WO2023066348A1 - 一种双重拮抗剂及其用途 - Google Patents

一种双重拮抗剂及其用途 Download PDF

Info

Publication number
WO2023066348A1
WO2023066348A1 PCT/CN2022/126482 CN2022126482W WO2023066348A1 WO 2023066348 A1 WO2023066348 A1 WO 2023066348A1 CN 2022126482 W CN2022126482 W CN 2022126482W WO 2023066348 A1 WO2023066348 A1 WO 2023066348A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
membered
alkyl
alkynyl
alkenyl
Prior art date
Application number
PCT/CN2022/126482
Other languages
English (en)
French (fr)
Inventor
马骥
高云
李秀艳
丁淦
葛萍
韦昌青
马慧勇
陈柳
Original Assignee
年衍药业(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 年衍药业(上海)有限公司 filed Critical 年衍药业(上海)有限公司
Priority to CA3235437A priority Critical patent/CA3235437A1/en
Priority to CN202280070467.6A priority patent/CN118119617A/zh
Publication of WO2023066348A1 publication Critical patent/WO2023066348A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to a new compound with double antagonism of angiotensin II receptor and endothelin receptor and its application in preparation of medicine.
  • Angiotensin II (AngII) and endothelin-1 (ET-1) are two potent endogenous vasoactive peptides thought to play roles in both the control of vascular tone and pathological tissue remodeling associated with various diseases effect.
  • angiotensin II receptor antagonists have shown advantages such as strong affinity, high selectivity, oral efficacy, long half-life, and good tolerance.
  • Endothelin is a potent vasoconstrictor vasoactive peptide that plays a key role in maintaining vascular homeostasis.
  • endothelin receptors such as ETA, ETB1, ETB2 and ETC, etc.
  • ETA is the most well-studied, and its antagonists can be used to treat hypertension, pulmonary hypertension, chronic kidney disease, etc. disease, atherosclerosis, etc.
  • Dual antagonists of angiotensin II receptors and endothelin receptors can antagonize both angiotensin II receptors and ETA receptors, and have better curative effect and wider adaptability than single angiotensin II or ETA receptor antagonists.
  • it is a class of drugs that can potentially be used for diseases such as high blood pressure or kidney disease.
  • WO2000001389A1, CN101891735A, etc. disclose a series of angiotensin II receptor and endothelin receptor dual antagonists, it is still necessary to develop dual antagonists with better activity, higher selectivity, better water solubility, and smaller drug-drug interactions. Antagonist drugs.
  • the present invention provides a compound represented by formula I, or its deuterated compound, or its stereoisomer, or its pharmaceutically acceptable salt:
  • X is selected from NR X1 or CR X2 R X3 ;
  • Y is selected from chemical bond, NR Y1 or CR Y2 R Y3 ;
  • R Y1 is selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl Group, halogen substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 4 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 4 alkylene-(4 ⁇ 10 membered heterocycloalkyl ), -C 0 ⁇ 4 alkylene-(6 ⁇ 10 membered aromatic ring), -C 0 ⁇ 4 alkylene-(5 ⁇ 10 membered aromatic heterocycle);
  • R Y2 and R Y3 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl substituted by halogen, -C 0 ⁇ 4 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 4 alkylene-(4 ⁇ 10-membered heterocycloalkyl), -C 0-4 alkylene-(6-10-membered aromatic ring), -C 0-4- membered alkylene-(5-10-membered aromatic heterocycle);
  • R X1 is selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl Group, halogen substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 4 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 4 alkylene-(4 ⁇ 10 membered heterocycloalkyl ), -C 0 ⁇ 4 alkylene-(6 ⁇ 10 membered aromatic ring), -C 0 ⁇ 4 alkylene-(5 ⁇ 10 membered aromatic heterocyclic ring); among them, alkylene, carbocyclyl, hetero Cycloalkyl, aromatic ring, aromatic heterocyclic ring can be further optionally substituted by one, two, three or four independent R X11 ;
  • Each R X11 is independently selected from hydrogen, halogen, cyano, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, Halogen substituted -C 2 ⁇ 6 alkenyl, Halogen substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 4 alkylene-OR X12 , -C 0 ⁇ 4 alkylene-SR X12 , -C 0 ⁇ 4 Alkylene-NR X12 R X13 ; alternatively, two independent R X11 form together with attached atoms
  • R X12 and R X13 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted - C 2 ⁇ 6 alkenyl, halogen substituted -C 2 ⁇ 6 alkynyl;
  • R X2 , R X3 and the atoms directly connected together form a 6-12-membered spiro ring, a 6-12-membered spiro heterocycle, a 6-12-membered condensed ring, and a 6-12-membered condensed heterocycle; among them, the spiro ring and the spiro heterocycle , fused ring, fused heterocyclic ring can be further optionally substituted by one, two, three or four independent R X21 ;
  • Each R X21 is independently selected from hydrogen, halogen, cyano, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, Halogen substituted -C 2 ⁇ 6 alkenyl, Halogen substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 4 alkylene-OR X22 , -C 0 ⁇ 4 alkylene-SR X22 , -C 0 ⁇ 4 Alkylene-NR X22 R X23 ; alternatively, two independent R X21 are formed together with the atoms to which they are directly attached
  • R X22 and R X23 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted - C 2 ⁇ 6 alkenyl, halogen substituted -C 2 ⁇ 6 alkynyl;
  • R 1 is selected from -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl substituted by halogen;
  • R 2 is selected from -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl, Halogen-substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 4 alkylene-OR 21 , -C 0 ⁇ 4 alkylene-SR 21 , -C 0 ⁇ 4 alkylene-NR 21 R 22 , - C 0 ⁇ 4 alkylene-OC(O)R 21 , -C 0 ⁇ 4 alkylene-S(O) 2 R 21 , -C 0 ⁇ 4 alkylene-S(O)R 21 , -C 0-4 alkylene-S(O) 2 NR 21 R 22 , -C 0-4 alkylene-S(O)NR 21 R 22 , -C 0-4 alkylene-S(O)NR 21 R 22
  • R 21 and R 22 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted - C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl substituted by halogen, -C 0 ⁇ 4 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 4 alkylene-(4 ⁇ 10 membered heterocycloalkyl), -C 0 ⁇ 4 alkylene-(6 ⁇ 10 membered aromatic ring), -C 0 ⁇ 4 alkylene-(5 ⁇ 10 membered aromatic heterocyclic ring);
  • R 3 and R 4 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted - C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl substituted by halogen, -C 0 ⁇ 4 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 4 alkylene-(4 ⁇ 10 membered heterocycloalkyl), -C 0 ⁇ 4 alkylene-(6 ⁇ 10 membered aromatic ring), -C 0 ⁇ 4 alkylene-(5 ⁇ 10 membered aromatic heterocyclic ring); among them, alkylene, Carbocyclyl, heterocycloalkyl, aromatic ring, aromatic heterocyclic ring can be further optionally substituted by one, two, three or four independent R31 ;
  • Each R 31 is independently selected from hydrogen, halogen, cyano, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, Halogen substituted -C 2 ⁇ 6 alkenyl, Halogen substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 4 alkylene-OR 32 , -C 0 ⁇ 4 alkylene-SR 32 , -C 0 ⁇ 4 alkylene-NR 32 R 33 , -C 0 ⁇ 4 alkylene-OC(O)R 32 , -C 0 ⁇ 4 alkylene-S(O) 2 R 32 , -C 0 ⁇ 4 alkylene -S(O)R 32 , -C 0 ⁇ 4 alkylene-S(O) 2 NR 32 R 33 , -C 0 ⁇ 4 alkylene-S(O)NR 32 R 33 , -C 0 ⁇ 4 al
  • R 32 and R 33 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted - C 2-6 alkenyl, halogen-substituted -C 2-6 alkynyl.
  • R 1 is selected from n-butyl.
  • R 2 is selected from -C 1 ⁇ 2 alkylene-OR 21 , -C 1 ⁇ 2 alkylene-SR 21 , -C 1 ⁇ 2 alkylene-NR 21 R 22 , -C 1 ⁇ 2 alkylene -OC(O)R 21 , -C 1 ⁇ 2 alkylene-S(O) 2 R 21 , -C 1 ⁇ 2 alkylene-S(O)R 21 , -C 1 ⁇ 2 alkylene- S(O) 2 NR 21 R 22 , -C 1 ⁇ 2 alkylene-S(O)NR 21 R 22 , -C 1 ⁇ 2 alkylene-C(O)R 21 , -C 1 ⁇ 2 alkylene Alkyl-C(O)OR 21 , -C 1 ⁇ 2 alkylene-C(O)NR 21 R 22 , -C 1 ⁇ 2 alkylene-NR 21 C(O)R 22 , -C 1 ⁇ 2 alkylene-NR 21 S(O) 2 R 22 , -C 1 ⁇ 2 al
  • R 21 and R 22 are independently selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted - C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl substituted by halogen, -C 0 ⁇ 2 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 2 alkylene-(4 ⁇ 10 membered heterocycloalkyl).
  • R2 is selected from
  • R 21 and R 22 are independently selected from hydrogen, -C 1-6 alkyl, halogen-substituted -C 1-6 alkyl, -C 0-2 alkylene-(3-6 membered carbocyclyl).
  • R2 is selected from
  • R 3 is selected from -C 0 ⁇ 2 alkylene-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 2 alkylene-(4 ⁇ 10 membered heterocycloalkyl), -C 0 ⁇ 2 alkylene Base-(6-10 membered aromatic ring), -C 0-2 alkylene-(5-10 membered aromatic heterocyclic ring); among them, alkylene, carbocyclyl, heterocycloalkyl, aromatic ring, aromatic hetero The ring can be further optionally substituted by one, two, three or four independent R 31 ;
  • Each R 31 is independently selected from hydrogen, halogen, cyano, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, Halogen substituted -C 2 ⁇ 6 alkenyl, halogen substituted -C 2 ⁇ 6 alkynyl; or, two independent R 31 are formed together with the atoms directly connected to them
  • R 4 is selected from hydrogen, -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl Group, -C 2 ⁇ 6 alkynyl substituted by halogen.
  • R3 is selected from 3-membered carbocyclyl, 4-membered carbocyclyl, 5-membered carbocyclyl, 6-membered carbocyclyl, 7-membered carbocyclyl, 8-membered carbocyclyl, 9-membered carbocyclyl, 10-membered carbocyclyl group, 4-membered heterocycloalkyl, 5-membered heterocycloalkyl, 6-membered heterocycloalkyl, 7-membered heterocycloalkyl, 8-membered heterocycloalkyl, 9-membered heterocycloalkyl, 10-membered heterocycloalkyl , 6-membered aromatic ring, 10-membered aromatic ring, 5-membered aromatic heterocycle, 6-membered aromatic heterocycle, 7-membered aromatic heterocycle, 8-membered aromatic heterocycle, 9-membered aromatic heterocycle, 8-membered aromatic heterocycle; among them, carbon Cyclic group, heterocycloalkyl,
  • R 4 is selected from hydrogen, -C 1-6 alkyl.
  • R3 is selected from Wherein, the ring selected by R3 can be further optionally replaced by one, two, three or four independent R31 .
  • R3 is selected from
  • X is selected from NR X1 ;
  • R X1 is selected from -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl, Halogen substituted -C 2 ⁇ 6 alkynyl, -C 0 ⁇ 2 alkyl-(3 ⁇ 10 membered carbocyclyl), -C 0 ⁇ 2 alkyl-(4 ⁇ 10 membered heterocycloalkyl), -C 0-2 alkyl-(6-10 membered aromatic ring), -C 0-2 alkyl-(5-10 membered aromatic heterocycle).
  • R X1 is selected from -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl, 3-membered carbocyclyl, 4-membered carbocyclyl, 5-membered carbocyclyl, 6-membered carbocycle Base, 7-membered carbocyclyl, 8-membered carbocyclyl, 4-membered heterocycloalkyl, 5-membered heterocycloalkyl, 6-membered heterocycloalkyl, 7-membered heterocycloalkyl, 8-membered heterocycloalkyl, benzene Ring, 5-membered aromatic heterocycle, 6-membered aromatic heterocycle.
  • R X1 selected from
  • n1 and m2 are independently selected from 0, 1, 2 or 3;
  • n3 is selected from 1, 2, 3, 4 or 5.
  • n1 and n2 are independently selected from 0, 1, 2 or 3;
  • n3 is selected from 1, 2, 3, 4 or 5.
  • the compound is specifically:
  • the present invention also provides any one of the above-mentioned compounds, or their deuterated compounds, or their stereoisomers, or their pharmaceutically acceptable salts in the preparation of angiotensin II receptor and endothelin receptor dual antagonist drugs the use of.
  • the present invention also provides any one of the above-mentioned compounds, or their deuterated compounds, or their stereoisomers, or their pharmaceutically acceptable salts for use in the treatment of cardiovascular and cerebrovascular diseases including hypertension, and kidney diseases. Use in medicine for diseases associated with diabetes-related organ damage.
  • the present invention also provides a pharmaceutical composition, which includes preparations prepared from any of the above-mentioned compounds, or deuterated compounds thereof, or stereoisomers thereof, or pharmaceutically acceptable salts thereof.
  • the above pharmaceutical composition further includes pharmaceutically acceptable carriers, adjuvants and vehicles.
  • the present invention also provides a method for treating diseases related to angiotensin II receptors and endothelin receptors, the method comprising administering an effective amount of any one of the above compounds of the present invention, or its deuterated Substitute compound, or stereoisomer thereof, or pharmaceutically acceptable salt thereof, or any above-mentioned composition;
  • said disease includes cardiovascular and cerebrovascular diseases including hypertension, kidney disease and diabetes-related organ damage related diseases.
  • the present invention also provides a compound represented by formula IIIa or formula IIIb, or a deuterated compound thereof, or a stereoisomer thereof, or a pharmaceutically acceptable salt thereof:
  • R1 is selected from -C 1 ⁇ 6 alkyl, -C 2 ⁇ 6 alkenyl, -C 2 ⁇ 6 alkynyl , halogen substituted -C 1 ⁇ 6 alkyl, halogen substituted -C 2 ⁇ 6 alkenyl, halogen substituted -C 2 ⁇ 6 alkynyl, preferably from n-butyl;
  • m1, m2 are independently selected from 0, 1 , 2 or 3;
  • m3 is selected from 1, 2, 3, 4 or 5;
  • n1, n2 are independently selected from 0, 1, 2 or 3;
  • n3 is selected from 1, 2, 3, 4 or 5.
  • the compound shown in the preferred formula IIIa or formula IIIb is selected from
  • the compounds and derivatives provided in the present invention may be named according to the IUPAC (International Union of Pure and Applied Chemistry) or CAS (Chemical Abstracts Service, Columbus, OH) nomenclature system.
  • substitution means that the hydrogen atom in the molecule is replaced by other different atoms or groups; or the lone pair of electrons of atoms in the molecule is replaced by other atoms or groups, for example, the lone pair of electrons on the S atom can be replaced by O atomic substitution formation
  • C a-b alkyl indicates any alkyl group containing "a" to "b" carbon atoms.
  • C 1-6 alkyl refers to an alkyl group containing 1-6 carbon atoms.
  • Alkyl means a saturated hydrocarbon chain having the indicated number of member atoms. Alkyl groups can be straight or branched. Representative branched alkyl groups have one, two or three branches. Alkyl groups may be optionally substituted with one or more substituents as defined herein. Alkyl groups include methyl, ethyl, propyl (n-propyl and isopropyl), butyl (n-butyl, isobutyl and tert-butyl), pentyl (n-pentyl, isopentyl and neopentyl base) and hexyl. Alkyl groups may also be part of other groups such as -O(C 1-6 alkyl).
  • Alkylene means a divalent saturated aliphatic hydrocarbon group having the indicated number of member atoms.
  • C a ⁇ b alkylene refers to an alkylene group having a to b carbon atoms.
  • Alkylene groups include branched and straight chain hydrocarbyl groups.
  • the term "propylene” can be exemplified by the following structures:
  • the term "dimethylbutylene” can be exemplified, for example, by any of the following structures:
  • the -C 0 to 4 alkylene in the present invention can be C 0 alkylene, C 1 alkylene (such as -CH 2 -), C 2 alkylene (such as -CH 2 CH 2 -, etc.), C 3 Alkylene or C 4 alkylene;
  • C 0 alkylene means that the group here does not exist, and is connected in the form of a chemical bond, such as AC 0 alkylene-B means AB, that is, the A group and The B groups are connected directly by chemical bonds.
  • the "carbocyclyl” mentioned in the present invention refers to a saturated or non-aromatic partially saturated group with a single ring or multiple rings (fused, bridged, spiro) having multiple carbon atoms and no ring heteroatoms. cyclic group.
  • the term "carbocyclyl” includes cycloalkenyl groups such as cyclohexenyl. Examples of monocarbocyclyl groups include, for example, cyclopropyl, cyclobutyl, cyclohexyl, cyclopentyl, cyclooctyl, cyclopentenyl and cyclohexenyl.
  • Examples of carbocyclyl groups of condensed carbocyclyl systems include bicyclohexyl, bicyclopentyl, bicyclooctyl, etc., and two such bicycloalkyl polycyclic structures are exemplified and named below: Bicyclohexyl and Bicyclohexyl.
  • Examples of carbocyclyl groups of bridged carbocyclyl systems include Adamantyl, etc.
  • Examples of carbocyclyl groups for spirocarbocyclyl systems include wait.
  • Carbocyclyl also includes the case of a partially saturated cyclic group formed by the fusion of an aromatic ring and a non-aromatic ring, and the point of attachment may be at a non-aromatic carbon atom or an aromatic carbon atom, examples include 1,2, 3,4-tetrahydronaphthalen-5-yl, 5,6,7,8-tetrahydronaphthalen-5-yl.
