery housing 20 having a different polarity.
  • the insulator (S) may also be interposed between the upper end of the outer circumferential surface of the electrode assembly 300 and the inner surface of the battery housing 20 . This is to prevent contact between the second electrode tab 12 extending toward the closed portion of the battery housing 20 and the inner circumferential surface of the battery housing 20 .
  • the battery terminal 60 passes through the insulator S and is coupled to the second collector plate 50.
  • the insulator S may have an opening formed at a position corresponding to the terminal coupling portion 53 of the second current collecting plate 50 .
  • the first current collector 30 may be coupled to a lower portion of the electrode assembly 300 .
  • the first collector plate 30 is made of a conductive metal material and coupled to the first electrode tab 11 .
  • the first collector plate 30 is electrically connected to the battery housing 20 .
  • the first collector plate 30 may have a circumferential area interposed between the inner surface of the battery housing 20 and the sealing gasket G1 so as to be fixed. In this case, the first collector plate 30 may be welded on a seating surface formed by the beading portion 21 of the battery housing 20 .
  • the first collector plate 30 may be coupled to a coupling surface formed by bending an end of the first electrode tab 11 in a direction parallel to the first collector plate 30 .
  • a bending direction of the first electrode tab 11 may be, for example, a direction toward the winding center hole H1 of the electrode assembly 300 .
  • the cylindrical battery may be, for example, a cylindrical battery having a form factor ratio (defined as the diameter of the cylindrical battery divided by the height, i.e., the ratio of the diameter ( ⁇ ) to the height (H)) of greater than about 0.4. .
  • a form factor ratio defined as the diameter of the cylindrical battery divided by the height, i.e., the ratio of the diameter ( ⁇ ) to the height (H)
  • the form factor means a value representing the diameter and height of a cylindrical battery.
  • a cylindrical battery according to an embodiment of the present invention may be, for example, a 46110 battery, a 48750 battery, a 48110 battery, a 48800 battery, or a 46800 battery.
  • the first two numbers indicate the diameter of the battery
  • the next two numbers indicate the height of the battery
  • the last number 0 indicates that the cross section of the battery is circular.
  • the battery according to an embodiment of the present invention may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 46 mm, a height of about 110 mm, and a form factor ratio of about 0.418.
  • a battery according to another embodiment may be a cylindrical battery having a diameter of about 48 mm, a height of about 75 mm, and a form factor ratio of about 0.640.
  • a battery according to another embodiment may be a cylindrical battery having a diameter of about 48 mm, a height of about 110 mm, and a form factor ratio of about 0.418.
  • a battery according to another embodiment may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 48 mm, a height of about 80 mm, and a form factor ratio of about 0.600.
  • a battery according to another embodiment may be a cylindrical battery having a substantially cylindrical shape, a diameter of about 46 mm, a height of about 80 mm, and a form factor ratio of about 0.575.
  • battery batteries having a form factor ratio of approximately 0.4 or less have been used. That is, conventionally, for example, 18650 batteries and 21700 batteries have been used. For an 18650 battery, its diameter is approximately 18 mm, its height is approximately 65 mm, and the form factor ratio is approximately 0.277. In the case of the 21700 battery, its diameter is approximately 21 mm, its height is approximately 70 mm, and the form factor ratio is approximately 0.300.
  • a battery pack 3 includes the above-described cylindrical battery 1 according to an embodiment of the present invention.
  • components such as a bus bar, a cooling unit, and a power terminal for electrical connection are omitted for convenience of illustration.
  • a vehicle 5 may be, for example, an electric vehicle, a hybrid vehicle, or a plug-in hybrid vehicle, and a battery pack 3 according to an embodiment of the present invention may be used.
  • the automobile 5 includes a four-wheeled automobile and a two-wheeled automobile.
  • the vehicle 5 operates by receiving power from the battery pack 3 according to an embodiment of the present invention.
  • the "primary particle” is a particle in which no grain boundary appears when observed in a field of view of 5000 to 20000 times using a scanning electron microscope or a backscattered electron rotation pattern analyzer (EBSD). means unit.
  • Average particle diameter of primary particles means an arithmetic average value calculated after measuring the particle diameters of primary particles observed in a scanning electron microscope or EBSD image.
  • Secondary particles are particles formed by aggregation of a plurality of primary particles.
  • secondary particles in which 10 or less primary particles are aggregated are referred to as quasi-single particles in order to distinguish them from conventional secondary particles formed by aggregation of tens to hundreds of primary particles.
  • the "specific surface area” is measured by the BET method, and can be specifically calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mino II of BEL Japan.
  • D min ”, “D 50 ”, and “D max ” are particle size values of the cumulative volume distribution of the positive electrode active material measured using a laser diffraction method. Specifically, D min is the minimum particle size appearing in the volume cumulative distribution, D 50 is the particle size when the volume cumulative amount is 50%, and D max is the maximum particle size appearing in the volume cumulative distribution.
  • D 50 means the average particle diameter of the primary particles.
  • D 50 means the average particle diameter of particles formed by aggregation of primary particles.
  • the particle size value of the volume cumulative distribution is, for example, after dispersing the cathode active material in a dispersion medium, introducing it into a commercially available laser diffraction particle size measuring device (e.g., Microtrac MT 3000) and irradiating ultrasonic waves of about 28 kHz with an output of 60 W. After that, it can be measured by obtaining a volume cumulative particle size distribution graph.
  • a commercially available laser diffraction particle size measuring device e.g., Microtrac MT 3000
  • “consist essentially of A” indicates that it includes component A and any components not mentioned that do not materially affect the basic and novel characteristics of the present invention.
  • Basic and novel features of the present invention include at least one of minimizing particle breakage during battery manufacturing, minimizing gas generated by such particle breakage, and minimizing internal cracks. A person of ordinary skill in the art can recognize the material impact of these properties.
  • the present inventors have found that a single particle composed of one primary particle or less than 10 particles as a cathode active material It was confirmed that the safety of a large-sized cylindrical battery can be dramatically improved when a quasi-single particle type cathode active material, which is an aggregate of primary particles, is used alone.
  • the positive electrode is a positive current collector; and a cathode active material layer formed on at least one side of the cathode current collector, wherein the cathode active material layer may include a cathode active material, and optionally, a conductive material and/or a binder.
  • the cathode may have a structure in which a cathode active material layer is formed on at least one surface or both surfaces of a long sheet-shaped cathode current collector, and the cathode active material layer may include a cathode active material and a binder.
  • the positive electrode is a positive electrode active material, a conductive material, and a binder on one side or both sides of a long sheet-shaped positive electrode current collector, dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrroly It may be prepared by applying a cathode slurry prepared by dispersing in a solvent such as money (NMP), acetone, or water, removing the solvent of the cathode slurry through a drying process, and then rolling. Meanwhile, when the positive electrode slurry is applied, a positive electrode including an uncoated portion (uncoated portion) may be manufactured by not applying the positive electrode slurry to a partial region of the positive electrode current collector, for example, one end of the positive electrode current collector.
  • DMSO dimethyl sulfoxide
  • NMP isopropyl alcohol
  • N-methylpyrroly N-methylpyrroly
  • a cathode slurry prepared by applying a cathode slurry prepared by dispersing in
  • the cathode active material includes single-particle active material particles.
  • the single-particle active material particles may be 90wt% or more, 95wt% or more, 98wt% or more, or 99wt% or more relative to 100wt% of the positive electrode active material.
  • the cathode active material may be composed of only the single-particle active material particles.
  • the single-particle active material particle refers to a single particle, a quasi-single particle, or both.
  • the single particle is a particle composed of one primary particle, and the quasi-single particle is an aggregate of 10 or less primary particles.
  • single-particle active material particles composed of one primary particle or quasi-single-particle form in which 10 or less primary particles are agglomerated are conventional secondary active material particles in which dozens to hundreds of primary particles are aggregated. Since the particle strength is higher than that of the particle-type cathode active material, particle breakage hardly occurs during rolling. In addition, in the case of single-particle active material particles, since the number of primary particles constituting the particle is small, the change due to volume expansion and contraction of the primary particles during charging and discharging is small, and accordingly, cracks inside the particle are remarkably generated. Decrease.
  • the single particle and / or quasi-single particle is 95wt% to 100wt%, preferably 98wt% to 100wt%, more preferably 99wt% to 100wt% based on the weight of the total positive electrode active material included in the positive electrode, More preferably, it is preferably included in an amount of 100wt%.
  • the cathode active material including single particles and/or quasi-single particles according to the present invention has D min of 1.0 ⁇ m or more, 1.1 ⁇ m or more, 1.15 ⁇ m or more, 1.2 ⁇ m or more, 1.25 ⁇ m or more, 1.3 ⁇ m or more, or 1.5 ⁇ m.
  • D min of the cathode active material is less than 1.0 ⁇ m, the line pressure increases during the cathode rolling process, and thus particle breakage is likely to occur, and thermal stability is deteriorated, so that thermal stability cannot be sufficiently secured when applied to a large cylindrical battery.
  • D min of the cathode active material may be 3 ⁇ m or less, 2.5 ⁇ m or less, or 2 ⁇ m or less. If D min is too large, the lithium ion diffusion distance within the particles increases, and resistance and output characteristics may deteriorate.
  • D min of the cathode active material may be 1.0 ⁇ m to 3 ⁇ m, 1.0 ⁇ m to 2.5 ⁇ m, or 1.3 ⁇ m to 2.0 ⁇ m.
  • the cathode active material may have D 50 of 5 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less, for example, 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m, more preferably 2 ⁇ m. to 5 ⁇ m.
  • Single-particle and/or quasi-single-particle type positive electrode active materials have less lithium mobility than secondary particle type positive electrode active materials because there are fewer interfaces between primary particles, which serve as a diffusion path for lithium ions inside the particles. There is a problem with this increase. This increase in resistance intensifies as the size of the particles increases, and when the resistance increases, capacity and output characteristics are adversely affected. Accordingly, by adjusting the D 50 of the positive electrode active material to 5 ⁇ m or less, the diffusion distance of lithium ions inside the positive electrode active material particles is minimized, thereby suppressing an increase in resistance.
  • the cathode active material may have a D max of 12 ⁇ m to 17 ⁇ m, preferably 12 ⁇ m to 16 ⁇ m, and more preferably 12 ⁇ m to 15 ⁇ m.
  • D max of the cathode active material satisfies the above range, resistance characteristics and capacity characteristics are more excellent. If the D max of the positive electrode active material is too large, agglomeration between single particles occurs, and the lithium movement path inside the agglomerated particles becomes long, resulting in poor lithium mobility, which may increase resistance. On the other hand, if the D max of the cathode active material is too small, excessive disintegration is performed. Due to excessive disintegration, D min may decrease to less than 1 ⁇ m, resulting in particle breakage during rolling and deterioration in thermal stability.
  • the positive electrode active material may have a particle size distribution (PSD) of 3 or less, preferably 2 to 3, more preferably 2.3 to 3, represented by the following formula (1).
  • PSD particle size distribution
  • Particle size distribution (PSD) (D max - D min )/D 50
  • the positive electrode active material has the above particle size distribution, the electrode density of the positive electrode can be appropriately maintained, and particle breakage and resistance increase can be effectively suppressed.
  • the cathode active material may have an average particle diameter of primary particles of 5 ⁇ m or less, 4 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less, for example, 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 5 ⁇ m. , more preferably 2 ⁇ m to 5 ⁇ m.
  • the average particle diameter of the primary particles satisfies the above range, a single particle and/or quasi-single particle positive electrode active material having excellent electrochemical properties may be formed. If the average particle diameter of the primary particles is too small, the number of agglomerations of the primary particles forming the positive electrode active material increases, reducing the effect of suppressing particle breakage during rolling.
  • the diffusion path of lithium may be elongated, increasing resistance and degrading output characteristics.
  • the cathode active material preferably has a unimodal particle size distribution.
  • a bimodal positive electrode active material in which a large particle size positive electrode active material having a large average particle diameter and a small particle size positive electrode active material having a small average particle diameter are mixed and used has been widely used.
  • the increase in resistance can be minimized by using a cathode active material having a unimodal distribution.
  • the cathode active material may include lithium nickel-based oxide, and specifically, may include lithium nickel-based oxide containing 80 mol% or more of Ni based on the total number of moles of transition metal.
  • the lithium nickel-based oxide may include 80 mol% or more and less than 100 mol%, 82 mol% or more and less than 100 mol%, or 83 mol% or more and less than 100 mol% of Ni. As described above, when the lithium nickel-based oxide having a high Ni content is used, high capacity can be realized.
  • the cathode active material may include a lithium nickel-based oxide represented by the following [Formula 1].
  • M 1 may be Mn, Al or a combination thereof, preferably Mn or Mn and Al.
  • M 2 is at least one selected from the group consisting of Zr, W, Y, Ba, Ca, Ti, Mg, Ta, and Nb, preferably one selected from the group consisting of Zr, Y, Mg, and Ti. or more, more preferably Zr, Y, or a combination thereof.
  • the M 2 element is not necessarily included, but when included in an appropriate amount, it may play a role of promoting grain growth during firing or improving crystal structure stability.
  • the a represents the molar ratio of lithium in the lithium nickel-based oxide, and may be 0.8 ⁇ a ⁇ 1.2, 0.85 ⁇ a ⁇ 1.15, or 0.9 ⁇ a ⁇ 1.2.
  • the crystal structure of the lithium nickel-based oxide may be stably formed.
  • b represents the molar ratio of nickel among all metals except lithium in lithium nickel-based oxide, 0.8 ⁇ b ⁇ 1, 0.82 ⁇ b ⁇ 1, 0.83 ⁇ b ⁇ 1, 0.85 ⁇ b ⁇ 1, 0.88 ⁇ b ⁇ 1 or 0.90 ⁇ b ⁇ 1.
  • c represents the cobalt molar ratio of all metals except lithium in lithium nickel-based oxide, 0 ⁇ c ⁇ 0.2, 0 ⁇ c ⁇ 0.18, 0.01 ⁇ c ⁇ 0.17, 0.01 ⁇ c ⁇ 0.15, 0.01 ⁇ c ⁇ 0.12 or It may be 0.01 ⁇ c ⁇ 0.10.
  • the molar ratio of cobalt satisfies the above range, good resistance characteristics and output characteristics may be implemented.
  • d represents the molar ratio of M 1 element in all metals except lithium in lithium nickel-based oxide, 0 ⁇ d ⁇ 0.2, 0 ⁇ d ⁇ 0.18, 0.01 ⁇ d ⁇ 0.17, 0.01 ⁇ d ⁇ 0.15, 0.01 ⁇ d ⁇ 0.12, or 0.01 ⁇ d ⁇ 0.10.
  • the positive electrode active material exhibits excellent structural stability.
  • e represents the molar ratio of M 2 element in all metals except for lithium in the lithium nickel-based oxide, it may be 0 ⁇ e ⁇ 0.1 or 0 ⁇ e ⁇ 0.05.
  • the positive active material according to the present invention if necessary, on the surface of the lithium nickel-based oxide particles, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca , Zn, Zr, Nb.
  • a coating layer including at least one coating element selected from the group consisting of Mo, Sr, Sb, Bi, Si and S may be further included.
  • the coating element may be Al, B, Co or a combination thereof.
  • the cathode active material may be included in an amount of 80 wt% to 99 wt%, preferably 85 wt% to 99 wt%, and more preferably 90 wt% to 99 wt%, based on the total weight of the cathode active material layer.
  • the positive electrode current collector various positive electrode current collectors used in the art may be used.
  • the cathode current collector stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel surface-treated with carbon, nickel, titanium, or silver may be used.
  • the cathode current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and fine irregularities may be formed on the surface of the cathode current collector to increase adhesion of the cathode active material.
  • the cathode current collector may be used in various forms such as, for example, a film, sheet, foil, net, porous material, foam, or nonwoven fabric.
  • all or some of the single-particle active material particles may have a core-shell structure in which the particle surface is coated with a conductive coating layer.
  • the conductive coating layer may cover at least some or all of the particles.
  • the conductive coating layer includes a conductive nanomaterial.
  • the present invention coats the surface of single-particle active material particles with a conductive nanomaterial, so that excellent electrical conductivity can be realized without adding a separate conductive material to the positive electrode slurry.
  • the cathode active material layer when a cathode active material coated with a conductive nanomaterial is applied to the surface of the single-particle active material particle, the cathode active material layer may not use a conductive material except for the conductive coating layer.
  • the viscosity of the positive electrode slurry can be reduced and the solid content can be increased, and effects of improving electrode coating processability and electrode adhesion can be obtained.
  • the conductive nanomaterial may be a conductive material having a nano-sized size so as to be smoothly coated on the particles, and the type is not particularly limited.
  • the conductive nanomaterial may be a carbon nanotube or carbon nanoparticle.
  • the conductive nanomaterial may have various shapes, and may be, for example, spherical, scaly, or fibrous.
  • the conductive coating layer may be formed by mixing single-particle active material particles, which are core parts, and conductive nanomaterials, and then heat-treating the conductive nanomaterial.
  • the mixing may be performed by solid-phase mixing or liquid-phase mixing.
  • the positive electrode active material layer includes flaky graphite.
  • the flaky graphite provides a sliding effect to the positive electrode active material, so that the rolling characteristics of the electrode are improved. and can reduce the electrode porosity to a target level. Accordingly, stability, initial resistance characteristics, and charge/discharge efficiency of the battery to which the positive electrode according to the present invention is applied may be improved.
  • the flaky graphite may be included in an amount of 0.1 wt% to 5 wt%, preferably 0.1 wt% to 3 wt%, based on 100 wt% of the positive electrode active material layer.
  • the flaky graphite used in the present invention may have an average particle diameter of 1 ⁇ m to 20 ⁇ m, preferably 2 ⁇ m to 10 ⁇ m, more preferably 3 ⁇ m to 5 ⁇ m. If the size of flaky graphite is too small, it is difficult to realize a desired porosity, and current density may be lowered, resulting in lower capacity. At this time, the average particle diameter of the flaky graphite may be measured by a laser diffraction method (ISO 13320).
  • the flaky graphite may have an aspect ratio of 0.1 to 500, preferably 1 to 100, and more preferably 1 to 30.
  • an effect of reducing electrode resistance by improving conductivity occurs.
  • the flaky graphite has a density of 2.0 g/cm 3 to 2.5 g/cm 3 , preferably 2.1 g/cm 3 to 2.4 g/cm 3 , more preferably 2.2 g/cm 3 to 2.3 g/cm can be 3
  • the porosity of the positive electrode active material layer may be 15% to 23%, preferably 17% to 23%, and more preferably 18% to 23%.
  • the porosity of the positive electrode active material layer satisfies the above range, the electrode density increases to realize excellent capacity and decrease resistance. If the porosity is too low, the impregnability of the electrolyte is poor, and lithium precipitation may occur due to non-impregnation of the electrolyte. If the porosity is too high, the contact between the electrodes is not good, so the resistance increases and the energy density decreases, so the capacity improvement effect is insignificant.
  • the porosity value of the positive electrode active material layer can be achieved by i) the positive electrode active material includes single-particle active material particles and ii) adding flaky graphite to the positive electrode active material.
  • the flaky graphite when included in the cathode active material layer as in the present invention, the flaky graphite provides a sliding effect and fills the gaps of the cathode active material layer during rolling, so that the porosity of the cathode active material layer is the same as above. range can be reduced.
  • the positive electrode may have a loading amount of 570 mg/25 cm 2 or more, preferably 600 mg/25 cm 2 to 800 g/25 cm 2 , and more preferably 600 mg/25 cm 2 to 750 mg/25 cm 2 .
  • a relatively high loading amount of the cathode can be secured. And, through this, it is possible to implement high-capacity characteristics.
  • the positive electrode active material layer may further include a conductive material.
  • the conductive material is used to impart conductivity to the electrode, and any material that does not cause chemical change inside the battery and has electronic conductivity can be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be typically included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 20 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the positive electrode active material layer.
  • the conductive material may include carbon nanotubes.
  • the cathode active material may include a multi-walled carbon nanotube having a high specific surface area and a small wall number as a conductive material.
  • the multi-walled carbon nanotubes may be included in 50wt% or more, 70wt% or more, 90wt% or more, or 99wt% or more of 100wt% of the conductive material.
  • the conductive material may be composed of only the multi-walled carbon nanotubes.
  • the multi-walled carbon nanotubes have a BET specific surface area of 300 m 2 /g to 500 m 2 /g. In order to distinguish this from the prior art, it is referred to as 'new CNT'.
  • Carbon nanotubes (existing CNTs) commonly used in the prior art had a BET specific surface area of less than 300 m 2 /g.
  • a comparison of scanning electron microscope images and physical properties (FIG. 27) of the new CNT (FIG. 25) and the existing CNT (FIG. 26) used in the present invention are as follows.
  • the novel CNTs applied to the present invention are of a bundled type and have a multiwall structure, but have a higher BET and a smaller number of walls and a smaller diameter than conventional CNTs.
  • the secondary particle type positive electrode active material In the case of using the secondary particle type positive electrode active material, sufficient electrical conductivity could be achieved even when the existing CNT was used at a level of 0.4wt% to 0.6wt%.
  • the BET specific surface area is 300 m 2 because the resistance is higher than that of the conventional secondary particle type cathode active material and the electrical conductivity is low due to the small contact area with the conductive material.
  • the content of the conductive material should be 0.9 wt% or more.
  • 28 to 31 are graphs showing sheet resistance and high-temperature lifespan characteristics for each conductive material ratio when a single particle or quasi-single particle is applied as a cathode active material.
  • the viscosity of the positive electrode slurry must be lowered by reducing the solid content in the positive electrode slurry.
  • the active material content decreases, resulting in poor capacity characteristics.
  • the inventors of the present invention have found that when carbon nanotubes having a BET specific surface area of 300 m 2 /g to 500 m 2 /g are applied as a conductive material together with a cathode active material, which is a single-particle active material particle, , It was confirmed that sufficient electrical conductivity can be secured even with a relatively small amount of carbon nanotubes, and accordingly, the slurry viscosity can be maintained low even when the solid content of the cathode slurry is formed as high as 70 wt% to 80 wt%.
  • the carbon nanotubes used in the present invention may be multi-walled carbon nanotubes having a BET specific surface area of 300 m 2 /g to 500 m 2 /g, preferably 300 m 2 /g to 450 m 2 /g.
  • BET specific surface area satisfies the above range, sufficient electrical conductivity can be secured even with a small amount of carbon nanotubes.
  • the carbon nanotubes may be multi-walled carbon nanotubes having a wall number of 2 to 8, preferably 2 to 6, and more preferably 3 to 6.
  • the carbon nanotubes may have a diameter of 1 nm to 8 nm, preferably 3 nm to 8 nm, and more preferably 3 nm to 6 nm.
  • the carbon nanotubes may be included in an amount of 0.7 wt% or less, preferably 0.3 wt% to 0.7 wt%, and more preferably 0.4 wt% to 0.6 wt%, based on the total weight of the cathode active material layer.
  • the content of the carbon nanotubes satisfies the above range, sufficient electrical conductivity can be achieved, and the solids content in the cathode slurry can be maintained high, thereby forming a high content of the cathode active material in the cathode active material layer. Excellent capacitance characteristics can be realized.
  • the table shown in FIG. 32 shows the case where carbon nanotubes (new CNTs) having a BET specific surface area of 300 m 2 /g to 500 m 2 /g are applied and the carbon nanotubes (existing CNTs) having a BET of 200 m 2 /g or more and less than 300 m 2 /g ) was applied, the solid content and viscosity of the positive electrode slurry and the resistance values of the MP coating layer and the MP interface layer were compared. From the table above, it can be seen that, when the new CNT is applied, the positive electrode slurry has a lower viscosity and excellent electrical conductivity even when the solid content of the positive electrode slurry is higher than that of the conventional CNT.
  • the binder serves to improve the adhesion between the particles of the positive electrode active material and the adhesion between the positive electrode active material and the positive electrode current collector, and specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene Polymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene monomer rubber (EPDM rubber), sulfonated-EPDM, styrene butadiene rubber (SBR), fluoro rubber, or various copolymers thereof, and the like, One of these alone or a mixture of two or more may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hex
  • the binder may be included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 20 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the positive electrode active material layer.
  • Another aspect of the present invention relates to an electrode assembly including the positive electrode and a battery including the same.
  • the electrode assembly includes a negative electrode and a positive electrode, and the positive electrode has the structural characteristics as described above.
  • the electrode assembly may be stacked with a separator interposed between an anode and a cathode to form a stacked or stacked/folded structure, or may be wound to form a jelly roll structure.
  • a separator may be additionally disposed on the outside to prevent contact between the negative electrode and the positive electrode.
  • the negative electrode may include a negative electrode current collector; and an anode active material layer formed on at least one side of the anode current collector.
  • the anode may have a structure in which an anode active material layer is formed on one or both surfaces of a long sheet-shaped anode current collector, and the anode active material layer may include a cathode active material, a conductive material, and a binder.
  • the negative electrode is a negative electrode active material, a conductive material, and a binder on one side or both sides of a long sheet-shaped negative electrode current collector by dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrroly It may be prepared by applying a negative electrode slurry prepared by dispersing in a solvent such as NMP, acetone, or water, removing the solvent of the negative electrode slurry through a drying process, and then rolling. When the negative electrode slurry is applied, a negative electrode including a non-coated portion may be manufactured by not applying the negative electrode slurry to a partial region of the negative electrode current collector, for example, one end of the negative electrode current collector.
  • DMSO dimethyl sulfoxide
  • the anode active material may be a compound capable of reversible intercalation and deintercalation of lithium.
  • the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; Si, Si-Me alloy (where Me is at least one selected from the group consisting of Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, and Ni), SiO y (where 0 ⁇ y ⁇ 2), silicon-based materials such as Si—C composites; lithium metal thin film; metal materials capable of being alloyed with lithium, such as Sn and Al; and the like, and any one or a mixture of two or more of them may be used.
  • the negative electrode may include a silicon-based negative electrode active material.
  • the silicon-based negative electrode active material is Si, a Si-Me alloy (where Me is at least one selected from the group consisting of Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, and Ni), SiO It may be y (here, 0 ⁇ y ⁇ 2), a Si—C complex, or a combination thereof, preferably SiO y (here, 0 ⁇ y ⁇ 2). Since the silicon-based negative active material has a high theoretical capacity, capacity characteristics may be improved when the silicon-based negative active material is included.
  • the silicon-based negative electrode active material may be doped with Mb metal, and in this case, the Mb metal may be a Group 1 metal element or a Group 2 metal element, and specifically, may be Li, Mg, or the like.
  • the silicon anode active material may be Si, SiO y (here, 0 ⁇ y ⁇ 2), Si—C composite doped with M b metal, or the like.
  • the active material capacity is somewhat lowered due to the doping element, but since it has high efficiency, high energy density can be implemented.
  • FIG. 49 is a graph showing changes in energy density according to the content of the silicon-based negative active material and the presence or absence of doping of the silicon-based negative electrode active material in a battery using a mixture of a silicon-based negative active material and a carbon-based negative electrode active material as the negative electrode active material.
  • low efficiency SiO means undoped SiO
  • ultra-high efficiency SiO means Mg/Li doped SiO. 49 , it can be seen that the energy density is improved as the content of the silicon-based negative active material among the total negative active materials increases. In addition, it can be confirmed that the energy density improvement effect is more excellent as the ratio of the doped silicon-based negative active material among the silicon-based negative active material increases.
  • the silicon-based negative electrode active material may further include a carbon coating layer on the particle surface.
  • the carbon coating amount may be 20 wt% or less, preferably 1 to 20 wt% based on the total weight of the silicon-based negative electrode active material.
  • the carbon coating layer may be formed through a method such as dry coating, wet coating, chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
  • the silicon-based negative active material may have a capacity of 1000 ⁇ 4000mAh / g, and may have an initial efficiency of about 60 ⁇ 95%.
  • D 50 of the silicon-based negative active material may be 3um to 8um, and D min to D max may be included in the range of 0.5um to 30um.
  • the anode may further include a carbon-based anode active material as an anode active material, if necessary.
  • the carbon-based negative electrode active material may be, for example, artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, soft carbon, or hard carbon, but is not limited thereto.
  • the mixing ratio of the silicon-based negative electrode active material and the carbon-based negative electrode active material is 1:99 to 20:80, preferably 1:99 to 15:85 by weight. , more preferably from 1:99 to 10:90.
  • the negative active material may be included in an amount of 80 wt % to 99 wt %, preferably 85 wt % to 99 wt %, and more preferably 90 wt % to 99 wt %, based on the total weight of the negative active material layer.
  • the anode active material may further include at least one selected from lithium metal and metal materials capable of alloying with lithium, such as Sn and Al.
  • negative electrode current collectors commonly used in the art may be used, and examples include copper, stainless steel, aluminum, nickel, titanium, fired carbon, carbon on the surface of copper or stainless steel, A surface treated with nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and like the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to enhance bonding strength of the negative electrode active material.
  • the negative electrode current collector may be used in various forms such as a film, sheet, foil, net, porous material, foam, or non-woven fabric.
  • the conductive material is used to impart conductivity to the negative electrode, and any material that does not cause chemical change inside the battery and has electronic conductivity can be used without particular limitation.
  • specific conductive materials include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, carbon fiber, and carbon nanotube; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be typically included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 20 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the negative electrode active material layer.
  • the binder serves to improve adhesion between particles of the anode active material and adhesion between the anode active material and the anode current collector.
  • specific binders include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, and carboxymethylcellulose.
  • the binder may be included in an amount of 1 wt% to 30 wt%, preferably 1 wt% to 20 wt%, and more preferably 1 wt% to 10 wt%, based on the total weight of the negative electrode active material layer.
  • the electrode assembly further includes a separator, and the separator is disposed in the electrode assembly in a manner interposed between the negative electrode and the positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and can be used without particular limitation as long as it is used as a separator in a lithium battery.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or the like
  • a laminated structure of two or more layers of these may be used.
  • conventional porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength.
  • the battery is a battery case in which an electrode assembly and an electrolyte are housed together, and an appropriate battery case may be selected without particular limitation as long as it is commonly used in the art, such as a pouch type or a metal can type.
  • electrolytes usable in lithium batteries such as organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, etc. can be used , the type is not particularly limited.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester-based solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonates eg, ethylene carbonate or propylene carbonate, etc.
  • low-viscosity linear carbonate-based compounds For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate is more preferable.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , LiCl, LiI, or LiB(C 2 O 4 ) 2 , and the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 5.0M, preferably 0.1M to 3,0M.
  • concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte may further include an additive for the purpose of improving lifespan characteristics of a battery, suppressing a decrease in battery capacity, and improving a discharge capacity of a battery.
  • the additives include haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexamethyl phosphate tria Mead, nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N,N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol or aluminum trichloride alone Alternatively, it may be mixed and used, but is not limited thereto.
  • the additive may be included in an amount of 0.1 wt% to 10
  • the positive electrode may include a loading reducing portion having a smaller loading amount of the positive electrode active material than an adjacent region.
  • the cathode has such a structure, the section of the cathode active material portion may be increased without worrying about precipitation of lithium. Accordingly, the energy density of the electrode assembly may be improved.
  • a method of using a current collector of an electrode as an electrode tab may be used instead of a method of attaching an electrode tab to an electrode.
  • a portion in which the loading amount is reduced occurs at the boundary between the negative electrode active material portion coated with the negative electrode slurry and the negative electrode current collector.
  • metallic lithium may be deposited in the positive electrode active material portion facing the portion where the loading amount is reduced.
  • the N/P ratio is a value obtained by dividing the capacity of the negative electrode calculated considering the area and capacity per mass of the negative electrode by the capacity of the positive electrode obtained considering the area and capacity per mass of the positive electrode, and generally has a value of 1 or more. . That is, the capacity of the negative electrode is increased.
  • the N/P ratio is less than 1, metallic lithium is likely to be precipitated during charging and discharging, which causes rapid deterioration in safety of the battery during high charging and discharging. In other words, the N/P ratio has a significant effect on the safety and capacity of the battery. Due to the risk of precipitation of metallic lithium as described above, the positive electrode active material portion cannot be located in the positive electrode portion facing the portion where the loading amount of the negative electrode is reduced. This causes the energy density of the battery to not increase. Accordingly, the present invention improved the energy density by increasing the section of the positive electrode active material part.
  • FIG. 37 is a view showing an electrode assembly according to an embodiment of the present invention
  • FIG. 38 is a cross-sectional view showing a cross section taken along the line AA′ of FIG. 37 .
  • an electrode assembly 300 includes a cathode 400, an anode 500, and a separator 600.
  • Separator 600 is located between the cathode 400 and the anode 500 .
  • the negative electrode 400, the positive electrode 500, and the separator 600 are wound together to form a jelly roll structure 300S.
  • the jelly roll structure 300S refers to a structure formed by winding the negative electrode 400, the positive electrode 500, and the separator 600.
  • a separator 600 is additionally disposed on the outside to prevent the negative electrode 400 and the positive electrode 500 from contacting each other.
  • the negative electrode 400 includes a negative electrode current collector 410 and a negative electrode active material portion 420 formed by coating a negative electrode active material on the negative electrode current collector 410 .
  • an anode active material portion 420 may be formed by coating both sides of the anode current collector 410 .
  • the negative electrode uncoated portion 430 of the negative electrode current collector 410 to which the negative electrode active material is not coated extends in the first direction d1.
  • the negative electrode uncoated portion 430 extends along one end of the wound negative electrode 400 .
  • the cathode uncoated portion 430 extends beyond the separator 600 in the first direction d1. Accordingly, the cathode uncoated portion 430 may be exposed at one end of the jelly roll structure 300S in the first direction.
  • the positive electrode 500 includes a positive electrode current collector 510 and a positive electrode active material portion 520 formed by coating a positive electrode active material on the positive electrode current collector 510 .
  • the positive electrode active material portion 520 may be formed by coating both surfaces of the positive electrode current collector 510 .
  • the positive electrode uncoated portion 530 to which the positive electrode active material is not applied extends in the second direction d2.
  • the anode uncoated portion 530 extends along one end of the anode 500 to be wound.
  • the anode uncoated portion 530 extends beyond the separator 600 in the second direction d2. Accordingly, the anode uncoated portion 530 may be exposed at one end of the jelly roll structure 300S in the second direction.
  • first direction d1 and the second direction d2 are directions opposite to each other.
  • first direction (d1) and the second direction (d2) may be a direction parallel to the height direction of the jelly roll structure (300S).
  • the electrode assembly 300 is not in the form of attaching a separate electrode tab, but the negative electrode uncoated portion 430 of the anode current collector 410 and the positive electrode uncoated portion 430 of the positive current collector 510 to reduce resistance.
  • This is a form in which the unit 530 itself is used as an electrode tab.
  • the cathode uncoated portion 430 and/or the anode uncoated portion 530 may have substantially the same structure as the electrode uncoated portion described above.
  • the positive electrode active material portion 520 includes a loading reducing portion 500D having a smaller loading amount of the positive electrode active material than an adjacent area, and the loading decreasing portion 500D is in the first direction d1 of the positive electrode 500. ) is located at one end of In addition, more specifically, the loading reducing unit 500D may gradually decrease the loading amount of the cathode active material in the first direction d1.
  • the loading amount means the application amount of the active material per unit area.
  • the portion having a large loading amount may have a relatively thick thickness of the negative active material portion or the positive electrode active material portion because a large amount of negative active material or positive active material is applied to a unit area.
  • a small amount of the negative electrode active material or the positive electrode active material is applied to a unit area, so that the thickness of the negative electrode active material portion or the positive electrode active material portion may be relatively thin.
  • An active material portion may be formed by applying a slurry containing an active material. In this process, a boundary portion in which a loading amount gradually decreases may be formed between the uncoated portion and the active material portion.
  • the negative electrode active material portion 420 may include a negative electrode boundary portion 420B forming a boundary between the negative electrode active material portion 420 and the negative electrode uncoated portion 430 .
  • a loading amount of the negative electrode boundary portion 420B may decrease toward a direction in which the negative electrode uncoated portion 430 is located.
  • the positive electrode active material portion 520 may include a positive electrode boundary portion 520B forming a boundary between the positive electrode active material portion 520 and the positive electrode uncoated portion 530 .
  • a loading amount of the anode boundary portion 520B may decrease toward a direction in which the anode uncoated portion 530 is located.
  • the negative electrode boundary portion 420B or the positive electrode boundary portion 520B in which the loading amount gradually decreases, is naturally generated in the process of applying the slurry containing the active material to the negative current collector 410 or the positive current collector 510.
  • the amount of the positive electrode active material may be smaller than the amount of the negative electrode active material in a region corresponding to the positive boundary portion 520B based on a direction perpendicular to the second direction d2 . Since the N/P ratio has a value greater than 1, the problem of precipitation of metallic lithium does not occur.
  • the problem is the area corresponding to the cathode boundary portion 420B.
  • the amount of the negative electrode active material may be smaller than the amount of the positive electrode active material. This may cause a problem in that metal lithium is precipitated because the N/P ratio has a value smaller than 1.
  • the loading reduction unit 500D is provided on the positive electrode 500, and the negative electrode active material unit 420 is located at a portion corresponding to the loading reduction unit 500D based on a direction perpendicular to the first direction d1. ) may be located. More specifically, the cathode boundary portion 420B may be located at a portion corresponding to the loading reducing portion 500D based on a direction perpendicular to the first direction d1 .
  • the area to which the cathode active material is coated can be increased without fear of lithium precipitation.
  • the loading amount of the positive electrode active material increases as the loading decreasing portion 500D moves in the first direction d1. It may have a gradually decreasing form. Therefore, it is possible to maintain a high N/P ratio between the anode 400 and the cathode 500 in the region where the anode boundary 420B is formed, thereby preventing lithium from being deposited.
  • FIG. 39 and 40 are diagrams illustrating a process of manufacturing an anode according to an embodiment of the present invention. Specifically, FIG. 39 is a plan view of the negative electrode sheet viewed from above, and FIG. 40 is a front view of the negative electrode sheet of FIG. 39 viewed from the front.
  • the negative active material portion 420 coated with the negative active material on the negative electrode current collector 410 and the negative electrode active material not coated A step of manufacturing the negative electrode sheet 400S such that the negative electrode uncoated portions 430 are alternately positioned.
  • the negative active material portion 420 may be formed by applying the negative active material so as to continue along the third direction d3 .
  • the plurality of negative active material portions 420 may be positioned to be spaced apart along the fourth direction d4 by spaced apart application areas along the fourth direction d4 perpendicular to the third direction d3. That is, the coating process may be performed so that the anode uncoated portion 430 is located between the plurality of anode active material portions 420 .
  • the third direction d3 and the fourth direction d4 are directions for description based on the negative electrode sheet 400S, and the first direction d1 and the second direction in the jelly roll structure 300S described above ( These are directions unrelated to d2).
  • FIG. 41 is a perspective view showing a negative electrode according to an embodiment of the present invention.
  • the negative electrode uncoated portion 430 and the negative electrode active material portion 420 have slits in a direction parallel to the third direction d3 , respectively. ting can be performed. Accordingly, several negative electrodes 400 as shown in FIG. 41 may be manufactured from the negative electrode sheet 400S. That is, the negative electrode 400 of FIG. 41 corresponds to one of several negative electrodes manufactured by slitting the negative electrode sheet 400S of FIGS. 39 and 40 .
  • the negative electrode 400 in which the negative electrode uncoated portion 430 extends to one side may be manufactured by slitting the negative electrode uncoated portion 430 and the negative electrode active material portion 420 of the negative electrode sheet 400S, respectively.
  • a slurry containing the negative electrode active material may be applied on the negative electrode current collector 410.
  • a cathode boundary portion 420B may be formed at the boundary, the loading amount of which decreases toward the direction in which the cathode uncoated portion 430 is located.
  • FIG. 42 and 43 are diagrams illustrating a process of manufacturing an anode according to an embodiment of the present invention. Specifically, FIG. 42 is a plan view of the cathode sheet viewed from above, and FIG. 43 is a front view of the cathode sheet of FIG. 42 viewed from the front.
  • the positive electrode active material portion 520 coated with the positive electrode active material on the positive electrode current collector 510 and the positive electrode active material not coated A step of manufacturing the positive electrode sheet 500S such that the positive electrode uncoated portions 530 are alternately positioned.
  • the cathode active material portion 520 may be formed by applying the cathode active material along the third direction d3.
  • the plurality of positive electrode active material parts 520 may be spaced apart by adjusting the coating interval along the fourth direction d4 perpendicular to the third direction d3. That is, the coating process may be performed so that the positive electrode uncoated portion 530 is positioned between the plurality of positive electrode active material portions 520 .
  • the third direction d3 and the fourth direction d4 are directions for description based on the positive electrode sheet 500S, and the first direction d1 and the second direction in the jelly roll structure 300S described above ( These are directions unrelated to d2).
  • FIG. 44 is a perspective view showing an anode 500 according to an embodiment of the present invention.
  • FIGS. 42 to 44 as indicated by dotted lines in FIGS. 42 and 43 , slits in a direction parallel to the third direction d3 for the positive electrode uncoated portion 530 and the positive electrode active material portion 520, respectively. ting can be performed. Accordingly, several positive electrodes 500 as shown in FIG. 44 may be manufactured from the positive electrode sheet 500S. That is, the positive electrode 500 of FIG. 44 corresponds to one of several positive electrodes manufactured by slitting the positive electrode sheet 500S of FIGS. 42 and 43 .
  • the positive electrode 500 in which the positive electrode uncoated portion 530 extends to one side may be manufactured by slitting the positive electrode uncoated portion 530 and the positive electrode active material portion 520 of the positive electrode sheet 500S, respectively.
  • a slurry containing the positive electrode active material may be applied on the positive electrode current collector 510.
  • An anode boundary portion 520B may be formed at the boundary, the loading amount of which decreases toward the direction where the anode uncoated portion 530 is located.
  • a step of forming a jelly roll structure 300S by winding the manufactured negative electrode 400 and the positive electrode 500 together with the separator 600 may be followed.
  • the negative electrode uncoated portion 430 extends beyond the separator 600 in a first direction d1
  • the anode uncoated portion 530 extends in a second direction opposite to the first direction d1. (d2) may extend beyond the separation membrane 600.
  • the cathode sheet 500S has a loading reduction region 500DA with a smaller loading amount of the cathode active material than an adjacent region.
  • the method of forming the loading reduction area 500DA and for example, it may be formed by adjusting the degree of application of the slurry.
  • the loading reduction region 500DA of the cathode active material portion 520 is slit.
  • the slitted loading reducing area 500DA forms a loading reducing portion 500D in which the loading amount of the positive electrode active material is smaller than that of the adjacent area in the jelly roll structure 300S shown in FIGS. 37 and 38 .
  • a loading reduction area 500DA having a smaller loading amount of the cathode active material than an area adjacent to the cathode active material portion 520 formed on the cathode sheet 500S is formed.
  • the loading reduction area 500DA may be formed at the center of the positive electrode active material portion 520 .
  • the loading reduction area 500DA may be configured such that the loading amount of the positive electrode active material gradually decreases toward the central portion 500C of the loading reduction area 500DA.
  • the loading reduction area By slitting the central portion 500C of the 500DA, the loading reducing portion 500D according to the present embodiment may be provided.
  • the loading reduction area 500DA is formed and the central portion 500C of the loading reduction area 500DA is slit.
  • a loading reducing portion 500D may be provided at one end of the manufactured anode 500, and an anode uncoated portion 530 may be provided at the other end of the anode 500 opposite to the one end. can be provided.
  • the loading reducing portion 500D is at one end of the anode 500 in the first direction d1.
  • the anode uncoated portion 530 may be located at one end of the anode 500 in the second direction d2.
  • the loading amount of the positive electrode active material in the loading reduction area 500D may gradually decrease in the first direction d1.
  • the negative active material portion 420 may be located at a portion corresponding to the loading reducing portion 500D based on a direction perpendicular to the first direction d1. More specifically, in the jelly roll structure 300S, the cathode boundary portion 420B may be located at a portion corresponding to the loading reducing portion 500D based on a direction perpendicular to the first direction d1.
  • the corresponding positional relationship between the loading reducing unit 500D and the cathode boundary unit 420B is omitted because it overlaps with the previously described content.
  • 45 is a view showing an electrode assembly according to a comparative example of the present invention.
  • 46 is a cross-sectional view showing a cross section taken along the cutting line BB' of FIG. 45;
  • the electrode assembly 600 according to the comparative example of the present invention includes a negative electrode 700, a positive electrode 800, and a separator 900, and includes a negative electrode 700 and a positive electrode 800. And the separator 900 is wound to form a jelly roll structure 600S.
  • the negative electrode 700 may include an anode current collector 710 , an anode active material portion 720 and an anode uncoated portion 730 .
  • the negative electrode uncoated portion 730 may extend in the first direction d1
  • the negative electrode active material portion 720 forms a boundary between the negative electrode active material portion 720 and the negative electrode uncoated portion 730, and the loading amount gradually increases.
  • a decreasing cathode boundary 720B may be included.
  • 47 is a view showing a process of manufacturing an anode 700 according to a comparative example of the present invention.
  • the negative electrode sheet 700S is manufactured so that the negative electrode active material portion 720 and the negative electrode uncoated portion 730 are alternately positioned along the fourth direction d4, the negative electrode uncoated portion 730 and the negative electrode active material
  • a plurality of negative electrodes 700 may be manufactured by slitting the portion 720 .
  • the positive electrode 800 may include a positive electrode current collector 810 , a positive electrode active material portion 820 and a positive electrode uncoated portion 880 .
  • the positive electrode uncoated portion 830 may extend in the second direction d2 opposite to the first direction d1, and the positive active material portion 820 includes the positive electrode active material portion 820 and the positive electrode uncoated portion 830. ) and may include an anode boundary portion 820B in which a loading amount gradually decreases.
  • FIG 48 is a view showing a process of manufacturing an anode 800 according to a comparative example of the present invention.
  • the positive electrode uncoated portion 830 and the positive electrode active material A plurality of anodes 800 may be manufactured by slitting the portion 820 .
  • the electrode assembly 600 according to the comparative example of the present invention may be manufactured by winding the manufactured negative electrode 700 and the positive electrode 800 together with the separator 900 .
  • the electrode assembly 600 according to the comparative example of the present invention may have a structure similar to the electrode assembly 300 according to the present embodiment, except for the loading reducing part 500D (see FIG. 38 ).
  • the positive electrode active material portion ( 820) cannot be located. If the positive electrode active material portion 820 extends to a portion corresponding to the negative electrode boundary portion 720B, the corresponding portion is a portion showing a low N/P ratio value, and metal lithium is highly likely to be deposited. Therefore, in order to prevent lithium precipitation, the length of the positive electrode active material portion 820 has to be limited. That is, the positive electrode active material portion 820 may be formed only in the region B1 as shown, and the positive active material portion 820 may not be formed in the region B2. This results in reducing the length of the positive electrode active material portion 820 due to the negative electrode boundary portion 720B.
  • the positive electrode active material is disposed at a portion corresponding to the negative electrode boundary portion 420B based on a direction perpendicular to the first direction d1.
  • a section 520 in particular a loading reduction section 500D, may be located. Since the loading reducing portion 500D having a smaller loading amount of the positive electrode active material than the adjacent area is provided at a position corresponding to the negative electrode boundary portion 420B, the N/P ratio in the corresponding portion can be maintained high and precipitation of lithium can be prevented. there is.
  • the cathode active material portion 520 may be formed as much as the area A1 and the area A2 in which the cathode active material portion 520 cannot be formed may be reduced.
  • the width of the positive electrode 500 in the height direction compared to the width of the negative electrode 400 in the height direction may be increased to 98% or more.
  • the electrode assembly 300 according to the present embodiment can increase the length of the positive electrode active material part by the amount of the loading reduction part 500D. It may have a higher energy density in a limited space than the electrode assembly 600 according to the comparative example.
  • the present invention is a jelly roll type electrode assembly having a structure in which a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode are wound in one direction, and a cylindrical battery housing in which the electrode assembly is accommodated; and a battery cap disposed above the battery housing to seal the battery housing.
  • the positive electrode according to the present invention includes single-particle active material particles having an average particle diameter D 50 of 5 ⁇ m or less as a positive electrode active material.
  • the cylindrical battery may further include an electrolyte solution, and the above description may be referred to for the electrolyte solution.
  • the electrode assembly may have a structure of a stack type, a stack/folding type, or a jelly roll type as described above.
  • the electrode assembly may have a positive electrode having a loading reducing portion as described above.
  • the amount of heat and gas generated inside the battery also increases. This is because the temperature and pressure inside the battery increase due to such heat and gas, which can cause the battery to ignite or explode. In order to prevent this, heat and gas inside the battery must be properly discharged to the outside, and for this, the cross-sectional area of the battery, which serves as a passage for discharging heat to the outside of the battery, must increase to match the increase in volume.
  • the increase in cross-sectional area does not reach the increase in volume, as the size of the battery increases, the amount of heat generated inside the battery increases, resulting in problems such as increased risk of explosion and reduced output.
  • the present invention proposes a cylindrical battery having a high safety while having a large volume so as to realize a high capacity.
  • the high-loading electrode to which the single-particle or quasi-single-particle type cathode active material is applied may be applied to a cylindrical battery, initial resistance characteristics and charge/discharge efficiency of the cylindrical battery may be improved.
  • the cylindrical battery according to the present invention significantly reduces the amount of gas generated compared to the prior art by applying a single-particle or quasi-single-particle type cathode active material, and thus realizes excellent safety even in a large-sized cylindrical battery having a form factor ratio of 0.4 or more.
  • the cylindrical battery according to the present invention may preferably be a battery having a tab-less structure that does not include an electrode tab, but is not limited thereto.
  • the positive electrode and the negative electrode each include a non-coated portion on which an active material layer is not formed, the positive electrode uncoated portion and the negative electrode uncoated portion are located at the top and bottom of the electrode assembly, respectively, and the positive electrode uncoated portion and a structure in which a current collector plate is coupled to the negative electrode uncoated portion, and the current collector plate is connected to an electrode terminal.
  • a positive electrode slurry was prepared by mixing in N-methylpyrrolidone, and then the positive electrode slurry was coated on one surface of an aluminum current collector sheet, dried at 120° C., and rolled to prepare a positive electrode.
  • conductive material super C
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • a jelly-roll type electrode assembly was prepared by stacking in the order of separator/anode/separator/cathode with a separator interposed between the positive electrode and the negative electrode prepared as described above, and then winding them.
  • a 4680 cell was manufactured by inserting the electrode assembly prepared as described above into a cylindrical battery can and then injecting an electrolyte solution.
  • a positive electrode active material As a positive electrode active material, it has a bimodal particle size distribution with a large average particle size D 50 of 9 ⁇ m and a small average particle size D 50 of 4 ⁇ m, and Li[Ni 0.9 Co 0.05 Mn 0.04 Al 0.01 ]O 2 in the form of secondary particles.
  • a 4680 cell was manufactured in the same manner as in Example 1 except for the fact that it was used.
  • each of the 4680 cells manufactured by Example 1 and Comparative Example 1 was placed in a hot box chamber at room temperature, heated up to 130° C. at a heating rate of 5° C./min, and maintained for 30 minutes. Shiki performed a hot box evaluation and measured the temperature change of the battery over time. For accurate evaluation, two hot box evaluations were performed on the cell of Example 1. The measurement results are shown in FIGS. 34a and 34b.
  • FIG. 34A is a graph showing hot box test results of 4680 cells manufactured in Example 1
  • FIG. 34B is a graph showing hot box test results of 4680 cells manufactured in Comparative Example 1.
  • 33A shows a SEM photograph of the positive electrode active material used in Example 2-1.
  • a cathode active material carbon nanotube: PVDF binder was mixed in N-methylpyrrolidone at a weight ratio of 97.8:0.6:1.6 to prepare a cathode slurry.
  • the positive electrode slurry was applied to one surface of an aluminum current collector sheet, dried at 120° C., and then rolled to prepare a positive electrode.
  • conductive material Super C: styrene-butadiene rubber (SBR) : carboxymethyl cellulose (CMC) mixed in water at a weight ratio of 96 : 2 : 1.5 : 0.5
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • a jelly-roll type electrode assembly was prepared by stacking in the order of separator/anode/separator/cathode with a separator interposed between the positive electrode and the negative electrode prepared as described above, and then winding them.
  • a 4680 cell was manufactured by inserting the electrode assembly prepared as described above into a battery can and then injecting an electrolyte solution.
  • 33B shows a SEM picture of the positive electrode active material used in Example 2-2.
  • the positive electrode active material has a bimodal particle size distribution with an average large particle size D 50 of 9 ⁇ m and a small average particle size D 50 of 4 ⁇ m, and a positive electrode active material in the form of secondary particles (composition: Li[Ni 0.9 Co 0.05 Mn 0.04 Al A 4680 cell was manufactured in the same manner as in Example 2-1, except that 0.01 ]O 2 ) was used.
  • 33C shows a SEM picture of the positive electrode active material used in Comparative Example 2-2.
  • each of the 4680 cells manufactured by Example 2-1 and Comparative Example 2-1 was put into a hot box chamber at room temperature, and the temperature was raised to 130 ° C. at a heating rate of 5 ° C./min, After maintaining for 30 minutes, the temperature change of the battery was measured. A case in which thermal runaway and ignition did not occur during the test was marked as Pass, and a case in which thermal runaway and/or ignition occurred was marked as Fail. Also, for the accuracy of the test, the test was performed twice or more for the cells of Examples 2-1 to 2-2.
  • FIGS. 34c and 34d are shown in Table 1 below and FIGS. 34c and 34d.
  • 34C is a graph showing the hot box test results of 4680 cells manufactured by Sample 1 of Example 2-1 and Comparative Example 2-1
  • FIG. 34D is a graph showing Samples 2 and 3 of Example 2-1 and Example 2 It is a graph showing the hot box test results of 4680 cells manufactured by Samples 1 and 2 of -2 and Comparative Example 2-2.
  • Example 2-1 One 16 139 Pass 2 20.9 141 Pass 3 23.7 137 Pass Example 2-2 One 16.0 148 Pass 2 15.8 147 Pass Comparative Example 2-1 One 17 not measurable Fail Comparative Example 2-2 One 16.2 not measurable Fail
  • Example 2-1 in the case of the 4680 cell of Example 2-1 to which the cathode active material in the form of a single particle/similar-single particle having a D min of 1.0 ⁇ m or more was applied, the battery remained stable until 65 minutes had elapsed.
  • the cell can confirm that the battery temperature has risen rapidly.
  • FIG. 35A shows a cross-sectional SEM image of the positive electrode prepared in Example 2-1
  • FIG. 35B shows a cross-sectional SEM image of the positive electrode prepared in Comparative Example 2-1.
  • the positive electrode slurry was applied to one surface of an aluminum current collector sheet, dried, and rolled at a line pressure of 3.0 ton/cm to prepare a positive electrode.
  • the porosity of the cathode active material layer of the cathode prepared as described above was measured, and the porosity was measured to be 17.5%.
  • a positive electrode was prepared in the same manner as in Example 3-1, except that the positive electrode active material, flaky graphite, conductive material, and binder were mixed in a weight ratio of 97.2: 0.6: 0.4: 1.8, and the porosity of the positive electrode active material layer was measured. did The porosity of the positive electrode active material layer was measured to be 19%.
  • a positive electrode was prepared in the same manner as in Example 3-1, except that the positive electrode active material, flaky graphite, conductive material, and binder were mixed in a weight ratio of 97.4: 0.4: 0.4: 1.8, and the porosity of the positive electrode active material layer was measured. did The porosity of the positive electrode active material layer was measured to be 20%.
  • a positive electrode was prepared in the same manner as in Example 3-1, except that the positive electrode active material, flaky graphite, conductive material, and binder were mixed in a weight ratio of 97.6: 0.2: 0.4: 1.8, and the porosity of the positive electrode active material layer was measured. did The porosity of the positive electrode active material layer was measured to be 21%.
  • Example 3-1 Except for the fact that a positive electrode slurry was prepared by mixing the positive electrode active material, the conductive material, and the binder in N-methylpyrrolidone at a weight ratio of 97.8: 0.4: 1.8 without adding flaky graphite, the same as in Example 3-1 A positive electrode was prepared in the same manner, and the porosity of the positive electrode active material layer was measured. The porosity of the positive electrode active material layer was measured to be 24%.
  • a positive electrode slurry was prepared by mixing a positive electrode active material, a conductive material, and a binder in N-methylpyrrolidone at a weight ratio of 97.8: 0.4: 1.8 without adding flaky graphite, and rolling at a linear pressure of 2.0 ton/cm
  • a positive electrode was prepared in the same manner as in Example 3-1 except for, and the porosity of the positive electrode active material layer was measured. The porosity of the positive electrode active material layer was measured to be 30%.
  • Coin half cells including positive electrodes according to Examples 3-1 to 3-4 and Comparative Examples 3-1 and 3-2 were prepared, charged up to 4.25V under a 0.2C current condition, and then 2.5V under a 0.2C current condition. After discharging to V, the charge capacity (mAh/g) and discharge capacity (mAh/g) of each coin half cell were measured. The measurement results are shown in Table 2 below.
  • Example 3-1 1.5 17.5 230.3 209.3 90.9
  • Example 3-2 0.6 19 229.4 206.9 90.2
  • Example 3-3 0.4 20 230.4 207.3 90.0
  • Example 3-4 0.2 21 229.1 205.5 89.7 Comparative Example 3-1 0 24 229.1 204.2 89.1 Comparative Example 3-2 0 30 225.4 199.7 88.6
  • Examples 3-1 to 3-4 using the positive electrode to which flaky graphite was added showed lower porosity and excellent capacity characteristics than Comparative Examples 3-1 to 3-2 can confirm.
  • Example 3-3 in which flaky graphite was added to the positive electrode active material layer, on the basis of SOC10%, was lower than Comparative Example 3-1 and Comparative Example 3-2, which did not contain flaky graphite. You can check. This shows that when flaky graphite is added to the positive electrode active material layer, resistance characteristics at a low SOC are improved.
  • Example 3-1, Example 3-3, and Comparative Example 3-1, with a separator interposed between the positive electrode and the negative electrode, laminated in the order of separator/anode/separator/cathode, and then wound up to form a jelly-roll type electrode assembly was manufactured.
  • a 4680 cell was manufactured by inserting the electrode assembly prepared as described above into a cylindrical battery can and then injecting an electrolyte solution.
  • conductive material super C
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

