WO2023067894A1 - Cooling device and method for manufacturing cooling device - Google Patents

Cooling device and method for manufacturing cooling device Download PDF

Info

Publication number
WO2023067894A1
WO2023067894A1 PCT/JP2022/032071 JP2022032071W WO2023067894A1 WO 2023067894 A1 WO2023067894 A1 WO 2023067894A1 JP 2022032071 W JP2022032071 W JP 2022032071W WO 2023067894 A1 WO2023067894 A1 WO 2023067894A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat radiation
heat
radiation fin
fin row
row
Prior art date
Application number
PCT/JP2022/032071
Other languages
French (fr)
Japanese (ja)
Inventor
亨太 浅井
健 徳山
明博 難波
ティ チェン
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023067894A1 publication Critical patent/WO2023067894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device and a method for manufacturing a cooling device.
  • Patent Document 1 copper or nickel is plated at predetermined locations on the heat dissipation surface of the substrate portion made of aluminum metal or aluminum metal alloy. Then, there is a technology in which a radiation fin row, which is a row of wire fins made of copper metal or a copper alloy formed by bending multiple rows via a plated portion, is soldered to the heat radiation surface and integrated. disclosed.
  • the heat dissipation area is increased by using the heat dissipation fin row that is continuously bent in an uneven shape.
  • the wires forming the radiation fin rows are continuously bent to form the radiation fins, the number of steps in the manufacturing process is reduced, resulting in high productivity.
  • the radiation area is made large by arranging the rows of radiation fins that are bent in an uneven shape.
  • An object of the present invention is to provide a cooling device and a method of manufacturing the cooling device that sufficiently increases the mounting density of a plurality of radiating fin rows on a heat radiating surface.
  • a cooling device is a cooling device including a plurality of rows of radiation fins, which are rows of the radiation fins, arranged on a heat radiation surface and arranged on a radiation surface are radiation fins that are linear radiation portions, wherein the radiation fin rows and the second heat radiation fin row, which is the heat radiation fin row adjacent to the first heat radiation fin row, are alternately arranged, and the heat radiation of the first heat radiation fin row is arranged alternately.
  • the first heat radiation fin height which is the height from the surface, is different from the second heat radiation fin height, which is the height of the second heat radiation fin row from the heat radiation surface.
  • a downwardly tapered tool contacts the heat dissipation surface to form the second heat dissipation fin row, and an upper portion of the tool having a horizontal width larger than a lower portion contacts the first heat dissipation fin row. Not tall.
  • the present invention it is possible to provide a cooling device and a method of manufacturing the cooling device that sufficiently increase the mounting density of a plurality of fin rows on the heat dissipation surface.
  • FIG. 1 is an exploded perspective view showing the cooling device according to the first embodiment.
  • FIG. 2 is a vertical cross-sectional view showing the cooling device according to the first embodiment as seen from the X direction in FIG.
  • FIG. 3 is a longitudinal sectional view showing the cooling device according to the first embodiment as seen from the Y direction in FIG.
  • FIG. 4 is a perspective view showing the cooling device with the heat dissipation cover removed according to the first embodiment.
  • FIG. 5 is a front view showing the cooling device according to the first embodiment from which the heat dissipation cover is removed, as seen from the X direction in FIG.
  • FIG. 6 is a side view showing the cooling device according to the first embodiment from which the heat radiation cover is removed, viewed from the Y direction in FIG.
  • FIG. 1 is an exploded perspective view showing the cooling device according to the first embodiment.
  • FIG. 2 is a vertical cross-sectional view showing the cooling device according to the first embodiment as seen from the X direction in FIG.
  • FIG. 3 is
  • FIG. 7 is an explanatory diagram showing the tool according to the first embodiment.
  • FIG. 8 is a flow chart showing the method for manufacturing the cooling device according to the first embodiment.
  • FIG. 9 is an explanatory diagram showing the first manufacturing process of the cooling device manufacturing method according to the first embodiment.
  • FIG. 10 is an explanatory diagram showing the second manufacturing process of the cooling device manufacturing method according to the first embodiment.
  • FIG. 11 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row and the second heat radiation fin row and the tool according to the first embodiment.
  • FIG. 12 is a perspective view showing the cooling device from which the heat dissipation cover is removed according to Modification 1 of the first embodiment.
  • FIG. 13 is a front view showing the cooling device from which the heat radiation cover is removed according to Modification 1 of the first embodiment, viewed from the X direction in FIG. 12 .
  • 14 is a side view showing the cooling device from which the heat radiation cover is removed according to Modification 1 of the first embodiment, viewed from the Y direction of FIG. 12.
  • FIG. FIG. 15 is a vertical cross-sectional view showing the cooling device according to Modification 2 of the first embodiment as seen from the Y direction in FIG.
  • FIG. 16 is an explanatory diagram showing a first manufacturing process of a method for manufacturing a cooling device according to Modification 3 of the first embodiment.
  • 17A and 17B are explanatory diagrams showing a second manufacturing process of the cooling device manufacturing method according to Modification 3 of the first embodiment.
  • FIG. 18 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row, the second heat radiation fin row, and the tool according to Modification 3 of the first embodiment.
  • FIG. 1 is an exploded perspective view showing a cooling device 100 according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view showing the cooling device 100 according to the first embodiment as seen from the X direction in FIG.
  • FIG. 3 is a longitudinal sectional view showing the cooling device 100 according to the first embodiment as seen from the Y direction in FIG.
  • the cooling device 100 dissipates heat from a heat radiating member (cooling member) 1 by circulating a coolant inside.
  • the cooling device 100 is a box.
  • the cooling device 100 includes a heat radiating member 1 , a first heat radiating fin row 21 , a second heat radiating fin row 22 , a heat radiating cover (cooling cover) 3 , and a sealing member 4 .
  • the heat radiating member 1 is used in an in-vehicle power converter, and is used in an environment with large temperature changes.
  • the heat dissipating member 1 is a rectangular plate member and is composed of a substrate portion made of aluminum metal or an aluminum metal alloy, and has a heat dissipating surface 11 formed on the upper surface thereof in a state in which copper or nickel is plated.
  • the first radiating fin row 21 and the second radiating fin row 22 are continuously formed by bending a wire 23 made of metal such as copper metal or copper alloy, which is a linear heat radiating part, into an uneven shape. It is a configuration in which the heat radiation fins 2, which are wire fins, are connected to each other.
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 are arranged on the heat radiation surface 11 of the heat radiation member 1 and integrated.
  • the first radiating fin row 21 and the second radiating fin row 22 extend in the X direction in the cooling device 100 and are arranged in a plurality of rows in the Y direction.
  • the heat dissipation cover 3 is made of an insulating resin material and covers the heat dissipation surface 11 from above.
  • the heat radiation cover 3 is a lid member and is fixed to the top of the heat radiation member 1 with screws (not shown).
  • the heat dissipating cover 3 has a rectangular shape, is formed with a hollow portion that opens downward, and has a top surface portion 31 and four lateral side portions 32 that are connected to the top surface portion 31 .
  • the heat radiation cover 3 is in contact with the second heat radiation fin row 22 entering the hollow portion at the lower surface of the top surface portion 31 .
  • An inflow portion 33 and an outflow portion 34 for the coolant that flows through the cooling device 100 are provided on the pair of side surface portions 32 of the heat radiation cover 3 facing each other.
  • the X direction is the direction orthogonal to the coolant flow direction
  • the Y direction is the coolant flow direction.
  • the sealing member 4 seals the heat radiating member 1 and the heat radiating cover 3 .
  • the seal member 4 is a rectangular ring member that extends along the edge of the heat dissipation surface 11 and surrounds the heat dissipation surface 11 .
  • the seal member 4 is fitted into recesses 321 formed in the lower surfaces of the four side portions 32 of the heat dissipation cover 3 . As a result, the heat radiation surface 11 is sealed by the heat radiation cover 3 and the seal member 4 and cooled by an insulating coolant (not shown) flowing through the cooling device 100 .
  • FIG. 4 is a perspective view showing the cooling device 100 with the heat dissipation cover 3 removed according to the first embodiment.
  • FIG. 5 is a front view showing the cooling device 100 with the heat radiation cover 3 removed according to the first embodiment, viewed from the X direction in FIG.
  • FIG. 6 is a side view showing the cooling device 100 from which the heat dissipation cover 3 according to the first embodiment is removed, viewed from the Y direction in FIG.
  • the first radiating fin row 21 and the second radiating fin row 22 are formed by crimping the linear wires 23 forming the radiating fins 2 to the radiating surface 11. Configuration.
  • the first radiating fin rows 21 and the second radiating fin rows 22 adjacent to the first radiating fin rows 21 are alternately arranged.
  • the first radiating fin row 21 and the second radiating fin row 22 have a first radiating fin connecting portion 211 and a second radiating fin connecting portion 221 that are joints with the heat radiating surface 11 .
  • the contact area of the second heat radiation fin connection portion 221 is larger than that of the first heat radiation fin connection portion 211 .
  • Wires 23 are bent from the heat radiating surface 11 to bridge between the first heat radiating fin connecting portions 211 and the second heat radiating fin connecting portions 221 adjacent to each other in one heat radiating fin row. It has a convex loop that contacts the coolant flowing through it.
  • the first radiating fin row 21 and the second radiating fin row 22 are arranged so that the facing area with respect to the flow of the coolant flowing through the cooling device 100 is larger than the facing area intersecting with the flow of the coolant.
  • the facing area facing the Y direction of the first heat radiation fin row 21 and the second heat radiation fin row 22 is larger than the facing area facing the X direction.
  • FIG. 7 is an explanatory diagram showing the tool 5 according to the first embodiment.
  • the tool 5 has an upper width that is wider than the lower width and is tapered downward, with the upper portion having a horizontal width greater than the lower portion.
  • the tool 5 has a wire feeding section 51 , a high frequency vibration pressing section 52 and a cutting section 53 .
  • the wire feeding portion 51, the high-frequency vibration pressing portion 52, and the cutting portion 53 are arranged in three rows.
  • the wire delivery unit 51 has a delivery port for the metal wire 23, bends the metal wire 23 in an uneven shape, and delivers it continuously.
  • the high-frequency vibration pressing part 52 has a columnar pressing part, and the wire 23 is brought into contact with the heat dissipation surface 11 by high-frequency vibration by the pressing part.
  • the high-frequency vibration pressing part 52 crimps the linear wire 23 forming the heat radiation fins 2 fed from the tool 5 to the heat radiation surface 11 to form the first heat radiation fin row 21 and the second heat radiation fin row 22 .
  • the tool 5 does not have to employ a technique in which the linear wire 23 forming the heat radiating fins 2 sent out from the tool 5 by the high frequency vibration pressing portion 52 is crimped to the heat radiating surface 11 .
  • the tool 5 may be a method of soldering pre-bent fins.
  • the cutting part 53 cuts the metal wire 23 after forming one row of the first radiation fin row 21 or the second radiation fin row 22 .
  • FIG. 8 is a flow chart showing a method for manufacturing the cooling device 100 according to the first embodiment.
  • FIG. 9 is an explanatory diagram showing the first manufacturing process of the method for manufacturing the cooling device 100 according to the first embodiment.
  • FIG. 10 is an explanatory diagram showing the second manufacturing process of the method for manufacturing the cooling device 100 according to the first embodiment.
  • the manufacturing method of the cooling device 100 has a first manufacturing step S1 and a second manufacturing step S2.
  • the first heat radiation fin row 21 among the heat radiation fin rows is arranged at the first heat radiation fin height, which is the height from the heat radiation surface 11. 2111 is formed to be different from the second heat radiation fin height 2211 which is the height of the second heat radiation fin row 22 from the heat radiation surface 11 .
  • the first manufacturing step S1 is performed prior to the second manufacturing step S2. Thus, the first heat radiation fin row 21 is formed before the second heat radiation fin row 22 is formed.
  • the dimension of the first heat radiation fin height 2111 of the first heat radiation fin row 21 to be formed is adjusted so that the upper width is wider than the lower width and the tool 5 tapered downward is brought into contact with the heat radiation surface 11. Then, the upper portion of the tool 5, which is wider than the lower portion in the horizontal direction, does not come into contact with the first heat dissipating fin row 21. As shown in FIG.
  • a second heat radiation fin row 22 which is a heat radiation fin row alternately arranged adjacent to the first heat radiation fin row, is formed.
  • the vibration amount of the high-frequency vibration with respect to the heat radiation surface 11 of the tool 5 is increased compared to the vibration amount of the high-frequency vibration in the case of the first heat radiation fin row 21 .
  • the second heat radiation fin row 22 is formed such that the amount of high-frequency vibration with respect to the heat radiation surface 11 of the tool 5 is higher than that of the first heat radiation fin row 21 . configuration.
  • FIG. 11 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row 21 and the second heat radiation fin row 22 and the tool 5 according to the first embodiment.
  • the first heat radiation fin row 21 has a first heat radiation fin height 2111, which is the height from the heat radiation surface 11, by the height of the second radiation fin row 22 from the heat radiation surface 11. It is made different from a certain second radiation fin height 2211 .
  • the first heat radiating fin height 2111 is defined by the lower part of the tool 5 in a state where the tool 5 having a downwardly tapered shape whose upper width is wider than the lower width is in contact with the heat radiating surface 11 to form the second heat radiating fin row 22 .