  • saturated in the present invention means that the groups or molecules contain carbon-carbon double bonds, carbon-carbon triple bonds, carbon-oxygen double bonds, carbon-sulfur double bonds, carbon-nitrogen triple bonds, and the like.
  • Cab alkenyl refers to an alkenyl group having a to b carbon atoms and is intended to include, for example, ethenyl, propenyl, isopropenyl, 1,3-butadienyl, and the like.
  • Alkynyl means a linear or branched monovalent hydrocarbon radical containing at least one triple bond.
  • alkynyl is also intended to include those hydrocarbyl groups having one triple bond and one double bond.
  • C alkynyl is intended to include ethynyl, propynyl, and the like.
  • heterocycloalkyl refers to a saturated ring or a non-aromatic partially saturated ring with a single ring or multiple rings (fused, bridged, spiro) containing at least one heteroatom; wherein A hetero atom refers to a nitrogen atom, an oxygen atom, a sulfur atom, and the like.
  • a hetero atom refers to a nitrogen atom, an oxygen atom, a sulfur atom, and the like.
  • heterocycloalkyl groups for monoheterocycloalkyl systems are oxetanyl, azetidinyl, pyrrolidinyl, 2-oxo-pyrrolidin-3-yl, tetrahydrofuranyl, tetrahydro- Thienyl, pyrazolidinyl, imidazolidinyl, thiazolidinyl, piperidinyl, tetrahydropyranyl, tetrahydrothiopyranyl, piperazinyl, morpholinyl, thiomorpholinyl, 1,1- Dioxo-thiomorpholin-4-yl, azepanyl, diazepanyl, homopiperazinyl or oxazepanyl, etc.
  • heterocycloalkyl groups for fused heterocycloalkyl systems include 8-aza-bicyclo[3.2.1]octyl, quinuclidinyl, 8-oxa-3-aza-bicyclo[3.2 .1] Octyl, 9-aza-bicyclo[3.3.1]nonyl, etc.
  • heterocycloalkyl groups for bridged heterocycloalkyl systems include wait.
  • heterocycloalkyl groups for spiroheterocycloalkyl systems include wait.
  • partially saturated heterocycloalkyl are dihydrofuranyl, imidazolinyl, tetrahydro-pyridyl or dihydropyranyl and the like.
  • heterocycloalkyl also includes the case where an aromatic ring containing at least one heteroatom is fused with a non-aromatic ring to form a partially saturated cyclic group, and the point of attachment may be at a non-aromatic carbon atom, an aromatic carbon atom or heteroatoms, examples include
  • aromatic ring refers to an aromatic hydrocarbon group having multiple carbon atoms.
  • Aryl groups are typically monocyclic, bicyclic or tricyclic aryl groups having multiple carbon atoms.
  • aryl refers to an aromatic substituent which may be a single aromatic ring or multiple aromatic rings fused together. Non-limiting examples include phenyl, naphthyl or tetrahydronaphthyl.
  • heteromatic ring refers to an aromatic unsaturated ring containing at least one heteroatom; wherein the heteroatom refers to nitrogen atom, oxygen atom, sulfur atom and the like.
  • Aromatic monocyclic or bicyclic hydrocarbons usually containing multiple ring atoms, wherein one or more ring atoms are selected from O, N, S heteroatoms. There are preferably one to three heteroatoms.
  • Heterocyclic aryl represents for example: pyridyl, indolyl, quinoxalinyl, quinolinyl, isoquinolyl, benzothienyl, benzofuryl, benzothienyl, benzopyranyl, benzene Thiopyranyl, furyl, pyrrolyl, thiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, imidazolyl, thienyl, oxadiazolyl, benzimidazole benzothiazolyl, benzoxazolyl.
  • halogen refers to fluorine, chlorine, bromine or iodine.
  • halogen-substituted alkyl in the present invention means that one or more hydrogen atoms in the alkyl group are replaced by halogen; for example, the halogen-substituted C1 ⁇ 4 alkyl means that the hydrogen atom is replaced by one or more halogen atoms
  • oxygen atom in "-C(O)R", “-S(O) 2 R” and the like described in the present invention is connected to a carbon atom or a sulfur atom by a double bond.
  • the oxygen atom in "-C(O)R", “-S(O) 2 R” and the like described in the present invention is connected with a carbon atom or a sulfur atom with a double bond, and the R group is connected with an oxygen atom or a sulfur atom Connected by a single bond;
  • another example "-S(O)(NH)R” means that the oxygen atom and nitrogen atom are connected to the sulfur atom by a double bond, and the R group is connected to the sulfur atom by a single bond.
  • “Chemical bond” in the description of the present invention refers to a single bond, such as When Y is selected from chemical bonds, the benzene ring and the sulfur atom of the sulfonyl group are directly linked by a single bond.
  • group of the present invention is used to represent a single stereoconfiguration in a chemical structure; for example Indicates that the cyclopropane moiety has a single stereoconfiguration and the absolute configuration is indeterminate.
  • the "deuterated compound” of the present invention means that one or more hydrogen atoms in a molecule or group are replaced by deuterium atoms, wherein the proportion of deuterium atoms is greater than the abundance of deuterium in nature.
  • pharmaceutically acceptable means that a certain carrier, carrier, diluent, excipient, and/or formed salt are generally chemically or physically compatible with other ingredients that constitute a pharmaceutical dosage form, and are physiologically compatible Compatible with receptors.
  • salts and “pharmaceutically acceptable salt” refer to the above-mentioned compounds or their stereoisomers, acidic and/or basic salts formed with inorganic and/or organic acids and bases, and also include zwitterionic salts ( Inner salts), also include quaternary ammonium salts, such as alkyl ammonium salts. These salts may be obtained directly in the final isolation and purification of the compounds. It can also be obtained by mixing the above-mentioned compound, or its stereoisomer, with a certain amount of acid or base as appropriate (for example, equivalent). These salts may form precipitates in solution and be collected by filtration, or may be recovered after evaporation of the solvent, or may be obtained by freeze-drying after reaction in an aqueous medium.
  • one or more compounds of the invention may be used in combination with each other.
  • the compound of the present invention may be used in combination with any other active agents for the preparation of drugs or pharmaceutical compositions for regulating cell functions or treating diseases. If a group of compounds is used, the compounds may be administered to the subject simultaneously, separately or sequentially.
  • Figure 1 is a schematic diagram of the three-dimensional structure of the compound of Example 3 of the present invention obtained by X-ray single crystal diffraction analysis method.
  • NMR nuclear magnetic resonance
  • MS mass spectroscopy
  • LC-MS Shimadzu LC-MS 2020 (ESI)).
  • HPLC measurement used a Shimadzu high pressure liquid chromatograph (Shimadzu LC-20A).
  • MPLC Medium Pressure Preparative Chromatography
  • Yantai Huanghai HSGF254 or Qingdao GF254 silica gel plates are used for thin-layer chromatography silica gel plates, and the specifications of thin-layer chromatography separation and purification products are 0.4mm to 0.5mm.
  • Column chromatography generally uses Yantai Huanghai silica gel 200-300 mesh silica gel as the carrier.
  • the known starting materials of the present invention can be adopted or synthesized according to methods known in the art, or can be purchased from companies such as Anaiji Chemical, Chengdu Kelong Chemical, Shaoyuan Chemical Technology, and Bailingwei Technology.
  • the reaction is carried out under a nitrogen atmosphere.
  • the solution refers to an aqueous solution.
  • the temperature of the reaction is room temperature.
  • M is moles per liter.
  • DIBAL-H diisobutylaluminum hydride
  • DPPA diphenylphosphoryl azide
  • DMF dimethylformamide
  • compound 1e 500 mg, 1.18 mmol was dissolved in a mixed solution of toluene (2 mL) and ethanol (1 mL), then tetrakis(triphenylphosphine) palladium (137 mg, 0.118 mmol), sodium carbonate ( 377 mg, 3.56 mmol). The temperature of the reaction system was raised to 85° C. and reacted for 3 hours.
  • compound 1k 820 mg, crude product obtained in the previous step was dissolved in methanol (5 mL), and potassium hydroxide (172 mg, 3.07 mmol) and hydrogen peroxide (30%, 2 mL, 4.91 mmol) were added. After the reaction system was reacted at 50°C for 30 minutes, it was cooled to room temperature and potassium hydroxide (689mg, 12.28mmol) was added again, and the reaction system was heated to 70°C for 2 hours. After the reaction was detected by LC-MS and TLC, solid ammonium chloride (100 mg) was added to the reaction system for neutralization. Concentrate under reduced pressure and extract with ethyl acetate (10 mL).
  • compound 2b 350mg, 3.22mmol was dissolved in 1ml of water, hydrochloric acid solution (0.5N, 0.35mL) was added dropwise into the system, and after stirring for 5 minutes, compound 2a (460mg, 3.53mmol) was Aqueous solution (1 mL) was dripped into the system. After stirring for 4 hours, ethanol was added to the reaction system until the system was clear, and the reaction solution was frozen at 4° C. for 16 hours.
  • diiodomethane (24.5g, 91.5mmol) was carefully dropped into a dichloromethane solution of diethylzinc (166mL, 1M, 166mmol), stirred for 30 minutes, compound 3a (7.0g, 83.3mmol) was added and Continue to react for 3 hours. After the reaction was monitored by TLC, saturated aqueous ammonium chloride (100 mL) was added to quench the reaction, the system was extracted with dichloromethane (200 mL*2), the organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the crude compound 3e (610 mg) was dissolved in methanol (6 mL), and potassium hydroxide (332 mg, 5.92 mmol) and 30% hydrogen peroxide (1.5 mL) were added.
  • the reaction system was reacted at 50° C. for 30 minutes, cooled to room temperature and potassium hydroxide (332 mg, 5.92 mmol) was added again, and the temperature of the reaction system was raised to 70° C. for 2 hours.
  • solid ammonium chloride (1.2 g) was added to the reaction system and stirred, diluted with methanol and then concentrated.
  • Example 3 Single crystal growth method of final product 3: Weigh 20 mg of solid, place it in an ampoule containing a mixed solution of 1 ml of ethyl acetate and 2 ml of n-hexane, put cotton wool on the mouth of the bottle to slow down the volatilization rate. The solvent was left to evaporate at room temperature, and crystals were obtained after 2 days.
  • the experimental parameters and results obtained by X-ray single crystal diffraction analysis are as follows; the analyzed configuration of compound 3 is shown in Figure 1, which is consistent with the final product 3 in Example 3.
  • compound 3f-1 (24.0mg, 0.12mmol) was dissolved in anhydrous N,N-dimethylformamide (1mL), sodium hydride (60%, 10.6mg, 0.26mmol) was added, and stirred for 30 Minutes later, a solution of compound 5g (70mg, 0.12mmol) in N,N-dimethylformamide (0.5mL) was added to the system. Stir at room temperature for 3 hours. After the completion of the reaction monitored by LC-MS, the system was poured into saturated ammonium chloride (10 mL), extracted with ethyl acetate (20 mL), and the separated organic phase was washed with saturated brine (10 mL). Dry over sodium sulfate and distill under reduced pressure.
  • compound 3f-2 (26.0mg, 0.13mmol) was dissolved in anhydrous N,N-dimethylformamide (1.2mL), sodium hydride (60%, 11.2mg, 0.28mmol) was added, and stirred After 30 minutes, a solution of compound 5g (75 mg, 0.12 mmol) in N,N-dimethylformamide (0.7 mL) was added to the system. Stir at room temperature for 3 hours. After the completion of the reaction monitored by LC-MS, the system was poured into saturated ammonium chloride (10 mL), extracted with ethyl acetate (20 mL), and the separated organic phase was washed with saturated brine (10 mL). Dry over sodium sulfate and distill under reduced pressure.
  • compound 7d (1.3g, 3.70mmol) was dissolved in N,N-dimethylformamide (10mL), sodium hydride (60%, 171mg, 4.28mmol) was added in portions, and after stirring for 5 minutes Raised to room temperature for 30 minutes. Then the system was moved to -15°C, bromomethyl methyl ether (600mg, 4.80mmol) was added dropwise, stirred for 5 minutes, and then the temperature was raised naturally for 30 minutes.
  • compound 7e 300mg, 0.76mmol
  • compound 7a (220mg, 0.76mmol)
  • tetrakistriphenylphosphine palladium 114mg, 0.099mmol
  • sodium carbonate 402mg, 3.79mmol
  • the system was reacted at 85°C for 2 hours. After the completion of the reaction was detected by LC-MS, it was filtered through diatomaceous earth and concentrated under reduced pressure.
  • compound 3f-1 (25.0 mg, 0.12 mmol) was dissolved in anhydrous N, N-dimethylformamide (2 mL), added sodium hydride (60%, 5.34 mg, 0.13 mmol), and stirred After 5 minutes, it was raised to room temperature and stirred for 30 minutes, then the system was moved to an ice bath, and a solution of compound 7h (55mg, 0.10mmol) in N,N-dimethylformamide (2mL) was slowly added dropwise to the reaction, After 5 minutes, it was raised to room temperature and reacted for 1 hour.
  • Test materials a) cell line: AT1/HEK293; b) vehicle: F12, Invitrogen (Cat# 11765-047); FBS, Corning (Cat# 35-076-CV); Geneticin, Invitrogen (Cat# 10131); c ) Reagent: Fluo-4 Direct, (Invitrogen, Cat# F10471); d) Instrument: 384 well Poly-D-Lysine protein coating plate, Greiner #781946; Vi-cell XR Cell Viability Analyzer, Beckman Coulter; Incubator, Thermo;
  • agonist angiotensin II
  • antagonist Lisartan
  • compound plates antagonist and test compound were serially diluted 1:4 with DMSO to obtain 10 concentration points. Then transfer 900 nL of compound solution to the master plate and add 30 ⁇ L of assay buffer solution.
  • Table 1 (IC 50 of AT1 activity: + represents 100nM to 1 ⁇ M, ++ represents 10nM to 100nM, +++ represents 1nM to 10nM, and the specific activities are shown in the third column of Table 1)
  • Test materials a) Cell line: ETa/HEK293; b) Medium: DMEM, Invitrogen (Cat# 11960); Geneticin, Invitrogen (Cat# 10131); c) Reagent: Fluo-4 Direct, (Invitrogen, Cat# F10471) ; d) Instruments: 384 well Poly-D-Lysine protein coating plate, Greiner #781946; Vi-cell XR Cell Viability Analyzer, Beckman Coulter; Incubator, Thermo.
  • endothelin factor endothelin-1, ET-1
  • the agonist was diluted from 50 ⁇ M to 15 ⁇ M with the buffer used in the test.
  • antagonist and test compound were serially diluted with DMSO at a ratio of 1:4 to obtain 10 concentration points. Then transfer 900 nL of compound to the master plate, and add 30 ⁇ L of assay buffer.
  • Table 2 (ETa activity IC 50 : + represents 100nM to 1 ⁇ M, ++ represents 10nM to 100nM, +++ represents 1nM to 10nM, and the specific activities are shown in the third column of Table 2)
  • the detection is based on high-performance liquid chromatography (Chinese Pharmacopoeia 2020 Edition Four General Rules 0512):
  • Test Example 4 Inhibition of Human Liver Microsomal Cytochrome P450 Isoenzyme (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4) Activity
  • a total of 6 specific probe substrates of 6 isoenzymes of CYP were naphthoflavone ( ⁇ -Naphthoflavone, CYP1A2), sulfaphenazole (Sulphaphenazole, CYP2C9), ticlopidine (Ticlopidine, CYP2C19), quinine Quinidine (CYP2D6), ketoconazole (CYP3A4) and Montelukast (Montelukast, CYP2C8) were incubated with recombinant liver drug enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP2C8 and test compounds respectively, and smoke Amide adenine dinucleoside phosphate (NADP+), D-glucose-6-phosphate (G6P) and glucose-6-phosphate dehydrogenase (G6DHP) start the reaction, after the reaction is completed by fluor
  • the compound of Example 7 has no risk of inhibiting the activities of human liver microsomal cytochrome P450 isozymes CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP2C8.
  • Example 3 The above data predict that the clinical use of the compounds of Example 3 and Example 7 has a lower risk of DDI (drug-drug interaction).
  • mice SD rats, 6-8 weeks old. Six animals were used for each example compound.
  • Drug solution preparation the compounds of the test examples were prepared into 1 mg/mL solutions.
  • the solution system is 5% DMSO+20% Solutol HS15+75% (20% HP- ⁇ -CD aqueous solution)
  • Dosing grouping the first group of oral gavage administration (PO, 3 SD rats, 10mg/kg, fasting overnight before administration, feeding 4 hours after administration); the second group of foot dorsal intravenous injection ( IV, 3 SD rats, 1 mg/kg, free to eat).
  • PO oral gavage administration
  • IV foot dorsal intravenous injection
  • Blood collection time and processing method blood was collected from the jugular vein at 0.083 (intravenous injection group only), 0.25, 0.5, 1, 2, 4, 8 and 24 hours, a total of 7 to 8 time points. Blood samples were centrifuged (2000g, 4°C, 5 minutes) to obtain plasma. Samples were stored at -70°C until analysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