본 발명의 일 실시예에 따른 원통형 배터리는, 전극 조립체; 개방부를 통해 상기 전극 조립체를 수용하며, 제1 전극 탭과 연결되는 배터리 하우징; 전극 조립체에 배치되는 지지부, 지지부로부터 연장되는 적어도 하나의 제1 탭 결합부 및 제1 탭 결합부의 단부로부터 연장되는 적어도 하나의 하우징 결합부를 포함하는 제1 집전판; 전극 조립체에 배치되는 테두리부, 테두리부로부터 내측으로 연장되는 제2 탭 결합부 및 제2 탭 결합부와 이격되어 위치하는 단자 결합부를 구비하는 제2 집전판; 개방부를 밀폐하도록 구성되는 캡 플레이트; 및 단자 결합부와 결합하는 배터리 단자;를 포함한다.

Description

원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
본 발명은, 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차에 관한 것이다.
좀 더 구체적으로는, 본 발명은, 배터리의 사용 과정에서 외부 충격이나 진동이 가해지더라도 부품 간의 용접 부위에 힘이 집중되지 않도록 할 수 있는 구조를 갖는 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차에 관한 것이다.
또한, 본 발명은 전기화학적 특성이 향상된 전기화학소자용 양극 및 상기 양극을 포함하는 전극 조립체에 관한 것이다.
본 출원은 2021년 10월 22일 자로 출원된 한국 특허출원번호 제 10-2021-0142187에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
제품 군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의하여 구동하는 전기 자동차(EV, Electric Vehicle), 하이브리드 자동차(HEV, Hybrid Electric Vehicle) 등에 보편적으로 응용되고 있다.
이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 장점 또한 갖기 때문에 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
현재 널리 사용되는 이차 전지의 종류에는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등이 있다. 이러한 단위 이차 전지 셀의 작동 전압은 약 2.5V ~ 4.5V이다. 따라서, 이보다 더 높은 출력 전압이 요구될 경우, 복수 개의 배터리를 직렬로 연결하여 배터리 팩을 구성한다. 또한, 배터리 팩에 요구되는 충방전 용량에 따라 다수의 배터리를 병렬 연결하여 배터리 팩을 구성하기도 한다. 따라서, 배터리 팩에 포함되는 배터리의 개수 및 전기적 연결 형태는 요구되는 출력 전압 및/또는 충방전 용량에 따라 다양하게 설정될 수 있다.
한편, 이차 전지 셀의 종류로서, 원통형, 각형 및 파우치형 배터리가 알려져 있다. 원통형 배터리의 경우, 양극과 음극 사이에 절연체인 분리막을 개재하고 이를 권취하여 젤리롤 형태의 전극 조립체를 형성하고, 이를 전해질과 함께 배터리 하우징 내부에 삽입하여 전지를 구성한다. 그리고 양극 및 음극 각각의 무지부에는 스트립 형태의 전극 탭이 연결될 수 있으며, 전극 탭은 전극 조립체와 외부로 노출되는 전극 단자 사이를 전기적으로 연결시킨다. 참고로, 양극 전극 단자는 배터리 하우징의 개방구를 밀봉하는 밀봉체의 캡 플레이트이고, 음극 전극 단자는 배터리 하우징이다.
그런데, 이와 같은 구조를 갖는 종래의 원통형 배터리에 의하면, 양극 무지부 및/또는 음극 무지부와 결합되는 스트립 형태의 전극 탭에 전류가 집중되기 때문에 저항이 크고 열이 많이 발생하며 집전 효율이 좋지 않다는 문제점이 있었다.
18650이나 21700의 폼 팩터를 가진 소형 원통형 배터리는 저항과 발열이 큰 이슈가 되지 않는다. 하지만, 원통형 배터리를 전기 자동차에 적용하기 위해 폼 팩터를 증가시킬 경우, 급속 충전 과정에서 전극 탭 주변에서 많은 열이 발생하면서 원통형 배터리가 발화하는 문제가 발생할 수 있다.
이러한 문제점을 해결하기 위해, 젤리롤 타입의 전극 조립체의 상단 및 하단에 각각 양극 무지부 및 음극 무지부가 위치하도록 설계하고, 이러한 무지부에 집전판을 용접시켜 집전 효율이 개선된 구조를 갖는 원통형 배터리(소위 탭-리스(Tab-less) 원통형 배터리)이 제시되었다.
다음은, 도 1 내지 도 4를 참조하여, 종래의 원통형 배터리에 대해서 좀 더 구체적으로 설명하기로 한다.
도 1 내지 도 3은 탭-리스 원통형 배터리의 제조 과정을 보여주는 도면이다. 도 1은 전극의 구조를 나타내고, 도 2는 전극의 권취 공정을 나타내고, 도 3은 무지부의 절곡면에 집전판이 용접되는 공정을 나타낸다. 도 4는 탭-리스 원통형 배터리를 길이 방향(Y)으로 자른 단면도이다.
도 1 내지 도 4를 참조하면, 양극(500)은 양극 시트(500S)에 양극 활물질부(520)와 권취방향을 따라 한쪽 장변 측에 양극 무지부(530)를 포함하고, 음극(400)은 음극시트(400S)에 음극 활물질부(420)와 권취방향을 따라 한 쪽 장변 측에 음극 무지부(430)를 포함하는 구조를 갖는다. 전극 조립체(300)는 양극(500)과 음극(400)을 도 2에 도시된 것처럼 2장의 분리막(600)과 함께 순차적으로 적층시킨 후 일방향(X)으로 권취시켜 제작한다. 이 때, 양극(500)의 무지부(530)와 음극(400)의 무지부(430)는 서로 반대 방향으로 배치된다.
권취 공정 이후, 양극(500)의 무지부(530)와 음극(400)의 무지부(430)는 코어측으로 절곡된다. 그 이후에는, 무지부(530,430)에 집전판(50, 30)를 각각 용접시켜 결합시킨다.
양극 무지부(530)와 음극 무지부(430)에는 별도의 전극 탭이 결합되어 있지 않으며, 집전판(50, 30)가 외부의 전극 단자와 연결되며, 전류 패스가 전극 조립체(300)의 권취 축 방향(화살표 참조)을 따라 큰 단면적으로 형성되므로 배터리의 저항을 낮출 수 있는 장점이 있다. 저항은 전류가 흐르는 통로의 단면적에 반비례하기 때문이다.
하지만, 원통형 배터리의 폼 팩터가 증가하고 급속 충전 시 충전 전류의 크기가 커지면 탭-리스 원통형 배터리에서도 발열 문제가 또 다시 발생한다.
구체적으로, 종래의 탭-리스 원통형 배터리(1)는 도 4에 도시된 바와 같이 배터리 하우징(20)과 밀봉체(A)를 포함한다. 밀봉체(A)는 캡 플레이트(40), 실링 가스켓(G1) 및 연결 플레이트(C1)를 포함한다. 실링 가스켓(G1)은 캡 플레이트(40)의 가장자리를 감싸며 크림핑부(22)에 의해 고정된다. 또한, 전극 조립체(300)는 상하 유동을 방지하기 위해 비딩부(21)에 의해 배터리 하우징(20) 내에 고정된다.
통상적으로 양극 단자는 밀봉체(A)의 캡 플레이트(40)고 음극 단자는 배터리 하우징(20)이다. 따라서, 양극(500)의 무지부(530)에 결합된 제2 집전판(50)은 스트립 형태의 리드(L)를 통해 캡 플레이트(40)에 부착된 연결 플레이트(C1)에 전기적으로 연결된다. 또한, 음극(400)의 무지부(430)에 결합된 제1 집전판(30)은 배터리 하우징(20)의 바닥에 전기적으로 연결된다. 인슐레이터(S)는 제2 집전판(50)을 커버하여 극성이 다른 배터리 하우징(20)과 양극(500)의 무지부(530)가 서로 접촉하여 단락을 일으키는 것을 방지한다.
제2 집전판(50)이 연결 플레이트(C1)에 연결될 때에는 스트립 형태의 리드(L)가 사용된다. 리드(L)는 제2 집전판(50)에 별도로 부착하거나, 제2 집전판(50)과 일체로 제작된다. 그런데, 리드(L)는 두께가 얇은 스트립 형태이므로 단면적이 작아서 급속충전 전류가 흐를 경우 열이 많이 발생한다. 또한, 리드(L)에서 발생한 과도한 열은 전극 조립체(300) 측으로 전달되어 분리막(600)을 수축시킴으로써 열 폭주의 주요 원인인 내부 단락을 일으킬 수 있다.
리드(L)는 또한 배터리 하우징(20) 내에서 상당한 설치 공간을 차지한다. 따라서, 리드(L)가 포함된 원통형 배터리(1)는 공간 효율성이 낮아서 에너지 밀도를 증가시키는데 한계가 있다.
뿐만 아니라, 종래의 탭-리스 원통형 배터리(1)를 직렬 및/또는 병렬로 연결하기 위해서는 밀봉체(A)의 캡 플레이트(40)와 배터리 하우징(20)의 바닥 면에 버스 바 부품을 연결해야 하므로 공간 효율성이 떨어진다. 전기 자동차에 탑재되는 배터리 팩은 수 백 개의 원통형 배터리(1)를 포함한다. 따라서, 전기적 배선의 비효율성은 전기 자동차의 조립 과정, 그리고 배터리 팩의 유지 보수 시에도 상당한 번거로움을 초래한다. 따라서, 복수의 원통형 배터리의 전기적 연결 구조를 단순하게 할 수 있도록, 양극 단자와 음극 단자가 동일 방향에 적용된 구조를 갖는 원통형 배터리에 대한 개발이 요구된다.
한편, 종래의 원통형 배터리는, 전극 조립체와 외부 단자를 이어주는 탭을 전극 조립체의 포일에 용접하여 연결하는 구조를 갖는 것이 일반적이었다. 이러한 구조의 원통형 배터리는, 전류의 경로(path)가 한정적이고 전극 조립체의 자체 저항이 매우 높을 수 밖에 없었다.
이에 따라, 전극 조립체와 외부 단자를 이어주는 탭의 개수를 늘려 저항을 낮추는 방식이 시도되었으나, 이처럼 탭의 개수를 늘리는 것만으로는 원하는 수준으로 저항을 낮추고 전류의 경로(path)를 충분히 확보하는 데에 한계가 있었다.
이에 따라, 전극 조립체의 자체 저항 감소를 위해 새로운 전극 조립체 구조의 개발 및 이러한 전극 조립체의 구조에 적합한 집전판 구조의 개발이 필요하다. 특히, 이러한 새로운 구조의 전극 조립체 및 집전판의 적용은, 예를 들어 전기 자동차와 같이 고출력/고용량을 갖는 배터리 팩을 요구하는 디바이스에 그 필요성이 더욱 크다.
또한, 집전판과 배터리 하우징 사이의 결합력이 향상된 상태로 유지되는 구조를 갖는 원통형 배터리 및 이러한 원통형 배터리에 적용되는 집전판 구조의 개발에 대한 필요성이 있다.
아울러, 집전판과 배터리 하우징이 결합될 경우, 배터리 하우징 내부의 데드 스페이스를 최소화함으로써, 원통형 배터리의 에너지 밀도를 향상시킨 원통형 배터리의 개발에 대한 필요성이 대두되었다.
한편, 배터리의 적용 영역은 매우 다양하다. 이 중, 예를 들어 전기 자동차와 같은 디바이스에 적용되는 배터리 팩은 대용량 및 고출력이 요구된다. 또한, 이러한 대용량 및 고출력을 갖는 배터리 팩은, 예를 들어 원통형 배터리를 단위 전지로서 포함할 수 있다.
대용량 및 고출력 특성을 갖는 원통형 배터리의 경우, 집전 효율을 높이기 위해 젤리롤의 양 면 전체에 걸쳐 전극 탭이 구비되고, 젤리롤의 양 면 상에 각각 집전판이 결합될 수 있다. 이러한 구조의 적용을 통해 전극 탭과 집전판의 접촉 면적을 극대화 하고, 이로써 부품 간의 연결 부위에서 발생되는 저항을 최소화 할 수 있다.
상술한 바와 같이, 원통형 배터리가 예를 들어 자동차와 같은 디바이스에 적용되는 경우, 사용 과정에서 외부 충격 및 진동이 빈번하게 가해질 수 있으며, 이로 인해 부품 간의 전기적 연결을 위한 결합 부위에 파손이 발생될 수 있다. 이러한 결합 부위의 파손은 제품 불량을 야기한다.
또는, 전기적 연결을 위한 결합 부위가 파손되어 전기적 연결이 완전히 차단되지는 않더라도, 용접 부위가 일부 손상되어 부품 간의 결합 면적이 감소되는 경우에도 저항의 증가로 인한 과도한 열의 발생이나 부품의 형태 변형으로 인한 내부 쇼트의 발생 등의 문제가 있을 수 있다.
따라서, 사용 과정에서 외부 충격 및/또는 진동이 가해지더라도 부품 간의 결합 부위에 힘이 집중되지 않도록 할 수 있는 구조를 갖는 원통형 배터리의 개발이 요구된다.
다른 한편으로, 종래의 2차 입자를 포함하는 양극 활물질을 적용하여 전극 제조 시 입자 깨짐이 발생하고 충방전 시의 내부 크랙 발생으로 인한 가스 발생량이 증가하여 전지 안정성에 문제가 발생할 수 있다.
이를 해결하기 위해 1차 입자의 크기가 비교적 큰 단입자 또는 유사-단입자 형태의 양극 활물질이 개발되었으나, 상기 단입자 또는 유사-단입자 형태의 양극 활물질을 고로딩 전극에 적용하고 압연하는 경우 전극 공극률이 목표한 수준까지 달성되지 않은 상태에서 전극이 깨져버리는 문제점이 있었으며, 리튬 이차 전지의 저항 특성과 충방전 효율이 좋지 않은 문제가 있었다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 저저항 구조를 갖는 전극 조립체에 적합한 구조를 갖는 집전판 및 이를 포함하는 원통형 배터리를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 집전판과 배터리 하우징과의 결합 부위의 결합력을 향상시킬 수 있는 구조를 갖는 집전판 및 이를 포함하는 원통형 배터리를 제공하는 것을 목적으로 한다.
아울러, 본 발명은, 원통형 배터리의 에너지 밀도를 향상시킬 수 있는 구조를 갖는 집전판 및 이를 포함하는 원통형 배터리를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 원통형 배터리를 제조함에 있어서, 배터리 하우징과 집전판의 전기적 연결을 위한 용접 공정의 편의성을 높이고, 이로써 생산성을 향상시킬 수 있는 구조를 갖는 집전판 및 이를 포함하는 원통형 배터리를 제공하는 것을 목적으로 한다.
또한, 배터리의 사용 과정에서 외부 충격 및/또는 진동이 가해지더라도 그 충격 및/또는 진동이 특정 부위에 집중되지 않고 분산될 수 있도록 함으로써 부품 간의 결합 부위에 파손이 발생되는 것을 방지하는 것을 일 목적으로 한다.
한편, 본 발명은, 전류 차단 부재의 추가적인 설치를 하지 않더라도, 집전판 자체에서 전류 차단 기능을 수행할 수 있도록 함으로써 단락 등으로 인한 과전류 발생 시에 전류가 신속히 차단되어 배터리 사용상의 안전성이 확보될 수 있도록 하는 것을 또 다른 목적으로 한다.
본 발명의 또 다른 기술적 과제는 양극 활물질로 단입자 또는 유사-단입자를 적용함으로써 우수한 열 안정성을 구현할 수 있고 전기 전도성이 높으며 압연특성이 높은 전극 및 이를 포함하는 전극 조립체를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 음극에 실리콘계 음극 활물질을 포함시켜 에너지 밀도가 개선된 전극 조립체를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 리튬의 석출 우려 없이 양극 활물질부 구간이 증가된 전극 조립체를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 폼 팩터의 증가로 인해 배터리의 부피가 증가하여도 우수한 열 안전성을 나타낼 수 있는 원통형 배터리를 제공하는데 있다.
마지막으로 본 발명은 부피가 증가하여도 우수한 열 안전성을 나타낼 수 있는 원통형 리튬 이차 전지를 제공한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 원통형 배터리는, 제1 전극 탭 및 제2 전극 탭을 구비하는 전극 조립체; 일 측에 형성된 개방부를 통해 상기 전극 조립체를 수용하며, 상기 제1 전극 탭과 전기적으로 연결되는 배터리 하우징; 상기 전극 조립체의 일 면에 배치되는 지지부, 상기 지지부로부터 연장되어 상기 제1 전극 탭과 결합되는 적어도 하나의 제1 탭 결합부 및 상기 제1 탭 결합부의 단부로부터 연장되어 상기 배터리 하우징의 내측 면 상에 결합되는 적어도 하나의 하우징 결합부를 포함하는 제1 집전판; 상기 전극 조립체의 일 면의 반대편에 위치하는 타 면에 배치되는 테두리부, 상기 테두리부로부터 내측으로 연장되며 상기 제2 전극 탭과 결합되는 제2 탭 결합부 및 상기 제2 탭 결합부와 이격되어 위치하는 단자 결합부를 구비하는 제2 집전판; 상기 배터리 하우징의 개방부를 밀폐하도록 구성되는 캡 플레이트; 및 상기 단자 결합부와 결합함으로써 상기 제2 전극 탭과 전기적으로 연결되는 배터리 단자;를 포함한다.
상기 배터리 하우징은, 상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 포함할 수 있다.
상기 하우징 결합부는, 상기 배터리 하우징의 비딩부 상에 결합될 수 있다.
상기 하우징 결합부는, 상기 배터리 하우징의 비딩부 상에 결합되는 접촉부; 및 상기 제1 탭 결합부와 상기 접촉부 사이를 연결하는 제1 연결부; 를 포함할 수 있다.
상기 원통형 배터리는, 상기 배터리 하우징과 상기 캡 플레이트 사이에 구비된 실링 가스켓을 포함할 수 있다.
상기 접촉부는, 상기 배터리 하우징의 비딩부와 상기 실링 가스켓 사이에 개재되어 고정될 수 있다.
상기 배터리 하우징의 비딩부와 상기 제1 집전판의 접촉부 사이에는 용접부가 형성될 수 있다.
상기 제1 탭 결합부는, 상기 전극 조립체의 원주를 테두리로 하는 영역의 내 측에 배치될 수 있다.
상기 원통형 배터리는, 상기 제1 탭 결합부 및 상기 하우징 결합부를 각각 복수 개 구비할 수 있다.
상기 제1 연결부는, 연장 방향이 전환되는 밴딩부를 적어도 하나 구비할 수 있다.
상기 접촉부는, 상기 배터리 하우징의 비딩부를 따라 연장된 호 형태를 가질 수 있다.
상기 제1 연결부는, 상기 접촉부를 따라 연장된 호 형태를 가질 수 있다.
상기 테두리부는, 중심부가 비어 있는 림 형태를 가질 수 있다.
상기 제2 탭 결합부 및 상기 단자 결합부는, 상기 테두리부에 의해 전기적으로 연결될 수 있다.
상기 단자 결합부는, 상기 테두리부의 내측 공간의 중심부에 위치할 수 있다.
상기 제2 집전판은, 상기 테두리부로부터 내측으로 연장되어 상기 단자 결합부와 연결되는 제2 연결부를 더 포함할 수 있다.
상기 제2 연결부는, 적어도 그 일부가, 상기 제2 탭 결합부와 비교하여 그 폭이 더 작게 형성될 수 있다.
상기 제2 연결부는, 상기 테두리부의 내측면으로부터 상기 단자 결합부를 향하는 방향을 따라 그 폭이 점점 좁아지는 테이퍼부를 구비할 수 있다.
상기 제2 탭 결합부는, 복수개가 구비될 수 있다.
복수의 상기 제2 탭 결합부는, 상기 테두리부의 연장 방향을 따라 서로 동일 간격으로 배치될 수 있다.
복수의 상기 제2 탭 결합부 각각의 연장 길이는, 서로 동일하게 형성될 수 있다.
상기 단자 결합부는, 복수의 상기 제2 탭 결합부에 의해 둘러 싸이도록 배치될 수 있다.
상기 제2 연결부는, 서로 인접한 한 쌍의 제2 탭 결합부 사이에 위치하며, 상기 제2 연결부로부터 상기 테두리부의 연장 방향을 따라 상기 한 쌍의 제2 탭 결합부 중 어느 하나에 이르는 거리는, 상기 제2 연결부로부터 상기 테두리부의 연장 방향을 따라 상기 한 쌍의 제2 탭 결합부 중 나머지 하나에 이르는 거리와 동일할 수 있다.
상기 제2 연결부는, 복수개가 구비될 수 있다.
복수의 제2 연결부 각각은, 서로 인접한 한 쌍의 제2 탭 결합부 사이에 배치될 수 있다.
복수의 상기 제2 연결부는, 상기 테두리부의 연장 방향을 따라 서로 동일 간격으로 배치될 수 있다.
상기 제2 연결부는, 상기 제2 연결부의 폭을 감소시키도록 형성된 노칭부를 구비할 수 있다.
상기 제2 연결부는, 상기 제2 연결부의 폭을 감소시키도록 형성된 노칭부를 구비하며, 상기 노칭부는, 상기 단자 결합부보다 상기 테이퍼부에 더 가깝게 위치할 수 있다.
상기 단자 결합부는, 상기 젤리롤의 권취 중심부에 형성된 홀과 대응되는 위치에 배치될 수 있다.
상기 제2 전극 탭은, 상기 배터리 하우징의 상기 개방부의 반대 편에 위치하는 폐쇄부를 향해 연장될 수 있다.
상기 제2 탭 결합부는, 상기 제2 전극 탭의 단부가 상기 제2 집전판과 나란한 방향을 따라 절곡되어 형성된 결합 면 상에 결합될 수 있다.
상기 캡 플레이트는, 상기 전극 조립체와 연결되지 않아 극성을 갖지 않도록 구성될 수 있다.
상기 배터리 단자는, 상기 배터리 하우징의 상기 개방부의 반대 편에 위치하는 폐쇄부를 관통할 수 있다.
상기 원통형 배터리는, 상기 폐쇄부와 상기 제2 집전판 사이에 개재되는 인슐레이터를 더 포함할 수 있다.
상기 배터리 단자는, 상기 인슐레이터를 통과하여 상기 제2 집전판의 상기 단자 결합부와 결합될 수 있다.
한편, 본 발명의 일 실시예에 따른 제2 집전판은, 원통형 배터리의 배터리 하우징 폐쇄부와 전극 조립체 사이에 개재되며, 상기 전극 조립체의 일 면 상에 결합된다. 상기 제2 집전판은, 테두리부; 상기 테두리부로부터 내측으로 연장되며 상기 전극 조립체에 구비된 제2 극성의 전극 탭과 결합되는 제2 탭 결합부; 및 상기 제2 탭 결합부와 이격되어 위치하는 단자 결합부; 를 포함한다.
상기 제2전극의 활물질층은, 단입자, 유사-단입자 또는 이들의 조합을 포함하는 양극 활물질을 포함하고, 상기 양극 활물질의 체적 누적 분포에서 나타나는 최소 입자 크기인 Dmin은 1.0㎛ 이상이고, 상기 양극 활물질의 체적 누적 분포에서 체적 누적량이 50%일 때의 입자 크기인 D50이 5.0㎛ 이하이고, 상기 양극 활물질의 체적 누적 분포에서 나타나는 최대 입자 크기인 Dmax가 12㎛ 내지 17㎛일 수 있다.
상기 양극 활물질은 체적 누적 입도 분포 그래프에서 단일 피크(single peak)를 나타내는 유니모달 입도 분포를 가지며, 하기 식으로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하일 수 있다.
식: 입도 분포(PSD) = (Dmax - Dmin)/D50
상기 단입자, 유사-단입자 또는 이들의 조합은 상기 제2전극의 활물질층에 포함된 양극 활물질의 전체 중량을 기준으로 95wt% 내지 100wt%의 양으로 포함될 수 있다.
상기 양극 활물질은 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함할 수 있다.
상기 제2전극의 활물질층은 공극율이 15% 내지 23%이고, 상기 제2전극의 활물질층은 0.05wt% 내지 5wt%의 중량 비율로 인편상 흑연을 포함할 수 있다.
상기 제2전극의 활물질층은 탄소나노튜브를 더 포함할 수 있다.
상기 제1전극의 활물질층은, 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함하고, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함될 수 있다.
본 발명의 일 실시예에 따른 배터리 팩은, 상술한 바와 같은 본 발명의 일 실시예에 따른 원통형 배터리를 포함한다.
본 발명의 일 실시예에 따른 자동차는, 상술한 바와 같은 본 발명의 일 실시예에 따른 배터리 팩을 포함한다.
본 발명에 따르면, 전극 조립체와 배터리 하우징 사이를 전기적으로 연결함에 있어서 저항을 크게 낮출 수 있다.
또한, 본 발명에 따르면, 집전판과 배터리 하우징과의 결합 부위의 결합력을 향상시킬 수 있다.
아울러, 본 발명에 따르면, 원통형 배터리의 에너지 밀도를 향상시킬 수 있다.
또한, 본 발명에 따르면, 원통형 배터리를 제조함에 있어서, 배터리 하우징과 집전판의 전기적 연결을 위한 용접 공정의 편의성을 높이고, 이로써 생산성을 향상시킬 수 있게 된다.
아울러, 본 발명의 일 측면에 따르면, 배터리의 사용 과정에서 외부 충격 및/또는 진동이 가해지더라도 그 충격 및/또는 진동이 특정 부위에 집중되지 않고 분산될 수 있도록 함으로써 부품 간의 결합 부위에 파손이 발생되는 것을 방지할 수 있다.
한편, 본 발명의 다른 측면에 따르면, 전류 차단 부재의 추가적인 설치를 하지 않더라도, 집전판 자체에서 전류 차단 기능을 수행할 수 있게 되며, 이에 따라 단락 등으로 인한 과전류 발생 시에 전류가 신속히 차단되어 배터리 사용상의 안전성이 확보될 수 있다.
본 발명의 또 다른 측면에 따르면, 양극이, Dmin이 1.0㎛ 이상인 양극 활물질 분말을 포함함으로써, 전지의 열 안전성을 더욱 개선할 수 있다. 본 발명자들의 연구에 따르면, 양극 활물질로 단입자 및/또는 유사-단입자를 적용하더라도, 양극 활물질 분말의 입도에 따라 압연 후 입자 깨짐 억제 및 열 안전성 개선 효과가 상이한 것으로 나타났다. 특히, 양극 활물질 분말 내에 입경이 1.0㎛ 미만인 입자들이 포함될 경우, 압연 공정에서 선압이 증가하여 입자 깨짐이 증가하고 열 안정성이 저하되어 대형 원통형 전지 적용 시에 열 안전성을 충분히 확보할 수 없었다. 따라서, 본 발명에서는 최소 입자 크기(Dmin)가 1.0㎛ 이상으로 제어된 양극 활물질 분말을 사용함으로써, 열 안전성 개선 효과를 극대화할 수 있도록 하였다.
본 발명의 또 다른 측면에 따르면, 양극이, D50, Dmax, 및 입도 분포(PSD)가 적절하게 조절된 양극 활물질 분말을 포함함으로써, 단입자 적용으로 인한 저항 증가를 최소화할 수 있도록 함으로써, 우수한 용량 특성 및 출력 특성을 구현할 수 있도록 하였다.
본 발명의 또 다른 측면에 따르면, 양극은 도전성 코팅층이 피복된 단입자계 양극 활물질을 포함하거나 신규 CNT가 도전재로 함유됨으로써 전극의 도전성이 개선될 수 있다.
본 발명의 또 다른 측면에 따르면, 양극 활물질층에 인편상 흑연이 포함되므로 양극 활물질층을 압연하는 경우, 상기 인편상 흑연이 상기 양극 활물질에 미끄러짐 효과를 제공하여 전극의 압연 특성이 향상되고, 전극 공극률을 목표하는 수준까지 낮출 수 있다. 이에 따라, 원통형 배터리의 안정성, 초기 저항 특성, 및 충방전 효율이 개선된다.
본 발명의 또 다른 측면에 따르면, 음극에 용량이 큰 실리콘계 음극 활물질이 포함됨으로써 더 높은 에너지 밀도를 구현할 수 있다.
본 발명의 또 다른 측면에 따르면, 양극 활물질의 로딩량이 적은 로딩 감소부가 양극에 포함되므로 리튬의 석출 우려 없이 양극 활물질부의 구간을 늘릴 수 있다.
본 발명의 또 다른 측면에 따르면, 스트립 형태의 전극 탭을 구비한 종래의 배터리와 비교하여 배터리의 내부 발열을 효과적으로 감소시킬 수 있으므로 배터리의 열 안전성이 개선될 수 있다.
다만, 본 발명을 통해 얻을 수 있는 효과는 상술한 효과들에 제한되지 않으며, 언급되지 않은 또 다른 기술적인 효과들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래의 탭-리스 원통형 배터리 셀에 사용되는 전극의 구조를 나타낸 평면도이다.
도 2는 종래의 탭-리스 원통형 배터리 셀에 포함되는 전극 조립체의 권취 공정을 나타낸 도면이다.
도 3은 도 2의 전극 조립체에서 무지부의 절곡면에 집전판이 용접되는 공정을 나타낸 도면이다.
도 4는 종래의 탭-리스 원통형 배터리 셀을 길이 방향(Y)으로 자른 단면도이다.
도 5은 본 발명의 일 실시예를 따르는 원통형 배터리의 종단면도의 일부를 나타내는 도면이다.
도 6는 본 발명의 다른 실시예를 따르는 원통형 배터리의 종단면도의 일부를 나타내는 도면이다.
도 7은 본 발명의 또 다른 실시예를 따르는 원통형 배터리의 종단면도의 일부를 나타내는 도면이다.
도 8는 도 7의 원통형 배터리에 포함된 제1 집전판을 설명하기 위한 도면이다.
도 9는 본 발명의 다른 실시예를 따르는 제1 집전판을 설명하기 위한 도면이다.
도 10은 본 발명의 또 다른 실시예를 따르는 제1 집전판을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시예에 따른 원통형 배터리 및 복수의 원통형 배터리의 전기적 연결을 위한 버스바를 나타내는 사시도이다.
도 12는 본 발명의 일 실시예에 따른 원통형 배터리의 상부 구조를 나타내는 단면도이다.
도 13은 본 발명의 일 실시예에 따른 원통형 배터리를 나타내는 부분 단면도이다.
도 14는 본 발명의 전극 조립체와 제2 집전판이 결합된 모습을 나타내는 도면이다.
도 15 내지 도 18은 본 발명의 일 실시예에 따른 제2 집전판의 다양한 형태를 나타내는 도면이다.
도 19 및 도 20은 본 발명의 다른 실시예에 따른 제2 집전판의 다양한 형태를 나타내는 도면이다.
도 21은 본 발명의 일 실시예에 따른 원통형 배터리의 하부 구조를 나타내는 부분 단면도이다.
도 22는 본 발명의 일 실시예에 따른 원통형 배터리의 하면을 나타내는 도면이다.
도 23은 본 발명의 일 실시예에 따른 배터리 팩을 나타내는 개략도이다.
도 24는 본 발명의 일 실시예에 따른 자동차를 나타내는 도면이다.
도 25은 종래에 일반적으로 사용되던 탄소나노튜브(기존 CNT)의 주사현미경 사진이다.
도 26은 본 발명의 실시예에 따른 신규 CNT의 주사현미경 사진이다.
도 27은 기준 CNT와 신규 CNT의 물성을 비교하여 나타낸 표이다.
도 28 내지 도 31는 양극 활물질로 단입자계 활물질 입자가 적용된 경우 도전재 비율별 면저항 및 고온 수명 특성을 보여주는 그래프들이다.
도 32은 BET 비표면적이 300m2/g 내지 500m2/g인 탄소나노튜브(신규 CNT)를 적용한 경우와 BET가 200m2/g 이상 300m2/g 미만인 탄소나노튜브(기존 CNT)를 적용한 경우의 양극 슬러리의 고형분 함량과 점도 및 MP 코팅층과 MP 계면층에서의 저항값을 비교하여 나타낸 표이다.
도 33a는 본 발명의 실시예 2-1에서 사용된 양극 활물질의 SEM 사진이다.
도 33b는 본 발명의 실시예 2-2에서 사용된 양극 활물질의 SEM 사진이다.
도 33c는 본 발명의 비교예 2-2에서 사용된 양극 활물질의 SEM 사진이다.
도 34a는 본 발명의 실시예 1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
도 34b는 본 발명의 비교예 1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
도 34c는 본 발명의 실시예 2-1의 샘플 1 및 비교예 2-1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
도 34d는 본 발명의 실시예 2-1의 샘플 2, 3, 실시예 2-2의 샘플 1, 2 및 비교예 2-2에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
도 35a는 본 발명의 실시예 2-1에서 제조된 양극의 단면 SEM 사진이다.
도 35b는 비교예 2-1에서 제조된 양극의 단면 SEM 사진이다.
도 36a 본 발명의 실시예 3-3, 비교예 3-1, 및 비교예 3-2에 따른 양극을 포함하는 코인 하프 셀을 4.2V까지 충전하면서 SOC에 따른 저항 특성을 측정한 결과를 나타낸 그래프이다.
도 36b는 본 발명의 실시예 3-1, 실시예 3-3 및 비교예 3-1에 따른 4680 셀에 대한 충방전 사이클 실험을 통해 얻은 용량 유지율(Capacity Retention) 및 저항 증가율(DCIR increase)의 측정 결과를 나타낸 그래프이다.
도 37은 본 발명의 일 실시예에 따른 전극 조립체를 나타낸 도면이다.
도 38는 도 37의 절단선 A-A'를 따라 자른 단면을 나타낸 단면도이다.
도 39 및 도 40은 본 발명의 일 실시예에 따라 음극을 제조하는 공정을 나타낸 도면들이다.
도 41는 본 발명의 일 실시예에 따른 음극을 나타낸 사시도이다.
도 42 및 도 43는 본 발명의 일 실시예에 따라 양극을 제조하는 공정을 나타낸 도면들이다.
도 44는 본 발명의 일 실시예에 따른 양극을 나타낸 사시도이다.
도 45은 본 발명의 비교예에 따른 전극 조립체를 나타낸 도면이다.
도 46은 도 45의 절단선 B-B'를 따라 자른 단면을 나타낸 단면도이다.
도 47은 본 발명의 비교예에 따라 음극을 제조하는 공정을 나타낸 도면이다.
도 48는 본 발명의 비교예에 따라 양극을 제조하는 공정을 나타낸 도면이다.
도 49은 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합물을 음극 활물질로 사용한 배터리에서, 실리콘계 음극 활물질의 함량과 실리콘계 음극 활물질의 도핑 유무에 따른 에너지 밀도의 변화를 보여주는 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 발명의 이해를 돕기 위하여, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다. 또한, 서로 다른 실시예에서 동일한 구성요소에 대해서는 동일한 참조번호가 부여될 수 있다.
도면에 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에” 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 원통형 배터리(1)는 전극 조립체(300), 배터리 하우징(20), 제1 집전판(30), 캡 플레이트(40) 및 배터리 단자(60)를 포함한다. 상기 원통형 배터리(1)는, 그 밖에도 실링 가스켓(G1) 및/또는 절연 가스켓(G2) 및/또는 제2 집전판(50) 및/또는 인슐레이터(S)를 더 포함할 수도 있다.
