WO2023067979A1 - Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component - Google Patents

Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component Download PDF

Info

Publication number
WO2023067979A1
WO2023067979A1 PCT/JP2022/035229 JP2022035229W WO2023067979A1 WO 2023067979 A1 WO2023067979 A1 WO 2023067979A1 JP 2022035229 W JP2022035229 W JP 2022035229W WO 2023067979 A1 WO2023067979 A1 WO 2023067979A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenols
polyphenylene ether
condition
raw material
mol
Prior art date
Application number
PCT/JP2022/035229
Other languages
French (fr)
Japanese (ja)
Inventor
康太 大城
香帆 柴崎
翔也 関口
翔子 三島
信広 石川
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021170496A external-priority patent/JP2023060737A/en
Priority claimed from JP2022030242A external-priority patent/JP2023125891A/en
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023067979A1 publication Critical patent/WO2023067979A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/44Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols by oxidation of phenols

Definitions

  • the present invention relates to polyphenylene ethers, curable compositions containing polyphenylene ethers, dry films, cured products, and electronic components.
  • Non-Patent Document 1 proposes polyphenylene ether with improved heat resistance by introducing an allyl group into the molecule of polyphenylene ether to form a thermosetting resin.
  • polyphenylene ether is soluble in limited solvents, and polyphenylene ether obtained by the method of Non-Patent Document 1 dissolves only in highly toxic solvents such as chloroform and toluene. Therefore, there is a problem that it is difficult to handle the resin varnish and control solvent exposure in the process of coating and curing such as wiring board applications.
  • the polyphenylene ether having a branched structure disclosed in the above document has more polymer terminals having polymerization reactivity than the polyphenylene ether having a linear structure, so that the grown polymers are further polymerized (so-called coupling ), and there is a problem that the molecular weight increases rapidly. Therefore, in order to control the molecular weight of the polyphenylene ether to be obtained within a desired range, selection of raw materials, fine adjustment of production conditions, etc. are required, and in some cases it is unsuitable for mass production.
  • an object of the present invention is to provide a polyphenylene ether having a branched structure that not only has low dielectric properties and excellent solvent solubility, but also has an easy molecular weight control and is suitable for mass production.
  • the present inventors conducted intensive research and found that the above problems were solved by a polyphenylene ether composed of raw material phenols having a specific structure. That is, the present invention is as follows.
  • An embodiment of the invention provides Obtained from a raw material phenol containing at least a phenol that satisfies the following condition 1 and a phenol that satisfies at least the following condition 2,
  • the polyphenylene ether has a content of phenols that satisfies condition 2 above is 15 mol % or less relative to the total amount of raw material phenols.
  • (Condition 1) Having hydrogen atoms at the ortho and para positions
  • Condition 2 having a hydrogen atom at the para position and having [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]
  • the phenol that satisfies the condition 2 contains at least a tert-butyl group as the [branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or linear hydrocarbon group having 4 to 15 carbon atoms]. is preferred.
  • Another embodiment of the invention comprises: Obtained from a raw material phenol containing at least a phenol that satisfies the following condition 1 and a phenol that satisfies at least the following condition 3,
  • the polyphenylene ether contains 0.1 to 20 mol % of the phenols satisfying condition 3 above with respect to the total amount of raw material phenols.
  • (Condition 1) Having hydrogen atoms at the ortho and para positions
  • (Condition 3) Having hydrocarbon groups with 1 to 4 carbon atoms at the ortho and para positions
  • the present invention may be a curable composition containing the polyphenylene ether.
  • the present invention may be a dry film having a resin layer made of the curable composition.
  • the present invention may be the curable composition or a cured product of a resin layer made of the curable composition.
  • the present invention may be an electronic component having the cured product.
  • a polyphenylene ether having a branched structure that not only has low dielectric properties and excellent solvent solubility, but also facilitates molecular weight control and is suitable for mass production.
  • polyphenylene ether of the present invention and the curable composition containing the polyphenylene ether will be described below, but the present invention is not limited to the following.
  • an "unsaturated carbon bond” indicates an ethylenic or acetylenic multiple bond (double bond or triple bond) between carbon atoms.
  • the functional group having an unsaturated carbon bond is not particularly limited. mentioned. These functional groups having unsaturated carbon bonds can have, for example, 15 or less, 10 or less, 8 or less, 5 or less, or 3 or less carbon atoms.
  • phenols that are used as raw materials for polyphenylene ether (PPE) and can be constituent units of polyphenylene ether are collectively referred to as "raw material phenols.”
  • monohydric phenols are mainly disclosed as raw material phenols in this specification, polyhydric phenols may be used as raw material phenols within a range that does not impair the effects of the present invention.
  • the polyphenylene ether according to the first embodiment is a polyphenylene ether obtained from raw material phenols containing at least phenols satisfying condition 1 below and phenols satisfying at least condition 2 below. (Condition 1) Having hydrogen atoms at the ortho and para positions (Condition 2) having a hydrogen atom at the para position and having [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]
  • the raw material phenols may contain other phenols that do not satisfy conditions 1 and 2.
  • the raw material phenols include phenols satisfying at least condition 1 and phenols satisfying at least condition 2 means that at least one of the following forms 1 and 2 is applicable.
  • Raw material phenols contain at least phenols satisfying both conditions 1 and 2.
  • the raw material phenols include at least phenols that satisfy condition 1 but do not satisfy condition 2 and phenols that satisfy condition 1 but not condition 2.
  • the raw material phenols may further contain phenols that meet condition 1 but do not meet condition 2 and/or phenols that meet condition 1 but meet condition 2.
  • a hydrocarbon group may simply be expressed as a "predetermined hydrocarbon group".
  • the predetermined hydrocarbon group may be a hydrocarbon group having both a cyclic structure and a branched structure.
  • Phenols satisfying Condition 1 are phenols having hydrogen atoms at the ortho- and para-positions.
  • Phenols that satisfy Condition 1 may have one or more predetermined hydrocarbon groups. In this case, it becomes the raw material phenols of form 1 mentioned above.
  • Phenols that satisfy Condition 1 may have a functional group containing an unsaturated carbon bond.
  • Phenols that satisfy Condition 1 are, for example, compounds represented by the following formula (1-1).
  • R 11 to R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms (preferably 1 to 4 carbon atoms). R 11 to R 13 may contain unsaturated carbon bonds.
  • phenols satisfying condition 1 include phenol, o-cresol, m-cresol, 2-ethylphenol, 3-ethylphenol, 2,3-xylenol, 2,5-xylenol, 3,5- xylenol, 2-n-butylphenol, 3-n-butylphenol, 2-isobutylphenol, 3-isobutylphenol, 2-s-butylphenol, 3-s-butylphenol, 2-tert-butylphenol, 3-tert-butylphenol, 2- Phenylphenol, 3-phenylphenol, 2-dodecylphenol, 2-vinylphenol, 3-vinylphenol, 2-allylphenol, 3-allylphenol, 3-vinyl-6-methylphenol, 3-vinyl-6-ethylphenol , 3-vinyl-5-methylphenol, 3-vinyl-5-ethylphenol, 3-allyl-6-methylphenol, 3-allyl-6-ethylphenol, 3-allyl-5-methylphenol, 3-allyl-ethyl
  • Only one type of phenols satisfying condition 1 may be used, or two or more types may be used.
  • Phenols that satisfy Condition 1 have a hydrogen atom at the ortho position, so when oxidatively polymerized with phenols, an ether bond can be formed not only at the ipso and para positions but also at the ortho position. Therefore, polyphenylene ether obtained by using such phenols as raw material phenols can form a branched chain structure.
  • polyphenylene ethers obtained from phenols that satisfy Condition 1 are partly branched by benzene rings ether-bonded at at least three positions, ipso-position, ortho-position, and para-position. Become.
  • a polyphenylene ether having a branched structure in its skeleton in this way is referred to as a branched polyphenylene ether.
  • Such branched polyphenylene ethers provide excellent solubility in organic solvents.
  • the content of phenols satisfying condition 1 is preferably 1 mol% or more, 2 mol% or more, 5 mol% or more, or 8 mol% or more, and is 40 mol% or less and 30 mol% with respect to the total amount of raw material phenols. Below, it is preferably 20 mol % or less, or 15 mol % or less.
  • the content of phenols that satisfies condition 1 is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
  • Phenols that satisfy condition 2 have a hydrogen atom at the para position and have [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]. It is kind. In other words, phenols that satisfy condition 2 have a hydrogen atom at the para position, branched hydrocarbon groups with 3 to 15 carbon atoms, cyclic hydrocarbon groups with 3 to 15 carbon atoms, and 4 to 15 carbon atoms. are phenols having one or more (preferably one or two) hydrocarbon groups (predetermined hydrocarbon groups) selected from linear hydrocarbon groups of
  • Phenols satisfying condition 2 may have one or more straight-chain hydrocarbon groups with 1 to 3 carbon atoms in addition to the predetermined hydrocarbon group.
  • Phenols that satisfy condition 2 may have a functional group containing an unsaturated carbon bond.
  • Phenols that satisfy condition 2 are, for example, compounds represented by the following formula (1-2).
  • R 21 to R 24 is a predetermined hydrocarbon group, and the rest are each independently a hydrogen atom or a linear hydrocarbon group having 1 to 3 carbon atoms. is.
  • the predetermined hydrocarbon group is preferably saturated (having no unsaturated carbon bonds) from the viewpoint of low dielectric properties.
  • the predetermined hydrocarbon group has a stronger effect of suppressing an increase in the molecular weight of polyphenylene ether as the number of carbon atoms increases. Therefore, in order to control the polymerization reactivity and molecular weight of the polyphenylene ether in a well-balanced manner, the predetermined hydrocarbon group should be [a branched hydrocarbon group having 3 to 10 carbon atoms, a cyclic hydrocarbon group having 3 to 10 carbon atoms, and It is preferably a hydrocarbon group selected from [linear hydrocarbon group having 4 to 10 carbon atoms], [branched hydrocarbon group having 3 to 6 carbon atoms, cyclic hydrocarbon group having 3 to 6 carbon atoms, and A straight-chain hydrocarbon group having 4 to 6 carbon atoms], more preferably a branched hydrocarbon group having 3 to 4 carbon atoms, and a branched hydrocarbon group having 4 carbon atoms.
  • the predetermined hydrocarbon group is preferably a tert-butyl group.
  • the phenol that satisfies condition 2 has at least a tert-butyl group as [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]. preferably included.
  • Phenols having a branched hydrocarbon group having 3 to 15 carbon atoms include 2-isobutylphenol, 3-isobutylphenol, 2-s-butylphenol, 3-s-butylphenol, 2-tert-butylphenol, 3-tert-butylphenol, 2-methyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-dibutenylphenol, 2,6-diisobutenylphenol, 2,6-diisopentenylphenol and the like; Phenols having a cyclic hydrocarbon group having 3 to 15 carbon atoms include 2-phenylphenol, 3-phenylphenol, 2,6-diphenylphenol, 2,6-ditolylphenol, 2-allyl-6-phenylphenol, 2-allyl-6-styrylphenol, 2-methyl-6-styrylphenol and the like; 2-n-butylphenol, 3-n-butylphenol, 2-
  • Only one type of phenols satisfying condition 2 may be used, or two or more types may be used.
  • the content of phenols satisfying condition 2 is preferably 15 mol% or less with respect to the total amount of raw material phenols.
  • the content of phenols satisfying condition 2 may be more than 0 mol%, more specifically, 0.1 mol% or more, 0.5 mol% or more, 1 mol% or more with respect to the total amount of raw material phenols. , or 2 mol % or more.
  • the content of phenols that satisfies condition 2 is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
  • the polyphenylene ether according to the first embodiment has a branched structure by containing phenols satisfying condition 1 as raw material phenols.
  • Polyphenylene ether having a branched structure has more polymer terminals with polymerization reactivity than polyphenylene ether having a linear structure, so the grown polymers further polymerize (so-called coupling), resulting in a rapid increase in molecular weight. Therefore, it was not easy to control the reaction.
  • a phenol satisfying condition 1 is combined with a phenol satisfying condition 2 at a specific content, so that a predetermined hydrocarbon group has an appropriate steric It causes obstacles, suppresses the rapid increase in molecular weight that occurs in the synthesis of polyphenylene ether having a branched structure, and facilitates control of the reaction.
  • a predetermined hydrocarbon group has an appropriate steric It causes obstacles, suppresses the rapid increase in molecular weight that occurs in the synthesis of polyphenylene ether having a branched structure, and facilitates control of the reaction.
  • an industrially useful polyphenylene ether having a predetermined molecular weight can be efficiently produced while maintaining the excellent performance derived from the branched structure.
  • polyphenylene ether according to the first embodiment, it is possible to efficiently produce a polyphenylene ether satisfying a number average molecular weight of 5,000 to 30,000 and/or a weight average molecular weight of 10,000 to 150,000. .
  • the above-described effect of suppressing the increase in molecular weight can also be obtained by phenol having an allyl group such as 2-allyl-6-methylphenol, although it is not as good as in the first embodiment.
  • phenol having an allyl group such as 2-allyl-6-methylphenol
  • phenols that satisfy condition 2 have a linear hydrocarbon group with 3 or less carbon atoms (preferably a methyl group or an ethyl group) at both or one ortho position (preferably, either one ortho position). , more preferably a methyl group).
  • phenols other than the raw material phenols described above can be contained within a range that does not impair the effects of the invention.
  • phenols (additional phenols) having a hydrogen atom at the para position, no hydrogen atom at the ortho position, and no predetermined hydrocarbon group can be preferably used.
  • the phenol for addition may have a functional group containing an unsaturated carbon bond as a hydrocarbon group having 3 or less carbon atoms.
  • the phenols for addition are, for example, compounds represented by the following formula (1-3).
  • R 31 and R 34 are each independently a linear hydrocarbon group having 1 to 3 carbon atoms
  • R 32 and R 33 are each independently a hydrogen atom, or , is a hydrocarbon group having 1 to 3 carbon atoms.
  • additional phenols include 2,6-dimethylphenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, 2-allyl-6-methylphenol, 2-allyl- 6-ethylphenol, 2,6-divinylphenol, 2,6-diallylphenol, 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol and the like.
  • the content of the additional phenols can be 50 mol% or more, 60 mol% or more, 70 mol% or more, or 80 mol% or more with respect to the total amount of raw material phenols.
  • the content of the additional phenols having allyl groups is less than 20 mol%, less than 10 mol%, less than 5 mol%, or 1 mol% with respect to the total amount of raw material phenols. It is preferably less than
  • the other phenols may contain phenols other than the phenols for addition (for example, phenols having no hydrogen atom at the para-position, etc.).
  • Raw material phenols according to the first embodiment (phenols satisfying condition 1, phenols satisfying condition 2, and other phenols) may have a functional group containing an unsaturated carbon bond.
  • Such a polyphenylene ether can be three-dimensionally crosslinked by the curing reaction of the unsaturated carbon bonds, and can be used as a curable polyphenylene ether.
  • the content of the raw material phenol containing a functional group having an unsaturated carbon bond can be appropriately set according to the application, etc., but from the viewpoint of low dielectric properties, for example, 0 mol%, It can be 1 mol % or more, 2 mol % or more, 3 mol % or more, or 5 mol % or more, and can be 99 mol % or less, 50 mol % or less, 30 mol % or less, or 20 mol % or less.
  • the content of raw material phenols containing functional groups having unsaturated carbon bonds is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
  • the polyphenylene ether according to the first embodiment can be synthesized by applying a conventionally known polyphenylene ether synthesis method (polymerization conditions, presence or absence of a catalyst, type of catalyst, etc.) except for using the raw material phenols described above. It is possible.
  • Polyphenylene ether can be prepared, for example, by preparing a polymerization solution containing raw material phenols, a catalyst and a solvent (polymerization solution preparation step), at least passing oxygen through the solvent, and oxidizing the phenols in the polymerization solution containing oxygen. It can be synthesized by polymerizing (polymerization process).
  • each step may be performed continuously, a part or all of a certain step and a part or all of another step may be performed simultaneously, or a step may be interrupted and another step may be performed.
  • this method for synthesizing polyphenylene ether may include other steps as necessary. Other steps include, for example, a step of extracting the polyphenylene ether obtained by the polymerization step (for example, a step of performing reprecipitation, filtration and drying), the modification step described above, and the like.