提供了一类式)(I)所示的具有血管紧张素II受体及内皮素受体双重拮抗作用的新化合物及其在制备药物中的用途。

Description

一种双重拮抗剂及其用途
相关申请的引用
本发明要求2021年10月21日在中国提交的,名称为“一种双重拮抗剂及其用途”、申请号为202111228856.0的发明专利申请的优先权,通过引用的方式将该专利申请的全部内容并入本文。
技术领域
本发明涉及一类具有血管紧张素II受体及内皮素受体双重拮抗作用的新化合物及其在制备药物中的用途。
背景技术
血管紧张素II(AngII)和内皮素-1(ET-1)是两种有效的内源性血管活性肽,被认为在控制与多种疾病相关的血管张力和病理组织重塑中均起着作用。血管紧张素II受体有四种亚型,即AT1、AT2、AT3、AT4。以AT1和AT2为主,AT1受体几乎介导血管紧张素II受体的所有病理生理功能。血管紧张素II受体拮抗剂作为针对系统抗高血压药物,已表现出亲和力强、选择性高、口服有效、半衰期长、耐受性好等优点。内皮素是一种强效的促进血管收缩的血管活性肽,在维持血管稳态中起着关键作用。现有技术已经鉴定出多种不同的内皮素受体(如ETA,ETB1,ETB2和ETC等),其中,对于ETA的研究最为充分,其拮抗剂可以用于治疗高血压、肺动脉高压、慢性肾脏疾病、动脉粥样硬化等疾病。
临床前和初始临床数据表明,与单独使用任何一种机制相比,同时在各自的受体AT1和ETA处阻断血管紧张素II和内皮素1可能为几种心血管疾病提供改善的治疗选择。血管紧张素II受体和内皮素受体双重拮抗剂对血管紧张素II受体和ETA受体兼有拮抗作用,比单一的血管紧张素II或ETA受体拮抗剂疗效更好,适应范围更广,是一类潜在的可用于高血压或肾病等疾病的药物。虽然WO2000001389A1、CN101891735A等公开了一系列血管紧张素II受体及内皮素受体双重拮抗剂,仍需要开发活性更好、选择性更高、水溶性更好、药物-药物相互作用更小的双重拮抗剂药物。
发明内容
本发明提供了一种式I所示的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐:
Figure PCTCN2022126482-appb-000001
其中,
X选自NR X1或CR X2R X3
Y选自化学键、NR Y1或CR Y2R Y3
R Y1选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
R Y2、R Y3分别独立地选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
R X1选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);其中,亚烷基、碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R X11取代;
每个R X11分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR X12、-C 0~4亚烷基-SR X12、-C 0~4亚烷基-NR X12R X13;或者,两个独立的R X11与相连的原子一起形成
Figure PCTCN2022126482-appb-000002
R X12、R X13分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6 烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;
R X2、R X3与其直接相连的原子一起形成6~12元螺环、6~12元螺杂环、6~12元稠环、6~12元稠杂环;其中,螺环、螺杂环、稠环、稠杂环可进一步任选被一个、两个、三个或四个独立的R X21取代;
每个R X21分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR X22、-C 0~4亚烷基-SR X22、-C 0~4亚烷基-NR X22R X23;或者,两个独立的R X21与其直接相连的原子一起形成
Figure PCTCN2022126482-appb-000003
R X22、R X23分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;
R 1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;
R 2选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR 21、-C 0~4亚烷基-SR 21、-C 0~4亚烷基-NR 21R 22、-C 0~4亚烷基-OC(O)R 21、-C 0~4亚烷基-S(O) 2R 21、-C 0~4亚烷基-S(O)R 21、-C 0~4亚烷基-S(O) 2NR 21R 22、-C 0~4亚烷基-S(O)NR 21R 22、-C 0~4亚烷基-C(O)R 21、-C 0~4亚烷基-C(O)OR 21、-C 0~4亚烷基-C(O)NR 21R 22、-C 0~4亚烷基-NR 21C(O)R 22、-C 0~4亚烷基-NR 21S(O) 2R 22、-C 0~4亚烷基-NR 21S(O)R 22、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
R 21、R 22分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
R 3、R 4分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);其中,亚烷基、碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R 31取代;
每个R 31分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR 32、-C 0~4 亚烷基-SR 32、-C 0~4亚烷基-NR 32R 33、-C 0~4亚烷基-OC(O)R 32、-C 0~4亚烷基-S(O) 2R 32、-C 0~4亚烷基-S(O)R 32、-C 0~4亚烷基-S(O) 2NR 32R 33、-C 0~4亚烷基-S(O)NR 32R 33、-C 0~4亚烷基-C(O)R 32、-C 0~4亚烷基-C(O)OR 32、-C 0~4亚烷基-C(O)NR 32R 33、-C 0~4亚烷基-NR 32C(O)R 33、-C 0~4亚烷基-NR 32S(O) 2R 33、-C 0~4亚烷基-NR 32S(O)R 33、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);或者,两个独立的R 31与其直接相连的原子一起形成
Figure PCTCN2022126482-appb-000004
R 32、R 33分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基。
进一步地,R 1选自正丁基。
进一步地,
R 2选自-C 1~2亚烷基-OR 21、-C 1~2亚烷基-SR 21、-C 1~2亚烷基-NR 21R 22、-C 1~2亚烷基-OC(O)R 21、-C 1~2亚烷基-S(O) 2R 21、-C 1~2亚烷基-S(O)R 21、-C 1~2亚烷基-S(O) 2NR 21R 22、-C 1~2亚烷基-S(O)NR 21R 22、-C 1~2亚烷基-C(O)R 21、-C 1~2亚烷基-C(O)OR 21、-C 1~2亚烷基-C(O)NR 21R 22、-C 1~2亚烷基-NR 21C(O)R 22、-C 1~2亚烷基-NR 21S(O) 2R 22、-C 1~2亚烷基-NR 21S(O)R 22
R 21、R 22分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~2亚烷基-(3~10元碳环基)、-C 0~2亚烷基-(4~10元杂环烷基)。
更进一步地,
R 2选自
Figure PCTCN2022126482-appb-000005
R 21、R 22分别独立选自氢、-C 1~6烷基、卤素取代的-C 1~6烷基、-C 0~2亚烷基-(3~6元碳环基)。
进一步具体地,
R 2选自
Figure PCTCN2022126482-appb-000006
进一步地,
R 3选自-C 0~2亚烷基-(3~10元碳环基)、-C 0~2亚烷基-(4~10元杂环烷基)、-C 0~2亚烷基 -(6~10元芳环)、-C 0~2亚烷基-(5~10元芳杂环);其中,亚烷基、碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R 31取代;
每个R 31分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;或者,两个独立的R 31与其直接相连的原子一起形成
Figure PCTCN2022126482-appb-000007
R 4选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基。
更进一步地,
R 3选自3元碳环基、4元碳环基、5元碳环基、6元碳环基、7元碳环基、8元碳环基、9元碳环基、10元碳环基、4元杂环烷基、5元杂环烷基、6元杂环烷基、7元杂环烷基、8元杂环烷基、9元杂环烷基、10元杂环烷基、6元芳环、10元芳环、5元芳杂环、6元芳杂环、7元芳杂环、8元芳杂环、9元芳杂环、8元芳杂环;其中,碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R 31取代;
R 4选自氢、-C 1~6烷基。
进一步具体地,
R 3选自
Figure PCTCN2022126482-appb-000008
Figure PCTCN2022126482-appb-000009
其中,R 3选自的环可进一步任选被一个、两个、三个或四个独立的R 31取代。
更进一步具体地,
R 3选自
Figure PCTCN2022126482-appb-000010
Figure PCTCN2022126482-appb-000011
进一步地,
X选自NR X1
R X1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6 烯基、卤素取代的-C 2~6炔基、-C 0~2烷基-(3~10元碳环基)、-C 0~2烷基-(4~10元杂环烷基)、-C 0~2烷基-(6~10元芳环)、-C 0~2烷基-(5~10元芳杂环)。
更进一步地,
R X1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、3元碳环基、4元碳环基、5元碳环基、6元碳环基、7元碳环基、8元碳环基、4元杂环烷基、5元杂环烷基、6元杂环烷基、7元杂环烷基、8元杂环烷基、苯环、5元芳杂环、6元芳杂环。
进一步具体地,
R X1选自
Figure PCTCN2022126482-appb-000012
Figure PCTCN2022126482-appb-000013
进一步地,所述式I的化合物如式IIa所示:
Figure PCTCN2022126482-appb-000014
其中,
m1、m2分别独立选自0、1、2或3;
m3选自1、2、3、4或5。
进一步地,所述式I的化合物如式IIb所示:
Figure PCTCN2022126482-appb-000015
其中,
n1、n2分别独立选自0、1、2或3;
n3选自1、2、3、4或5。
在本发明的一些具体实施方案中,所述化合物具体为:
Figure PCTCN2022126482-appb-000016
Figure PCTCN2022126482-appb-000017
Figure PCTCN2022126482-appb-000018
Figure PCTCN2022126482-appb-000019
本发明还提供了任一上述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐在制备血管紧张素II受体及内皮素受体双重拮抗剂药物中的用途。
本发明还提供了任一上述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐在制备用于治疗包括高血压在内的心脑血管疾病、肾脏疾病和糖尿病相关的器官损害有关的疾病的药物中的用途。
本发明还提供了一种药物组合物,包括任一上述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐制备而成的制剂。
上述的药物组合物进一步包括药学上可接受的载体、辅料、媒介物。
本发明还提供了一种治疗血管紧张素II受体及内皮素受体有关病症的方法,所述方法包括向有需要的受试者施用有效量的本发明任一上述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐或者任一上述的组合物;优选的所述疾病包括高血压在内的心脑血管疾病、肾脏疾病和糖尿病相关的器官损害有关的疾病。
本发明还提供了式IIIa或式IIIb所示的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐:
Figure PCTCN2022126482-appb-000020
其中m1、m2、m3、n1、n2、n3的定义如本发明如上所述;R 1选自选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基,优选自正丁基;m1、m2分别独立 选自0、1、2或3;m3选自1、2、3、4或5;n1、n2分别独立选自0、1、2或3;n3选自1、2、3、4或5。优选的所述式IIIa或式IIIb所示的化合物选自
Figure PCTCN2022126482-appb-000021
本发明中提供的化合物和衍生物可以根据IUPAC(国际纯粹与应用化学联合会)或CAS(化学文摘服务社,Columbus,OH)命名系统命名。
关于本发明的使用术语的定义:除非另有说明,本文中基团或者术语提供的初始定义适用于整篇说明书的该基团或者术语;对于本文没有具体定义的术语,应该根据公开内容和上下文,给出本领域技术人员能够给予它们的含义。
“取代”是指分子中的氢原子被其它不同的原子或基团所替换;或者是分子中原子的孤对电子被其它的原子或基团替换,例如S原子上的孤对电子可被O原子取代形成
Figure PCTCN2022126482-appb-000022
“可进一步任选被取代”是指“取代”可以但不必须发生,该说明包括发生或不发生的情形。
碳氢基团中碳原子含量的最小值和最大值通过前缀表示,例如,前缀C a~b烷基表明任何含“a”至“b”个碳原子的烷基。因此,例如,C 1~6烷基是指包含1~6个碳原子的烷基。
“烷基”是指具有指定数目的成员原子的饱和烃链。烷基基团可以是直链或支链的。代表性的支链烷基基团具有一个、两个或三个支链。烷基基团可任选地被一个或多个如本文所定义的取代基取代。烷基包括甲基、乙基、丙基(正丙基和异丙基)、丁基(正丁基、异丁基和叔丁基)、戊基(正戊基、异戊基和新戊基)和己基。烷基基团也可以是其他基团的一部分,所述其他基团为例如-O(C 1~6烷基)。
“亚烷基”是指具有指定数目的成员原子的二价饱和脂族烃基。C ab亚烷基是指具有a至b个碳原子的亚烷基基团。亚烷基基团包括支链和直链烃基基团。例如,术语“亚丙基”可以通过下列结构例举:
Figure PCTCN2022126482-appb-000023
同样地,术语“二甲基亚丁基”可以例如通过下列结构的任一种例举:
Figure PCTCN2022126482-appb-000024
本发明的-C 04亚烷基可以为C 0亚烷基、C 1亚烷基(例如-CH 2-)、C 2亚烷基(例如-CH 2CH 2-等)、C 3亚烷基或C 4亚烷基;C 0亚烷基指的是此处的基团不存在,以化学键的形式连接,如A-C 0亚烷基-B指的是A-B,即A基团与B基团直接通过化学键连接。
本发明中所述的“碳环基”是指具有多个碳原子且没有环杂原子的具有单个环或多个环(稠合、桥连、螺合)的饱和或非芳香性的部分饱和的环状基团。术语“碳环基”包括环烯基基团,诸如环己烯基。单碳环基基团的实例包括例如环丙基、环丁基、环己基、环戊基、环辛基、环戊烯基和环己烯基。稠碳环基体系的碳环基基团实例包含双环己基、双环戊基、双环辛基等,下面例举并命名两种此类双环烷基多环结构:
Figure PCTCN2022126482-appb-000025
双环己基和
Figure PCTCN2022126482-appb-000026
双环己基。桥碳环基体系的碳环基基团的实例包括
Figure PCTCN2022126482-appb-000027
金刚烷基等。螺碳环基体系的碳环基基团的实例包括
Figure PCTCN2022126482-appb-000028
等。术语“碳环基”还包括芳香环与非芳香环稠合形成的部分饱和环状基团的情形,其连接位点可以位于非芳族碳原子或芳族碳原子,实例包括1,2,3,4-四氢化萘-5-基、5,6,7,8-四氢化萘-5-基。
本发明中所述的不饱和是指基团或者分子中含有碳碳双键、碳碳三键、碳氧双键、碳硫双键、碳氮三键等。
“烯基”是指具有至少1个乙烯基不饱和位点(>C=C<)的直链或支链烃基基团。例如,C a-b烯基是指具有a至b个碳原子的烯基基团并且意在包括例如乙烯基、丙烯基、异丙烯基、1,3-丁二烯基等。
“炔基”是指含有至少一个三键的直链一价烃基或支链一价烃基。术语“炔基”还意在包括具有一个三键和一个双键的那些烃基基团。例如,C 2-6炔基意在包括乙炔基、丙炔基等。
本发明中所述的“杂环烷基”是指包含至少一个杂原子的具有单个环或多个环(稠合、桥连、螺合)的饱和环或非芳香性的部分饱和环;其中杂原子指氮原子、氧原子、硫原子等。通常表示多个环原子的一价饱和或部分不饱和单环或多环环系,其包含1、2或3个选自N、O和S的环杂原子,其余的环原子是碳。单杂环烷基体系的杂环烷基基团的实例是氧杂环丁基、氮杂环丁基、吡咯烷基、2-氧代-吡咯烷-3-基、四氢呋喃基、四氢-噻吩基、吡唑烷基、咪唑烷基、噻唑烷基、哌啶基、四氢吡喃基、四氢噻喃基、哌嗪 基、吗啉基、硫代吗啉基、1,1-二氧代-硫代吗啉-4-基、氮杂环庚基、二氮杂环庚基、高哌嗪基或氧杂氮杂环庚基等。稠杂环烷基体系的杂环烷基基团的实例包括8-氮杂-二环[3.2.1]辛基、奎宁环基、8-氧杂-3-氮杂-二环[3.2.1]辛基、9-氮杂-二环[3.3.1]壬基等。桥杂环烷基体系的杂环烷基基团实例包含
Figure PCTCN2022126482-appb-000029
等。螺杂环烷基体系的杂环烷基基团实例包含
Figure PCTCN2022126482-appb-000030