  • the height is such that the upper portion, which has a horizontal width greater than that, does not come into contact with the first radiation fin row 21 .
  • the first heat radiation fin height 2111 is such that the horizontal width of the tool 5 whose tip is in contact with the heat radiation surface 11 of the heat radiation member 1 is equal to the adjacent first radiation fin row 21 sandwiching the second radiation fin row 22 .
  • the height is such that the second radiating fin row 22 can be formed between them without contacting any of the first radiating fin rows 21 .
  • the tool 5 is narrower at the bottom than at the top, which has a horizontal width. Therefore, the adjacent space between the first heat radiation fin row 21 and the second heat radiation fin row 22 is narrowed.
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 are densely arranged on the heat radiation surface 11 of the heat radiation member 1 .
  • FIG. 12 is a perspective view showing the cooling device 100 with the heat dissipation cover 3 removed according to Modification 1 of the first embodiment.
  • FIG. 13 is a front view showing the cooling device 100 from which the heat dissipation cover 3 according to Modification 1 of the first embodiment is removed, as seen from the X direction in FIG. 12 .
  • FIG. 14 is a side view showing the cooling device 100 from which the heat dissipation cover 3 according to Modification 1 of the first embodiment is removed, viewed from the Y direction of FIG. 12 .
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 are staggered and arranged.
  • a convex portion of the second radiation fin row 22 is formed so as to overlap the upper portion of the first radiation fin connecting portion 211 which is a concave portion of the first radiation fin row 21 .
  • the first radiation fin row 21 extends unevenly in the Y direction and is arranged in multiple rows in the X direction.
  • the second radiation fin row 22 extends in the X direction in an irregular shape and is arranged in a plurality of rows in the Y direction.
  • the coolant flows in from the inflow part 33 in the Y direction and flows out from the outflow part 34 on the opposite side.
  • the second radiation fin row 22 which is taller than the first radiation fin row 21, with the facing area expanded in the Y direction, the effective contact area of all the fin rows with respect to the coolant increases, The heat transfer coefficient of the radiation fins 2 is improved. Thereby, the cooling performance of the cooling device 100 can be improved.
  • the first radiating fin height 2111 is such that the upper width is wider than the lower width and the tool 5 tapered downward to form a second radiating fin height 2111 in contact with the radiating surface 11 .
  • the upper portion of the tool 5 having a horizontal width larger than the lower portion has a height such that it does not come into contact with the first heat dissipating fin row 21 when the heat dissipating fin row 22 is formed.
  • the first heat radiation fin height 2111 is the horizontal width of the tool 5 whose tip is in contact with the heat radiation surface 11 of the heat radiation member 1, and is equal to the width of the adjacent first heat radiation fins sandwiching the second heat radiation fin row 22. The height is such that the second radiating fin row 22 can be formed between the rows 21 without contacting any of the first radiating fin rows 21 .
  • the cooling device 100 prevents the first heat radiation fin row 21 and the second heat radiation fin row 22 from interfering with the tool 5.
  • the mounting density of the two radiation fin rows 22 can be increased, and the heat transfer coefficient of the radiation fins 2 can be improved. As a result, the cooling performance of the cooling device 100 can be improved.
  • FIG. 15 is a longitudinal sectional view showing the cooling device 100 according to Modification 2 of the first embodiment as seen from the Y direction in FIG.
  • a protrusion 35 is provided that protrudes downward to match the height of the first heat radiation fins 2111 with the height of the second heat radiation fins 2211 as a reference. ing.
  • the flow velocity of the coolant (not shown) is uniform within the coolant channel in the cooling device 100 .
  • the heat transfer coefficient of the radiation fins 2 is improved, and the cooling performance of the cooling device 100 is improved.
  • FIG. 16 is an explanatory diagram showing the first manufacturing process of the method for manufacturing the cooling device 100 according to Modification 3 of the first embodiment.
  • FIG. 17 is an explanatory diagram showing the second manufacturing process of the method for manufacturing the cooling device 100 according to Modification 3 of the first embodiment.
  • FIG. 18 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row 21 and the second heat radiation fin row 22 and the tool 5 according to Modification 3 of the first embodiment.
  • the width H2 is sharper and narrower than the width H1 of the first embodiment.
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 are densely arranged by narrowing the adjacent interval K1 to the interval K2 as the upper portion having the horizontal width of the tool 5 is narrower than the lower portion. ing. Therefore, when forming the second radiation fin row 22, the first radiation fin row 21 and the tool 5 do not interfere with each other, and the distance between the first radiation fin row 21 and the second radiation fin row 22 is becomes smaller. As a result, the mounting density of the radiating fins 2 is increased, and the heat transfer coefficient of the radiating fins 2 is improved. As a result, the cooling performance of the cooling device 100 can be improved.
  • the cooling device 100 has heat radiation fins 2 , which are linear heat radiation portions, arranged on a heat radiation surface 11 and has a plurality of radiation fin rows, which are rows of the radiation fins 2 .
  • the first radiating fin row 21 and the second radiating fin row 22 adjacent to the first radiating fin row 21 are alternately arranged.
  • the first heat radiating fin height 2111 is defined by the lower part of the tool 5 in a state where the tool 5 having a downwardly tapered shape whose upper width is wider than the lower width is in contact with the heat radiating surface 11 to form the second heat radiating fin row 22 .
  • the height is such that the upper portion, which has a horizontal width greater than that, does not come into contact with the first radiation fin row 21 .
  • the dimension of the first heat radiation fin height 2111 is such that the upper width is wider than the lower width and the tool 5 tapers downward, and the second heat radiation fin row 22 is formed by contacting the heat radiation surface 11 .
  • the height is set so that the upper portion of the tool 5 having a horizontal width larger than the lower portion does not come into contact with the first radiation fin row 21 .
  • the tool 5 does not come into contact with the first radiation fin row 21 when forming the second radiation fin row 22 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
  • the first radiating fin row 21 and the second radiating fin row 22 are densely arranged with a narrower spacing between them as the upper part of the tool 5 having a horizontal width is narrower than the lower part.
  • the first heat radiation fin row 21 is formed before the second heat radiation fin row 22 is formed.
  • the tool 5 does not come into contact with the first heat radiation fin row 21 when forming the second heat radiation fin row 22 after forming the first heat radiation fin row 21 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
  • the first radiating fin row 21 and the second radiating fin row 22 are formed continuously by bending a metal wire 23 in an uneven shape.
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 can be easily formed, and productivity can be improved.
  • the first radiating fin row 21 and the second radiating fin row 22 are formed by pressing against the radiating surface 11 .
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 are brought into contact with the heat radiation surface 11 by vibrating the tool 5 at a high frequency, and a linear wire 23 that forms the heat radiation fins 2 sent out from the tool 5 is attached. It is a structure formed by pressure bonding to the heat dissipation surface 11 .
  • the second heat radiation fin row 22 is formed by increasing the amount of high-frequency vibration with respect to the heat radiation surface 11 of the tool 5 compared to the vibration amount of the high-frequency vibration in the case of the first heat radiation fin row 21. configuration.
  • the compression of the second radiation fin row 22 to the heat radiation surface 11 is stronger than the compression of the first radiation fin row 21 to the radiation surface 11 .
  • the second radiation fin array 22, which is higher than the first radiation fin height 2111 and applies a load to the refrigerant, can be prevented from collapsing.
  • the first heat radiation fin row 21 has a first heat radiation fin connection portion 211 that is a joint portion with the heat radiation surface 11 .
  • the second radiation fin row 22 has a second radiation fin connection portion 221 that is a joint portion with the radiation surface 11 .
  • the contact area of the second heat radiation fin connection portion 221 is larger than that of the first heat radiation fin connection portion 211 .
  • the compression of the second radiation fin row 22 to the heat radiation surface 11 is stronger than the compression of the first radiation fin row 21 to the radiation surface 11 .
  • the second radiation fin array 22, which is higher than the first radiation fin height 2111 and applies a load to the refrigerant, can be prevented from collapsing.
  • the first radiating fin row 21 and the second radiating fin row 22 are staggered and arranged.
  • the heat radiation fin row has an increased effective contact area with respect to the coolant, and the heat transfer coefficient of the heat radiation fins 2 is improved. Thereby, the cooling performance of the cooling device 100 can be improved.
  • the first radiating fin row 21 and the second radiating fin row 22 are arranged such that the facing area with respect to the flow of the coolant flowing through the cooling device 100 is larger than the facing area intersecting with the flow of the coolant.
  • the heat radiation fin row has an increased effective contact area with respect to the coolant, and the heat transfer coefficient of the heat radiation fins 2 is improved. Thereby, the cooling performance of the cooling device 100 can be improved.
  • the cooling device 100 has a heat radiation cover 3 that covers the heat radiation surface 11 from above.
  • the heat radiation cover 3 is in contact with the second heat radiation fin row 22 .
  • the heat transfer rate from the second heat radiation fin row 22 to the heat radiation cover 3 via the contact portion between the second heat radiation fin row 22 and the heat radiation cover 3 is improved.
  • the cooling performance of the cooling device 100 can be improved.
  • the heat radiation fins 2 of the uneven second heat radiation fin array 22 have a tolerance in the height direction
  • the convex loops of the heat radiation fins 2 come into contact with the heat radiation cover 3 and bend, thereby increasing the height. Tolerance in the vertical direction can be absorbed, all the second radiation fin rows 22 can contact the radiation cover 3, and the second radiation fin rows 22 can be dissipated via the contact portion between the second radiation fin rows 22 and the radiation cover 3. to the heat radiation cover 3 can be improved.
  • a protrusion 35 is provided that protrudes downward to match the height of the first heat radiation fins 2111 with the height of the second heat radiation fins 2211 as a reference.
  • the clearance between the first heat radiation fin row 21 and the heat radiation cover 3 can match the clearance between the second heat radiation fin row 22 and the heat radiation cover 3, and the flow velocity of the coolant flowing through the cooling device 100 can be increased. uniformly equal.
  • the amount of heat carried away by the coolant from the first heat radiation fin row 21 and the second heat radiation fin row 22 can be made uniform, and the cooling performance of the cooling device 100 can be improved.
  • the cooling device 100 arranges the heat radiation fins 2 as linear heat radiation portions on the heat radiation surface 11 and includes a plurality of heat radiation fin rows, which are the rows of the heat radiation fins 2 .
  • the first radiating fin row 21 and the second radiating fin row 22 adjacent to the first radiating fin row 21 are alternately arranged.
  • the first radiating fin row 21 and the second radiating fin row 22 are formed by pressure bonding to the radiating surface 11 using high-frequency vibration.
  • the first heat radiation fin row 21 and the second heat radiation fin row 22 are formed by pressing against the heat radiation surface 11 using high-frequency vibration. This eliminates the need for a soldering process when forming the first heat radiation fin row 21 and the second heat radiation fin row 22 . As a result, when forming the second radiation fin row 22 , there is no need for a soldering jig to enter the space between the adjacent first radiation fin rows 21 formed on the heat radiation surface 11 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
  • the manufacturing method of the cooling device 100 is to arrange the heat radiating fins 2 as linear heat radiating portions on the heat radiating surface 11 and form a plurality of heat radiating fin rows, which are rows of the heat radiating fins 2 .
  • the manufacturing method of the cooling device 100 is such that the first heat radiation fin row 21 of the heat radiation fin rows is placed on the heat radiation surface 11 of the second heat radiation fin row 22 by setting the first heat radiation fin height 2111 which is the height from the heat radiation surface 11 to the heat radiation surface 11 of the second radiation fin row 22 .
  • the manufacturing method of the cooling device 100 includes a second manufacturing step of forming the second heat radiation fin row 22 , which is a heat radiation fin row arranged alternately adjacent to the first heat radiation fin row 21 .
  • the dimension of the first heat radiating fin height 2111 of the first heat radiating fin row 21 to be formed is adjusted so that the upper width is wider than the lower width and the downwardly tapering shape of the tool 5 is in contact with the heat radiating surface 11 .
  • the upper part of the tool 5, which has a horizontal width larger than the lower part, does not come into contact with the first radiating fin row 21 in the state where the second radiating fin row 22 is formed.
  • the dimension of the first radiation fin height 2111 is such that the upper width is wider than the lower width and the tool 5 is tapered downward, and the second radiation fin array 22 is formed by contacting the heat radiation surface 11 .
  • the height is set so that the upper portion of the tool 5 having a horizontal width larger than the lower portion does not come into contact with the first radiation fin row 21 .
  • the tool 5 does not come into contact with the first radiation fin row 21 on the heat radiation surface 11 when forming the second radiation fin row 22 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
  • the first manufacturing step is performed before the second manufacturing step.
  • the tool 5 does not come into contact with the first heat radiation fin row 21 when forming the second heat radiation fin row 22 after forming the first heat radiation fin row 21 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.