  • the polymerization solution preparation step is a step of mixing raw materials containing phenols to be polymerized in the polymerization step described below to prepare a polymerization solution.
  • Raw materials for the polymerization solution include raw material phenols, catalysts, and solvents.
  • the catalyst is not particularly limited, and may be an appropriate catalyst used in oxidative polymerization of polyphenylene ether.
  • catalysts include amine compounds and metal amine compounds composed of heavy metal compounds such as copper, manganese and cobalt and amine compounds such as tetramethylethylenediamine. It is preferable to use a copper-amine compound in which a copper compound is coordinated to an amine compound. Only one kind of catalyst may be used, or two or more kinds thereof may be used.
  • the content of the catalyst is not particularly limited, but may be 0.1 to 1.0 mol%, or 0.1 to 0.6 mol%, etc., relative to the total amount of raw material phenols in the polymerization solution.
  • Such a catalyst may be dissolved in an appropriate solvent in advance.
  • the solvent is not particularly limited, and may be an appropriate solvent used in oxidative polymerization of polyphenylene ether.
  • As the solvent it is preferable to use one capable of dissolving or dispersing the phenolic compound and the catalyst.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; halogenated aromatic hydrocarbons such as chloroform, methylene chloride, chlorobenzene, dichlorobenzene and trichlorobenzene; nitro compounds such as nitrobenzene; Methyl ethyl ketone (MEK), cyclohexanone, tetrahydrofuran, ethyl acetate, N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), propylene glycol monomethyl ether acetate (PMA), diethylene glycol monoethyl ether acetate (CA) etc. Only one solvent may be used, or two or more solvents may be used.
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • halogenated aromatic hydrocarbons such as chloro
  • the solvent may contain water, a solvent compatible with water, or the like.
  • the content of the solvent in the polymerization solution is not particularly limited and can be adjusted as appropriate.
  • the polymerization solution may contain other raw materials as long as the effects of the first embodiment are not impaired.
  • the polymerization step is a step of oxidative polymerization of phenols in the polymerization solution under the condition that oxygen is supplied to the polymerization solution.
  • the ventilation time of oxygen gas and the oxygen concentration in the oxygen-containing gas used can be changed as appropriate according to atmospheric pressure, temperature, etc.
  • stirring may be performed at 25 to 100° C. for 2 to 24 hours.
  • the stirring means is not particularly limited, and known means (for example, paddle blades, etc.) can be used.
  • the polyphenylene ether according to the first embodiment preferably has a number average molecular weight of 5,000 to 30,000. Also, the polyphenylene ether according to the first embodiment preferably has a weight average molecular weight of 10,000 to 150,000. Furthermore, the polyphenylene ether according to the first embodiment preferably has a polydispersity index (PDI: weight average molecular weight/number average molecular weight) of 1.1 to 20, more preferably 1.2 to 15. , 1.3 to 10 is particularly preferred.
  • PDI polydispersity index
  • the film formability of the curable composition can be improved while maintaining the solubility in the solvent.
  • the number-average molecular weight and weight-average molecular weight were measured by gel permeation chromatography (GPC) and converted using a calibration curve prepared using standard polystyrene.
  • known components include silica, peroxides, cross-linking curing agents, maleimide compounds, elastomers, and the like.
  • other known components include flame retardant improvers (phosphorus compounds, etc.), cellulose nanofibers, polymer components (cyanate ester resins, epoxy resins, phenolic novolac resins and other resin components, polyimides, polyamides and other organic compounds). polymer), dispersants, thermosetting catalysts, thickeners, antifoaming agents, antioxidants, rust preventives, adhesion imparting agents, solvents and the like. Only one type of these may be used, or two or more types may be used.
  • the curable composition described above is used by applying it to a substrate.
  • the base material means a printed wiring board or flexible printed wiring board on which a circuit is formed in advance with copper or the like, a metal substrate, a glass substrate, a ceramic substrate, a wafer plate, a metal foil such as copper foil, a polyimide film, a polyester film, and polyethylene.
  • a metal foil such as copper foil, a polyimide film, a polyester film, and polyethylene.
  • films such as naphthalate (PEN) films, glass cloth, and fibers such as aramid fibers.
  • a dry film is obtained, for example, by forming a resin layer by coating and drying a curable composition on a polyethylene terephthalate film.
  • the dry film may be laminated with a protective layer such as a polypropylene film, if necessary.
  • a cured product is obtained by curing the resin layer of the curable composition or the dry film described above.
  • the method for obtaining a cured product from the curable composition is not particularly limited, and can be changed as appropriate according to the composition of the curable composition.
  • a drying step of drying the curable composition is performed as necessary.
  • a thermosetting step of thermally cross-linking the polyphenylene ether by heating for example, heating with an inert gas oven, hot plate, vacuum oven, vacuum press, etc.
  • the implementation conditions for example, coating thickness, drying temperature and time, heating temperature and time, etc. in each step may be appropriately changed according to the composition, application, etc. of the curable composition.
  • the electronic component has the cured product according to the first embodiment described above, and has excellent dielectric properties and heat resistance, so that it can be used for various purposes.
  • ADAS advanced driving systems
  • the polyphenylene ether according to the second embodiment is a polyphenylene ether obtained from raw material phenols containing at least phenols satisfying condition 1 below and phenols satisfying at least condition 3 below. (Condition 1) Having hydrogen atoms at the ortho and para positions (Condition 3) Having hydrocarbon groups with 1 to 4 carbon atoms at the ortho and para positions
  • the raw material phenols may contain other phenols that do not satisfy conditions 1 and 3.
  • phenols that satisfy condition 1 are referred to as phenols (A)
  • phenols that satisfy condition 3 are referred to as phenols (B).
  • Phenols (A) are phenols having hydrogen atoms at the ortho- and para-positions.
  • the phenol (A) the same phenol that satisfies condition 1 in the polyphenylene ether according to the first embodiment can be used.
  • the content of the phenols (A) is preferably 1 mol% or more, 2 mol% or more, 3 mol% or more, or 5 mol% or more, and is 50 mol% or less and 40 mol% or less with respect to the total amount of the raw material phenols. , 30 mol % or less, or 20 mol % or less.
  • the content of phenols (A) is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
  • Phenols (B) are phenols having hydrocarbon groups of 1 to 4 carbon atoms at the ortho and para positions.
  • the polyphenylene ether according to the second embodiment has a branched structure by containing the phenols (A) as raw material phenols.
  • polyphenylene ether having a branched structure has more polymer terminals with polymerization reactivity than polyphenylene ether having a linear structure, the grown polymers further polymerize (so-called coupling), and the molecular weight rapidly increases. It was not easy to control the reaction.
  • phenols (A) and phenols (B) are combined at a specific content as raw material phenols.
  • the phenol (B) moderately serves as the terminal portion of the polyphenylene ether, and suppresses a rapid increase in molecular weight (coupling reaction) that occurs in the synthesis of the polyphenylene ether having a branched structure.
  • the control of the reaction is facilitated, so that industrially useful polyphenylene ethers with the desired molecular weight can be produced efficiently while maintaining the excellent performance (low dielectric properties, excellent solvent solubility) derived from the branched structure.
  • polyphenylene ether according to the second embodiment polyphenylene ether satisfying the weight average molecular weight of 30,000 to 300,000 can be efficiently produced. Furthermore, the polyphenylene ether obtained in this manner is excellent in storage stability because unintended increase in molecular weight is suppressed.
  • Phenols (B) are, for example, compounds represented by the following formula (2-1).
  • R a21 , R a23 and R a25 are each independently a hydrocarbon group having 1 to 4 carbon atoms (preferably a hydrocarbon group having 1 to 2 carbon atoms); a22 and R a24 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms (preferably a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms). R a21 to R a25 may contain unsaturated carbon bonds.
  • Phenols (B) are specifically 2,4,6-trimethylphenol, 2,4,6-triethylphenol, 2,4,6-tripropylphenol, 2,4,6-triallylphenol, 2,4,6-tri-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,3,4,6- Examples include tetramethylphenol, pentamethylphenol and the like.
  • the content of the phenols (B) is preferably 0.1 mol% or more, 0.5 mol% or more, 1 mol% or more, 2 mol% or more, or 5 mol% or more with respect to the total amount of raw material phenols, and , 20 mol % or less, 18 mol % or less, 16 mol % or less, or 15 mol % or less.
  • the content of phenols (B) is calculated based on the total amount of raw material phenols used to synthesize the branched polyphenylene ether.
  • phenols other than the raw material phenols (phenols (A) and phenols (B)) described above can be contained within a range that does not impair the effects of the invention.
  • phenols for example, phenols having a hydrogen atom at the para-position and not having a hydrogen atom at the ortho-position (additional phenols) can be preferably used.
  • the additional phenol B is, for example, a compound represented by the following formula (2-2).
  • R a31 and R a34 are each independently a hydrocarbon group having 1 to 15 carbon atoms (preferably a hydrocarbon group having 1 to 4 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms). and R a32 and R a33 are each independently a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms (preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, more preferably is a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms). R a31 to R a34 may contain an unsaturated carbon bond.
  • additional phenols include 2,6-dimethylphenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, 2-allyl-6-methylphenol, 2-allyl- 6-ethylphenol, 2,6-divinylphenol, 2,6-diallylphenol, 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol and the like.
  • the content of the additional phenols can be 50 mol% or more, 60 mol% or more, or 70 mol% or more with respect to the total amount of raw material phenols.
  • the content of additional phenols is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
  • the other phenols may contain phenols other than the phenols for addition.
  • Raw material phenols (phenols (A), phenols (B), and other phenols) according to the second embodiment may have a functional group containing an unsaturated carbon bond.
  • Such a polyphenylene ether can be three-dimensionally crosslinked by the curing reaction of the unsaturated carbon bonds, and can be used as a curable polyphenylene ether.
  • the content of the raw material phenol containing a functional group having an unsaturated carbon bond can be appropriately set according to the application, etc., but from the viewpoint of low dielectric properties, for example, 0 mol%, It can be 1 mol % or more, 2 mol % or more, 3 mol % or more, or 5 mol % or more, and can be 99 mol % or less, 50 mol % or less, 30 mol % or less, or 20 mol % or less.
  • the content of raw material phenols containing functional groups having unsaturated carbon bonds is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
  • the polyphenylene ether according to the second embodiment can be synthesized by applying a conventionally known polyphenylene ether synthesis method (polymerization conditions, presence or absence of a catalyst, type of catalyst, etc.) except for using the raw material phenols described above. It is possible.
  • the polyphenylene ether according to the second embodiment can be synthesized in the same manner as the polyphenylene ether according to the first embodiment, except that the raw material phenols used are changed.
  • the polyphenylene ether according to the second embodiment preferably has a weight average molecular weight of 30,000 to 300,000, more preferably 30,000 to 250,000, and 30,000 to 150,000. is particularly preferred.
  • the film formability of the curable composition can be improved while maintaining the solubility in the solvent.
  • the weight average molecular weight is obtained by measuring by gel permeation chromatography (GPC) and converting from a calibration curve created using standard polystyrene.
  • the polyphenylene ether having a branched structure according to the second embodiment can be used as components of curable compositions, dry films, cured products and electronic parts.
  • the contents described for the polyphenylene ether according to the first embodiment are applied, except that the polyphenylene ether used is changed to the polyphenylene ether according to the second embodiment. can do.
  • Example 2-9 Comparative Example 1-3, Reference Example 1-5>> Polyphenylene ethers according to Examples, Comparative Examples, and Reference Examples were obtained in the same manner as in Example 1, except that the raw material phenols used were changed to those shown in the table.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of polyphenylene ether are determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex K-805L was used as a column, the column temperature was 40° C., the flow rate was 1 mL/min, the eluent was chloroform, and the standard substance was polystyrene.
  • the dielectric constant Dk and the dielectric loss tangent Df were measured by the SPDR (Split Post Dielectric Resonator) resonator method using a test piece that was cut from the prepared measurement sample into a length of 80 mm and a width of 45 mm.
  • a vector-type network analyzer E5071C and an SPDR resonator manufactured by Keysight Technologies LLC were used as measuring instruments, and a calculation program manufactured by QWED was used. The conditions were a frequency of 10 GHz and a measurement temperature of 25°C.
  • di- ⁇ -hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/ TMEDA) is removed by filtration, reprecipitated with a mixture of 1,200 mL of methanol, 4.0 mL of concentrated hydrochloric acid, and 27.0 mL of H 2 O, filtered under reduced pressure, washed with methanol, and dried at 80° C. for 24 hours. , the polyphenylene ether according to Example A was purified.
  • Cu/TMEDA di- ⁇ -hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper(II)]chloride
  • TEDA tetramethylethylenediamine
  • di- ⁇ -hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/ TMEDA) is removed by filtration, reprecipitated with a mixture of 1,200 mL of methanol, 4.0 mL of concentrated hydrochloric acid, and 27.0 mL of H 2 O, filtered under reduced pressure, washed with methanol, and dried at 80° C. for 24 hours. , the polyphenylene ether according to Comparative Example A was purified.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of polyphenylene ether are determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex K-805L was used as a column, the column temperature was 40°C, the flow rate was 1 mL/min, the eluent was chloroform, and the standard substance was polystyrene.
  • the weight-average molecular weight (initial molecular weight) immediately after the reaction the weight-average molecular weight after standing for 6 days at room temperature/normal pressure after the reaction (molecular weight after 6 days), and the room temperature/normal pressure after the reaction
  • the weight-average molecular weight (molecular weight after 30 days) after standing for 30 days was measured. Table 4 shows the evaluation results.
  • Example C As comparison data with Example C, a polyphenylene ether according to Comparative Example B shown below was synthesized, and storage stability was evaluated in the same manner as in Example 3. Table 4 shows the evaluation results.
  • the mixture was adjusted to 16 wt%, stirred at a stirring speed of 150 rpm using a four-blade paddle blade while blowing dry air into the reaction solution at a flow rate of 25 mL/min, and heated at 40°C for a predetermined time (14 hours).
  • a reaction solution containing polyphenylene ether was obtained.
  • di- ⁇ -hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/ TMEDA) was removed by filtration, and storage stability was evaluated under the same conditions as the polyphenylene ether according to Example C above.
  • polyphenylene ethers according to Examples A to D could be appropriately controlled in molecular weight and mass-produced.
  • the polyphenylene ether according to Example C is less likely to increase in weight average molecular weight over time than the polyphenylene ether according to Comparative Example B, and thus has excellent storage stability. understood.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polyphenylene ether having a branched structure, wherein the polyphenylene ether not only has low dielectric properties and excellent solubility in solvents, but is suitable for mass production, and the molecular weight of the polyphenylene ether is easy to control. The polyphenylene ether can be obtained from raw material phenols including phenols satisfying at least condition 1 below and phenols satisfying at least condition 2 below, wherein the content of phenols satisfying condition 2 is 15 mol% or less with respect to the total amount of the raw material phenols. (Condition 1) The phenol has hydrogen atoms at the ortho- and para-positions. (Condition 2) The phenol has hydrogen atoms at the para-position and has a C3-C15 branched or cyclic hydrocarbon group and/or a C4-C15 linear hydrocarbon group.