等。部分饱和杂环烷基的实例是二氢呋喃基、咪唑啉基、四氢-吡啶基或二氢吡喃基等。术语“杂环烷基”还包括包含至少一个杂原子的芳香环与非芳香环稠合形成的部分饱和环状基团的情形,其连接位点可以位于非芳族碳原子、芳族碳原子或杂原子,实例包括
Figure PCTCN2022126482-appb-000031
本发明中所述的“芳环”是指具有多个碳原子的芳烃基团。芳基通常是具有多个碳原子的单环、二环或三环芳基。此外,本文所用的术语“芳基”是指可以是单个芳环或稠合在一起的多个芳环的芳族取代基。非限制性实例包括苯基、萘基或四氢萘基。
本发明中所述的“芳杂环”是指包含至少一个杂原子的芳香性不饱和环;其中杂原子指氮原子、氧原子、硫原子等。通常包含多个环原子的、其中一个或多个环原子选自O、N、S的杂原子的芳族单环或双环烃。优选地有一到三个杂原子。杂环芳基例如代表:吡啶基、吲哚基、喹噁啉基、喹啉基、异喹啉基、苯并噻吩基、苯并呋喃基、苯并噻吩基、苯并吡喃基、苯并噻吡喃基、呋喃基、吡咯基、噻唑基、噁唑基、异噁唑基、三唑基、四唑基、吡唑基、咪唑基、噻吩基、噁二唑基、苯并咪唑基、苯并噻唑基、苯并噁唑基。
本发明中所述的“卤素”是指氟、氯、溴或碘。
本发明中所述的“卤素取代的烷基”是指烷基中的一个或多个氢原子被卤素取代;例如卤素取代的C 1~4烷基指氢原子被一个或多个卤素原子取代的包含1~4个碳原子的烷基;还例如单氟甲基、双氟甲基、三氟甲基。
本发明中所述的“-OR”、“-NRR”等是指R基团与氧原子或氮原子以单键相连。
本发明中所述的“-C(O)R”、“-S(O) 2R”等中的氧原子是与碳原子或硫原子以双键相连。
本发明中所述的“-C(O)R”、“-S(O) 2R”等中的氧原子是与碳原子或硫原子以双键相连,R基团与氧原子或硫原子以单键相连;又例如“-S(O)(NH)R”是指氧原子和氮原子以双键与硫原子相连,R基团与硫原子以单键相连。
本发明中所述的
Figure PCTCN2022126482-appb-000032
是指氧原子、硫原子通过双键连接到取代位置。
本发明基团描述中的
Figure PCTCN2022126482-appb-000033
是用来描述基团取代的位置。例如
Figure PCTCN2022126482-appb-000034
是指四氢吡咯环通过
Figure PCTCN2022126482-appb-000035
的位置与结构中的其它环进行稠合。
本发明描述中的“化学键”是指单键,例如
Figure PCTCN2022126482-appb-000036
当Y选自化学键时,苯环和磺酰基团的硫原子通过单键直接相连。
本发明基团描述中的
Figure PCTCN2022126482-appb-000037
是用来表示化学结构的单一立体构型;例如
Figure PCTCN2022126482-appb-000038
表示环丙烷部分具有单一立体构型,绝对构型不确定。
本发明的“氘代化合物”是指分子或基团中的1个或多个氢原子被氘原子取代,其中氘原子的占比大于氘在自然界中的丰度。
术语“药学上可接受的”是指某载体、运载物、稀释剂、辅料,和/或所形成的盐通常在化学上或物理上与构成某药物剂型的其它成分相兼容,并在生理上与受体相兼容。
术语“盐”和“药学上可接受的盐”是指上述化合物或其立体异构体,与无机和/或有机酸和碱形成的酸式和/或碱式盐,也包括两性离子盐(内盐),还包括季铵盐,例如烷基铵盐。这些盐可以是在化合物的最后分离和纯化中直接得到。也可以是通过将上述化合物,或其立体异构体,与一定数量的酸或碱适当(例如等当量)进行混合而得到。这些盐可能在溶液中形成沉淀而以过滤方法收集,或在溶剂蒸发后回收而得到,或在水介质中反应后冷冻干燥制得。
在某些实施方式中,本发明的一种或多种化合物可以彼此联合使用。也可选择将本发明的化合物与任何其它的活性试剂结合使用,用于制备调控细胞功能或治疗疾病的药物或药物组合物。如果使用的是一组化合物,则可将这些化合物同时、分别或有序地对受试对象进行给药。
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离 本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
附图说明
图1为利用X射线单晶衍射分析方法获得的本发明实施例3化合物的立体结构示意图。
具体实施方式
化合物的结构是通过核磁共振(NMR)和质谱(MS)来确定的。NMR位移(δ)以10-6(ppm)的单位给出。NMR的测定是用(Bruker AvanceIII 400和Bruker Avanceneo 600)核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d 6)、氘代氯仿(CDCl 3)、氘代甲醇(CD 3OD),内标为四甲基硅烷(TMS)。
LC-MS的测定使用岛津液质联用仪(Shimadzu LC-MS 2020(ESI))。HPLC的测定使用岛津高压液相色谱仪(Shimadzu LC-20A)。MPLC(中压制备色谱)使用Gilson GX-281反相制备色谱仪。薄层层析硅胶板用烟台黄海HSGF254或青岛GF254硅胶板,薄层层析分离纯化产品采用的规格是0.4mm~0.5mm。柱层析一般使用烟台黄海硅胶200~300目硅胶为载体。
本发明的已知的起始原料可以采用或按照本领域已知的方法来合成,或可购买于安耐吉化学、成都科龙化工、韶远化学科技、百灵威科技等公司。
实施例中无特殊说明,反应在氮气氛围下进行。实施例中无特殊说明,溶液是指水溶液。实施例中无特殊说明,反应的温度为室温。实施例中无特殊说明,M是摩尔每升。
DIBAL-H:二异丁基氢化铝;DPPA:叠氮磷酸二苯酯;DMF:二甲基甲酰胺。
实施例1
Figure PCTCN2022126482-appb-000039
步骤1
将化合物1a(300mg,1.25mmol)溶于无水四氢呋喃(5mL),将体系降温至-60℃后,滴入DIBAL-H正己烷溶液(1M,1.62mL,1.62mmol)。将反应体系升温至室温并反应2个小时,LC-MS监测反应完成后,将反应混合物倒入稀盐酸中(2M,10mL)。用乙酸乙酯(20mL*3)萃取,合并有机相,经饱和食盐水洗涤(10mL),无水硫酸钠干燥后减压浓缩。所得粗品经柱层析纯化(石油醚:乙酸乙酯=9:1),得到化合物1b(200mg,0.82mmol,收率:66%)。
步骤2
将化合物1c(3.50g,10.57mmol)溶于50mL无水四氢呋喃中,于0℃下加入氢化钠 (60%,592mg,14.80mmol),并在此温度下搅拌30分钟,而后加入溴甲基甲氧醚(1.85g,14.80mmol),随后反应升至室温搅拌16小时。将反应体系倒入50mL氯化铵饱和水溶液中,用乙酸乙酯(30mL*3)进行萃取。合并有机相并用50mL饱和食盐水洗涤,无水硫酸钠进行干燥,减压浓缩至干,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物1d(3.20g,8.53mmol,收率:81%)。MS-ESI计算值[M+Na] +397.0,实测值397.0。 1H NMR(400MHz,DMSO-d 6)δ7.98–7.96(m,1H),7.92–7.89(m,1H),7.61–7.54(m,2H),5.16(s,2H),3.39(s,3H),2.32(s,3H),1.85(s,3H).
步骤3
将化合物1d(300mg,0.80mmol)溶于1,4-二氧六环(9mL),向反应体系内鼓入氮气5分钟后,加入联硼酸新戊二醇酯(304mg,1.35mmol)、Pd(dppf)Cl 2(29.0mg,0.040mmol)、醋酸钾(157mg,1.60mmol)。将反应体系升温回流反应3小时。经LC-MS监测反应完成后,将体系进行过滤、减压浓缩、柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物1e(250mg,0.61mmol,收率:77%)。 1H NMR(400MHz,DMSO-d 6)δ7.70–7.52(m,4H),4.95(s,2H),3.66(s,4H),3.27(s,3H),3.27(s,3H),2.34(s,3H),1.81(s,3H).1.03(s,6H).
步骤4
在氮气保护下,将化合物1e(500mg,1.18mmol)溶于甲苯(2mL)和乙醇(1mL)的混合溶液中,然后加入四(三苯基膦)钯(137mg,0.118mmol)、碳酸钠(377mg,3.56mmol)。将反应体系升温至85℃并反应3个小时。反应体系冷至室温后,用乙酸乙酯提取(20mL*3),合并有机相,经饱和食盐水(10mL)洗涤,无水硫酸钠干燥后减压浓缩,柱层析纯化(石油醚:乙酸乙酯=7:3),得到化合物1f(225mg,0.49mmol,收率:42%)。MS-ESI计算值[M+Na] +481.1,实测值481.2。 1H NMR(400MHz,DMSO-d 6)δ10.09(s,1H),8.04–7.96(m,2H),7.84(dd,J=7.8,1.7Hz,1H),7.76(td,J=7.5,1.4Hz,1H),7.66(td,J=7.8,1.4Hz,1H),7.37–7.29(m,2H),4.53(d,J=11.0Hz,1H),4.39(d,J=11.0Hz,1H),4.24(d,J=12.9Hz,1H),4.13(d,J=12.8Hz,1H),3.42–3.23(m,2H),3.20(s,3H),2.33(s,3H),1.79(s,3H),1.05(t,J=7.0Hz,3H).
步骤5
将化合物1f(200mg,0.436mmol)溶于甲醇(2mL)后,降温至0℃,加入硼氢化钠(60%,24.8mg,0.62mmol),然后将反应体系温度升至室温并反应2个小时。经LC-MS检测反应完成后,将反应倒入稀盐酸溶液(0.5M,10mL)中,用乙酸乙酯(20mL*3)萃取,合并有机相并用饱和食盐水(10mL)洗涤,经无水硫酸钠干燥后减压浓缩,柱层 析(石油醚:乙酸乙酯=4:1),得到150mg化合物1g(150mg,0.326mmol,收率:75%)。MS-ESI计算值[M+Na] +483.2,实测值483.2。 1H NMR(400MHz,Chloroform-d)δ8.00(dd,J=8.1,1.3Hz,1H),7.62–7.53(m,2H),7.45(td,J=7.6,1.4Hz,1H),7.37–7.27(m,3H),4.76(s,2H),4.37(dd,J=11.6,5.9Hz,2H),4.19(dd,J=18.0,11.6Hz,2H),3.50–3.27(m,2H),3.32(s,3H),2.30(s,3H),1.92(s,3H),1.12(t,J=7.0Hz,3H).
步骤6
室温下,将化合物1g(150mg,0.326mmol)溶于N,N-二甲基甲酰胺(0.5mL)。降温至0℃,加入四溴化碳(162mg,0.488mmol)、三苯基膦(128mg,0.488mmol)。在0℃下反应2个小时。经LC-MS检测反应完成后,将反应混合物减压浓缩,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物1h(122mg,0.233mmol,收率:71%)。MS-ESI计算值[M+Na] +547.1,实测值547.1。 1H NMR(400MHz,Chloroform-d)δ8.00(dd,J=8.0,1.3Hz,1H),7.62–7.55(m,5H),7.49–7.41(m,2H),7.33–7.25(m,7H),4.56(s,2H),4.41–4.25(m,2H),4.22–4.12(m,2H),3.50–3.28(m,2H),3.31(s,3H),2.30(s,3H),1.92(s,3H),1.13(t,J=7.0Hz,3H).
步骤7
将化合物1i(200mg,2.08mmol)溶于异丙醇(0.2mL)后。将上述溶液小心滴入到含有氯化铵(145mg,2.71mmol)、氰化钾(169mg,2.60mmol)的羟胺溶液(0.3mL)中。反应体系在室温下反应16个小时,TLC检测反应完成后,向反应体系倒入水(10mL)中,用二氯甲烷萃取水相(10mL*3),合并有机相,经饱和食盐水洗后,无水硫酸钠干燥并浓缩得到205mg化合物1j(205mg,1.68mmol,收率:81%)。 1H NMR(400MHz,Chloroform-d)δ3.00–2.27(m,6H),0.63–0.46(m,4H).
步骤8
将化合物1j(600mg,4.91mmol)溶于甲苯(6mL)中,加入三乙胺(745mg,7.36mmol)。在15℃下,缓慢加入正戊酰氯(711mg,5.90mmol),反应体系在80℃下反应2个小时。TLC检测反应完成后,将反应体系倒入水(8mL)中,并加入稀盐酸溶液(0.2M,8mL),分离有机相,并用水(10mL)洗涤,浓缩有机相,得到1k(820mg粗品),直接用于下一步。
步骤9
在20℃,将化合物1k(820mg,上一步所得粗品)溶于甲醇(5mL),加入氢氧化钾(172mg,3.07mmol)、双氧水(30%,2mL,4.91mmol)。将反应体系在50℃下反应30分钟后,冷却至室温并再次加入氢氧化钾(689mg,12.28mmol),将反应体系升 温至70℃反应2个小时。LC-MS、TLC检测反应完成后,向反应体系内加入固体氯化铵(100mg)进行中和。经减压浓缩,用乙酸乙酯(10mL)萃取。有机相用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚:乙酸乙酯=7:3),得到化合物1l(203mg,0.984mmol,两步收率:20%)。MS-ESI计算值[M+H] +207.3,实测值207.2。 1H NMR(400MHz,Chloroform-d)δ2.64–2.56(m,2H),2.55–2.41(m,4H),1.68(p,J=7.5Hz,2H),1.51–1.34(m,3H),0.95(t,J=7.3Hz,3H),0.66–0.51(m,4H).
步骤10
将化合物1l(50mg,0.242mmol)溶于N,N-二甲基甲酰胺(2mL),将体系降至0℃,小心加入氢化钠(60%,12.2mg,0.51mmol),并搅拌30分钟。接着向体系内加入中间体1h(114mg,0.218mmol)的N,N-二甲基甲酰胺溶液(0.5mL),体系回至室温并反应5个小时。LC-MS监测反应完成后,将体系倒入饱和氯化铵(10mL)中,用乙酸乙酯(20mL)进行萃取,有机相用经饱和食盐水(10mL)洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚:乙酸乙酯=4:1),得到80mg化合物1m(80mg,0.123mmol,收率:51%)。MS-ESI计算值[M+H] +649.8,实测值649.4。 1H NMR(400MHz,DMSO-d 6)δ7.93(dd,J=8.1,1.3Hz,1H),7.73–7.67(m,1H),7.61–7.55(m,1H),7.31–7.25(m,2H),7.14–7.08(m,2H),4.75(s,2H),4.29(d,J=11Hz,1H),4.19–4.13(m,2H),4.05(d,J=12.9Hz,1H),3.31–3.15(m,2H),3.17(s,3H),2.48–2.34(m,6H),2.31(s,3H),1.79(s,3H),1.59–1.51(m,2H),1.35–1.27(m,2H),1.0(t,J=7Hz,3H),0.84(t,J=4.4Hz,3H),0.63–0.49(m,4H).
步骤11
将化合物1m(70mg,0.108mmol)溶于乙醇(3mL)和盐酸(6M,3mL)混合溶液中,在75℃下反应3个小时。反应完毕后,用氢氧化钠溶液(5M)调体系pH至8,再用稀盐酸(0.5M)调pH至5,经乙酸乙酯萃取(20mL*3),并合并有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥后减压浓缩,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物1(37mg,0.061mmol,收率:56%,HPLC纯度:98.6%)。MS-ESI计算值[M+H] +605.8,实测值605.4。 1H NMR(400MHz,DMSO-d 6)δ10.48(s,1H),8.08–8.03(m,1H),7.68–7.58(m,2H),7.23–7.15(m,2H),7.02(dd,J=1.6,1.6Hz,1H),6.93(d,J=7.8Hz,1H),4.72(s,2H),4.00(s,2H),3.25–3.14(m,2H),2.49–2.46(m,2H),2.42–2.35(m,4H),2.2(s,3H),1.66(s,3H),1.6–1.5(m,2H),1.35–1.26(m,2H),0.99(t,J=6.9Hz,3H),0.83(t,J=7.2Hz,3H),0.62–0.49(m,4H).
实施例2
Figure PCTCN2022126482-appb-000040
步骤1
于25℃下,将化合物2b(350mg,3.22mmol)溶于1ml水中,向体系中滴入盐酸溶液(0.5N,0.35mL),持续搅拌5分钟后,将化合物2a(460mg,3.53mmol)的水溶液(1mL)滴入体系内。搅拌4小时后,向反应体系加入乙醇直至体系澄清,并将反应液在4℃下冷冻16h。将体系送LC-MS进行监测反应完成后,经乙酸乙酯(15mL*3)萃取,合并有机相,并用饱和食盐水(50mL)洗,无水硫酸钠干燥,减压浓缩,得到化合物2c(500mg),直接用于下步。
MS-ESI计算值[M+H] +185.1,实测值185.2。
步骤2
室温下,向化合物2c(500mg,上一步所得粗品)的甲苯溶液(6mL)中,加入三乙胺(1.5mL,10.8mmol)、DPPA(710mg,2.58mmol),并将体系在120℃下回流1小时。经反应LC-MS监测完成后,将体系倒入水(8mL)中,并用乙酸乙酯(10mL*3)萃取,合并有机相后,水洗,无水硫酸钠干燥,减压浓缩,再经柱色谱(水/乙腈)纯化后,得到化合物2d(398mg,2.20mmol,两步总收率:68%)。MS-ESI计算值[M+H] +182.1,实测值182.1。 1H NMR(600MHz,Chloroform-d)δ11.67(s,1H),3.12(tt,J=7.1,3.7Hz,1H),2.51(t,J=7.8Hz,2H),1.65(p,J=7.7Hz,2H),1.38(h,J=7.4Hz,2H),1.04(q,J=3.9Hz,2H),1.02–0.91(m,5H).
步骤3