상기 전극 조립체(300)는, 제1 전극 탭(11) 및 제2 전극 탭(12)을 구비한다. 상기 전극 조립체(300)는, 제1 극성을 갖는 제1 전극, 제2 극성을 갖는 제2 전극 및 제1 전극과 제2 전극 사이에 개재되는 분리막을 포함한다. 상기 제1 전극은 음극 또는 양극이고, 제2 전극은 제1 전극과 반대되는 극성을 갖는 전극에 해당한다. 좀 더 구체적으로는, 상기 전극 조립체(300)는 제1 전극, 분리막, 제2 전극, 분리막을 순차적으로 적어도 1회 적층하여 형성된 적층체를 권취시킴으로써 제조될 수 있다. 즉, 본 발명에 적용되는 전극 조립체(300)는, 젤리-롤 타입의 전극 조립체일 수 있다. 이러한 젤리-롤 타입의 전극 조립체(300)는, 대략 그 중심부에 형성되어 높이 방향(도 5에 도시된 원통형 배터리(1)의 높이 방향과 나란한 방향)을 따라 연장되는 권취 중심 홀(H1)을 구비할 수 있다. 한편, 상기 전극 조립체(300)의 외주면 상에는 배터리 하우징(20)과의 절연을 위해 추가적인 분리막이 구비될 수 있다.
상기 제1 전극은, 제1 전극 집전체 및 제1 전극 집전체의 일 면 또는 양 면 상에 도포된 제1 전극 활물질층을 포함한다. 상기 제1 전극 집전체의 폭 방향(도 5에 도시된 원통형 배터리(1)의 높이 방향과 나란한 방향) 일 측 단부에는 제1 전극 활물질이 도포되지 않은 무지부가 존재한다. 상기 제1 전극 무지부는, 제1 전극이 펼쳐진 상태를 기준으로 볼 때 제1 전극의 길이 방향을 따라 일 측 단부로부터 타 측 단부까지 연장된 형태를 갖는다. 상기 제1 전극 무지부는, 상술한 바와 같은 제1 전극 탭(11)으로서 기능한다. 상기 제1 전극 탭(11)은, 배터리 하우징(20) 내에 수용된 전극 조립체(300)의 높이 방향(도 5에 도시된 원통형 배터리(1)의 높이 방향과 나란한 방향) 상부에 구비된다. 상기 제1 전극 탭(11)은, 예를 들어 음극 탭일 수 있다.
상기 제2 전극은, 제2 전극 집전체 및 제2 전극 집전체의 일 면 또는 양 면 상에 도포된 제2 전극 활물질층을 포함한다. 상기 제2 전극 집전체의 폭 방향(도 5에 도시된 원통형 배터리(1)의 높이 방향과 나란한 방향) 타 측 단부에는 제2 전극 활물질이 도포되지 않은 무지부가 존재한다. 상기 제2 전극 무지부는, 제2 전극이 펼쳐진 상태를 기준으로 볼 때 제2 전극의 길이 방향을 따라 일 측 단부로부터 타 측 단부까지 연장된 형태를 갖는다. 상기 제2 전극 무지부는, 상술한 바와 같은 제2 전극 탭(12)으로서 기능한다. 상기 제2 전극 탭(12)은, 배터리 하우징(20) 내에 수용된 전극 조립체(300)의 높이 방향 하부에 구비된다. 상기 제2 전극 탭(12)은, 예를 들어 양극 탭일 수 있다.
즉, 상기 제1 전극 탭(11)과 제2 전극 탭(12)은, 원통형 배터리(1)의 높이 방향을 따라 서로 반대 방향으로 연장 돌출된다.
다만, 본 발명이 전극 조립체(300)의 이러한 형태에 대하여 한정하는 것은 아니다.
상기 배터리 하우징(20)은, 일 측에 개방부가 형성된 대략 원통형의 수용체로서, 도전성을 갖는 금속 재질이다. 상기 배터리 하우징(20)의 측면, 그리고 상기 개방부의 반대 편에 위치하는 하면(도 5를 기준으로 아래쪽 면)은 일체로 형성될 수 있다. 즉, 상기 배터리 하우징(20)은, 그 높이 방향 상단은 개방되어 있고, 하단은 폐쇄된 형태를 가질 수 있다. 상기 배터리 하우징(20)의 하면은 대략 플랫한 형태를 가질 수 있다. 상기 배터리 하우징(20)은, 그 높이 방향 일 측에 형성된 개방부를 통해 전극 조립체(300)를 수용한다. 상기 배터리 하우징(20)은, 상기 개방부를 통해 전해질도 함께 수용할 수 있다. 다만, 본 발명이 배터리 하우징(20)의 이러한 형태에 대하여 한정하는 것은 아니다.
상기 배터리 하우징(20)은, 전극 조립체(300)와 전기적으로 연결된다. 상기 배터리 하우징(20)은, 전극 조립체(300)의 제1 전극 탭(11)과 연결된다. 따라서, 상기 배터리 하우징(20)은, 전기적으로 제1 전극 탭(11)과 동일한 극성을 갖는다.
상기 배터리 하우징(20)은, 상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부(21)를 포함할 수 있다. 상기 배터리 하우징(20)은 상단부에 형성되는 비딩부(21)를 구비할 수 있다. 상기 배터리 하우징(20)은, 비딩부(21)보다 더 상부에 형성되는 크림핑부(22)를 더 구비할 수도 있다. 상기 비딩부(21)는, 배터리 하우징(20)의 외주면 둘레가 소정의 깊이로 압입된 형태를 갖는다. 상기 비딩부(21)는, 전극 조립체(300)의 상부에 형성된다. 상기 비딩부(21)가 형성된 영역에서의 배터리 하우징(20)의 내경은, 전극 조립체(300)의 직경보다 더 작게 형성된다.
상기 비딩부(21)는, 캡 플레이트(40)가 안착될 수 있는 지지 면을 제공한다. 또한, 상기 비딩부(21)는, 후술할 제1 집전판(30)의 가장자리 둘레 중 적어도 일부가 안착 및 결합될 수 있는 지지 면을 제공할 수 있다. 즉, 상기 비딩부(21)의 상면에는, 본 발명의 제1 집전판(30)의 가장자리 둘레 중 적어도 일부 및/또는 본 발명의 캡 플레이트(40)의 가장자리 둘레가 안착될 수 있다. 도 6 및 도 7과 같이, 상기 제1 집전판(30)의 가장자리 둘레 중 적어도 일부 및/또는 캡 플레이트(40)의 가장자리 둘레를 안정적을 지지할 수 있도록 하기 위해, 상기 비딩부(21)의 상면은 적어도 일부가 배터리 하우징(20)의 하면에 대략 나란한 방향을 따라, 즉 배터리 하우징(20)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 가질 수도 있다.
상기 크림핑부(22)는, 비딩부(21)의 상부에 형성된다. 상기 크림핑부(22)는, 비딩부(21)의 상부에 배치되는 캡 플레이트(40)의 가장자리 둘레를 감싸도록 연장 및 밴딩(bending)된 형태를 갖는다. 이러한 크림핑부(22)의 형상에 의해 캡 플레이트(40)는 비딩부(21) 상에 고정된다. 물론, 이러한 크림핑부(22)가 생략되고 다른 고정 구조를 통해 캡 플레이트(40)가 배터리 하우징(20)의 개방부를 커버하면서 고정되록 하는 것도 가능 하다.
다음은, 도 7 및 도 8을 참조하여, 본 발명의 일 실시예에 따른 제1 집전판(30)을 상세히 설명하기로 한다.
먼저, 도 7을 참조하면, 본 발명의 일 실시예에 따른 제1 집전판(30)은, 배터리 하우징(20) 내부에 수용되며, 전극 조립체(300)와 전기적으로 연결되고, 또한 배터리 하우징(20)과 전기적으로 연결된다. 즉, 상기 제1 집전판(30)은, 전극 조립체(300)와 배터리 하우징(20) 사이를 전기적으로 연결한다.
상기 제1 집전판(30)은, 전극 조립체(300)의 일 면에 배치되는 지지부(31), 지지부(31)로부터 연장되어 제1 전극 탭(11)과 결합되는 적어도 하나의 제1 탭 결합부(32) 및 상기 제1 탭 결합부(32) 의 단부로부터 연장되어 배터리 하우징(20)의 내측 면 상에 결합되는 적어도 하나의 하우징 결합부(33)를 포함하고 배터리 하우징 내에 위치한다.
상기 지지부(31) 및 적어도 하나의 제1 탭 결합부(32)는 전극 조립체(300)의 상에 배치되며, 배터리 하우징(20)에 비딩부(21)가 형성되는 경우에 있어서 비딩부(21)보다 하부에 위치할 수 있다.
상기 지지부(31)는, 전극 조립체(300)의 대략 중심부에 형성되는 권취 홀(H1)과 대응되는 위치에 형성되는 제1 집전판 홀(H2)을 구비할 수 있다. 서로 연통되는 권취 홀(H1) 및 제1 집전판 홀(H2)은, 후술할 배터리 단자(60)와 제2 집전판(50) 간의 용접 또는 배터리 단자(60)와 리드 탭(미도시) 간의 용접을 위한 용접봉의 삽입 또는 레이저의 조사를 위한 통로로서 기능할 수 있다.
상기 지지부(31)는 대략 원형의 판 형상을 가질 수 있다. 예를 들어, 도 8을 참조하면, 상기 지지부(31)는 그 중심에 제1 집전판 홀(H2)이 구비되어 있는 링 형태의 판 형상을 가질 수 있다.
상기 적어도 하나의 제1 탭 결합부(32)는 지지부(31)로부터 대략 방사상으로 배터리 하우징(20)의 측벽을 향해 연장된 형태를 가질 수 있다. 상기 제1 탭 결합부(32)는, 예를 들어 복수 개 구비될 수도 있다. 예를 들어, 도 8을 참조하면, 복수의 제1 탭 결합부(32)들 각각은 지지부(31)의 둘레를 따라 상호 이격되어 위치할 수 있다. 이와 같이 본 발명의 원통형 배터리(1)가 복수의 제1 탭 결합부(32)를 구비함으로써, 상기 제1 전극 탭(11)과의 결합 면적이 증대될 수 있다. 이에 따라, 제1 전극 탭(11)과 제1 탭 결합부(32) 사이의 결합력이 확보되고 전기 저항이 감소될 수 있다.
상기 제1 탭 결합부(32)의 길이 방향 단부는, 배터리 하우징(20)에 형성되는 비딩부(21)의 최 내측부보다 더 내측에 위치할 수 있다. 좀 더 구체적으로, 상기 제1 탭 결합부(32)와 하우징 결합부(33)의 경계 영역은, 배터리 하우징(20)에 형성된 비딩부(21)의 최 내측부보다 귄취 홀(H1)을 향하는 방향으로 더 내측에 위치할 수 있다. 이와 같은 구조에 의하면, 하우징 결합부(33)의 단부를 비딩부(21) 상에 위치시키기 위해 제1 집전판(30)을 과도하게 절곡시킴에 따라 발생될 수 있는 부품 간의 결합부위 손상을 방지할 수 있다.
한편, 상기 제1 집전판(30)과 전극 조립체(300) 간의 결합 면적 증대를 통한 결합력 확보 및 전기저항 감소를 위해, 상기 제1 탭 결합부(32) 뿐만 아니라 지지부(31) 역시 제1 전극 탭(11)과 결합할 수도 있다. 상기 제1 전극 탭(11)의 단부는 제1 탭 결합부(32)와 나란하도록 밴딩된 형태로 포밍될 수 있다. 이처럼 제1 전극 탭(11)의 단부가 포밍되어 제1 탭 결합부(32)와 나란한 상태로 제1 탭 결합부(32)와 결합되는 경우, 결합 면적을 증대시켜 결합력 향상 및 전기 저항 감소 효과를 얻을 수 있으며, 또한 전극 조립체(300)의 총고를 최소화 하여 에너지 밀도 향상 효과를 얻을 수 있다.
상기 하우징 결합부(33)는 상기 제1 탭 결합부(32)의 단부로부터 연장되어 상기 배터리 하우징(20)의 내측 면 상에 결합될 수 있다. 예를 들어, 상기 하우징 결합부(33)는 상기 제1 탭 결합부(32)의 단부로부터 배터리 하우징(20)의 측벽을 향해 연장된 형태를 가질 수 있다. 상기 하우징 결합부(33)는, 예를 들어 복수 개 구비될 수 있다. 예를 들어, 도 8을 참조하면, 복수의 하우징 결합부(33)들 각각은 지지부(31)의 둘레를 따라 상호 이격되어 위치할 수 있다. 도 5를 참조하면, 상기 하우징 결합부(33)는, 배터리 하우징(20)의 내측 면 중, 비딩부(21)에 결합될 수 있다. 도 6 및 도 7과 같이, 비딩부(21)의 상면이 배터리 하우징(20)의 하면에 대략 나란한 방향, 즉 배터리 하우징(20)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 갖도록 하고 하우징 결합부(33) 역시 동일한 방향을 따라 연장된 형태를 갖도록 함으로써 하우징 결합부(33)가 비딩부(21) 상에 안정적으로 접촉하도록 할 수 있다. 또한, 이처럼 상기 하우징 결합부(33)가 비딩부(21) 상에 안정적으로 접촉됨에 따라 두 부품 간의 용접이 원활하게 이루어질 수 있고, 이로써 두 부품 간의 결합력 향상 및 결합 부위에서의 저항 증가 최소화 효과를 얻을 수 있다. 또한, 이와 같이 제1 집전판(30)이 배터리 하우징(20)의 원통부 내측 면이 아닌 배터리 하우징(20)의 비딩부(21) 상에 결합되는 구조에 의해, 제1 집전판(30)과 비딩부(21) 사이의 거리가 감소될 수 있다. 따라서, 배터리 하우징(20) 내부의 데드 스페이스가 최소화되어 원통형 배터리(1)의 에너지 밀도가 향상될 수 있다.
도 7 및 도 8을 참조하면, 상기 하우징 결합부(33)는 배터리 하우징(20)의 내측 면 상에 결합되는 접촉부(33a) 및 제1 탭 결합부(32)와 접촉부(33a) 사이를 연결하는 제1 연결부(33b)를 포함한다.
상기 접촉부(33a)는, 배터리 하우징(20)의 내측 면 상에 결합된다. 상기 배터리 하우징(20)에 비딩부(21)가 형성되는 경우에 있어서, 상기 접촉부(33a)는 상술한 바와 같이 비딩부(21) 상에 결합될 수 있다. 이 경우, 상술한 바와 같이, 안정적인 접촉 및 결합을 위해 비딩부(21) 및 접촉부(33a)는 모두 배터리 하우징(20)의 하면에 대략 나란한 방향, 즉 배터리 하우징(20)의 측벽에 대략 수직한 방향을 따라 연장된 형태를 가질 수 있다.
도 7을 참조하면, 상기 제1 연결부(33b)는, 지지부(31)와 접촉부(33a) 사이에서 그 연장 방향이 전환되는 밴딩부(B)를 적어도 하나 구비할 수 있다. 즉, 상기 제1 연결부(33b)는, 일정 범위 내에서 수축 및 신장이 가능한, 예를 들어 스프링 유사 구조 또는 자바라 유사 구조를 가질 수 있다. 이러한 제1 연결부(33b)의 구조는, 일정 범위 내에서 전극 조립체(300)의 높이 산포가 존재하더라도, 제1 집전판(30)이 결합된 전극 조립체(300)를 배터리 하우징(20) 내에 수용시키는 과정에서 접촉부(33a)가 비딩부(21) 상에 밀착될 수 있도록 한다.
본 발명의 도면에서는 상기 밴딩부(B)가 하나 구비된 경우만을 도시하고 있으나, 본 발명이 이에 한정되는 것은 아니며, 복수개 구비될 수 있음은 물론이다.
예를 들어, 상기 제1 집전판(30)에 외부 힘이 가해지지 않아 변형이 없는 상태에서의 상기 접촉부(33a)와 지지부(31) 사이의 연직 방향 거리(D)는, 제1 집전판(30)이 결합된 상태의 전극 조립체(300)가 배터리 하우징(20) 내에 안착되었을 때의 비딩부(21)의 상면과 지지부(31) 사이의 연직 방향 거리와 동일하거나 제1 연결부(33b)의 신장 가능 범위 내에서 더 작게 형성되는 것이 바람직하다. 상기 제1 연결부(33b)가 이와 같은 조건을 충족하도록 구성되는 경우, 배터리 하우징(20) 내에 제1 집전판(30)이 결합된 전극 조립체(300)를 안착시켰을 때 접촉부(33a)는 비딩부(21) 상에 자연스럽게 밀착될 수 있다.
뿐만 아니라, 이러한 제1 연결부(33b)의 수축 및 신장 가능한 구조는 원통형 배터리(1)(도 5 참조)의 사용 과정에서 진동 및/또는 충격이 발생하여 전극 조립체(300)가 상하로 움직이더라도 일정 범위 내에서는 전극 조립체(300)의 움직임에 따른 충격이 완화 되도록 한다.
한편, 상기 제1 연결부(33b)가 밴딩부(B)를 하나만 구비하는 경우에 있어서, 밴딩부(B)는 도면에 도시된 것과는 달리 전극 조립체(300)의 권취 중심을 향하는 방향으로 돌출될 수도 있다. 이러한 제1 연결부(33b)의 밴딩 방향은, 사이징(sizing) 공정 진행 시에 제1 집전판(30)과 전극 조립체(300)의 결합 부위 및/또는 제1 집전판(30)과 배터리 하우징(20)의 결합 부위에 손상이 발생되는 것을 방지하기 위함이다. 사이징(sizing) 공정이란, 원통형 배터리(1)를 제조함에 있어서, 원통형 배터리(1)의 총고를 감소시키기 위해 배터리 하우징(20)의 비딩부(21) 영역이 차지하는 높이를 축소시키기 위한 압축 공정이다. 상기 밴딩부(B) 형성 여부 및 밴딩부(B)의 돌출 방향을 달리 하여 사이징 공정 이후의 용접부의 손상 정도를 확인해 본 결과, 원통형 배터리(1)의 중심부를 향하는 방향으로 밴딩부(B)가 돌출되도록 제1 연결부(33b)를 밴딩 시킨 구조를 갖는 원통형 배터리(1)에서는 거의 손상이 발생되지 않는다는 것이 확인 되었다.
다음으로, 도 9를 참조하면, 본 발명의 다른 실시예에 따른 제1 집전판(30)이 나타나 있다. 본 발명의 다른 실시예에 따른 제1 집전판(30)은, 앞서 설명된 도 8의 제1 집전판(30) 과 비교하여 접촉부(33a)의 형태에 있어서 차이가 있을 뿐, 그 외에는 앞서 설명된 제1 집전판(30)의 구조가 실질적으로 동일하게 적용될 수 있다.
도 9를 참조하면, 접촉부(33a)는 적어도 일부가 배터리 하우징(20)의 내주면을 따라 연장된 형태를 가질 수 있다. 예를 들면, 상기 접촉부(33a)는, 상기 비딩부(21)를 따라 연장된 호 형태를 가질 수 있다. 또한, 도면에 도시되지는 않았으나, 접촉 면적의 극대화를 위해, 상기 제1 집전판(30)은, 적어도 하나의 하우징 결합부(33) 각각의 접촉부(33a)의 연장된 길이의 합이 배터리 하우징(20)의 내주와 대략 동일하도록 구성될 수도 있다. 이에 따라, 결합 면적을 극대화로 인한 결합력 향상 및 전기 저항 감소 효과를 가질 수 있다.
다음으로, 도 10을 참조하면, 본 발명의 또 다른 실시예에 따른 제1 집전판(30)이 나타나 있다. 본 발명의 또 다른 실시예에 따른 제1 집전판(30)은, 도 9의 제1 집전판(30) 과 비교하여, 제1 연결부(33b)의 형태에 있어서 차이가 있을 뿐, 그 외에는 앞서 설명된 제1 집전판(30)의 구조가 실질적으로 동일하게 적용될 수 있다.
도 10을 참조하면, 제1 연결부(33b)는 적어도 일부가 배터리 하우징(20)의 내주면을 따라 연장된 형태를 가질 수 있다. 예를 들면, 상기 접촉부(33a)는, 상기 배터리 하우징 비딩부(21)를 따라 연장된 호 형태를 가질 수 있고, 상기 제1 연결부(33b)는, 상기 접촉부(33a)를 따라 연장된 호 형태를 가질 수 있다. 이와 같은 구조에 의하면, 도 9에 도시된 제1 집전판(30)에 비해 제1 집전판(30)의 면적이 추가적으로 증가되므로, 전기 저항 감소 효과가 극대화될 수 있다.
한편, 도 10을 참조하면, 상기 제1 집전판(30)은, 도 8 또는 도 9에 도시된 제1 집전판(30)과는 다르게, 밴딩부(B)를 구비하지 않을 수 있다. 이와 같이 밴딩부(B)를 구비하지 않을 경우, 제1 집전판(30) 제작에 필요한 원재료를 절감할 수 있다. 이에 따라 제1 집전판(30) 제작 비용을 절약할 수 있다.
상기 제1 집전판(30)은, 제1 전극 탭(11)과 대향하는 면 상에 방사상으로 형성된 복수의 요철(미도시)을 구비할 수 있다. 요철이 형성된 경우, 제1 집전판(30)을 눌러서 요철을 제1 전극 탭(11)에 압입시킬 수 있다. 제1 집전판(30)과 제1 전극 탭(11)의 단부는 용접, 예컨대 레이저 용접에 의해 결합될 수 있다
도 5를 참조하면, 상기 캡 플레이트(40)는, 배터리 하우징(20)의 일 측에 형성된 상기 개방부를 커버한다. 본 발명의 배터리 하우징(20)이 비딩부(21)를 구비하는 경우, 상기 캡 플레이트(40)는, 배터리 하우징(20)에 형성된 비딩부(21) 상에 안착될 수 있다. 또한, 본 발명의 배터리 하우징(20)이 크림핑부(22)를 구비하는 경우, 상기 캡 플레이트(40)는, 크림핑부(22)에 의해 고정될 수 있다. 이 경우, 고정력의 향상 및 배터리 하우징(20)의 밀폐성 향상을 위해 배터리 하우징(20)과 캡 플레이트(40) 사이에는 실링 가스켓(G1)이 개재될 수도 있다. 다만, 본 발명에 있어서 캡 플레이트(40)는 전류의 통로로 기능해야 하는 부품이 아니다. 따라서, 용접 또는 다른 부품의 적용에 따른 고정을 통해 배터리 하우징(20)과 캡 플레이트(40)를 견고히 고정시키고 배터리 하우징(20)의 개방부의 밀폐성을 확보할 수만 있다면, 이러한 실링 가스켓(G1)의 적용이 필수적인 것은 아니다. 한편, 앞서 설명한 바와 같이, 본 발명의 배터리 하우징(20)은 비딩부(21) 및/또는 크림핑부(22)를 구비하지 않을 수도 있으며, 이 경우 상기 기밀 가스켓(G1)은 배터리 하우징(20)의 기밀성 확보를 위해 배터리 하우징(20)의 개방부 측에 구비된 고정을 위한 구조물과 캡 플레이트(40) 사이에 개재될 수 있다.
상기 캡 플레이트(40)는, 강성 확보를 위해 예를 들어 금속 재질로 이루어질 수 있다. 본 발명의 원통형 배터리(1)에 있어서, 캡 플레이트(40)는, 전도성을 갖는 금속 재질인 경우에도, 극성을 갖지 않을 수 있다. 극성을 갖지 않는다는 것은, 상기 캡 플레이트(40)가 배터리 하우징(20) 및 하기 설명할 배터리 단자(60)와 전기적으로 절연되어 있음을 의미할 수 있다. 따라서, 상기 캡 플레이트(40)는, 양극 단자 또는 음극 단자로서 기능하지 않는다. 따라서, 상기 캡 플레이트(40)는, 전극 조립체(300) 및 배터리 하우징(20)과 전기적으로 연결될 필요가 없으며, 그 재질이 반드시 전도성 금속이어야 하는 것도 아니다.
한편, 상기 실링 가스켓(G1)이 적용되는 경우를 예시로 들어 설명하면, 상기 실링 가스켓(G1)은, 상기 캡 플레이트(40)를 감싸는 대략 링 형상을 가질 수 있다. 상기 실링 가스켓(G1)은, 캡 플레이트(40)의 상면, 하면 및 측면을 동시에 커버할 수 있다. 실링 가스켓(G1)의 부위 중에서 캡 플레이트(40)의 하면을 커버하는 부위의 반경 방향 길이는, 실링 가스켓(G1)의 부위 중에서 상기 캡 플레이트(40)의 상면을 커버하는 부위의 반경 방향 길이보다 작거나 같을 수 있다. 실링 가스켓(G1)의 부위 중에서 캡 플레이트(40)의 하면을 커버하는 부위의 반경 방향 길이가 지나치게 길면, 배터리 하우징(20)을 상하로 압축하는 과정에서 실링 가스켓(G1)이 제1 집전판(30)을 가압하여, 제1 집전판(30)이 손상되거나 배터리 하우징(20)이 손상될 가능성이 있다. 따라서, 실링 가스켓(G1)의 부위 중에서 캡 플레이트(40)의 하면을 커버하는 부위의 반경 방향 길이를 일정 수준으로 작게 유지할 필요가 있다. 예를 들면, 도 5와 같이 실링 가스켓(G1)의 부위 중에서 캡 플레이트(40)의 하면을 커버하는 부위의 반경 방향 길이가, 실링 가스켓(G1)의 부위 중에서 상기 캡 플레이트(40)의 상면을 커버하는 부위의 반경 방향 길이보다 작게 형성될 수 있다. 또는, 도 6 및 도 7과 같이 실링 가스켓(G1)의 부위 중에서 캡 플레이트(40)의 하면을 커버하는 부위의 반경 방향 길이는, 실링 가스켓(G1)의 부위 중에서 상기 캡 플레이트(40)의 상면을 커버하는 부위의 반경 방향 길이와 동일할 수 있다.
한편, 상기 접촉부(33a)는, 상기 비딩부(21)와 상기 실링 가스켓(G1) 사이에 개재되어 고정될 수 있다. 즉, 상기 접촉부(33a)가 상기 비딩부(21)와 상기 실링 가스켓(G1) 사이에 개재된 상태에서 상기 크림핑부(22)의 크림핑 힘으로 인해 상기 접촉부(33a)가 고정될 수 있다.
또는, 비딩부(21)와 상기 접촉부(33a) 사이에 용접부가 형성될 수도 있다. 예를 들어, 크림핑 힘만으로는 접촉부(33a)의 고정이 확실하게 이루어지지 않을 수 있다. 또는, 실링 가스켓(G1)이 열에 의해 수축되거나, 크림핑부(22)가 외부로부터 충격을 받아 변형될 경우, 집전판과 배터리 하우징(20) 사이의 결합력이 저하될 가능성이 있다. 따라서, 접촉부(33a)가 상기 비딩부(21) 상에 얹혀진 상태에서 용접을 통해 상기 제1 집전판(30)을 배터리 하우징(20)에 고정할 수 있다. 그 후 접촉부(33a) 상단에 실링 가스켓(G1)에 의해 감싸진 캡 플레이트를 얹고 크림핑부(22)를 형성함으로써 원통형 배터리(1)를 완성할 수 있다. 이 때, 용접 방법으로는 예를 들면 레이저 용접, 저항 용접, 초음파 용접 등이 가능하나, 용접 방법이 이에 한정되는 것은 아니다.
한편, 상기 캡 플레이트(40)는, 배터리 하우징(20) 내부에 발생된 가스로 인한 내압 증가를 방지하기 위해 형성되는 벤팅부(41)를 구비할 수 있다. 상기 벤팅부(41)는, 캡 플레이트(40)의 일부에 형성되며 내부 압력이 가해졌을 때 용이하게 파단될 수 있도록 주변 영역보다 구조적으로 취약한 영역에 해당한다. 상기 벤팅부(41)는, 주변 영역과 더 얇은 두께를 갖는 영역일 수 있다. 따라서, 상기 원통형 배터리(1)에 이상이 발생하여 배터리 하우징(20)의 내부 압력이 일정 수준 이상으로 증가하게 되면 벤팅부(41)가 파단되어 배터리 하우징(20)의 내부에 생성된 가스가 배출될 수 있다. 상기 벤팅부(41)는, 예를 들어 캡 플레이트(40)의 어느 일 면 상에 또는 양 면 상에 노칭(notching)을 하여 부분적으로 배터리 하우징(20)의 두께를 감소시킴으로써 형성될 수 있다.
상기 배터리 단자(60)는, 상기 제2 전극 탭(12)과 전기적으로 연결된다. 상기 배터리 단자(60)는 배터리 하우징(20)의 개방부의 반대 편에서 배터리 하우징(20)을 관통하여 전극 조립체(300)의 제2 전극 탭(12)과 전기적으로 연결될 수 있다. 상기 배터리 단자(60)는, 배터리 하우징(20)의 하면의 대략 중심부를 관통할 수 있다. 상기 배터리 단자(60)는, 단자 노출부(60a) 및 단자 삽입부(60b)를 포함할 수 있다. 상기 단자 노출부(60a)는, 배터리 하우징(20)의 폐쇄면의 외측으로 노출된다. 상기 단자 노출부(60a)는, 배터리 하우징(20)의 폐쇄면의 대략 중심부에 위치할 수 있다. 단자 노출부(60a)의 최대 지름은 배터리 하우징(20)에 형성된 관통 홀의 최대 지름보다 더 크게 형성될 수 있다. 단자 삽입부(60b)는, 배터리 하우징(20)의 폐쇄면의 대략 중심부를 관통하여 제2 전극 탭(12)과 전기적으로 연결될 수 있다. 단자 삽입부(60b)는, 배터리 하우징(20)의 내측 면 상에 리벳(rivet) 결합될 수 있다. 즉, 단자 삽입부(60b)의 단부는, 배터리 하우징(20)의 내측 면을 향해 휘어진 형태를 가질 수 있다. 단자 삽입부(60b)의 단부의 최대 지름은 배터리 하우징(20)의 관통 홀의 최대 지름보다 더 클 수 있다. 상기 배터리 단자(60)의 일부는 배터리 하우징(20)의 외부로 노출되고 나머지 일부는 배터리 하우징(20)의 내부에 위치할 수 있다. 상기 배터리 단자(60)는, 예를 들어 후술할 제2 전극 탭(12)에 결합되는 제2 집전판(50)과 결합되거나 또는 제2 전극 탭(12)에 결합되는 리드 탭(미도시)과 결합됨으로써 전극 조립체(300)와 전기적으로 연결될 수 있다. 단자 삽입부(60b)의 내측면은 제2 전극 탭(12)에 연결된 제2 집전판(50)과 용접될 수 있다. 제2 집전판(50)과 배터리 하우징(20)의 내측면 사이에는 후술할 인슐레이터(S)가 개재될 수 있다.
이러한 배터리 단자(60)의 극성 및 기능을 고려할 때, 배터리 단자(60)는 이와 반대 극성을 갖는 배터리 하우징(20)과는 절연 상태를 유지해야 한다. 이를 위해, 배터리 단자(60)와 배터리 하우징(20) 사이에는 절연 가스켓(G2)이 적용될 수 있다. 이와는 달리, 배터리 단자(60)의 표면 중 일부에 절연성 물질로 코팅을 함으로써 절연을 실현할 수도 있다. 또는, 상기 배터리 단자(60)와 배터리 하우징(20)의 접촉이 불가능하도록 상호 이격된 상태로 배치를 하되, 배터리 단자(60)를 구조적으로 단단히 고정시키는 방식을 적용할 수도 있다. 또는, 앞서 설명한 방식들 중 복수의 방식을 함께 적용할 수도 있다.
절연 가스켓(G2)은, 가스켓 노출부(G2a) 및 가스켓 삽입부(G2b)를 포함한다. 가스켓 노출부(G2a)는 배터리 단자(60)의 단자 노출부(60a)와 배터리 하우징(20) 사이에 개재된다. 가스켓 삽입부(G2b)는 리벳 단자(60)의 단자 삽입부(60b)와 배터리 하우징(20) 사이에 개재된다. 가스켓 삽입부(G2b)는, 단자 삽입부(60b)의 리벳팅(reveting) 시에 함께 변형되어 배터리 하우징(20)의 내측 면에 밀착될 수 있다. 절연 가스켓(G2)은, 예를 들어 절연성을 갖는 고분자 수지로 이루어질 수 있다.
절연 가스켓(G2)의 가스켓 노출부(G2a)는, 리벳 단자(60)의 단자 노출부(60a)의 외주면을 커버하도록 연장된 형태를 가질 수 있다. 절연 가스켓(G2)이 리벳 단자(60)의 외주면을 커버하는 경우, 버스바 등의 전기적 연결 부품을 배터리 하우징(20)의 외측면 및/또는 리벳 단자(60)에 결합시키는 과정에서 단락이 발생되는 것을 방지할 수 있다. 도면에 도시되어 있지는 않으나, 가스켓 노출부(G2a)는, 단자 노출부(60a)의 외주면뿐만 아니라 외측면의 일부도 함께 커버하도록 연장된 형태를 가질 수 있다.
절연 가스켓(G2)이 고분자 수지로 이루어지는 경우에 있어서, 절연 가스켓(G2)은 열 융착에 의해 배터리 하우징(20) 및 배터리 단자(60)와 결합될 수 있다. 이 경우, 절연 가스켓(G2)과 배터리 단자(60)의 결합 계면 및 절연 가스켓(G2)과 배터리 하우징(20)의 결합 계면에서의 기밀성이 강화될 수 있다. 한편, 절연 가스켓(G2)의 가스켓 노출부(G2a)가 단자 노출부(60a)의 상면까지 연장된 형태를 갖는 경우에 있어서, 배터리 단자(60)는 인서트 사출에 의해 절연 가스켓(G2)과 일체로 결합될 수 있다.
배터리 하우징(20)의 외측면 중에서 리벳 단자(60) 및 절연 가스켓(G2)이 차지하는 영역을 제외한 나머지 영역이 리벳 단자(60)와 반대 극성을 갖는 음극 단자에 해당한다.
즉, 본 발명의 원통형 배터리(1)는, 한 쌍의 전극 단자(60, T1)가 동일 방향에 위치하는 구조를 갖는다. 따라서, 복수의 원통형 배터리(1)를 전기적으로 연결시키는 경우에 있어서, 버스바 등의 전기적 연결 부품을 원통형 배터리(1)의 일 측에만 배치시키는 것이 가능하다. 이는, 배터리 팩 구조의 단순화 및 에너지 밀도의 향상을 가져올 수 있다. 또한, 상기 원통형 배터리(1)는, 대략 플랫한 형태를 갖는 배터리 하우징(20)의 일 면을 제1 전극 단자(T1)로 이용할 수 있는 구조를 가짐으로써 버스바 등의 전기적 연결 부품을 제1 전극 단자(T1)에 접합시키는데 있어서 충분한 접합 면적을 확보할 수 있다. 이에 따라, 상기 원통형 배터리(1)는, 전기적 연결 부품과 제1 전극 단자(T1) 간의 충분한 접합 강도를 확보할 수 있으며, 접합 부위에서의 저항을 바람직한 수준으로 낮출 수 있다.
한편, 전기적 절연을 위해 절연 가스켓(G2)을 적용하고 배터리 단자(60)의 고정을 위해 리벳팅이 적용되는 경우, 절연 가스켓(G2)은 배터리 단자(60)의 리벳팅 시에 함께 변형되어 배터리 하우징(20)의 상단 폐쇄부의 내측면을 향해 절곡될 수 있다. 상기 절연 가스켓(G2)이 수지 재질로 이루어지는 경우에 있어서, 절연 가스켓(G2)은 열 융착에 의해 상기 배터리 하우징(20) 및 배터리 단자(60)와 결합될 수 있다. 이 경우, 절연 가스켓(G2)과 배터리 단자(60)의 결합 계면 및 절연 가스켓(G2)과 배터리 하우징(20)의 결합 계면에서의 기밀성이 강화될 수 있다.
본 발명에 있어서, 배터리 하우징(20)의 표면 전체는 제1 전극 단자(T1)로 기능할 수 있다. 예를 들어, 상기 제1 전극 탭(11)이 음극 탭인 경우, 제1 전극 단자(T1)는 음극 단자일 수 있다. 본 발명에 따른 원통형 배터리(1)는, 이처럼 배터리 하우징(20)의 개방부 반대 편에 위치하는 하면 상에 노출되는 배터리 단자(60) 및 배터리 하우징(20)의 하면 중 배터리 단자(60)가 차지하는 영역을 제외한 나머지 영역을 각각 제2 전극 단자(T2) 및 제1 전극 단자(T1)으로 이용할 수 있는 구조를 갖는다. 따라서, 본 발명에 따른 원통형 배터리(1)는, 복수의 원통형 배터리(1)를 전기적으로 연결함에 있어서 일 방향에서 양극/음극을 모두 연결할 수 있어 전기적 연결 구조를 간소화 할 수 있다. 또한, 본 발명에 따른 원통형 배터리(1)는, 배터리 하우징(20)의 개방부 반대 편에 위치한 하면의 대부분을 전극 단자로 이용 가능한 구조를 가지므로, 전기적 연결을 위한 부품을 용접할 수 있는 충분한 면적의 확보가 가능한 장점을 갖는다.
다음은, 도 11 내지 도 24를 참조하여, 상술한 원통형 배터리(1)에 대해서 좀 더 구체적으로 설명하기로 한다. 이하의 설명에서는 앞선 설명에서와 동일한 구성요소를 설명함에 있어서 선택적으로 적용이 될 수 있는 다른 실시예가 존재할 수 있다. 또한 이하의 설명에서는 앞선 설명과 일부 중복 기재가 존재할 수 있다.
도 11 및 도 12를 참조하면, 본 발명의 일 실싱에 따른 원통형 배터리(1)는 전극 조립체(300), 배터리 하우징(20), 캡 플레이트(40), 제2 집전판(50) 및 배터리 단자(60)를 포함한다. 상기 원통형 배터리(1)는, 상술한 구성요소들 이 외에도 추가적으로 기밀 가스켓(G1) 및/또는 절연 가스켓(G2) 및/또는 인슐레이터(S) 및/또는 제1 집전판(30)을 더 포함할 수도 있다.
상기 전극 조립체(300)는, 제1 전극 탭(11) 및 제2 전극 탭(12)을 포함한다. 상기 제2 전극 탭(12)은, 배터리 하우징(20) 내에 수용된 전극 조립체(300)의 높이 방향(Z축에 나란한 방향) 상부에 구비될 수 있다. 상기 제1 전극 탭(11)은, 배터리 하우징(20) 내에 수용된 전극 조립체(300)의 높이 방향(Z축에 나란한 방향) 하부에 구비될 수 있다.