Abstract

Provided is a cooling device in which a first heat-dissipating fin row (21) and a second heat-dissipating fin row (22) are alternately arranged. A first heat-dissipating fin height (2111) is different from a second heat-dissipating fin height (2211). The first heat-dissipating fin height (2111) is a height such that, in a state in which a tool (5) having a downwardly tapering shape is in contact with a heat-dissipating surface (11) to form the second heat-dissipating fin row (22), an upper part of the tool (5) having a greater horizontal width than a lower part thereof does not contact the first heat-dissipating fin row (21).

Description

冷却装置及び冷却装置の製造方法Cooling device and cooling device manufacturing method
 本発明は、冷却装置及び冷却装置の製造方法に関する。 The present invention relates to a cooling device and a method for manufacturing a cooling device.
 近年、電力変換装置では、出力の増大が求められている。一方、電力変換装置に搭載される冷却装置の生産性が向上できる構造が要求されている。 In recent years, power converters are required to increase their output. On the other hand, there is a demand for a structure capable of improving the productivity of a cooling device mounted on a power conversion device.
 しかし、冷却装置の生産性の向上が熱伝達率の低下に繋がってしまうと、電力変換装置の出力増大の妨げとなってしまう。車載用の電力変換装置は、産業用などの電力変換装置と比較すると、温度変化の大きい環境にて使用される。このため、高温の環境に置かれていながら高い信頼性を維持できる電力変換装置には、熱伝達率の高い冷却装置が要求されている。 However, if the improvement in the productivity of the cooling system leads to a decrease in the heat transfer coefficient, it will hinder the increase in the output of the power converter. Vehicle-mounted power converters are used in environments with large temperature changes compared to industrial power converters. Therefore, a cooling device with a high heat transfer rate is required for a power conversion device that can maintain high reliability even when placed in a high-temperature environment.
 特許文献1では、アルミニウム金属又はアルミニウム金属の合金製である基板部の放熱面の所定箇所に、銅又はニッケルがメッキされている。そして、メッキ部位を介して多連に折り曲げられて形成された銅金属又は銅の合金製であるワイヤフィンの列である放熱フィン列が、放熱面にハンダ付けされて一体化されている技術が開示されている。 In Patent Document 1, copper or nickel is plated at predetermined locations on the heat dissipation surface of the substrate portion made of aluminum metal or aluminum metal alloy. Then, there is a technology in which a radiation fin row, which is a row of wire fins made of copper metal or a copper alloy formed by bending multiple rows via a plated portion, is soldered to the heat radiation surface and integrated. disclosed.
 特許文献1に記載の構成によれば、凹凸状に連続して折り曲げられた放熱フィン列を用いることによって、放熱面積が大きくなる。また、放熱フィン列を構成するワイヤが、連続的に折り曲げられて放熱フィンに形成されているので、製造工程の工程数が減り、その結果、生産性が高くなる。さらに、凹凸状に折り曲げられた放熱フィン列が並列することによって放熱面積が大きく構成されていた。 According to the configuration described in Patent Document 1, the heat dissipation area is increased by using the heat dissipation fin row that is continuously bent in an uneven shape. In addition, since the wires forming the radiation fin rows are continuously bent to form the radiation fins, the number of steps in the manufacturing process is reduced, resulting in high productivity. Furthermore, the radiation area is made large by arranging the rows of radiation fins that are bent in an uneven shape.
特開2002-190557号公報Japanese Patent Application Laid-Open No. 2002-190557
 しかし、特許文献1に記載の技術では、隣り合う放熱フィン列同士の間隔が小さくできない。それにより、放熱面上の複数の放熱フィン列の実装密度が十分に上がらない可能性がある。 However, with the technique described in Patent Document 1, the interval between adjacent radiation fin rows cannot be reduced. As a result, there is a possibility that the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface will not be sufficiently increased.
 本発明は、放熱面上の複数の放熱フィン列の実装密度が十分に上がる冷却装置及び冷却装置の製造方法を提供することを目的とする。 An object of the present invention is to provide a cooling device and a method of manufacturing the cooling device that sufficiently increases the mounting density of a plurality of radiating fin rows on a heat radiating surface.
 本発明の一態様による冷却装置は、放熱面に線状の放熱部である放熱フィンを配置し、前記放熱フィンの列である放熱フィン列を複数列備える冷却装置であって、前記放熱フィン列の内第1の放熱フィン列と、前記第1の放熱フィン列に隣り合う前記放熱フィン列である第2の放熱フィン列と、が交互に配置され、前記第1の放熱フィン列の前記放熱面からの高さである第1の放熱フィン高は、前記第2の放熱フィン列の前記放熱面からの高さである第2の放熱フィン高と異なり、前記第1の放熱フィン高は、下方向に先細り形状のツールが前記放熱面に接触して前記第2の放熱フィン列を形成する状態で、前記ツールにおける下部よりも水平方向幅を有する上部が前記第1の放熱フィン列に接触しない高さである。 A cooling device according to an aspect of the present invention is a cooling device including a plurality of rows of radiation fins, which are rows of the radiation fins, arranged on a heat radiation surface and arranged on a radiation surface are radiation fins that are linear radiation portions, wherein the radiation fin rows and the second heat radiation fin row, which is the heat radiation fin row adjacent to the first heat radiation fin row, are alternately arranged, and the heat radiation of the first heat radiation fin row is arranged alternately. The first heat radiation fin height, which is the height from the surface, is different from the second heat radiation fin height, which is the height of the second heat radiation fin row from the heat radiation surface. A downwardly tapered tool contacts the heat dissipation surface to form the second heat dissipation fin row, and an upper portion of the tool having a horizontal width larger than a lower portion contacts the first heat dissipation fin row. Not tall.
 本発明によれば、放熱面上の複数のフィン列の実装密度が十分に上がる冷却装置及び冷却装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a cooling device and a method of manufacturing the cooling device that sufficiently increase the mounting density of a plurality of fin rows on the heat dissipation surface.
図1は、第1実施形態に係る冷却装置を示す分解斜視図である。FIG. 1 is an exploded perspective view showing the cooling device according to the first embodiment. 図2は、第1実施形態に係る冷却装置を図1のX方向から見て示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing the cooling device according to the first embodiment as seen from the X direction in FIG. 図3は、第1実施形態に係る冷却装置を図1のY方向から見て示す縦断面図である。FIG. 3 is a longitudinal sectional view showing the cooling device according to the first embodiment as seen from the Y direction in FIG. 図4は、第1実施形態に係る放熱カバーを外した冷却装置を示す斜視図である。FIG. 4 is a perspective view showing the cooling device with the heat dissipation cover removed according to the first embodiment. 図5は、第1実施形態に係る放熱カバーを外した冷却装置を図1のX方向から見て示す正面図である。FIG. 5 is a front view showing the cooling device according to the first embodiment from which the heat dissipation cover is removed, as seen from the X direction in FIG. 図6は、第1実施形態に係る放熱カバーを外した冷却装置を図1のY方向から見て示す側面図である。FIG. 6 is a side view showing the cooling device according to the first embodiment from which the heat radiation cover is removed, viewed from the Y direction in FIG. 図7は、第1実施形態に係るツールを示す説明図である。FIG. 7 is an explanatory diagram showing the tool according to the first embodiment. 図8は、第1実施形態に係る冷却装置の製造方法を示すフローチャートである。FIG. 8 is a flow chart showing the method for manufacturing the cooling device according to the first embodiment. 図9は、第1実施形態に係る冷却装置の製造方法の第1製造工程を示す説明図である。FIG. 9 is an explanatory diagram showing the first manufacturing process of the cooling device manufacturing method according to the first embodiment. 図10は、第1実施形態に係る冷却装置の製造方法の第2製造工程を示す説明図である。FIG. 10 is an explanatory diagram showing the second manufacturing process of the cooling device manufacturing method according to the first embodiment. 図11は、第1実施形態に係る第1の放熱フィン列及び第2の放熱フィン列とツールとの寸法関係を示す説明図である。FIG. 11 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row and the second heat radiation fin row and the tool according to the first embodiment. 図12は、第1実施形態の変形例1に係る放熱カバーを外した冷却装置を示す斜視図である。FIG. 12 is a perspective view showing the cooling device from which the heat dissipation cover is removed according to Modification 1 of the first embodiment. 図13は、第1実施形態の変形例1に係る放熱カバーを外した冷却装置を図12のX方向から見て示す正面図である。FIG. 13 is a front view showing the cooling device from which the heat radiation cover is removed according to Modification 1 of the first embodiment, viewed from the X direction in FIG. 12 . 図14は、第1実施形態の変形例1に係る放熱カバーを外した冷却装置を図12のY方向から見て示す側面図である。14 is a side view showing the cooling device from which the heat radiation cover is removed according to Modification 1 of the first embodiment, viewed from the Y direction of FIG. 12. FIG. 図15は、第1実施形態の変形例2に係る冷却装置を図1のY方向から見て示す縦断面図である。FIG. 15 is a vertical cross-sectional view showing the cooling device according to Modification 2 of the first embodiment as seen from the Y direction in FIG. 図16は、第1実施形態の変形例3に係る冷却装置の製造方法の第1製造工程を示す説明図である。FIG. 16 is an explanatory diagram showing a first manufacturing process of a method for manufacturing a cooling device according to Modification 3 of the first embodiment. 図17は、第1実施形態の変形例3に係る冷却装置の製造方法の第2製造工程を示す説明図である。17A and 17B are explanatory diagrams showing a second manufacturing process of the cooling device manufacturing method according to Modification 3 of the first embodiment. 図18は、第1実施形態の変形例3に係る第1の放熱フィン列及び第2の放熱フィン列とツールとの寸法関係を示す説明図である。FIG. 18 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row, the second heat radiation fin row, and the tool according to Modification 3 of the first embodiment.
 以下、図面を参照して本発明の実施形態が説明されている。ただし、本発明は、下記の実施形態に限定解釈されるものではなく、公知の他の構成要素を組み合わせて本発明の技術思想を実現してもよい。なお、各図において同一要素については同一の符号が記載され、重複する説明が省略される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the technical idea of the present invention may be realized by combining other known components. In each figure, the same elements are denoted by the same reference numerals, and overlapping descriptions are omitted.
 <第1実施形態>
 <冷却装置100の全体構成>
 図1は、第1実施形態に係る冷却装置100を示す分解斜視図である。図2は、第1実施形態に係る冷却装置100を図1のX方向から見て示す縦断面図である。図3は、第1実施形態に係る冷却装置100を図1のY方向から見て示す縦断面図である。
<First Embodiment>
<Overall Configuration of Cooling Device 100>
FIG. 1 is an exploded perspective view showing a cooling device 100 according to the first embodiment. FIG. 2 is a longitudinal sectional view showing the cooling device 100 according to the first embodiment as seen from the X direction in FIG. FIG. 3 is a longitudinal sectional view showing the cooling device 100 according to the first embodiment as seen from the Y direction in FIG.
 図1~図3に示されるように、冷却装置100は、内部に冷媒を流通させて放熱部材(冷却部材)1からの熱を放熱させる。冷却装置100は、箱体である。冷却装置100は、放熱部材1と、第1の放熱フィン列21と、第2の放熱フィン列22と、放熱カバー(冷却カバー)3と、シール部材4と、を備える。 As shown in FIGS. 1 to 3, the cooling device 100 dissipates heat from a heat radiating member (cooling member) 1 by circulating a coolant inside. The cooling device 100 is a box. The cooling device 100 includes a heat radiating member 1 , a first heat radiating fin row 21 , a second heat radiating fin row 22 , a heat radiating cover (cooling cover) 3 , and a sealing member 4 .
 放熱部材1は、車載用の電力変換装置に用いられ、温度変化の大きい環境にて使用される。放熱部材1は、矩形形状の板材であり、アルミニウム金属又はアルミニウム金属の合金製である基板部によって構成され、上面に銅又はニッケルがメッキされた状態で放熱面11が形成されている。 The heat radiating member 1 is used in an in-vehicle power converter, and is used in an environment with large temperature changes. The heat dissipating member 1 is a rectangular plate member and is composed of a substrate portion made of aluminum metal or an aluminum metal alloy, and has a heat dissipating surface 11 formed on the upper surface thereof in a state in which copper or nickel is plated.
 第1の放熱フィン列21及び第2の放熱フィン列22は、線状の放熱部である銅金属又は銅の合金製などの金属製のワイヤ23を凹凸状多連に折り曲げて連続して形成されたワイヤフィンである放熱フィン2を連続させた構成である。第1の放熱フィン列21及び第2の放熱フィン列22は、放熱部材1の放熱面11に配置されて一体化されている。第1の放熱フィン列21及び第2の放熱フィン列22は、冷却装置100にX方向に伸び、Y方向に並んで複数列設けられている。 The first radiating fin row 21 and the second radiating fin row 22 are continuously formed by bending a wire 23 made of metal such as copper metal or copper alloy, which is a linear heat radiating part, into an uneven shape. It is a configuration in which the heat radiation fins 2, which are wire fins, are connected to each other. The first heat radiation fin row 21 and the second heat radiation fin row 22 are arranged on the heat radiation surface 11 of the heat radiation member 1 and integrated. The first radiating fin row 21 and the second radiating fin row 22 extend in the X direction in the cooling device 100 and are arranged in a plurality of rows in the Y direction.
 放熱カバー3は、絶縁性のある樹脂材で構成され、放熱面11を上方向から覆う。放熱カバー3は、蓋部材であり、放熱部材1の上部に図示しないネジによって固定されている。放熱カバー3は、矩形形状であり、内部に下方向に開口した中空部が形成され、天面部31と天面部31に接続された側方の4辺の側面部32とを有する。放熱カバー3は、中空部に入り込む第2の放熱フィン列22に天面部31の下面にて接触している。放熱カバー3の対向する1対の側面部32には、冷却装置100内を流通させる冷媒の流入部33及び流出部34が設けられている。図1に示されるように、X方向が冷媒流通方向と直交する方向であり、Y方向が冷媒流通方向である。 The heat dissipation cover 3 is made of an insulating resin material and covers the heat dissipation surface 11 from above. The heat radiation cover 3 is a lid member and is fixed to the top of the heat radiation member 1 with screws (not shown). The heat dissipating cover 3 has a rectangular shape, is formed with a hollow portion that opens downward, and has a top surface portion 31 and four lateral side portions 32 that are connected to the top surface portion 31 . The heat radiation cover 3 is in contact with the second heat radiation fin row 22 entering the hollow portion at the lower surface of the top surface portion 31 . An inflow portion 33 and an outflow portion 34 for the coolant that flows through the cooling device 100 are provided on the pair of side surface portions 32 of the heat radiation cover 3 facing each other. As shown in FIG. 1, the X direction is the direction orthogonal to the coolant flow direction, and the Y direction is the coolant flow direction.