冰浴下,向化合物2d(30mg,0.166mmol)的DMF(2mL)溶液中,加入氢化钠(60%,12mg,0.50mmol),体系在25℃下反应30分钟后,将化合物1h(80mg,0.153 mmol)的DMF(0.5mL)溶液滴入到反应体系中,并继续搅拌5小时。LC-MS监测反应完成后,将体系倒入饱和氯化铵(10mL)中,用乙酸乙酯(10mL)萃取水相,分离有机相,并用饱和食盐水(10mL)洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物2e(80mg,0.128mmol,收率:84%)。 1H NMR(600MHz,DMSO-d 6)δ7.93(dd,J=8.1,1.2Hz,1H),7.71(td,J=7.6,1.3Hz,1H),7.59(td,J=7.8,1.4Hz,1H),7.33(d,J=1.7Hz,1H),7.28(dd,J=7.6,1.4Hz,1H),7.17–7.09(m,2H),4.87(s,2H),4.31(d,J=11.0Hz,1H),4.20–4.14(m,2H),4.06(d,J=12.9Hz,1H),3.34–3.11(m,3H),3.17(s,3H),2.44–2.38(m,2H),2.31(s,3H),1.79(s,3H),1.51–1.42(m,2H),1.33–1.21(m,2H),1.01(t,J=7.0Hz,3H),0.94–0.85(m,4H),0.83(t,J=6.0Hz,3H).
步骤4
将65mg化合物2e(65mg,0.104mmol)溶于乙醇(3mL)中,并加入盐酸溶液(6M,3mL),将反应体系在75℃下反应5h。经LC-MS检测约有85%目标物时,用氢氧化钠溶液(5M)将体系pH调至8后,再用盐酸溶液(0.5M)调pH至。用乙酸乙酯(20mL)萃取水相,并用饱和食盐水洗有机相,再经无水硫酸钠干燥,减压浓缩,经柱层析纯化(石油醚:乙酸乙酯=7:3)得到最终化合物2(37mg,0.064mmol,收率:62%,HPLC纯度:97.4%)。MS-ESI计算值[M+H] +580.3,实测值580.2。 1H NMR(600MHz,DMSO-d 6)δ10.50(s,1H),8.05(dd,J=8.0,1.5Hz,1H),7.68–7.58(m,2H),7.27(d,J=1.8Hz,1H),7.19(dd,J=7.4,1.6Hz,1H),7.07(dd,J=7.8,1.9Hz,1H),6.94(d,J=7.8Hz,1H),4.84(s,2H),4.01(q,J=12.9Hz,2H),3.28–3.12(m,3H),2.43(t,J=7.7Hz,2H),2.20(s,3H),1.67(s,3H),1.47(q,J=7.7Hz,2H),1.37–1.21(m,2H),1.00(t,J=7.0Hz,3H),0.89(d,J=5.4Hz,4H),0.83(t,J=7.3Hz,3H).
实施例3
Figure PCTCN2022126482-appb-000041
步骤1
0℃下,将二碘甲烷(24.5g,91.5mmol)小心滴入二乙基锌的二氯甲烷溶液(166mL, 1M,166mmol),搅拌30分钟,加入化合物3a(7.0g,83.3mmol)并继续反应3个小时。TLC监测反应结束后,加入饱和氯化铵水溶液(100mL)进行淬灭,用二氯甲烷(200mL*2)萃取体系,合并有机相,并用饱和食盐水洗,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物3b(2.0g,20.4mmol,收率:24%)。 1H NMR(400MHz,Chloroform-d)δ4.38(tt,J=6.6,0.9Hz,1H),2.16–2.04(m,2H),1.72(d,J=12Hz,2H),1.42(s,1H),1.34–1.22(m,2H),0.58–0.43(m,2H).
步骤2
将化合物3b(200mg,2.0mmol)溶于二氯甲烷(12mL),将体系降温至0℃,加入戴斯-马丁氧化剂(951mg,2.2mmol),反应升至室温并反应3个小时。TLC监测反应完成后,将反应体系进行过滤,滤液进行浓缩,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物3c(70mg,0.73mmol,收率:36%)。 1H NMR(400MHz,Chloroform-d)δ2.66–2.50(m,2H),2.22–2.10(d,J=20Hz,2H),1.54(dtd,J=8.0,4.0,1.6Hz,2H),0.91(tdt,J=7.8,5.8,1.9Hz,1H),0.01–-0.03(m,1H).
步骤3
将化合物3c(890mg,9.26mmol)溶于异丙醇(2mL),将其小心滴入到含有氯化铵(644mg,12.04mmol)、氰化钾(754mg,11.58mmol)的氨水溶液(3mL)中。反应体系在室温下反应16个小时,TLC检测反应完成后,向反应体系倒入水(15mL)中,二氯甲烷(20mL*2)萃取水相,合并有机相,饱和食盐水洗,硫酸钠干燥,浓缩得到化合物3d,含两个异构体(800mg,6.55mmol,收率:71%)。
步骤4
将化合物3d(400mg,3.27mmol)溶于甲苯(5mL),加入三乙胺(497mg,4.91mmol)。在15℃下,小心加入正戊酰氯(474mg,3.93mmol),反应体系在80℃下反应2个小时。TLC检测反应完成后,将反应体系倒入水(8mL)中,加入稀盐酸溶液(0.2M,8mL),分离有机相,用水(10mL)洗涤有机相,分离并减压浓缩有机相,得到化合物粗品3e(610mg),直接进行下步反应。
步骤5
在20℃下,将化合物粗品3e(610mg)溶于甲醇(6mL),加入氢氧化钾(332mg,5.92mmol)、30%双氧水(1.5mL)。将反应体系在50℃下反应30分钟,冷却至室温并再次加入氢氧化钾(332mg,5.92mmol),将反应体系升温至70℃反应2个小时。LC-MS、TLC检测反应完成后,向反应体系内加入固体氯化铵(1.2g)并搅拌,加入甲醇稀释后进行浓缩。向浓缩物中加入水(20mL),用乙酸乙酯(30mL)萃取水相,分离有机相 后,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩,柱层析纯化(石油醚:乙酸乙酯=7:3),分离得到两个异构体3f-1,3f-2(比例约为1:1)共504mg,2.44mmol,两步总收率:75%)。所得两个异构体的相对构型的确认通过实施例3的单晶衍射实验确定。3f-1用于实施例3、5、7。
3f-1 Rf=0.3(乙酸乙酯:石油醚=7:3)。 1H NMR(400MHz,Chloroform-d)δ2.48–2.36(t,J=8Hz,2H),2.25(ddt,J=14.0,4.1,1.2Hz,2H),1.92(d,J=13.8Hz,2H),1.71–1.58(m,2H),1.55–1.45(m,2H),1.43–1.32(m,2H),0.98–0.85(t,J=8Hz,3H),0.96–0.85(m,1H),0.69–0.59(m,1H).
3f-2 Rf=0.5(乙酸乙酯:石油醚=7:3)。 1H NMR(400MHz,Chloroform-d)δ2.45–2.35(t,J=8Hz,2H),2.29(ddd,J=13.1,3.1,1.5Hz,2H),1.79(d,J=12Hz,2H),1.67–1.56(m,2H),1.52–1.43(m,2H),1.37(dq,J=14.6,7.4Hz,2H),0.99(q,J=4.3Hz,14H),0.92(t,J=7.3Hz,3H),0.47(tdt,J=8.2,4.8,1.1Hz,1H).
步骤6
将化合物3f-1(50mg,0.24mmol)溶解于N,N-二甲基甲酰胺(2mL),降温至0℃后,加入氢化钠(60%,12mg,0.31mmol),搅拌30分钟,再滴入化合物1h(114mg,0.22mmol)的N,N-二甲基甲酰胺(0.5mL)溶液,并继续反应5个小时。LC-MS监测反应完毕后,将体系倒入饱和氯化铵(10mL),经乙酸乙酯(10mL*3)萃取,合并有机相,饱和氯化钠溶液洗涤,无水硫酸钠干燥,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物3g(110mg,0.17mmol,收率:71%)。 1H NMR(400MHz,DMSO-d 6)δ7.93(dd,J=8.0,1.3Hz,1H),7.71(td,J=7.5,1.4Hz,1H),7.59(td,J=7.7,1.4Hz,1H),7.30(dd,J=7.6,1.4Hz,1H),7.25(d,J=1.7Hz,1H),7.17–7.07(m,2H),4.71(s,2H),4.28(d,J=11.1Hz,1H),4.22–4.11(m,2H),4.07(d,J=13.0Hz,1H),3.31–3.21(m,2H),3.18(s,3H),2.37–2.26(m,5H),2.18(d,J=3.7Hz,2H),1.85(dd,J=13.6,1.5Hz,2H),1.81(d,J=0.8Hz,3H),1.57–1.44(m,4H),1.36–1.26(m,2H),1.05–0.96(m,1H),1.02-1.05(t,J=7.3Hz,3H)0.83(t,J=7.3Hz,3H),0.55(td,J=8.2,4.3Hz,1H).
步骤7
将化合物3g(50mg,0.08mmol)溶于95%乙醇(3mL)和6M的盐酸(3mL)混合溶液中,在75℃下反应3个小时,LC-MS可检测80%产物生成。反应完毕后,用5M的氢氧化钠溶液调体系pH至8,再用0.5M的稀盐酸调pH至5,用乙酸乙酯(20mL)萃取水相,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。粗品经反向中压制备纯化(水、乙腈体系)后,再次柱层析纯化(石油醚:乙酸乙酯=1:1),得到最终化合物3(30mg, 0.05mmol,收率:63%,HPLC纯度:97.3%)。MS-ESI计算值[M+H] +605.3,实测值605.2。 1H NMR(400MHz,DMSO-d 6)δ10.48(s,1H),8.09–8.03(m,1H),7.63(pd,J=7.4,1.6Hz,2H),7.24–7.13(m,2H),7.05–6.87(m,2H),4.68(s,2H),4.00(s,2H),3.28–3.13(m,2H),2.32(t,J=7.4Hz,2H),2.23–2.16(m,2H),2.21(s,3H),1.86(dd,J=13.6,1.5Hz,2H),1.67(s,3H),1.54–1.43(m,4H),1.27(dt,J=14.1,7.2Hz,3H),1.07(q,J=4.1Hz,1H),1.02(t,J=7.0Hz,3H),0.82(t,J=7.4Hz,3H),0.55(td,J=8.2,4.3Hz,1H).
实施例3终产物3的单晶生长方法:称量20mg固体,置于装有1毫升乙酸乙酯与2毫升正己烷的混合溶液的安瓿瓶中,瓶口放棉絮减缓挥发速度。于室温下静置挥发溶剂,待2天后得到晶体。X射线单晶衍射分析获得实验参数与结果如下;经解析化合物3的构型如图1所示,与实施例3终产物3一致。
Figure PCTCN2022126482-appb-000042
实施例4
Figure PCTCN2022126482-appb-000043
步骤1
将化合物3f-2(50mg,0.24mmol)溶解于N,N-二甲基甲酰胺(2mL),降温至0℃后,加入氢化钠(60%,12mg,0.31mmol),搅拌30分钟,再滴入化合物1h(114mg,0.22mmol)的N,N-二甲基甲酰胺(0.5mL)溶液,并继续反应5个小时。LC-MS监测反应完毕后,将体系倒入饱和氯化铵(10mL),乙酸乙酯(3*10mL)萃取,合并有机相,饱和氯化钠溶液洗涤,无水硫酸钠干燥,柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物4a(85.0mg,0.13mmol,收率:54%)。MS-ESI计算值[M+H] +649.3,实测值649.3。
步骤2
将化合物4a(85mg,0.13mmol)溶于95%乙醇(3mL)和盐酸(6M,3mL)混合溶液中,在75℃下反应3个小时,LC-MS可检测80%产物生成。反应完毕后,用5M的氢氧化钠溶液调体系pH至8,再用0.5M的稀盐酸调pH至5,用乙酸乙酯(20mL)萃取水相,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩。粗品经反向柱层析纯化(碳酸氢铵、乙腈体系)后,再用正向柱层析纯化(石油醚:乙酸乙酯=1:1),得到化合物4(53mg,0.09mmol,收率:69%)。MS-ESI计算值[M+H] +605.3,实测值605.2。 1H NMR(400MHz,DMSO-d 6)δ10.49(s,1H),8.06(dd,J=8.1,1.3Hz,1H),7.63(td,J=7.4,1.6Hz,2H),7.19(dd,J=7.3,1.7Hz,1H),7.14(d,J=1.7Hz,1H),6.98(dd,J=7.9,1.8Hz,1H),6.94(d,J=7.8Hz,1H),4.73(s,2H),4.00(s,2H),3.28–3.13(m,2H),2.33(t,J=7.4Hz,2H),2.23(s,1H),2.21(s,3H),1.72(d,J=12.9Hz,2H),1.67(s,3H),1.54–1.44(m,4H),1.32–1.21(m,3H),1.12(q,J=4.1Hz,1H),1.02(t,J=7.0Hz,3H),0.82(t,J=7.3Hz,3H),0.42(td,J=8.0,4.1Hz,1H).
实施例5
Figure PCTCN2022126482-appb-000044
步骤1
将化合物1d(1.00g,2.66mmol)、联硼酸新戊二醇酯(910mg,4.03mmol)、1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(110mg,0.14mmol)、醋酸钾(520mg,5.31mmol)依次加入到三口瓶中,利用双排管排除空气充入氮气后,加入二氧六环(20mL),将反应加热并在搅拌下回流反应3个小时。经LC-MS监测反应完成后,将体系经硅藻土过滤后直接浓缩至干,所得粗品经反向中压制备纯化(水、乙腈体系)后,得到化合物5a(360mg,1.06mmol,收率:40%)。 1H NMR(600MHz,Chloroform-d)δ7.86(d,J=8.0Hz,1H),7.70(d,J=7.4Hz,1H),7.60(td,J=7.5,1.2Hz,1H),7.51(td,J=7.7,1.5Hz,1H),5.02(s,2H),3.25(s,3H),2.36(s,3H),1.98(s,3H)。
步骤2
将化合物5b(3.00g,10.79mmol)溶于无水四氢呋喃(30mL),将甲胺四氢呋喃溶液(2M,50mL,100mmol)加入到体系中,室温搅拌30分钟。LC-MS监测反应完成后,将反应混合液倒入水(80mL)中,用乙酸乙酯(160mL*3)提取,合并有机相经饱和食盐水洗涤(80mL),无水硫酸钠干燥后减压浓缩,得到化合物粗品5c(2.50g,10.96mmol,粗收率:102%)。MS-ESI计算值[M+H] +228.0,实测值228.2。
步骤3
将化合物5c(2.50g,10.96mmol)溶于无水四氢呋喃(80mL),冷却至0℃,依次加入三乙胺(6.80g,67.20mmol),3,3-二甲基丁酰氯(3.00g,22.29mmol),保温搅拌30分钟。经LC-MS监测反应结束后,将反应液倒入冰水(80mL)中,用乙酸乙酯(160mL) 进行提取,分离有机相经饱和食盐水(80mL)洗涤,无水硫酸钠干燥后减压蒸馏。所得粗品经柱层析纯化(石油醚:乙酸乙酯=3:2),得到化合物5d(2.70g,8.28mmol,收率:76%)。MS-ESI计算值[M+H] +326.1,实测值325.8。
步骤4
将化合物5d(500mg,1.53mmol)和化合物5a(690mg,2.03mmol)溶于甲苯(10mL)和水(4mL)和乙醇(5mL)的混合溶液中,向体系内通入氮气鼓泡10分钟后,依次加入四三苯基膦钯(90.0mg,0.08mmol),碳酸钠(500mg,4.72mol)。将体系在85℃下搅拌3小时,经LC-MS监测反应结束后,用乙酸乙酯(20mL*3)萃取反应体系,合并有机相经饱和食盐水(10mL)洗涤,无水硫酸钠干燥,减压浓缩。所得粗品经柱层析纯化(石油醚:乙酸乙酯=2.5:1),得到化合物5e(102mg,0.19mmol,收率:12%)。MS-ESI计算值[M+H] +542.2,实测值542.1。
步骤5
将化合物5e(102mg,0.19mmol)溶液甲醇(5mL),降温至负40℃,加入硼氢化钠(5.0mg,0.13mmol),保持温度搅拌1小时。经LC-MS监测反应完成后,将体系倒入稀盐酸(0.5M,15ml)中,用乙酸乙酯(20mL*3)提取,合并有机相经饱和食盐水(20mL)洗涤,无水硫酸钠干燥后减压浓缩。所得粗品经柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物5f(91mg,0.17mmol,收率:89%)。MS-ESI计算值[M+H] +544.2,实测值544.2。
步骤6
0℃下,将化合物5f(91mg,0.17mmol)溶于无水N,N-二甲基甲酰胺(5mL),依次加入四溴化碳(169mg,0.51mmol),三苯基膦(134mg,0.51mmol),保持温度搅拌2小时。经LC-MS监测反应完成后,减压浓缩体系。所得粗品经柱层析纯化(石油醚:乙酸乙酯=9:1),得到化合物5g(75mg,0.12mmol,收率:71%)。MS-ESI计算值[M+H] +606.2,实测值606.1。
步骤7
0℃下,将化合物3f-1(24.0mg,0.12mmol)溶于无水N,N-二甲基甲酰胺(1mL)中,加入氢化钠(60%,10.6mg,0.26mmol),搅拌30分钟后,将化合物5g(70mg,0.12mmol)的N,N-二甲基甲酰胺(0.5mL)溶液加入到体系中。在室温下搅拌3小时,经LC-MS监测反应完成后,将体系倒入饱和氯化铵(10mL),用乙酸乙酯(20mL)提取,分离有机相经饱和食盐水(10mL)洗涤,无水硫酸钠干燥后减压蒸馏。所得粗品经柱层析纯 化(石油醚:乙酸乙酯=4:1),得到化合物5h(65mg,0.09mmol,收率:75%)。MS-ESI计算值[M+H] +732.4,实测值732.4。
步骤8