상기 제2 전극 탭(12) 및 제1 전극 탭(11)은, 전극 조립체(300)의 폭 방향, 즉 원통형 배터리(1)의 높이 방향(Z축에 나란한 방향)을 따라 서로 반대 방향으로 연장될 수 있다. 상기 제2 전극 탭(12)은, 배터리 하우징(20)의 폐쇄부를 향해 연장되며, 제1 전극 탭(11)은 배터리 하우징(20)의 개방부를 향해 연장될 수 있다.
상기 배터리 하우징(20)은, 하방에 개방부가 형성된 대략 원통형의 수용체로서, 예를 들어 금속과 같은 도전성을 갖는 재질로 이루어진다. 상기 배터리 하우징(20)의 높이 하단에는 개방부가 형성되며, 상단에는 폐쇄부가 형성될 수 있다. 상기 배터리 하우징(20)은, 하방에 형성된 개방부를 통해 전극 조립체(300)를 수용하며, 전해질도 함께 수용할 수 있다.
도 12 및 도 21을 참조하면, 상기 배터리 하우징(20)은, 그 하단에 형성된 비딩부(21) 및 크림핑부(22)를 구비할 수 있다. 상기 비딩부(21)는, 전극 조립체(300)의 하부에 위치할 수 있다. 상기 비딩부(21)는, 배터리 하우징(20)이 외주면 둘레를 압입하여 형성된다. 상기 비딩부(21)는, 배터리 하우징(20)의 폭과 대략 대응되는 사이즈를 가질 수 있는 전극 조립체(300)가 배터리 하우징(20)의 하단에 형성된 개방부를 통해 빠져나오지 않도록 하며, 캡 플레이트(40)가 안착되는 지지부로서 기능할 수 있다.
상기 크림핑부(22)는, 비딩부(21)의 하부에 형성될 수 있다. 상기 크림핑부(22)는, 비딩부(21)의 하방에 배치되는 캡 플레이트(40)의 외주면, 그리고 캡 플레이트(40)의 하면의 일부를 감싸도록 연장 및 절곡된 형태를 갖는다.
다만, 본 발명은, 배터리 하우징(20)이 이러한 비딩부(21) 및/또는 크림핑부(22)를 구비하지 않는 경우를 배제하지 않는다. 본 발명에 있어서 배터리 하우징(20)이 비딩부(21) 및/또는 크림핑부(22)를 구비하지 않는 경우, 전극 조립체(300)의 고정 및/또는 캡 플레이트(40)의 고정 및/또는 배터리 하우징(20)의 밀봉은, 예를 들어 전극 조립체(300)에 대한 스토퍼로서 기능할 수 있는 부품의 추가 적용 및/또는 캡 플레이트(40)가 안착될 수 있는 구조물의 추가 적용 및/또는 배터리 하우징(20)과 캡 플레이트(40) 간의 용접 등을 통해 실현할 수 있다.
상기 배터리 하우징(20)은 그 폐쇄단을 이루는 영역이 대략 0.5mm 내지 1.0mm 범위의 두께를 가질 수 있으며, 좀 더 바람직하게는 대략 0.6mm 내지 0.8mm 범위의 두께를 가질 수 있다. 상기 배터리 하우징(20)은, 그 외주면을 이루는 측벽부가 대략 0.3mm 내지 0.8mm 범위의 두께를 가질 수 있으며, 좀 더 바람직하게는 대략 0.30mm 내지 0.60mm 범위를 가질 수 있다. 본 발명의 일 실시예에 따르면, 배터리 하우징(20)에는 도금 층이 형성될 수 있다. 이 경우, 상기 도금 층은, 예를 들어 니켈(Ni)을 포함할 수 있다. 상기 도금 층의 두께는 대략 1.5㎛ 내지 6.0㎛ 범위일 수 있다.
상기 배터리 하우징(20)의 두께는 얇을수록 내부 공간이 커지게 되고, 이로써 에너지 밀도가 향상되어 큰 용량을 갖는 원통형 배터리(1)를 제조할 수 있게 된다. 반대로 두께가 두꺼울수록 폭발 테스트 시 인접 셀로 화염이 연쇄적으로 전파되지 않아 안전성의 측면에서는 유리할 수 있다.
도금 층의 두께는 얇을수록 부식에 취약하고, 두꺼울수록 제조공정이 어렵거나 도금 박리가 발생할 수 있는 가능성이 높아진다. 이러한 조건을 모두 고려하여 최적의 배터리 하우징(20)의 두께를 설정하고 최적의 도금 층의 두께를 설정할 필요가 있다. 더욱이, 이러한 조건을 모두 고려하여 배터리 하우징(20)의 폐쇄부의 두께 및 측벽부의 두께를 각각 제어할 필요가 있다.
도 12 및 도 21을 참조하면, 상기 캡 플레이트(40)는, 배터리 하우징(20)의 하단에 형성된 개방부를 밀폐할 수 있다. 즉, 상기 캡 플레이트(40)는, 원통형 배터리(1)의 하면을 이룰 수 있다.
본 발명의 일 실시예에 따른 원통형 배터리(1)는, 앞서 설명한 바와 같이 상부에 양극 단자 및 음극 단자가 모두 존재하는 구조를 가질 수 있다. 이로 인해 상부의 구조가 하부의 구조보다 더 복잡할 수 있다. 따라서, 상기 배터리 하우징(20)의 내부에 발생된 가스의 원활한 배출을 위해 원통형 배터리(1)의 하면을 이루는 캡 플레이트(40)에 벤팅부(41)가 형성될 수 있다. 도 19에 도시된 바와 같이, 상기 캡 플레이트(40)의 하단부는 배터리 하우징(20)의 하단부보다 더 상방에 배치되는 것이 바람직하다. 이 경우, 상기 배터리 하우징(20)의 하단부가 지면에 닿거나 또는 모둘이나 팩 구성을 위한 하우징의 바닥면에 닿더라도, 캡 플레이트(40)는 지면 또는 모듈이나 팩 구성을 위한 하우징의 바닥면에 닿지 않게 된다. 따라서, 상기 원통형 배터리(1)의 무게로 인해 벤팅부(41)의 파단에 요구되는 압력이 설계치와 달라지는 현상을 방지할 수 있으며, 이에 따라 벤팅부(41)의 파단 원활성이 확보될 수 있다.
한편, 상기 벤팅부(41)가 도 21 및 도 22에 도시된 바와 같이 폐루프 형태를 갖는 경우, 파단의 용이성 측면에서는 캡 플레이트(40)의 중심부로부터 벤팅부(41)에 이르는 거리가 클수록 유리하다. 이는, 동일한 벤팅 압이 작용했을 때, 상기 캡 플레이트(40)의 중심부로부터 벤팅부(41)에 이르는 거리가 커질수록 벤팅부(41)에 작용하는 힘이 커져 파단이 용이해지기 때문이다. 또한, 벤팅 가스의 배출 원활성의 측면에서도 캡 플레이트(40)의 중심부로부터 벤팅부(41)에 이르는 거리가 클수록 유리하다. 이러한 관점에서 볼 때, 상기 벤팅부(41)는, 캡 플레이트(40)의 가장 자리 둘레 영역으로부터 하방(도 19을 기준으로 아래를 향하는 방향)으로 돌출된 대략 플랫한 영역의 가장자리 둘레를 따라 형성되는 것이 유리할 수 있다.
본 발명의 도 22에서는, 상기 벤팅부(41)가 캡 플레이트(40) 상에 대략 원을 그리며 연속적으로 형성된 경우를 도시하고 있으나, 이로써 본 발명이 한정되는 것은 아니다. 상기 벤팅부(41)는 캡 플레이트(40) 상에 대략 원을 그리며 불연속적으로 형성될 수도 있고, 대략 직선 형태 또는 그 밖의 다른 형태로 형성될 수도 있다.
도 12 내지 도 14를 참조하면, 상기 제2 집전판(50)은, 전극 조립체(300)의 상부에 결합된다. 상기 제2 집전판(50)은, 도전성을 갖는 금속 재질로 이루어지며, 제2 전극 탭(12)과 연결된다.
도 14를 참조하면, 상기 제2 집전판(50)은, 제2 전극 탭(12)의 단부가 제2 집전판(50)과 나란한 방향으로 절곡되어 형성된 결합 면 상에 결합될 수 있다. 상기 제2 전극 탭(12)의 절곡 방향은, 예를 들어 전극 조립체(300)의 권취 중심 홀(H1)을 향하는 방향일 수 있다. 상기 제2 전극 탭(12)이 이처럼 절곡된 형태를 갖는 경우, 제2 전극 탭(12)이 차지하는 공간이 축소되어 에너지 밀도의 향상을 가져올 수 있다. 또한, 상기 제2 전극 탭(12)과 제2 집전판(50) 간의 결합 면적의 증가로 인해 결합력 향상 및 저항 감소 효과를 가져올 수 있다.
도 12 내지 도 14와 함께 도 15 내지 도 18을 참조하면, 상기 제2 집전판(50)은, 테두리부(51), 제2 탭 결합부(52) 및 단자 결합부(53)를 포함한다. 상기 테두리부(51)는, 중심부에 빈 공간(E)이 형성된 대략 림(rim) 형태를 가질 수 있다. 본 발명의 도면에서는 상기 테두리부(51)가 대략 원형의 림 형태를 갖는 경우만으로 도시하고 있으나, 이로써 본 발명이 한정되는 것은 아니다. 상기 테두리부(51)는, 도시된 것과는 달리 대략 사각의 림 형태 또는 그 밖의 다른 형태를 가질 수도 있는 것이다.
상기 제2 탭 결합부(52)는, 테두리부(51)로부터 내측으로 연장되며 제2 전극 탭(12)과 결합된다. 상기 단자 결합부(53)는, 제2 탭 결합부(52)와 이격되어 테두리부(51)의 내측에 위치한다. 상기 단자 결합부(53)는, 배터리 단자(60)와 용접에 의해 결합될 수 있다. 상기 단자 결합부(53)는, 예를 들어 테두리부(51)의 내측 공간의 중심부에 위치할 수 있다. 상기 단자 결합부(53)는, 전극 조립체(300)의 권취 중심 홀(H1)에 대응되는 위치에 배치될 수 있다.
상기 제2 탭 결합부(52) 및 단자 결합부(53)는 직접적으로 연결되지 않고 서로 이격되도록 배치되며 테두리부(51)에 의해 전기적으로 연결된다. 이처럼, 본 발명의 일 실시예에 따른 제2 집전판(50)은, 제2 탭 결합부(52)와 단자 결합부(53)가 서로 직접 연결되어 있지 않고, 테두리부(51)를 통해서 연결된 구조를 가짐으로써 원통형 배터리(1)에 충격 및/또는 진동이 발생되는 경우 제2 탭 결합부(52)와 제2 전극 탭(12) 간의 결합 부위와 단자 결합부(53)와 배터리 단자(60) 간의 결합 부위에 가해지는 충격을 분산시킬 수 있다. 따라서, 본 발명의 제2 집전판(50)은, 외부 충격으로 인한 용접부위의 파손을 최소화 또는 방지할 수 있다. 본 발명의 제2 집전판(50)은, 외부 충격이 가해졌을 때 테두리부(51)와 단자 결합부(53)의 연결 부위에 응력이 집중될 수 있는 구조를 갖는데, 이러한 연결 부위는 부품 간의 결합을 위한 용접부가 형성된 부위가 아니기 때문에 외부 충격으로 인한 용접부 파손에 따른 제품 불량 발생을 방지할 수 있는 것이다.
상기 제2 집전판(50)은, 테두리부(51)로부터 내측으로 연장되어 단자 결합부(53)와 연결되는 제2 연결부(54)를 더 포함할 수 있다. 상기 제2 연결부(54)는, 적어도 그 일부가 제2 탭 결합부(52)와 비교하여 그 폭이 더 작게 형성될 수 있다. 이 경우, 상기 제2 연결부(54)에서 전기 저항이 증가하여 제2 연결부(54)를 통해 전류가 흐를 때 다른 부위와 비교하여 더 큰 저항이 발생하게 되며, 이로 인해 과전류 발생 시에 제2 연결부(54)의 일부가 파단되어 과전류를 차단할 수 있게 된다. 상기 제2 연결부(54)는 이러한 과전류 차단 기능을 고려하여 그 폭이 적절한 수준으로 조절될 수 있다.
상기 제2 연결부(54)는, 테두리부(51)의 내측면으로부터 단자 결합부(53)를 향하는 방향을 따라 그 폭이 점점 좁아지는 테이퍼부(54a)를 구비할 수 있다. 상기 테이퍼부(54a)가 구비되는 경우, 제2 연결부(54)와 테두리부(51)의 연결 부위에서 부품의 강성이 향상될 수 있다.
상기 제2 탭 결합부(52)는, 복수개가 구비될 수 있다. 복수의 상기 제2 탭 결합부(52)는, 테두리부(51)의 연장 방향을 따라 서로 동일 간격으로 배치될 수 있다. 복수의 상기 제2 탭 결합부(52) 각각의 연장 길이는 서로 동일할 수 있다. 상기 단자 결합부(53)는, 복수의 상기 제2 탭 결합부(52)에 의해 둘러 싸이도록 배치될 수 있다. 상기 제2 연결부(54)는, 서로 인접한 한 쌍의 제2 탭 결합부(52) 사이에 위치할 수 있다. 이 경우, 상기 제2 연결부(54)로부터 테두리부(51)의 연장 방향을 따라 상기 한 쌍의 제2 탭 결합부(52) 중 어느 하나에 이르는 거리는, 제2 연결부(54)로부터 테두리부(51)의 연장 방향을 따라 상기 한 쌍의 제2 탭 결합부(52) 중 나머지 하나에 이르는 거리와 동일할 수 있다.
상기 제2 연결부(54)는, 복수개가 구비될 수 있다. 복수의 제2 연결부(54) 각각은, 서로 인접한 한 쌍의 제2 탭 결합부(52) 사이에 배치될 수 있다. 복수의 상기 제2 연결부(54)는, 테두리부(51)의 연장 방향을 따라 서로 동일한 간격으로 배치될 수 있다.
상술한 바와 같이 제2 탭 결합부(52) 및/또는 제2 연결부(54)가 복수개 구비되는 경우에 있어서, 제2 탭 결합부(52)들 간의 거리 및/또는 제2 연결부(54)들 간의 거리 및/또는 제2 탭 결합부(52)와 제2 연결부(54) 간의 거리가 일정하게 형성되면, 제2 탭 결합부(52)로부터 제2 연결부(54)를 향하는 전류 또는 제2 연결부(54)로부터 제2 탭 결합부(52)를 향하는 전류의 흐름이 원활하게 형성될 수 있다.
도 19 및 도 20을 참고하면, 상기 제2 연결부(54)는, 제2 연결부(54)의 폭을 부분적으로 감소시키도록 형성되는 노칭부(N)를 구비할 수 있다. 상기 노칭부(N)가 구비되는 경우, 노칭부(N)가 형성된 영역에서의 전기 저항이 증가하게 되고, 이로써 과전류 발생 시에 신속한 전류 차단이 가능하게 된다.
상기 제2 연결부(54)가 테이퍼부(54a)를 구비하는 경우에 있어서, 상기 노칭부(N)는 단자 결합부(53)보다 테이퍼부(54a)에 더 가깝게 위치할 수 있다. 이 경우, 점점 그 폭이 좁아지는 테이퍼부(54a)의 구조로 인해 발열량이 큰 영역과 인접한 영역에 노칭부(N)가 위치함으로써 좀 더 신속한 과전류 차단이 가능하게 된다.
상기 제2 집전판(50)은, 제2 전극 탭(12)과 대향하는 면 상에 방사상으로 형성된 복수의 요철(미도시)을 구비할 수 있다. 요철이 형성된 경우, 제2 집전판(50)을 눌러서 요철을 제2 전극 탭(12)에 압입시킬 수 있다. 제2 집전판(50)과 제2 전극 탭(12)의 단부는 용접, 예컨대 레이저 용접에 의해 결합될 수 있다
도 11 내지 도 13 및 도 15를 참조하면, 상기 배터리 단자(60)는, 전도성을 갖는 금속 재질로 이루어지며, 제2 집전판(50)의 단자 결합부(53)와 결합된다. 상기 배터리 단자(60)는, 배터리 하우징(20)의 개방부의 반대 편에 위치하는 폐쇄부를 관통하도록 구성될 수 있다. 본 발명의 원통형 배터리(1)가 후술할 인슐레이터(S)를 구비하는 경우, 배터리 단자(60)는, 인슐레이터(S)를 통과하여 제2 집전판(50)의 단자 결합부(53)와 결합하도록 구성된다.
이처럼, 상기 배터리 단자(60)는, 제2 집전판(50)을 통해 전극 조립체(300)의 제2 전극 탭(12)과 전기적으로 연결되며, 이로써 제2 극성을 갖는다. 따라서, 상기 배터리 단자(60)는, 본 발명의 원통형 배터리(1)의 제2 전극 단자로서 기능할 수 있다. 또한, 본 발명의 원통형 배터리(1)에 있어서, 제1 극성을 갖는 배터리 하우징(20)의 폐쇄부 측에 형성되는 대략 플랫한 면이 제1 전극 단자(T1)로서 기능할 수 있다. 도 11을 참조하면, 본 발명의 원통형 배터리(1)의 제2 전극 단자(T2) 및 제1 전극 단자(T1) 각각에 버스바(U)가 연결되어 있다. 상기 제2 전극 단자(T2) 및 제1 전극 단자(T1) 각각에 있어서, 버스바(U)와의 결합을 위한 충분한 결합 면적을 확보하기 위해, 제2 전극 단자(T2) 중 배터리 하우징(20)의 외측으로 노출된 영역의 폭(D1)은, 제1 전극 단자(T1), 즉 배터리 하우징(20)의 상면의 폭(D2) 대비 대략 10% 내지 60% 범위로 설정될 수 있다.
도 12 및 도 13, 그리고 도 15를 함께 참조하면, 상기 인슐레이터(S)는, 제2 집전판(50)과 배터리 하우징(20)의 내측 면 사이에 구비될 수 있다. 상기 인슐레이터(S)는, 제2 집전판(50)과 배터리 하우징(20) 사이의 접촉을 방지한다. 인슐레이터(S)는 제2 집전판(50)의 상부와 전극 조립체(300)의 상단 가장 자리 부분을 커버한다. 이로써, 전극 조립체(300)의 외주측 무지부가 다른 극성을 가진 배터리 하우징(20)의 내측면과 접촉하여 단락을 일으키는 것을 방지할 수 있다. 상기 인슐레이터(S)는, 전극 조립체(300)의 외주면의 상단과 배터리 하우징(20)이 내측 면 사이에도 개재될 수 있다. 이는, 상기 배터리 하우징(20)의 폐쇄부를 향해 연장된 제2 전극 탭(12)과 배터리 하우징(20)의 내주면 사이의 접촉을 방지하기 위함이다.
본 발명의 원통형 배터리(1)가 인슐레이터(S)를 구비하는 경우, 배터리 단자(60)는 인슐레이터(S)를 통과하여 제2 집전판(50)에 결합된다. 이처럼 배터리 단자(60)가 통과될 수 있도록 하기 위해, 상기 인슐레이터(S)는 제2 집전판(50)의 단자 결합부(53)와 대응되는 위치에 형성되는 개구를 구비할 수 있다.
도 19을 참조하면, 상기 제1 집전판(30)은, 전극 조립체(300)의 하부에 결합될 수 있다. 상기 제1 집전판(30)은, 도전성을 갖는 금속 재질로 이루어지며, 제1 전극 탭(11)과 결합된다. 또한, 상기 제1 집전판(30)은, 배터리 하우징(20)과 전기적으로 연결된다. 상기 제1 집전판(30)은, 그 가장자리 둘레 영역이 배터리 하우징(20)의 내측 면과 실링 가스켓(G1) 사이에 개재되어 고정될 수 있다. 이 경우, 상기 제1 집전판(30)은, 배터리 하우징(20)의 비딩부(21)에 의해 형성되는 안착 면 상에 용접될 수도 있다.
도 14를 참조하면, 상기 제1 집전판(30)은, 제1 전극 탭(11)의 단부가 제1 집전판(30)과 나란한 방향으로 절곡되어 형성된 결합 면 상에 결합될 수 있다. 상기 제1 전극 탭(11)의 절곡 방향은, 예를 들어 전극 조립체(300)의 권취 중심 홀(H1)을 향하는 방향일 수 있다. 상기 제1 전극 탭(11)이 이처럼 절곡된 형태를 갖는 경우, 제1 전극 탭(11)이 차지하는 공간이 축소되어 에너지 밀도의 향상을 가져올 수 있다. 또한, 상기 제1 전극 탭(11)과 제1 집전판(30) 간의 결합력 향상 및 저항 감소 효과를 가져올 수 있다.
바람직하게, 원통형 배터리는, 예를 들어 폼 팩터의 비(원통형 배터리의 직경을 높이로 나눈 값, 즉 높이(H) 대비 직경(Φ)의 비로 정의됨)가 대략 0.4 보다 큰 원통형 배터리일 수 있다.
여기서, 폼 팩터란, 원통형 배터리의 직경 및 높이를 나타내는 값을 의미한다. 본 발명의 일 실시예에 따른 원통형 배터리는, 예를 들어 46110 배터리, 48750 배터리, 48110 배터리, 48800 배터리, 46800 배터리일 수 있다. 폼 팩터를 나타내는 수치에서, 앞의 숫자 2개는 배터리의 직경을 나타내고, 그 다음 숫자 2개는 배터리의 높이를 나타내고, 마지막 숫자 0은 배터리의 단면이 원형임을 나타낸다.
본 발명의 일 실시예에 따른 배터리 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 46mm이고, 그 높이는 대략 110mm이고, 폼 팩터의 비는 대략 0.418인 원통형 배터리일 수 있다.
다른 실시예에 따른 배터리 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 48mm이고, 그 높이는 대략 75mm이고, 폼 팩터의 비는 대략 0.640인 원통형 배터리일 수 있다.
또 다른 실시예에 따른 배터리 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 48mm이고, 그 높이는 대략 110mm이고, 폼 팩터의 비는 대략 0.418인 원통형 배터리일 수 있다.
또 다른 실시예에 따른 배터리 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 48mm이고, 그 높이는 대략 80mm이고, 폼 팩터의 비는 대략 0.600인 원통형 배터리일 수 있다.
또 다른 실시예에 따른 배터리 배터리는, 대략 원기둥 형태의 배터리로서, 그 직경이 대략 46mm이고, 그 높이는 대략 80mm이고, 폼 팩터의 비는 대략 0.575인 원통형 배터리일 수 있다.
종래에는, 폼 팩터의 비가 대략 0.4 이하인 배터리 배터리들이 이용되었다. 즉, 종래에는, 예를 들어 18650 배터리, 21700 배터리 등이 이용되었다. 18650배터리의 경우, 그 직경이 대략 18mm이고, 그 높이는 대략 65mm이고, 폼 팩터의 비는 대략 0.277이다. 21700 배터리의 경우, 그 직경이 대략 21mm이고, 그 높이는 대략 70mm이고, 폼 팩터의 비는 대략 0.300이다.
도 23을 참조하면, 본 발명의 일 실시예에 따른 배터리 팩(3)은, 상술한 바와 같은 본 발명의 일 실시예에 따른 원통형 배터리(1)를 포함한다. 본 발명의 도면에서는, 도면 도시의 편의상 전기적 연결을 위한 버스바, 냉각 유닛, 전력 단자 등의 부품은 생략되었다.
도 24를 참조하면, 본 발명의 일 실시예에 따른 자동차(5)는, 예를 들어 전기 자동차, 하이브리드 자동차 또는 플러그인 하이브리드 자동차일 수 있으며, 본 발명의 일 실시예에 따른 배터리 팩(3)을 포함한다. 상기 자동차(5)는, 4륜 자동차 및 2륜 자동차를 포함한다. 상기 자동차(5)는, 본 발명의 일 실시예에 따른 배터리 팩(3)으로부터 전력을 공급 받아 동작한다.
이하에서는, 본 발명에 따른 원통형 배터리에 사용되는 양극 활물질의 실시예에 관하여 설명한다.
실시예에 있어서, "1차 입자"는 주사전자현미경 또는 후방산란전자 회전패턴 분석기(Electron Back Scatter Diffraction; EBSD)를 이용하여 5000배 내지 20000배의 시야에서 관찰했을 때 외관상 입계가 존재하지 않는 입자 단위를 의미한다. "1차 입자의 평균 입경"은 주사전자현미경 또는 EBSD 이미지에서 관찰되는 1차 입자들의 입경을 측정한 후 계산된 이들의 산술평균 값을 의미한다.
"2차 입자"는 복수개의 1차 입자들이 응집되어 형성된 입자이다. 본 발명에서는 1차 입자가 수십 ~ 수백 개 응집되어 형성되는 종래의 2차 입자와 구별하기 위해 1차 입자가 10개 이하로 응집된 2차 입자를 유사-단입자로 지칭하기로 한다.
본 발명에서 "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소 가스 흡착량으로부터 산출될 수 있다.
본 발명에서 “Dmin”, “D50” 및 “Dmax”는 레이저 회절법(laser diffraction method)를 이용하여 측정된 양극 활물질의 체적 누적 분포의 입도 값이다. 구체적으로는 Dmin은 체적 누적 분포에서 나타나는 최소 입자 크기이며, D50은 체적 누적량이 50%일 때의 입자 크기이고, Dmax는 체적 누적 분포에서 나타나는 최대 입자 크기이다. 양극 활물질이 단입자인 경우 D50은 1차 입자의 평균 입경을 의미한다. 또한, 양극 활물질이 유사-단입자인 경우, D50은 1차 입자들이 응집되어 형성된 입자의 평균 입경을 의미한다.
상기 체적 누적 분포의 입도 값은, 예를 들면, 양극 활물질을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들면, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 체적 누적 입도 분포 그래프를 얻어 측정될 수 있다.
본 발명에서 “본질적으로 A로 이루어진다(consist essentially of A)”는, A 성분과 본 발명의 기본적이고 신규한 특징에 실질적으로 영향을 미치지 않는 언급되지 않은 임의의 성분들을 포함하는 것을 나타낸다. 본 발명의 기본적이고 신규한 특징은 전지 제조 시 입자 깨짐을 최소화하는 것, 이러한 입자 깨짐에 의해 발생하는 가스를 최소화하는 것 및 내부 크랙의 발생을 최소화하는 것 중 적어도 하나를 포함한다. 당해 기술 분야의 통상의 기술자라면 이러한 특성들의 물질적 영향을 인지할 수 있다.
본 발명자들은 높은 용량을 구현하면서도 안전성이 우수한 전기화학소자용 양극 및 이를 포함하는 전기화학소자를 개발하기 위해 연구를 거듭한 결과, 양극 활물질로 1개의 1차 입자로 이루어진 단입자 또는 10개 이하의 1차 입자들의 응집체인 유사-단입자 형태의 양극 활물질을 단독으로 사용하는 경우, 대형 원통형 배터리의 안전성을 획기적으로 향상시킬 수 있음을 확인하였다.
일 측면에 따르면, 양극은 양극 집전체; 및 상기 양극 집전체의 적어도 일측면 상에 형성된 양극 활물질층;을 포함하고, 상기 양극 활물질층은 양극 활물질을 포함할 수 있고, 선택적으로, 도전재 및/또는 바인더를 포함할 수 있다.
양극은 긴 시트 형상의 양극 집전체의 적어도 일면 또는 양면에 양극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 양극 활물질층은 양극 활물질 및 바인더를 포함할 수 있다.
구체적으로는 상기 양극은 긴 시트 형상의 양극 집전체의 일면 또는 양면에 양극 활물질, 도전재, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 양극 슬러리를 도포하고, 건조 공정을 통해 양극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 한편, 상기 양극 슬러리 도포 시에 양극 집전체의 일부 영역, 예를 들면 양극 집전체의 일 단부에 양극 슬러리를 도포하지 않는 방법으로 무지부(미코팅부)를 포함하는 양극을 제조할 수 있다.
다른 측면에서, 상기 양극 활물질은 단입자계 활물질 입자를 포함한다. 일 실시양태에 있어서, 상기 단입자계 활물질 입자는 상기 양극 활물질 100wt% 대비 90wt% 이상, 95wt% 이상, 98wt% 이상, 또는 99wt% 이상일 수 있다. 구체적인 일 실시양태에 있어서, 상기 양극 활물질은 상기 단입자계 활물질 입자만으로 구성될 수 있다.
본 명세서에서 상기 단입자계 활물질 입자는 단입자, 유사 단입자 또는 이 둘 모두를 모두 포함하는 것으로 지칭한다. 상기 단입자는 1개의 1차 입자로 이루어진 입자이며 상기 유사-단입자는 10개 이하의 1차 입자들의 응집체이다.
종래에는 리튬 배터리의 양극 활물질로 수십 ~ 수백개의 1차 입자들이 응집된 구형의 2차 입자를 사용하는 것이 일반적이었다. 그러나 이와 같이 많은 1차 입자들이 응집된 2차 입자 형태의 양극 활물질의 경우, 양극 제조 시에 압연 공정에서 1차 입자들이 떨어져나가는 입자 깨짐이 발생하기 쉽고, 충방전 과정에서 입자 내부에 크랙이 발생한다는 문제점이 있다. 양극 활물질의 입자 깨짐이나 입자 내부의 크랙이 발생할 경우, 전해액과의 접촉 면적이 증가하게 되기 때문에 전해액과의 부반응으로 인한 가스 발생이 증가한다는 문제점이 있다. 원통형 배터리 내부에서 가스 발생이 증가하면 전지 내부의 압력이 증가하여 전지 폭발이 발생될 위험이 있다. 특히, 원통형 배터리의 부피를 증가시킬 경우, 부피 증가에 따라 전지 내부의 활물질 양이 증가하고, 이로 인해 가스 발생량도 현저하게 증가하기 때문에 전지의 발화 및/또는 폭발 위험성이 더 커지게 된다.
이에 비해, 1개의 1차 입자로 이루어진 단입자나 1차 입자가 10개 이하로 응집된 유사-단입자 형태의 단입자계 활물질 입자는 1차 입자가 수십~수백개 응집되어 있는 기존의 2차 입자 형태의 양극 활물질에 비해 입자 강도가 높기 때문에 압연 시의 입자 깨짐이 거의 발생하지 않는다. 또한, 단입자계 활물질 입자의 경우, 입자를 구성하는 1차 입자들의 개수가 적기 때문에 충방전 시에 1차 입자들의 부피 팽창, 수축에 따른 변화가 적고, 이에 따라 입자 내부의 크랙 발생도 현저하게 감소한다.
따라서, 본 발명과 같이 단입자계 활물질 입자를 사용할 경우, 입자 깨짐 및 내부 크랙 발생으로 인한 가스 발생량을 현저하게 감소시킬 수 있다. 이에 따라, 대형 원통형 배터리에 적용되는 경우 우수한 안전성을 구현할 수 있다.
한편, 상기 단입자 및/또는 유사-단입자는 양극에 포함되는 전체 양극 활물질의 중량을 기준으로 95wt% 내지 100wt%, 바람직하게는 98wt% 내지 100wt%, 더 바람직하게는 99wt% 내지 100wt%, 보다 더 바람직하게는 100wt%의 양으로 포함되는 것이 바람직하다.
단입자 및/또는 유사-단입자의 함량이 상기 범위를 만족할 때, 대형 전지 적용 시에 충분한 안전성을 얻을 수 있다. 2차 입자 형태의 양극 활물질이 전체 양극 활물질 중 5wt%를 초과하는 양으로 포함될 경우, 전극 제조 및 충방전 시에 2차 입자로부터 발생한 미분으로 인해 전해액과의 부반응이 증가하여 가스 발생 억제 효과가 떨어지고, 이로 인해 대형 전지에 적용 시에 안정성 개선 효과가 저하될 수 있기 때문이다.
한편, 본 발명에 따른 단입자 및/또는 유사-단입자를 포함하는 양극 활물질은 Dmin이 1.0㎛ 이상, 1.1㎛ 이상, 1.15㎛ 이상, 1.2㎛ 이상, 1.25㎛ 이상, 1.3㎛ 이상 또는 1.5㎛ 이상일 수 있다. 양극 활물질의 Dmin이 1.0㎛ 미만일 경우, 양극 압연 공정에서 선압이 증가하여 입자 깨짐이 발생하기 쉽고, 열 안정성이 저하되어 대형 원통형 전지 적용 시에 열 안전성을 충분히 확보할 수 없다.
한편, 저항 및 출력 특성을 고려할 때, 상기 양극 활물질의 Dmin은 3㎛ 이하, 2.5㎛ 이하 또는 2㎛ 이하일 수 있다. Dmin이 너무 크면, 입자 내 리튬 이온 확산 거리가 증가하여 저항 및 출력 특성이 저하될 수 있다.
예를 들면, 상기 양극 활물질의 Dmin은 1.0㎛ 내지 3㎛, 1.0㎛ 내지 2.5㎛, 또는 1.3㎛ 내지 2.0㎛일 수 있다.
한편, 상기 양극 활물질은, D50이 5㎛ 이하, 4㎛ 이하, 또는 3㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다.
단입자 및/또는 유사-단입자 형태의 양극 활물질은 입자 내부에서 리튬 이온의 확산 경로가 되는 1차 입자들 사이의 계면이 적기 때문에 2차 입자 형태의 양극 활물질보다 리튬 이동성이 떨어지고, 이로 인해 저항이 증가한다는 문제점이 있다. 이러한 저항 증가는 입자의 크기가 커질수록 더욱 심화되며, 저항이 증가하면 용량 및 출력 특성이 악영향을 미친다. 따라서, 양극 활물질의 D50을 5㎛ 이하로 조절함으로써 양극 활물질 입자 내부에서의 리튬 이온 확산 거리를 최소화함으로써 저항 증가를 억제할 수 있다.
또한, 상기 양극 활물질은 Dmax가 12㎛ 내지 17㎛, 바람직하게는 12㎛ 내지 16㎛, 더 바람직하게는 12㎛ 내지 15㎛일 수 있다. 양극 활물질의 Dmax가 상기 범위를 만족할 때, 저항 특성 및 용량 특성이 더욱 우수하게 나타난다. 양극 활물질의 Dmax가 너무 큰 경우는 단입자들 간의 응집이 발생한 것으로, 응집된 입자 내부에서의 리튬 이동 경로가 길어져 리튬 이동성이 떨어지고, 이로 인해 저항이 증가할 수 있다. 한편, 양극 활물질의 Dmax가 너무 작은 경우는 과도한 해쇄 공정이 이루어진 경우로, 과도한 해쇄로 인해 Dmin이 1㎛ 미만으로 작아질 수 있어 압연 시 입자 깨짐이 유발되고 열 안정성이 저하될 수 있다.
한편, 상기 양극 활물질은, 하기 식 (1)로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하, 바람직하게는 2 내지 3, 더 바람직하게는 2.3 내지 3일 수 있다.
식 (1): 입도 분포(PSD) = (Dmax - Dmin)/D50
양극 활물질이 상기와 같은 입도 분포를 가질 때, 양극의 전극 밀도를 적절하게 유지할 수 있고, 입자 깨짐 및 저항 증가를 효과적으로 억제할 수 있다.
한편, 상기 양극 활물질은 1차 입자의 평균 입경이 5㎛ 이하, 4㎛ 이하, 3㎛ 이하, 또는 2㎛ 이하일 수 있으며, 예를 들면, 0.5㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 5㎛, 더 바람직하게는 2㎛ 내지 5㎛일 수 있다. 1차 입자의 평균 입경이 상기 범위를 만족할 경우, 전기 화학적 특성이 우수한 단입자 및/또는 유사-단입자 형태의 양극 활물질을 형성할 수 있다. 1차 입자의 평균 입경이 너무 작으면, 양극 활물질을 형성하는 1차 입자의 응집 개수가 많아져 압연 시에 입자 깨짐 발생 억제 효과가 떨어지고, 1차 입자의 평균 입경이 너무 크면 1차 입자 내부에서의 리튬 확산 경로가 길어져 저항이 증가하고 출력 특성이 떨어질 수 있다.
본 발명에 있어서, 상기 양극 활물질은 유니모달 입도 분포를 갖는 것이 바람직하다. 종래에는 양극 활물질층의 전극 밀도를 향상시키기 위해 평균 입경이 큰 대입경 양극 활물질과 평균 입경이 작은 소입경 양극 활물질을 혼합하여 사용하는 바이모달 양극 활물질이 많이 사용되어 왔다. 그러나, 단입자 또는 유사-단입자 형태의 양극 활물질의 경우, 입경이 증가하면 리튬 이동 경로가 길어져 저항이 현저하게 증가하기 때문에 대입경 입자를 혼합하여 사용할 경우, 용량 및 출력 특성이 저하되는 문제점이 발생할 수 있다. 따라서, 본 발명에서는 유니모달 분포를 갖는 양극 활물질을 사용함으로써, 저항 증가를 최소화할 수 있도록 하였다.
한편, 상기 양극 활물질은 리튬 니켈계 산화물을 포함하는 것일 수 있으며, 구체적으로는, 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것일 수 있다. 바람직하게는, 상기 리튬 니켈계 산화물은 Ni을 80몰% 이상 100몰% 미만, 82몰% 이상 100몰% 미만, 또는 83몰% 이상 100몰% 미만으로 포함할 수 있다. 상기와 같이 Ni 함량이 높은 리튬 니켈계 산화물을 사용할 경우, 높은 용량을 구현할 수 있다.
더 구체적으로는, 상기 양극 활물질은, 하기 [화학식 1]로 표시되는 리튬 니켈계 산화물을 포함하는 것일 수 있다.