 シール部材4は、放熱部材1と放熱カバー3とを密封する。シール部材4は、放熱面11の縁部に這って放熱面11を囲んだ矩形形状のリング部材である。シール部材4は、放熱カバー3の4つの側面部32の下面に形成された凹部321に嵌め込まれている。これにより、放熱面11は、放熱カバー3とシール部材4とによって封止され、冷却装置100内を流通する図示しない絶縁性の冷媒によって冷却される。 The sealing member 4 seals the heat radiating member 1 and the heat radiating cover 3 . The seal member 4 is a rectangular ring member that extends along the edge of the heat dissipation surface 11 and surrounds the heat dissipation surface 11 . The seal member 4 is fitted into recesses 321 formed in the lower surfaces of the four side portions 32 of the heat dissipation cover 3 . As a result, the heat radiation surface 11 is sealed by the heat radiation cover 3 and the seal member 4 and cooled by an insulating coolant (not shown) flowing through the cooling device 100 .
 <放熱フィン例の構成>
 図4は、第1実施形態に係る放熱カバー3を外した冷却装置100を示す斜視図である。図5は、第1実施形態に係る放熱カバー3を外した冷却装置100を図1のX方向から見て示す正面図である。図6は、第1実施形態に係る放熱カバー3を外した冷却装置100を図1のY方向から見て示す側面図である。
<Structure of Heat Dissipating Fin Example>
FIG. 4 is a perspective view showing the cooling device 100 with the heat dissipation cover 3 removed according to the first embodiment. FIG. 5 is a front view showing the cooling device 100 with the heat radiation cover 3 removed according to the first embodiment, viewed from the X direction in FIG. FIG. 6 is a side view showing the cooling device 100 from which the heat dissipation cover 3 according to the first embodiment is removed, viewed from the Y direction in FIG.
 図4~図6に示されるように、第1の放熱フィン列21及び第2の放熱フィン列22は、放熱フィン2を形成する線状のワイヤ23を放熱面11に圧着して形成された構成である。第1の放熱フィン列21と、第1の放熱フィン列21に隣り合う放熱フィン列である第2の放熱フィン列22と、は、交互に配置されている。第1の放熱フィン列21の放熱面11からの高さである第1の放熱フィン高2111は、第2の放熱フィン列22の放熱面11からの高さである第2の放熱フィン高2211と異なっている。 As shown in FIGS. 4 to 6, the first radiating fin row 21 and the second radiating fin row 22 are formed by crimping the linear wires 23 forming the radiating fins 2 to the radiating surface 11. Configuration. The first radiating fin rows 21 and the second radiating fin rows 22 adjacent to the first radiating fin rows 21 are alternately arranged. A first heat radiation fin height 2111, which is the height of the first heat radiation fin row 21 from the heat radiation surface 11, is a second heat radiation fin height 2211, which is the height of the second heat radiation fin row 22 from the heat radiation surface 11. is different from
 第1の放熱フィン列21及び第2の放熱フィン列22は、放熱面11との接合部である第1の放熱フィン接続部211及び第2の放熱フィン接続部221を有する。第1の放熱フィン接続部211に対して第2の放熱フィン接続部221の接触面積が大きい。1つの放熱フィン列の内隣り合う第1の放熱フィン接続部211同士及び第2の放熱フィン接続部221同士の間には、ワイヤ23を放熱面11から折り曲げて浮き上がらせ橋渡しし、冷却装置100内を流通する冷媒に接触する凸状部のループを有する。 The first radiating fin row 21 and the second radiating fin row 22 have a first radiating fin connecting portion 211 and a second radiating fin connecting portion 221 that are joints with the heat radiating surface 11 . The contact area of the second heat radiation fin connection portion 221 is larger than that of the first heat radiation fin connection portion 211 . Wires 23 are bent from the heat radiating surface 11 to bridge between the first heat radiating fin connecting portions 211 and the second heat radiating fin connecting portions 221 adjacent to each other in one heat radiating fin row. It has a convex loop that contacts the coolant flowing through it.
 第1の放熱フィン列21及び第2の放熱フィン列22は、冷却装置100内を流通する冷媒の流れに対する対向面積を冷媒の流れに交差する対向面積よりも大きく配置されている。言い換えると、第1の放熱フィン列21及び第2の放熱フィン列22のY方向を向く対向面積がX方向を向く対向面積よりも大きい。 The first radiating fin row 21 and the second radiating fin row 22 are arranged so that the facing area with respect to the flow of the coolant flowing through the cooling device 100 is larger than the facing area intersecting with the flow of the coolant. In other words, the facing area facing the Y direction of the first heat radiation fin row 21 and the second heat radiation fin row 22 is larger than the facing area facing the X direction.
 <ツール5の構成>
 図7は、第1実施形態に係るツール5を示す説明図である。図7に示されるように、ツール5では、上部幅が下部幅よりも広く下方向に先細り形状であり、上部が下部よりも水平方向幅を有する。ツール5は、ワイヤ送り出し部51と、高周波振動押圧部52と、切断部53と、を有する。ワイヤ送り出し部51と高周波振動押圧部52と切断部53とは、3列に並列している。
<Configuration of Tool 5>
FIG. 7 is an explanatory diagram showing the tool 5 according to the first embodiment. As shown in FIG. 7, the tool 5 has an upper width that is wider than the lower width and is tapered downward, with the upper portion having a horizontal width greater than the lower portion. The tool 5 has a wire feeding section 51 , a high frequency vibration pressing section 52 and a cutting section 53 . The wire feeding portion 51, the high-frequency vibration pressing portion 52, and the cutting portion 53 are arranged in three rows.
 ワイヤ送り出し部51は、金属製のワイヤ23の送出口を有し、金属製のワイヤ23を凹凸状に折り曲げて連続して送り出す。 The wire delivery unit 51 has a delivery port for the metal wire 23, bends the metal wire 23 in an uneven shape, and delivers it continuously.
 高周波振動押圧部52は、柱状の押圧部を有し、ワイヤ23を押圧部によって放熱面11に高周波振動させて接触させる。高周波振動押圧部52は、ツール5から送り出す放熱フィン2を形成する線状のワイヤ23を放熱面11に圧着し、第1の放熱フィン列21及び第2の放熱フィン列22を形成する。 The high-frequency vibration pressing part 52 has a columnar pressing part, and the wire 23 is brought into contact with the heat dissipation surface 11 by high-frequency vibration by the pressing part. The high-frequency vibration pressing part 52 crimps the linear wire 23 forming the heat radiation fins 2 fed from the tool 5 to the heat radiation surface 11 to form the first heat radiation fin row 21 and the second heat radiation fin row 22 .
 なお、ツール5は、高周波振動押圧部52によってツール5から送り出す放熱フィン2を形成する線状のワイヤ23を放熱面11に圧着する技法でなくてもよい。例えば、予め曲げてあるフィンをはんだづけする手法などのツール5でも良い。 It should be noted that the tool 5 does not have to employ a technique in which the linear wire 23 forming the heat radiating fins 2 sent out from the tool 5 by the high frequency vibration pressing portion 52 is crimped to the heat radiating surface 11 . For example, the tool 5 may be a method of soldering pre-bent fins.
 切断部53は、1列の第1の放熱フィン列21又は第2の放熱フィン列22を形成した最後に金属製のワイヤ23を切断する。 The cutting part 53 cuts the metal wire 23 after forming one row of the first radiation fin row 21 or the second radiation fin row 22 .
 <冷却装置100の製造方法>
 図8は、第1実施形態に係る冷却装置100の製造方法を示すフローチャートである。図9は、第1実施形態に係る冷却装置100の製造方法の第1製造工程を示す説明図である。図10は、第1実施形態に係る冷却装置100の製造方法の第2製造工程を示す説明図である。
<Manufacturing Method of Cooling Device 100>
FIG. 8 is a flow chart showing a method for manufacturing the cooling device 100 according to the first embodiment. FIG. 9 is an explanatory diagram showing the first manufacturing process of the method for manufacturing the cooling device 100 according to the first embodiment. FIG. 10 is an explanatory diagram showing the second manufacturing process of the method for manufacturing the cooling device 100 according to the first embodiment.
 図8に示されるように、冷却装置100の製造方法は、第1製造ステップS1と、第2製造ステップS2と、を有する。 As shown in FIG. 8, the manufacturing method of the cooling device 100 has a first manufacturing step S1 and a second manufacturing step S2.
 図9に示されるように、第1製造工程である第1製造ステップS1は、放熱フィン列の内第1の放熱フィン列21を、放熱面11からの高さである第1の放熱フィン高2111を第2の放熱フィン列22の放熱面11からの高さである第2の放熱フィン高2211と異ならせて形成する。第1製造ステップS1は、第2製造ステップS2よりも先に実施される。これにより、第1の放熱フィン列21は、第2の放熱フィン列22よりも先に形成されている。 As shown in FIG. 9, in the first manufacturing step S1, which is the first manufacturing process, the first heat radiation fin row 21 among the heat radiation fin rows is arranged at the first heat radiation fin height, which is the height from the heat radiation surface 11. 2111 is formed to be different from the second heat radiation fin height 2211 which is the height of the second heat radiation fin row 22 from the heat radiation surface 11 . The first manufacturing step S1 is performed prior to the second manufacturing step S2. Thus, the first heat radiation fin row 21 is formed before the second heat radiation fin row 22 is formed.
 第1製造ステップS1は、形成する第1の放熱フィン列21の第1の放熱フィン高2111の寸法を、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さに取る。 In the first manufacturing step S1, the dimension of the first heat radiation fin height 2111 of the first heat radiation fin row 21 to be formed is adjusted so that the upper width is wider than the lower width and the tool 5 tapered downward is brought into contact with the heat radiation surface 11. Then, the upper portion of the tool 5, which is wider than the lower portion in the horizontal direction, does not come into contact with the first heat dissipating fin row 21. As shown in FIG.
 図10に示されるように、第2製造工程である第2製造ステップS2は、第1の放熱フィン列に隣り合う交互に配置される放熱フィン列である第2の放熱フィン列22を形成する。第2製造ステップS2は、ツール5の放熱面11に対する高周波振動の振動量を、第1の放熱フィン列21の場合での高周波振動の振動量に比して高められている。これにより、第2の放熱フィン列22は、ツール5の放熱面11に対する高周波振動の振動量を、第1の放熱フィン列21の場合での高周波振動の振動量に比して高めて形成された構成である。 As shown in FIG. 10, in the second manufacturing step S2, which is a second manufacturing process, a second heat radiation fin row 22, which is a heat radiation fin row alternately arranged adjacent to the first heat radiation fin row, is formed. . In the second manufacturing step S<b>2 , the vibration amount of the high-frequency vibration with respect to the heat radiation surface 11 of the tool 5 is increased compared to the vibration amount of the high-frequency vibration in the case of the first heat radiation fin row 21 . As a result, the second heat radiation fin row 22 is formed such that the amount of high-frequency vibration with respect to the heat radiation surface 11 of the tool 5 is higher than that of the first heat radiation fin row 21 . configuration.
 <第1の放熱フィン列21及び第2の放熱フィン列22とツール5との寸法関係>
 図11は、第1実施形態に係る第1の放熱フィン列21及び第2の放熱フィン列22とツール5との寸法関係を示す説明図である。
<Dimensional Relationship Between First Radiation Fin Row 21, Second Radiation Fin Row 22, and Tool 5>
FIG. 11 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row 21 and the second heat radiation fin row 22 and the tool 5 according to the first embodiment.
 図11に示されるように、第1の放熱フィン列21は、放熱面11からの高さである第1の放熱フィン高2111を第2の放熱フィン列22の放熱面11からの高さである第2の放熱フィン高2211と異ならせている。第1の放熱フィン高2111は、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さである。つまり、第1の放熱フィン高2111は、放熱部材1の放熱面11に先端部を接触させたツール5の水平方向幅を第2の放熱フィン列22を挟む隣り合う第1の放熱フィン列21同士の間に、いずれの第1の放熱フィン列21にも接触させずに第2の放熱フィン列22を形成可能な高さである。 As shown in FIG. 11, the first heat radiation fin row 21 has a first heat radiation fin height 2111, which is the height from the heat radiation surface 11, by the height of the second radiation fin row 22 from the heat radiation surface 11. It is made different from a certain second radiation fin height 2211 . The first heat radiating fin height 2111 is defined by the lower part of the tool 5 in a state where the tool 5 having a downwardly tapered shape whose upper width is wider than the lower width is in contact with the heat radiating surface 11 to form the second heat radiating fin row 22 . The height is such that the upper portion, which has a horizontal width greater than that, does not come into contact with the first radiation fin row 21 . That is, the first heat radiation fin height 2111 is such that the horizontal width of the tool 5 whose tip is in contact with the heat radiation surface 11 of the heat radiation member 1 is equal to the adjacent first radiation fin row 21 sandwiching the second radiation fin row 22 . The height is such that the second radiating fin row 22 can be formed between them without contacting any of the first radiating fin rows 21 .
 ツール5は、水平方向幅を有する上部よりも下部を細く形成されている。このため、第1の放熱フィン列21及び第2の放熱フィン列22の隣り合う間隔は、狭められている。そして、第1の放熱フィン列21及び第2の放熱フィン列22は、放熱部材1の放熱面11上に密に配置されている。 The tool 5 is narrower at the bottom than at the top, which has a horizontal width. Therefore, the adjacent space between the first heat radiation fin row 21 and the second heat radiation fin row 22 is narrowed. The first heat radiation fin row 21 and the second heat radiation fin row 22 are densely arranged on the heat radiation surface 11 of the heat radiation member 1 .
 <その他>
 以下、第1実施形態の変形例が説明されている。以下では、第1実施形態と同様な事項の説明が同一構成に同じ符号を付して省略され、その特徴部分が説明されている。
<Others>
Modifications of the first embodiment are described below. In the following, descriptions of items similar to those of the first embodiment are omitted by assigning the same reference numerals to the same configurations, and the characteristic portions thereof are described.
 <変形例1>
 図12は、第1実施形態の変形例1に係る放熱カバー3を外した冷却装置100を示す斜視図である。図13は、第1実施形態の変形例1に係る放熱カバー3を外した冷却装置100を図12のX方向から見て示す正面図である。図14は、第1実施形態の変形例1に係る放熱カバー3を外した冷却装置100を図12のY方向から見て示す側面図である。