Description

ポリフェニレンエーテル、ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、硬化物および電子部品Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product and electronic component
 本発明は、ポリフェニレンエーテル、ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、硬化物および電子部品に関する。 The present invention relates to polyphenylene ethers, curable compositions containing polyphenylene ethers, dry films, cured products, and electronic components.
 第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等などの普及により、通信機器の信号の高周波化が進んできた。 With the spread of large-capacity high-speed communications represented by the 5th generation communication system (5G) and millimeter-wave radar for ADAS (advanced driving systems) in automobiles, the signals of communication equipment have become increasingly high-frequency.
 しかし、配線板材料としてエポキシ樹脂などを使用した場合、比誘電率(Dk)や誘電正接(Df)が十分に低くないために、周波数が高くなるほど誘電損失に由来する伝送損失の増大が起こり、信号の減衰や発熱などの問題が生じていた。そのため、低誘電特性にすぐれたポリフェニレンエーテルが使用されてきた。 However, when epoxy resin or the like is used as a wiring board material, the dielectric constant (Dk) and dielectric loss tangent (Df) are not sufficiently low. Problems such as signal attenuation and heat generation occurred. Therefore, polyphenylene ether, which has excellent low dielectric properties, has been used.
 また、非特許文献1には、ポリフェニレンエーテルの分子内にアリル基を導入させて、熱硬化性樹脂とすることで、耐熱性を向上させたポリフェニレンエーテルが提案されている。 In addition, Non-Patent Document 1 proposes polyphenylene ether with improved heat resistance by introducing an allyl group into the molecule of polyphenylene ether to form a thermosetting resin.
 しかしながら、ポリフェニレンエーテルは可溶な溶媒が限られており、非特許文献1の手法で得られたポリフェニレンエーテルも、クロロホルムやトルエン等の非常に毒性が高い溶媒にしか溶解しない。そのため、樹脂ワニスの取り扱いや、配線板用途のような塗膜化して硬化させる工程における溶媒暴露の管理が難しいという問題があった。 However, polyphenylene ether is soluble in limited solvents, and polyphenylene ether obtained by the method of Non-Patent Document 1 dissolves only in highly toxic solvents such as chloroform and toluene. Therefore, there is a problem that it is difficult to handle the resin varnish and control solvent exposure in the process of coating and curing such as wiring board applications.
 このような状況下、本発明者らは、特定のフェノールを原料として合成された分岐構造を有するポリフェニレンエーテルが、高い溶媒溶解性を有することを見出した(特開2020-055999号公報)。 Under these circumstances, the present inventors found that polyphenylene ether having a branched structure synthesized using a specific phenol as a raw material has high solvent solubility (Japanese Patent Application Laid-Open No. 2020-055999).
 しかしながら、上記文献に開示された分岐構造を有するポリフェニレンエーテルは、直鎖構造を有するポリフェニレンエーテルに比べ、重合反応性を有するポリマー末端を多く備えることから、成長したポリマー同士が更に重合(いわゆるカップリング)し、分子量が急激に増加するという問題があった。従って、得られるポリフェニレンエーテルの分子量を所望の範囲に制御するためには、原料の選定や製造条件の細かい調整等が求められ、大量生産には不向きな場合があった。 However, the polyphenylene ether having a branched structure disclosed in the above document has more polymer terminals having polymerization reactivity than the polyphenylene ether having a linear structure, so that the grown polymers are further polymerized (so-called coupling ), and there is a problem that the molecular weight increases rapidly. Therefore, in order to control the molecular weight of the polyphenylene ether to be obtained within a desired range, selection of raw materials, fine adjustment of production conditions, etc. are required, and in some cases it is unsuitable for mass production.
 そこで本発明は、低誘電特性と優れた溶媒溶解性を有するのみならず、分子量の制御が容易であり大量生産するのに好適な、分岐構造を有するポリフェニレンエーテルの提供を課題とする。 Therefore, an object of the present invention is to provide a polyphenylene ether having a branched structure that not only has low dielectric properties and excellent solvent solubility, but also has an easy molecular weight control and is suitable for mass production.
 本発明者らは、鋭意研究を行い、特定の構造を有する原料フェノール類からなるポリフェニレンエーテルによって、上記課題が解決されることを見出した。即ち、本発明は以下の通りである。 The present inventors conducted intensive research and found that the above problems were solved by a polyphenylene ether composed of raw material phenols having a specific structure. That is, the present invention is as follows.
 本発明のある実施形態は、
 少なくとも下記条件1を満たすフェノール類と、少なくとも下記条件2を満たすフェノール類と、を含む原料フェノール類から得られ、
 前記条件2を満たすフェノール類の含有率が、原料フェノール類全量に対して15mol%以下である、ポリフェニレンエーテルである。
(条件1)
 オルト位およびパラ位に水素原子を有する
(条件2)
 パラ位に水素原子を有し、[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]を有する
An embodiment of the invention provides
Obtained from a raw material phenol containing at least a phenol that satisfies the following condition 1 and a phenol that satisfies at least the following condition 2,
The polyphenylene ether has a content of phenols that satisfies condition 2 above is 15 mol % or less relative to the total amount of raw material phenols.
(Condition 1)
Having hydrogen atoms at the ortho and para positions (Condition 2)
having a hydrogen atom at the para position and having [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]
 前記条件2を満たすフェノール類が、前記[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]として、少なくともtert-ブチル基を含むことが好ましい。 The phenol that satisfies the condition 2 contains at least a tert-butyl group as the [branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or linear hydrocarbon group having 4 to 15 carbon atoms]. is preferred.
 本発明の別の実施形態は、
 少なくとも下記条件1を満たすフェノール類と、少なくとも下記条件3を満たすフェノール類と、を含む原料フェノール類から得られ、
 前記条件3を満たすフェノール類の含有率が、原料フェノール類全量に対して0.1~20mol%である、ポリフェニレンエーテルである。
(条件1)
 オルト位およびパラ位に水素原子を有する
(条件3)
 オルト位およびパラ位に炭素数1~4の炭化水素基を有する
Another embodiment of the invention comprises:
Obtained from a raw material phenol containing at least a phenol that satisfies the following condition 1 and a phenol that satisfies at least the following condition 3,
The polyphenylene ether contains 0.1 to 20 mol % of the phenols satisfying condition 3 above with respect to the total amount of raw material phenols.
(Condition 1)
Having hydrogen atoms at the ortho and para positions (Condition 3)
Having hydrocarbon groups with 1 to 4 carbon atoms at the ortho and para positions
 本発明は、前記ポリフェニレンエーテルを含む硬化性組成物であってもよい。 The present invention may be a curable composition containing the polyphenylene ether.
 本発明は、前記硬化性組成物からなる樹脂層を有するドライフィルムであってもよい。 The present invention may be a dry film having a resin layer made of the curable composition.
 本発明は、前記硬化性組成物又は前記硬化性組成物からなる樹脂層の硬化物であってもよい。 The present invention may be the curable composition or a cured product of a resin layer made of the curable composition.
 本発明は、前記硬化物を有する電子部品であってもよい。 The present invention may be an electronic component having the cured product.
 本発明によれば、低誘電特性と優れた溶媒溶解性を有するのみならず、分子量の制御が容易であり大量生産するのに好適な、分岐構造を有するポリフェニレンエーテルが提供される。 According to the present invention, there is provided a polyphenylene ether having a branched structure that not only has low dielectric properties and excellent solvent solubility, but also facilitates molecular weight control and is suitable for mass production.
 以下、本発明のポリフェニレンエーテル及び当該ポリフェニレンエーテルを含む硬化性組成物について説明するが、本発明は以下には何ら限定されない。 The polyphenylene ether of the present invention and the curable composition containing the polyphenylene ether will be described below, but the present invention is not limited to the following.
 説明した化合物に異性体が存在する場合、特に断らない限り、存在し得る全ての異性体が本発明において使用可能である。 When the described compounds have isomers, all possible isomers can be used in the present invention unless otherwise specified.
 本発明において、「不飽和炭素結合」は、特に断らない限り、エチレン性またはアセチレン性の炭素間多重結合(二重結合または三重結合)を示す。本発明において、不飽和炭素結合を有する官能基としては、特に限定されないが、アルケニル基(例えば、ビニル基、アリル基)、アルキニル基(例えば、エチニル基)、又は、(メタ)アクリルロイル基が挙げられる。なお、これらの不飽和炭素結合を有する官能基は、炭素数を、例えば15以下、10以下、8以下、5以下、3以下等とすることができる。 In the present invention, unless otherwise specified, an "unsaturated carbon bond" indicates an ethylenic or acetylenic multiple bond (double bond or triple bond) between carbon atoms. In the present invention, the functional group having an unsaturated carbon bond is not particularly limited. mentioned. These functional groups having unsaturated carbon bonds can have, for example, 15 or less, 10 or less, 8 or less, 5 or less, or 3 or less carbon atoms.
 本発明において、ポリフェニレンエーテル(PPE)の原料として用いられ、ポリフェニレンエーテルの構成単位になり得るフェノール類を総称して、「原料フェノール類」とする。 In the present invention, phenols that are used as raw materials for polyphenylene ether (PPE) and can be constituent units of polyphenylene ether are collectively referred to as "raw material phenols."
 本発明において、原料フェノール類の説明を行う際に「オルト位」や「パラ位」等と表現した場合、特に断りがない限り、フェノール性水酸基の位置を基準(イプソ位)とする。 In the present invention, when "ortho-position", "para-position", etc. are used when explaining raw material phenols, the position of the phenolic hydroxyl group is the reference (ipso-position) unless otherwise specified.
 本発明において、単に「オルト位」等と表現した場合、「オルト位の少なくとも一方」等を示す。従って、特に矛盾が生じない限り、単に「オルト位」とした場合、オルト位のどちらか一方を示すと解釈してもよいし、オルト位の両方を示すと解釈してもよい。 In the present invention, simply expressing "ortho position" or the like means "at least one of the ortho positions" or the like. Therefore, as long as there is no particular contradiction, the simple expression "ortho position" may be interpreted as indicating either one of the ortho positions or both of the ortho positions.
 本明細書において、原料フェノール類としては主に1価のフェノール類を開示しているが、本発明の効果を阻害しない範囲で、原料フェノール類として多価のフェノール類を使用してもよい。 Although monohydric phenols are mainly disclosed as raw material phenols in this specification, polyhydric phenols may be used as raw material phenols within a range that does not impair the effects of the present invention.
 本明細書において、数値範囲の上限値と下限値とが別々に記載されている場合、矛盾しない範囲で、各下限値と各上限値との全ての組み合わせが実質的に記載されているものとする。 In this specification, when the upper and lower limits of a numerical range are stated separately, it is assumed that all combinations of each lower limit and each upper limit are substantially stated in a consistent range. do.
 本明細書には、特願2021-170496、特願2022-030242の記載の全てが参照によって引用され、本明細書に組み込まれているものとする。 All of the descriptions of Japanese Patent Application No. 2021-170496 and Japanese Patent Application No. 2022-030242 are incorporated herein by reference.
<<<<第1実施形態>>>>
<<<ポリフェニレンエーテル>>>
 第1実施形態に係るポリフェニレンエーテルは、少なくとも下記条件1を満たすフェノール類と、少なくとも下記条件2を満たすフェノール類と、を含む原料フェノール類から得られるポリフェニレンエーテルである。
(条件1)
 オルト位およびパラ位に水素原子を有する
(条件2)
 パラ位に水素原子を有し、[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]を有する
<<<<first embodiment>>>>
<<<Polyphenylene ether>>>
The polyphenylene ether according to the first embodiment is a polyphenylene ether obtained from raw material phenols containing at least phenols satisfying condition 1 below and phenols satisfying at least condition 2 below.
(Condition 1)
Having hydrogen atoms at the ortho and para positions (Condition 2)
having a hydrogen atom at the para position and having [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]
 原料フェノール類は、条件1及び条件2を満たさない、その他のフェノール類を含んでいてもよい。 The raw material phenols may contain other phenols that do not satisfy conditions 1 and 2.
 ここで、原料フェノール類が、少なくとも条件1を満たすフェノール類と少なくとも条件2を満たすフェノール類とを含むとは、以下の形態1、形態2の少なくとも一方に該当することを意味する。
(形態1)
 原料フェノール類が、条件1及び条件2を共に満たすフェノール類を少なくとも含む。
(形態2)
 原料フェノール類が、条件1を満たし条件2を満たさないフェノール類と、条件1を満たさず条件2を満たすフェノール類と、を少なくとも含む。
Here, that the raw material phenols include phenols satisfying at least condition 1 and phenols satisfying at least condition 2 means that at least one of the following forms 1 and 2 is applicable.
(Form 1)
Raw material phenols contain at least phenols satisfying both conditions 1 and 2.
(Form 2)
The raw material phenols include at least phenols that satisfy condition 1 but do not satisfy condition 2 and phenols that satisfy condition 1 but not condition 2.
 形態1において、原料フェノール類が、条件1を満たし条件2を満たさないフェノール類、及び/又は、条件1を満たさず条件2を満たすフェノール類を更に含有してもよい。 In form 1, the raw material phenols may further contain phenols that meet condition 1 but do not meet condition 2 and/or phenols that meet condition 1 but meet condition 2.
 以下、条件2を満たすフェノール類が有する、炭素数3~15の分岐炭化水素基、炭素数3~15の環状炭化水素基、及び、炭素数4~15の直鎖炭化水素基から選択される炭化水素基を、単に「所定の炭化水素基」と表現する場合がある。なお、所定の炭化水素基は、環状構造及び分岐構造の両方を有する炭化水素基であってもよい。 hereinafter, selected from a branched hydrocarbon group having 3 to 15 carbon atoms, a cyclic hydrocarbon group having 3 to 15 carbon atoms, and a linear hydrocarbon group having 4 to 15 carbon atoms possessed by a phenol that satisfies condition 2; A hydrocarbon group may simply be expressed as a "predetermined hydrocarbon group". The predetermined hydrocarbon group may be a hydrocarbon group having both a cyclic structure and a branched structure.
<<原料フェノール類>>
<条件1を満たすフェノール類>
 条件1を満たすフェノール類は、オルト位およびパラ位に水素原子を有するフェノール類である。
<<Raw material phenols>>
<Phenols satisfying condition 1>
Phenols satisfying Condition 1 are phenols having hydrogen atoms at the ortho- and para-positions.
 条件1を満たすフェノール類は、所定の炭化水素基を、1つ又は複数有していてもよい。この場合には、上述した形態1の原料フェノール類となる。 Phenols that satisfy Condition 1 may have one or more predetermined hydrocarbon groups. In this case, it becomes the raw material phenols of form 1 mentioned above.
 条件1を満たすフェノール類は、不飽和炭素結合を含む官能基を有していてもよい。 Phenols that satisfy Condition 1 may have a functional group containing an unsaturated carbon bond.
 条件1を満たすフェノール類は、例えば、以下の式(1-1)で示される化合物である。 Phenols that satisfy Condition 1 are, for example, compounds represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1-1)中、R11~R13は、各々独立して、水素原子、又は、炭素数1~15(好ましくは、炭素数1~4)の炭化水素基である。R11~R13は、不飽和炭素結合を含んでいてもよい。 In formula (1-1), R 11 to R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms (preferably 1 to 4 carbon atoms). R 11 to R 13 may contain unsaturated carbon bonds.