将化合物5h(60mg,0.08mmol)溶于乙醇(6mL)和盐酸(6M,5mL)混合溶液中,在75℃下搅拌3小时。经LC-MS监测反应完成后,用氢氧化钠溶液(5M)调体系pH至8,再用稀盐酸(0.5M)调pH至5,经乙酸乙酯萃取(20mL*3),并合并有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥后减压浓缩,所得粗品经制备色谱(水、乙腈)体系制备,得到化合物5(30mg,0.04mmol,收率:50%,HPLC纯度:98.2%)。MS-ESI计算值[M+H] +688.4,实测值688.4。 1H NMR(600MHz,DMSO-d 6)δ10.63(s,1H),8.13–7.98(m,1H),7.76–7.54(m,2H),7.24(t,J=8.1Hz,1H),7.12–6.88(m,2H),6.83–6.65(m,1H),4.78–4.54(m,2H),4.40–3.99(m,2H),2.80–2.59(m,3H),2.35–2.10(m,8H),1.97–1.87(m,1H),1.87–1.79(m,2H),1.77–1.68(m,3H),1.59–1.37(m,4H),1.32–1.17(m,2H),1.14–1.02(m,1H),1.01–0.75(m,12H),0.61–0.48(m,1H)。
实施例6
Figure PCTCN2022126482-appb-000045
步骤1
0℃下,将化合物3f-2(26.0mg,0.13mmol)溶于无水N,N-二甲基甲酰胺(1.2mL)中,加入氢化钠(60%,11.2mg,0.28mmol),搅拌30分钟后,将化合物5g(75mg,0.12mmol)的N,N-二甲基甲酰胺(0.7mL)溶液加入到体系中。在室温下搅拌3小时,经LC-MS监测反应完成后,将体系倒入饱和氯化铵(10mL),用乙酸乙酯(20mL)提取,分离有机相经饱和食盐水(10mL)洗涤,无水硫酸钠干燥后减压蒸馏。所得粗品经柱层析纯化(石油醚:乙酸乙酯=4:1),得到化合物6a(67mg,0.09mmol,收率:69%)。MS-ESI计算值[M+H] +732.4,实测值732.3。
步骤2
将化合物6a(65mg,0.09mmol)溶于乙醇(5mL)和盐酸(6M,5mL)混合溶液中,在75℃下搅拌3小时。经LC-MS监测反应完成后,用氢氧化钠溶液(5M)调体 系pH至8,再用稀盐酸(0.5M)调pH至5,经乙酸乙酯萃取(20mL*3),并合并有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥后减压浓缩,所得粗品经制备色谱(碳酸氢铵:乙腈)体系制备,得到化合物6(37mg,0.05mmol,收率:56%,HPLC纯度:99.0%)。MS-ESI计算值[M+H] +688.4,实测值688.4。 1H NMR(600MHz,Methanol-d 4)δ8.35–7.98(m,1H),7.73–7.39(m,2H),7.23–7.10(m,1H),7.10–6.96(m,2H),6.94–6.72(m,1H),4.82–4.70(m,2H),4.62–4.14(m,2H),2.95–2.72(m,3H),2.51–2.24(m,5H),2.24–1.93(m,4H),1.87–1.77(m,2H),1.75–1.66(m,3H),1.61–1.46(m,4H),1.42–1.25(m,2H),1.11–0.80(m,13H),0.61–0.33(m,1H).
实施例7
Figure PCTCN2022126482-appb-000046
步骤1
氮气保护下,将化合物1b(30g,0.12mol),联硼酸频那醇酯(32.9g,0.13mol),醋酸钾(24.2g,0.25mol),[1,1'-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(5.0g,6.22mmol)依次加入到二氧六环溶液(800mL)中,回流16小时。TLC监测反应完毕,硅藻土过滤除去固体,减压浓缩除去二氧六环,转移至水(400mL)中后用乙酸乙酯(300mL*3)萃取,合并有机相经饱和食盐水(300mL*3)洗涤,无水硫酸钠干燥,减压浓缩,得到粗品化合物7a(56g)。
步骤2
氮气保护下,将化合物7b(980mg,10.00mmol)溶于二氯甲烷(15mL),冷却至0℃, 向该体系中缓慢加入N-氯代丁二酰亚胺(1.46g,10.93mmol),在该温度下继续反应2小时,加入氢氧化钠溶液(1M,10mL)淬灭反应,二氯甲烷(15mL)萃取水相,合并有机相,饱和食盐水(50mL)洗涤,无水硫酸钠干燥,减压浓缩,所得粗品经柱层析纯化(石油醚:乙酸乙酯=5:1),得到化合物7c(712mg,5.37mmol,收率:54%)。MS-ESI[M+H] +实测值133.1。
步骤3
在0℃下,将化合物7c(500mg,3.77mmol),2-溴苯磺酰氯(962mg,3.76mmol),4-二甲氨基吡啶(62.0mg,0.51mmol)依次加入吡啶(15mL)中,搅拌10min,升温至40℃反应12小时。经过LC-MS检测反应完成后,将体系移至冰浴,用冰盐酸(1M)调pH至6,经乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗涤(50mL),无水硫酸钠干燥,减压浓缩,得到化合物7d(1.3g,3.70mmol,收率:98%)。MS-ESI[M+H] +实测值351.1。
步骤4
在-15℃下,将化合物7d(1.3g,3.70mmol)溶于N,N-二甲基甲酰胺(10mL),分批加入氢化钠(60%,171mg,4.28mmol),搅拌5分钟后升至室温反应30分钟。再将体系移至-15℃,滴加溴甲基甲基醚(600mg,4.80mmol),搅拌5分钟后自然升温反应30分钟。经LC-MS检测反应完成,将反应体系移至冰浴中,加入冷水(40mL)淬灭,用盐酸(0.5M)调pH至7,乙酸乙酯(15mL*3)萃取,合并有机相,饱和食盐水洗涤(50mL),无水硫酸钠干燥,减压浓缩,所得粗品经柱层析(石油醚:乙酸乙酯=8:1)纯化,得到化合物7e(777mg,1.96mmol,收率:53%)。MS-ESI[M+H] +实测值394.9。
步骤5
在氮气保护下,将化合物7e(300mg,0.76mmol)、化合物7a(220mg,0.76mmol)、四三苯基膦钯(114mg,0.099mmol)、碳酸钠(402mg,3.79mmol)依次加入到甲苯(15mL)、水(15mL)和乙醇(15mL)的混合溶液中。体系在85℃反应2小时,经LC-MS检测反应完成后,硅藻土过滤,减压浓缩,所得粗品经柱层析纯化(石油醚:乙酸乙酯=5:1),得到化合物7f(255mg,0.53mmol,收率:70%)。MS-ESI[M+H] +实测值479.0。
步骤6
在0℃下,将化合物7f(235mg,0.49mmol)溶于甲醇(5mL),加入硼氢化钠(29.8mg,0.79mmol),5分钟后将体系移至25℃反应1小时。将体系移至冰浴中,加 入冰水(30mL),用盐酸(1M)调节pH=7,乙酸乙酯(20mL*3)萃取,合并有机相,饱和食盐水洗涤(100mL),无水硫酸钠干燥,减压浓缩,得到粗品7g(237mg,直接用于下一步反应。MS-ESI[M+H] +实测值481.0。
步骤7
在0℃下,将化合物7g(237mg)、四溴化碳(243mg,0.73mmol)、三苯基膦(194mg,0.74mmol)依次加入到无水N,N-二甲基甲酰胺(5mL)中,保持该温度继续反应2小时。经LC-MS检测原料完全反应后,向体系中加入冰水(30mL),乙酸乙酯(20mL*3)萃取,合并有机相,饱和食盐水洗涤(80mL),无水硫酸钠干燥,加压浓缩,所得粗品经柱层析纯化(石油醚:乙酸乙酯=3:1)得到化合物7h(172mg,0.32mmol,两步收率:65%)。MS-ESI[M+H] +实测值543.3。
步骤8
在0℃下,将化合物3f-1(25.0mg,0.12mmol)溶于无水N,N-二甲基甲酰胺(2mL)中,加入氢化钠(60%,5.34mg,0.13mmol),搅拌5分钟后升至室温搅拌30分钟,再将体系移至冰浴,将溶有化合物7h(55mg,0.10mmol)的N,N-二甲基甲酰胺(2mL)溶液缓慢滴加到反应中,5分钟后升至室温反应1小时。经LC-MS检测原料完全反应后,向体系中加入冰水(30mL),用盐酸(1M)调节pH=7。乙酸乙酯(3*10mL)萃取,合并有机相,饱和食盐水洗涤(50mL),无水硫酸钠干燥,减压蒸馏,所得粗品经柱层析纯化(石油醚:乙酸乙酯=2:1),得到化合物7i(67.0mg,0.10mmol,收率:100%)。MS-ESI[M+H] +实测值669.1。
步骤9
将化合物7i(67.0mg,0.10mmol)溶于无水乙醇(2.5mL)中,加入盐酸(6N,2.5mL),40℃下加热1小时。经LC-MS检测反应完成后,将体系移至冰浴中,碳酸氢钠固体调节pH=7,用乙酸乙酯(10mL*3)萃取,合并有机相,饱和食盐水洗涤(50mL),无水硫酸钠干燥,反向色谱纯化(碳酸氢铵、乙腈体系)得到化合物7(31mg,0.05mmol,收率50%)。MS-ESI[M+H] +实测值625.2。 1H NMR(600MHz,Chloroform-d)δ8.28(dd,J=8.0,1.4Hz,1H),7.62(td,J=7.5,1.4Hz,1H),7.57(td,J=7.8,1.5Hz,1H),7.35(d,J=2.0Hz,1H),7.25(dd,J=7.5,1.4Hz,1H),7.10(d,J=7.7Hz,1H),7.05(dd,J=7.8,1.9Hz,1H),4.69(d,J=2.3Hz,2H),4.16(d,J=12.4Hz,1H),4.08(d,J=12.3Hz,1H),3.33(ttd,J=9.4,7.0,2.3Hz,2H),2.34(d,J=9.0Hz,6H),2.31(d,J=4.0Hz,1H),1.98(dd,J=13.8,2.4Hz, 2H),1.65(tt,J=9.1,6.9Hz,2H),1.58–1.52(m,2H),1.42–1.31(m,2H),1.09(t,J=7.0Hz,3H),1.06(q,J=4.3Hz,1H),0.91(t,J=7.4Hz,3H),0.66(td,J=8.2,4.7Hz,1H).
以下通过试验例说明本发明化合物的技术效果。
试验例1、AT1钙流实验
测试材料:a)细胞株:AT1/HEK293;b)媒介:F12,Invitrogen(Cat#11765-047);FBS,Corning(Cat# 35-076-CV);Geneticin,Invitrogen(Cat# 10131);c)试剂:Fluo-4 Direct,(Invitrogen,Cat# F10471);d)仪器:384 well Poly-D-Lysine protein coating plate,Greiner #781946;Vi-cell XR Cell Viability Analyzer,Beckman Coulter;Incubator,Thermo;
测试方法:
对于激动剂(血管紧张素II)母板:用测试缓冲溶液将激动剂溶液从1mM稀释至200μM。对于拮抗剂(Losartan)和化合物板:拮抗剂与被测化合物用DMSO以1:4比例梯度稀释得到10个浓度点。然后转移900nL化合物溶液至母板并加30μL的测试缓冲溶液。
a)将细胞板从孵育箱中取出,用移液器加20μL的2X Fluo-4 Direct至384孔的细胞培养板。
b)将细胞板在5%CO 2环境下于37℃孵育50分钟,之后室温孵育10分钟。
c)将细胞板从孵育箱中取出,放置于FLIPR。将化合物板和tip box放入FLIPR。
d)对于EC80板:
1)在FLIPRTETRA上进行操作。
2)从EC80母板转移10μL的化合物至细胞板。
3)读取荧光信号。
4)计算所读取的信号,并用FLIPR算出每个细胞株的EC80值。
5)对于化合物板的浓度,配制浓度为参考激动剂EC80浓度6倍的溶液。
e)对于化合物板:
1)在FLIPRTETRA上进行操作。
2)转移10μL的化合物至细胞板。
3)读取荧光信号。
4)转移10μL的浓度为参考激动剂EC80浓度的6倍的溶液
5)读取荧光信号。
f)用Prism分析数据。
表1(AT1活性IC 50:+代表100nM至1μM,++代表10nM至100nM,+++代表1nM至10nM,具体活性如表1第3列所示)
化合物名称 IC 50(nM) IC 50(nM)
实施例1 +++ 2.90nM
实施例2 +++ 6.14nM
实施例3 +++ 1.97nM
实施例4 +++ 4.78nM
实施例5 ++ 26.82nM
实施例6 + 257.6nM
实施例7 +++ 3.55nM
Sparsentan +++ 9.79nM
Losartan +++ 1.86nM
试验例2、ETa钙流实验
测试材料:a)细胞株:ETa/HEK293;b)媒介:DMEM,Invitrogen(Cat#11960);Geneticin,Invitrogen(Cat# 10131);c)试剂:Fluo-4 Direct,(Invitrogen,Cat# F10471);d)仪器:384 well Poly-D-Lysine protein coating plate,Greiner #781946;Vi-cell XR Cell Viability Analyzer,Beckman Coulter;Incubator,Thermo。
测试方法:
对所用的激动剂内皮素因子(endothelin-1,ET-1)母板:用测试所用缓冲液将该激动剂从50μM稀释至15μM。
对拮抗剂(BQ123,Am J Physiol.1994 Apr;266(4Pt 2):H1327-31.)和化合物板:拮抗剂和被测化合物用DMSO以1:4比例梯度稀释得到10个浓度点。然后转移900nL的化合物至母板,并加30μL的测试用缓冲液。
a)从孵化箱中取细胞株,用移液器轻轻的加20μL的2X Fluo-4 DirectTM缓冲液至384孔的细胞培养板。
b)将细胞板在5%CO 2环境下于37℃孵育50分钟,之后室温孵育10分钟。
c)将细胞板从孵育箱中取出,放置于FLIPR。将化合物板和tip box放入FLIPR。
d)对于EC80板:
1)在FLIPRTETRA上进行操作。
2)从EC80母板转移10μL的化合物至细胞板。
3)读取荧光信号。
4)计算所读取的信号,并用FLIPR算出每个细胞株的EC80值。
5)对于化合物板的浓度,配制浓度为参考激动剂EC80浓度的6倍的溶液。
e)对于化合物板:
1)在FLIPRTETRA上进行操作。
2)转移10μL的化合物至细胞板。
3)读取荧光信号。
4)转移10μL的浓度为参考激动剂EC80浓度的6倍的溶液至细胞板。
5)读取荧光信号。
f)用Prism分析数据。
表2(ETa活性IC 50:+代表100nM至1μM,++代表10nM至100nM,+++代表1nM至10nM,具体活性如表2第3列所示)
化合物名称 IC 50(nM) IC 50(nM)
实施例1 ++ 24.60nM
实施例2 ++ 23.55nM
实施例3 ++ 10.53nM
实施例4 + 131.60nM
实施例5 ++ 14.83nM
实施例6 ++ 17.58nM
实施例7 ++ 24.29nM
Sparsentan ++ 80.81nM
BQ123 +++ 2.56nM
试验例3、水溶性实验
该检测依据高效液相色谱法(中国药典2020版四部通则0512)测定:
HPLC-UV法色谱条件:流动相为0.02M KH 2PO 4水溶液-乙腈(90:10),梯度洗脱;色谱柱为C 18;检测波长:210nm。采用外标法以峰面积计算。
表3:
Figure PCTCN2022126482-appb-000047
结论:本发明制备得到的具体化合物相对于参比化合物在多种测试条件下大部分具有更优的水溶性。
试验例4、人肝微粒体细胞色素P450同工酶(CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP3A4)活性的抑制作用
将CYP的6种同工酶的一共6个特异性探针底物萘黄酮(α-Naphthoflavone,CYP1A2)、磺胺苯吡唑(Sulphaphenazole,CYP2C9)、噻氯匹定(Ticlopidine,CYP2C19)、奎尼丁(Quinidine,CYP2D6)、酮康唑(Ketoconazole,CYP3A4)和孟鲁司特(Montelukast,CYP2C8)分别与重组肝药酶CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4和CYP2C8以及测试化合物共同孵育,加入烟酰胺腺嘌呤二核苷磷酸(NADP+)、D-葡萄糖-6-磷酸(G6P)和葡萄糖-6-磷酸脱氢酶(G6DHP)启动反应,在反应结束后通过荧光检测法(Ex490nm/Em520nm),以计算相应的半抑制浓度(IC 50)。
表4:
Figure PCTCN2022126482-appb-000048
结论:Sparsentan对人肝微粒体细胞色素P450同工酶CYP1A2、CYP2C9、CYP2C19和CYP2D6活性不存在抑制风险,对CYP3A4和CYP2C8有抑制作用。实施例3化合物对人肝微粒体细胞色素P450同工酶CYP1A2、CYP2C9、CYP2C19、CYP2D6和CYP2C8活性不存在抑制风险,仅对CYP3A4有抑制作用。实施例7化合物对人肝微粒体细胞色 素P450同工酶CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4和CYP2C8活性均不存在抑制风险。
以上数据预期实施例3和实施例7化合物临床使用具有更低的DDI(药物-药物相互作用)风险。
试验例5、大鼠体内药代动力学测试
实验动物:SD大鼠,6~8周。每个实施例化合物使用6只动物。
药物溶液配制:测试实施例化合物均配成1mg/mL溶液。溶液体系为5%DMSO+20%Solutol HS15+75%(20%HP-β-CD的水溶液)
给药分组:第一组口服灌胃给药(PO,3只SD大鼠,10mg/kg,给药前禁食过夜,给药后4小时喂食);第二组足背静脉注射给药(IV,3只SD大鼠,1mg/kg,自由进食)。
采血时间及处理方法:通过颈静脉在0.083(仅静脉注射组),0.25,0.5,1,2,4,8和24小时,共计7~8个时间点取血。血样经离心(2000g,4℃,5分钟)获得血浆。样品分析前存储于-70℃。
分析仪器及条件:LC-MS/MS-33(Triple Quad 6500+);MS:positive,ESI;流动相:Mobile phase A:H2O-0.025%FA-1mM NH 4OAc,Mobile phase B:MeOH-0.025%FA-1mM NH 4OAc;流速:0.60mL/min;色谱柱:ACQUITY UPLC-BEH C 18(2.1×50mm,1.7μm);柱温:60℃。
表5:口服(PO)药代参数
Figure PCTCN2022126482-appb-000049
结论:口服灌胃给药组本申请的实施例3和实施例7化合物口服后可以获得更高的体内暴露量以及更高的口服生物利用度,显示实施例3和实施例7化合物相对于参比化合物具有更优的药代动力学属性。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (20)