<Modification 1>
FIG. 12 is a perspective view showing the cooling device 100 with the heat dissipation cover 3 removed according to Modification 1 of the first embodiment. FIG. 13 is a front view showing the cooling device 100 from which the heat dissipation cover 3 according to Modification 1 of the first embodiment is removed, as seen from the X direction in FIG. 12 . FIG. 14 is a side view showing the cooling device 100 from which the heat dissipation cover 3 according to Modification 1 of the first embodiment is removed, viewed from the Y direction of FIG. 12 .
 図12~図14に示されるように、第1の放熱フィン列21及び第2の放熱フィン列22は、千鳥状に位置をずらして配置されている。第1の放熱フィン列21の凹部である第1の放熱フィン接続部211の上部に重なって第2の放熱フィン列22の凸部が形成されている。第1の放熱フィン列21は、Y方向に凹凸状に伸び、X方向に複数列配置されている。第2の放熱フィン列22は、X方向に凹凸状に伸び、Y方向に複数列配置されている。 As shown in FIGS. 12 to 14, the first heat radiation fin row 21 and the second heat radiation fin row 22 are staggered and arranged. A convex portion of the second radiation fin row 22 is formed so as to overlap the upper portion of the first radiation fin connecting portion 211 which is a concave portion of the first radiation fin row 21 . The first radiation fin row 21 extends unevenly in the Y direction and is arranged in multiple rows in the X direction. The second radiation fin row 22 extends in the X direction in an irregular shape and is arranged in a plurality of rows in the Y direction.
 冷媒は、Y方向の流入部33から流入し、反対側の流出部34から流出する。第1の放熱フィン列21よりも高さのある第2の放熱フィン列22がY方向に対向面積を広げて配置されることで、冷媒に対して全フィン列における有効接触面積が増大し、放熱フィン2の熱伝達率が向上する。これにより、冷却装置100の冷却性能が向上できる。 The coolant flows in from the inflow part 33 in the Y direction and flows out from the outflow part 34 on the opposite side. By arranging the second radiation fin row 22, which is taller than the first radiation fin row 21, with the facing area expanded in the Y direction, the effective contact area of all the fin rows with respect to the coolant increases, The heat transfer coefficient of the radiation fins 2 is improved. Thereby, the cooling performance of the cooling device 100 can be improved.
 ここで、図13、図14に示されるように、第1の放熱フィン高2111は、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さである。 Here, as shown in FIGS. 13 and 14, the first radiating fin height 2111 is such that the upper width is wider than the lower width and the tool 5 tapered downward to form a second radiating fin height 2111 in contact with the radiating surface 11 . The upper portion of the tool 5 having a horizontal width larger than the lower portion has a height such that it does not come into contact with the first heat dissipating fin row 21 when the heat dissipating fin row 22 is formed.
 詳しくは、上部幅が下部幅よりも広く下方向に先細り形状のツール5は、放熱面11に接触して第2の放熱フィン列22を形成するときに、図14のように、第1の放熱フィン列21に最接近する第2の放熱フィン接続部221の端部に至った箇所まで放熱面11に接触する。この場合に、第1の放熱フィン高2111は、放熱部材1の放熱面11に先端部を接触させたツール5の水平方向幅を第2の放熱フィン列22を挟む隣り合う第1の放熱フィン列21同士の間に、いずれの第1の放熱フィン列21にも接触させずに第2の放熱フィン列22を形成可能な高さである。 Specifically, when the downwardly tapering tool 5 whose upper width is wider than its lower width is in contact with the heat dissipating surface 11 to form the second heat dissipating fin row 22, as shown in FIG. The heat radiating surface 11 is contacted up to the end of the second heat radiating fin connecting portion 221 closest to the heat radiating fin row 21 . In this case, the first heat radiation fin height 2111 is the horizontal width of the tool 5 whose tip is in contact with the heat radiation surface 11 of the heat radiation member 1, and is equal to the width of the adjacent first heat radiation fins sandwiching the second heat radiation fin row 22. The height is such that the second radiating fin row 22 can be formed between the rows 21 without contacting any of the first radiating fin rows 21 .
 以上のような構成とすることで、冷却装置100は、第1の放熱フィン列21及び第2の放熱フィン列22と、ツール5と、が干渉せず、第1の放熱フィン列21及び第2の放熱フィン列22の実装密度が増加でき、放熱フィン2の熱伝達率が向上できる。この結果、冷却装置100の冷却性能が向上できる。 With the configuration as described above, the cooling device 100 prevents the first heat radiation fin row 21 and the second heat radiation fin row 22 from interfering with the tool 5. The mounting density of the two radiation fin rows 22 can be increased, and the heat transfer coefficient of the radiation fins 2 can be improved. As a result, the cooling performance of the cooling device 100 can be improved.
 <変形例2>
 図15は、第1実施形態の変形例2に係る冷却装置100を図1のY方向から見て示す縦断面図である。図15に示されるように、放熱カバー3の内側には、第2の放熱フィン高2211を基準に第1の放熱フィン高2111に合わせて下方向に凸状に突出した凸部35が設けられている。これにより、図示しない冷媒の流速は、冷却装置100内の冷媒流路内で均一な速さである。この結果、放熱フィン2の熱伝達率が向上し、冷却装置100の冷却性能が向上する。
<Modification 2>
FIG. 15 is a longitudinal sectional view showing the cooling device 100 according to Modification 2 of the first embodiment as seen from the Y direction in FIG. As shown in FIG. 15, on the inner side of the heat radiation cover 3, a protrusion 35 is provided that protrudes downward to match the height of the first heat radiation fins 2111 with the height of the second heat radiation fins 2211 as a reference. ing. As a result, the flow velocity of the coolant (not shown) is uniform within the coolant channel in the cooling device 100 . As a result, the heat transfer coefficient of the radiation fins 2 is improved, and the cooling performance of the cooling device 100 is improved.
 <変形例3>
 図16は、第1実施形態の変形例3に係る冷却装置100の製造方法の第1製造工程を示す説明図である。図17は、第1実施形態の変形例3に係る冷却装置100の製造方法の第2製造工程を示す説明図である。図18は、第1実施形態の変形例3に係る第1の放熱フィン列21及び第2の放熱フィン列22とツール5との寸法関係を示す説明図である。
<Modification 3>
FIG. 16 is an explanatory diagram showing the first manufacturing process of the method for manufacturing the cooling device 100 according to Modification 3 of the first embodiment. FIG. 17 is an explanatory diagram showing the second manufacturing process of the method for manufacturing the cooling device 100 according to Modification 3 of the first embodiment. FIG. 18 is an explanatory diagram showing the dimensional relationship between the first heat radiation fin row 21 and the second heat radiation fin row 22 and the tool 5 according to Modification 3 of the first embodiment.
 図16~図18に示されるように、ツール5の上下方向途中では、幅H2が上記第1実施形態の幅H1よりも鋭利で細い。このため、第1の放熱フィン列21及び第2の放熱フィン列22は、ツール5における下部よりも水平方向幅を有する上部が細い程、隣り合う間隔K1を間隔K2に狭めて密に配置されている。このため、第2の放熱フィン列22を形成する際に第1の放熱フィン列21と、ツール5と、が干渉せず、第1の放熱フィン列21及び第2の放熱フィン列22の間隔がより小さくなる。これにより、放熱フィン2の実装密度が増加し、放熱フィン2の熱伝達率が向上する。この結果、冷却装置100の冷却性能が向上できる。 As shown in FIGS. 16 to 18, in the middle of the tool 5 in the vertical direction, the width H2 is sharper and narrower than the width H1 of the first embodiment. For this reason, the first heat radiation fin row 21 and the second heat radiation fin row 22 are densely arranged by narrowing the adjacent interval K1 to the interval K2 as the upper portion having the horizontal width of the tool 5 is narrower than the lower portion. ing. Therefore, when forming the second radiation fin row 22, the first radiation fin row 21 and the tool 5 do not interfere with each other, and the distance between the first radiation fin row 21 and the second radiation fin row 22 is becomes smaller. As a result, the mounting density of the radiating fins 2 is increased, and the heat transfer coefficient of the radiating fins 2 is improved. As a result, the cooling performance of the cooling device 100 can be improved.
 <効果>
 (A)冷却装置100は、放熱面11に線状の放熱部である放熱フィン2を配置し、前記放熱フィン2の列である放熱フィン列を複数列備える。放熱フィン列の内第1の放熱フィン列21と、第1の放熱フィン列21に隣り合う放熱フィン列である第2の放熱フィン列22と、が交互に配置されている。第1の放熱フィン列21の放熱面11からの高さである第1の放熱フィン高2111は、第2の放熱フィン列22の放熱面11からの高さである第2の放熱フィン高2211と異なっている。第1の放熱フィン高2111は、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さである。
<effect>
(A) The cooling device 100 has heat radiation fins 2 , which are linear heat radiation portions, arranged on a heat radiation surface 11 and has a plurality of radiation fin rows, which are rows of the radiation fins 2 . Among the radiating fin rows, the first radiating fin row 21 and the second radiating fin row 22 adjacent to the first radiating fin row 21 are alternately arranged. A first heat radiation fin height 2111, which is the height of the first heat radiation fin row 21 from the heat radiation surface 11, is a second heat radiation fin height 2211, which is the height of the second heat radiation fin row 22 from the heat radiation surface 11. is different from The first heat radiating fin height 2111 is defined by the lower part of the tool 5 in a state where the tool 5 having a downwardly tapered shape whose upper width is wider than the lower width is in contact with the heat radiating surface 11 to form the second heat radiating fin row 22 . The height is such that the upper portion, which has a horizontal width greater than that, does not come into contact with the first radiation fin row 21 .
 この構成では、第1の放熱フィン高2111の寸法が、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さに設定される。これにより、第2の放熱フィン列22を形成するときに、ツール5が第1の放熱フィン列21に接触しない。そのため、隣り合う第1の放熱フィン列21及び第2の放熱フィン列22同士の間隔が小さくできる。したがって、放熱面11上の複数の放熱フィン列の実装密度が十分に上がる。 In this configuration, the dimension of the first heat radiation fin height 2111 is such that the upper width is wider than the lower width and the tool 5 tapers downward, and the second heat radiation fin row 22 is formed by contacting the heat radiation surface 11 . , the height is set so that the upper portion of the tool 5 having a horizontal width larger than the lower portion does not come into contact with the first radiation fin row 21 . As a result, the tool 5 does not come into contact with the first radiation fin row 21 when forming the second radiation fin row 22 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
 (B)第1の放熱フィン列21及び第2の放熱フィン列22は、ツール5における下部よりも水平方向幅を有する上部が細い程、隣り合う間隔を狭めて密に配置されている。 (B) The first radiating fin row 21 and the second radiating fin row 22 are densely arranged with a narrower spacing between them as the upper part of the tool 5 having a horizontal width is narrower than the lower part.
 この構成では、ツール5における下部よりも水平方向幅を有する上部が細い程、第2の放熱フィン列22を形成するときに、ツール5が第1の放熱フィン列21により接触しない。そのため、隣り合う第1の放熱フィン列21及び第2の放熱フィン列22同士の間隔がより小さくできる。したがって、放熱面11上の複数の放熱フィン列の実装密度が十分に上がる。 In this configuration, the narrower the upper portion of the tool 5, which has a horizontal width, than the lower portion, the less the tool 5 comes into contact with the first radiating fin row 21 when forming the second radiating fin row 22. Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be made smaller. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
 (C)第1の放熱フィン列21は、第2の放熱フィン列22よりも先に形成された構成である。 (C) The first heat radiation fin row 21 is formed before the second heat radiation fin row 22 is formed.
 この構成では、第1の放熱フィン列21を形成した後に第2の放熱フィン列22を形成するときに、ツール5が第1の放熱フィン列21に接触しない。そのため、隣り合う第1の放熱フィン列21及び第2の放熱フィン列22同士の間隔が小さくできる。したがって、放熱面11上の複数の放熱フィン列の実装密度が十分に上がる。 With this configuration, the tool 5 does not come into contact with the first heat radiation fin row 21 when forming the second heat radiation fin row 22 after forming the first heat radiation fin row 21 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
 (D)第1の放熱フィン列21及び第2の放熱フィン列22は、金属製のワイヤ23を凹凸状に折り曲げて連続して形成された構成である。 (D) The first radiating fin row 21 and the second radiating fin row 22 are formed continuously by bending a metal wire 23 in an uneven shape.
 この構成では、第1の放熱フィン列21及び第2の放熱フィン列22が容易に形成でき、生産性が向上できる。 With this configuration, the first heat radiation fin row 21 and the second heat radiation fin row 22 can be easily formed, and productivity can be improved.
 (E)第1の放熱フィン列21及び第2の放熱フィン列22は、放熱面11に圧着させて形成された構成である。 (E) The first radiating fin row 21 and the second radiating fin row 22 are formed by pressing against the radiating surface 11 .
 この構成では、従来のようなフィン列が折り曲げられた後に、ハンダ付けして放熱面11に接続される必要がないため、ハンダ付け工程が必須工程ではなくなり、生産性が向上できる。 With this configuration, there is no need to connect the fin row to the heat dissipation surface 11 by soldering after the fin rows are bent as in the conventional case.
 (F)第1の放熱フィン列21及び第2の放熱フィン列22は、ツール5を放熱面11に高周波振動させて接触させ、ツール5から送り出す放熱フィン2を形成する線状のワイヤ23を放熱面11に圧着して形成された構成である。 (F) The first heat radiation fin row 21 and the second heat radiation fin row 22 are brought into contact with the heat radiation surface 11 by vibrating the tool 5 at a high frequency, and a linear wire 23 that forms the heat radiation fins 2 sent out from the tool 5 is attached. It is a structure formed by pressure bonding to the heat dissipation surface 11 .
 この構成では、従来のようなフィン列が折り曲げられた後に、ハンダ付けして放熱面11に接続される必要がない。そして、ツール5が送り出す線状のワイヤ23によって放熱フィン列を形成するときに線状のワイヤ23が放熱面11に圧着されて放熱面11上の第1の放熱フィン列21及び第2の放熱フィン列22が形成されるため、ハンダ付け工程が必須工程ではなくなり、生産性が向上できる。 With this configuration, it is not necessary to connect the fin row to the heat dissipation surface 11 by soldering after the fin row is bent as in the conventional case. When the linear wires 23 sent out by the tool 5 form the heat radiation fin array, the linear wires 23 are pressed against the heat radiation surface 11 to form the first heat radiation fin array 21 and the second heat radiation fin array on the heat radiation surface 11 . Since the row of fins 22 is formed, the soldering process is no longer an essential process, and productivity can be improved.