 条件1を満たすフェノール類としては、具体的には、フェノール、o-クレゾール、m-クレゾール、2-エチルフェノール、3-エチルフェノール、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、2-n-ブチルフェノール、3-nーブチルフェノール、2-イソブチルフェノール、3-イソブチルフェノール、2-s-ブチルフェノール、3-s-ブチルフェノール、2-tert-ブチルフェノール、3-tert-ブチルフェノール、2-フェニルフェノール、3-フェニルフェノール、2-ドデシルフェノール、2-ビニルフェノール、3-ビニルフェノール、2-アリルフェノール、3-アリルフェノール、3-ビニル-6-メチルフェノール、3-ビニル-6-エチルフェノール、3-ビニル-5-メチルフェノール、3-ビニル-5-エチルフェノール、3-アリル-6-メチルフェノール、3-アリル-6-エチルフェノール、3-アリル-5-メチルフェノール、3-アリル-5-エチルフェノール等が挙げられる。 Specific examples of phenols satisfying condition 1 include phenol, o-cresol, m-cresol, 2-ethylphenol, 3-ethylphenol, 2,3-xylenol, 2,5-xylenol, 3,5- xylenol, 2-n-butylphenol, 3-n-butylphenol, 2-isobutylphenol, 3-isobutylphenol, 2-s-butylphenol, 3-s-butylphenol, 2-tert-butylphenol, 3-tert-butylphenol, 2- Phenylphenol, 3-phenylphenol, 2-dodecylphenol, 2-vinylphenol, 3-vinylphenol, 2-allylphenol, 3-allylphenol, 3-vinyl-6-methylphenol, 3-vinyl-6-ethylphenol , 3-vinyl-5-methylphenol, 3-vinyl-5-ethylphenol, 3-allyl-6-methylphenol, 3-allyl-6-ethylphenol, 3-allyl-5-methylphenol, 3-allyl- 5-ethylphenol and the like.
 条件1を満たすフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。 Only one type of phenols satisfying condition 1 may be used, or two or more types may be used.
 条件1を満たすフェノール類は、オルト位に水素原子を有するため、フェノール類と酸化重合される際に、イプソ位及びパラ位のみならず、オルト位においてもエーテル結合が形成され得る。そのため、かかるフェノール類を原料フェノール類として用いて得られるポリフェニレンエーテルは分岐鎖状の構造を形成することが可能となる。 Phenols that satisfy Condition 1 have a hydrogen atom at the ortho position, so when oxidatively polymerized with phenols, an ether bond can be formed not only at the ipso and para positions but also at the ortho position. Therefore, polyphenylene ether obtained by using such phenols as raw material phenols can form a branched chain structure.
 具体的には、条件1を満たすフェノール類から得られるポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐することとなる。 Specifically, polyphenylene ethers obtained from phenols that satisfy Condition 1 are partly branched by benzene rings ether-bonded at at least three positions, ipso-position, ortho-position, and para-position. Become.
 このように、その骨格内に分岐構造を有するポリフェニレンエーテルを、分岐ポリフェニレンエーテルと称する。かかる分岐ポリフェニレンエーテルによれば、有機溶媒への優れた溶解性が得られる。 A polyphenylene ether having a branched structure in its skeleton in this way is referred to as a branched polyphenylene ether. Such branched polyphenylene ethers provide excellent solubility in organic solvents.
 条件1を満たすフェノール類の含有率は、原料フェノール類全量に対して、1mol%以上、2mol%以上、5mol%以上、又は、8mol%以上であることが好ましく、また、40mol%以下、30mol%以下、20mol%以下、又は、15mol%以下であることが好ましい。 The content of phenols satisfying condition 1 is preferably 1 mol% or more, 2 mol% or more, 5 mol% or more, or 8 mol% or more, and is 40 mol% or less and 30 mol% with respect to the total amount of raw material phenols. Below, it is preferably 20 mol % or less, or 15 mol % or less.
 条件1を満たすフェノール類の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of phenols that satisfies condition 1 is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
<条件2を満たすフェノール類>
 条件2を満たすフェノール類は、パラ位に水素原子を有し、[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]を有するフェノール類である。換言すれば、条件2を満たすフェノール類は、パラ位に水素原子を有し、炭素数3~15の分岐炭化水素基、炭素数3~15の環状炭化水素基、及び、炭素数4~15の直鎖炭化水素基から選択される炭化水素基(所定の炭化水素基)を1つ又は複数(好ましくは、1つ又は2つ)有するフェノール類である。
<Phenols satisfying condition 2>
Phenols that satisfy condition 2 have a hydrogen atom at the para position and have [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]. It is kind. In other words, phenols that satisfy condition 2 have a hydrogen atom at the para position, branched hydrocarbon groups with 3 to 15 carbon atoms, cyclic hydrocarbon groups with 3 to 15 carbon atoms, and 4 to 15 carbon atoms. are phenols having one or more (preferably one or two) hydrocarbon groups (predetermined hydrocarbon groups) selected from linear hydrocarbon groups of
 条件2を満たすフェノール類は、所定の炭化水素基以外に炭素数1~3の直鎖炭化水素基を、1つ又は複数有していてもよい。 Phenols satisfying condition 2 may have one or more straight-chain hydrocarbon groups with 1 to 3 carbon atoms in addition to the predetermined hydrocarbon group.
 条件2を満たすフェノール類は、不飽和炭素結合を含む官能基を有していてもよい。 Phenols that satisfy condition 2 may have a functional group containing an unsaturated carbon bond.
 条件2を満たすフェノール類は、例えば、以下の式(1-2)で示される化合物である。 Phenols that satisfy condition 2 are, for example, compounds represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1-2)中、R21~R24は、少なくとも1つが所定の炭化水素基であり、残りは、各々独立して、水素原子、又は、炭素数1~3の直鎖炭化水素基である。 In formula (1-2), at least one of R 21 to R 24 is a predetermined hydrocarbon group, and the rest are each independently a hydrogen atom or a linear hydrocarbon group having 1 to 3 carbon atoms. is.
 所定の炭化水素基は、低誘電特性の観点から飽和している(不飽和炭素結合を有しない)ことが好ましい。 The predetermined hydrocarbon group is preferably saturated (having no unsaturated carbon bonds) from the viewpoint of low dielectric properties.
 所定の炭化水素基は、炭素数の増加に伴ってポリフェニレンエーテルの分子量増加を抑制する効果が強くなる。そのため、ポリフェニレンエーテルの重合反応性及び分子量をバランスよく制御するには、所定の炭化水素基は、[炭素数3~10の分岐炭化水素基、炭素数3~10の環状炭化水素基、及び、炭素数4~10の直鎖炭化水素基]から選択される炭化水素基であることが好ましく、[炭素数3~6の分岐炭化水素基、炭素数3~6の環状炭化水素基、及び、炭素数4~6の直鎖炭化水素基]から選択される炭化水素基であることがより好ましく、炭素数3~4の分岐炭化水素基であることが更に好ましく、炭素数4の分岐炭化水素基であることが特に好ましい。より具体的には、所定の炭化水素基は、tert-ブチル基であることが好ましい。換言すれば、条件2を満たすフェノール類が、[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]として、少なくともtert-ブチル基を含むことが好ましい。 A predetermined hydrocarbon group has a stronger effect of suppressing an increase in the molecular weight of polyphenylene ether as the number of carbon atoms increases. Therefore, in order to control the polymerization reactivity and molecular weight of the polyphenylene ether in a well-balanced manner, the predetermined hydrocarbon group should be [a branched hydrocarbon group having 3 to 10 carbon atoms, a cyclic hydrocarbon group having 3 to 10 carbon atoms, and It is preferably a hydrocarbon group selected from [linear hydrocarbon group having 4 to 10 carbon atoms], [branched hydrocarbon group having 3 to 6 carbon atoms, cyclic hydrocarbon group having 3 to 6 carbon atoms, and A straight-chain hydrocarbon group having 4 to 6 carbon atoms], more preferably a branched hydrocarbon group having 3 to 4 carbon atoms, and a branched hydrocarbon group having 4 carbon atoms. is particularly preferred. More specifically, the predetermined hydrocarbon group is preferably a tert-butyl group. In other words, the phenol that satisfies condition 2 has at least a tert-butyl group as [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]. preferably included.
 条件2を満たすフェノール類としては、具体的には、
 炭素数3~15の分岐炭化水素基を有するフェノール類として、2-イソブチルフェノール、3-イソブチルフェノール、2-s-ブチルフェノール、3-s-ブチルフェノール、2-tert-ブチルフェノール、3-tert-ブチルフェノール、2-メチル-6-tert-ブチルフェノール、2,6-ジ-tert-ブチルフェノール、2,6-ジブテニルフェノール、2,6-ジイソブテニルフェノール、2,6-ジイソペンテニルフェノール等;
 炭素数3~15の環状炭化水素基を有するフェノール類として、2-フェニルフェノール、3-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ジトリルフェノール、2-アリル-6-フェニルフェノール、2-アリル-6-スチリルフェノール、2-メチル-6-スチリルフェノール等;
 炭素数4~15の直鎖炭化水素基を有するフェノール類として、2-n-ブチルフェノール、3-n-ブチルフェノール、2-ドデシルフェノール等;
が挙げられる。
Specific examples of phenols that satisfy condition 2 include:
Phenols having a branched hydrocarbon group having 3 to 15 carbon atoms include 2-isobutylphenol, 3-isobutylphenol, 2-s-butylphenol, 3-s-butylphenol, 2-tert-butylphenol, 3-tert-butylphenol, 2-methyl-6-tert-butylphenol, 2,6-di-tert-butylphenol, 2,6-dibutenylphenol, 2,6-diisobutenylphenol, 2,6-diisopentenylphenol and the like;
Phenols having a cyclic hydrocarbon group having 3 to 15 carbon atoms include 2-phenylphenol, 3-phenylphenol, 2,6-diphenylphenol, 2,6-ditolylphenol, 2-allyl-6-phenylphenol, 2-allyl-6-styrylphenol, 2-methyl-6-styrylphenol and the like;
2-n-butylphenol, 3-n-butylphenol, 2-dodecylphenol and the like as phenols having a linear hydrocarbon group with 4 to 15 carbon atoms;
is mentioned.
 条件2を満たすフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。 Only one type of phenols satisfying condition 2 may be used, or two or more types may be used.
 条件2を満たすフェノール類の含有率は、原料フェノール類全量に対して、好ましくは15mol%以下である。 The content of phenols satisfying condition 2 is preferably 15 mol% or less with respect to the total amount of raw material phenols.
 また、条件2を満たすフェノール類の含有率は、原料フェノール類全量に対して、0mol%超であればよく、より具体的には、0.1mol%以上、0.5mol%以上、1mol%以上、又は、2mol%以上等とすることができる。 In addition, the content of phenols satisfying condition 2 may be more than 0 mol%, more specifically, 0.1 mol% or more, 0.5 mol% or more, 1 mol% or more with respect to the total amount of raw material phenols. , or 2 mol % or more.
 なお、条件2を満たすフェノール類の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of phenols that satisfies condition 2 is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
 前述したように、第1実施形態に係るポリフェニレンエーテルは、条件1を満たすフェノール類を原料フェノール類として含有することで、分岐構造を有することとなる。
 分岐構造を有するポリフェニレンエーテルは、直鎖構造を有するポリフェニレンエーテルに比べ、重合反応性を有するポリマー末端を多く備えるため、成長したポリマー同士が更に重合(いわゆるカップリング)し、分子量が急激に増加することがあり、反応の制御が容易ではなかった。
 このような知見に基づき、本発明では、原料フェノール類として、条件1を満たすフェノール類に、条件2を満たすフェノール類を特定の含有率で組合わせることで、所定の炭化水素基が適度な立体障害を生起させ、分岐構造を有するポリフェニレンエーテルの合成にて生じる急激な分子量増加を抑制し、反応の制御が容易となる。その結果として、分岐構造由来の優れた性能を維持したまま、工業的に有用な所定の分子量のポリフェニレンエーテルを効率的に製造できるものと推測される。
 特に、第1実施形態に係るポリフェニレンエーテルによれば、数平均分子量5,000~30,000、及び/又は、重量平均分子量10,000~150,000を充足するポリフェニレンエーテルを効率的に製造できる。
As described above, the polyphenylene ether according to the first embodiment has a branched structure by containing phenols satisfying condition 1 as raw material phenols.
Polyphenylene ether having a branched structure has more polymer terminals with polymerization reactivity than polyphenylene ether having a linear structure, so the grown polymers further polymerize (so-called coupling), resulting in a rapid increase in molecular weight. Therefore, it was not easy to control the reaction.
Based on these findings, in the present invention, as raw material phenols, a phenol satisfying condition 1 is combined with a phenol satisfying condition 2 at a specific content, so that a predetermined hydrocarbon group has an appropriate steric It causes obstacles, suppresses the rapid increase in molecular weight that occurs in the synthesis of polyphenylene ether having a branched structure, and facilitates control of the reaction. As a result, it is presumed that an industrially useful polyphenylene ether having a predetermined molecular weight can be efficiently produced while maintaining the excellent performance derived from the branched structure.
In particular, according to the polyphenylene ether according to the first embodiment, it is possible to efficiently produce a polyphenylene ether satisfying a number average molecular weight of 5,000 to 30,000 and/or a weight average molecular weight of 10,000 to 150,000. .
 一方、上述した分子量増加を抑制する効果は、第1実施形態には及ばないながらも、2-アリル-6-メチルフェノール等のアリル基を有するフェノールによっても得られる。しかしながら、アリル基を有するフェノールよりも優れた低誘電特性が求められる場合があり、かかる原料フェノールはコストも高い傾向がある。本発明によれば、アリル基を有するフェノールのみによって分子量の抑制を行った場合と比較して、低誘電特性と生産コストの観点において、より優れたポリフェニレンエーテルを得ることができる。 On the other hand, the above-described effect of suppressing the increase in molecular weight can also be obtained by phenol having an allyl group such as 2-allyl-6-methylphenol, although it is not as good as in the first embodiment. However, there are cases where better low dielectric properties than phenols having allyl groups are required, and such raw material phenols tend to be expensive. According to the present invention, it is possible to obtain a polyphenylene ether that is more excellent in terms of low dielectric properties and production costs compared to the case where the molecular weight is suppressed only by phenol having an allyl group.
 ここで、条件2を満たすフェノール類は、両方又は一方のオルト位(好ましくは、どちらか一方のオルト位)に、炭素数3以下の直鎖の炭化水素基(好ましくは、メチル基又はエチル基、より好ましくはメチル基)を有することが好ましい。条件2を満たすフェノール類をこのような構造とすることで、諸物性等に影響が出難い範囲で立体障害をより促進させ、分子量抑制効果をより向上させることができると考えられる。 Here, phenols that satisfy condition 2 have a linear hydrocarbon group with 3 or less carbon atoms (preferably a methyl group or an ethyl group) at both or one ortho position (preferably, either one ortho position). , more preferably a methyl group). By making the phenol that satisfies Condition 2 have such a structure, it is believed that steric hindrance can be further promoted to the extent that various physical properties are not likely to be affected, and the effect of suppressing the molecular weight can be further improved.
<その他のフェノール類>
 第1実施形態では、発明の効果を阻害しない範囲で、上述した原料フェノール類以外のその他のフェノール類を含有することができる。例えば、パラ位に水素原子を有し、オルト位に水素原子を有さず、所定の炭化水素基を有しないフェノール類(追加用フェノール類)を好適に用いることができる。
<Other phenols>
In the first embodiment, phenols other than the raw material phenols described above can be contained within a range that does not impair the effects of the invention. For example, phenols (additional phenols) having a hydrogen atom at the para position, no hydrogen atom at the ortho position, and no predetermined hydrocarbon group can be preferably used.
 追加用フェノール類は、炭素数3以下の炭化水素基として、不飽和炭素結合を含む官能基を有していてもよい。 The phenol for addition may have a functional group containing an unsaturated carbon bond as a hydrocarbon group having 3 or less carbon atoms.
 追加用フェノール類は、例えば、以下の式(1-3)で示される化合物である。 The phenols for addition are, for example, compounds represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1-3)中、R31、R34は、各々独立して、炭素数1~3の直鎖炭化水素基であり、R32、R33は、各々独立して、水素原子、又は、炭素数1~3の炭化水素基である。 In formula (1-3), R 31 and R 34 are each independently a linear hydrocarbon group having 1 to 3 carbon atoms, and R 32 and R 33 are each independently a hydrogen atom, or , is a hydrocarbon group having 1 to 3 carbon atoms.
 追加用フェノール類としては、具体的には、2,6-ジメチルフェノール、2,3,6-トリメチルフェノール、2-メチル-6-エチルフェノール、2-アリル-6-メチルフェノール、2-アリル-6-エチルフェノール、2,6-ジビニルフェノール、2,6-ジアリルフェノール、2-ビニル-6-メチルフェノール、2-ビニル-6-エチルフェノール等が挙げられる。 Specific examples of additional phenols include 2,6-dimethylphenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, 2-allyl-6-methylphenol, 2-allyl- 6-ethylphenol, 2,6-divinylphenol, 2,6-diallylphenol, 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol and the like.
 追加用フェノール類の含有率は、原料フェノール類全量に対して、50mol%以上、60mol%以上、70mol%以上、又は、80mol%以上とすることができる。 The content of the additional phenols can be 50 mol% or more, 60 mol% or more, 70 mol% or more, or 80 mol% or more with respect to the total amount of raw material phenols.