[화학식 1]
LiaNibCocM1 dM2 eO2
상기 화학식 1에서, M1은 Mn, Al 또는 이들의 조합일 수 있으며, 바람직하게는 Mn 또는 Mn 및 Al일 수 있다.
상기 M2는 Zr, W, Y, Ba, Ca, Ti, Mg, Ta 및 Nb로 이루어진 군에서 선택되는 1종 이상이며, 바람직하게는 Zr, Y, Mg, 및 Ti로 이루어진 군에서 선택된 1종 이상일 수 있고, 더 바람직하게는 Zr, Y 또는 이들의 조합일 수 있다. M2 원소는 필수적으로 포함되는 것은 아니나, 적절한 양으로 포함될 경우, 소성 시의 입자 성장을 촉진하거나, 결정 구조 안정성을 향상시키는 역할을 수행할 수 있다.
상기 a는 리튬 니켈계 산화물 내의 리튬 몰비를 나타내는 것으로, 0.8≤a ≤1.2, 0.85≤a ≤1.15, 또는 0.9≤a ≤1.2일 수 있다. 리튬의 몰비가 상기 범위를 만족할 때, 리튬 니켈계 산화물의 결정 구조가 안정적으로 형성될 수 있다.
상기 b는 리튬 니켈계 산화물 내 리튬을 제외한 전체 금속 중 니켈의 몰비를 나타내는 것으로, 0.8≤b<1, 0.82≤b<1, 0.83≤b<1, 0.85≤b<1, 0.88≤b<1 또는 0.90≤b<1일 수 있다. 니켈의 몰비가 상기 범위를 만족할 때, 높은 에너지 밀도를 나타내어 고용량 구현이 가능하다.
상기 c는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 코발트 몰비를 나타내는 것으로, 0<c<0.2, 0<c<0.18, 0.01≤c≤0.17, 0.01≤c≤0.15, 0.01≤c≤0.12 또는 0.01≤c≤0.10일 수 있다. 코발트의 몰비가 상기 범위를 만족할 때, 양호한 저항 특성 및 출력 특성을 구현할 수 있다.
상기 d는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M1 원소의 몰비를 나타내는 것으로, 0<d<0.2, 0<d<0.18, 0.01≤d≤0.17, 0.01≤d≤0.15, 0.01≤d≤0.12, 또는 0.01≤d≤0.10일 수 있다. M1 원소의 몰비가 상기 범위를 만족할 때, 양극 활물질의 구조 안정성이 우수하게 나타난다.
상기 e는 리튬 니켈계 산화물 내의 리튬을 제외한 전체 금속 중 M2 원소의 몰비를 나타내는 것으로, 0≤e≤0.1, 또는 0≤e≤0.05일 수 있다.
한편, 본 발명에 따른 양극 활물질은, 필요에 따라, 상기 리튬 니켈계 산화물 입자 표면에, Al, Ti, W, B, F, P, Mg, Ni, Co, Fe, Cr, V, Cu, Ca, Zn, Zr, Nb. Mo, Sr, Sb, Bi, Si 및 S로 이루어진 군으로부터 선택되는 1종 이상의 코팅 원소를 포함하는 코팅층을 더 포함할 수 있다. 바람직하게는 상기 코팅 원소는 Al, B, Co 또는 이들의 조합일 수 있다.
리튬 니켈계 산화물 입자 표면에 코팅층이 존재할 경우, 코팅층에 의해 전해질과 리튬 니켈계 산화물의 접촉이 억제되며, 이로 인해 전해질과의 부반응으로 인한 전이금속 용출이나 가스 발생을 감소시키는 효과를 얻을 수 있다.
상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 wt% 내지 99wt%, 바람직하게는 85wt% 내지 99wt%, 더 바람직하게는 90wt% 내지 99wt%로 포함될 수 있다.
한편, 상기 양극 집전체로는, 당해 기술 분야에서 사용되는 다양한 양극 집전체들이 사용될 수 있다. 예를 들어, 상기 양극 집전체로는, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 상기 양극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 상기 양극 집전체는 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 단입자계 활물질 입자들 전부 또는 일부는 입자 표면이 전도성 코팅층으로 피복된 코어-쉘(Core-shell) 구조를 가질 수 있다. 상기 전도성 코팅층은 입자의 적어도 일부 또는 전부를 피복할 수 있다. 상기 전도성 코팅층은 전도성 나노 물질을 포함하는 것이다.
상기 단입자계 활물질 입자의 경우, 종래의 2차 입자 형태의 양극 활물질에 비해 저항이 높고, 도전재와의 접촉 면적이 작기 때문에 전기 전도도가 떨어진다는 문제점이 있다. 전기 전도도를 개선하기 위해 도전재를 과량으로 투입할 경우, 양극 슬러리 내에서 응집이 발생하여 점도가 증가하고, 이로 인해 코팅성이 떨어지는 문제가 발생한다. 따라서, 원활한 코팅성을 구현하기 위해서는 고형분 함량을 감소시켜 양극 슬러리의 점도를 낮춰야 하는데, 양극 슬러리 내 고형분 함량이 감소하면 활물질 함량이 감소하여 용량 특성이 떨어질 수 있다. 본 발명은 이러한 문제점을 해결하기 위해 단입자계 활물질 입자 표면을 전도성 나노 물질로 코팅함으로써, 양극 슬러리에 별도의 도전재를 첨가하지 않더라도 우수한 전기 전도성을 구현할 수 있도록 하였다.
본 발명의 일 실시양태에 있어서, 상기 단입자계 활물질 입자 표면에 전도성 나노 물질을 코팅한 양극 활물질을 적용할 경우, 상기 양극 활물질층은 도전성 코팅층을 제외한 부분에 도전재를 사용하지 않을 수 있다. 이와 같이 양극 슬러리의 응집을 유발하는 도전재를 추가적으로 사용하지 않아도 되기 때문에 양극 슬러리의 점도가 감소하고 고형분 함량을 증가시킬 수 있으며, 전극 코팅 공정성 및 전극 접착력이 개선되는 효과를 얻을 수 있다.
본 발명에서 상기 전도성 나노 물질은, 입자 상에 원활하게 코팅될 수 있도록 나노 사이즈의 크기를 가지고, 전도성이 있는 물질이면 되고, 그 종류가 특별히 한정되는 것은 아니다. 예를 들면, 상기 전도성 나노 물질은 탄소나노튜브, 탄소나노입자 등일 수 있다.
상기 전도성 나노 물질은 다양한 형태를 가질 수 있으며, 예를 들면, 구상, 인편상, 또는 섬유상 등일 수 있다.
한편, 상기 전도성 코팅층은 코어부인 단입자계 활물질 입자와 전도성 나노 물질을 혼합한 후, 열처리하는 방법으로 형성될 수 있다. 이때, 상기 혼합은 고상 혼합 또는 액상 혼합으로 이루어질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 양극 활물질층은 인편상 흑연을 포함한다. 양극 활물질로 상기 단입자계 활물질을 사용할 때, 양극 활물질층이 인편상 흑연을 포함하면, 양극 활물질층을 압연하는 경우, 상기 인편상 흑연이 상기 양극 활물질에 미끄러짐 효과를 제공하여 전극의 압연 특성이 향상되고, 전극 공극률을 목표하는 수준까지 낮출 수 있다. 이에 따라, 본 발명에 따른 양극이 적용된 배터리는 안정성, 초기 저항 특성, 및 충방전 효율이 개선될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 인편상 흑연은 상기 양극 활물질층 100wt% 대비 0.1wt% 내지 5wt%로 포함될 수 있으며, 바람직하게는 0.1wt% 내지 3wt%로 포함될 수 있다.
인편상 흑연의 함량이 상기 범위를 만족할 때, 양극 압연 특성이 개선되어 우수한 전극 밀도를 구현할 수 있다. 인편상 흑연 함량이 너무 적으면 압연 특성 개선 효과가 미미하고, 너무 많으면 슬러리 점도 상승 및 상안정성 저하를 유발할 수 있고, 도전재와의 결합을 통해 전극 균일성 저하로 저항이 증가할 가능성이 있다.
한편, 본 발명에서 사용되는 인편상 흑연은, 이로써 제한되는 것은 아니나, 평균 입경이 1㎛ 내지 20㎛, 바람직하게는 2㎛ 내지 10㎛, 더 바람직하게는 3㎛ 내지 5㎛일 수 있다. 인편상 흑연의 크기가 너무 작으면, 원하는 공극률을 구현하기 어렵고, 전류 밀도를 낮춰 용량이 낮아질 수 있다. 이때, 상기 인편상 흑연의 평균 입경은 레이저 회절 방법(ISO 13320)으로 측정될 수 있다.
또한, 상기 인편상 흑연은 종횡비가 0.1 내지 500, 바람직하게는, 1 내지 100, 더 바람직하게는 1 내지 30일 수 있다. 인편상 흑연의 종횡비가 상기 범위를 만족할 경우, 전도성을 개선하여 전극 저항을 낮추는 효과가 발생한다.
또한, 상기 인편상 흑연은 밀도가 2.0g/cm3 내지 2.5g/cm3, 바람직하게는 2.1g/cm3 내지 2.4g/cm3, 더 바람직하게는 2.2g/cm3 내지 2.3g/cm3일 수 있다.
한편, 본 발명에 있어서, 상기 양극 활물질층의 공극률은 15% 내지 23%, 바람직하게는 17% 내지 23%, 더 바람직하게는 18% 내지 23%일 수 있다. 양극 활물질층의 공극률이 상기 범위를 만족할 때, 전극 밀도가 증가하여 우수한 용량을 구현할 수 있으며, 저항이 감소한다. 공극률이 너무 낮으면 전해액 함침성이 떨어져 전해액 미함침에 의한 리튬 석출이 발생할 수 있고, 너무 높으면 전극간의 접촉이 좋지 않아 저항이 증가되고 에너지 밀도가 감소하여 용량 개선 효과가 미미하다.
상기 양극 활물질층의 공극률 수치는 i) 상기 양극 활물질이 단입자계 활물질 입자를 포함하는 것과 ii) 상기 양극 활물질에 인편상 흑연을 첨가하는 것으로써 달성될 수 있다.
양극 활물질층의 로딩량이 비교적 높은 고로딩 전극을 구현함에 있어서, 본 발명과 같이 단입자 또는 유사-단입자 형태의 양극 활물질을 사용하는 경우, 종래 2차 입자 형태의 양극 활물질에 비해 압연 시의 활물질의 입자 깨짐이 현저히 감소되고, 양극 집전체(Al Foil)의 손상이 줄어들기 때문에 상대적으로 높은 선압으로 압연이 가능하여 양극 활물질층의 공극률은 상기와 같은 수치범위까지 감소하여 에너지밀도를 높일 수 있다.
또한, 본 발명과 같이 양극 활물질층에 인편상 흑연이 포함되는 경우 압연 시 상기 인편상 흑연이 미끄러짐 효과를 제공하고 상기 양극 활물질층의 공극을 채울 수 있기 때문에 양극 활물질층의 공극률은 상기와 같은 수치범위까지 감소될 수 있다.
또한, 상기 양극은, 로딩량이 570mg/25cm2 이상, 바람직하게는 600mg/25cm2 내지 800g/25m2, 더 바람직하게는 600mg/25cm2 내지 750mg/25cm2일 수 있다. 구체적으로, 본 발명에 따른 리튬 이차 전지의 경우 단입자 및/또는 유사-단입자 양극 활물질 및 인편상 흑연을 적용함으로써 전극의 압연 특성이 향상되기 때문에 상기 양극의 로딩량이 비교적 높은 수준으로 확보될 수 있으며, 이를 통해 고용량 특성을 구현할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 양극 활물질층은 도전재를 더 포함할 수 있다. 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 배터리 내부에서 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질층 총 중량에 대하여 1wt% 내지 30wt%, 바람직하게는 1wt% 내지 20wt%, 더 바람직하게는 1wt% 내지 10wt%로 포함될 수 있다.
본 발명의 구체적인 일 실시양태에 있어서, 상기 도전재는 탄소나노튜브를 포함할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 양극 활물질은 도전재로 비표면적이 높고 벽수(Wall number)가 작은 다중벽 탄소나노튜브를 포함할 수 있다. 상기 다중벽 탄소나노튜브는 도전재 100wt% 중 50wt% 이상, 70wt% 이상, 90wt% 이상 또는 99wt% 이상 포함될 수 있다. 본 발명의 구체적인 일 실시예에서 상기 도전재는 상기 다중벽 탄소나노튜브만으로 구성될 수 있다.
본 발명에 있어서, 상기 다중벽 탄소나노튜브는 BET 비표면적이 300m2/g 내지 500m2/g인 것이다. 이를 종래 기술과 구별하기 위해서 '신규 CNT'라고 지칭한다.
종래에 일반적으로 사용되던 탄소나노튜브(기존 CNT)는 BET 비표면적이 300m2/g 미만이었다. 본 발명에서 사용되는 신규 CNT(도 25)와 기존 CNT(도 26)의 주사전자현미경 이미지 및 물성을 비교(도 27)하면 다음과 같다.
상기 SEM 이미지를 통해 알 수 있듯이, 본 발명에 적용되는 신규 CNT는 번들형 타입이며, 다중벽(multiwall) 구조이나, 기존 CNT 대비 BET가 높으며, Wall 수 및 직경이 작다.
2차 입자 형태의 양극 활물질을 사용할 경우, 기존 CNT를 0.4wt% ~ 0.6wt% 수준으로 사용하더라도 충분한 전기 전도성을 구현할 수 있었다. 그러나, 단입자 또는 유사-단입자 양극 활물질의 경우, 종래의 2차 입자 형태의 양극 활물질에 비해 저항이 높고, 도전재와의 접촉 면적이 작아 전기 전도도가 떨어지기 때문에, BET 비표면적이 300m2/g 미만인 기존 CNT를 사용하여 충분한 전기 전도성을 구현하기 위해서는 도전재 함량이 0.9wt% 이상이 되어야 한다.
도 28 내지 도 31는 양극 활물질로 단입자 또는 유사-단입자를 적용할 경우, 도전재 비율별 면저항 및 고온 수명 특성을 보여주는 그래프들이다.
상기 그래프들을 통해, 양극 활물질로 단입자 또는 유사-단입자를 적용할 경우, 기존의 2차 입자 형태의 양극 활물질을 적용하는 경우에 비해 도전재 사용량이 증가하여야 함을 알 수 있다.
그러나, 탄소나노튜브 함유량이 0.9wt% 이상으로 증가하면 양극 슬러리 내에서 응집이 발생하여 점도가 증가하고, 이로 인해 코팅성이 떨어진다. 따라서, 원활한 코팅성을 구현하기 위해서는 양극 슬러리 내 고형분 함량을 감소시켜 양극 슬러리의 점도를 낮춰야 하는데 양극 슬러리 내 고형분 함량이 감소하면 활물질 함량이 감소하여 용량 특성이 떨어진다는 문제점이 있다.
본 발명자들은 이와 같은 문제점을 해결하기 위해 연구를 거듭한 결과, 단입자계 활물질 입자인 양극 활물질과 함께 도전재로 BET 비표면적이 300m2/g 내지 500m2/g인 탄소나노튜브를 적용할 경우, 상대적으로 적은 양의 탄소나노튜브만으로도 충분한 전기 전도성을 확보할 수 있으며, 이에 따라 양극 슬러리의 고형분 함량을 70wt% ~ 80wt% 정도로 높게 형성하여도 슬러리 점도를 낮게 유지할 수 있음을 확인하였다.
구체적으로는, 본 발명에서 사용되는 상기 탄소나노튜브는 BET 비표면적이 300m2/g 내지 500m2/g, 바람직하게는 300m2/g 내지 450m2/g인 다중벽 탄소나노튜브일 수 있다. BET 비표면적이 상기 범위를 만족할 때, 적은 양의 탄소나노튜브로도 충분한 전기 전도성을 확보할 수 있다.
또한, 상기 탄소나노튜브는 벽수(wall number)가 2 내지 8, 바람직하게는 2 내지 6, 더 바람직하게는 3 ~ 6인 다중벽 탄소나노튜브일 수 있다.
또한, 상기 탄소나노튜브는 직경이 1nm ~ 8nm 바람직하게는 3nm ~ 8nm, 더 바람직하게는 3nm ~ 6nm 일 수 있다.
상기 탄소나노튜브는 양극 활물질층 총 중량에 대하여 0.7wt% 이하, 바람직하게는 0.3wt% 내지 0.7wt%, 더 바람직하게는 0.4wt% 내지 0.6wt%로 포함될 수 있다. 탄소나노튜브의 함량이 상기 범위를 만족할 때, 충분한 전기 전도성을 구현할 수 있으며, 양극 슬러리 내에서의 고형분 함량을 높게 유지할 수 있어 양극 활물질층 내에서 양극 활물질의 함량을 높게 형성할 수 있고, 이로 인해 우수한 용량 특성을 구현할 수 있다.
도 32에 도시된 표는 BET 비표면적이 300m2/g 내지 500m2/g인 탄소나노튜브(신규 CNT)를 적용한 경우와 BET가 200m2/g 이상 300m2/g 미만인 탄소나노튜브(기존 CNT)를 적용한 경우의 양극 슬러리의 고형분 함량과 점도 및 MP 코팅층과 MP 계면층에서의 저항값을 비교한 것이다. 상기 표를 통해, 신규 CNT를 적용할 경우, 기존 CNT에 비해 양극 슬러리의 고형분 함량이 더 높은 경우에도 더 낮은 점도를 나타내며, 전기 전도성도 우수함을 확인할 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 수행하는 것으로, 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 wt% 내지 30 wt%, 바람직하게는 1 wt% 내지 20wt%, 더 바람직하게는 1 wt% 내지 10wt%로 포함될 수 있다.
본 발명의 또 다른 측면은 상기 양극을 포함하는 전극 조립체 및 이를 포함하는 배터리에 대한 것이다. 상기 전극 조립체는 음극 및 양극을 포함하며, 상기 양극은 전술한 바와 같은 구성적 특징을 갖는 것이다.
상기 전극 조립체는 예를 들어서, 분리막이 음극과 양극 사이에 개재된 상태로 적층되어 스택형 또는 스택/폴딩의 구조체를 형성하거나 권취되어 젤리롤 구조체를 형성할 수 있다. 아울러, 젤리롤 구조체를 형성했을 때, 음극과 양극이 서로 접하는 것을 방지하기 위해 외측에 분리막이 추가 배치될 수 있다.
상기 음극은 음극 집전체; 및 상기 음극 집전체의 적어도 일측면상에 형성된 음극 활물질층;을 포함한다. 상기 음극은 긴 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질층이 형성된 구조로 이루어질 수 있으며, 상기 음극 활물질층은 음극 활물질, 도전재 및 바인더를 포함할 수 있다.
구체적으로는 상기 음극은 긴 시트 형상의 음극 집전체의 일면 또는 양면에 음극 활물질, 도전재, 및 바인더를 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone), 물 등과 같은 용매에 분산시켜 제조된 음극 슬러리를 도포하고, 건조 공정을 통해 음극 슬러리의 용매를 제거한 후, 압연시키는 방법으로 제조될 수 있다. 상기 음극 슬러리 도포 시에 음극 집전체의 일부 영역, 예를 들면 음극 집전체의 일 단부에 음극 슬러리를 도포하지 않는 방법으로 무지부를 포함하는 음극을 제조할 수 있다.
상기 음극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 음극 활물질의 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료; Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 등과 같은 실리콘계 물질; 리튬 금속 박막; Sn, Al 등과 같이 리튬과 합금화가 가능한 금속 물질; 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
본 발명에 있어서 상기 음극은 실리콘계 음극 활물질을 포함할 수 있다. 상기 실리콘계 음극 활물질은 Si, Si-Me 합금(여기서, Me은 Al, Sn, Mg, Cu, Fe, Pb, Zn, Mn, Cr, Ti, 및 Ni로 이루어진 군에서 선택되는 1종 이상), SiOy(여기서, 0<y<2), Si-C 복합체 또는 이들의 조합일 수 있으며, 바람직하게는 SiOy(여기서, 0<y<2)일 수 있다. 실리콘계 음극 활물질은 높은 이론 용량을 가지기 때문에 실리콘계 음극 활물질을 포함할 경우, 용량 특성을 향상시킬 수 있다.
상기 실리콘계 음극 활물질은, Mb 금속으로 도핑된 것일 수 있으며, 이때, 상기 Mb 금속은 1족 금속 원소, 2족 금속 원소일 수 있으며, 구체적으로는, Li, Mg 등일 수 있다. 구체적으로는 상기 실리콘 음극 활물질은 Mb 금속으로 도핑된 Si, SiOy(여기서, 0<y<2), Si-C 복합체 등일 수 있다. 금속 도핑된 실리콘계 음극 활물질의 경우, 도핑 원소로 인해 활물질 용량은 다소 저하되나 높은 효율을 갖기 때문에, 높은 에너지 밀도를 구현할 수 있다.
도 49에는 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합물을 음극 활물질로 사용한 배터리에서, 실리콘계 음극 활물질의 함량과 실리콘계 음극 활물질의 도핑 유무에 따른 에너지 밀도의 변화를 보여주는 그래프가 도시되어 있다.
도 49에서 Low efficiency SiO는 미도핑 SiO이며, Ultra-High efficiency SiO는 Mg/Li 도핑된 SiO를 의미한다. 도 49을 통해, 전체 음극 활물질 중 실리콘계 음극 활물질의 함량이 증가할수록 에너지 밀도가 향상됨을 확인할 수 있다. 또한, 실리콘계 음극 활물질 중에서 도핑된 실리콘계 음극 활물질의 비율이 증가할수록 에너지 밀도의 개선 효과가 더 우수함을 확인할 수 있다.
상기 실리콘계 음극 활물질은 입자 표면에 탄소 코팅층을 더 포함할 수 있다. 이때, 상기 탄소 코팅량은 실리콘계 음극 활물질 전체 중량을 기준으로 20wt% 이하, 바람직하게는 1 ~ 20wt%일 수 있다. 상기 탄소 코팅층은, 건식 코팅, 습식 코팅, 화학기상증착(CVD), 물리기상증착(PVD), 원자층증착(ALD) 등의 방식을 통해 형성할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 실리콘계 음극 활물질은 1000~4000mAh/g의 용량을 가질 수 있으며, 초기 효율이 60~95% 정도일 수 있다.
본 발명의 또 다른 실시양태에 있어서, 상기 실리콘계 음극 활물질의 D50은 3um 내지 8um일 수 있고, Dmin ~ Dmax는 0.5um~30um의 범위에 포함될 수 있다.
상기 음극은, 필요에 따라, 음극 활물질로 탄소계 음극 활물질을 더 포함할 수 있다. 상기 탄소계 음극 활물질은, 예를 들면, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소, 연화탄소 (soft carbon), 경화탄소 (hard carbon) 등일 수 있으나, 이에 한정되는 것은 아니다.
음극 활물질로 실리콘계 음극 활물질과 탄소계 음극 활물질의 혼합물을 사용할 경우, 상기 실리콘계 음극 활물질 및 탄소계 음극 활물질의 혼합비는 중량 비율로 1 : 99 내지 20 : 80, 바람직하게는 1 : 99 내지 15 : 85, 더 바람직하게는 1 : 99 내지 10 : 90일 수 있다.
상기 음극 활물질은 음극 활물질층 총 중량에 대하여 80wt% 내지 99wt%, 바람직하게는 85wt% 내지 99wt%, 더 바람직하게는 90wt% 내지 99wt%로 포함될 수 있다.
필요에 따라서, 상기 음극 활물질은 리튬 금속과 Sn, Al 등과 같이 리튬과 합금화가 가능한 금속 물질 중 선택된 1종 이상을 더 포함할 수 있다.
상기 음극 집전체로는, 당해 기술 분야에서 일반적으로 사용되는 음극 집전체들이 사용될 수 있으며, 예를 들면, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 음극 집전체는 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 도전재는 음극에 도전성을 부여하기 위해 사용되는 것으로서, 배터리 내부에서 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용 가능하다. 구체적인 도전재의 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유, 탄소나노튜브 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 음극 활물질층 총 중량에 대하여 1wt% 내지 30 wt%, 바람직하게는 1wt% 내지 20wt%, 더 바람직하게는 1wt% 내지 10wt%로 포함될 수 있다.
상기 바인더는 음극 활물질 입자들 간의 부착 및 음극 활물질과 음극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 바인더의 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머 고무(EPDM rubber), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극 활물질층 총 중량에 대하여 1wt% 내지 30 wt%, 바람직하게는 1wt% 내지 20wt%, 더 바람직하게는 1wt% 내지 10wt%로 포함될 수 있다.
상기 전극 조립체는 분리막을 더 포함하며 상기 분리막은 음극과 양극 사이에 개재되는 방식으로 전극 조립체 내에 배치된다. 상기 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 배터리에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하다.
상기 분리막으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있다.
본 발명의 또 다른 측면은 상기 전극 조립체를 포함하는 배터리에 대한 것이다. 상기 배터리는 전지 케이스에 전극 조립체와 전해액이 함께 수납되어 있는 것으로서 상기 전지 케이스로는 파우치 타입이나 금속 캔 타입 등 본 기술 분야에서 통상적으로 사용되는 것이면 특별한 제한 없이 적절한 것이 선택될 수 있다.
본 발명에서 사용되는 전해질로는 리튬 배터리에 사용 가능한 다양한 전해질들, 예를 들면, 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등이 사용될 수 있으며, 그 종류가 특별히 한정되는 것은 아니다.
구체적으로는, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone),ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다.
상기 리튬염은 리튬 배터리에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2, LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 5.0M, 바람직하게는 0.1M 내지 3,0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명 특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 첨가제를 추가로 포함할 수 있다. 예를 들어, 상기 첨가제로는 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사메틸인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등을 단독 또는 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 첨가제는 전해질 총 중량에 대하여 0.1wt% 내지 10wt%, 바람직하게는 0.1wt% 내지 5 wt%로 포함될 수 있다.
본 발명의 또 다른 실시양태에 있어서, 상기 양극은 인접 영역보다 양극 활물질의 로딩량이 적은 로딩 감소부를 포함할 수 있다. 양극이 이와 같은 구조를 가지면 리튬의 석출 우려 없이 양극 활물질부의 구간을 늘릴 수 있다. 이에 따라, 전극 조립체의 에너지 밀도를 향상시킬 수 있다.
최근 높은 에너지 밀도의 구현과 비용 절감을 위해, 배터리의 사이즈를 증가시키는 방향으로 개발이 진행되고 있다. 배터리의 사이즈에 따라 에너지가 증가할수록 배터리 당 저항이 감소되어야 한다. 저항의 감소를 위해 전극에 전극 탭을 부착시키는 방식이 아닌 전극의 집전체를 전극 탭으로 활용하는 방식이 사용될 수 있다. 이 때, 전극 집전체 상에 전극 슬러리를 도포하는 전극 제조 공정의 특성 상, 음극 슬러리가 도포된 음극 활물질부와 음극 집전체의 경계 부분에 로딩량이 감소되는 부분이 발생한다. N/P ratio를 고려했을 때, 상기 로딩량이 감소되는 부분과 대면하는 양극 활물질부에 금속 리튬이 석출될 우려가 있다. 여기서, N/P ratio는 음극의 면적 및 질량당 용량을 감안하여 산출한 음극의 용량을, 양극의 면적 및 질량당 용량을 감안하여 얻은 양극의 용량으로 나눈 값인데, 일반적으로 1이상의 값을 갖는다. 즉, 음극의 용량을 많게 제작한다. 참고로 N/P ratio가 1이 되지 않으면, 충방전 시 금속 리튬이 석출되기 쉽고, 이는 고율 충방전 시에 전지의 안전성을 급격히 열화시키는 원인으로 작용한다. 다시 말해, N/P ratio는 전지의 안전성 및 용량에 중대한 영향을 미친다. 상기와 같이 금속 리튬의 석출 우려로, 음극의 로딩량이 감소되는 부분과 대면하는 양극 부분에 양극 활물질부를 위치시킬 수 없다. 이는 배터리의 에너지 밀도를 높이지 못하는 원인이 된다. 이에 본 발명은 양극 활물질부의 구간을 늘려 에너지 밀도를 개선하였다.
도 37은 본 발명의 일 실시예에 따른 전극 조립체를 나타낸 도면이고, 도 38는 도 37의 절단선 A-A'를 따라 자른 단면을 나타낸 단면도이다.
도 37 및 도 38를 참고하면, 본 발명의 일 실시예에 따른 전극 조립체(300)는, 음극(400), 양극(500) 및 분리막(600)을 포함한다. 분리막(600)은, 음극(400)과 양극(500) 사이에 위치한다. 음극(400), 양극(500) 및 분리막(600)이 함께 권취되어 젤리롤 구조체(300S)를 형성한다. 여기서, 젤리롤 구조체(300S)는, 음극(400), 양극(500) 및 분리막(600)이 권취되어 형성된 구조물을 지칭한다. 아울러, 젤리롤 구조체(300S)를 형성했을 때, 음극(400)과 양극(500)이 서로 접하는 것을 방지하기 위해 외측에 분리막(600)이 추가 배치되는 것이 바람직하다.
음극(400)은, 음극 집전체(410) 및 음극 집전체(410) 상에 음극 활물질이 도포되어 형성된 음극 활물질부(420)를 포함한다. 특히, 도시된 바와 같이 음극 집전체(410)의 양면 모두에 음극 활물질이 도포되어 음극 활물질부(420)가 형성될 수 있다. 또한, 음극 집전체(410) 중 음극 활물질이 도포되지 않은 음극 무지부(430)가 제1방향(d1)으로 연장된다. 음극 무지부(430)는 권취되는 음극(400)의 일 단부를 따라 이어진다. 또한, 음극 무지부(430)는 제1방향(d1)으로 분리막(600)보다 연장된다. 이에 따라, 젤리롤 구조체(300S)의 제1방향의 일 단부에는 음극 무지부(430)가 노출될 수 있다.
양극(500)은, 양극 집전체(510) 및 양극 집전체(510) 상에 양극 활물질이 도포되어 형성된 양극 활물질부(520)를 포함한다. 특히, 도시된 바와 같이 양극 집전체(510)의 양면 모두에 양극 활물질이 도포되어 양극 활물질부(520)가 형성될 수 있다. 또한, 양극 집전체(510) 중 양극 활물질이 도포되지 않은 양극 무지부(530)가 제2방향(d2)으로 연장된다. 양극 무지부(530)는 권취되는 양극(500)의 일 단부를 따라 이어진다. 또한 양극 무지부(530)는 제2방향(d2)으로 분리막(600)보다 연장된다. 이에 따라, 젤리롤 구조체(300S)의 제2방향의 일 단부에는 양극 무지부(530)가 노출될 수 있다.
여기서 제1방향(d1)과 제2방향(d2)은 서로 대향하는 방향이다. 또한, 제1방향(d1)과 제2방향(d2)은 젤리롤 구조체(300S)의 높이 방향과 평행한 방향일 수 있다.
본 실시예에 따른 전극 조립체(300)는, 별도의 전극 탭을 부착하는 형태가 아니라, 저항 감소를 위해 음극 집전체(410)의 음극 무지부(430)와 양극 집전체(510)의 양극 무지부(530) 자체를 전극 탭으로 활용하는 형태이다.
도면에 도시하지 않았지만, 음극 무지부(430) 및/또는 양극 무지부(530)는 앞서 설명한 전극의 무지부 구조를 실질적으로 동일하게 구비할 수 있다.
일 실시 양태에서, 양극 활물질부(520)는, 인접 구역보다 양극 활물질의 로딩량이 적은 로딩 감소부(500D)를 포함하고, 로딩 감소부(500D)는, 양극(500)의 제1방향(d1)의 일 단부에 위치한다. 또한, 보다 구체적으로, 로딩 감소부(500D)는 제1방향(d1)으로 갈수록 상기 양극 활물질의 로딩량이 점차 감소할 수 있다.
여기서, 로딩량은 단위면적당 활물질의 도포량을 의미한다. 로딩량이 많은 부분은, 단위 면적에 많은 음극 활물질 또는 양극 활물질이 도포되어 음극 활물질부 또는 양극 활물질부의 두께가 상대적으로 두꺼울 수 있다. 로딩량이 적은 부분은, 단위 면적에 적은 음극 활물질 또는 양극 활물질이 도포되어 음극 활물질부 또는 양극 활물질부의 두께가 상대적으로 얇을 수 있다.
활물질을 포함하는 슬러리를 도포하여 활물질부를 형성할 수 있는데, 이러한 공정에서 무지부와 활물질부 사이에는 점차 로딩량이 감소하는 경계부가 형성될 수 있다.
구체적으로, 음극 활물질부(420)는, 음극 활물질부(420)와 음극 무지부(430)간의 경계를 형성하는 음극 경계부(420B)를 포함할 수 있다. 음극 경계부(420B)는 음극 무지부(430)가 위치한 방향으로 갈수록 로딩량이 감소할 수 있다.
마찬가지로, 양극 활물질부(520)는, 양극 활물질부(520)와 양극 무지부(530) 간의 경계를 형성하는 양극 경계부(520B)를 포함할 수 있다. 양극 경계부(520B)는 양극 무지부(530)가 위치한 방향으로 갈수록 로딩량이 감소할 수 있다.
위와 같이 로딩량이 점차 감소하는 음극 경계부(420B)나 양극 경계부(520B)는 활물질을 포함하는 슬러리를 음극 집전체(410)나 양극 집전체(510)에 도포하는 과정에서 자연히 발생한다.