  1. 式I所示的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐:
    Figure PCTCN2022126482-appb-100001
    其中,
    X选自NR X1或CR X2R X3
    Y选自化学键、NR Y1或CR Y2R Y3
    R Y1选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
    R Y2、R Y3分别独立地选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
    R X1选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);其中,亚烷基、碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R X11取代;
    每个R X11分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR X12、-C 0~4亚烷基-SR X12、-C 0~4亚烷基-NR X12R X13;或者,两个独立的R X11与其直接相连的原子一起形成
    Figure PCTCN2022126482-appb-100002
    R X12、R X13分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;
    R X2、R X3与其直接相连的原子一起形成6~12元螺环、6~12元螺杂环、6~12元稠环、 6~12元稠杂环;其中,螺环、螺杂环、稠环、稠杂环可进一步任选被一个、两个、三个或四个独立的R X21取代;
    每个R X21分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR X22、-C 0~4亚烷基-SR X22、-C 0~4亚烷基-NR X22R X23;或者,两个独立的R X21与其直接相连的原子一起形成
    Figure PCTCN2022126482-appb-100003
    R X22、R X23分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;
    R 1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;
    R 2选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR 21、-C 0~4亚烷基-SR 21、-C 0~4亚烷基-NR 21R 22、-C 0~4亚烷基-OC(O)R 21、-C 0~4亚烷基-S(O) 2R 21、-C 0~4亚烷基-S(O)R 21、-C 0~4亚烷基-S(O) 2NR 21R 22、-C 0~4亚烷基-S(O)NR 21R 22、-C 0~4亚烷基-C(O)R 21、-C 0~4亚烷基-C(O)OR 21、-C 0~4亚烷基-C(O)NR 21R 22、-C 0~4亚烷基-NR 21C(O)R 22、-C 0~4亚烷基-NR 21S(O) 2R 22、-C 0~4亚烷基-NR 21S(O)R 22、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
    R 21、R 22分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);
    R 3、R 4分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);其中,所述的亚烷基、碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R 31取代;
    每个R 31分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~4亚烷基-OR 32、-C 0~4亚烷基-SR 32、-C 0~4亚烷基-NR 32R 33、-C 0~4亚烷基-OC(O)R 32、-C 0~4亚烷基-S(O) 2R 32、-C 0~4亚烷基-S(O)R 32、-C 0~4亚烷基-S(O) 2NR 32R 33、-C 0~4亚烷基-S(O)NR 32R 33、-C 0~4亚烷基 -C(O)R 32、-C 0~4亚烷基-C(O)OR 32、-C 0~4亚烷基-C(O)NR 32R 33、-C 0~4亚烷基-NR 32C(O)R 33、-C 0~4亚烷基-NR 32S(O) 2R 33、-C 0~4亚烷基-NR 32S(O)R 33、-C 0~4亚烷基-(3~10元碳环基)、-C 0~4亚烷基-(4~10元杂环烷基)、-C 0~4亚烷基-(6~10元芳环)、-C 0~4亚烷基-(5~10元芳杂环);或者,两个独立的R 31与其直接相连的原子一起形成
    Figure PCTCN2022126482-appb-100004
    R 32、R 33分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基。
  2. 根据权利要求1所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 1选自正丁基。
  3. 根据权利要求1所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 2选自-C 1~2亚烷基-OR 21、-C 1~2亚烷基-SR 21、-C 1~2亚烷基-NR 21R 22、-C 1~2亚烷基-OC(O)R 21、-C 1~2亚烷基-S(O) 2R 21、-C 1~2亚烷基-S(O)R 21、-C 1~2亚烷基-S(O) 2NR 21R 22、-C 1~2亚烷基-S(O)NR 21R 22、-C 1~2亚烷基-C(O)R 21、-C 1~2亚烷基-C(O)OR 21、-C 1~2亚烷基-C(O)NR 21R 22、-C 1~2亚烷基-NR 21C(O)R 22、-C 1~2亚烷基-NR 21S(O) 2R 22、-C 1~2亚烷基-NR 21S(O)R 22
    R 21、R 22分别独立选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~2亚烷基-(3~10元碳环基)、-C 0~2亚烷基-(4~10元杂环烷基)。
  4. 根据权利要求3所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 2选自
    Figure PCTCN2022126482-appb-100005
    R 21、R 22分别独立选自氢、-C 1~6烷基、卤素取代的-C 1~6烷基、-C 0~2亚烷基-(3~6元碳环基)。
  5. 根据权利要求4所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    所述R 2选自
    Figure PCTCN2022126482-appb-100006
  6. 根据权利要求1所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 3选自-C 0~2亚烷基-(3~10元碳环基)、-C 0~2亚烷基-(4~10元杂环烷基)、-C 0~2亚烷基-(6~10元芳环)、-C 0~2亚烷基-(5~10元芳杂环);其中,亚烷基、碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R 31取代;
    每个R 31分别独立选自氢、卤素、氰基、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基;或者,两个独立的R 31与其直接相连的原子一起形成
    Figure PCTCN2022126482-appb-100007
    R 4选自氢、-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基。
  7. 根据权利要求6所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 3选自3元碳环基、4元碳环基、5元碳环基、6元碳环基、7元碳环基、8元碳环基、9元碳环基、10元碳环基、4元杂环烷基、5元杂环烷基、6元杂环烷基、7元杂环烷基、8元杂环烷基、9元杂环烷基、10元杂环烷基、6元芳环、10元芳环、5元芳杂环、6元芳杂环、7元芳杂环、8元芳杂环、9元芳杂环、8元芳杂环;其中,碳环基、杂环烷基、芳环、芳杂环可进一步任选被一个、两个、三个或四个独立的R 31取代;
    R 4选自氢、-C 1~6烷基。
  8. 根据权利要求7所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 3选自
    Figure PCTCN2022126482-appb-100008
    Figure PCTCN2022126482-appb-100009
    其中,R 3选自的环可进一步任选被一个、两个、三个或四个独立的R 31取代。
  9. 根据权利要求8所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R 3选自
    Figure PCTCN2022126482-appb-100010
    Figure PCTCN2022126482-appb-100011
  10. 根据权利要求1~9任一项所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    X选自NR X1
    R X1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基、卤素取代的-C 2~6炔基、-C 0~2烷基-(3~10元碳环基)、-C 0~2烷基-(4~10元杂环烷基)、-C 0~2烷基-(6~10元芳环)、-C 0~2烷基-(5~10元芳杂环)。
  11. 根据权利要求10所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R X1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、3元碳环基、4元碳环基、5元碳环基、6元碳环基、7元碳环基、8元碳环基、4元杂环烷基、5元杂环烷基、6元杂环烷基、7元杂环烷基、8元杂环烷基、苯环、5元芳杂环、6元芳杂环。
  12. 根据权利要求11所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:
    R X1选自
    Figure PCTCN2022126482-appb-100012
    Figure PCTCN2022126482-appb-100013
  13. 根据权利要求1~12任一项所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:所述式I的化合物如式IIa或式IIb所示:
    Figure PCTCN2022126482-appb-100014
    其中,m1、m2分别独立选自0、1、2或3;m3选自1、2、3、4或5;
    n1、n2分别独立选自0、1、2或3;n3选自1、2、3、4或5。
  14. 根据权利要求1~13任一项所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐,其特征在于:所述化合物具体为:
    Figure PCTCN2022126482-appb-100015
    Figure PCTCN2022126482-appb-100016
    Figure PCTCN2022126482-appb-100017
    Figure PCTCN2022126482-appb-100018
  15. 权利要求1~14任一项所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐在制备血管紧张素II受体及内皮素受体双重拮抗剂药物中的用途。
  16. 权利要求1~14任一项所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐在制备用于治疗包括高血压在内的心脑血管疾病、肾脏疾病和糖尿病相关的器官损害有关的疾病的药物中的用途。
  17. 一种药物组合物,包括权利要求1~14任一项所述的化合物、或其氘代化合物、 或其立体异构体、或其药学上可接受的盐制备而成的制剂。
  18. 根据权利要求17所述的药物组合物,其进一步包括药学上可接受的载体、辅料、媒介物。
  19. 一种治疗血管紧张素II受体及内皮素受体有关病症的方法,所述方法包括向有需要的受试者施用有效量的权利要求1~14任一项所述的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐或者权利要求17-18任一项所述的组合物;优选的所述疾病包括高血压在内的心脑血管疾病、肾脏疾病和糖尿病相关的器官损害有关的疾病。
  20. 式IIIa或式IIIb所示的化合物、或其氘代化合物、或其立体异构体、或其药学上可接受的盐:
    Figure PCTCN2022126482-appb-100019
    其中R 1选自-C 1~6烷基、-C 2~6烯基、-C 2~6炔基、卤素取代的-C 1~6烷基、卤素取代的-C 2~6烯基或卤素取代的-C 2~6炔基,优选为正丁基;m1、m2分别独立选自0、1、2或3;m3选自1、2、3、4或5;n1、n2分别独立选自0、1、2或3;n3选自1、2、3、4或5。
PCT/CN2022/126482 2021-10-21 2022-10-20 一种双重拮抗剂及其用途 WO2023066348A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3235437A CA3235437A1 (en) 2021-10-21 2022-10-20 Dual antagonist and use thereof
CN202280070467.6A CN118119617A (zh) 2021-10-21 2022-10-20 一种双重拮抗剂及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111228856 2021-10-21
CN202111228856.0 2021-10-21

Publications (1)

Publication Number Publication Date
WO2023066348A1 true WO2023066348A1 (zh) 2023-04-27

Family

ID=86057954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126482 WO2023066348A1 (zh) 2021-10-21 2022-10-20 一种双重拮抗剂及其用途

Country Status (3)

Country Link
CN (1) CN118119617A (zh)
CA (1) CA3235437A1 (zh)
WO (1) WO2023066348A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115745983A (zh) * 2022-11-23 2023-03-07 深圳信立泰药业股份有限公司 一种血管紧张肽和内皮肽受体拮抗剂及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001177A1 (en) * 1991-07-03 1993-01-21 Merck & Co., Inc. Substituted triazolinones
US5281614A (en) * 1991-05-10 1994-01-25 Merck & Co., Inc. Substituted 1,2,4-triazoles bearing acidic functional groups as angiotensin II antagonists
US5411980A (en) * 1989-07-28 1995-05-02 Merck & Co., Inc. Substituted triazolinones, triazolinethiones, and triazolinimines as angiotensin II antagonists
WO2000001389A1 (en) 1998-07-06 2000-01-13 Bristol-Myers Squibb Co. Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
WO2001044239A2 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
US20040106833A1 (en) * 1998-07-06 2004-06-03 San Natesan Murug Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
WO2007109456A2 (en) * 2006-03-16 2007-09-27 Pharmacopeia, Inc. Substituted biphenyl isoxazole sulfonamides as dual angiotensin endothelin receptor antagonists
CN101891735A (zh) 2009-11-25 2010-11-24 北京理工大学 联苯磺胺异噁唑类化合物、合成方法及用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411980A (en) * 1989-07-28 1995-05-02 Merck & Co., Inc. Substituted triazolinones, triazolinethiones, and triazolinimines as angiotensin II antagonists
US5281614A (en) * 1991-05-10 1994-01-25 Merck & Co., Inc. Substituted 1,2,4-triazoles bearing acidic functional groups as angiotensin II antagonists
WO1993001177A1 (en) * 1991-07-03 1993-01-21 Merck & Co., Inc. Substituted triazolinones
WO2000001389A1 (en) 1998-07-06 2000-01-13 Bristol-Myers Squibb Co. Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
CN1308536A (zh) * 1998-07-06 2001-08-15 布里斯托尔-迈尔斯斯奎布公司 作为血管紧张肽和内皮肽受体双重拮抗剂的联苯基磺酰胺
US20040106833A1 (en) * 1998-07-06 2004-06-03 San Natesan Murug Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
WO2001044239A2 (en) * 1999-12-15 2001-06-21 Bristol-Myers Squibb Co. Biphenyl sulfonamides as dual angiotensin endothelin receptor antagonists
WO2007109456A2 (en) * 2006-03-16 2007-09-27 Pharmacopeia, Inc. Substituted biphenyl isoxazole sulfonamides as dual angiotensin endothelin receptor antagonists
CN101891735A (zh) 2009-11-25 2010-11-24 北京理工大学 联苯磺胺异噁唑类化合物、合成方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"BQ123", AM J PHYSIOL, vol. 266, no. 2, April 1994 (1994-04-01), pages H1327 - 31

Also Published As

Publication number Publication date
CN118119617A (zh) 2024-05-31
CA3235437A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
CN101715450B (zh) 作为cftr调控剂的氮杂吲哚衍生物
CN111566089B (zh) Ire1小分子抑制剂
JP2023075282A (ja) オピオイド受容体リガンド並びにそれらの使用方法及び製造方法
WO2021190413A1 (zh) 靶向降解黏着斑激酶的化合物及其在医药上的应用
MXPA06004005A (es) Moduladores de transportadores con casete de union con atp.
JP2021527690A (ja) ピリジニル及びピラジニル−(アザ)インドールスルホンアミド
CN104918942A (zh) 嘧啶酮衍生物和它们用于治疗、改善或预防病毒疾病的用途
CN109422733A (zh) 一类抑制并降解酪氨酸蛋白激酶alk的化合物
JP6864379B2 (ja) インドール類似体及びその使用
JP2000503321A (ja) 新規な融合ピロールカルボキサミド;新規な種類のgaba脳リセプタリガンド
EP1426046A1 (en) Novel use of tricyclic compound
KR20110091550A (ko) 5-ht2b 수용체 길항활성을 가지는 신규 피라졸-3-카복사미드 유도체
TWI415613B (zh) Anti-cancer agent resistance to overcome the agent
IL226790A (en) Pyridonyl guanidine compounds inhibit f1f0 – atpase
WO2023066348A1 (zh) 一种双重拮抗剂及其用途
JP2017532377A (ja) インドリノン化合物及びその使用
CN108137514A (zh) 芳基取代的二环杂芳基化合物
WO2023030434A1 (zh) 前列腺特异性膜抗原的抑制剂及其医药用途
WO2023198066A1 (zh) 氘代杂环酮类化合物及其用途
WO2024008129A1 (zh) 作为kat6抑制剂的化合物
TW201408672A (zh) □烷化合物
KR20190066023A (ko) 화합물, 상기 화합물을 얻기 위한 공정, 약제학적 조성물, 상기 화합물의 용도 및 정신 장애 및/또한 수면 장애를 치료하기 위한 방법
WO2023125928A1 (zh) Menin抑制剂及其用途
Su et al. Design, synthesis and biological evaluation of novel diarylacylhydrazones derivatives for the efficient treatment of idiopathic pulmonary fibrosis
CN110467616B (zh) 含杂芳基取代哒嗪酮结构的三唑并吡嗪类化合物的制备及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3235437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022882953

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022882953

Country of ref document: EP

Effective date: 20240521