 (G)第2の放熱フィン列22は、ツール5の放熱面11に対する高周波振動の振動量を、第1の放熱フィン列21の場合での高周波振動の振動量に比して高めて形成された構成である。 (G) The second heat radiation fin row 22 is formed by increasing the amount of high-frequency vibration with respect to the heat radiation surface 11 of the tool 5 compared to the vibration amount of the high-frequency vibration in the case of the first heat radiation fin row 21. configuration.
 この構成では、第2の放熱フィン列22の放熱面11に対する圧着が第1の放熱フィン列21の放熱面11に対する圧着よりも強固になる。これにより、第1の放熱フィン高2111よりも高さがあり、冷媒に対して負荷がかかる第2の放熱フィン列22の倒れ込みが抑制できる。 In this configuration, the compression of the second radiation fin row 22 to the heat radiation surface 11 is stronger than the compression of the first radiation fin row 21 to the radiation surface 11 . As a result, the second radiation fin array 22, which is higher than the first radiation fin height 2111 and applies a load to the refrigerant, can be prevented from collapsing.
 (H)第1の放熱フィン列21は、放熱面11との接合部である第1の放熱フィン接続部211を有する。第2の放熱フィン列22は、放熱面11との接合部である第2の放熱フィン接続部221を有する。第1の放熱フィン接続部211に対して第2の放熱フィン接続部221の接触面積が大きい。 (H) The first heat radiation fin row 21 has a first heat radiation fin connection portion 211 that is a joint portion with the heat radiation surface 11 . The second radiation fin row 22 has a second radiation fin connection portion 221 that is a joint portion with the radiation surface 11 . The contact area of the second heat radiation fin connection portion 221 is larger than that of the first heat radiation fin connection portion 211 .
 この構成では、第2の放熱フィン列22の放熱面11に対する圧着が第1の放熱フィン列21の放熱面11に対する圧着よりも強固になる。これにより、第1の放熱フィン高2111よりも高さがあり、冷媒に対して負荷がかかる第2の放熱フィン列22の倒れ込みが抑制できる。 In this configuration, the compression of the second radiation fin row 22 to the heat radiation surface 11 is stronger than the compression of the first radiation fin row 21 to the radiation surface 11 . As a result, the second radiation fin array 22, which is higher than the first radiation fin height 2111 and applies a load to the refrigerant, can be prevented from collapsing.
 (I)第1の放熱フィン列21及び第2の放熱フィン列22は、千鳥状に位置をずらして配置されている。 (I) The first radiating fin row 21 and the second radiating fin row 22 are staggered and arranged.
 この構成では、放熱フィン列では、冷媒に対して有効接触面積が増大し、放熱フィン2の熱伝達率が向上する。これにより、冷却装置100の冷却性能が向上できる。 With this configuration, the heat radiation fin row has an increased effective contact area with respect to the coolant, and the heat transfer coefficient of the heat radiation fins 2 is improved. Thereby, the cooling performance of the cooling device 100 can be improved.
 (J)第1の放熱フィン列21及び第2の放熱フィン列22は、冷却装置100内を流通する冷媒の流れに対する対向面積を冷媒の流れに交差する対向面積よりも大きく配置されている。 (J) The first radiating fin row 21 and the second radiating fin row 22 are arranged such that the facing area with respect to the flow of the coolant flowing through the cooling device 100 is larger than the facing area intersecting with the flow of the coolant.
 この構成では、放熱フィン列では、冷媒に対して有効接触面積が増大し、放熱フィン2の熱伝達率が向上する。これにより、冷却装置100の冷却性能が向上できる。 With this configuration, the heat radiation fin row has an increased effective contact area with respect to the coolant, and the heat transfer coefficient of the heat radiation fins 2 is improved. Thereby, the cooling performance of the cooling device 100 can be improved.
 (K)冷却装置100は、放熱面11を上方向から覆う放熱カバー3を有する。放熱カバー3は、第2の放熱フィン列22に接触している。 (K) The cooling device 100 has a heat radiation cover 3 that covers the heat radiation surface 11 from above. The heat radiation cover 3 is in contact with the second heat radiation fin row 22 .
 この構成では、第2の放熱フィン列22と放熱カバー3との接触部を介した第2の放熱フィン列22から放熱カバー3への熱伝達率が向上する。これにより、冷却装置100の冷却性能が向上できる。また、凹凸状の第2の放熱フィン列22の放熱フィン2に高さ方向の公差がある場合には、放熱フィン2の凸状のループが放熱カバー3に接触して撓むことにより、高さ方向の公差が吸収でき、全ての第2の放熱フィン列22が放熱カバー3に接触でき、第2の放熱フィン列22と放熱カバー3との接触部を介した第2の放熱フィン列22から放熱カバー3への熱伝達率が向上できる。 With this configuration, the heat transfer rate from the second heat radiation fin row 22 to the heat radiation cover 3 via the contact portion between the second heat radiation fin row 22 and the heat radiation cover 3 is improved. Thereby, the cooling performance of the cooling device 100 can be improved. Further, when the heat radiation fins 2 of the uneven second heat radiation fin array 22 have a tolerance in the height direction, the convex loops of the heat radiation fins 2 come into contact with the heat radiation cover 3 and bend, thereby increasing the height. Tolerance in the vertical direction can be absorbed, all the second radiation fin rows 22 can contact the radiation cover 3, and the second radiation fin rows 22 can be dissipated via the contact portion between the second radiation fin rows 22 and the radiation cover 3. to the heat radiation cover 3 can be improved.
 (L)放熱カバー3の内側には、第2の放熱フィン高2211を基準に第1の放熱フィン高2111に合わせて下方向に凸状に突出した凸部35が設けられている。 (L) On the inner side of the heat radiation cover 3, a protrusion 35 is provided that protrudes downward to match the height of the first heat radiation fins 2111 with the height of the second heat radiation fins 2211 as a reference.
 この構成では、第1の放熱フィン列21と放熱カバー3とのクリアランスと、第2の放熱フィン列22と放熱カバー3とのクリアランスと、が一致でき、冷却装置100内を流れる冷媒の流速が均一に等しくなる。この結果、第1の放熱フィン列21及び第2の放熱フィン列22から冷媒に持ち去られる熱量が均一化でき、冷却装置100の冷却性能が向上できる。 In this configuration, the clearance between the first heat radiation fin row 21 and the heat radiation cover 3 can match the clearance between the second heat radiation fin row 22 and the heat radiation cover 3, and the flow velocity of the coolant flowing through the cooling device 100 can be increased. uniformly equal. As a result, the amount of heat carried away by the coolant from the first heat radiation fin row 21 and the second heat radiation fin row 22 can be made uniform, and the cooling performance of the cooling device 100 can be improved.
 (M)冷却装置100は、放熱面11に線状の放熱部である放熱フィン2を配置し、放熱フィン2の列である放熱フィン列を複数列備える。放熱フィン列の内第1の放熱フィン列21と、第1の放熱フィン列21に隣り合う放熱フィン列である第2の放熱フィン列22と、が交互に配置されている。第1の放熱フィン列21の放熱面11からの高さである第1の放熱フィン高2111は、第2の放熱フィン列22の放熱面11からの高さである第2の放熱フィン高2211と異なっている。第1の放熱フィン列21及び第2の放熱フィン列22は、放熱面11に高周波振動を用いて圧着させて形成された構成である。 (M) The cooling device 100 arranges the heat radiation fins 2 as linear heat radiation portions on the heat radiation surface 11 and includes a plurality of heat radiation fin rows, which are the rows of the heat radiation fins 2 . Among the radiating fin rows, the first radiating fin row 21 and the second radiating fin row 22 adjacent to the first radiating fin row 21 are alternately arranged. A first heat radiation fin height 2111, which is the height of the first heat radiation fin row 21 from the heat radiation surface 11, is a second heat radiation fin height 2211, which is the height of the second heat radiation fin row 22 from the heat radiation surface 11. is different from The first radiating fin row 21 and the second radiating fin row 22 are formed by pressure bonding to the radiating surface 11 using high-frequency vibration.
 この構成では、第1の放熱フィン列21及び第2の放熱フィン列22は、放熱面11に高周波振動を用いて圧着させて形成されている。これにより、第1の放熱フィン列21及び第2の放熱フィン列22を形成するときに、ハンダ付け工程が必要ではない。これにより、第2の放熱フィン列22を形成するときに、ハンダ付け治具が放熱面11上に形成された隣り合う第1の放熱フィン列21同士の間隔に入る必要がない。そのため、隣り合う第1の放熱フィン列21及び第2の放熱フィン列22同士の間隔が小さくできる。したがって、放熱面11上の複数の放熱フィン列の実装密度が十分に上がる。 In this configuration, the first heat radiation fin row 21 and the second heat radiation fin row 22 are formed by pressing against the heat radiation surface 11 using high-frequency vibration. This eliminates the need for a soldering process when forming the first heat radiation fin row 21 and the second heat radiation fin row 22 . As a result, when forming the second radiation fin row 22 , there is no need for a soldering jig to enter the space between the adjacent first radiation fin rows 21 formed on the heat radiation surface 11 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
 (N)冷却装置100の製造方法は、放熱面11に線状の放熱部である放熱フィン2を配置し、放熱フィン2の列である放熱フィン列を複数列形成する。冷却装置100の製造方法は、放熱フィン列の内第1の放熱フィン列21を、放熱面11からの高さである第1の放熱フィン高2111を第2の放熱フィン列22の放熱面11からの高さである第2の放熱フィン高2211と異ならせて形成する第1製造ステップを含む。冷却装置100の製造方法は、第1の放熱フィン列21に隣り合う交互に配置される放熱フィン列である第2の放熱フィン列22を形成する第2製造ステップを含む。第1製造ステップは、形成する第1の放熱フィン列21の第1の放熱フィン高2111の寸法を、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さに取る。 (N) The manufacturing method of the cooling device 100 is to arrange the heat radiating fins 2 as linear heat radiating portions on the heat radiating surface 11 and form a plurality of heat radiating fin rows, which are rows of the heat radiating fins 2 . The manufacturing method of the cooling device 100 is such that the first heat radiation fin row 21 of the heat radiation fin rows is placed on the heat radiation surface 11 of the second heat radiation fin row 22 by setting the first heat radiation fin height 2111 which is the height from the heat radiation surface 11 to the heat radiation surface 11 of the second radiation fin row 22 . a first manufacturing step of forming the second heat radiating fin height 2211 different from the height of the fin. The manufacturing method of the cooling device 100 includes a second manufacturing step of forming the second heat radiation fin row 22 , which is a heat radiation fin row arranged alternately adjacent to the first heat radiation fin row 21 . In the first manufacturing step, the dimension of the first heat radiating fin height 2111 of the first heat radiating fin row 21 to be formed is adjusted so that the upper width is wider than the lower width and the downwardly tapering shape of the tool 5 is in contact with the heat radiating surface 11 . The upper part of the tool 5, which has a horizontal width larger than the lower part, does not come into contact with the first radiating fin row 21 in the state where the second radiating fin row 22 is formed.
 この構成では、第1の放熱フィン高2111の寸法が、上部幅が下部幅よりも広く下方向に先細り形状のツール5が放熱面11に接触して第2の放熱フィン列22を形成する状態で、ツール5における下部よりも水平方向幅を有する上部が第1の放熱フィン列21に接触しない高さに設定される。これにより、第2の放熱フィン列22を形成するときに、ツール5が放熱面11上の第1の放熱フィン列21に接触しない。そのため、隣り合う第1の放熱フィン列21及び第2の放熱フィン列22同士の間隔が小さくできる。したがって、放熱面11上の複数の放熱フィン列の実装密度が十分に上がる。 In this configuration, the dimension of the first radiation fin height 2111 is such that the upper width is wider than the lower width and the tool 5 is tapered downward, and the second radiation fin array 22 is formed by contacting the heat radiation surface 11 . , the height is set so that the upper portion of the tool 5 having a horizontal width larger than the lower portion does not come into contact with the first radiation fin row 21 . As a result, the tool 5 does not come into contact with the first radiation fin row 21 on the heat radiation surface 11 when forming the second radiation fin row 22 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
 (O)第1製造ステップは、第2製造ステップよりも先に実施される。 (O) The first manufacturing step is performed before the second manufacturing step.
 この構成では、第1の放熱フィン列21を形成した後に第2の放熱フィン列22を形成するときに、ツール5が第1の放熱フィン列21に接触しない。そのため、隣り合う第1の放熱フィン列21及び第2の放熱フィン列22同士の間隔が小さくできる。したがって、放熱面11上の複数の放熱フィン列の実装密度が十分に上がる。 With this configuration, the tool 5 does not come into contact with the first heat radiation fin row 21 when forming the second heat radiation fin row 22 after forming the first heat radiation fin row 21 . Therefore, the interval between the first heat radiation fin row 21 and the second heat radiation fin row 22 adjacent to each other can be reduced. Therefore, the mounting density of the plurality of heat dissipating fin rows on the heat dissipating surface 11 is sufficiently increased.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of application examples of the present invention, and the technical scope of the present invention is not limited to the specific configurations of the above embodiments. do not have.
 100…冷却装置、1…放熱部材、11…放熱面、2…放熱フィン、21…第1の放熱フィン列、211…第1の放熱フィン接続部、2111…第1の放熱フィン高、22…第2の放熱フィン列、221…第2の放熱フィン接続部、2211…第2の放熱フィン高、23…ワイヤ、3…放熱カバー、31…天面部、32…側面部、321…凹部、33…流入部、34…流出部、35…凸部、4…シール部材、5…ツール、51…ワイヤ送り出し部、52…高周波振動押圧部、53…切断部 DESCRIPTION OF SYMBOLS 100... Cooling device 1... Heat dissipation member 11... Heat dissipation surface 2... Heat dissipation fin 21... First heat dissipation fin row 211... First heat dissipation fin connection part 2111... Height of first heat dissipation fin 22... Second radiation fin row 221 Second radiation fin connecting portion 2211 Second radiation fin height 23 Wire 3 Radiation cover 31 Top surface 32 Side surface 321 Recess 33 Inflow part 34 Outflow part 35 Convex part 4 Sealing member 5 Tool 51 Wire delivery part 52 High-frequency vibration pressing part 53 Cutting part