이때, 제2방향(d2)과 수직한 방향을 기준으로, 양극 경계부(520B)와 대응하는 영역에서는, 양극 활물질의 양이 음극 활물질의 양보다 적을 수 있다. 이는 N/P ratio가 1보다 큰 값을 갖는 것이기 때문에 금속 리튬이 석출되는 문제 등이 발생하지 않는다.
문제는, 음극 경계부(420B)와 대응하는 영역이다. 제1방향(d1)과 수직한 방향을 기준으로, 음극 경계부(420B)와 대응하는 영역에서는, 음극 활물질의 양이 양극 활물질의 양보다 적을 수 있다. 이는 N/P ratio가 1보다 작은 값을 갖는 것으로 금속 리튬이 석출되는 문제가 발생할 수 있다.
이에 본 실시예에서는 양극(500)에 로딩 감소부(500D)를 마련하였고, 제1방향(d1)과 수직한 방향을 기준으로, 로딩 감소부(500D)와 대응하는 부분에 음극 활물질부(420)가 위치할 수 있다. 보다 구체적으로, 제1방향(d1)과 수직한 방향을 기준으로, 로딩 감소부(500D)와 대응하는 부분에 음극 경계부(420B)가 위치할 수 있다.
로딩량이 점차 감소하는 음극 경계부(420B)와 대응하는 위치에 인접 구역보다 양극 활물질의 로딩량이 적은 로딩 감소부(500D)를 마련하여, 리튬의 석출 우려 없이 양극 활물질이 도포된 구간을 늘릴 수 있다. 특히, 음극 무지부(430)가 위치한 방향으로 갈수록 로딩량이 점차 감소하는 음극 경계부(420B)의 형상과 대응하도록, 로딩 감소부(500D)가 제1방향(d1)으로 갈수록 상기 양극 활물질의 로딩량이 점차 감소하는 형태를 가질 수 있다. 따라서, 음극 경계부(420B)가 형성된 영역에서의 음극(400)과 양극(500)에 대한 N/P ratio를 높게 유지할 수 있어, 리튬의 석출을 방지할 수 있다.
이하에서는, 도 39 내지 도 44를 참고하여 본 발명의 일 실시예에 따른 전극 조립체의 제조 방법에 대해 자세히 설명하도록 한다.
도 39 및 도 40은 본 발명의 일 실시예에 따라 음극을 제조하는 과정을 나타낸 도면들이다. 구체적으로, 도 39은 음극 시트를 위에서 바라본 평면도이고, 도 40은 도 39의 음극 시트를 정면에서 바라본 정면도이다.
도 39 및 도 40을 참고하면, 본 발명의 일 실시예에 따른 전극 조립체의 제조 방법은, 음극 집전체(410) 상에 음극 활물질이 도포된 음극 활물질부(420)와 음극 활물질이 도포되지 않은 음극 무지부(430)가 번갈아 위치하도록 음극 시트(400S)를 제조하는 단계를 포함한다.
구체적으로, 음극 활물질을 제3 방향(d3)을 따라 이어지도록 도포하여 음극 활물질부(420)를 형성할 수 있다. 또한, 제3 방향(d3)과 수직한 제4 방향(d4)을 따라 도포 영역을 이격시켜 다수의 음극 활물질부(420)가 제4 방향(d4)을 따라 이격되게 위치시킬 수 있다. 즉, 다수의 음극 활물질부(420) 사이에 음극 무지부(430)가 위치하도록 도포 공정을 진행할 수 있다.
여기서 제3 방향(d3)과 제4 방향(d4)은 음극 시트(400S)를 기준으로 설명하기 위한 방향들로써, 앞서 설명한 젤리롤 구조체(300S)에서의 제1방향(d1) 및 제2방향(d2)과는 무관한 방향들이다.
이후, 음극 무지부(430)와 음극 활물질부(420)를 슬릿팅(Slitting)하여 음극(400)을 제조하는 단계가 이어질 수 있다. 도 41은 본 발명의 일 실시예에 따른 음극을 나타낸 사시도이다.
도 39 내지 도 41를 참고하면, 도 39 및 도 40에서 점선으로 표시한 부분과 같이, 음극 무지부(430)와 음극 활물질부(420) 각각에 대해 제3 방향(d3)과 나란한 방향으로 슬릿팅을 실시할 수 있다. 이에 따라 음극 시트(400S)로부터 도 41에 도시된 바와 같은 음극(400)을 여러 개 제조할 수 있다. 즉, 도 41의 음극(400)은 도 39 및 도 40의 음극 시트(400S)를 슬릿팅하여 제조된 여러 음극 중 하나에 해당한다. 음극 시트(400S) 중 음극 무지부(430)와 음극 활물질부(420)를 각각 슬릿팅함으로써, 일 측으로 음극 무지부(430)가 연장된 음극(400)이 제조될 수 있다.
음극 활물질부(420) 형성 시, 음극 활물질을 포함하는 슬러리를 음극 집전체(410) 상에 도포할 수 있는데, 이러한 슬러리 도포 과정에서, 음극 활물질부(420)와 음극 무지부(430) 사이의 경계에는 음극 무지부(430)가 위치한 방향으로 갈수록 로딩량이 감소하는 음극 경계부(420B)가 형성될 수 있다.
도 42 및 도 43는 본 발명의 일 실시예에 따라 양극을 제조하는 공정을 나타낸 도면들이다. 구체적으로, 도 42은 양극 시트를 위에서 바라본 평면도이고, 도 43는 도 42의 양극 시트를 정면에서 바라본 정면도이다.
도 42 및 도 43를 참고하면, 본 발명의 일 실시예에 따른 전극 조립체의 제조 방법은, 양극 집전체(510) 상에 양극 활물질이 도포된 양극 활물질부(520)와 양극 활물질이 도포되지 않은 양극 무지부(530)가 번갈아 위치하도록 양극 시트(500S)를 제조하는 단계를 포함한다.
구체적으로, 양극 활물질을 제3 방향(d3)을 따라 이어지도록 도포하여 양극 활물질부(520)를 형성할 수 있다. 또한, 제3 방향(d3)과 수직한 제4 방향(d4)을 따라 도포 간격을 조절하여 다수의 양극 활물질부(520)가 이격되게 위치시킬 수 있다. 즉, 다수의 양극 활물질부(520) 사이에 양극 무지부(530)가 위치하도록 도포 공정을 진행할 수 있다.
여기서 제3 방향(d3)과 제4 방향(d4)은 양극 시트(500S)를 기준으로 설명하기 위한 방향들로써, 앞서 설명한 젤리롤 구조체(300S)에서의 제1방향(d1) 및 제2방향(d2)과는 무관한 방향들이다.
이후, 양극 무지부(530)와 양극 활물질부(520)를 슬릿팅하여 양극(500)을 제조하는 단계가 이어질 수 있다. 도 44는 본 발명의 일 실시예에 따른 양극(500)을 나타낸 사시도이다.
도 42 내지 도 44를 참고하면, 도 42 및 도 43에서 점선으로 표시한 부분과 같이, 양극 무지부(530)와 양극 활물질부(520) 각각에 대해 제3 방향(d3)과 나란한 방향으로 슬릿팅을 실시할 수 있다. 이에 따라 양극 시트(500S)로부터 도 44에 도시된 바와 같은 양극(500)을 여러 개 제조 할 수 있다. 즉, 도 44의 양극(500)은 도 42 및 도 43의 양극 시트(500S)를 슬릿팅하여 제조된 여러 양극 중 하나에 해당한다. 양극 시트(500S) 중 양극 무지부(530)와 양극 활물질부(520)를 각각 슬릿팅함으로써, 일 측으로 양극 무지부(530)가 연장된 양극(500)이 제조될 수 있다.
양극 활물질부(520) 형성 시, 양극 활물질을 포함하는 슬러리를 양극 집전체(510) 상에 도포할 수 있는데, 이러한 슬러리 도포 과정에서, 양극 활물질부(520)와 양극 무지부(530) 사이의 경계에는 양극 무지부(530)가 위치한 방향으로 갈수록 로딩량이 감소하는 양극 경계부(520B)가 형성될 수 있다.
도 37, 도 41 및 도 44를 함께 참고하면, 제조된 음극(400) 및 양극(500)을 분리막(600)과 함께 권취하여 젤리롤 구조체(300S)를 형성하는 단계가 이어질 수 있다. 이때, 젤리롤 구조체(300S)에서 음극 무지부(430)는 제1방향(d1)으로 분리막(600)보다 연장되고, 양극 무지부(530)는 제1방향(d1)과 대향하는 제2방향(d2)으로 분리막(600)보다 연장될 수 있다.
도 42 내지 도 44를 다시 참고하면, 본 발명의 일 실시예에 따른 전극 조립체의 제조 방법에 있어서, 양극 시트(500S)는, 인접 구역보다 상기 양극 활물질의 로딩량이 적은 로딩 감소 영역(500DA)을 포함한다. 로딩 감소 영역(500DA)을 형성하는 방법에 특별한 제한은 없고, 일례로 슬러리의 도포 정도를 조절하여 형성할 수 있다.
상기 양극(500)을 제조하는 단계에서, 양극 활물질부(520) 중 로딩 감소 영역(500DA)을 슬릿팅한다. 슬릿팅된 로딩 감소 영역(500DA)이, 도 37 및 도 38에 나타난 젤리롤 구조체(300S)에서 인접 구역보다 양극 활물질의 로딩량이 적은 로딩 감소부(500D)를 형성한다.
구체적으로, 양극 시트(500S)에 형성된 양극 활물질부(520)에 인접 구역보다 상기 양극 활물질의 로딩량이 적은 로딩 감소 영역(500DA)이 형성된다. 도 43에 나타난 바와 같이, 로딩 감소 영역(500DA)은 양극 활물질부(520)의 중앙에 형성될 수 있다. 한편, 로딩 감소 영역(500DA)은 로딩 감소 영역(500DA)의 중앙부(500C)로 갈수록 상기 양극 활물질의 로딩량이 점차 감소하도록 구성될 수 있고, 상기 양극(500)을 제조하는 단계에서, 로딩 감소 영역(500DA)의 중앙부(500C)를 슬릿팅함에 따라, 본 실시예에 따른 로딩 감소부(500D)가 마련될 수 있다.
즉, 양극 활물질을 포함하는 슬러리를 도포함에 있어 로딩 감소 영역(500DA)을 형성하고, 로딩 감소 영역(500DA)의 중앙부(500C)를 슬릿팅함으로써, 로딩 감소부(500D)가 형성된 양극(500)을 여러 개 제조할 수 있다.
도 44를 참고하면, 제조된 양극(500)의 일 단부에는 로딩 감소부(500D)가 마련될 수 있고, 상기 일 단부와 대향하는 상기 양극(500)의 타 단부에는 양극 무지부(530)가 마련될 수 있다.
도 37 및 도 38를 참고하면, 이러한 양극(500)이 권취되어 젤리롤 구조체(300S)를 형성할 때, 로딩 감소부(500D)는, 양극(500)의 제1방향(d1)의 일 단부에 위치하고, 양극 무지부(530)는 양극(500)의 제2방향(d2)의 일 단부에 위치할 수 있다.
또한, 로딩 감소 영역(500DA)의 중앙부(500C)를 슬릿팅함에 따라, 로딩 감소부(500D)는, 제1방향(d1)으로 갈수록 양극 활물질의 로딩량이 점차 감소할 수 있다.
또한, 젤리롤 구조체(300S)에서, 제1방향(d1)과 수직한 방향을 기준으로, 로딩 감소부(500D)와 대응하는 부분에 음극 활물질부(420)가 위치할 수 있다. 보다 구체적으로, 젤리롤 구조체(300S)에서, 제1방향(d1)과 수직한 방향을 기준으로, 로딩 감소부(500D)와 대응하는 부분에 음극 경계부(420B)가 위치할 수 있다.
로딩 감소부(500D)와 음극 경계부(420B) 간의 대응하는 위치 관계에 대해서는 앞서 설명한 내용과 중복이므로 생략하도록 한다.
이하에서는, 도 45내지 도 48를 참고하여, 본 발명의 비교예에 따른 전극 조립체에 대해 설명하고, 본 실시예에 따른 전극 조립체가 비교예에 따른 전극 조립체에 비해 갖는 장점을 설명하도록 한다.
도 45은 본 발명의 비교예에 따른 전극 조립체를 나타낸 도면이다. 도 46은 도 45의 절단선 B-B'를 따라 자른 단면을 나타낸 단면도이다.
도 45 및 도 46을 참고하면, 본 발명의 비교예에 따른 전극 조립체(600)는, 음극(700), 양극(800) 및 분리막(900)을 포함하고, 음극(700), 양극(800) 및 분리막(900)이 권취되어 젤리롤 구조체(600S)를 형성한다.
음극(700)은, 음극 집전체(710), 음극 활물질부(720) 및 음극 무지부(730)를 포함할 수 있다. 또한, 음극 무지부(730)가 제1방향(d1)으로 연장될 수 있고, 음극 활물질부(720)는, 음극 활물질부(720)와 음극 무지부(730)의 경계를 형성하고 로딩량이 점차 감소하는 음극 경계부(720B)를 포함할 수 있다.
도 47은 본 발명의 비교예에 따라 음극(700)을 제조하는 공정을 나타낸 도면이다.
도 47을 참고하면, 음극 활물질부(720)와 음극 무지부(730)가 제4 방향(d4)을 따라 번갈아 위치하도록 음극 시트(700S)가 제조된 후, 음극 무지부(730)와 음극 활물질부(720)를 슬릿팅(Slitting)하여 다수의 음극(700)을 제조할 수 있다.
한편, 도 45 및 도 46을 다시 참고하면, 양극(800)은, 양극 집전체(810), 양극 활물질부(820) 및 양극 무지부(880)를 포함할 수 있다. 또한, 양극 무지부(830)가 제1방향(d1)과 대향하는 제2방향(d2)으로 연장될 수 있고, 양극 활물질부(820)는, 양극 활물질부(820)와 양극 무지부(830)의 경계를 형성하고 로딩량이 점차 감소하는 양극 경계부(820B)를 포함할 수 있다.
도 48는 본 발명의 비교예에 따라 양극(800)을 제조하는 공정을 나타낸 도면이다.
도 48를 참고하면, 양극 활물질부(820)와 양극 무지부(830)가 제4 방향(d4)을 따라 번갈아 위치하도록 양극 시트(800S)가 제조된 후, 양극 무지부(830)와 양극 활물질부(820)를 슬릿팅(Slitting)하여 다수의 양극(800)을 제조할 수 있다.
이후, 제조된 음극(700)과 양극(800)을 분리막(900)과 함께 권취하여 본 발명의 비교예에 따른 전극 조립체(600)를 제조할 수 있다.
즉, 본 발명의 비교예에 따른 전극 조립체(600)는 로딩 감소부(500D, 도 38 참고)를 제외하고 본 실시예에 따른 전극 조립체(300)와 유사한 구조를 가질 수 있다.
도 45 및 도 46을 참고하면, 본 비교예에 따른 전극 조립체(600)의 경우, 제1방향(d1)과 수직한 방향을 기준으로, 음극 경계부(720B)와 대응하는 부분에 양극 활물질부(820)가 위치할 수 없다. 만일 양극 활물질부(820)가 음극 경계부(720B)와 대응하는 부분에까지 연장된다면 해당 부분은 낮은 N/P ratio 값을 보이는 부분이고, 금속 리튬이 석출될 가능성이 높다. 따라서, 리튬 석출을 방지하기 위해 양극 활물질부(820)의 길이를 제한할 수밖에 없다. 즉, 도시된 B1의 영역에만 양극 활물질부(820)를 형성할 수 있고, B2의 영역에는 양극 활물질부(820)를 형성할 수 없다. 이는, 음극 경계부(720B)로 인해 양극 활물질부(820)의 길이를 축소하는 결과가 된다.
반면, 도 37 및 도 38를 참고하면, 본 실시예에 따른 전극 조립체(300)의 경우, 제1방향(d1)과 수직한 방향을 기준으로, 음극 경계부(420B)와 대응하는 부분에 양극 활물질부(520), 특히 로딩 감소부(500D)가 위치할 수 있다. 음극 경계부(420B)와 대응하는 위치에 인접 구역보다 양극 활물질의 로딩량이 적은 로딩 감소부(500D)가 마련되기 때문에 해당 부분에서의 N/P ratio를 높게 유지할 수 있고, 리튬의 석출을 방지할 수 있다. 이에 따라, A1의 영역만큼 양극 활물질부(520)를 형성할 수 있고, 양극 활물질부(520)가 형성될 수 없는 A2의 영역을 줄일 수 있다. 일례로, 음극(400)의 높이 방향 폭 대비 양극(500)의 높이 방향 폭을 98% 이상으로 높일 수 있다.
도 37 및 도 38의 A1의 영역과 도 45 및 도 46의 B1의 영역을 비교하면, 본 실시예에 따른 전극 조립체(300)는 양극 활물질부의 길이를 로딩 감소부(500D)만큼 늘일 수 있기 때문에 비교예에 따른 전극 조립체(600)보다 한정된 공간에서 더 높은 에너지 밀도를 가질 수 있다.
본 발명의 또 다른 측면은 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막이 일 방향으로 권취된 구조를 가지는 젤리롤 타입의 전극 조립체와, 상기 전극 조립체가 수납되는 원통형 배터리 하우징; 및 상기 배터리 하우징의 상부에 배치되어 상기 배터리 하우징을 밀봉하는 밀봉체인 전지 캡을 포함하는 원통형 배터리에 대한 것이다. 여기에서 상기 양극은 본 발명에 따른 것으로서 양극 활물질로 평균 입경 D50이 5㎛ 이하인 단입자계 활물질 입자를 포함하는 것이다. 상기 원통형 배터리는 전해액을 더 포함할 수 있으며 전해액에 대해서는 전술한 내용을 참조할 수 있다.
상기 전극 조립체는 전술한 바와 같은 스택 타입, 스택/폴딩 타입 또는 젤리롤 타입의 구조를 가질 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 전극 조립체는 전술한 바와 같이 양극이 로딩 감소부를 갖는 것일 수 있다.
종래의 원통형 배터리의 경우, 스트립 형태의 전극 탭에 전류가 집중되어 저항이 크고, 열이 많이 발생하며, 집전 효율이 좋지 않다는 문제점이 있다.
최근 전기 자동차 기술의 발전에 따라 고용량 전지에 대한 요구가 증가함에 따라 부피가 큰 대형 원통형 배터리 개발이 요구되고 있다. 종래에 일반적으로 사용되던 소형 원통형 배터리, 즉, 1865이나 2170의 폼 팩터를 갖는 원통형 배터리의 경우, 용량이 작기 때문에 저항이나 발열이 전지 성능에 심각한 영향을 미치지 않았다. 그러나, 종래의 소형 원통형 배터리의 사양을 대형 원통형 배터리에 그대로 적용할 경우, 전지 안전성에 심각한 문제가 발생할 수 있다.
전지의 크기가 커지면 전지 내부에서 발생하는 열과 가스의 양도 함께 증가하게 되는데, 이러한 열과 가스로 인해 전지 내부의 온도 및 압력이 상승하여 전지가 발화하거나 폭발할 수 있기 때문이다. 이를 방지하기 위해서는 전지 내부의 열과 가스가 외부로 적절하게 배출되어야 하며, 이를 위해서는 전지 외부로 열을 배출하는 통로가 되는 전지의 단면적이 부피 증가에 맞게 증가하여야 한다. 그러나 통상 단면적의 증가분은 부피 증가분에 미치지 못하기 때문에 전지가 대형화될수록 전지 내부의 발열량이 증가하고 이로 인해 폭발 위험성이 커지고, 출력이 저하되는 등의 문제가 발생하게 된다. 또한, 고전압에서 급속 충전을 수행할 경우, 짧은 시간 동안 전극 탭 주변에서 많은 열이 발생하면서 전지가 발화되는 문제도 발생할 수 있다. 이에 본 발명은 고용량을 구현할 수 있도록 큰 부피를 가지면서도 높은 안전성을 갖는 원통형 배터리를 제안하였다.
또한, 상기 단입자 또는 유사-단입자 형태의 양극 활물질이 적용된 고로딩 전극이 원통형 배터리에 적용될 수 있으므로 원통형 배터리의 초기 저항 특성과 충방전 효율을 개선할 수 있다.
본 발명에 따른 원통형 배터리는, 단입자 또는 유사-단입자 형태의 양극 활물질을 적용하여 종래에 비해 가스 발생량을 현저하게 감소시켰으며, 이에 따라 폼 팩터의 비가 0.4 이상인 대형 원통형 배터리에서도 우수한 안전성을 구현할 수 있다.
본 발명에 따른 원통형 배터리는, 바람직하게는, 전극 탭을 포함하지 않는 탭-리스(Tab-less) 구조의 배터리일 수 있으나, 이에 한정되는 것은 아니다.
상기 탭-리스 구조의 배터리는, 예를 들면, 양극 및 음극이 각각 활물질층이 형성되지 않은 무지부를 포함하고, 전극 조립체의 상단 및 하단에 각각 양극 무지부 및 음극 무지부가 위치하고, 상기 양극 무지부 및 음극 무지부에 집전판이 결합되어 있고, 상기 집전판이 전극 단자와 연결되는 있는 구조일 수 있다.
원통형 배터리를 상기와 같이 탭-리스 구조로 형성할 경우, 전극 탭을 구비한 종래의 전지에 비해 전류 집중이 덜하기 때문에 전지 내부의 발열을 효과적으로 감소시킬 수 있고, 이에 따라 전지의 열 안전성이 개선되는 효과를 얻을 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 자세히 설명한다.
실시예 1
평균 입경 D50이 3 ㎛인 유니모달 입도 분포를 가지며, 단입자 형태인 양극 활물질 Li[Ni(0.9Co0.06Mn0.03Al0.01]O2 : 탄소나노튜브 : PVDF 바인더를 97.8 : 0.6 : 1.6의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 시트의 일면에 도포한 후, 120℃에서 건조 후, 압연하여 양극을 제조하였다.
음극 활물질 (graphite : SiO = 95 : 5 중량비 혼합물) : 도전재( super C), : 스티렌-부타디엔 고무(SBR) : 카르복시메틸 셀룰로오스(CMC)를 96 : 2 : 1.5 : 0.5의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 집전체 시트의 일면에 도포한 후 150℃에서 건조 후 압연하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 분리막/양극/분리막/음극 순서로 적층한 후 권취하여 젤리-롤 타입의 전극 조립체를 제조하였다. 상기와 같이 제조된 전극 조립체를 원통형 전지 캔에 삽입한 후 전해액을 주입하여 4680 셀을 제조하였다.
비교예 1
양극 활물질로 대입경 평균 입경 D50이 9㎛이고, 소입경 평균 입경 D50이 4㎛인 바이모달 입도 분포를 가지며, 2차 입자 형태인 Li[Ni0.9Co0.05Mn0.04Al0.01]O2을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 4680 셀을 제조하였다.
실험예 1
실시예 1 및 비교예 1에 의해 제조된 4680 셀에 대하여 핫 박스 테스트(hot box test)를 실시하였다.
구체적으로는, 실시예 1 및 비교예 1에 의해 제조된 4680 셀 각각을 상온에서 핫 박스 챔버(hot box chamber)에 넣고, 5℃/min의 승온 속도로 130℃까지 승온시킨 후 30분 동안 유지시키는 핫 박스 평가를 진행하고, 시간에 따른 전지의 온도 변화를 측정하였다. 정확한 평가를 위해 실시예 1의 셀에 대해서는 2회의 핫 박스 평가를 실시하였다. 측정 결과는 도 34a 및 도 34b에 도시하였다.
도 34a는 실시예 1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이며, 도 34b는 비교예 1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
도 34a 및 도 34b를 통해, 단입자 양극 활물질을 사용한 실시예 1의 리튬 이차 전지의 경우, 65분 경과 시까지 전지의 전압 및 온도가 안정적으로 유지되는데 반해, 비교예 1의 리튬 이차 전지는 35분 경과 후에 전지 온도가 급격하게 상승하였음을 확인할 수 있다.
실시예 2-1
유니모달 입도 분포를 가지며, Dmin = 1.78㎛, D50 = 4.23㎛, Dmax=13.1㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2)을 준비하였다. 도 33a에는 실시예 2-1에서 사용된 양극 활물질의 SEM 사진이 도시되어 있다.
양극 활물질 : 탄소나노튜브 : PVDF 바인더를 97.8 : 0.6 : 1.6의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 시트의 일면에 도포한 후, 120℃에서 건조 후, 압연하여 양극을 제조하였다.
음극 활물질 (graphite : SiO = 95 : 5 중량비 혼합물) : 도전재(Super C), : 스티렌-부타디엔 고무(SBR) : 카르복시메틸 셀룰로오스(CMC)를 96 : 2 : 1.5 : 0.5의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 집전체 시트의 일면에 도포한 후 150℃에서 건조 후 압연하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 분리막을 개재하여 분리막/양극/분리막/음극 순서로 적층한 후 권취하여 젤리-롤 타입의 전극 조립체를 제조하였다. 상기와 같이 제조된 전극 조립체를 전지 캔에 삽입한 후 전해액을 주입하여 4680 셀을 제조하였다.
실시예 2-2
양극 활물질로 유니모달 입도 분포를 가지며, Dmin = 1.38㎛, D50 = 4.69㎛, Dmax=18.5㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2)을 사용한 점을 제외하고는, 실시예 2-1과 동일한 방법으로 4680 셀을 제조하였다. 도 33b에는 실시예 2-2에서 사용된 양극 활물질의 SEM 사진이 도시되어 있다.
비교예 2-1
양극 활물질로 대입경 평균 입경 D50이 9㎛이고, 소입경 평균 입경 D50이 4㎛인 바이모달 입도 분포를 가지며, 2차 입자 형태인 양극 활물질(조성: Li[Ni0.9Co0.05Mn0.04Al0.01]O2)을 사용한 점을 제외하고는, 실시예 2-1과 동일한 방법으로 4680 셀을 제조하였다.
비교예 2-2
양극 활물질로 유니모달 입도 분포를 가지며, Dmin = 0.892㎛, D50 = 3.02㎛, Dmax=11㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2)을 사용한 점을 제외하고는, 실시예 2-1과 동일한 방법으로 4680 셀을 제조하였다.
도 33c에는 비교예 2-2에서 사용된 양극 활물질의 SEM 사진이 도시되어 있다.
실험예 2-1
실시예 2-1 ~ 2-2 및 비교예 2-1 ~ 2-2에 의해 제조된 4680 셀에 대하여 핫 박스 테스트(hot box test)를 실시하였다.
구체적으로는, 실시예 2-1 및 비교예 2-1에 의해 제조된 4680 셀 각각을 상온에서 핫 박스 챔버(hot box chamber)에 넣고, 5℃/min의 승온 속도로 130℃까지 승온시킨 후 30분 동안 유지시킨 후 전지의 온도 변화를 측정하였다. 테스트 중에 열 폭주 및 발화가 발생하지 않는 경우를 Pass, 열 폭주 및/또는 발화가 발생한 경우를 Fail로 표시하였다. 또한 테스트의 정확도를 위해, 실시예 2-1 ~ 2-2의 셀에 대해서는 테스트를 2회 이상 실시하였다.
측정 결과는 하기 표 1 및 도 34c, 도 34d에 도시하였다. 도 34c는 실시예 2-1의 샘플 1 및 비교예 2-1에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이며, 도 34d는 실시예 2-1의 샘플 2, 3, 실시예 2-2의 샘플 1, 2 및 비교예 2-2에 의해 제조된 4680 셀의 핫 박스 테스트 결과를 보여주는 그래프이다.
샘플 # Venting 시간(분) 최대 온도(℃) 핫 박스 테스트 결과
실시예 2-1 1 16 139 Pass
2 20.9 141 Pass
3 23.7 137 Pass
실시예 2-2 1 16.0 148 Pass
2 15.8 147 Pass
비교예 2-1 1 17 측정 불가 Fail
비교예 2-2 1 16.2 측정 불가 Fail
상기 표 1, 도 34c 및 도 34d를 참조하면, Dmin이 1.0㎛ 이상인 단입자/유사-단입자 형태의 양극 활물질을 적용한 실시예 2-1의 4680 셀의 경우, 65분 경과 시까지 전지의 전압 및 온도가 안정적으로 유지되는데 반해, 양극 활물질로 2차 입자를 적용한 비교예 2-1 및 Dmin이 1.0㎛ 미만인 단입자/유사-단입자 형태의 양극 활물질을 적용한 비교예 2-2의 4680 셀은 전지 온도가 급격하게 상승하였음을 확인할 수 있다.
실험예 2-2
실시예 2-1 및 비교예 2-1에서 제조된 양극의 압연 후 양극 활물질 입자 깨짐 정도를 확인하기 위해, 이온 밀링 장치로 양극을 절단한 후 단면을 SEM으로 촬영하였다. 도 35a에는 실시예 2-1에서 제조된 양극의 단면 SEM 사진이 도시되어 있으며, 도 35b에는 비교예 2-1에서 제조된 양극의 단면 SEM 사진이 도시되어 있다.
도 35a 및 도 35b를 통해, 실시예 2-1의 양극은 압연 후에도 양극 활물질의 입자 깨짐이 거의 없는데 반해, 2차 입자를 사용한 비교예 2-2의 양극은 압연 후 양극 활물질 입자 깨짐이 다수 관찰되었다.
실시예 3-1
유니모달 입도 분포를 가지며, Dmin = 1.78㎛, D50 = 4.23㎛, Dmax=13.1㎛이고, 단입자 및 유사-단입자가 혼합되어 있는 양극 활물질 분말(조성: Li[Ni0.9Co0.06Mn0.03Al0.01]O2), 인편상 흑연(SFG6L), 도전재(다중벽 탄소나노튜브), 및 PVDF 바인더를 96.3 : 1.5 : 0.4 : 1.8의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 집전체 시트의 일면에 도포한 후 건조하고 3.0ton/cm의 선압으로 압연하여 양극을 제조하였다. 상기와 같이 제조된 양극의 양극 활물질층 공극률을 측정하였고, 공극률은 17.5%로 측정되었다.
실시예 3-2
양극 활물질, 인편상 흑연, 도전재, 및 바인더를 97.2 : 0.6 : 0.4 : 1.8의 중량비로 혼합한 점을 제외하고는 실시예 3-1과 동일하게 양극을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 19%로 측정되었다.
실시예 3-3
양극 활물질, 인편상 흑연, 도전재, 및 바인더를 97.4 : 0.4 : 0.4 : 1.8의 중량비로 혼합한 점을 제외하고는 실시예 3-1과 동일하게 양극을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 20%로 측정되었다.
실시예 3-4
양극 활물질, 인편상 흑연, 도전재, 및 바인더를 97.6 : 0.2 : 0.4 : 1.8의 중량비로 혼합한 점을 제외하고는 실시예 3-1과 동일하게 양극을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 21%로 측정되었다.
비교예 3-1
인편상 흑연을 첨가하지 않고, 양극 활물질, 도전재, 및 바인더를 97.8 : 0.4 : 1.8의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조한 점을 제외하고는 실시예 3-1과 동일하게 양극을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 24%로 측정되었다.
비교예 3-2
인편상 흑연을 첨가하지 않고, 양극 활물질, 도전재, 및 바인더를 97.8 : 0.4 : 1.8의 중량비로 N-메틸피롤리돈 중에서 혼합하여 양극 슬러리를 제조하고, 2.0ton/cm의 선압으로 압연한 점을 제외하고는 실시예 3-1과 동일하게 양극을 제조하고, 양극 활물질층의 공극률을 측정하였다. 상기 양극 활물질층의 공극률은 30%로 측정되었다.
실험예 3-1 - 충방전 용량 및 충방전 효율 측정
실시예 3-1 내지 3-4 및 비교예 3-1 및 3-2에 따른 양극을 포함하는 코인 하프 셀을 제조하였고, 0.2C 전류 조건으로 4.25V까지 충전한 후, 0.2C 전류조건으로 2.5V까지 방전하여 각 코인 하프 셀의 충전 용량(mAh/g) 및 방전 용량(mAh/g)측정하였다. 측정 결과는 아래 표 2에 나타내었다.
인편상 흑연 첨가량(wt%) 공극률(%) 충전용량
(mAh/g)
방전용량
(mAh/g)
효율(%)
실시예 3-1 1.5 17.5 230.3 209.3 90.9
실시예 3-2 0.6 19 229.4 206.9 90.2
실시예 3-3 0.4 20 230.4 207.3 90.0
실시예 3-4 0.2 21 229.1 205.5 89.7
비교예 3-1 0 24 229.1 204.2 89.1
비교예 3-2 0 30 225.4 199.7 88.6
[표 2]를 통해, 인편상 흑연을 첨가한 양극을 사용한 실시예 3-1 ~ 3-4의 경우, 비교예 3-1 ~ 3-2에 비해 낮은 공극률을 나타냈으며, 우수한 용량 특성을 나타냄을 확인할 수 있다.
실험예 3-2 - 저항 특성 확인
실시예 3-3, 비교예 3-1, 및 비교예 3-2에 따른 양극을 포함하는 코인 하프 셀을 4.2V까지 충전하면서, SOC에 따른 저항 특성을 측정하였다. 실험 결과를 도 36a에 나타내었다.
도 36a를 참조하면, SOC10% 기준으로 양극 활물질층에 인편상 흑연을 첨가한 실시예 3-3의 저항 값이 인편상 흑연을 포함하지 않은 비교예 3-1 및 비교예 3-2보다 낮음을 확인할 수 있다. 이는 양극 활물질층에 인편상 흑연을 첨가할 경우, 낮은 SOC 에서의 저항 특성이 개선되는 효과가 있음을 보여준다.
실험예 3-3 - 고온 수명 특성 및 저항 증가율 측정
실시예 3-1, 실시예 3-3, 및 비교예 3-1에 따른 양극과 음극 사이에 분리막을 개재하여 분리막/양극/분리막/음극 순서로 적층한 후 권취하여 젤리-롤 타입의 전극 조립체를 제조하였다. 상기와 같이 제조된 전극 조립체를 원통형 전지 캔에 삽입한 후 전해액을 주입하여 4680 셀을 제조하였다.
이때, 상기 음극은, 음극 활물질 (graphite : SiO = 95 : 5 중량비 혼합물) : 도전재( super C), : 스티렌-부타디엔 고무(SBR) : 카르복시메틸 셀룰로오스(CMC)를 96 : 2 : 1.5 : 0.5의 중량비로 물 중에서 혼합하여 음극 슬러리를 제조한 후. 상기 음극 슬러리를 구리 집전체 시트의 일면에 도포한 후 150℃에서 건조 후 압연하여 제조하였다.
상기와 같이 제조된 4680 셀을 40℃에서 0.5C으로 4.2V까지 충전한 후, 0.5C으로 2.5V까지 방전하는 것을 1 사이클로 하여 50 사이클을 충방전을 수행한 후 용량 유지율(Capacity Retention) 및 저항 증가율(DCIR increase)을 측정하였다. 측정 결과는 도 36b에 나타내었다.
도 36b를 참조하면, 실시예 3-1 및 3-3의 이차 전지의 경우, 비교예 3-1의 이차 전지에 비하여 사이클 수에 따른 용량 유지율의 변화가 작고, 사이클 수에 따른 저항 증가율의 변화도 작게 나타났다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (43)