 条件1を満たすフェノール類や条件2を満たすフェノール類と共に、追加用フェノール類を適当量含有することで、ポリフェニレンエーテルを合成する際の反応を制御し易くなる。 By containing an appropriate amount of additional phenols together with phenols that satisfy Condition 1 and phenols that satisfy Condition 2, it becomes easier to control the reaction when synthesizing polyphenylene ether.
 ただし、低誘電特性と生産コストの観点からは、アリル基を有する追加用フェノール類の含有率は、原料フェノール類全量に対して、20mol%未満、10mol%未満、5mol%未満、又は、1mol%未満とすることが好ましい。 However, from the viewpoint of low dielectric properties and production costs, the content of the additional phenols having allyl groups is less than 20 mol%, less than 10 mol%, less than 5 mol%, or 1 mol% with respect to the total amount of raw material phenols. It is preferably less than
 更に、その他のフェノール類は、追加用フェノール類以外のフェノール類(例えば、パラ位に水素原子を有しないフェノール類等)を含んでいてもよい。 Furthermore, the other phenols may contain phenols other than the phenols for addition (for example, phenols having no hydrogen atom at the para-position, etc.).
<不飽和炭素結合を含む官能基を有するフェノール類>
 第1実施形態に係る原料フェノール類(条件1を満たすフェノール類、条件2を満たすフェノール類、及び、その他のフェノール類)は、不飽和炭素結合を含む官能基を有していてもよい。
<Phenols Having a Functional Group Containing an Unsaturated Carbon Bond>
Raw material phenols according to the first embodiment (phenols satisfying condition 1, phenols satisfying condition 2, and other phenols) may have a functional group containing an unsaturated carbon bond.
 原料フェノール類が、不飽和炭素結合を有する官能基を含むフェノール類を含むことで、得られるポリフェニレンエーテルの側鎖に不飽和炭素結合が導入される。このようなポリフェニレンエーテルは、かかる不飽和炭素結合の硬化反応によって3次元的な架橋が可能となり、硬化性ポリフェニレンエーテルとして利用することが可能となる。 By including phenols containing functional groups with unsaturated carbon bonds in the raw material phenols, unsaturated carbon bonds are introduced into the side chains of the resulting polyphenylene ether. Such a polyphenylene ether can be three-dimensionally crosslinked by the curing reaction of the unsaturated carbon bonds, and can be used as a curable polyphenylene ether.
 不飽和炭素結合を有する官能基を含む原料フェノール類の含有率は、用途等に応じて適宜設定可能であるが、低誘電特性の観点から、例えば、原料フェノール類全量に対して、0mol%、1mol%以上、2mol%以上、3mol%以上、又は、5mol%以上とすることができ、また、99mol%以下、50mol%以下、30mol%以下、又は、20mol%以下とすることができる。 The content of the raw material phenol containing a functional group having an unsaturated carbon bond can be appropriately set according to the application, etc., but from the viewpoint of low dielectric properties, for example, 0 mol%, It can be 1 mol % or more, 2 mol % or more, 3 mol % or more, or 5 mol % or more, and can be 99 mol % or less, 50 mol % or less, 30 mol % or less, or 20 mol % or less.
 なお、不飽和炭素結合を有する官能基を含む原料フェノール類の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of raw material phenols containing functional groups having unsaturated carbon bonds is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
<<合成方法>>
 第1実施形態に係るポリフェニレンエーテルは、前述した原料フェノール類を使用すること以外は従来公知のポリフェニレンエーテルの合成方法(重合条件、触媒の有無および触媒の種類等)を適用して合成することが可能である。
<<Synthesis Method>>
The polyphenylene ether according to the first embodiment can be synthesized by applying a conventionally known polyphenylene ether synthesis method (polymerization conditions, presence or absence of a catalyst, type of catalyst, etc.) except for using the raw material phenols described above. It is possible.
 次に、ポリフェニレンエーテルの合成方法の一例について説明する。 Next, an example of a method for synthesizing polyphenylene ether will be described.
 ポリフェニレンエーテルは、例えば、原料フェノール類、触媒および溶媒を含む重合溶液を調製すること(重合溶液調製工程)、少なくとも前記溶媒に酸素を通気させ、酸素を含む前記重合溶液内で、フェノール類を酸化重合させること(重合工程)で合成することができる。 Polyphenylene ether can be prepared, for example, by preparing a polymerization solution containing raw material phenols, a catalyst and a solvent (polymerization solution preparation step), at least passing oxygen through the solvent, and oxidizing the phenols in the polymerization solution containing oxygen. It can be synthesized by polymerizing (polymerization process).
 以下、重合溶液調製工程および重合工程について説明する。なお、各工程を連続的に実施してもよいし、ある工程の一部または全部と、別の工程の一部または全部と、を同時に実施してもよいし、ある工程を中断し、その間に別の工程を実施してもよい。また、このポリフェニレンエーテルの合成方法は、必要に応じてその他の工程を含んでいてもよい。その他の工程としては、例えば、重合工程により得られるポリフェニレンエーテルを抽出する工程(例えば、再沈殿、ろ過および乾燥を行う工程)、上述した変性工程等が挙げられる。 The polymerization solution preparation process and the polymerization process will be described below. In addition, each step may be performed continuously, a part or all of a certain step and a part or all of another step may be performed simultaneously, or a step may be interrupted and another step may be performed. In addition, this method for synthesizing polyphenylene ether may include other steps as necessary. Other steps include, for example, a step of extracting the polyphenylene ether obtained by the polymerization step (for example, a step of performing reprecipitation, filtration and drying), the modification step described above, and the like.
<重合溶液調製工程>
 重合溶液調製工程は、後述する重合工程において重合されるフェノール類を含む各原料を混合し、重合溶液を調製する工程である。重合溶液の原料としては、原料フェノール類、触媒、溶媒が挙げられる。
<Polymerization solution preparation step>
The polymerization solution preparation step is a step of mixing raw materials containing phenols to be polymerized in the polymerization step described below to prepare a polymerization solution. Raw materials for the polymerization solution include raw material phenols, catalysts, and solvents.
(触媒)
 触媒は特に限定されず、ポリフェニレンエーテルの酸化重合において使用される適宜の触媒とすればよい。
(catalyst)
The catalyst is not particularly limited, and may be an appropriate catalyst used in oxidative polymerization of polyphenylene ether.
 触媒としては、例えば、アミン化合物や、銅、マンガン、コバルト等の重金属化合物とテトラメチルエチレンジアミンなどのアミン化合物とからなる金属アミン化合物が挙げられ、特に、十分な分子量の共重合体を得るためには、アミン化合物に銅化合物を配位させた銅-アミン化合物を用いることが好ましい。触媒は、1種のみを用いてもよいし、2種以上を用いてもよい。 Examples of catalysts include amine compounds and metal amine compounds composed of heavy metal compounds such as copper, manganese and cobalt and amine compounds such as tetramethylethylenediamine. It is preferable to use a copper-amine compound in which a copper compound is coordinated to an amine compound. Only one kind of catalyst may be used, or two or more kinds thereof may be used.
 触媒の含有量は特に限定されないが、重合溶液中、原料フェノール類の合計に対し、0.1~1.0mol%、又は、0.1~0.6mol%等とすればよい。 The content of the catalyst is not particularly limited, but may be 0.1 to 1.0 mol%, or 0.1 to 0.6 mol%, etc., relative to the total amount of raw material phenols in the polymerization solution.
 このような触媒は、予め適宜の溶媒に溶解させてもよい。 Such a catalyst may be dissolved in an appropriate solvent in advance.
(溶媒)
 溶媒は特に限定されず、ポリフェニレンエーテルの酸化重合において使用される適宜の溶媒とすればよい。溶媒としては、フェノール性化合物および触媒を溶解または分散可能なものを用いることが好ましい。
(solvent)
The solvent is not particularly limited, and may be an appropriate solvent used in oxidative polymerization of polyphenylene ether. As the solvent, it is preferable to use one capable of dissolving or dispersing the phenolic compound and the catalyst.
 溶媒としては、具体的には、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、クロロホルム、塩化メチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素、ニトロベンゼン等のニトロ化合物、メチルエチルケトン(MEK)、シクロヘキサノン、テトラヒドロフラン、酢酸エチル、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)等が挙げられる。溶媒は、1種のみを用いてもよいし、2種以上を用いてもよい。 Specific examples of the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; halogenated aromatic hydrocarbons such as chloroform, methylene chloride, chlorobenzene, dichlorobenzene and trichlorobenzene; nitro compounds such as nitrobenzene; Methyl ethyl ketone (MEK), cyclohexanone, tetrahydrofuran, ethyl acetate, N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), propylene glycol monomethyl ether acetate (PMA), diethylene glycol monoethyl ether acetate (CA) etc. Only one solvent may be used, or two or more solvents may be used.
 なお、溶媒として、水や水と相溶可能な溶媒等を含んでいてもよい。 The solvent may contain water, a solvent compatible with water, or the like.
 重合溶液中の溶媒の含有量は特に限定されず、適宜調整可能である。 The content of the solvent in the polymerization solution is not particularly limited and can be adjusted as appropriate.
(その他の原料)
 重合溶液は、第1実施形態の効果を阻害しない範囲でその他の原料を含んでいてもよい。
(Other raw materials)
The polymerization solution may contain other raw materials as long as the effects of the first embodiment are not impaired.
<重合工程>
 重合工程は、重合溶液中に酸素が供給された状況下、重合溶液中のフェノール類を酸化重合させる工程である。
<Polymerization process>
The polymerization step is a step of oxidative polymerization of phenols in the polymerization solution under the condition that oxygen is supplied to the polymerization solution.
 酸素ガスの通気時間や使用する酸素含有ガス中の酸素濃度は、気圧や気温等に応じて適宜変更可能である。 The ventilation time of oxygen gas and the oxygen concentration in the oxygen-containing gas used can be changed as appropriate according to atmospheric pressure, temperature, etc.
 具体的な重合の条件としては特に限定されないが、例えば、25~100℃、2~24時間の条件で攪拌すればよい。攪拌手段として特に限定されず、公知のもの(例えば、パドル翼等)を使用することができる。 Although the specific polymerization conditions are not particularly limited, for example, stirring may be performed at 25 to 100° C. for 2 to 24 hours. The stirring means is not particularly limited, and known means (for example, paddle blades, etc.) can be used.
<<<ポリフェニレンエーテルの分子量>>>
 第1実施形態に係るポリフェニレンエーテルは、数平均分子量が5,000~30,000であることが好ましい。また、第1実施形態に係るポリフェニレンエーテルは、重量平均分子量が10,000~150,000であることが好ましい。さらに、第1実施形態に係るポリフェニレンエーテルは、多分散指数(PDI:重量平均分子量/数平均分子量)が、1.1~20であることが好ましく、1.2~15であることがより好ましく、1.3~10であることが特に好ましい。
<<<molecular weight of polyphenylene ether>>>
The polyphenylene ether according to the first embodiment preferably has a number average molecular weight of 5,000 to 30,000. Also, the polyphenylene ether according to the first embodiment preferably has a weight average molecular weight of 10,000 to 150,000. Furthermore, the polyphenylene ether according to the first embodiment preferably has a polydispersity index (PDI: weight average molecular weight/number average molecular weight) of 1.1 to 20, more preferably 1.2 to 15. , 1.3 to 10 is particularly preferred.
 分子量をこのような範囲とすることで、溶媒への溶解性を維持しつつ、硬化性組成物の成膜性を向上させることができる。 By setting the molecular weight to such a range, the film formability of the curable composition can be improved while maintaining the solubility in the solvent.
 第1実施形態において、数平均分子量および重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定を行い、標準ポリスチレンを用いて作成した検量線により換算して得られたものである。 In the first embodiment, the number-average molecular weight and weight-average molecular weight were measured by gel permeation chromatography (GPC) and converted using a calibration curve prepared using standard polystyrene.
<<<硬化性組成物>>>
 第1実施形態に係る分岐構造を有するポリフェニレンエーテルは、公知の成分と組み合わせて、硬化性組成物とすることができる。
<<<Curable Composition>>>
The polyphenylene ether having a branched structure according to the first embodiment can be combined with known components to form a curable composition.
 公知の成分としては、例えば、シリカ、過酸化物、架橋型硬化剤、マレイミド化合物、エラストマー等が挙げられる。また、その他の公知の成分として、難燃性向上剤(リン系化合物等)、セルロースナノファイバー、ポリマー成分(シアネートエステル樹脂、エポキシ樹脂、フェノ-ルノボラック樹脂等の樹脂成分、ポリイミド、ポリアミド等の有機ポリマー)、分散剤、熱硬化触媒、増粘剤、消泡剤、酸化防止剤、防錆剤、密着性付与剤、溶媒等が挙げられる。
 これらは、1種のみが使用されてもよいし、2種以上が使用されてもよい。
Examples of known components include silica, peroxides, cross-linking curing agents, maleimide compounds, elastomers, and the like. In addition, other known components include flame retardant improvers (phosphorus compounds, etc.), cellulose nanofibers, polymer components (cyanate ester resins, epoxy resins, phenolic novolac resins and other resin components, polyimides, polyamides and other organic compounds). polymer), dispersants, thermosetting catalysts, thickeners, antifoaming agents, antioxidants, rust preventives, adhesion imparting agents, solvents and the like.
Only one type of these may be used, or two or more types may be used.
 上述した硬化性組成物は、基材に塗布して用いられるものである。 The curable composition described above is used by applying it to a substrate.
 ここで基材とは、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板、金属基板、ガラス基板、セラミック基板、ウエハ板、銅箔等の金属箔、ポリイミドフィルム、ポリエステルフィルム、ポリエチレンナフタレート(PEN)フィルム等のフィルム、ガラスクロス、アラミド繊維等の繊維が挙げられる。 Here, the base material means a printed wiring board or flexible printed wiring board on which a circuit is formed in advance with copper or the like, a metal substrate, a glass substrate, a ceramic substrate, a wafer plate, a metal foil such as copper foil, a polyimide film, a polyester film, and polyethylene. Examples include films such as naphthalate (PEN) films, glass cloth, and fibers such as aramid fibers.
<<<ドライフィルム>>>
 ドライフィルムは、例えば、ポリエチレンテレフタレートフィルム上に硬化性組成物を塗布乾燥させた樹脂層を形成して得られる。ドライフィルムは、必要に応じてポリプロピレンフィルム等の保護層が積層されていてもよい。
<<<Dry Film>>>
A dry film is obtained, for example, by forming a resin layer by coating and drying a curable composition on a polyethylene terephthalate film. The dry film may be laminated with a protective layer such as a polypropylene film, if necessary.
<<<硬化物>>>
 硬化物は、前述した硬化性組成物又は前述したドライフィルムの樹脂層を硬化することで得られる。
<<<cured product>>>
A cured product is obtained by curing the resin layer of the curable composition or the dry film described above.
 硬化性組成物から硬化物を得るための方法は、特に限定されるものではなく、硬化性組成物の組成に応じて適宜変更可能である。一例として、上述したような基材上に硬化性組成物の塗工(例えば、アプリケーター等による塗工)を行う工程を実施した後、必要に応じて硬化性組成物を乾燥させる乾燥工程を実施し、加熱(例えば、イナートガスオーブン、ホットプレート、真空オーブン、真空プレス機等による加熱)によりポリフェニレンエーテルを熱架橋させる熱硬化工程を実施すればよい。なお、各工程における実施の条件(例えば、塗工厚、乾燥温度および時間、加熱温度および時間等)は、硬化性組成物の組成や用途等に応じて適宜変更すればよい。 The method for obtaining a cured product from the curable composition is not particularly limited, and can be changed as appropriate according to the composition of the curable composition. As an example, after performing the step of applying the curable composition onto the substrate as described above (for example, coating with an applicator or the like), a drying step of drying the curable composition is performed as necessary. Then, a thermosetting step of thermally cross-linking the polyphenylene ether by heating (for example, heating with an inert gas oven, hot plate, vacuum oven, vacuum press, etc.) may be performed. The implementation conditions (for example, coating thickness, drying temperature and time, heating temperature and time, etc.) in each step may be appropriately changed according to the composition, application, etc. of the curable composition.
<<<電子部品>>>
 電子部品は、前述した第1実施形態に係る硬化物を有するものであり、優れた誘電特性や耐熱性を有することから、種々の用途に使用可能である。
<<<Electronic Components>>>
The electronic component has the cured product according to the first embodiment described above, and has excellent dielectric properties and heat resistance, so that it can be used for various purposes.
 その用途は特に限定されないが、好ましくは、第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等が挙げられる。 Its use is not particularly limited, but preferred examples include large-capacity high-speed communications typified by fifth-generation communication systems (5G) and millimeter-wave radar for automotive ADAS (advanced driving systems).
<<<<第2実施形態>>>>
<<<ポリフェニレンエーテルの構成>>>
 第2実施形態に係るポリフェニレンエーテルは、少なくとも下記条件1を満たすフェノール類と、少なくとも下記条件3を満たすフェノール類と、を含む原料フェノール類から得られるポリフェニレンエーテルである。
(条件1)
 オルト位およびパラ位に水素原子を有する
(条件3)
 オルト位およびパラ位に、炭素数1~4の炭化水素基を有する
<<<<second embodiment>>>>
<<<Constitution of Polyphenylene Ether>>>
The polyphenylene ether according to the second embodiment is a polyphenylene ether obtained from raw material phenols containing at least phenols satisfying condition 1 below and phenols satisfying at least condition 3 below.
(Condition 1)
Having hydrogen atoms at the ortho and para positions (Condition 3)
Having hydrocarbon groups with 1 to 4 carbon atoms at the ortho and para positions
 原料フェノール類は、条件1及び条件3を満たさない、その他のフェノール類を含んでいてもよい。 The raw material phenols may contain other phenols that do not satisfy conditions 1 and 3.
 以下、条件1を満たすフェノール類をフェノール類(A)とし、条件3を満たすフェノール類をフェノール類(B)とする。 Hereinafter, phenols that satisfy condition 1 are referred to as phenols (A), and phenols that satisfy condition 3 are referred to as phenols (B).
<<原料フェノール類>>
<条件1を満たすフェノール類>
 フェノール類(A)は、オルト位およびパラ位に水素原子を有するフェノール類である。
 フェノール類(A)は、第1実施形態に係るポリフェニレンエーテルにおける、条件1を満たすフェノール類と同じものを使用することができる。
<<Raw material phenols>>
<Phenols satisfying condition 1>
Phenols (A) are phenols having hydrogen atoms at the ortho- and para-positions.
As the phenol (A), the same phenol that satisfies condition 1 in the polyphenylene ether according to the first embodiment can be used.
 フェノール類(A)の含有率は、原料フェノール類全量に対して、1mol%以上、2mol%以上、3mol%以上、又は、5mol%以上であることが好ましく、また、50mol%以下、40mol%以下、30mol%以下、又は、20mol%以下であることが好ましい。 The content of the phenols (A) is preferably 1 mol% or more, 2 mol% or more, 3 mol% or more, or 5 mol% or more, and is 50 mol% or less and 40 mol% or less with respect to the total amount of the raw material phenols. , 30 mol % or less, or 20 mol % or less.
 フェノール類(A)の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of phenols (A) is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
<フェノール類(B)>
 フェノール類(B)は、オルト位およびパラ位に、炭素数1~4の炭化水素基を有するフェノール類である。
<Phenols (B)>
Phenols (B) are phenols having hydrocarbon groups of 1 to 4 carbon atoms at the ortho and para positions.
 第2実施形態に係るポリフェニレンエーテルは、フェノール類(A)を原料フェノール類として含有することで、分岐構造を有することとなる。
 また、分岐構造を有するポリフェニレンエーテルは、直鎖構造を有するポリフェニレンエーテルに比べ、重合反応性を有するポリマー末端を多く備えるため、成長したポリマー同士が更に重合(いわゆるカップリング)し、分子量が急激に増加することがあり、反応の制御が容易ではなかった。
 このような知見に基づき、第2実施形態では、原料フェノール類として、フェノール類(A)に、フェノール類(B)を特定の含有率で組み合わせた。この場合、フェノール類(B)が、適度にポリフェニレンエーテルの末端部となり、分岐構造を有するポリフェニレンエーテルの合成にて生じる急激な分子量増加(カップリング反応)が抑制される。その結果、反応の制御が容易となることから、分岐構造由来の優れた性能(低誘電特性、優れた溶媒溶解性)を維持したまま、工業的に有用な所望の分子量のポリフェニレンエーテルを効率的に製造できる。
 特に、第2実施形態に係るポリフェニレンエーテルによれば、重量平均分子量30,000~300,000を充足するポリフェニレンエーテルを効率的に製造できる。
 更に、このようにして得られたポリフェニレンエーテルは、意図せぬ分子量増加が抑制されていることから、保存安定性に優れる。
The polyphenylene ether according to the second embodiment has a branched structure by containing the phenols (A) as raw material phenols.
In addition, since polyphenylene ether having a branched structure has more polymer terminals with polymerization reactivity than polyphenylene ether having a linear structure, the grown polymers further polymerize (so-called coupling), and the molecular weight rapidly increases. It was not easy to control the reaction.
Based on such findings, in the second embodiment, phenols (A) and phenols (B) are combined at a specific content as raw material phenols. In this case, the phenol (B) moderately serves as the terminal portion of the polyphenylene ether, and suppresses a rapid increase in molecular weight (coupling reaction) that occurs in the synthesis of the polyphenylene ether having a branched structure. As a result, the control of the reaction is facilitated, so that industrially useful polyphenylene ethers with the desired molecular weight can be produced efficiently while maintaining the excellent performance (low dielectric properties, excellent solvent solubility) derived from the branched structure. can be manufactured to
In particular, according to the polyphenylene ether according to the second embodiment, polyphenylene ether satisfying the weight average molecular weight of 30,000 to 300,000 can be efficiently produced.
Furthermore, the polyphenylene ether obtained in this manner is excellent in storage stability because unintended increase in molecular weight is suppressed.
 フェノール類(B)は、例えば、以下の式(2-1)で示される化合物である。 Phenols (B) are, for example, compounds represented by the following formula (2-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(2-1)中、Ra21、Ra23、Ra25は、各々独立して、炭素数1~4の炭化水素基(好ましくは、炭素数1~2の炭化水素基)であり、Ra22、Ra24は、各々独立して、水素原子又は炭素数1~4の炭化水素基(好ましくは、水素原子又は炭素数1~2の炭化水素基)である。Ra21~Ra25は、不飽和炭素結合を含んでいてもよい。 In formula (2-1), R a21 , R a23 and R a25 are each independently a hydrocarbon group having 1 to 4 carbon atoms (preferably a hydrocarbon group having 1 to 2 carbon atoms); a22 and R a24 are each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms (preferably a hydrogen atom or a hydrocarbon group having 1 to 2 carbon atoms). R a21 to R a25 may contain unsaturated carbon bonds.
 フェノール類(B)は、具体的には、2,4,6-トリメチルフェノール、2,4,6-トリエチルフェノール、2,4,6-トリプロピルフェノール、2,4,6-トリアリルフェノール、2,4,6-トリ-t-ブチルフェノール、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,3,4,6-テトラメチルフェノール、ペンタメチルフェノール等が挙げられる。 Phenols (B) are specifically 2,4,6-trimethylphenol, 2,4,6-triethylphenol, 2,4,6-tripropylphenol, 2,4,6-triallylphenol, 2,4,6-tri-t-butylphenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,3,4,6- Examples include tetramethylphenol, pentamethylphenol and the like.
 フェノール類(B)の含有率は、原料フェノール類全量に対して、0.1mol%以上、0.5mol%以上、1mol%以上、2mol%以上、又は、5mol%以上であることが好ましく、また、20mol%以下、18mol%以下、16mol%以下、又は、15mol%以下であることが好ましい。 The content of the phenols (B) is preferably 0.1 mol% or more, 0.5 mol% or more, 1 mol% or more, 2 mol% or more, or 5 mol% or more with respect to the total amount of raw material phenols, and , 20 mol % or less, 18 mol % or less, 16 mol % or less, or 15 mol % or less.
 なお、フェノール類(B)の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of phenols (B) is calculated based on the total amount of raw material phenols used to synthesize the branched polyphenylene ether.
<その他のフェノール類>
 第2実施形態では、発明の効果を阻害しない範囲で、前述した原料フェノール類(フェノール類(A)、フェノール類(B))以外のその他のフェノール類を含有することができる。その他のフェノール類としては、例えば、パラ位に水素原子を有し、オルト位に水素原子を有さないフェノール類(追加用フェノール類)を好適に用いることができる。
 追加用フェノール類Bは、例えば、以下の式(2-2)で示される化合物である。
<Other phenols>
In the second embodiment, phenols other than the raw material phenols (phenols (A) and phenols (B)) described above can be contained within a range that does not impair the effects of the invention. As other phenols, for example, phenols having a hydrogen atom at the para-position and not having a hydrogen atom at the ortho-position (additional phenols) can be preferably used.
The additional phenol B is, for example, a compound represented by the following formula (2-2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(2-2)中、Ra31、Ra34は、各々独立して、炭素数1~15の炭化水素基(好ましくは炭素数1~4の炭化水素基、より好ましくは炭素数1~3の炭化水素基)であり、Ra32、Ra33は、各々独立して、水素原子又は炭素数1~15の炭化水素基(好ましくは水素原子又は炭素数1~4の炭化水素基、より好ましくは水素原子又は炭素数1~3の炭化水素基)である。Ra31~Ra34は、不飽和炭素結合を含んでいてもよい。 In formula (2-2), R a31 and R a34 are each independently a hydrocarbon group having 1 to 15 carbon atoms (preferably a hydrocarbon group having 1 to 4 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms). and R a32 and R a33 are each independently a hydrogen atom or a hydrocarbon group having 1 to 15 carbon atoms (preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, more preferably is a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms). R a31 to R a34 may contain an unsaturated carbon bond.
 追加用フェノール類としては、具体的には、2,6-ジメチルフェノール、2,3,6-トリメチルフェノール、2-メチル-6-エチルフェノール、2-アリル-6-メチルフェノール、2-アリル-6-エチルフェノール、2,6-ジビニルフェノール、2,6-ジアリルフェノール、2-ビニル-6-メチルフェノール、2-ビニル-6-エチルフェノール等が挙げられる。 Specific examples of additional phenols include 2,6-dimethylphenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, 2-allyl-6-methylphenol, 2-allyl- 6-ethylphenol, 2,6-divinylphenol, 2,6-diallylphenol, 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol and the like.
 フェノール類(A)やフェノール類(B)と共に、追加用フェノール類を適当量含有することで、ポリフェニレンエーテルを合成する際の反応を制御し易くなる。 By containing an appropriate amount of additional phenols together with phenols (A) and phenols (B), it becomes easier to control the reaction when synthesizing polyphenylene ether.
 追加用フェノール類の含有率は、原料フェノール類全量に対して、50mol%以上、60mol%以上、又は、70mol%以上とすることができる。 The content of the additional phenols can be 50 mol% or more, 60 mol% or more, or 70 mol% or more with respect to the total amount of raw material phenols.
 なお、追加用フェノール類の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of additional phenols is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
 更に、その他のフェノール類は、追加用フェノール類以外のフェノール類を含んでいてもよい。 Furthermore, the other phenols may contain phenols other than the phenols for addition.
<不飽和炭素結合を含む官能基を有するフェノール類>
 第2実施形態に係る原料フェノール類(フェノール類(A)、フェノール類(B)、及び、その他のフェノール類)は、不飽和炭素結合を含む官能基を有していてもよい。
<Phenols Having a Functional Group Containing an Unsaturated Carbon Bond>
Raw material phenols (phenols (A), phenols (B), and other phenols) according to the second embodiment may have a functional group containing an unsaturated carbon bond.
 原料フェノール類が、不飽和炭素結合を有する官能基を含むフェノール類を含むことで、得られるポリフェニレンエーテルの側鎖に不飽和炭素結合が導入される。このようなポリフェニレンエーテルは、かかる不飽和炭素結合の硬化反応によって3次元的な架橋が可能となり、硬化性ポリフェニレンエーテルとして利用することが可能となる。 By including phenols containing functional groups with unsaturated carbon bonds in the raw material phenols, unsaturated carbon bonds are introduced into the side chains of the resulting polyphenylene ether. Such a polyphenylene ether can be three-dimensionally crosslinked by the curing reaction of the unsaturated carbon bonds, and can be used as a curable polyphenylene ether.
 不飽和炭素結合を有する官能基を含む原料フェノール類の含有率は、用途等に応じて適宜設定可能であるが、低誘電特性の観点から、例えば、原料フェノール類全量に対して、0mol%、1mol%以上、2mol%以上、3mol%以上、又は、5mol%以上とすることができ、また、99mol%以下、50mol%以下、30mol%以下、又は、20mol%以下とすることができる。 The content of the raw material phenol containing a functional group having an unsaturated carbon bond can be appropriately set according to the application, etc., but from the viewpoint of low dielectric properties, for example, 0 mol%, It can be 1 mol % or more, 2 mol % or more, 3 mol % or more, or 5 mol % or more, and can be 99 mol % or less, 50 mol % or less, 30 mol % or less, or 20 mol % or less.
 なお、不飽和炭素結合を有する官能基を含む原料フェノール類の含有率とは、分岐ポリフェニレンエーテルの合成に用いる原料フェノール類の全量に基づき計算されたものである。 The content of raw material phenols containing functional groups having unsaturated carbon bonds is calculated based on the total amount of raw material phenols used in the synthesis of branched polyphenylene ether.
<<合成方法>>
 第2実施形態に係るポリフェニレンエーテルは、前述した原料フェノール類を使用すること以外は従来公知のポリフェニレンエーテルの合成方法(重合条件、触媒の有無および触媒の種類等)を適用して合成することが可能である。
 第2実施形態に係るポリフェニレンエーテルは、使用する原料フェノール類を変更する以外は、第1実施形態に係るポリフェニレンエーテルと同様にして合成することができる。
<<Synthesis Method>>
The polyphenylene ether according to the second embodiment can be synthesized by applying a conventionally known polyphenylene ether synthesis method (polymerization conditions, presence or absence of a catalyst, type of catalyst, etc.) except for using the raw material phenols described above. It is possible.
The polyphenylene ether according to the second embodiment can be synthesized in the same manner as the polyphenylene ether according to the first embodiment, except that the raw material phenols used are changed.
<<ポリフェニレンエーテルの分子量>>
 第2実施形態に係るポリフェニレンエーテルは、重量平均分子量が30,000~300,000であることが好ましく、30,000~250,000であることがより好ましく、30,000~150,000であることが特に好ましい。
<<Molecular Weight of Polyphenylene Ether>>
The polyphenylene ether according to the second embodiment preferably has a weight average molecular weight of 30,000 to 300,000, more preferably 30,000 to 250,000, and 30,000 to 150,000. is particularly preferred.
 分子量をこのような範囲とすることで、溶媒への溶解性を維持しつつ、硬化性組成物の成膜性を向上させることができる。 By setting the molecular weight to such a range, the film formability of the curable composition can be improved while maintaining the solubility in the solvent.
 第2実施形態において、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定を行い、標準ポリスチレンを用いて作成した検量線により換算して得られたものである。 In the second embodiment, the weight average molecular weight is obtained by measuring by gel permeation chromatography (GPC) and converting from a calibration curve created using standard polystyrene.
<<<硬化性組成物、ドライフィルム、硬化物、電子部品>>>
 第2実施形態に係る分岐構造を有するポリフェニレンエーテルは、硬化性組成物、ドライフィルム、硬化物及び電子部品の成分として使用可能である。
 硬化性組成物、ドライフィルム、硬化物及び電子部品については、使用するポリフェニレンエーテルを第2実施形態に係るポリフェニレンエーテルに変更する以外は、第1実施形態に係るポリフェニレンエーテルについて説明された内容を適用することができる。
<<<Curable composition, dry film, cured product, electronic component>>>
The polyphenylene ether having a branched structure according to the second embodiment can be used as components of curable compositions, dry films, cured products and electronic parts.
For the curable composition, dry film, cured product and electronic parts, the contents described for the polyphenylene ether according to the first embodiment are applied, except that the polyphenylene ether used is changed to the polyphenylene ether according to the second embodiment. can do.
 以下、実施例及び比較例により、本実施形態をより詳細に説明するが、本実施形態は以下には何ら限定されない。 The present embodiment will be described in more detail below with examples and comparative examples, but the present embodiment is not limited to the following.
<<<<第1の実施例>>>>
<<<ポリフェニレンエーテルの合成>>>
<<実施例1>>
 4Lのセパラブルフラスコに、2,6-ジメチルフェノール86.6g、2-アリルフェノール10.8g、2-メチル-6-tert-ブチルフェノール2.64gを加え、トルエン1175gで溶解させた。さらにジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)が0.18wt%、テトラメチルエチレンジアミン(TMEDA)が0.16wt%となるように調整し、攪拌翼(径12cmのパドル翼)にて攪拌し、反応液中に乾燥空気を110mL/minの流量で吹込みながら40℃で22時間反応させた。
 反応終了後、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)を濾過にて取り除き、メタノール5.4L:濃塩酸21mL、HO122mLの混合液で再沈殿させて減圧濾過にて取り出し、メタノールで洗浄後、80℃で24時間乾燥させ、実施例1に係るポリフェニレンエーテルを得た。
<<<<first embodiment>>>>
<<<Synthesis of Polyphenylene Ether>>>
<<Example 1>>
86.6 g of 2,6-dimethylphenol, 10.8 g of 2-allylphenol and 2.64 g of 2-methyl-6-tert-butylphenol were added to a 4 L separable flask and dissolved in 1175 g of toluene. Furthermore, 0.18 wt % of di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper(II)]chloride (Cu/TMEDA) and 0.18 wt % of tetramethylethylenediamine (TMEDA) were added. The mixture was adjusted to 16 wt %, stirred with a stirring blade (paddle blade having a diameter of 12 cm), and reacted at 40° C. for 22 hours while blowing dry air into the reaction solution at a flow rate of 110 mL/min.
After completion of the reaction, di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/TMEDA) was removed by filtration, and 5.4 L of methanol: concentrated After reprecipitation with a mixed solution of 21 mL of hydrochloric acid and 122 mL of H 2 O, the precipitate was filtered under reduced pressure, washed with methanol, and dried at 80° C. for 24 hours to obtain a polyphenylene ether according to Example 1.
<<実施例2-9、比較例1-3、参考例1-5>>
 使用する原料フェノール類を表に示す内容に変更した以外は、実施例1と同様にして、各実施例、比較例、参考例に係るポリフェニレンエーテルを得た。
<<Example 2-9, Comparative Example 1-3, Reference Example 1-5>>
Polyphenylene ethers according to Examples, Comparative Examples, and Reference Examples were obtained in the same manner as in Example 1, except that the raw material phenols used were changed to those shown in the table.
<<<評価>>>
 各ポリフェニレンエーテルについて、以下の評価を行った。評価結果を表に示す。
<<<evaluation>>>
Each polyphenylene ether was evaluated as follows. The evaluation results are shown in the table.
<<分子量>>
 各ポリフェニレンエーテルの数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。
<<molecular weight>>
The number average molecular weight (Mn) and weight average molecular weight (Mw) of each polyphenylene ether were measured.
 なお、ポリフェニレンエーテルの数平均分子量(Mn)と重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)により求めたものである。GPCにおいては、Shodex K-805Lをカラムとして使用し、カラム温度を40℃、流量を1mL/min、溶離液をクロロホルム、標準物質をポリスチレンとした。 The number average molecular weight (Mn) and weight average molecular weight (Mw) of polyphenylene ether are determined by gel permeation chromatography (GPC). In GPC, Shodex K-805L was used as a column, the column temperature was 40° C., the flow rate was 1 mL/min, the eluent was chloroform, and the standard substance was polystyrene.
<<誘電特性>>
 各ポリフェニレンエーテル2gをシクロヘキサノン7gに溶解してワニス化した。次いで、厚さ18μm銅箔のシャイン面に、各ポリフェニレンエーテルのワニスを乾燥後の膜厚が30μmになるように塗布し、熱風式循環式乾燥炉で90℃30分乾燥した。次いで、イナートオーブンで200℃、1h硬化した後、銅箔をエッチングすることで各組成物からなる塗膜(測定サンプル)を得た。
<<dielectric properties>>
2 g of each polyphenylene ether was dissolved in 7 g of cyclohexanone to form a varnish. Then, each polyphenylene ether varnish was applied to the shiny surface of a copper foil having a thickness of 18 μm so that the film thickness after drying was 30 μm, and dried in a hot air circulation drying oven at 90° C. for 30 minutes. Then, after curing in an inert oven at 200° C. for 1 hour, the copper foil was etched to obtain a coating film (measurement sample) of each composition.
 作製した測定サンプルを長さ80mm、幅45mmに切断したものを試験片として、SPDR(Split Post Dielectric Resonator)共振器法により比誘電率Dkおよび誘電正接Df測定した。測定器には、キーサイトテクノロジー合同会社製のベクトル型ネットワークアナライザE5071C、SPDR共振器、計算プログラムはQWED社製のものを用いた。条件は、周波数10GHz、測定温度25℃とした。 The dielectric constant Dk and the dielectric loss tangent Df were measured by the SPDR (Split Post Dielectric Resonator) resonator method using a test piece that was cut from the prepared measurement sample into a length of 80 mm and a width of 45 mm. A vector-type network analyzer E5071C and an SPDR resonator manufactured by Keysight Technologies LLC were used as measuring instruments, and a calculation program manufactured by QWED was used. The conditions were a frequency of 10 GHz and a measurement temperature of 25°C.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<<<<第2の実施例>>>>
<<<ポリフェニレンエーテルの合成>>>
<<実施例A>>
 500mLのセパラブルフラスコに、2,6-ジメチルフェノール19.2g、2-アリルフェノール2.41g、2,4,6-トリメチルフェノール0.61gを加え、得られた混合物をトルエン261gで溶解させた。さらにジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)が0.18wt%、テトラメチルエチレンジアミン(TMEDA)が0.16wt%となるように調整し、反応液中に乾燥空気を75mL/minの流量で吹込みながら、四つ羽根パドル翼を用いて攪拌速度200rpmにて攪拌、40℃で所定時間反応させ、ポリフェニレンエーテルを含む反応液を得た。
 反応液の加温、並びに、乾燥空気の吹込みを停止した後、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)を濾過にて取り除き、メタノール1,200mL、濃塩酸4.0mL、HO27.0mLの混合液で再沈殿させて減圧濾過にて取り出し、メタノールで洗浄後、80℃で24時間乾燥させ、実施例Aに係るポリフェニレンエーテルを精製した。
<<<<second embodiment>>>>
<<<Synthesis of Polyphenylene Ether>>>
<<Example A>>
19.2 g of 2,6-dimethylphenol, 2.41 g of 2-allylphenol, and 0.61 g of 2,4,6-trimethylphenol were added to a 500 mL separable flask, and the resulting mixture was dissolved in 261 g of toluene. . Furthermore, 0.18 wt % of di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper(II)]chloride (Cu/TMEDA) and 0.18 wt % of tetramethylethylenediamine (TMEDA) were added. Adjusted to 16 wt%, while blowing dry air into the reaction solution at a flow rate of 75 mL / min, stirred at a stirring speed of 200 rpm using a four-blade paddle blade, reacted at 40 ° C. for a predetermined time, polyphenylene A reaction solution containing ether was obtained.
After stopping the heating of the reaction solution and the blowing of dry air, di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/ TMEDA) is removed by filtration, reprecipitated with a mixture of 1,200 mL of methanol, 4.0 mL of concentrated hydrochloric acid, and 27.0 mL of H 2 O, filtered under reduced pressure, washed with methanol, and dried at 80° C. for 24 hours. , the polyphenylene ether according to Example A was purified.
<<実施例B-D>>
 実施例Aの各原料フェノール類の仕込量を、表3に示す仕込量に変更したことを除き実施例Aの合成方法と同様な手順にて、実施例B-Dに係るポリフェニレンエーテルを得た。
<<Examples BD>>
Polyphenylene ethers according to Examples BD were obtained in the same procedure as the synthesis method of Example A except that the charging amount of each raw material phenol in Example A was changed to the charging amount shown in Table 3. .
<<比較例A>>
 500mLのセパラブルフラスコに、2,6-ジメチルフェノール19.8g、2-アリルフェノール2.42gを加え、得られた混合物をトルエン261gで溶解させた。さらにジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)が0.18wt%、テトラメチルエチレンジアミン(TMEDA)が0.16wt%となるように調整し、反応液中に乾燥空気を75mL/minの流量で吹込みながら、四つ羽根パドル翼を用いて攪拌速度200rpmにて攪拌、40℃で所定時間反応させ、ポリフェニレンエーテルを含む反応液を得た。
 反応液の加温、並びに、乾燥空気の吹込みを停止した後、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)を濾過にて取り除き、メタノール1,200mL、濃塩酸4.0mL、HO27.0mLの混合液で再沈殿させて減圧濾過にて取り出し、メタノールで洗浄後、80℃で24時間乾燥させ、比較例Aに係るポリフェニレンエーテルを精製した。
<<Comparative Example A>>
19.8 g of 2,6-dimethylphenol and 2.42 g of 2-allylphenol were added to a 500 mL separable flask, and the resulting mixture was dissolved in 261 g of toluene. Furthermore, 0.18 wt % of di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper(II)]chloride (Cu/TMEDA) and 0.18 wt % of tetramethylethylenediamine (TMEDA) were added. While blowing dry air into the reaction solution at a flow rate of 75 mL/min, stirring at a stirring speed of 200 rpm using a four-blade paddle blade, reacting at 40 ° C. for a predetermined time, polyphenylene A reaction solution containing ether was obtained.
After stopping the heating of the reaction solution and the blowing of dry air, di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/ TMEDA) is removed by filtration, reprecipitated with a mixture of 1,200 mL of methanol, 4.0 mL of concentrated hydrochloric acid, and 27.0 mL of H 2 O, filtered under reduced pressure, washed with methanol, and dried at 80° C. for 24 hours. , the polyphenylene ether according to Comparative Example A was purified.
<<<評価>>>
<<分子量>>
 各ポリフェニレンエーテルにて、反応時間が14時間と24時間における重量平均分子量(Mw)をそれぞれ測定した。評価結果を表1に示す。なお、比較例1については、反応時間を14時間とした段階で、ゲル化が生じた。
<<<evaluation>>>
<<molecular weight>>
For each polyphenylene ether, the weight average molecular weight (Mw) was measured at reaction times of 14 hours and 24 hours. Table 1 shows the evaluation results. In Comparative Example 1, gelation occurred when the reaction time was 14 hours.
 なお、ポリフェニレンエーテルの数平均分子量(Mn)と重量平均分子量(Mw)は、ゲル浸透クロマトグラフィー(GPC)により求めたものである。GPCにおいては、Shodex K-805Lをカラムとして使用し、カラム温度を40℃、流量を1mL/min、溶離液をクロロホルム、標準物質をポリスチレンとした。 The number average molecular weight (Mn) and weight average molecular weight (Mw) of polyphenylene ether are determined by gel permeation chromatography (GPC). In GPC, Shodex K-805L was used as a column, the column temperature was 40°C, the flow rate was 1 mL/min, the eluent was chloroform, and the standard substance was polystyrene.
<<保存安定性>>
 実施例Cに係るポリフェニレンエーテルの保存安定性について評価した。
 具体的には、実施例Cに係るポリフェニレンエーテルについて、重合完了後(反応液の加温、並びに、乾燥空気の吹込みを停止した後)の反応液を所定時間放置した後、濾過によって触媒を取り除いた反応液を所定日数放置し、日数経過における重量平均分子量を測定した。より具体的には、反応終了直後の重量平均分子量(初期値分子量)、反応終了後に室温/常圧下で6日間静置した後の重量平均分子量(6日後分子量)、反応終了後に室温/常圧下で30日間静置した後の重量平均分子量(30日後分子量)、を各々測定した。評価結果を表4に示す。
<<Storage stability>>
The storage stability of the polyphenylene ether according to Example C was evaluated.
Specifically, for the polyphenylene ether according to Example C, after the completion of polymerization (after stopping the heating of the reaction solution and the blowing of dry air), the reaction solution was allowed to stand for a predetermined time, and then the catalyst was removed by filtration. The removed reaction solution was allowed to stand for a predetermined number of days, and the weight average molecular weight was measured over the course of the number of days. More specifically, the weight-average molecular weight (initial molecular weight) immediately after the reaction, the weight-average molecular weight after standing for 6 days at room temperature/normal pressure after the reaction (molecular weight after 6 days), and the room temperature/normal pressure after the reaction The weight-average molecular weight (molecular weight after 30 days) after standing for 30 days was measured. Table 4 shows the evaluation results.
 なお、実施例Cとの対比データとして、以下に示す比較例Bに係るポリフェニレンエーテルを合成し、実施例3と同様に保存安定性を評価した。評価結果を表4に示す。 As comparison data with Example C, a polyphenylene ether according to Comparative Example B shown below was synthesized, and storage stability was evaluated in the same manner as in Example 3. Table 4 shows the evaluation results.
<比較例B>
 比較例Aに係るポリフェニレンエーテルはゲル化したことから、保存安定性の評価が不可能であった。そこで、比較例Aに係るポリフェニレンエーテルと同様の原料を使用し、生産性を無視した(工業的ではない)条件にて、実施例Cに近似する分子量となるように比較例Bに係るポリフェニレンエーテルを合成した。具体的には以下の通りである。
<Comparative example B>
Since the polyphenylene ether according to Comparative Example A gelled, it was impossible to evaluate storage stability. Therefore, using the same raw material as the polyphenylene ether according to Comparative Example A, the polyphenylene ether according to Comparative Example B was adjusted so that the molecular weight was similar to that of Example C under conditions ignoring productivity (not industrial). was synthesized. Specifically, it is as follows.
 500mLのセパラブルフラスコに、2,6-ジメチルフェノール19.8g、2-アリルフェノール2.42gを加え、得られた混合物をトルエン261gで溶解させた。さらにジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)が0.18wt%、テトラメチルエチレンジアミン(TMEDA)が0.16wt%となるように調整し、反応液中に乾燥空気を25mL/minの流量で吹込みながら、四つ羽根パドル翼を用いて攪拌速度150rpmにて攪拌、40℃で所定時間(14時間)反応させ、ポリフェニレンエーテルを含む反応液を得た。
 反応液の加温、並びに、乾燥空気の吹込みを停止した後、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)を濾過にて取り除いた後、上述の実施例Cに係るポリフェニレンエーテルと同じ条件にて保存安定性を評価した。
19.8 g of 2,6-dimethylphenol and 2.42 g of 2-allylphenol were added to a 500 mL separable flask, and the resulting mixture was dissolved in 261 g of toluene. Furthermore, 0.18 wt % of di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper(II)]chloride (Cu/TMEDA) and 0.18 wt % of tetramethylethylenediamine (TMEDA) were added. The mixture was adjusted to 16 wt%, stirred at a stirring speed of 150 rpm using a four-blade paddle blade while blowing dry air into the reaction solution at a flow rate of 25 mL/min, and heated at 40°C for a predetermined time (14 hours). A reaction solution containing polyphenylene ether was obtained.
After stopping the heating of the reaction solution and the blowing of dry air, di-μ-hydroxo-bis[(N,N,N',N'-tetramethylethylenediamine)copper (II)] chloride (Cu/ TMEDA) was removed by filtration, and storage stability was evaluated under the same conditions as the polyphenylene ether according to Example C above.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例A-Dに係るポリフェニレンエーテルは、適切に分子量を制御可能であり、大量生産可能なものであった。 The polyphenylene ethers according to Examples A to D could be appropriately controlled in molecular weight and mass-produced.
 また、表4に示されるように、実施例Cに係るポリフェニレンエーテルは、比較例Bに係るポリフェニレンエーテルよりも時間経過に伴う重量平均分子量の増加が抑制されており、保存安定性に優れることが判った。

 
In addition, as shown in Table 4, the polyphenylene ether according to Example C is less likely to increase in weight average molecular weight over time than the polyphenylene ether according to Comparative Example B, and thus has excellent storage stability. understood.

Claims (7)

  1.  少なくとも下記条件1を満たすフェノール類と、少なくとも下記条件2を満たすフェノール類と、を含む原料フェノール類から得られ、
     前記条件2を満たすフェノール類の含有率が、原料フェノール類全量に対して15mol%以下である、ポリフェニレンエーテル。
    (条件1)
     オルト位およびパラ位に水素原子を有する
    (条件2)
     パラ位に水素原子を有し、[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]を有する
    Obtained from a raw material phenol containing at least a phenol that satisfies the following condition 1 and a phenol that satisfies at least the following condition 2,
    A polyphenylene ether in which the content of phenols satisfying condition 2 is 15 mol % or less relative to the total amount of raw material phenols.
    (Condition 1)
    Having hydrogen atoms at the ortho and para positions (Condition 2)
    having a hydrogen atom at the para position and having [a branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms]
  2.  前記条件2を満たすフェノール類が、前記[炭素数3~15の分岐若しくは環状炭化水素基、及び/又は、炭素数4~15の直鎖炭化水素基]として、少なくともtert-ブチル基を含む、請求項1記載のポリフェニレンエーテル。 Phenols satisfying the condition 2 contain at least a tert-butyl group as the [branched or cyclic hydrocarbon group having 3 to 15 carbon atoms and/or a linear hydrocarbon group having 4 to 15 carbon atoms], The polyphenylene ether of claim 1.
  3.  少なくとも下記条件1を満たすフェノール類と、少なくとも下記条件3を満たすフェノール類と、を含む原料フェノール類から得られ、
     前記条件3を満たすフェノール類の含有率が、原料フェノール類全量に対して0.1~20mol%である、ポリフェニレンエーテル。
    (条件1)
     オルト位およびパラ位に水素原子を有する
    (条件3)
     オルト位およびパラ位に、炭素数1~4の炭化水素基を有する
    Obtained from a raw material phenol containing at least a phenol that satisfies the following condition 1 and a phenol that satisfies at least the following condition 3,
    A polyphenylene ether in which the content of phenols satisfying the condition 3 is 0.1 to 20 mol% relative to the total amount of raw material phenols.
    (Condition 1)
    Having hydrogen atoms at the ortho and para positions (Condition 3)
    Having hydrocarbon groups with 1 to 4 carbon atoms at the ortho and para positions
  4.  請求項1~3のいずれかに記載のポリフェニレンエーテルを含む硬化性組成物。 A curable composition containing the polyphenylene ether according to any one of claims 1 to 3.
  5.  請求項4記載の硬化性組成物からなる樹脂層を有するドライフィルム。 A dry film having a resin layer made of the curable composition according to claim 4.
  6.  請求項4記載の硬化性組成物又は請求項4記載の硬化性組成物からなる樹脂層の硬化物。 A cured product of a resin layer comprising the curable composition according to claim 4 or the curable composition according to claim 4.
  7.  請求項6記載の硬化物を有する電子部品。

     
    An electronic component comprising the cured product according to claim 6 .

PCT/JP2022/035229 2021-10-18 2022-09-21 Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component WO2023067979A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-170496 2021-10-18
JP2021170496A JP2023060737A (en) 2021-10-18 2021-10-18 Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component
JP2022030242A JP2023125891A (en) 2022-02-28 2022-02-28 Polyphenylene ether, curable composition comprising polyphenylene ether, dry film, cured product and electronic component
JP2022-030242 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023067979A1 true WO2023067979A1 (en) 2023-04-27

Family

ID=86059067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035229 WO2023067979A1 (en) 2021-10-18 2022-09-21 Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component

Country Status (2)

Country Link
TW (1) TW202328282A (en)
WO (1) WO2023067979A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104935A (en) * 1980-01-24 1981-08-21 Sumitomo Chem Co Ltd Preparation of polyphenylene-ether copolymer
JP2020015909A (en) * 2018-07-17 2020-01-30 太陽ホールディングス株式会社 Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component
WO2022158180A1 (en) * 2021-01-25 2022-07-28 旭化成株式会社 Poly(phenylene ether), production method therefor, thermally curable composition, prepreg, and laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104935A (en) * 1980-01-24 1981-08-21 Sumitomo Chem Co Ltd Preparation of polyphenylene-ether copolymer
JP2020015909A (en) * 2018-07-17 2020-01-30 太陽ホールディングス株式会社 Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component
WO2022158180A1 (en) * 2021-01-25 2022-07-28 旭化成株式会社 Poly(phenylene ether), production method therefor, thermally curable composition, prepreg, and laminate

Also Published As

Publication number Publication date
TW202328282A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
JP6976981B2 (en) A functionalized poly (2,6-dimethylphenylene oxide) oligomer having dicyclopentadiene, a method for producing the same, and its use.
JP7375144B2 (en) Polyphenylene ether, curable compositions containing polyphenylene ether, dry films, prepregs, cured products, laminates, and electronic components
JP2021119231A (en) Ultra-low dielectric loss thermosetting resin composition and high performance laminate produced from the same
CN110818868B (en) Monoamine-terminated ultrahigh-frequency low-dielectric main chain benzoxazine copolymer oligomer, monoamine-terminated ultrahigh-frequency low-dielectric main chain benzoxazine copolymer resin and preparation method of monoamine-terminated ultrahigh-frequency low-dielectric main chain benzoxazine copolymer oligomer
JP3248424B2 (en) Process for producing modified polyphenylene oxide, epoxy resin composition using modified polyphenylene oxide by this process, prepreg using this composition, and laminate using this prepreg
JP7488635B2 (en) Polyphenylene ether, curable composition, dry film, prepreg, cured product, laminate, and electronic component
JP2024028430A (en) Curable composition, dry film, cured product, and electronic component
JP7497143B2 (en) Polyphenylene ether, curable composition, dry film, prepreg, cured product, and electronic component
JP2009084391A (en) Method for producing thermosetting resin having dihydrobenzoxazine ring structure
WO2023067979A1 (en) Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component
JP4956402B2 (en) Method for producing thermosetting resin having dihydrobenzoxazine ring structure
JP2023060737A (en) Polyphenylene ether, curable composition containing polyphenylene ether, dry film, cured product, and electronic component
JP2023125891A (en) Polyphenylene ether, curable composition comprising polyphenylene ether, dry film, cured product and electronic component
JP7350548B2 (en) Polyphenylene ether, curable compositions, dry films, cured products, and electronic components
Ma et al. Synthesis and characterization of fluorinated poly (aryl ether ether ketone) s terminated with a phenylethynyl group
CN113603883B (en) Modified polyphenyl ether, preparation method and application in high-frequency circuit board
JP6972237B2 (en) Modified bismaleimide resin and its preparation method, prepreg, copper foil substrate and printed circuit board
CN114957155A (en) High-heat-resistance low-dielectric benzoxazine prepolymer containing double cross-linked network, copolymer resin and preparation method thereof
WO2023112417A1 (en) Method for producing poly(phenylene ether)
TWI626272B (en) Epoxy composition and cured object thereof
JP7388927B2 (en) Curable compositions containing polyphenylene ether, dry films, prepregs, cured products, laminates, and electronic components
JP7350547B2 (en) Curable compositions, dry films, cured products, electronic components and polyphenylene ether
JP7410661B2 (en) Terminal-modified polyphenylene ether, curable composition, dry film, cured product, and electronic components
JP2021109945A (en) Polyphenylene ether, curable composition containing polyphenylene ether, dry film, prepreg, cured product, laminate, and electronic component
CN115160516B (en) Thermosetting polyphenyl ether material containing trifluoromethyl and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883289

Country of ref document: EP

Kind code of ref document: A1