Claims (15)

  1.  放熱面に線状の放熱部である放熱フィンを配置し、前記放熱フィンの列である放熱フィン列を複数列備える冷却装置であって、
     前記放熱フィン列の内第1の放熱フィン列と、前記第1の放熱フィン列に隣り合う前記放熱フィン列である第2の放熱フィン列と、が交互に配置され、
     前記第1の放熱フィン列の前記放熱面からの高さである第1の放熱フィン高は、前記第2の放熱フィン列の前記放熱面からの高さである第2の放熱フィン高と異なり、
     前記第1の放熱フィン高は、下方向に先細り形状のツールが前記放熱面に接触して前記第2の放熱フィン列を形成する状態で、前記ツールにおける下部よりも水平方向幅を有する上部が前記第1の放熱フィン列に接触しない高さである、
     冷却装置。
    A cooling device comprising a plurality of rows of radiating fins, ie, a plurality of rows of radiating fins, wherein radiating fins, which are linear heat radiating portions, are arranged on a heat radiating surface,
    A first heat radiation fin row among the heat radiation fin rows and a second heat radiation fin row adjacent to the first heat radiation fin row are alternately arranged,
    The first heat radiation fin height, which is the height of the first heat radiation fin row from the heat radiation surface, is different from the second heat radiation fin height, which is the height of the second heat radiation fin row from the heat radiation surface. ,
    The height of the first heat radiation fins is such that an upper portion of the tool having a width in a horizontal direction is larger than a lower portion of the tool in a state in which a downwardly tapered tool contacts the heat radiation surface to form the second heat radiation fin row. It is a height that does not contact the first heat radiation fin row,
    Cooling system.
  2.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、前記ツールにおける下部よりも水平方向幅を有する上部が細い程、隣り合う間隔を狭めて密に配置されている、
     冷却装置。
    A cooling device according to claim 1,
    The first heat radiation fin row and the second heat radiation fin row are densely arranged with a narrower interval between them as the upper portion having a horizontal width of the tool becomes narrower than the lower portion thereof.
    Cooling system.
  3.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列は、前記第2の放熱フィン列よりも先に形成された構成である、
     冷却装置。
    A cooling device according to claim 1,
    The first heat radiation fin row is formed prior to the second heat radiation fin row,
    Cooling system.
  4.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、金属製のワイヤを凹凸状に折り曲げて連続して形成された構成である、
     冷却装置。
    A cooling device according to claim 1,
    The first heat radiation fin row and the second heat radiation fin row are formed by bending a metal wire into an uneven shape and continuously forming the structure.
    Cooling system.
  5.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、前記放熱面に圧着させて形成された構成である、
     冷却装置。
    A cooling device according to claim 1,
    The first heat radiation fin row and the second heat radiation fin row are formed by pressing against the heat radiation surface.
    Cooling system.
  6.  請求項5に記載の冷却装置であって、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、前記ツールを前記放熱面に高周波振動させて接触させ、前記ツールから送り出す前記放熱フィンを形成する線状のワイヤを前記放熱面に圧着して形成された構成である、
     冷却装置。
    A cooling device according to claim 5,
    The first heat radiation fin array and the second heat radiation fin array are configured such that the tool is brought into contact with the heat radiation surface by high-frequency vibration, and a linear wire forming the heat radiation fins sent out from the tool is attached to the heat radiation surface. It is a configuration formed by crimping,
    Cooling system.
  7.  請求項6に記載の冷却装置であって、
     前記第2の放熱フィン列は、前記ツールの前記放熱面に対する高周波振動の振動量を、前記第1の放熱フィン列の場合での前記高周波振動の振動量に比して高めて形成された構成である、
     冷却装置。
    A cooling device according to claim 6,
    The second heat radiation fin row is formed by increasing the amount of high-frequency vibration with respect to the heat radiation surface of the tool as compared to the vibration amount of the high-frequency vibration in the case of the first heat radiation fin row. is
    Cooling system.
  8.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列は、前記放熱面との接合部である第1の放熱フィン接続部を有し、
     前記第2の放熱フィン列は、前記放熱面との接合部である第2の放熱フィン接続部を有し、
     前記第1の放熱フィン接続部に対して前記第2の放熱フィン接続部の接触面積が大きい、
     冷却装置。
    A cooling device according to claim 1,
    The first heat radiation fin row has a first heat radiation fin connection portion that is a joint portion with the heat radiation surface,
    The second heat radiation fin row has a second heat radiation fin connection portion that is a joint portion with the heat radiation surface,
    A contact area of the second heat radiating fin connecting portion is larger than that of the first heat radiating fin connecting portion,
    Cooling system.
  9.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、千鳥状に位置をずらして配置されている、
     冷却装置。
    A cooling device according to claim 1,
    The first heat radiating fin row and the second heat radiating fin row are arranged in a staggered manner,
    Cooling system.
  10.  請求項1に記載の冷却装置であって、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、当該冷却装置内を流通する冷媒の流れに対する対向面積を前記冷媒の流れに交差する対向面積よりも大きく配置されている、
     冷却装置。
    A cooling device according to claim 1,
    The first radiating fin row and the second radiating fin row are arranged so that the area facing the flow of the coolant flowing through the cooling device is larger than the facing area intersecting the flow of the coolant.
    Cooling system.
  11.  請求項1に記載の冷却装置であって、
     前記放熱面を上方向から覆う放熱カバーを有し、
     前記放熱カバーは、前記第2の放熱フィン列に接触している、
     冷却装置。
    A cooling device according to claim 1,
    Having a heat dissipation cover covering the heat dissipation surface from above,
    The heat radiation cover is in contact with the second heat radiation fin row,
    Cooling system.
  12.  請求項11に記載の冷却装置であって、
     前記放熱カバーの内側には、前記第2の放熱フィン高を基準に前記第1の放熱フィン高に合わせて下方向に凸状に突出した凸部が設けられている、
     冷却装置。
    A cooling device according to claim 11, wherein
    Inside the heat radiation cover, a convex portion is provided that protrudes downward in accordance with the height of the first heat radiation fin based on the height of the second heat radiation fin,
    Cooling system.
  13.  放熱面に線状の放熱部である放熱フィンを配置し、前記放熱フィンの列である放熱フィン列を複数列備える冷却装置において、
     前記放熱フィン列の内第1の放熱フィン列と、前記第1の放熱フィン列に隣り合う前記放熱フィン列である第2の放熱フィン列と、が交互に配置され、
     前記第1の放熱フィン列の前記放熱面からの高さである第1の放熱フィン高は、前記第2の放熱フィン列の前記放熱面からの高さである第2の放熱フィン高と異なり、
     前記第1の放熱フィン列及び前記第2の放熱フィン列は、前記放熱面に高周波振動を用いて圧着させて形成された構成である、
     冷却装置。
    A cooling device comprising a plurality of rows of radiating fins, ie, a plurality of rows of radiating fins arranged on a heat radiating surface, and radiating fins serving as linear heat radiating portions.
    A first heat radiation fin row among the heat radiation fin rows and a second heat radiation fin row adjacent to the first heat radiation fin row are alternately arranged,
    The first heat radiation fin height, which is the height of the first heat radiation fin row from the heat radiation surface, is different from the second heat radiation fin height, which is the height of the second heat radiation fin row from the heat radiation surface. ,
    The first heat radiating fin row and the second heat radiating fin row are formed by pressing the heat radiating surface using high frequency vibration.
    Cooling system.
  14.  放熱面に線状の放熱部である放熱フィンを配置し、前記放熱フィンの列である放熱フィン列を複数列形成する冷却装置の製造方法において、
     前記放熱フィン列の内第1の放熱フィン列を、前記放熱面からの高さである第1の放熱フィン高を第2の放熱フィン列の前記放熱面からの高さである第2の放熱フィン高と異ならせて形成する第1製造ステップと、
     前記第1の放熱フィン列に隣り合う交互に配置される前記放熱フィン列である前記第2の放熱フィン列を形成する第2製造ステップと、
    を含み、
     前記第1製造ステップは、形成する前記第1の放熱フィン列の前記第1の放熱フィン高の寸法を、下方向に先細り形状のツールが前記放熱面に接触して前記第2の放熱フィン列を形成する状態で、前記ツールにおける下部よりも水平方向幅を有する上部が前記第1の放熱フィン列に接触しない高さに取る、
     冷却装置の製造方法。
    In a method for manufacturing a cooling device, a heat radiation fin, which is a linear heat radiation part, is arranged on a heat radiation surface, and a plurality of radiation fin rows, which are rows of the radiation fins, are formed in a plurality of rows,
    The first heat radiating fin row among the heat radiating fin rows is defined as the second heat radiating fin height, which is the height from the heat radiating surface, and the second heat radiating fin row is the height from the heat radiating surface. a first manufacturing step of forming fins with different heights;
    a second manufacturing step of forming the second radiating fin rows, which are the radiating fin rows alternately arranged adjacent to the first radiating fin rows;
    including
    In the first manufacturing step, the dimension of the height of the first radiation fin row of the first radiation fin row to be formed is adjusted to the height of the second radiation fin row by using a downwardly tapered tool in contact with the heat radiation surface. is formed, the upper part having a horizontal width larger than the lower part of the tool is set to a height that does not contact the first heat radiation fin row,
    A method for manufacturing a cooling device.
  15.  請求項14に記載の冷却装置の製造方法であって、
     前記第1製造ステップは、前記第2製造ステップよりも先に実施される、
     冷却装置の製造方法。
    A method for manufacturing a cooling device according to claim 14,
    The first manufacturing step is performed prior to the second manufacturing step,
    A method for manufacturing a cooling device.
PCT/JP2022/032071 2021-10-20 2022-08-25 Cooling device and method for manufacturing cooling device WO2023067894A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021171495A JP2023061539A (en) 2021-10-20 2021-10-20 Cooling device and manufacturing method of cooling device
JP2021-171495 2021-10-20

Publications (1)

Publication Number Publication Date
WO2023067894A1 true WO2023067894A1 (en) 2023-04-27

Family

ID=86058985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032071 WO2023067894A1 (en) 2021-10-20 2022-08-25 Cooling device and method for manufacturing cooling device

Country Status (2)

Country Link
JP (1) JP2023061539A (en)
WO (1) WO2023067894A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117254360B (en) * 2023-11-15 2024-01-26 保定市龙跃电力器材制造有限公司 Environment-friendly constant-temperature energy-saving electric energy metering box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302638A (en) * 1993-04-16 1994-10-28 Sony Corp Semiconductor device
JP2008098432A (en) * 2006-10-12 2008-04-24 Fujitsu Ltd Heat-dissipating device of electronic component
US20120061816A1 (en) * 2010-09-10 2012-03-15 Samsung Electronics Co., Ltd. Semiconductor package and method of fabricating the same
JP2012216711A (en) * 2011-04-01 2012-11-08 Toyota Motor Corp Heat sink and electronic component with the same
JP2014209614A (en) * 2013-03-29 2014-11-06 株式会社フジクラ Heat radiator for electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06302638A (en) * 1993-04-16 1994-10-28 Sony Corp Semiconductor device
JP2008098432A (en) * 2006-10-12 2008-04-24 Fujitsu Ltd Heat-dissipating device of electronic component
US20120061816A1 (en) * 2010-09-10 2012-03-15 Samsung Electronics Co., Ltd. Semiconductor package and method of fabricating the same
JP2012216711A (en) * 2011-04-01 2012-11-08 Toyota Motor Corp Heat sink and electronic component with the same
JP2014209614A (en) * 2013-03-29 2014-11-06 株式会社フジクラ Heat radiator for electronic component

Also Published As

Publication number Publication date
JP2023061539A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
US5894882A (en) Heat sink structure for cooling a substrate and an electronic apparatus having such a heat sink structure
US7190581B1 (en) Low thermal resistance power module assembly
US10978371B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20040190260A1 (en) Heat sink with heat dissipating fins and method of manufacturing heat sink
US5053855A (en) Plastic molded-type semiconductor device
WO2011061779A1 (en) Heat dissipating device and method for manufacturing heat dissipating device
GB2281149A (en) Securing heat sinks to semiconductor packages
JP2005505927A (en) Heat collector with mounting plate
WO2023067894A1 (en) Cooling device and method for manufacturing cooling device
CN103227154A (en) Power semiconductor module with pressed baseplate and method for producing a power semiconductor module with pressed baseplate
JP2018195717A (en) Semiconductor module, semiconductor module base plate and semiconductor device manufacturing method
JP5212125B2 (en) Power device heat sink
JP5589647B2 (en) Cooling system
JP6190732B2 (en) Heat sink and semiconductor device
JP5658837B2 (en) Heat dissipation device for electronic parts
JP4645276B2 (en) Semiconductor device
US11561051B2 (en) Heat sink, board module, transmission device, and method of manufacturing the heat sink
JP5164793B2 (en) Power semiconductor device
JP4535004B2 (en) Double-sided cooling type semiconductor device
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same
JP2009124054A (en) Joint structure of heating element and radiating element
WO2024079846A1 (en) Power semiconductor device and method for manufacturing power semiconductor device
JP2019186297A (en) Cold plate
EP4184560A1 (en) Header for semiconductor package
JP3843873B2 (en) Heat sink and heat sink manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22883206

Country of ref document: EP

Kind code of ref document: A1