  1. 제1 전극 탭 및 제2 전극 탭을 구비하는 전극 조립체;
    일 측에 형성된 개방부를 통해 상기 전극 조립체를 수용하며, 상기 제1 전극 탭과 전기적으로 연결되는 배터리 하우징;
    상기 전극 조립체의 일 면에 배치되는 지지부, 상기 지지부로부터 연장되어 상기 제1 전극 탭과 결합되는 적어도 하나의 제1 탭 결합부 및 상기 제1 탭 결합부의 단부로부터 연장되어 상기 배터리 하우징의 내측 면 상에 결합되는 적어도 하나의 하우징 결합부를 포함하는 제1 집전판;
    상기 전극 조립체의 일 면의 반대편에 위치하는 타 면에 배치되는 테두리부, 상기 테두리부로부터 내측으로 연장되며 상기 제2 전극 탭과 결합되는 제2 탭 결합부 및 상기 제2 탭 결합부와 이격되어 위치하는 단자 결합부를 구비하는 제2 집전판;
    상기 배터리 하우징의 개방부를 밀폐하도록 구성되는 캡 플레이트; 및
    상기 단자 결합부와 결합함으로써 상기 제2 전극 탭과 전기적으로 연결되는 배터리 단자;
    를 포함하는 원통형 배터리.
  2. 제1항에 있어서,
    상기 배터리 하우징은,
    상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 포함하고,
    상기 하우징 결합부는,
    상기 비딩부 상에 결합되는 것을 특징으로 하는 원통형 배터리.
  3. 제1항에 있어서,
    상기 배터리 하우징은,
    상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 포함하고,
    상기 하우징 결합부는,
    상기 비딩부 상에 결합되는 접촉부; 및
    상기 제1 탭 결합부와 상기 접촉부 사이를 연결하는 제1 연결부;
    를 포함하는 것을 특징으로 하는 원통형 배터리.
  4. 제3항에 있어서,
    상기 원통형 배터리는,
    상기 배터리 하우징과 상기 캡 플레이트 사이에 구비된 실링 가스켓을 포함하는 것을 특징으로 하는 원통형 배터리.
  5. 제4항에 있어서,
    상기 접촉부는,
    상기 비딩부와 상기 실링 가스켓 사이에 개재되어 고정된 것을 특징으로 하는 원통형 배터리.
  6. 제3항에 있어서,
    상기 비딩부와 상기 제1 집전판의 접촉부 사이에는 용접부가 형성되는 것을 특징으로 하는 원통형 배터리.
  7. 제1항에 있어서,
    상기 배터리 하우징은,
    상기 개방부에 인접한 단부에 형성되며 내측을 향해 압입된 비딩부를 포함하고,
    상기 제1 탭 결합부와 상기 하우징 결합부의 경계 영역은,
    상기 비딩부의 최 내측부보다 더 내측에 위치하는 것을 특징으로 하는 원통형 배터리.
  8. 제1항에 있어서,
    상기 원통형 배터리는,
    상기 제1 탭 결합부 및 상기 하우징 결합부를 각각 복수 개 구비하는 것을 특징으로 하는 원통형 배터리.
  9. 제3항에 있어서,
    상기 제1 연결부는,
    연장 방향이 전환되는 밴딩부를 적어도 하나 구비하는 것을 특징으로 하는 원통형 배터리.
  10. 제3항에 있어서,
    상기 접촉부는,
    상기 비딩부를 따라 연장된 호 형태를 갖는 것을 특징으로 하는 원통형 배터리.
  11. 제10항에 있어서,
    상기 제1 연결부는,
    상기 접촉부를 따라 연장된 호 형태를 갖는 것을 특징으로 하는 원통형 배터리.
  12. 제1항에 있어서,
    상기 테두리부는,
    중심부가 비어 있는 림 형태를 갖는 것을 특징으로 하는 원통형 배터리.
  13. 제1항에 있어서,
    상기 제2 탭 결합부 및 상기 단자 결합부는,
    상기 테두리부에 의해 전기적으로 연결되는 것을 특징으로 하는 원통형 배터리.
  14. 제1항에 있어서,
    상기 단자 결합부는,
    상기 테두리부의 내측 공간의 중심부에 위치하는 것을 특징으로 하는 원통형 배터리.
  15. 제1항에 있어서,
    상기 제2 집전판은,
    상기 테두리부로부터 내측으로 연장되어 상기 단자 결합부와 연결되는 제2 연결부를 더 포함하는 것을 특징으로 하는 원통형 배터리.
  16. 제15항에 있어서,
    상기 제2 연결부는,
    적어도 그 일부가, 상기 제2 탭 결합부와 비교하여 그 폭이 더 작게 형성되는 것을 특징으로 하는 원통형 배터리.
  17. 제15항에 있어서,
    상기 제2 연결부는,
    상기 테두리부의 내측면으로부터 상기 단자 결합부를 향하는 방향을 따라 그 폭이 점점 좁아지는 테이퍼부를 구비하는 것을 특징으로 하는 원통형 배터리.
  18. 제15항에 있어서,
    상기 제2 탭 결합부는,
    복수개가 구비되는 것을 특징으로 하는 원통형 배터리.
  19. 제18항에 있어서,
    복수의 상기 제2 탭 결합부는,
    상기 테두리부의 연장 방향을 따라 서로 동일 간격으로 배치되는 것을 특징으로 하는 원통형 배터리.
  20. 제18항에 있어서,
    복수의 상기 제2 탭 결합부 각각의 연장 길이는,
    서로 동일한 것을 특징으로 하는 원통형 배터리.
  21. 제18항에 있어서,
    상기 단자 결합부는,
    복수의 상기 제2 탭 결합부에 의해 둘러 싸이도록 배치되는 것을 특징으로 하는 원통형 배터리.
  22. 제18항에 있어서,
    상기 제2 연결부는, 서로 인접한 한 쌍의 제2 탭 결합부 사이에 위치하며,
    상기 제2 연결부로부터 상기 테두리부의 연장 방향을 따라 상기 한 쌍의 제2 탭 결합부 중 어느 하나에 이르는 거리는, 상기 제2 연결부로부터 상기 테두리부의 연장 방향을 따라 상기 한 쌍의 제2 탭 결합부 중 나머지 하나에 이르는 거리와 동일한 것을 특징으로 하는 원통형 배터리.
  23. 제18항에 있어서,
    상기 제2 연결부는,
    복수개가 구비되는 것을 특징으로 하는 원통형 배터리.
  24. 제23항에 있어서,
    복수의 제2 연결부 각각은,
    서로 인접한 한 쌍의 제2 탭 결합부 사이에 배치되는 것을 특징으로 하는 원통형 배터리.
  25. 제23항에 있어서,
    복수의 상기 제2 연결부는,
    상기 테두리부의 연장 방향을 따라 서로 동일 간격으로 배치되는 것을 특징으로 하는 원통형 배터리.
  26. 제15항에 있어서,
    상기 제2 연결부는,
    상기 제2 연결부의 폭을 감소시키도록 형성된 노칭부를 구비하는 것을 특징으로 하는 원통형 배터리.
  27. 제17항에 있어서,
    상기 제2 연결부는, 상기 제2 연결부의 폭을 감소시키도록 형성된 노칭부를 구비하며,
    상기 노칭부는, 상기 단자 결합부보다 상기 테이퍼부에 더 가깝게 위치하는 것을 특징으로 하는 원통형 배터리.
  28. 제1항에 있어서,
    상기 단자 결합부는,
    상기 전극 조립체의 권취 중심부에 형성된 홀과 대응되는 위치에 배치되는 것을 특징으로 하는 원통형 배터리.
  29. 제1항에 있어서,
    상기 제2 전극 탭은, 상기 배터리 하우징의 상기 개방부의 반대 편에 위치하는 폐쇄부를 향해 연장되는 것을 특징으로 하는 원통형 배터리.
  30. 제29항에 있어서,
    상기 제2 탭 결합부는,
    상기 제2 전극 탭의 단부가 상기 제2 집전판과 나란한 방향을 따라 절곡되어 형성된 결합 면 상에 결합되는 것을 특징으로 하는 원통형 배터리.
  31. 제1항에 있어서,
    상기 캡 플레이트는,
    상기 전극 조립체와 연결되지 않아 극성을 갖지 않는 것을 특징으로 하는 원통형 배터리.
  32. 제1항에 있어서,
    상기 배터리 단자는,
    상기 배터리 하우징의 상기 개방부의 반대 편에 위치하는 폐쇄부를 관통하는 것을 특징으로 하는 원통형 배터리.
  33. 제32항에 있어서,
    상기 원통형 배터리는,
    상기 폐쇄부와 상기 제2 집전판 사이에 개재되는 인슐레이터를 더 포함하는 것을 특징으로 하는 원통형 배터리.
  34. 제33항에 있어서,
    상기 배터리 단자는,
    상기 인슐레이터를 통과하여 상기 제2 집전판의 상기 단자 결합부와 결합되는 것을 특징으로 하는 원통형 배터리.
  35. 제1항에 있어서,
    상기 제2전극의 활물질층은, 단입자, 유사-단입자 또는 이들의 조합을 포함하는 양극 활물질을 포함하고,
    상기 양극 활물질의 체적 누적 분포에서 나타나는 최소 입자 크기인 Dmin은 1.0㎛ 이상이고,
    상기 양극 활물질의 체적 누적 분포에서 체적 누적량이 50%일 때의 입자 크기인 D50이 5.0㎛ 이하이고
    상기 양극 활물질의 체적 누적 분포에서 나타나는 최대 입자 크기인 Dmax가 12㎛ 내지 17㎛인 것을 특징으로 하는 원통형 배터리.
  36. 제35항에 있어서,
    상기 양극 활물질은 체적 누적 입도 분포 그래프에서 단일 피크(single peak)를 나타내는 유니모달 입도 분포를 가지며, 하기 식으로 표시되는 입도 분포(PSD, Particle Size Distribution)이 3 이하인
    입도 분포(PSD) = (Dmax - Dmin)/D50
    것을 특징으로 하는 원통형 배터리.
  37. 제35항에 있어서,
    상기 단입자, 유사-단입자 또는 이들의 조합은 상기 제2전극의 활물질층에 포함된 양극 활물질의 전체 중량을 기준으로 95wt% 내지 100wt%의 양으로 포함된 것을 특징으로 하는 원통형 배터리.
  38. 제35항에 있어서,
    상기 양극 활물질은 전이금속 전체 몰수를 기준으로 Ni을 80몰% 이상으로 포함하는 리튬 니켈계 산화물을 포함하는 것을 특징으로 하는 원통형 배터리.
  39. 제35항에 있어서,
    상기 제2전극의 활물질층은 공극율이 15% 내지 23%이고,
    상기 제2전극의 활물질층은 0.05wt% 내지 5wt%의 중량 비율로 인편상 흑연을 포함하는 것을 특징으로 하는 원통형 배터리.
  40. 제35항에 있어서,
    상기 제2전극의 활물질층은 탄소나노튜브를 더 포함하는 것을 특징으로 하는 원통형 배터리.
  41. 제35항에 있어서,
    상기 제1전극의 활물질층은, 실리콘계 음극 활물질 및 탄소계 음극 활물질을 포함하고,
    상기 실리콘계 음극 활물질 및 탄소계 음극 활물질은 1 : 99 내지 20 : 80의 중량비로 포함되는 것을 특징으로 하는 원통형 배터리.
  42. 제1항 내지 제41항 중 어느 한 항에 따른 원통형 배터리를 포함하는 배터리 팩.
  43. 제42항에 따른 배터리 팩을 포함하는 자동차.
PCT/KR2022/016200 2021-10-22 2022-10-21 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차 WO2023068890A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3235322A CA3235322A1 (en) 2021-10-22 2022-10-21 Cylindrical battery, and battery pack and vehicle including the same
EP22884111.0A EP4395026A1 (en) 2021-10-22 2022-10-21 Cylindrical battery, and battery pack and vehicle including cylindrical battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210142187 2021-10-22
KR10-2021-0142187 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023068890A1 true WO2023068890A1 (ko) 2023-04-27

Family

ID=86021809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016200 WO2023068890A1 (ko) 2021-10-22 2022-10-21 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차

Country Status (5)

Country Link
EP (1) EP4395026A1 (ko)
KR (1) KR102702209B1 (ko)
CN (2) CN219497932U (ko)
CA (1) CA3235322A1 (ko)
WO (1) WO2023068890A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297301A (ja) * 1998-02-13 1999-10-29 Japan Storage Battery Co Ltd 円筒形電池
JP2005276840A (ja) * 2004-03-24 2005-10-06 Samsung Sdi Co Ltd 二次電池および二次電池用集電板の製造方法
US20140162097A1 (en) * 2008-11-21 2014-06-12 Johnson Controls - Saft Advanced Power Solutions Llc Current collector for an electromechanical cell
KR20200094453A (ko) * 2019-01-30 2020-08-07 삼성에스디아이 주식회사 이차 전지
CN113346201A (zh) * 2021-05-21 2021-09-03 湖北亿纬动力有限公司 圆柱型电池、电池模组和电池包
KR20210142187A (ko) 2019-04-03 2021-11-24 이구루코교 가부시기가이샤 용량 제어 밸브

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606947B2 (ja) * 2010-03-18 2014-10-15 三洋電機株式会社 円筒型二次電池およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297301A (ja) * 1998-02-13 1999-10-29 Japan Storage Battery Co Ltd 円筒形電池
JP2005276840A (ja) * 2004-03-24 2005-10-06 Samsung Sdi Co Ltd 二次電池および二次電池用集電板の製造方法
US20140162097A1 (en) * 2008-11-21 2014-06-12 Johnson Controls - Saft Advanced Power Solutions Llc Current collector for an electromechanical cell
KR20200094453A (ko) * 2019-01-30 2020-08-07 삼성에스디아이 주식회사 이차 전지
KR20210142187A (ko) 2019-04-03 2021-11-24 이구루코교 가부시기가이샤 용량 제어 밸브
CN113346201A (zh) * 2021-05-21 2021-09-03 湖北亿纬动力有限公司 圆柱型电池、电池模组和电池包

Also Published As

Publication number Publication date
EP4395026A1 (en) 2024-07-03
CN219497932U (zh) 2023-08-08
CA3235322A1 (en) 2023-04-27
KR102702209B1 (ko) 2024-09-05
CN116014311A (zh) 2023-04-25
KR20230058299A (ko) 2023-05-03

Similar Documents

Publication Publication Date Title
WO2022158863A2 (ko) 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2021235794A1 (ko) 이차전지
WO2021006520A1 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 리튬이차전지
WO2023090847A1 (ko) 음극 및 이를 포함하는 이차전지
WO2023014018A1 (ko) 전극 조립체, 이차전지, 이를 포함하는 배터리 팩 및 자동차
WO2023068897A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068886A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068891A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068885A1 (ko) 전극 조립체, 원통형 배터리 및 이를 포함하는 배터리 팩 및 자동차
WO2023085893A1 (ko) 분리막, 전극 조립체, 원통형 배터리 셀 및 이를 포함하는 배터리 팩 및 자동차
WO2023068890A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068892A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068884A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068887A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068893A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2022119158A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2023068898A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068895A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068888A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023068889A1 (ko) 원통형 배터리, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2024136549A1 (ko) 원통형 리튬 이차전지
WO2023063787A1 (ko) 리튬 이차 전지
WO2023075442A1 (ko) 음극 및 이를 포함하는 이차전지
WO2024136482A1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22884111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022884111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022884111

Country of ref document: EP

Effective date: 20240327

ENP Entry into the national phase

Ref document number: 2024522658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3235322

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE