WO2023065816A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2023065816A1
WO2023065816A1 PCT/CN2022/114699 CN2022114699W WO2023065816A1 WO 2023065816 A1 WO2023065816 A1 WO 2023065816A1 CN 2022114699 W CN2022114699 W CN 2022114699W WO 2023065816 A1 WO2023065816 A1 WO 2023065816A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electromagnetic wave
frequency
wave signal
unit
Prior art date
Application number
PCT/CN2022/114699
Other languages
English (en)
French (fr)
Inventor
吕瑞
郑博方
肖新华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023065816A1 publication Critical patent/WO2023065816A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method, device and system.
  • nodes may be connected by cables, and the nodes may communicate by transmitting electromagnetic wave signals on the cables.
  • the first node may load the data to be sent to the second node on the electromagnetic wave signal, and send the electromagnetic wave signal to the second node through the cable. After receiving the electromagnetic wave signal, the second node can recover the data carried by the electromagnetic wave signal. In this way, the communication between the first node and the second node is realized.
  • the electromagnetic wave signal when transmitted on the cable, it will be affected by the cable, resulting in the distortion of the electromagnetic wave signal received by the second node, and the accuracy of the data carried by the electromagnetic wave signal recovered by the second node is low, which affects the communication between nodes. effective communication.
  • This application provides a communication method, device and system, which can solve the problem that nodes cannot communicate effectively.
  • the technical solution is as follows:
  • a communication method is provided, the method is executed by a target third node between a first node and a second node; the first node and the second node are connected by a cable, and the cable At least one third node is set on the cable, and the target third node is a third node in the at least one third node; between the first node, the second node and the at least one third node Among the nodes, the target third node is adjacent to the first neighbor node and the second neighbor node;
  • the method includes: after receiving the first electromagnetic wave signal sent by the first neighboring node, the target third node performs target processing on the first electromagnetic wave signal to obtain a second electromagnetic wave signal, and sends the second electromagnetic wave signal to the second neighboring node.
  • the second electromagnetic wave signal ; wherein the target processing includes processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal.
  • the amplitude-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the frequency spectrum is symmetrical about the target straight line axis; the phase-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the frequency spectrum occurs Symmetrical about the center of the target point; wherein, the target straight line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and the frequency corresponding to the intersection point of the abscissa axis is the center frequency of the first electromagnetic wave signal;
  • the target point is a point corresponding to the center frequency on the abscissa axis of the coordinate system where the phase-frequency curve is located.
  • the target third node when the target third node performs conjugate inversion processing on the first electromagnetic wave signal, on the one hand, for the amplitude-frequency curve in the spectrum of the first electromagnetic wave signal, the target third The node will take the target straight line as the axis of symmetry, and symmetrically exchange the amplitudes corresponding to the frequencies on the left and right sides of the target straight line, so that the amplitude-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical about the target straight line axis.
  • the target third node multiplies the phase corresponding to each frequency in the phase-frequency curve by -1, and at the same time, also multiplies the phase corresponding to each frequency in the phase-frequency curve Taking the target straight line as the axis of symmetry, the phases corresponding to the frequencies on the left and right sides of the target straight line are symmetrically exchanged, so that the phase-frequency curves of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum are symmetrical about the center of the target point.
  • the target third node can also perform conjugate inversion processing on the first electromagnetic wave signal in other ways, for example, filtering the first electromagnetic wave signal, which is not discussed in this application. limited.
  • the first distortion will occur in the process of transmitting the electromagnetic wave signal from the first adjacent node to the target third node, and the electromagnetic wave signal will be distorted in the process of transmitting from the target third node to the second adjacent node.
  • Three distortions, and the third distortion is similar to the first distortion.
  • the target processing performed by the target second node on the received first electromagnetic wave signal includes processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal, so the target third node performs target processing on the first electromagnetic wave to obtain the second electromagnetic wave
  • the signal will undergo a second distortion opposite to the first distortion relative to the signal sent by the first neighboring node.
  • the electromagnetic wave signal When the electromagnetic wave signal is transmitted from the target third node to the second adjacent node, the electromagnetic wave signal undergoes a third distortion. Under the action of the second distortion and the third distortion, the distortion of the electromagnetic wave signal received by the second neighboring node relative to the electromagnetic wave signal sent by the first neighboring node can be reduced, ensuring the communication quality between the first neighboring node and the second neighboring node , thereby ensuring the communication quality between the first node and the second node.
  • the target third node when the target third node performs conjugate inversion processing on the first electromagnetic wave signal for the frequency spectrum of the electromagnetic wave signal, the target third node does not need to restore the original electromagnetic wave signal sent by the first node, so the target third node less complex.
  • the amplitude-frequency curve of the conjugate inversion signal and the amplitude-frequency curve of the first electromagnetic wave signal are symmetrical about the target line axis; the phase-frequency curve of the conjugate inversion signal and the phase-frequency curve of the first electromagnetic wave signal are about the center of the target point Symmetrical; where the target line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and the frequency corresponding to the intersection point with the abscissa axis is the center frequency of the first electromagnetic wave signal; the target point is the abscissa axis of the coordinate system where the phase-frequency curve is located The point on the axis corresponding to the center frequency.
  • the second electromagnetic wave signal finally obtained at the target third node may be the same as or different from the conjugate inversion signal, which is not limited in the present application.
  • the second electromagnetic wave signal finally obtained at the target third node is different from the conjugate inverted signal, at least one of the center frequency, amplitude-frequency curve and phase-frequency curve of the second electromagnetic wave signal and the conjugate inverted signal may be different.
  • the second electromagnetic wave signal finally obtained at the target third node may be different from the conjugate inverted signal
  • the second electromagnetic wave signal and the conjugate inverted signal may satisfy at least one of the following conditions.
  • Condition 1.1 In the amplitude-frequency curve of the conjugate inversion signal, the sum of the first amplitude and the sum of the second amplitude have a target size relationship; in the amplitude-frequency curve of the second electromagnetic wave signal, the sum of the third amplitude and the fourth amplitude and also have that target size relationship.
  • the first amplitude is the amplitude corresponding to the first frequency
  • the second amplitude is the amplitude corresponding to the second frequency
  • the first frequency is less than the center frequency of the conjugate inversion signal
  • the second frequency is greater than the center frequency of the conjugate inversion signal
  • the third The amplitude is the amplitude corresponding to the third frequency
  • the fourth amplitude is the amplitude corresponding to the fourth frequency
  • the third frequency is less than the center frequency of the second electromagnetic wave signal
  • the fourth frequency is greater than the center frequency of the second electromagnetic wave signal.
  • Condition 1.2 The fluctuation rate of the phase corresponding to any frequency in the additional phase-frequency curve is less than 40% (or 20%, 30%, etc.). Wherein, the fluctuation is the ratio of the fluctuation phase to the phase corresponding to any frequency, and the fluctuation phase is the phase corresponding to the any frequency in the normalized additional phase-frequency curve.
  • the additional phase-frequency curve is the curve obtained by subtracting the reference phase-frequency curve from the phase-frequency curve of the second electromagnetic wave signal; the center frequency of the reference phase-frequency curve is the same as the center frequency of the second electromagnetic wave signal; when the center frequency of the conjugate inversion signal When the center frequency of the second electromagnetic wave signal is the same, the reference phase-frequency curve is the phase-frequency curve of the conjugate inversion signal; when the center frequency of the conjugate inversion signal is different from the center frequency of the second electromagnetic wave signal, the reference phase-frequency curve is the phase-frequency curve after the phase-frequency curve of the conjugate inverted signal is moved along the abscissa axis of the phase-frequency curve.
  • the fluctuation is the ratio of the fluctuation phase to the phase corresponding to any frequency, and the fluctuation phase is the phase corresponding to any frequency in the normalized additional phase-frequency curve; it should be noted that the above normalization is used to convert the additional phase frequency
  • the curve is rotated and moved, so that the two endpoints of the additional phase-frequency curve and the target intersection point are moved to the abscissa axis of the additional phase-frequency curve, and the target intersection point corresponds to the center frequency of the first electromagnetic wave signal;
  • the target intersection point is the center frequency of the two endpoints
  • the intersection point of the connecting line and the reference straight line, the reference straight line is perpendicular to the axis of abscissa, and the frequency corresponding to the intersection point of the axis of abscissa is the center frequency of the first electromagnetic wave signal.
  • the difference between the amplitude-frequency curve of the second electromagnetic wave signal and the amplitude-frequency curve of the conjugate inversion signal is small; when the second electromagnetic wave signal and the conjugate inversion signal satisfy condition 1.2 , the difference between the phase-frequency curve of the second electromagnetic wave signal and the phase-frequency curve of the conjugate inverted signal is small. At this time, the difference between the second electromagnetic wave signal and the conjugate inversion signal is small, so that the distortion of the electromagnetic wave signal received by the second adjacent node relative to the electromagnetic wave signal sent by the first adjacent node can also be reduced.
  • the second electromagnetic wave signal and the conjugate inversion signal may be the same or different.
  • the second electromagnetic wave signal may be caused by factors of the device itself in the third node of the target; or, when the second electromagnetic wave signal is different from the conjugate inversion signal, it may also be caused by It includes other processing (such as auxiliary processing) different from the above-mentioned processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal; or, when the second electromagnetic wave signal is different from the conjugate inversion signal, it can be It is caused by the factors of the device itself in the target third node, and the target process also includes other processes mentioned above.
  • the second electromagnetic wave signal When the second electromagnetic wave signal is the same as the conjugate-inverted signal, the second electromagnetic wave signal can be obtained after an ideal conjugate-inverted frequency spectrum of the first electromagnetic wave signal occurs. When the second electromagnetic wave signal is different from the conjugate-inversion signal, the second electromagnetic wave signal can be obtained after the non-ideal conjugate inversion of the frequency spectrum of the first electromagnetic wave signal occurs.
  • the target third node to perform target processing on the first electromagnetic wave signal, some of which will be explained below as examples.
  • the conjugate inversion of the frequency spectrum of the first electromagnetic wave signal can be the conjugate inversion under ideal conditions or the conjugate inversion under non-ideal conditions, and the conjugate inversion is non-ideal
  • the second electromagnetic wave signal caused by the device itself in the target third node is different from the conjugate inversion signal.
  • Mode 1 When the target third node performs target processing on the first electromagnetic wave signal, it can first down-convert the first electromagnetic wave signal to obtain the first baseband signal; then, obtain the second baseband signal according to the first baseband signal, and the second The second baseband signal is conjugated to the first baseband signal; finally, the frequency of the second baseband signal is up-converted to obtain a second electromagnetic wave signal.
  • the target third node may include: a signal source unit, a first phase shifting unit, a second phase shifting unit, a first frequency mixing unit, a second The second frequency mixing unit, the third frequency mixing unit, the fourth frequency mixing unit, the reverse unit and the combining unit;
  • the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the first frequency mixing unit
  • the central frequency of an electromagnetic wave signal is the same;
  • the first phase shifting unit, the second phase shifting unit, the first frequency mixing unit and the third frequency mixing unit are all connected to the signal source unit, and the The first phase shifting unit is also connected to the second frequency mixing unit, the second phase shifting unit is also connected to the fourth frequency mixing unit, and the first frequency mixing unit is connected to the third frequency mixing unit , the second frequency mixing unit and the fourth frequency mixing unit are connected through the reverse unit, and the third frequency mixing unit and the fourth frequency mixing unit are both connected to the combining unit
  • the first frequency mixing unit mixes the first electromagnetic wave signal and the local oscillator electromagnetic wave signal to obtain the The real part signal of the first baseband signal;
  • the first phase shifting unit shifts the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase shifting signal, and ⁇ represents the circumference ratio;
  • the second mixing unit converts the phase of the local oscillator electromagnetic wave signal Mixing the first electromagnetic wave signal with the first phase-shifted signal obtained by the first phase-shifting unit to obtain an imaginary part signal of the first baseband signal;
  • the inversion unit inverts the imaginary part signal to obtain an inverse signal of the imaginary part signal, and the second baseband
  • the signal includes: the real part signal and the reverse signal;
  • the third frequency mixing unit mixes the real part signal and the local oscillator electromagnetic wave signal to obtain the second electromagnetic wave signal A frequency mixing signal;
  • the second phase shifting unit shifts the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase shifting signal;
  • the fourth frequency mixing unit combines the reverse signal with the The first phase-shifting signal obtained by the second phase-shifting unit is mixed to obtain a second frequency mixing signal;
  • the combining unit combines the first frequency mixing signal and the second frequency mixing signal to obtain the The second electromagnetic wave signal.
  • Mode 2 When the target third node performs target processing on the first electromagnetic wave signal, it may first down-convert the first electromagnetic wave signal to obtain the first baseband signal; then, the target third node performs conjugate up-conjugation on the first baseband signal By frequency conversion, the second electromagnetic wave signal is obtained.
  • the target third node when the target third node performs target processing on the first electromagnetic wave signal in manner 2, the target third node may perform processing in various manners.
  • the target third node includes: a signal source unit, a first phase shifting unit, a second phase shifting unit, a first frequency mixing unit, a second frequency mixing unit, The third frequency mixing unit, the fourth frequency mixing unit, and the combining unit;
  • the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal;
  • the first phase shifting unit, the second phase shifting unit, the first frequency mixing unit and the third frequency mixing unit are all connected to the signal source unit, and the first phase shifting unit is also connected to the The second frequency mixing unit is connected, the second phase shifting unit is also connected to the fourth frequency mixing unit, the first frequency mixing unit is connected to the third frequency mixing unit, and the second frequency mixing unit and The fourth mixing unit is connected, and both the third mixing unit and the fourth mixing unit are connected to the combining unit;
  • the first frequency mixing unit mixes the first electromagnetic wave signal and the local oscillator electromagnetic wave signal to obtain the The real part signal of the first baseband signal;
  • the first phase shifting unit shifts the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase shifting signal, and ⁇ represents the circumference ratio;
  • the second mixing unit converts the phase of the local oscillator electromagnetic wave signal Mixing the first electromagnetic wave signal with the first phase-shifted signal to obtain an imaginary part signal of the first baseband signal;
  • the third frequency mixing unit mixes the real part signal and the local oscillator electromagnetic wave signal, Obtain a first frequency mixing signal; the second phase shifting unit shifts the phase of the local oscillator electromagnetic wave signal by - ⁇ /2 to obtain a second phase shifting signal; the fourth frequency mixing unit combines the imaginary part signal with The second phase shifting signal is mixed to obtain a second frequency mixing signal; the combining unit combines the first frequency mixing signal and the second frequency mixing signal to obtain the second electromagnetic wave signal.
  • the fourth frequency mixing unit converts the imaginary part Mixing the signal with the second phase-shifted signal is equivalent to mixing the inverse signal of the imaginary part signal with the second phase-shifted signal in Mode 1 in Mode 1. Therefore, in the first optional processing mode of mode 2, the second mixed frequency signal obtained by mixing the imaginary part signal with the second phase-shifted signal by the fourth mixing unit is equivalent to the second mixed frequency signal in mode 1, Furthermore, the second electromagnetic wave signal obtained by the combining unit in the first optional processing manner of the manner 2 is equivalent to the second electromagnetic wave signal in the manner 1.
  • the target third node includes: a signal source unit, a first phase shifting unit, a second phase shifting unit, a first frequency mixing unit, a second frequency mixing unit, The third frequency mixing unit, the fourth frequency mixing unit, and the combining unit;
  • the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal;
  • the first phase shifting unit, the second phase shifting unit, the first frequency mixing unit and the third frequency mixing unit are all connected to the signal source unit, and the first phase shifting unit is also connected to the The second frequency mixing unit is connected, the second phase shifting unit is also connected to the fourth frequency mixing unit, the first frequency mixing unit is connected to the fourth frequency mixing unit, and the second frequency mixing unit is connected to the fourth frequency mixing unit.
  • the third frequency mixing unit is connected, and both the third frequency mixing unit and the fourth frequency mixing unit are connected to the combining unit;
  • the first frequency mixing unit mixes the first electromagnetic wave signal and the local oscillator electromagnetic wave signal to obtain the The real part signal;
  • the first phase shifting unit shifts the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase shifting signal, and ⁇ represents the circular ratio;
  • the second mixing unit converts the first electromagnetic wave signal Mixing with the first phase-shifted signal obtained by the first phase-shifting unit to obtain the imaginary part signal;
  • the third frequency mixing unit mixes the imaginary part signal with the local oscillator electromagnetic wave signal, Obtain the first frequency mixing signal; the second phase shifting unit shifts the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase shifting signal; the fourth frequency mixing unit converts the real part signal Mixing with the first phase shifting signal obtained by the second phase shifting unit to obtain a second frequency mixing signal; the combining unit combines the first frequency mixing signal and the second frequency mixing signal to obtain The second electromagnetic wave signal.
  • the conjugation of the first baseband signal is realized by crossing the real part signal and the imaginary part signal of the input signal of the up-mixing unit.
  • the up-mixing unit is equivalent to adding an additional phase rotation of 90° after conjugating the first baseband signal.
  • the phase rotation of 90° does not affect the effect of target processing.
  • Method 3 When the target third node performs target processing on the first electromagnetic wave signal, it can perform spectrum shift on the first electromagnetic wave signal to obtain the third electromagnetic wave signal; after that, filter the third electromagnetic wave signal to obtain the second electromagnetic wave signal .
  • the first electromagnetic wave signal is a bandpass real signal
  • the frequency spectrum of the first electromagnetic wave signal has conjugate symmetry, that is, the frequency spectrum of the first electromagnetic wave signal is about the ordinate axis of the coordinate system where the spectrum is located (passing through the point of 0 frequency ) conjugate symmetry.
  • the frequency spectrum of the baseband signal of the first electromagnetic wave signal is on the side of the positive semi-axis
  • the center frequency is the center frequency of the first electromagnetic wave signal.
  • the conjugate symmetry of the frequency spectrum of the first electromagnetic wave signal there is a frequency spectrum that is conjugate symmetric to the baseband signal spectrum of the first electromagnetic wave signal on the negative half-axis side of the frequency spectrum of the first electromagnetic wave signal. Therefore, the conjugate symmetry of the original positive-half-axis signal spectrum can be equivalently realized only by shifting the spectrum of the spectrum of the first electromagnetic wave signal on the negative half-axis side to the positive half-axis.
  • the target third node When the target third node uses mode 3 to perform target processing on the first electromagnetic wave signal, the target third node includes: a signal source unit, a frequency multiplication unit, a frequency mixing unit, and a filter unit; the signal source unit, the multiplier The frequency unit, the frequency mixing unit and the filter unit are sequentially connected; the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal;
  • the frequency multiplication unit acquires a frequency multiplied signal of the local oscillator electromagnetic wave signal, and the center frequency of the frequency multiplied signal is twice the center frequency of the first electromagnetic wave signal; the mixing unit mixes the first electromagnetic wave signal with the frequency multiplied signal to obtain the third electromagnetic wave signal;
  • the filter unit filters the third electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • Mode 4 When the target third node performs target processing on the first electromagnetic wave signal, it may sequentially perform frequency conversion, spectrum shifting, filtering, and frequency conversion on the first electromagnetic wave signal to obtain a second electromagnetic wave signal.
  • the target third node uses method 4 to perform target processing on the first electromagnetic wave signal
  • the target third node includes: a first signal source unit, a second signal source unit, a frequency multiplication unit, a first frequency mixing unit, a second A frequency mixing unit, a third frequency mixing unit, a first filtering unit, and a second filtering unit; the first mixing unit, the first filtering unit, the second mixing unit, the second filtering unit, and The third frequency mixing unit is connected in sequence; the first signal source unit is connected to the first frequency mixing unit, and the second signal source unit is connected to the second frequency mixing unit through the frequency multiplication unit; The first signal source unit is used to generate a first local oscillator electromagnetic wave signal, and the second signal source unit is used to generate a second local oscillator electromagnetic wave signal; the center frequency of the first local oscillator electromagnetic wave signal is f 1 , so The center frequency of the second local oscillator electromagnetic wave signal is f 2 , the center frequency of the first electromagnetic wave signal is f 0 , f 1 +f
  • the first frequency mixing unit mixes the first electromagnetic wave signal with the first local oscillator electromagnetic wave signal, Obtain a first mixed frequency signal; the first filter unit filters the first mixed frequency signal to obtain a first sub-signal in the first mixed frequency signal, and the center frequency of the first sub-signal is f 2 ; the frequency multiplication unit obtains the frequency multiplication signal of the second local oscillator electromagnetic wave signal, and the center frequency of the frequency multiplication signal is twice of f 2 ; the second frequency mixing unit converts the first sub-signal Mixing with the frequency multiplied signal to obtain a second mixed frequency signal; the second filter unit filters the second mixed frequency signal to obtain a second sub-signal in the second mixed frequency signal, so The center frequency of the second sub-signal is f 2 ; the third frequency mixing unit mixes the second sub-signal with the first local oscillator electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • Mode 5 When the target third node performs target processing on the first electromagnetic wave signal, it may parametrically amplify the first electromagnetic wave signal to obtain a second electromagnetic wave signal. It should be noted that when the target third node performs target processing on the first electromagnetic wave signal in manner 5, the target third node may perform processing in various manners.
  • the target third node includes: a signal source unit, a first filtering unit, a second filtering unit, a third filtering unit, and a nonlinear unit; the signal source unit Used to provide local oscillator electromagnetic wave signals; the signal source unit is connected to the second filter unit, and the first filter unit, the second filter unit and the third filter unit are all connected to the nonlinear unit ;
  • the first filter unit filters the first electromagnetic wave signal to obtain a first filtered signal
  • the second The center frequency of a filter signal is the center frequency of the first electromagnetic wave signal
  • the second filter unit filters the local oscillator electromagnetic wave signal to obtain a second filter signal
  • the nonlinear unit according to the second filter The signal performs parametric amplification on the first filtered signal to obtain a parametric amplified signal
  • the third filter unit filters the parametric amplified signal to obtain the second electromagnetic wave signal; wherein, the center of the second electromagnetic wave signal
  • the frequency is Mf p +Nf 0 , M and N are both non-zero integers, and N is less than zero
  • f 0 represents the center frequency of the first electromagnetic wave signal
  • f p represents the center frequency of the second filtered signal.
  • the local oscillator electromagnetic wave signal generated by the signal source unit is filtered by the second filter unit to obtain the second filtered signal as the pump signal, and the first electromagnetic wave signal input to the third node of the target is filtered by the first filter unit to obtain The first filtered signals of are acted on the nonlinear unit together.
  • the nonlinear unit has a nonlinear effect under the action of the pump signal, and the nonlinear unit will transfer the energy in the pump signal to the output parametric amplification signal to realize parametric amplification.
  • the nonlinear unit can generate a parametric amplification signal at any frequency point of Af p +Bf 0 (both A and B are non-zero integers).
  • the third filtering unit can filter the parameter amplification signal output by the nonlinear unit, to obtain the second electromagnetic wave signal whose center frequency is Mf p +Nf 0 .
  • N needs to select an integer smaller than zero.
  • the center frequency of the second electromagnetic wave signal is 2f p -f 0
  • f p can be a frequency close to f 0
  • the target third node parametrically amplifies the first electromagnetic wave signal in the process of performing target processing on the first electromagnetic wave signal
  • the power of the second electromagnetic wave signal can also be improved, thereby reducing the electromagnetic wave signal online transmission loss on the cable.
  • the target third node includes: a signal source unit, a connection unit, a first filter unit, a second filter unit, and a nonlinear unit;
  • the connection unit has a first end, a second end and a third end, the first end is connected to the first adjacent node, the second end is connected to the second adjacent node, and the third end is connected to one end of the first filtering unit connection;
  • the connection unit is used to transmit the signal input from the first end to the third end, and transmit the signal input from the third end to the second end;
  • the first filtering The other end of the unit and the second filter unit are both connected to the nonlinear unit;
  • the signal source unit is connected to the second filter unit, and the signal source unit is used to provide a local oscillator electromagnetic wave signal;
  • filtering the parametric amplified signal to obtain the second electromagnetic wave signal, and filtering the first electromagnetic wave signal to obtain the first filtered signal are all implemented on the first filtering unit, and, through the signal If the direction is different, the second electromagnetic wave signal is separated from the first filtered signal by using a connecting unit (such as a circulator and other devices).
  • a connecting unit such as a circulator and other devices.
  • the target third node may also perform low-noise amplification on the first electromagnetic wave signal, so as to improve the quality of the first electromagnetic wave signal.
  • the target third node after the target third node performs target processing on the first electromagnetic wave signal to obtain the second electromagnetic wave signal, and before sending the second electromagnetic wave signal to the second neighboring node, it may further perform power amplification on the second electromagnetic wave signal, The power of the second electromagnetic wave signal is increased, thereby reducing the transmission loss of the electromagnetic wave signal on the cable.
  • the first electromagnetic wave signal is a terahertz signal or an optical signal.
  • a communication device is provided, the communication device is a target third node between a first node and a second node; the first node and the second node are connected by a cable, and the cable At least one third node is set on the cable, the target third node is a third node in the at least one third node, and the first node, the second node and the at least one third node Among the nodes, the target third node is adjacent to the first neighbor node and the second neighbor node; the communication device includes: a receiving module, a target processing module and a sending module.
  • the receiving module is configured to receive the first electromagnetic wave signal sent by the first neighboring node;
  • the target processing module is configured to perform target processing on the first electromagnetic wave signal to obtain a second electromagnetic wave signal, and the target processing includes: for making the electromagnetic wave Conjugate inversion processing of the frequency spectrum of the signal;
  • a sending module configured to send the second electromagnetic wave signal to the second neighboring node.
  • the amplitude-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the frequency spectrum is symmetrical about the target straight line axis; the phase-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the frequency spectrum occurs Symmetrical about the center of the target point; wherein, the target straight line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and the frequency corresponding to the intersection point of the abscissa axis is the center frequency of the first electromagnetic wave signal;
  • the target point is a point corresponding to the center frequency on the abscissa axis of the coordinate system where the phase-frequency curve is located.
  • the target processing module when the target processing module performs conjugate inversion processing on the first electromagnetic wave signal, on the one hand, for the amplitude-frequency curve in the spectrum of the first electromagnetic wave signal, the target processing module will Taking the target straight line as the axis of symmetry, the amplitudes corresponding to the frequencies on the left and right sides of the target straight line are symmetrically exchanged, so that the amplitude-frequency curves of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum are symmetrical about the target straight line axis.
  • the target processing module multiplies the phase corresponding to each frequency in the phase-frequency curve by -1, and at the same time, also multiplies the phase corresponding to each frequency in the phase-frequency curve by
  • the above-mentioned target line is a symmetry axis, and the phases corresponding to the frequencies on the left and right sides of the target line are symmetrically exchanged, so that the phase-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical about the center of the target point.
  • the target processing module may also perform the processing for inverting the conjugate of the frequency spectrum of the electromagnetic wave signal on the first electromagnetic wave signal in other ways, such as filtering the first electromagnetic wave signal.
  • the first distortion will occur in the process of transmitting the electromagnetic wave signal from the first adjacent node to the target third node, and the electromagnetic wave signal will be distorted in the process of transmitting from the target third node to the second adjacent node.
  • Three distortions, and the third distortion is similar to the first distortion.
  • the target processing performed by the target second node on the received first electromagnetic wave signal includes processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal, so the target third node performs target processing on the first electromagnetic wave to obtain the second electromagnetic wave
  • the signal will undergo a second distortion opposite to the first distortion relative to the signal sent by the first neighboring node.
  • the electromagnetic wave signal When the electromagnetic wave signal is transmitted from the target third node to the second adjacent node, the electromagnetic wave signal undergoes a third distortion. Under the action of the second distortion and the third distortion, the distortion of the electromagnetic wave signal received by the second neighboring node relative to the electromagnetic wave signal sent by the first neighboring node can be reduced, ensuring the communication quality between the first neighboring node and the second neighboring node , thereby ensuring the communication quality between the first node and the second node.
  • the target processing module when the target processing module performs conjugate inversion processing on the first electromagnetic wave signal, it does not need to restore the original electromagnetic wave signal sent by the first node, so the complexity of the target processing module is relatively low.
  • the amplitude-frequency curve of the conjugate inversion signal and the amplitude-frequency curve of the first electromagnetic wave signal are symmetrical about the target line axis; the phase-frequency curve of the conjugate inversion signal and the phase-frequency curve of the first electromagnetic wave signal are about the center of the target point Symmetrical; where the target line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and the frequency corresponding to the intersection point with the abscissa axis is the center frequency of the first electromagnetic wave signal; the target point is the abscissa axis of the coordinate system where the phase-frequency curve is located The point on the axis corresponding to the center frequency.
  • the second electromagnetic wave signal finally obtained at the target third node may be the same as or different from the conjugate inversion signal, which is not limited in the present application.
  • the second electromagnetic wave signal finally obtained at the target third node is different from the conjugate inverted signal, at least one of the center frequency, amplitude-frequency curve and phase-frequency curve of the second electromagnetic wave signal and the conjugate inverted signal may be different.
  • the second electromagnetic wave signal finally obtained at the target third node may be different from the conjugate inverted signal
  • the second electromagnetic wave signal and the conjugate inverted signal may satisfy at least one of the following conditions.
  • Condition 1.1 In the amplitude-frequency curve of the conjugate inversion signal, the sum of the first amplitude and the sum of the second amplitude have a target size relationship; in the amplitude-frequency curve of the second electromagnetic wave signal, the sum of the third amplitude and the fourth amplitude and also have that target size relationship.
  • the first amplitude is the amplitude corresponding to the first frequency
  • the second amplitude is the amplitude corresponding to the second frequency
  • the first frequency is less than the center frequency of the conjugate inversion signal
  • the second frequency is greater than the center frequency of the conjugate inversion signal
  • the third The amplitude is the amplitude corresponding to the third frequency
  • the fourth amplitude is the amplitude corresponding to the fourth frequency
  • the third frequency is less than the center frequency of the second electromagnetic wave signal
  • the fourth frequency is greater than the center frequency of the second electromagnetic wave signal.
  • Condition 1.2 The fluctuation rate of the phase corresponding to any frequency in the additional phase-frequency curve is less than 40% (or 20%, 30%, etc.). Wherein, the fluctuation is the ratio of the fluctuation phase to the phase corresponding to any frequency, and the fluctuation phase is the phase corresponding to the any frequency in the normalized additional phase-frequency curve.
  • the additional phase-frequency curve is the curve obtained by subtracting the reference phase-frequency curve from the phase-frequency curve of the second electromagnetic wave signal; the center frequency of the reference phase-frequency curve is the same as the center frequency of the second electromagnetic wave signal; when the center frequency of the conjugate inversion signal When the center frequency of the second electromagnetic wave signal is the same, the reference phase-frequency curve is the phase-frequency curve of the conjugate inversion signal; when the center frequency of the conjugate inversion signal is different from the center frequency of the second electromagnetic wave signal, the reference phase-frequency curve is the phase-frequency curve after the phase-frequency curve of the conjugate inverted signal is moved along the abscissa axis of the phase-frequency curve.
  • the fluctuation is the ratio of the fluctuation phase to the phase corresponding to any frequency, and the fluctuation phase is the phase corresponding to any frequency in the normalized additional phase-frequency curve; it should be noted that the above normalization is used to convert the additional phase frequency
  • the curve is rotated and moved, so that the two endpoints of the additional phase-frequency curve and the target intersection point are moved to the abscissa axis of the additional phase-frequency curve, and the target intersection point corresponds to the center frequency of the first electromagnetic wave signal;
  • the target intersection point is the center frequency of the two endpoints
  • the intersection point of the connecting line and the reference straight line, the reference straight line is perpendicular to the axis of abscissa, and the frequency corresponding to the intersection point of the axis of abscissa is the center frequency of the first electromagnetic wave signal.
  • the difference between the amplitude-frequency curve of the second electromagnetic wave signal and the amplitude-frequency curve of the conjugate inversion signal is small; when the second electromagnetic wave signal and the conjugate inversion signal satisfy condition 1.2 , the difference between the phase-frequency curve of the second electromagnetic wave signal and the phase-frequency curve of the conjugate inverted signal is small. At this time, the difference between the second electromagnetic wave signal and the conjugate inversion signal is small, so that the distortion of the electromagnetic wave signal received by the second adjacent node relative to the electromagnetic wave signal sent by the first adjacent node can also be reduced.
  • the second electromagnetic wave signal and the conjugate inversion signal may be the same or different.
  • the second electromagnetic wave signal may be caused by factors of the device itself in the third node of the target; or, when the second electromagnetic wave signal is different from the conjugate inversion signal, it may also be caused by It includes other processing (such as auxiliary processing) different from the above-mentioned processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal; or, when the second electromagnetic wave signal is different from the conjugate inversion signal, it can be It is caused by the factors of the device itself in the target third node, and the target process also includes other processes mentioned above.
  • the second electromagnetic wave signal When the second electromagnetic wave signal is the same as the conjugate-inverted signal, the second electromagnetic wave signal can be obtained after an ideal conjugate-inverted frequency spectrum of the first electromagnetic wave signal occurs. When the second electromagnetic wave signal is different from the conjugate-inversion signal, the second electromagnetic wave signal can be obtained after the non-ideal conjugate inversion of the frequency spectrum of the first electromagnetic wave signal occurs.
  • the target processing module performs target processing on the first electromagnetic wave signal in a variety of ways, some of which will be explained below as examples.
  • the conjugate inversion of the frequency spectrum of the first electromagnetic wave signal can be the conjugate inversion under ideal conditions or the conjugate inversion under non-ideal conditions, and the conjugate inversion is non-ideal
  • the second electromagnetic wave signal caused by the device itself in the target third node is different from the conjugate inversion signal.
  • the target processing module is used to: down-convert the first electromagnetic wave signal to obtain a first baseband signal; obtain a second baseband signal according to the first baseband signal, and the second baseband signal is the same as the first conjugating the baseband signal; and performing up-conversion on the second baseband signal to obtain the second electromagnetic wave signal.
  • the target processing module when the target processing module uses method 1 to perform target processing on the first electromagnetic wave signal, includes: a signal source unit, a first phase shifting unit, a second phase shifting unit, a first frequency mixing unit, The second frequency mixing unit, the third frequency mixing unit, the fourth frequency mixing unit, the reverse unit and the combining unit;
  • the signal source unit is used to provide the local oscillator electromagnetic wave signal, the center frequency of the local oscillator electromagnetic wave signal is the same as the The center frequency of the first electromagnetic wave signal is the same;
  • the first phase shifting unit, the second phase shifting unit, the first frequency mixing unit and the third frequency mixing unit are all connected to the signal source unit, so
  • the first phase shifting unit is also connected to the second frequency mixing unit, the second phase shifting unit is also connected to the fourth frequency mixing unit, and the first frequency mixing unit is connected to the third frequency mixing unit connected, the second mixing unit and the fourth mixing unit are connected through the reverse unit, and both the third mixing unit and the fourth mixing unit are connected to the combining unit;
  • the first frequency mixing unit is used to mix the first electromagnetic wave signal and the local oscillator electromagnetic wave signal to obtain a real part signal of the first baseband signal;
  • the first phase shifting unit is used to combine the The phase of the local oscillator electromagnetic wave signal is shifted by ⁇ /2 to obtain a first phase-shifted signal, and ⁇ represents the circumference ratio;
  • the second mixing unit is used to combine the first electromagnetic wave signal and the first phase-shifted signal obtained by the first phase-shifted unit Mixing the first phase-shifted signal to obtain an imaginary part signal of the first baseband signal;
  • the inversion unit is used to invert the imaginary part signal to obtain an inverse signal of the imaginary part signal,
  • the second baseband signal includes: the real part signal and the reverse signal;
  • the third frequency mixing unit is used to mix the real part signal and the local oscillator electromagnetic wave signal to obtain a first mixed frequency signal;
  • the second phase shifting unit is used to shift the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase shifted signal;
  • the target processing module is used to: first down-convert the first electromagnetic wave signal to obtain the first baseband signal; then, the target third node performs conjugate up-conversion on the first baseband signal to obtain the second electromagnetic wave signal.
  • the target processing module may perform processing in various ways.
  • the target processing module includes: a signal source unit, a first phase shifting unit, a second phase shifting unit, a first frequency mixing unit, a second frequency mixing unit, a second frequency mixing unit, Three mixing units, a fourth mixing unit, and a combining unit;
  • the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal;
  • the first phase shifting unit, the second phase shifting unit, the first frequency mixing unit and the third frequency mixing unit are all connected to the signal source unit, and the first phase shifting unit is also connected to the second phase shifting unit
  • Two frequency mixing units are connected, the second phase shifting unit is also connected to the fourth frequency mixing unit, the first frequency mixing unit is connected to the third frequency mixing unit, and the second frequency mixing unit is connected to the fourth frequency mixing unit.
  • the fourth mixing unit is connected, and both the third mixing unit and the fourth mixing unit are connected to the combining unit;
  • the first frequency mixing unit is used to mix the first electromagnetic wave signal and the local oscillator electromagnetic wave signal to obtain a real part signal of the first baseband signal;
  • the first phase shifting unit is used to combine the The phase of the local oscillator electromagnetic wave signal is shifted by ⁇ /2 to obtain a first phase-shifted signal, and ⁇ represents the circumference ratio;
  • the second frequency mixing unit is used to mix the first electromagnetic wave signal and the first phase-shifted signal to obtain The imaginary part signal of the first baseband signal;
  • the third frequency mixing unit is used to mix the real part signal and the local oscillator electromagnetic wave signal to obtain a first mixed frequency signal;
  • the second phase shifting unit is used to shift the phase of the local oscillator electromagnetic wave signal by - ⁇ /2 to obtain a second phase-shifted signal;
  • the fourth frequency mixing unit is used to mix the imaginary part signal with the second phase-shifted signal, obtaining a second frequency mixing signal;
  • the combining unit is configured to combine the first frequency mixing signal and the second frequency mixing signal to obtain the second electromagnetic wave signal.
  • the target processing module includes: a signal source unit, a first phase shifting unit, a second phase shifting unit, a first frequency mixing unit, a second frequency mixing unit, a Three mixing units, a fourth mixing unit, and a combining unit;
  • the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal;
  • the first phase shifting unit, the second phase shifting unit, the first frequency mixing unit and the third frequency mixing unit are all connected to the signal source unit, and the first phase shifting unit is also connected to the second phase shifting unit
  • Two frequency mixing units are connected, the second phase shifting unit is also connected to the fourth frequency mixing unit, the first frequency mixing unit is connected to the fourth frequency mixing unit, and the second frequency mixing unit is connected to the fourth frequency mixing unit.
  • the third frequency mixing unit is connected, and the third frequency mixing unit and the fourth frequency mixing unit are both connected to the combining unit;
  • the first frequency mixing unit is used for mixing the first electromagnetic wave signal and the local oscillator electromagnetic wave signal to obtain the real part signal;
  • the first phase shifting unit is used for mixing the local oscillator electromagnetic wave signal The phase is shifted by ⁇ /2 to obtain the first phase-shifted signal, and ⁇ represents the circular ratio;
  • the second frequency mixing unit is used to combine the first electromagnetic wave signal and the first phase-shifted signal obtained by the first phase-shifted unit frequency mixing to obtain the imaginary part signal;
  • the third frequency mixing unit is used to mix the imaginary part signal with the local oscillator electromagnetic wave signal to obtain a first frequency mixing signal;
  • the second phase shifting unit uses shifting the phase of the local oscillator electromagnetic wave signal by ⁇ /2 to obtain the first phase-shifted signal;
  • the fourth frequency mixing unit is used to combine the real part signal with the obtained phase-shifted signal obtained by the second phase-shifting unit Mixing the first phase shifting signal to obtain a second frequency mixing signal;
  • the combining unit is used to combine the first frequency mixing signal and the second frequency mixing signal to obtain the second electromagnetic
  • the target processing module is configured to: perform spectrum shift on the first electromagnetic wave signal to obtain a third electromagnetic wave signal; filter the third electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • the target processing module includes: a signal source unit, a frequency multiplication unit, a frequency mixing unit and a filter unit; the signal source unit, the frequency multiplication The unit, the frequency mixing unit and the filter unit are sequentially connected; the signal source unit is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal;
  • the frequency doubling unit is used to obtain the frequency multiplied signal of the local oscillator electromagnetic wave signal, the center frequency of the frequency multiplied signal is twice the center frequency of the first electromagnetic wave signal; the frequency mixing unit is used to combine the The first electromagnetic wave signal is mixed with the frequency multiplied signal to obtain the third electromagnetic wave signal; the filtering unit is configured to filter the third electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • Mode 4 When the target processing module performs target processing on the first electromagnetic wave signal, it may sequentially perform frequency conversion, spectrum shift, filtering and frequency conversion on the first electromagnetic wave signal to obtain a second electromagnetic wave signal.
  • the target processing module includes: a first signal source unit, a second signal source unit, a frequency multiplication unit, a first frequency mixing unit, and a second mixing unit frequency unit, a third frequency mixing unit, a first filtering unit and a second filtering unit; the first frequency mixing unit, the first filtering unit, the second mixing unit, the second filtering unit and the The third frequency mixing unit is connected in sequence; the first signal source unit is connected to the first frequency mixing unit, and the second signal source unit is connected to the second frequency mixing unit through the frequency multiplication unit; The first signal source unit is used to generate a first local oscillator electromagnetic wave signal, and the second signal source unit is used to generate a second local oscillator electromagnetic wave signal; the center frequency of the first local oscillator electromagnetic wave signal is f 1 , and the The center frequency of the second local oscillator electromagnetic wave signal is f 2 , the center frequency of the first electromagnetic wave signal is f 0 , f 1 +f
  • the first mixing unit is used to mix the first electromagnetic wave signal with the first local oscillator electromagnetic wave signal to obtain a first mixed frequency signal; the first filtering unit is used to mix the first mixed frequency signal The frequency signal is filtered to obtain the first sub-signal in the first mixed frequency signal, and the center frequency of the first sub-signal is f 2 ; the frequency multiplication unit is used to obtain the second local oscillator electromagnetic wave signal A frequency multiplier signal, the center frequency of the frequency multiplier signal is twice the frequency of f2 ; the second frequency mixing unit is used to mix the first sub-signal with the frequency multiplier signal to obtain a second frequency mixing signal; the second filtering unit is used to filter the second mixed frequency signal to obtain a second sub-signal in the second mixed frequency signal, and the center frequency of the second sub-signal is f 2 ; the The third frequency mixing unit is configured to mix the second sub-signal with the first local oscillator electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • Mode 5 When the target processing module performs target processing on the first electromagnetic wave signal, it may parametrically amplify the first electromagnetic wave signal to obtain a second electromagnetic wave signal. It should be noted that, when the target processing module performs target processing on the first electromagnetic wave signal in mode 5, the target third node can be processed in various ways.
  • the target processing module includes: a signal source unit, a first filter unit, a second filter unit, a third filter unit, and a nonlinear unit; the signal source unit uses For providing local oscillator electromagnetic wave signals; the signal source unit is connected to the second filter unit, and the first filter unit, the second filter unit and the third filter unit are all connected to the nonlinear unit;
  • the first filter unit is used to filter the first electromagnetic wave signal to obtain a first filter signal, the center frequency of the first filter signal is the center frequency of the first electromagnetic wave signal; the second filter unit is used to filter the local oscillator electromagnetic wave signal to obtain a second filtered signal; the nonlinear unit is used to parametrically amplify the first filtered signal according to the second filtered signal to obtain a parametric amplified signal; The third filtering unit is used to filter the parametric amplification signal to obtain the second electromagnetic wave signal; wherein, the center frequency of the second electromagnetic wave signal is Mf p +Nf 0 , and both M and N are non-zero integers , and N is less than zero, f 0 represents the center frequency of the first electromagnetic wave signal, and f p represents the center frequency of the second filtered signal.
  • the target processing module includes: a signal source unit, a connection unit, a first filter unit, a second filter unit, and a nonlinear unit;
  • the connection unit has a first terminal , a second end and a third end, the first end is connected to the first adjacent node, the second end is connected to the second adjacent node, and the third end is connected to one end of the first filtering unit ;
  • the connecting unit is used to transmit the signal input from the first end to the third end, and transmit the signal input from the third end to the second end;
  • the first filter unit The other end of the second filter unit is connected to the nonlinear unit;
  • the signal source unit is connected to the second filter unit, and the signal source unit is used to provide local oscillator electromagnetic wave signals;
  • the first filter unit is configured to filter the first electromagnetic wave signal input from one end of the first filter unit to obtain a first filter signal, and transmit the first filter signal from the first filter unit
  • the other end of the output, the center frequency of the first filter signal is the center frequency of the first electromagnetic wave signal
  • the second filter unit is used to filter the local oscillator electromagnetic wave signal to obtain a second filter signal
  • the nonlinear unit is used to parametrically amplify the first filtered signal according to the second filtered signal to obtain a parametric amplified signal
  • the target processing module may also be configured to perform low-noise amplification on the first electromagnetic wave signal before performing target processing on the first electromagnetic wave signal, so as to improve the quality of the first electromagnetic wave signal.
  • the target processing module may also be configured to perform power amplification on the second electromagnetic wave signal after performing target processing on the first electromagnetic wave signal to obtain the second electromagnetic wave signal, and before sending the second electromagnetic wave signal to the second adjacent node , so as to increase the power of the second electromagnetic wave signal, thereby reducing the transmission loss of the electromagnetic wave signal on the cable.
  • the first electromagnetic wave signal is a terahertz signal or an optical signal.
  • a chip in a third aspect, includes programmable logic circuits and/or program instructions; when the chip is running, it is used to implement the communication method described in any design in the first aspect.
  • a communication method is provided, the method is executed by a second node, the second node is connected to the first node through a cable, and at least one third node is set on the cable; The method includes: after the second node receives the electromagnetic wave signal sent by the adjacent third node, it can determine the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal.
  • each third node may be a target third node, and each third node performs target processing on the first electromagnetic wave signal for the received first electromagnetic wave signal
  • the process of inverting the conjugate of the frequency spectrum of an electromagnetic wave signal when an even number of third nodes is arranged on the cable, the even number of third nodes can be divided into multiple groups of third nodes arranged sequentially in the direction from the first node to the second node, and each group of third nodes includes Two third nodes. After the electromagnetic wave signal is processed by the two third nodes, the spectrum of the electromagnetic wave signal will not undergo conjugate inversion. Therefore, the electromagnetic wave signal received by the second node will not be compared with the electromagnetic wave signal sent by the first node. The spectral conjugate inversion of .
  • the odd number of third nodes can be divided into multiple groups of third nodes arranged sequentially in the direction from the first node to the second node, and one third node, Each group of third nodes includes two third nodes.
  • the frequency spectrum of the electromagnetic wave signal will not undergo conjugate inversion.
  • the spectrum of the electromagnetic wave signal will undergo conjugate inversion. Therefore, the electromagnetic wave signal received by the second node will Spectral conjugate inversion. Therefore, when an odd number of third nodes is arranged on the cable, the second node needs to process the received electromagnetic wave signal for conjugate inversion of the frequency spectrum of the electromagnetic wave signal.
  • the second node determines the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal, it can first analyze the electromagnetic wave signal received by the second node The signal is processed to obtain the electromagnetic wave signal sent by the first node, and then the baseband signal of the electromagnetic wave signal is obtained, and constellation mapping is performed according to the baseband signal to obtain the data carried by the electromagnetic wave signal sent by the first node.
  • the process of the second node processing the received electromagnetic wave signal to obtain the electromagnetic wave signal sent by the first node is the same as the above-mentioned process of the target third node performing target processing on the first electromagnetic wave signal to obtain the second electromagnetic wave signal. I won't go into details here.
  • the second node when an odd number of third nodes is set on the cable, when the second node determines the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal, the second node may first obtain the received The second baseband signal of the electromagnetic wave signal, the second baseband signal includes a real part signal and an imaginary part signal; after that, the second node can obtain the first baseband signal according to the second baseband signal, the first baseband signal and the second baseband signal Conjugation; finally, the second node can perform constellation mapping according to the first baseband signal to obtain the data carried by the electromagnetic wave signal sent by the first node.
  • the second node can directly obtain the baseband signal of the received electromagnetic wave signal, and perform constellation mapping according to the real part signal and the imaginary part signal in the baseband signal to obtain the first node The data carried by the emitted electromagnetic wave signal.
  • the second node may compensate for the difference before determining the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal.
  • a communication device is provided, the communication device is a second node, the second node is connected to the first node through a cable, and at least one third node is provided on the cable;
  • the communication device includes: a receiving module and a determining module. Wherein, the receiving module is used for receiving the electromagnetic wave signal sent by the adjacent third node; the determining module is used for determining the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal.
  • each third node may be a target third node, and each third node performs target processing on the first electromagnetic wave signal for the received first electromagnetic wave signal
  • the process of inverting the conjugate of the frequency spectrum of an electromagnetic wave signal when an even number of third nodes is arranged on the cable, the even number of third nodes can be divided into multiple groups of third nodes arranged sequentially in the direction from the first node to the second node, and each group of third nodes includes Two third nodes. After the electromagnetic wave signal is processed by the two third nodes, the spectrum of the electromagnetic wave signal will not undergo conjugate inversion. Therefore, the electromagnetic wave signal received by the second node will not be compared with the electromagnetic wave signal sent by the first node. The spectral conjugate inversion of .
  • the odd number of third nodes can be divided into multiple groups of third nodes arranged sequentially in the direction from the first node to the second node, and one third node, Each group of third nodes includes two third nodes.
  • the frequency spectrum of the electromagnetic wave signal will not undergo conjugate inversion.
  • the spectrum of the electromagnetic wave signal will undergo conjugate inversion. Therefore, the electromagnetic wave signal received by the second node will Spectral conjugate inversion. Therefore, when an odd number of third nodes is set on the cable, the determination module in the second node needs to perform conjugate inversion processing on the received electromagnetic wave signal for frequency spectrum of the electromagnetic wave signal.
  • the determination module determines the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal, it can first determine the electromagnetic wave signal received by the second node Perform processing to obtain the electromagnetic wave signal sent by the first node, then obtain the baseband signal of the electromagnetic wave signal, and perform constellation mapping according to the baseband signal to obtain the data carried by the electromagnetic wave signal sent by the first node.
  • the process of the second node processing the received electromagnetic wave signal to obtain the electromagnetic wave signal sent by the first node is the same as the above-mentioned process of the target third node performing target processing on the first electromagnetic wave signal to obtain the second electromagnetic wave signal. I won't go into details here.
  • the determining module may first obtain the received electromagnetic wave signal The second baseband signal of the signal, the second baseband signal includes a real part signal and an imaginary part signal; afterward, the determination module can obtain the first baseband signal according to the second baseband signal, and the first baseband signal is conjugated with the second baseband signal; Finally, the determining module may perform constellation mapping according to the first baseband signal to obtain the data carried by the electromagnetic wave signal sent by the first node.
  • the determination module can directly obtain the baseband signal of the received electromagnetic wave signal, and perform constellation mapping according to the real part signal and the imaginary part signal in the baseband signal, and obtain the The data carried by the electromagnetic wave signal.
  • the second node may compensate for the difference before determining the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal.
  • a chip is provided, and the chip includes programmable logic circuits and/or program instructions; when the chip is running, it is used to implement the communication method according to any design in the fourth aspect.
  • a communication system in a seventh aspect, includes: a first node, a second node, and at least one third node, the first node and the second node are connected by a cable, and the at least A third node is arranged on the cable; the target third node is a third node in the at least one third node, and the target third node is the communication device described in any design of the second aspect Or, the target third node includes the chip described in the third aspect; the second node is the communication device described in any one of the fifth aspects, or, the second node includes the chip described in the sixth aspect.
  • the cable is divided into multiple cable segments by the first node, at least one third node and the second node.
  • the cable segment between the 2n+1th node and the 2n+2th node is called the first cable segment, n ⁇ 0;
  • the cable section between the 2n+2th node and the 2n+3th node is called the second cable section.
  • each cable segment in the cable satisfies a certain constraint condition.
  • the length of each cable segment in the cable satisfies the first constraint condition: the absolute value of the difference between the sum of the lengths of the first cable segment and the sum of the lengths of the second cable segment in the cable is smaller than the first length.
  • the first length is: the minimum value of the frequency-selective fading transmission length and the dispersion transmission length.
  • the maximum fading amplitude among the fading amplitudes of each frequency in the electromagnetic wave signal sent by the first node is the maximum fading amplitude that the second node can handle .
  • the frequency-selective fading transmission length may be the quotient of the maximum fading amplitude and the unit fading amplitude in the cable, and the unit fading amplitude is when transmitting in a cable section of unit length in the cable, each of the electromagnetic wave signals sent by the first node The maximum fading magnitude among the fading magnitudes of the frequency.
  • the dispersion of the electromagnetic wave signal sent by the first node is a maximum dispersion that the second node can handle.
  • the dispersion transmission length may be the quotient of the maximum dispersion and the dispersion amount of the cable segment per unit length in the cable.
  • the absolute value of the difference between the sum of the lengths of the first cable section and the sum of the lengths of the second cable section in the cable is less than the minimum The value can ensure that the frequency selective fading and group delay dispersion of the electromagnetic wave signal received by the second node are small.
  • the length of each cable segment in the cable satisfies the second constraint condition: the length of the cable segment between any two adjacent nodes in the cable is less than or equal to the second length, and the second length is the first The maximum length that the electromagnetic wave signal sent by the node can be transmitted.
  • the maximum length that the electromagnetic wave signal sent by the first node can be transmitted is: when there is no node between the first node and the second node, the electromagnetic wave signal sent by the first node can be effectively received by the second node , the maximum length of the electromagnetic wave signal transmission.
  • the maximum length is determined by equipment parameters such as the transmission loss of the electromagnetic wave signal transmitted in the cable, the power of the first node transmitting the electromagnetic wave signal, and the sensitivity of the second node receiving the electromagnetic wave signal.
  • At least one fourth node may also be set on the cable; the fourth node is used to amplify the power of the electromagnetic wave signal transmitted on the cable.
  • the application can also set the fourth node on one or more cable segments, so that the fourth node can The power of the transmitted electromagnetic wave signal is amplified to ensure that the power of the electromagnetic wave signal received by the second node is relatively high, and the transmission loss of the electromagnetic wave signal is reduced.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of group delay dispersion provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of frequency selective fading provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a fourth node provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another fourth node provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a variation of an amplitude-frequency curve provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of changes in a phase-frequency curve provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another amplitude-frequency curve provided by the embodiment of the present application.
  • FIG. 14 is a schematic diagram of another phase-frequency curve change provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of changes in an amplitude-frequency curve and a phase-frequency curve provided by an embodiment of the present application.
  • Fig. 16 is a schematic diagram of another amplitude-frequency curve and phase-frequency curve provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of another amplitude-frequency curve and phase-frequency curve provided by the embodiment of the present application.
  • FIG. 18 is a normalized schematic diagram of an additional phase-frequency curve provided by the embodiment of the present application.
  • Fig. 19 is a schematic diagram of another amplitude-frequency curve and phase-frequency curve provided by the embodiment of the present application.
  • FIG. 20 is a schematic diagram of another amplitude-frequency curve provided by the embodiment of the present application.
  • FIG. 21 is a schematic diagram of another phase-frequency curve change provided by the embodiment of the present application.
  • Fig. 22 is a schematic diagram of another amplitude-frequency curve provided by the embodiment of the present application.
  • FIG. 23 is a schematic diagram of another phase-frequency curve change provided by the embodiment of the present application.
  • FIG. 24 is a schematic diagram of another amplitude-frequency curve provided by the embodiment of the present application.
  • Fig. 25 is a schematic diagram of another amplitude-frequency curve provided by the embodiment of the present application.
  • FIG. 26 is a schematic diagram of another phase-frequency curve change provided by the embodiment of the present application.
  • FIG. 27 is a schematic diagram of another phase-frequency curve change provided by the embodiment of the present application.
  • Fig. 28 is a schematic folding diagram of a phase-frequency curve provided by an embodiment of the present application.
  • FIG. 29 is a schematic structural diagram of a target third node provided by an embodiment of the present application.
  • Fig. 30 is a schematic diagram of another amplitude-frequency curve and phase-frequency curve provided by the embodiment of the present application.
  • Fig. 31 is a schematic diagram of another amplitude-frequency curve and phase-frequency curve provided by the embodiment of the present application.
  • Fig. 32 is a schematic diagram of another amplitude-frequency curve and phase-frequency curve provided by the embodiment of the present application.
  • FIG. 33 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 34 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 35 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 36 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 37 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 38 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 39 is a schematic structural diagram of another target third node provided by the embodiment of the present application.
  • FIG. 40 is a schematic diagram of a cable segment provided by an embodiment of the present application.
  • Fig. 41 is a schematic diagram of the length of a cable segment provided by the embodiment of the present application.
  • Fig. 42 is a schematic diagram of the length of another cable segment provided by the embodiment of the present application.
  • Fig. 43 is a schematic diagram of the length of another cable segment provided by the embodiment of the present application.
  • FIG. 44 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • FIG. 45 is a flowchart of a communication method provided by an embodiment of the present application.
  • the communication system includes: a first node and a second node, and the number of the first node and the second node in the communication system is not limited.
  • the first node and the second node are connected by cables.
  • the cable may be a polymer cable, and the cable can transmit electromagnetic wave signals, such as terahertz signals (electromagnetic wave signals at terahertz frequencies), optical signals, and the like.
  • the communication system provided by this embodiment of the present application may be a data center
  • the first node in the communication system may be a switch or a server in a cabinet
  • the second node may be an aggregation switch.
  • the communication interfaces in the first node and the second node can be four-channel small form-factor pluggable (quad small form-factor pluggable, QSFP) interface, small form-factor pluggable (small form-factor pluggable, SFP) interface, CXP interface (a An interface with a transmission rate of 12 ⁇ 10 gigabits per second), a CX4 interface (an interface with a transmission rate of 10 gigabits per second) and other standard interfaces.
  • the communication system shown in FIG. 2 includes two first nodes and two second nodes, and each first node is connected to each second node through a cable.
  • the communication system provided by the embodiment of the present application may be an audio and video data transmission system
  • the first node in the communication system may be the audio and video data source device in the multimedia center
  • the second node may be A monitor or projector in a conference room (or entertainment venue).
  • the communication interface in the first node and the second node may be a standard multimedia display interface such as a high definition multimedia interface (high definition multimedia interface, HDMI) or a display port (display port, DP).
  • the communication system shown in FIG. 3 includes a first node and two second nodes, and the first node is connected to each second node through a cable.
  • the communication system provided by the embodiment of the present application may be a vehicle-mounted wired network system.
  • the vehicle-mounted wired network system includes: a vehicle body, and at least one distributed gateway node (gateway, GW) (in FIG. GW as an example), a centralized vehicle control center and at least one sensor (one sensor is taken as an example in Figure 4).
  • the centralized vehicle control center includes at least one electronic control unit (electronic control unit, ECU) (two ECUs are taken as an example in FIG. 4 ).
  • ECU electronic control unit
  • the ECU1 can be used as the first node
  • the sensor can be used as the second node; or, among the two GWs, one GW is the first node, and the other GW is the second node.
  • electromagnetic wave signals may be transmitted between the first node and the second node through cables for communication.
  • the first node can modulate the electromagnetic wave signal according to the data to be transmitted, and send the electromagnetic wave signal into the cable. After the electromagnetic wave signal is transmitted through the cable, it is received and demodulated by the second node to recover the data that the first node needs to transmit. data.
  • the first node may include: a transmitter.
  • the transmitter includes: a modulator for modulating the electromagnetic wave signal according to the data sent to the second node as required.
  • the transmitter may further include a power amplifier (Power Amplifier, PA) and a coupler.
  • PA Power Amplifier
  • the PA is connected to the modulator for amplifying the power of the electromagnetic wave signal modulated by the modulator; one end of the coupler is connected to the PA, and the other end is connected to the cable for transmitting the electromagnetic wave signal amplified by the PA power to the cable.
  • the second node includes: a receiver.
  • the receiver includes a demodulator and the like for demodulating electromagnetic wave signals into data.
  • the receiver further includes: a low noise amplifier (low noise amplifier, LNA) and a coupler.
  • LNA low noise amplifier
  • One end of the coupler is connected to the cable, and the other end is connected to the LNA.
  • the coupler is used to receive the electromagnetic wave signal transmitted on the cable; the LNA is used for low-noise amplification of the electromagnetic wave signal from the coupler.
  • the demodulator is used to demodulate the amplified electromagnetic wave signal with low noise.
  • the second node may further include other devices, for example, the second node further includes a clock restorer and an equalizer (not shown in FIG. 5 ).
  • the clock restorer is used to extract the clock signal from the baseband signal (the baseband signal obtained by demodulating the electromagnetic wave signal by the demodulator);
  • the equalizer is used to equalize the baseband signal according to the clock signal to obtain the data carried by the baseband signal.
  • the first node sends an electromagnetic wave signal to the second node as an example.
  • the second node may also send an electromagnetic wave signal to the first node.
  • the first node includes the The receiver in
  • the second node includes the transmitter in FIG. 5 .
  • electromagnetic wave signals can be transmitted between the first node and the second node through cables for communication.
  • the electromagnetic wave signal will be greatly affected when it is transmitted in the cable. The following will explain the three aspects of the influence.
  • the transmission loss of the electromagnetic wave signal received by the second node is lower than the sensitivity of the second node, the second node will not be able to demodulate and restore the data to be sent by the first node.
  • the signal energy received by the second node is lower than the sensitivity of the second node means: the transmission loss of the electromagnetic wave signal received by the second node is greater than the maximum transmission loss of the electromagnetic wave signal that the second node can demodulate and restore.
  • the group delay dispersion means that signals of different frequencies in the electromagnetic wave signal have different propagation speeds when they are transmitted in the cable.
  • the electromagnetic wave signal is a terahertz signal
  • the frequency difference of the in-band signal is large, so the group delay dispersion will cause serious waveform distortion of the terahertz signal.
  • the longer the transmission length of the electromagnetic wave signal in the cable the more serious the group delay dispersion, and the greater the waveform distortion of the electromagnetic wave signal. For example, as shown in FIG.
  • the electromagnetic wave signal will have frequency selective fading when it is transmitted in the cable.
  • Frequency selective fading means that the fading (energy loss) of signals of different frequencies in the electromagnetic wave signal is different.
  • the electromagnetic wave signal is a terahertz signal
  • the attenuation of the high-frequency signal in the terahertz signal is greater than that of the low-frequency signal, and the uneven fading of the signal spectrum will also cause distortion of the signal waveform.
  • the longer the transmission length of the electromagnetic wave signal in the cable the more serious the frequency selective fading, and the greater the fading difference between high and low frequency signals in the electromagnetic wave signal. Therefore, the greater the in-band unevenness of the electromagnetic wave signal, the more serious the distortion of the electromagnetic wave signal.
  • the cable has a great influence on the transmission of the electromagnetic wave signal, causing distortion of the electromagnetic wave signal received by the second node, and affecting the effective communication between the first node and the second node.
  • a fourth node may be set on the cable between the first node and the second node.
  • the fourth node is used to increase the power of the electromagnetic wave signal transmitted on the cable.
  • the fourth node includes: two couplers, and a PA connected in series between the two couplers. Wherein, the coupler is connected with the cable, and the PA is used to amplify the power of the passing electromagnetic wave signal.
  • the fourth node shown in FIG. 8 cannot avoid the electromagnetic wave signal being affected by group delay dispersion and frequency selective fading.
  • the fourth node includes: two couplers, and an LNA, a demodulator, an equalizer, a modulator, and a PA connected in series between the two couplers, and a demodulator reclocker to which both the reclocker and the equalizer are connected.
  • the coupler is connected with the cable, and the LNA is used to amplify the electromagnetic wave signal from a coupler with low noise; the demodulator is used to demodulate the electromagnetic wave signal to obtain a baseband signal carrying data; The clock signal is extracted; the equalizer is used to equalize the baseband signal according to the clock signal to obtain the data carried by the baseband signal; the modulator is used to modulate the electromagnetic wave signal according to the data; the PA is used to amplify the power of the electromagnetic wave signal modulated by the modulator, and The amplified electromagnetic wave signal is transmitted to the cable through another coupler.
  • the fourth node shown in FIG. 9 is used to demodulate and restore the received electromagnetic wave signal to obtain the data carried by the electromagnetic wave signal, and then modulate the data to obtain a new electromagnetic wave signal, so as to compensate the electromagnetic wave signal between the first node and the second node.
  • the transmission on the cable between the four nodes is affected.
  • the processing process of the electromagnetic wave signal by the fourth node shown in FIG. 9 is relatively complicated, which affects the transmission efficiency of the electromagnetic wave signal, and cannot compensate the influence of the transmission of the electromagnetic wave signal between the fourth node and the second node.
  • the embodiment of the present application provides a communication system, as shown in Figure 10, on the basis of the communication system shown in Figure 1, the first node and the second At least one third node may be arranged on the cable between the nodes.
  • the number of the third node may be one or more, and one third node is taken as an example in FIG. 10 .
  • the third node may be a device such as a gateway or a router.
  • the target third node is a third node in the at least one third node, and among the first node, the second node and at least one third node, the target third node is adjacent to the first neighbor node and the second neighbor node adjacent.
  • the first neighbor node can be the first node or another third node between the first node and the target third node
  • the second neighbor node can be the second node or the target third node and the second node Yet another third node between.
  • the target third node is configured to, after receiving the first electromagnetic wave signal sent by the first neighboring node, perform target processing on the first electromagnetic wave signal to obtain a second electromagnetic wave signal, and send the second electromagnetic wave signal to the second neighboring node.
  • the target processing includes: processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal.
  • the amplitude-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical about the target line axis;
  • the phase-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical about the center of the target point;
  • the target line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and the frequency corresponding to the intersection point of the abscissa axis is the center frequency of the first electromagnetic wave signal;
  • the target point is on the abscissa axis of the phase-frequency curve. The point that should be the center frequency.
  • the amplitude-frequency curve of the first electromagnetic wave signal and the amplitude-frequency curve of the second electromagnetic wave signal are shown in Figure 11, and the phase-frequency curve of the first electromagnetic wave signal and the phase-frequency curve of the second electromagnetic wave signal can be shown in Figure 12.
  • the amplitude-frequency curve of the first electromagnetic wave signal and the amplitude-frequency curve of the second electromagnetic wave signal are shown in Figure 13, and the phase-frequency curve of the first electromagnetic wave signal and the phase-frequency curve of the second electromagnetic wave signal can be shown in Figure 14 .
  • FIG. 13 and FIG. 14 take the first electromagnetic wave signal as a two-tone signal as an example, and the first electromagnetic wave signal includes signal A and signal B. As shown in FIG.
  • the target third node when the target third node performs conjugate inversion processing on the first electromagnetic wave signal, on the one hand, for the amplitude-frequency curve in the spectrum, uses the above target
  • the straight line is the axis of symmetry, and the amplitude corresponding to the frequency on the left and right sides of the target straight line is symmetrically exchanged, so that the amplitude-frequency curve of the electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical with respect to the target straight line axis.
  • the target third node multiplies the phase corresponding to each frequency in the phase-frequency curve by -1, for example, changing the phase from 10° (degree) to -10°, and at the same time,
  • the phases corresponding to each frequency in the phase-frequency curve take the above-mentioned target line as the symmetry axis, and the phases corresponding to the frequencies on the left and right sides of the target line are symmetrically exchanged, so that the phase-frequency curve of the electromagnetic wave signal before and after the conjugate inversion of the spectrum occurs Symmetrical about the center of the target point.
  • the target third node can also implement the conjugate inversion process on the first electromagnetic wave signal in other ways, for example, the way of filtering the first electromagnetic wave signal, the embodiment of the present application This is not limited.
  • the first electromagnetic wave signal is affected by group delay dispersion and frequency selective fading, and the first distortion occurs, as shown in Figure 15
  • the amplitude-frequency curve of the first electromagnetic wave signal received by the target third node is partially concave in the high-frequency band, and the phase-frequency curve of the first electromagnetic wave signal is bent upward.
  • the target third node may perform target processing on the first electromagnetic wave signal. For example, when the target third node performs target processing on the first electromagnetic wave signal, it may perform processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal on the first electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • the amplitude-frequency curve of the second electromagnetic wave signal is symmetrical to the amplitude-frequency curve of the first electromagnetic wave signal about the target line axis
  • the phase-frequency curve of the second electromagnetic wave signal is symmetrical to the phase-frequency curve of the first electromagnetic wave signal about the center of the target point.
  • the amplitude-frequency curve and phase-frequency curve of the second electromagnetic wave signal are respectively shown in FIG. 16 . It can be seen from Fig.
  • the first electromagnetic wave signal received by the target third node is relatively
  • the first electromagnetic wave signal sent by the first neighboring node has a first distortion
  • the second electromagnetic wave signal has a second distortion relative to the first electromagnetic wave signal sent by the first neighboring node
  • the first distortion is opposite to the second distortion.
  • the target third node may send the second electromagnetic wave signal to the second neighboring node through the second cable segment.
  • the third distortion (similar to the first distortion) occurs due to the influence of frequency selective fading and group delay dispersion, resulting in the first distortion received by the second adjacent node
  • Both the amplitude-frequency curve and the phase-frequency curve of the two electromagnetic wave signals change. Both the amplitude-frequency curve and the phase-frequency curve of the second electromagnetic wave signal received by the second adjacent node are shown in Fig. The curve bends upwards.
  • the electromagnetic wave signal after the electromagnetic wave signal is transmitted through the first cable section or the second cable section, the electromagnetic wave signal will be distorted (such as the above-mentioned first distortion or third distortion), at this time , the high-frequency part of the amplitude-frequency curve of the electromagnetic wave signal will be concave, and the phase-frequency curve of the electromagnetic wave signal will be bent upward.
  • the electromagnetic wave signal will be distorted (such as the above-mentioned first distortion or third distortion)
  • the high-frequency part of the amplitude-frequency curve of the electromagnetic wave signal will be concave, and the phase-frequency curve of the electromagnetic wave signal will be bent upward.
  • the target third node performs target processing on the first electromagnetic wave signal (including processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal)
  • the target processing makes the low-frequency part of the amplitude-frequency curve of the electromagnetic wave signal concave
  • the phase-frequency curve of the electromagnetic wave signal bends downward, so that the second electromagnetic wave signal undergoes a second distortion opposite to the first distortion relative to the first electromagnetic wave signal emitted by the first adjacent node.
  • the second distortion can be reduced. Distortion of the second electromagnetic wave signal received by the second neighboring node relative to the first electromagnetic wave signal sent by the first neighboring node.
  • the first distortion occurs when the electromagnetic wave signal is transmitted from the first adjacent node to the target third node, and the electromagnetic wave signal is transmitted from the target third node to the second target node.
  • a third distortion occurs in the process of neighboring nodes, and the third distortion is similar to the first distortion.
  • the target processing performed by the target second node on the received first electromagnetic wave signal includes processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal, so the target third node performs target processing on the first electromagnetic wave to obtain the second electromagnetic wave
  • the signal will undergo a second distortion opposite to the first distortion relative to the signal sent by the first neighboring node.
  • the electromagnetic wave signal When the electromagnetic wave signal is transmitted from the target third node to the second adjacent node, the electromagnetic wave signal undergoes a third distortion. Under the action of the second distortion and the third distortion, the distortion of the electromagnetic wave signal received by the second neighboring node relative to the electromagnetic wave signal sent by the first neighboring node can be reduced, ensuring the communication quality between the first neighboring node and the second neighboring node , thereby ensuring the communication quality between the first node and the second node.
  • the target third node when the target third node performs conjugate inversion processing on the first electromagnetic wave signal for the frequency spectrum of the electromagnetic wave signal, the target third node does not need to restore the original electromagnetic wave signal sent by the first node, so the target third node less complex.
  • the signal transfer function of the first cable section is expressed as H 1 (f).
  • H 1 (f) exp ⁇ k 1 (ff 0 )+c 1 ⁇ exp ⁇ i*( ⁇ 1 (ff 0 ) 2 + ⁇ 1 f) ⁇ ;
  • the target third node performs target processing on the received first electromagnetic wave signal, and the frequency spectrum of the obtained second electromagnetic wave signal can be expressed as S 2 (f).
  • S 2 (f) S * ( ⁇ f)exp ⁇ k 1 ( ⁇ f+f 0 )+c 1 ⁇ exp ⁇ i*( ⁇ 1 (ff 0 ) 2 + ⁇ 1 f) ⁇ .
  • S * (-f) represents the conjugate symmetry of S(f);
  • exp ⁇ i*(- ⁇ 1 (ff 0 ) 2 + ⁇ 1 f) means e raised to the power of i*(- ⁇ 1 (ff 0 ) 2 + ⁇ 1 f).
  • the target third node may send the second electromagnetic wave signal to the second neighboring node through the second cable segment.
  • the second electromagnetic wave signal is affected by frequency selective fading and group delay dispersion, resulting in the amplitude-frequency curve and phase-frequency curve of the second electromagnetic wave signal received by the second adjacent node Both change.
  • H 2 (f) the channel parameters of the second cable section are k 2 , c 2 , ⁇ 2 , and ⁇ 2
  • the signal transfer function of the second cable section is expressed as H 2 (f).
  • H 2 (f) exp ⁇ k 2 (ff 0 )+c 2 ⁇ exp ⁇ i*( ⁇ 2 (ff 0 ) 2 + ⁇ 2 f) ⁇ .
  • exp ⁇ i*(( ⁇ 2 - ⁇ 1 )(ff 0 ) 2 +( ⁇ 2 + ⁇ 1 )f) ⁇ means i*(( ⁇ 2 - ⁇ 1 )(ff 0 ) 2 +( ⁇ 2 + ⁇ 1 )f) power.
  • the channel parameters (k 1 , c 1 , ⁇ 1 , ⁇ 1 ) of the first cable segment and the channel parameters (k 2 , c 2 , ⁇ 2 , ⁇ 2 ) are approximately the same.
  • S 3 (f) has nothing to do with k and ⁇ , k is related to frequency selective fading, and ⁇ is related to group delay dispersion. Therefore, the degree of correlation between S 3 (f) and frequency selective fading and group delay dispersion The distortion of the electromagnetic wave signal caused by frequency selective fading and group delay dispersion in S 3 (f) is greatly reduced.
  • the amplitude-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical about the target line axis; the phase-frequency curve of the first electromagnetic wave signal before and after the conjugate inversion of the spectrum is symmetrical about the center of the target point.
  • the first electromagnetic wave signal whose spectrum is conjugate-inverted is called a conjugate-inverted signal.
  • the amplitude-frequency curve of the conjugate inversion signal and the amplitude-frequency curve of the first electromagnetic wave signal are symmetrical about the target line axis;
  • the phase-frequency curve of the conjugate inversion signal is about the phase-frequency curve of the first electromagnetic wave signal
  • the center of the target point is symmetrical;
  • the target line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and the frequency corresponding to the intersection point with the abscissa axis is the center frequency of the first electromagnetic wave signal;
  • the target point is the coordinate system where the phase-frequency curve is located The point corresponding to the center frequency on the abscissa axis of .
  • the second electromagnetic wave signal finally obtained at the target third node may be the same as or different from the conjugate inversion signal, which is not limited in this embodiment of the present application.
  • the second electromagnetic wave signal finally obtained at the target third node is different from the conjugate inverted signal, at least one of the center frequency, amplitude-frequency curve and phase-frequency curve of the second electromagnetic wave signal and the conjugate inverted signal may be different.
  • the second electromagnetic wave signal finally obtained at the target third node may be different from the conjugate inverted signal
  • the second electromagnetic wave signal and the conjugate inverted signal may satisfy at least one of the following conditions.
  • Condition 1.1 In the amplitude-frequency curve of the conjugate inversion signal, the sum of the first amplitude and the sum of the second amplitude have a target size relationship; in the amplitude-frequency curve of the second electromagnetic wave signal, the sum of the third amplitude and the fourth amplitude and also have that target size relationship.
  • the first amplitude is the amplitude corresponding to the first frequency
  • the second amplitude is the amplitude corresponding to the second frequency
  • the first frequency is less than the center frequency of the conjugate inversion signal
  • the second frequency is greater than the center frequency of the conjugate inversion signal
  • the third The amplitude is the amplitude corresponding to the third frequency
  • the fourth amplitude is the amplitude corresponding to the fourth frequency
  • the third frequency is less than the center frequency of the second electromagnetic wave signal
  • the fourth frequency is greater than the center frequency of the second electromagnetic wave signal.
  • Condition 1.2 The fluctuation rate of the phase corresponding to any frequency in the additional phase-frequency curve is less than 40% (or 20%, 30%, etc.). Wherein, the fluctuation is the ratio of the fluctuation phase to the phase corresponding to any frequency, and the fluctuation phase is the phase corresponding to the any frequency in the normalized additional phase-frequency curve.
  • the additional phase-frequency curve is the curve obtained by subtracting the reference phase-frequency curve from the phase-frequency curve of the second electromagnetic wave signal; the center frequency of the reference phase-frequency curve is the same as the center frequency of the second electromagnetic wave signal; when the center frequency of the conjugate inversion signal When the center frequency of the second electromagnetic wave signal is the same, the reference phase-frequency curve is the phase-frequency curve of the conjugate inversion signal; when the center frequency of the conjugate inversion signal is different from the center frequency of the second electromagnetic wave signal, the reference phase-frequency curve is the phase-frequency curve after the phase-frequency curve of the conjugate inverted signal is moved along the abscissa axis of the phase-frequency curve.
  • the fluctuation is the ratio of the fluctuation phase to the phase corresponding to any frequency
  • the fluctuation phase is the phase corresponding to any frequency in the normalized additional phase-frequency curve
  • the above normalization uses Rotate and move the additional phase-frequency curve so that the two endpoints of the additional phase-frequency curve and the target intersection point are moved to the abscissa axis of the additional phase-frequency curve, and the target intersection point corresponds to the center frequency of the first electromagnetic wave signal
  • the target intersection point is the intersection of the line connecting the two endpoints and the reference straight line (not shown in FIG. 18 ), the reference straight line is perpendicular to the axis of abscissa, and the frequency corresponding to the intersection of the axis of abscissa is the center frequency of the first electromagnetic wave signal.
  • the difference between the amplitude-frequency curve of the second electromagnetic wave signal and the amplitude-frequency curve of the conjugate inversion signal is small; when the second electromagnetic wave signal and the conjugate inversion signal satisfy condition 1.2 , the difference between the phase-frequency curve of the second electromagnetic wave signal and the phase-frequency curve of the conjugate inverted signal is small. At this time, the difference between the second electromagnetic wave signal and the conjugate inversion signal is small, so that the distortion of the electromagnetic wave signal received by the second adjacent node relative to the electromagnetic wave signal sent by the first adjacent node can also be reduced.
  • the second electromagnetic wave signal and the conjugate inversion signal may be the same or different.
  • the second electromagnetic wave signal may be caused by factors of the device itself in the third node of the target; or, when the second electromagnetic wave signal is different from the conjugate inversion signal, it may also be caused by It includes other processing (such as auxiliary processing) different from the above-mentioned processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal; or, when the second electromagnetic wave signal is different from the conjugate inversion signal, it can be It is caused by the factors of the device itself in the target third node, and the target process also includes other processes mentioned above.
  • the auxiliary processing is processing related to the above differences.
  • the factors of the device itself in the target third node may be factors such as unstable frequency of the local oscillator circuit, limited bandwidth of the device, limited in-band flatness, and nonlinear group delay.
  • the target third node performs conjugate inversion processing on the first electromagnetic wave signal, the obtained electromagnetic wave signal is not the same as the conjugate inversion
  • the signals are hardly identical.
  • the frequency spectrum of the signal obtained by conjugate inversion usually additionally has at least one change in the following changes 1 to 3.
  • the first electromagnetic wave signal after the conjugate inversion of the spectrum of the electromagnetic wave signal in the target third node usually has objective and uncontrollable frequency jitter, the first electromagnetic wave signal after the conjugate inversion of the spectrum
  • the center frequency of may be different from the center frequency of the first electromagnetic wave signal.
  • the center frequency of the first electromagnetic wave signal after the conjugate inversion of the frequency spectrum is fd, and fd is not equal to the center frequency fc of the first electromagnetic wave signal.
  • the amplitude-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the frequency spectrum will be in the mirror symmetrical curve of the amplitude-frequency curve of the input first electromagnetic wave signal (the amplitude-frequency curve of the conjugate inversion signal curve), further superimpose the amplitude-frequency response curve of the device in the target third node for performing the processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal.
  • both the amplitude of signal A and the amplitude of signal B in the amplitude-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the spectrum will change.
  • the amplitude of signal A in the amplitude-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the spectrum is different from the amplitude of signal A in the amplitude-frequency curve of the second electromagnetic wave signal in FIG. 13 .
  • the amplitude of signal B in the amplitude-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the spectrum is different from the amplitude of signal B in the amplitude-frequency curve of the second electromagnetic wave signal in FIG. 13 .
  • phase-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the spectrum may be different from the phase-frequency curve of the conjugate-inversion signal The curves are different.
  • the phase-frequency curve of the first electromagnetic wave signal after the spectrum is conjugate-inverted is additionally superimposed on the phase-frequency response of the device in the target third node for performing the processing for conjugate-inverting the spectrum of the electromagnetic wave signal.
  • the phase-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the frequency spectrum is symmetrical to the center of the phase-frequency curve of the input first electromagnetic wave signal (the phase-frequency curve of the conjugate-inverted signal On the curve), the phase-frequency response curve of the device for performing the processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal in the target third node is further superimposed.
  • phase-frequency curve of the first electromagnetic wave signal is as shown in Figure 14
  • the phase of the signal A in the phase-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the frequency spectrum is the same as that of the signal A in the first electromagnetic wave signal
  • the sum of the phases of is not zero
  • the sum of the phase of signal B in the phase-frequency curve of the first electromagnetic wave signal after the conjugate inversion of the frequency spectrum and the original phase of signal B in the first electromagnetic wave signal is not zero.
  • the second electromagnetic wave signal when the second electromagnetic wave signal is the same as the conjugate-inverted signal, it means that the second electromagnetic wave signal can be obtained after an ideal conjugate inversion of the frequency spectrum of the first electromagnetic wave signal occurs.
  • the second electromagnetic wave signal is different from the conjugate inversion signal, the second electromagnetic wave signal can be obtained after the conjugate inversion of the frequency spectrum of the first electromagnetic wave signal is not ideal.
  • the conjugate inversion in the non-ideal case may satisfy at least one of the following conditions 2.1 to 2.4.
  • Condition 2.1 The amplitude-frequency curve of the electromagnetic wave signal before and after conjugate inversion in the case of non-ideal spectrum is not symmetrical about the target straight line axis, but approximately symmetrical about the target straight line.
  • Condition 2.2 The phase-frequency curve of the electromagnetic wave signal before and after conjugate inversion in the case of non-ideal frequency spectrum is not center-symmetric about the target point, but approximately center-symmetric about the target point.
  • the frequency corresponding to the intersection point of the target straight line and the abscissa axis is not the center frequency of the electromagnetic wave signal, but a frequency that deviates from the center frequency.
  • the target point is not the point corresponding to the center frequency of the electromagnetic wave signal on the abscissa axis of the coordinate system where the phase-frequency curve is located, but the point on the abscissa axis of the coordinate system where the phase-frequency curve is located corresponds to a frequency that deviates from the above-mentioned center frequency .
  • the amplitude-frequency curve of the electromagnetic wave signal before and after the conjugate inversion under the non-ideal condition of the spectrum is approximately symmetrical about the target line, and the non-ideal spectrum occurs
  • the phase-frequency curves of the electromagnetic wave signals before and after the conjugate inversion are approximately centrally symmetrical about the target point.
  • the target line is perpendicular to the abscissa axis of the coordinate system where the amplitude-frequency curve is located, and there is a deviation between the frequency corresponding to the intersection point of the abscissa axis and the center frequency of the electromagnetic wave signal; the target point is on the abscissa axis of the coordinate system where the phase-frequency curve is located Points corresponding to frequencies that deviate from this center frequency.
  • the obtained amplitude-frequency curve of the second electromagnetic wave signal can be shown in Figure 22, and the phase-frequency curve of the second electromagnetic wave signal can be shown in Figure 23. Show.
  • the amplitude-frequency curve of the second electromagnetic wave signal can be obtained as shown in Figure 24 or Figure 25, and the phase-frequency curve of the second electromagnetic wave signal can be shown in Figure 26 or Figure 25 Figure 27 shows.
  • Fig. 24 satisfies the above-mentioned condition 2.1
  • Fig. 25 satisfies the above-mentioned condition 2.3
  • Fig. 26 satisfies the above-mentioned condition 2.2
  • Fig. 27 satisfies the above-mentioned condition 2.4.
  • the amplitude-frequency curve of the electromagnetic wave signal is called the first amplitude-frequency curve
  • the phase-frequency curve of the electromagnetic wave signal is called the first phase-frequency curve
  • the electromagnetic wave signal corresponds to the second amplitude-frequency curve and the second phase-frequency curve.
  • the amplitude-frequency curve of the electromagnetic wave signal is the target amplitude-frequency curve
  • the phase-frequency curve of the electromagnetic wave signal is the target phase-frequency curve. If the electromagnetic wave signal does not change at the center frequency after the conjugate inversion under non-ideal conditions occurs in the frequency spectrum, then the second amplitude-frequency curve is the above-mentioned target amplitude-frequency curve, and the second phase-frequency curve is the above-mentioned target phase-frequency curve .
  • the second amplitude-frequency curve is the result after the above-mentioned target amplitude-frequency curve moves along the abscissa axis where the target amplitude-frequency curve is located curve
  • the second phase-frequency curve is a curve obtained by moving the target phase-frequency curve along the axis of abscissa where the target phase-frequency curve is located.
  • the center frequency of the second amplitude-frequency curve is the same as the center frequency of the second phase-frequency curve, and these center frequencies are the center frequencies of the electromagnetic wave signal before the conjugate inversion occurs when the spectrum is not ideal.
  • the first amplitude-frequency curve and the second amplitude-frequency curve satisfy the formula (1): ⁇ x
  • the value range is within the bandwidth of the electromagnetic wave signal.
  • the conjugate inversion in the non-ideal case is related to both the conjugate inversion in the ideal case and the non-ideality factor.
  • 2 represents the impact value of non-ideal factors on the amplitude of the second amplitude-frequency curve
  • 2 represents Ideally conjugate inversion affects the magnitude of the second amplitude-frequency curve.
  • the non-ideal factors will not affect the amplitude of the second amplitude-frequency curve more than ideal
  • the influence value of the conjugate inversion below on the amplitude of the second amplitude-frequency curve, the conjugate inversion under non-ideal conditions can also have the effect of the above-mentioned conjugate inversion under ideal conditions. Therefore, the distortion of the electromagnetic wave signal received by the second adjacent node relative to the electromagnetic wave signal sent by the first adjacent node can also be reduced.
  • the first phase-frequency curve and the second phase-frequency curve satisfy formula (2): ⁇ x
  • x U and x D represent the two parts of the error curve
  • the frequency corresponding to the endpoint, and the phases corresponding to the two endpoints in the normalized error curve become 0.
  • the conjugate inversion in the non-ideal case is related to both the conjugate inversion in the ideal case and the non-ideality factor.
  • represents the influence value of non-ideal factors on the phase of the second phase-frequency curve
  • represents the conjugate inversion under ideal conditions Influence value on the phase of the second phase-frequency curve.
  • the conjugate inversion in the non-ideal case can also have the effect of the conjugate inversion in the ideal case described above. Therefore, the distortion of the electromagnetic wave signal received by the second adjacent node relative to the electromagnetic wave signal sent by the first adjacent node can also be reduced.
  • phase-frequency curve of the electromagnetic wave signal (such as the first electromagnetic wave signal, the second electromagnetic wave signal, etc.) may be the same as or different from the phase-frequency curve of the electromagnetic wave signal collected by a device (such as an oscilloscope).
  • the phase of the complex signal can be any one of ⁇ +2*N* ⁇ ( ⁇ represents the phase between - ⁇ and ⁇ in the phase of the complex signal, ⁇ represents the circumference ratio, N is an integer), so when the equipment is used to measure the phase-frequency curve of the electromagnetic wave signal, the value of the phase in the phase-frequency curve is often limited to the interval [- ⁇ , ⁇ ]. At this time, the phase-frequency curve of the electromagnetic wave signal is different from the phase-frequency curve collected by the equipment.
  • phase-frequency curves of the first electromagnetic wave signal and the second electromagnetic wave signal are as shown in Figure 23
  • the phase-frequency curves of the first electromagnetic wave signal and the second electromagnetic wave signal collected by the equipment will become the curves shown in Figure 28
  • these phase-frequency curves are folded (wrap) into the phase interval of [- ⁇ , ⁇ ].
  • the phase-frequency curve corresponding to the above-mentioned center frequency in the phase-frequency curve of the electromagnetic wave signal collected in the oscilloscope is used as a reference point, and the phase-frequency curve is unwrapped, the result shown in Figure 23 can be obtained The phase-frequency curve of an electromagnetic wave signal.
  • each third node may be provided on the cable between the first node and the second node.
  • each third node may be a target third node, which will not be described in detail here in this embodiment of the present application.
  • the target third node performs target processing on the first electromagnetic wave signal in various manners, and several of the manners will be described below as examples.
  • the conjugate inversion of the first electromagnetic wave signal can be the conjugate inversion under ideal conditions or the conjugate inversion under non-ideal conditions, and, in the conjugate inversion When the inversion is conjugate inversion under non-ideal conditions, the second electromagnetic wave signal caused by the device itself in the target third node is different from the conjugate inversion signal.
  • Mode 1 When the target third node performs target processing on the first electromagnetic wave signal, it can first down-convert the first electromagnetic wave signal to obtain the first baseband signal; then, obtain the second baseband signal according to the first baseband signal signal, the second baseband signal is conjugated to the first baseband signal; finally, the frequency of the second baseband signal is up-converted to obtain a second electromagnetic wave signal.
  • the first electromagnetic wave signal is denoted as s i (t), and t represents time. If the center frequency of the first electromagnetic wave signal is f 0 , the frequency spectrum of the first electromagnetic wave signal is expressed as B i (ff 0 ), and B i (f) represents the baseband signal (first baseband signal) bi of the first electromagnetic wave signal The frequency spectrum of (t) centered on frequency 0.
  • the second electromagnetic wave signal is denoted as s o (t). Since the spectrum of the first electromagnetic wave signal is conjugate-symmetric to the spectrum of the second electromagnetic wave signal, the spectrum of the second electromagnetic wave signal is B i *(-ff 0 ), where * Represents taking the conjugate of a complex value.
  • the baseband signal (second baseband signal) of the second electromagnetic wave signal is denoted as b o (t), and the frequency spectrum of the second baseband signal is denoted as B o (f).
  • the target third node can conjugate the baseband signal b o (t) (first baseband signal) of the first electromagnetic wave signal to obtain the second baseband signal b i *(t), and then The frequency of the second baseband signal is up-converted to obtain the second electromagnetic wave signal s o (t).
  • the spectrum B i *(-ff 0 ) of the second electromagnetic wave signal is conjugate-symmetric to the spectrum B i (ff 0 ) of the first electromagnetic wave signal.
  • the target third node may include: a signal source unit 01, a first phase shifting unit 02, a second phase shifting unit 03, The first frequency mixing unit 04 , the second frequency mixing unit 05 , the third frequency mixing unit 06 , the fourth frequency mixing unit 07 , the reverse unit 08 and the combining unit 09 .
  • the signal source unit 01 is used to provide the local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal; the first phase shifting unit 02, the second phase shifting unit 02, the first frequency mixing unit 04 and the third frequency mixing unit 06 are connected with the signal source unit 01, the first phase shifting unit 02 is also connected with the second frequency mixing unit 05, the second phase shifting unit 03 is also connected with the fourth frequency mixing unit 07, the first The frequency mixing unit 04 is connected with the third frequency mixing unit 06, the second frequency mixing unit 05 and the fourth frequency mixing unit 07 are connected through the reverse unit 08, and the third frequency mixing unit 06 and the fourth frequency mixing unit 07 are connected with the combination circuit Unit 09 is connected.
  • the first frequency mixing unit 04, the second frequency mixing unit 05 and the first phase shifting unit 02 can form a down conversion module, the third frequency mixing unit 06, the fourth frequency mixing unit 07, the second phase shifting unit 03 and the combining unit 09 Composition of up-conversion module.
  • the unit can be an independent device, or a plurality of units integrated together, each unit is one of the logic unit, which is not limited in this application.
  • the first frequency mixing unit 04 mixes the first electromagnetic wave signal with the local oscillator electromagnetic wave signal provided by the signal source unit 01 to obtain the real part signal I of the first baseband signal
  • the first phase shift unit 02 shifts the phase of the local oscillator electromagnetic wave signal provided by the signal source unit 01 by ⁇ /2 to obtain the first phase shift signal, the first phase shift signal is orthogonal to the local oscillator electromagnetic wave signal, and ⁇ represents the circumference ratio;
  • the second mixing unit 05 mixes the first electromagnetic wave signal with the first phase-shifted signal obtained by the first phase-shifting unit 02 to obtain the imaginary part signal Q of the first baseband signal. In this way, the first baseband signal including the real part signal I and the imaginary part signal Q is obtained.
  • the first baseband signal b i (t) I+Q.
  • the inversion unit 08 inverts the imaginary part signal Q obtained by the second frequency mixing unit 05 to obtain an inverse signal -Q of the imaginary part signal Q.
  • the second baseband signal includes: a real part signal I of the first baseband signal, and an inverted signal -Q of an imaginary part signal of the first baseband signal.
  • the frequency spectrum of the first baseband signal after passing through the inverting unit undergoes conjugate inversion, and the frequency spectrum of the second baseband signal obtained is shown in FIG. 31 .
  • the third frequency mixing unit 07 mixes the real part signal I obtained by the first frequency mixing unit 04 with the local oscillator electromagnetic wave signal provided by the signal source unit 01 to obtain the first A frequency mixing signal; the second phase shifting unit 03 shifts the phase of the local oscillator electromagnetic wave signal provided by the signal source unit 01 by ⁇ /2 to obtain the first phase shifting signal; the fourth frequency mixing unit 07 converts the above-mentioned reverse unit 08 obtained The reverse signal-Q is mixed with the first phase-shifted signal obtained by the second phase-shifting unit 03 to obtain a second mixed frequency signal; finally, the combining unit 09 combines the first mixed frequency signal obtained by the third frequency mixing unit 07, and the second frequency mixing signal obtained by the fourth frequency mixing unit 08 to obtain a second electromagnetic wave signal.
  • Figure 30, Figure 31 and Figure 32 take the conjugate inversion of the first electromagnetic wave signal as an example under ideal conditions. It can be understood that in mode 1, it may also be due to the Due to its own factors, the first electromagnetic wave signal may also undergo non-ideal conjugate inversion, which is not limited in this embodiment of the present application.
  • Mode 2 When the target third node performs target processing on the first electromagnetic wave signal, it may first down-convert the first electromagnetic wave signal to obtain the first baseband signal; after that, the target third node performs the first baseband signal on the first baseband signal. Conjugate up-conversion to obtain the second electromagnetic wave signal.
  • the target third node when the target third node performs target processing on the first electromagnetic wave signal in manner 2, the target third node may perform processing in various manners.
  • the target third node may include: a signal source unit 11, a first phase shifting unit 12, a second phase shifting unit 13, a first frequency mixing unit Unit 14, the second mixing unit 15, the third mixing unit 16, the fourth mixing unit 17 and the combining unit 18;
  • the signal source unit 11 is used to provide the local oscillator electromagnetic wave signal, the center frequency of the local oscillator electromagnetic wave signal is the same as the first The central frequency of the electromagnetic wave signal is the same;
  • the first phase shifting unit 12, the second phase shifting unit 13, the first frequency mixing unit 14 and the third frequency mixing unit 16 are all connected with the signal source unit 11, and the first phase shifting unit 12 is also connected with the signal source unit 11.
  • the second frequency mixing unit 15 is connected, the second phase shifting unit 13 is also connected with the fourth frequency mixing unit 17, the first frequency mixing unit 14 is connected with the third frequency mixing unit 16, the second frequency mixing unit 15 and the fourth frequency mixing unit The unit 17 is connected, and the third mixing unit 16 and the fourth mixing unit 17 are both connected to the combining unit 18 .
  • the first frequency mixing unit 14, the second frequency mixing unit 15 and the first phase shifting unit 12 can form a down conversion module, the third frequency mixing unit 16, the fourth frequency mixing unit 17, the second phase shifting unit 13 and the combination unit 18 Form a conjugate up-conversion module.
  • the first frequency mixing unit 14 mixes the first electromagnetic wave signal with the local oscillator electromagnetic wave signal provided by the signal source unit 11 to obtain the real part signal I of the first baseband signal ;
  • the first phase shifting unit 12 shifts the phase of the local oscillator electromagnetic wave signal provided by the signal source unit 11 by ⁇ /2 to obtain the first phase shifting signal, and ⁇ represents the circumference ratio;
  • the second frequency mixing unit 15 converts the first electromagnetic wave signal and the first The phase-shifted signal is mixed to obtain the imaginary part signal Q of the first baseband signal. In this way, the first baseband signal including the real part signal I and the imaginary part signal Q is obtained.
  • the first baseband signal b i (t) I+Q.
  • the third frequency mixing unit 16 mixes the real part signal I obtained by the first frequency mixing unit 14 with the local oscillator electromagnetic wave signal provided by the signal source unit 11, The first frequency mixing signal is obtained; the second phase shifting unit 13 shifts the phase of the local oscillator electromagnetic wave signal provided by the signal source unit 11 by - ⁇ /2 to obtain a second phase shifting signal.
  • the fourth frequency mixing unit 17 mixes the imaginary part signal Q obtained by the second frequency mixing unit 15 with the second phase-shifted signal obtained by the second phase-shifting unit 13 to obtain a second mixed frequency signal; finally, the combining unit 18 combines The first frequency mixing signal obtained by the third frequency mixing unit 16 and the second frequency mixing signal obtained by the fourth frequency mixing unit 17 obtain a second electromagnetic wave signal.
  • the fourth frequency mixing unit 17 will Mixing the imaginary part signal with the second phase-shifted signal is equivalent to mixing the inverse signal of the imaginary part signal with the second phase-shifted signal in the first way. Therefore, in the first optional processing mode of mode 2, the second mixed frequency signal obtained by mixing the imaginary part signal and the second phase-shifted signal by the fourth mixing unit 17 is equivalent to the second mixed frequency signal in mode 1 , and furthermore, the second electromagnetic wave signal obtained by the combining unit in the first optional processing manner of the manner 2 is equivalent to the second electromagnetic wave signal in the manner 1.
  • the target third node includes: a signal source unit 21, a first phase shifting unit 22, a second phase shifting unit 23, a first Frequency mixing unit 24, the second frequency mixing unit 25, the third frequency mixing unit 26, the fourth frequency mixing unit 27 and the combination unit 28;
  • the signal source unit 21 is used to provide the local oscillator electromagnetic wave signal, the center frequency of the local oscillator electromagnetic wave signal and The central frequency of the first electromagnetic wave signal is the same;
  • the first phase shifting unit 22, the second phase shifting unit 23, the first frequency mixing unit 24 and the third frequency mixing unit 26 are all connected with the signal source unit 21, and the first phase shifting unit 22
  • the second phase shifting unit 23 is also connected with the fourth frequency mixing unit 27, the first frequency mixing unit 24 is connected with the fourth frequency mixing unit 27, the second frequency mixing unit 25 and the third
  • the frequency mixing unit 26 is connected, and both the third frequency mixing unit 26 and the fourth frequency mixing unit 27 are connected to the combining unit 28 .
  • the first frequency mixing unit 24 mixes the first electromagnetic wave signal with the local oscillator electromagnetic wave signal provided by the signal source unit 21 to obtain the real part signal I of the first baseband signal ;
  • the first phase shift unit 22 shifts the phase of the local oscillator electromagnetic wave signal provided by the signal source unit 21 by ⁇ /2 to obtain the first phase shift signal, and ⁇ represents the circumference ratio;
  • the second frequency mixing unit 25 combines the first electromagnetic wave signal with the first The phase-shifted signal is mixed to obtain the imaginary part signal Q of the first baseband signal. In this way, the first baseband signal including the real part signal I and the imaginary part signal Q is obtained.
  • the first baseband signal b i (t) I+Q.
  • the third frequency mixing unit 26 mixes the imaginary part signal Q with the local oscillator electromagnetic wave signal provided by the signal source unit 21 to obtain the first mixed frequency signal;
  • the second phase shifting unit 23 shifts the phase of the local oscillator electromagnetic wave signal provided by the signal source unit 21 by ⁇ /2 to obtain the first phase shifting signal;
  • the fourth mixing unit 27 combines the real part signal I and the second phase shifting unit 23 obtained The first phase shifting signal is mixed to obtain a second frequency mixing signal;
  • the combining unit 28 combines the first frequency mixing signal and the second frequency mixing signal to obtain a second electromagnetic wave signal.
  • the conjugation of the first baseband signal is realized by crossing the real part signal and the imaginary part signal of the input signal of the up-mixing unit.
  • the up-mixing unit is equivalent to adding an additional phase rotation of 90° after conjugating the first baseband signal.
  • the phase rotation of 90° does not affect the effect of target processing.
  • Mode 3 When the target third node performs target processing on the first electromagnetic wave signal, it can perform spectrum shift on the first electromagnetic wave signal to obtain the third electromagnetic wave signal; after that, it can filter the third electromagnetic wave signal to obtain the first electromagnetic wave signal 2. Electromagnetic wave signals.
  • the first electromagnetic wave signal S i (t) is a bandpass real signal
  • the spectrum of the first electromagnetic wave signal has conjugate symmetry, that is, the spectrum S i (f) of the first electromagnetic wave signal is about the coordinate system where the spectrum is located
  • the target third node may include: a signal source unit 31, a frequency multiplication unit 32, a frequency mixing unit 33, and a filter unit 34;
  • the signal source unit 31, the frequency multiplying unit 32, the frequency mixing unit 33 and the filtering unit 34 are sequentially connected; the signal source unit 31 is used to provide a local oscillator electromagnetic wave signal, and the center frequency of the local oscillator electromagnetic wave signal is the same as the center frequency of the first electromagnetic wave signal.
  • the filtering unit 34 may be a band-pass filtering unit (Band-Pass Filter, BPF).
  • the frequency multiplying unit 32 acquires a frequency multiplying signal of the local oscillator electromagnetic wave signal generated by the signal source unit 31 .
  • the center frequency 2f0 of the frequency-multiplied signal is twice the center frequency f0 of the first electromagnetic wave signal; then, the frequency mixing unit 33 mixes the first electromagnetic wave signal and the frequency-doubled signal to obtain a third electromagnetic wave signal.
  • the spectrum around -f 0 in the frequency spectrum corresponding to the first electromagnetic wave signal is moved to the vicinity of f 0 and -3f 0 , and the spectrum near the original f 0 is moved to the vicinity of -f 0 and 3f 0 .
  • the filtering unit 34 filters the third electromagnetic wave signal to obtain the second electromagnetic wave signal.
  • the center frequency of the filtering unit 34 is f 0 , therefore, after the filtering unit 34 filters the third electromagnetic wave signal, the frequency spectrum near 3f 0 and -3f 0 in the frequency spectrum of the third electromagnetic wave signal is filtered out, and the obtained second
  • the frequency spectrum of the electromagnetic wave signal includes frequencies near f 0 and -f 0 .
  • the frequency spectrum near f 0 in the frequency spectrum of the second electromagnetic wave signal is conjugate symmetrical with the frequency spectrum near f 0 in the frequency spectrum of the first electromagnetic wave signal.
  • Mode 4 When the target third node performs target processing on the first electromagnetic wave signal, it may sequentially perform frequency conversion, spectrum shifting, filtering and frequency conversion on the first electromagnetic wave signal to obtain a second electromagnetic wave signal.
  • the target third node may include: a first signal source unit 41, a second signal source unit 42, a frequency multiplying unit 43, The first frequency mixing unit 44, the second frequency mixing unit 45, the third frequency mixing unit 46, the first filtering unit 47 and the second filtering unit 48; the first frequency mixing unit 44, the first filtering unit 47, the second frequency mixing Unit 45, the second filter unit 48 and the third frequency mixing unit 46 are connected sequentially; the first signal source unit 41 is connected with the first frequency mixing unit 44, and the second signal source unit 42 is connected with the second frequency mixing unit through the frequency multiplication unit 43 45 connection; the first signal source unit 41 is used to generate the first local oscillator electromagnetic wave signal, and the second signal source unit 42 is used to generate the second local oscillator electromagnetic wave signal; the center frequency of the first local oscillator electromagnetic wave signal is f 1 , and the second The center frequency of the local oscillator electromagnetic wave signal is f 2 ,
  • the first frequency mixing unit 44 mixes the first electromagnetic wave signal and the first local oscillator electromagnetic wave signal to obtain a first mixed frequency signal.
  • the first filtering unit 47 filters the first mixed frequency signal to obtain a first sub-signal in the first mixed frequency signal, and the center frequency of the first sub-signal is f 2 .
  • the frequency spectrum near f 0 +f 1 and -f 0 -f 1 in the first mixed frequency signal is filtered out.
  • the frequency spectrum of the first sub-signal obtained by filtering includes f 2 and the spectrum near -f 2 , and the spectrum near f 2 is consistent with the spectrum near f 2 in the spectrum of the first electromagnetic wave signal, and conjugate symmetry does not appear.
  • f 1 ⁇ f 0 -F/2 can be set in this embodiment of the application, that is, f 2 ⁇ F/2.
  • the frequency multiplication unit 43 can obtain the frequency multiplication signal of the second local oscillator electromagnetic wave signal, and the center frequency of the frequency multiplication signal is twice of f 2 (that is, 2f 2 ) ; Afterwards, the second frequency mixing unit 45 mixes the first sub-signal obtained by the first filtering unit 47 with the frequency multiplied signal to obtain a second mixed frequency signal.
  • the part corresponding to the negative half axis of the spectrum of the first sub-signal is moved from the vicinity of -f 2 to the vicinity of f 2 of the positive semi-axis, and the vicinity of -3f 2 of the negative half axis, the positive half axis of the spectrum of the first sub-signal is The part of the semi-axis is moved from near the center frequency f 2 to near 3f 2 , and near -f 2 of the negative semi-axis.
  • the second filtering unit 48 filters the second mixed frequency signal, and filters out the frequency spectrum near 3f 2 and -3f 2 in the second mixed frequency signal to obtain the second sub-signal in the second mixed frequency signal.
  • the spectrum of the second sub-signal includes a spectrum around f2 and a spectrum around -f2 ; finally, the third mixing unit 48 mixes the second sub-signal with the first local oscillator electromagnetic wave signal to obtain a second electromagnetic wave signal.
  • the target third node When the target third node performs target processing on the first electromagnetic wave signal, it may parametrically amplify the first electromagnetic wave signal to obtain the second electromagnetic wave signal. It should be noted that when the target third node performs target processing on the first electromagnetic wave signal in manner 5, the target third node may perform processing in various manners.
  • the target third node may include: a signal source unit 51, a first filtering unit 52, a second filtering unit 53, a third filtering unit 54 and The nonlinear unit 55; the signal source unit 51 is used to provide the local oscillator electromagnetic wave signal; the signal source unit 51 is connected with the second filtering unit 53, and the first filtering unit 52, the second filtering unit 53 and the third filtering unit 54 are all connected with the nonlinear Unit 55 is connected.
  • the nonlinear unit 55 may be a varactor diode or a Josephson junction.
  • the first filtering unit 52 filters the first electromagnetic wave signal to obtain a first filtered signal, and the center frequency of the first filtered signal is the center frequency f of the first electromagnetic wave signal 0 ;
  • the second filter unit 53 filters the local oscillator electromagnetic wave signal, obtains the second filter signal, and the center frequency of the second filter signal is fp ;
  • the nonlinear unit 55 can filter the first filter signal according to the second filter signal Parametric amplification is performed to obtain a parametric amplification signal.
  • the second filtered signal obtained by filtering the local oscillator electromagnetic wave signal generated by the signal source unit 51 through the second filtering unit 53 is used as a pumping signal, which is the same as the first electromagnetic wave signal (center frequency f 0 ) and the first filtered signal obtained after being filtered by the first filtering unit 52 act on the nonlinear unit 55 together.
  • the nonlinear unit 55 has a nonlinear effect under the action of the pump signal, and the nonlinear unit 55 will transfer the energy in the pump signal to the output parametric amplification signal to realize parametric amplification.
  • the nonlinear unit 55 can generate a parametric amplification signal at any frequency point of Afp + Bf0 (both A and B are non-zero integers).
  • the third filter unit 54 can output the parametric amplification signal of the nonlinear unit 55. Filtering is performed to obtain the second electromagnetic wave signal whose center frequency is Mf p +Nf 0 . Moreover, in order to realize the conjugate symmetry of the spectrum of the second electromagnetic wave signal with respect to the spectrum of the first electromagnetic wave signal, N needs to select an integer smaller than zero.
  • the center frequency of the second electromagnetic wave signal is 2f p -f 0
  • f p can be a frequency close to f 0
  • the target third node parametrically amplifies the first electromagnetic wave signal in the process of performing target processing on the first electromagnetic wave signal
  • the power of the second electromagnetic wave signal can also be improved, thereby reducing the electromagnetic wave signal online transmission loss on the cable.
  • the target third node includes: a signal source unit 61, a connection unit 62, a first filter unit 63, a second filter unit 64 and a nonlinear unit 65;
  • the connection unit 62 has a first end 621, a second end 622 and a third end 623, the first end 621 is connected to the first adjacent node, the second end 622 is connected to the second adjacent node, and the third end 623 is connected to the first filtering unit One end of 63 is connected;
  • the connection unit 62 is used to deliver the signal input from the first terminal 621 to the third terminal 623, and deliver the signal input from the third terminal 623 to the second terminal 622;
  • One end and the second filter unit 64 are all connected to the nonlinear unit 65;
  • the signal source unit 61 is connected to the second filter unit 64, and the signal source unit 61 is used to provide local oscillator electromagnetic wave signals;
  • the first electromagnetic wave signal from the first neighboring node is input to the first terminal 621 of the connecting unit 62, and the connecting unit 62 transmits the first electromagnetic wave signal to the third terminal 623 , and then input to one end of the first filtering unit 63 .
  • the first filter unit 63 filters the first electromagnetic wave signal input from one end thereof to obtain a first filter signal, and outputs the first filter signal from the other end of the first filter unit 63.
  • the center frequency of the first filter signal is the first filter signal.
  • the center frequency f 0 of an electromagnetic wave signal at the same time, the second filter unit 64 filters the local oscillator electromagnetic wave signal to obtain a second filter signal, and the center frequency of the second filter signal is f p ; after that, the nonlinear unit 65 according to the second filter The signal is parametrically amplified on the first filtered signal to obtain a parametrically amplified signal.
  • the parametric amplified signal will be sent to the other end of the first filtering unit 63, and the first filtering unit 63 will filter the parametric amplified signal to obtain a second electromagnetic wave signal, and transmit the second electromagnetic wave signal from one end of the first filtering unit 63
  • filtering the parametric amplified signal to obtain the second electromagnetic wave signal, and filtering the first electromagnetic wave signal to obtain the first filtered signal are all implemented on the first filtering unit, and, through the signal If the direction is different, the second electromagnetic wave signal is separated from the first filtered signal by using a connecting unit (such as a circulator and other devices).
  • a connecting unit such as a circulator and other devices.
  • the target third node may also perform low-noise amplification on the first electromagnetic wave signal, so as to improve the quality of the first electromagnetic wave signal.
  • the target third node may further include a low noise amplifier (low noise amplifier, LNA), and the LNA is used to perform low noise amplification on the first electromagnetic wave signal .
  • LNA low noise amplifier
  • the LNA is connected to the first frequency mixing unit 04 and the second frequency mixing unit 05 in the down-conversion module.
  • the LNA After the LNA performs low-noise amplification on the first electromagnetic wave signal, it amplifies the low-noise amplified second An electromagnetic wave signal is input into the down-conversion module, so that the down-conversion module performs down-conversion on the low-noise amplified first electromagnetic wave signal.
  • the target third node after the target third node performs target processing on the first electromagnetic wave signal to obtain the second electromagnetic wave signal, and before sending the second electromagnetic wave signal to the second neighboring node, it may also target the second electromagnetic wave signal
  • the power of the second electromagnetic wave signal is amplified to increase the power of the second electromagnetic wave signal, thereby reducing the transmission loss of the electromagnetic wave signal on the cable.
  • the target third node may further include a power amplifier (Power Amplifier, PA), and the PA is used to amplify the power of the second electromagnetic wave signal.
  • PA Power Amplifier
  • the part of the target third node for performing the above target processing may be a spectrum processing unit.
  • the target third node includes the aforementioned PA and LNA, as shown in FIG. 39 , the LNA, the spectrum processing unit, and the PA may be connected in sequence.
  • the target third node does not need to perform the complicated signal processing performed by the fourth node as shown in FIG. 9 . Therefore, the power consumption, delay and The implementation complexity is very low, suitable for mass deployment in the case of high-speed communication between the first node and the second node, and can greatly expand the transmission length of the first node and the second node in the communication system.
  • the module used to execute the target processing in the target third node may be referred to as a target processing module.
  • each unit used to realize the target processing in the above manner 1 to mode 5 belongs to the target processing module.
  • the target third node may also include other modules, such as a receiving module for receiving the first electromagnetic wave signal sent by the first neighboring node, and a sending module for sending the second electromagnetic wave signal to the second neighboring node. I won't go into details here.
  • At least one third node may be set on the cable between the first node and the second node, and each third node All three nodes may have the functions of the above-mentioned target third node.
  • the cable is divided into a plurality of cable segments by the first node, at least one third node and the second node.
  • the cable segment between the 2n+1th node and the 2n+2th node is called the first cable segment, n ⁇ 0;
  • the cable section between the 2n+2th node and the 2n+3th node is called the second cable section.
  • the cable segment between the first node and the first third node is the first cable segment
  • the first third node The cable segment between the second third node and the second third node is the second cable segment
  • the cable segment between the second third node and the third third node is the first cable segment
  • the third third node The cable segment between the third node and the fourth third node is the second cable segment.
  • each cable segment in the cable satisfies a certain constraint condition.
  • the length of each cable segment in the cable satisfies the first constraint condition: the absolute value of the difference between the sum of the lengths of the first cable segment and the sum of the lengths of the second cable segment in the cable is smaller than the first length.
  • the first length is: the minimum value of the frequency-selective fading transmission length and the dispersion transmission length.
  • the maximum fading amplitude among the fading amplitudes of each frequency in the electromagnetic wave signal sent by the first node is the maximum fading amplitude that the second node can handle.
  • the frequency-selective fading transmission length may be the quotient of the maximum fading amplitude and the unit fading amplitude in the cable, wherein the unit fading amplitude is the electromagnetic wave signal sent by the first node when it is transmitted in a cable section of unit length in the cable The maximum fading amplitude among the fading amplitudes of each frequency in .
  • the dispersion of the electromagnetic wave signal sent by the first node is the maximum dispersion that the second node can handle.
  • the dispersion transmission length may be the quotient of the maximum dispersion and the dispersion amount of the cable segment per unit length in the cable.
  • the absolute value of the difference between the sum of the lengths of the first cable section and the sum of the lengths of the second cable section in the cable is less than the minimum The value can ensure that the frequency selective fading and group delay dispersion of the electromagnetic wave signal received by the second node are small.
  • the length of each cable segment in the cable satisfies the second constraint condition: the length of the cable segment between any two adjacent nodes in the cable is less than or equal to the second length, and the second length is the first The maximum length that the electromagnetic wave signal sent by the node can be transmitted.
  • the maximum length that the electromagnetic wave signal sent by the first node can be transmitted is: when there is no node between the first node and the second node, the electromagnetic wave signal sent by the first node can be effectively received by the second node , the maximum transmission length of the electromagnetic wave signal sent by the first node.
  • the maximum length is determined by equipment parameters such as the transmission loss of the electromagnetic wave signal transmitted in the cable, the power of the first node transmitting the electromagnetic wave signal, and the sensitivity of the second node receiving the electromagnetic wave signal.
  • the transmission length (that is, the length of the cable) between the first node and the second node is 30 meters (m), and the second length is 8m.
  • the second node adopts a self-mixing demodulation architecture, the frequency selective fading transmission length is 3m, the dispersion transmission length is 2m, and the first length is 2m. Therefore, the total length of the cable is 30m, the length of the first cable section in the cable is 8m, and the length of the second cable section is 6m. Both the length of the first cable section and the length of the second cable section are less than or equal to the second length 8m.
  • the absolute value (2m) of the difference between the sum of the lengths of the first cable sections (16m) and the sum of the lengths of the second cable sections (14m) is less than or equal to the first length (2m). It can be seen that both the first constraint condition and the second constraint condition are satisfied.
  • the number of third nodes set on the cable should be as small as possible.
  • the simple arrangement of the third node (such as distributing the length of the cable section as evenly as possible) will make the first cable section
  • the absolute value of the difference between the sum of the lengths and the sum of the lengths of the second cable segment is relatively large, so that the first constraint condition is not satisfied.
  • the first constraint condition can be satisfied by adding a third node.
  • the transmission length between the first node and the second node is 23m, and the second length is 8m.
  • the second node adopts a self-mixing demodulation architecture, the frequency selective fading transmission length is 3m, the dispersion transmission length is 2m, and the first length is 2m. Therefore, the total cable length is 23m. If the length of the first cable segment in the cable is 8m, the length of the second cable segment is 7m. Both the length of the first cable segment and the length of the second cable segment are less than or equal to the second length 8m, and the second constraint condition is met.
  • the absolute value (7m) of the difference between the sum of the lengths of the first cable segment (15m) and the sum of the lengths of the second cable segment (8m) cannot meet the requirement of being less than or equal to the first length (2m), The first constraint is not satisfied.
  • the length of each cable segment is close to the second length of 8m, it is difficult to adjust the position of the third node in a large range.
  • a third node can be added to the cable, and then the length of the cable segments can be distributed as evenly as possible.
  • the total length of the cable is 23m.
  • the length of the first cable segment in the cable is 6m
  • the length of one second cable segment is 7m
  • the length of the other second cable segment is 5m.
  • both the length of the first cable segment and the length of the second cable segment are less than or equal to the second length 8m.
  • the absolute value (1m) of the difference between the sum of the lengths of the first cable sections (12m) and the sum of the lengths of the second cable sections (11m) is less than or equal to the first length (2m). It can be seen that both the first constraint condition and the second constraint condition are satisfied.
  • At least one fourth node may also be set on the cable; the fourth node is used to amplify the power of the electromagnetic wave signal transmitted on the cable.
  • the embodiment of the present application can also set a fourth node on one or more cable segments, so that the fourth node is connected to the line
  • the electromagnetic wave signal transmitted on the cable is amplified to ensure that the power of the electromagnetic wave signal received by the second node is relatively high, and the transmission loss of the electromagnetic wave signal is reduced.
  • the transmission length between the first node and the second node is 36m, and the second length is 8m.
  • the second node adopts a coherent demodulation architecture, the frequency selective fading transmission length is 5m, the dispersion transmission length is 4m, and the first length is 4m. Therefore, the total cable length is 36m.
  • There are two third nodes arranged on the cable the cable segment between the first node and the first third node is the first first cable segment, and the cable segment between the second third node and the second node The cable segment is the second first cable segment, and the cable segment between the two third nodes is the second cable segment.
  • a fourth node may be set on the first first cable segment, and a fourth node may be set on the second cable segment.
  • the first cable section includes: a third cable section and a fourth cable section
  • the second cable section includes: a fifth cable section and a sixth cable section.
  • the length of the first first cable section is 16m
  • the length of the second first cable section is 4m
  • the length of the second cable section is 16m.
  • the absolute value (4m) of the difference between the sum of the lengths of the first cable segment (20m) and the sum of the lengths of the second cable segment (16m) is less than or equal to the first length (4m), satisfying the first Restrictions.
  • the length of each cable segment in the cable is less than or equal to the second length (8m), which satisfies the second constraint condition.
  • the fourth node has the function of the fourth node shown in FIG. 8 as an example.
  • the fourth node may also have the function of the fourth node shown in Figure 9; or, a part of the fourth node has the function of the fourth node shown in Figure 8, and another part of the fourth node has the function shown in Figure 9
  • the function of the fourth node is not limited in this embodiment of the present application.
  • the embodiment of the present application also provides a second node, where the second node may be the second node in the above communication system.
  • the second node is used to receive the electromagnetic wave signal sent by the adjacent third node, and determine the data carried by the electromagnetic wave signal sent by the first node according to the electromagnetic wave signal.
  • the electromagnetic wave signal received by the second node may be a second electromagnetic wave signal obtained by the adjacent third node through target processing.
  • the target third node performs conjugate inversion on the first electromagnetic wave signal for causing the frequency spectrum of the electromagnetic wave signal deal with. Therefore, when an even number of third nodes is set on the cable, and each third node has the function of a target third node, the even number of third nodes can be divided into Multiple groups of third nodes are arranged, and each group of third nodes includes two third nodes. After the electromagnetic wave signal is processed by the two third nodes, the spectrum of the electromagnetic wave signal will not undergo conjugate inversion. Therefore, the electromagnetic wave signal received by the second node will not be compared with the electromagnetic wave signal sent by the first node. The spectral conjugate inversion of .
  • the odd number of third nodes can be divided into Multiple groups of third nodes are arranged, and one third node, and each group of third nodes includes two third nodes.
  • the frequency spectrum of the electromagnetic wave signal will not undergo conjugate inversion.
  • the electromagnetic wave signal received by the second node will Spectral conjugate inversion. Therefore, when an odd number of third nodes is arranged on the cable, the second node needs to process the received electromagnetic wave signal for conjugate inversion of the frequency spectrum of the electromagnetic wave signal.
  • the second node when an odd number of third nodes is set on the cable, when the second node determines the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal, it can first process the received electromagnetic wave signal , obtain the electromagnetic wave signal sent by the first node, and then obtain the baseband signal of the electromagnetic wave signal sent by the first node, and perform constellation mapping according to the baseband signal to obtain the data carried by the electromagnetic wave signal sent by the first node.
  • the process of the second node processing the received electromagnetic wave signal to obtain the electromagnetic wave signal sent by the first node is the same as the process of the target third node processing the first electromagnetic wave signal to obtain the second electromagnetic wave signal. I won't go into details here.
  • the second node when an odd number of third nodes is set on the cable, when the second node determines the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal, the second node may first obtain the received The second baseband signal of the electromagnetic wave signal, the second baseband signal includes a real part signal and an imaginary part signal; after that, the second node can obtain a first baseband signal according to the second baseband signal, and the first baseband signal and the second baseband signal share the same yoke; finally, the second node can perform constellation mapping according to the first baseband signal to obtain the data carried by the electromagnetic wave signal sent by the first node.
  • the second node can directly obtain the baseband signal of the received electromagnetic wave signal, and perform constellation mapping according to the real part signal and the imaginary part signal in the baseband signal to obtain the first node The data carried by the emitted electromagnetic wave signal.
  • the second node can also compensate for the difference before determining the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal, so as to reduce the It should be different.
  • the amplitude-frequency curve of the second electromagnetic wave signal moves x units to the left along the abscissa axis of the amplitude-frequency coordinate system relative to the amplitude-frequency curve of the conjugate inverted signal, and there are y third nodes arranged on the cable, then
  • the different compensation makes the amplitude-frequency curve of the electromagnetic wave signal received by the second node move rightward by x*y units along the abscissa axis of the amplitude-frequency coordinate system, where both x and y are greater than or equal to 1.
  • phase-frequency curve of the second electromagnetic wave signal moves x units to the left along the abscissa axis of the phase-frequency coordinate system relative to the phase-frequency curve of the conjugate inverted signal, and there are y third nodes arranged on the cable. Then the different compensation causes the phase-frequency curve of the electromagnetic wave signal received by the second node to move x*y units to the right along the abscissa axis of the phase-frequency coordinate system.
  • phase-frequency curve of the second electromagnetic wave signal moves up x units along the ordinate axis of the phase-frequency coordinate system relative to the phase-frequency curve of the conjugate inverted signal, and there are y third nodes arranged on the cable. Then, the different compensation makes the phase-frequency curve of the electromagnetic wave signal received by the second node move downward by x*y units along the ordinate axis of the phase-frequency coordinate system.
  • the left end point of the phase-frequency curve of the second electromagnetic wave signal moves up x units along the ordinate axis direction of the phase-frequency coordinate system relative to the left end point of the phase-frequency curve of the conjugate inverted signal
  • the second electromagnetic wave signal The right endpoint of the phase-frequency curve is moved down z units along the ordinate axis of the phase-frequency coordinate system relative to the right endpoint of the phase-frequency curve of the conjugate inverted signal, and y third nodes are arranged on the cable.
  • the different compensation makes the left end point of the phase-frequency curve of the electromagnetic wave signal received by the second node move down x*y unit along the ordinate axis direction, and the right end point move up z*y unit along the ordinate axis direction .
  • the module in the second node for determining the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal may be referred to as a determining module.
  • the second node may also include other modules, such as a receiving module for receiving electromagnetic wave signals sent by adjacent third nodes.
  • the second node may further include: a compensation module for compensating for the above differences.
  • FIG. 45 is a flowchart of a communication method provided in the embodiment of the present application, and the method may be used in the communication system provided in the embodiment of the present application.
  • the communication method includes:
  • the first neighboring node sends a first electromagnetic wave signal to a target third node.
  • the first neighbor node may be the first node.
  • the first node may modulate the first electromagnetic wave signal according to the data sent to the second node as required, and transmit the first electromagnetic wave signal to the cable between the first node and the second node.
  • the target third node on the cable can receive the first electromagnetic wave signal, and the first electromagnetic wave signal carries data that the first node needs to send to the second node.
  • the first neighboring node can also be other third nodes between the first node and the target third node.
  • the first electromagnetic wave signal sent by the first neighboring node can be the target of the received electromagnetic wave signal by the first neighboring node.
  • the obtained second electromagnetic wave signal is processed.
  • the target third node performs low-noise amplification on the first electromagnetic wave signal.
  • the target third node performs target processing on the first electromagnetic wave signal to obtain a second electromagnetic wave signal; wherein the target processing includes processing for conjugate inversion of a frequency spectrum of the electromagnetic wave signal.
  • the target third node performs power amplification on the second electromagnetic wave signal.
  • the target third node sends a second electromagnetic wave signal to the second neighboring node.
  • the target third node may transmit the second electromagnetic wave signal to the cable, so as to send the second electromagnetic wave signal to the second neighboring node.
  • the second node may also determine the data carried by the electromagnetic wave signal sent by the first node according to the received electromagnetic wave signal.
  • the target third node may not need to perform low-noise amplification on the first electromagnetic wave signal.
  • the target third node may also not need to perform power amplification on the second electromagnetic wave signal before sending the second electromagnetic wave signal.
  • At least one fourth node may also be set on the cable between the first node and the second node; the fourth node is used to amplify the power of the electromagnetic wave signal transmitted on the cable.
  • the first distortion occurs when the electromagnetic wave signal is transmitted from the first adjacent node to the target third node, and the electromagnetic wave signal is transmitted from the target third node to the second target node.
  • a third distortion occurs in the process of neighboring nodes, and the third distortion is similar to the first distortion.
  • the target processing performed by the target second node on the received first electromagnetic wave signal includes processing for conjugate inversion of the frequency spectrum of the electromagnetic wave signal, so the target third node performs target processing on the first electromagnetic wave to obtain the second electromagnetic wave
  • the signal will undergo a second distortion opposite to the first distortion relative to the signal sent by the first neighboring node.
  • the electromagnetic wave signal When the electromagnetic wave signal is transmitted from the target third node to the second adjacent node, the electromagnetic wave signal undergoes a third distortion. Under the action of the second distortion and the third distortion, the distortion of the electromagnetic wave signal received by the second neighboring node relative to the electromagnetic wave signal sent by the first neighboring node can be reduced, ensuring the communication between the first neighboring node and the second neighboring node quality, thereby ensuring the communication quality between the first node and the second node.
  • the target third node when the target third node performs conjugate inversion processing on the first electromagnetic wave signal for the frequency spectrum of the electromagnetic wave signal, the target third node does not need to restore the original electromagnetic wave signal sent by the first node, so the target third node less complex.
  • first and second are used for descriptive purposes only, and should not be construed as indicating or implying relative importance.
  • the term “at least one” means one or more, and “plurality” means two or more, unless otherwise clearly defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

一种通信方法、装置及系统,属于通信技术领域。该方法包括:目标第三节点接收第一邻节点发送的第一电磁波信号后,对第一电磁波信号进行目标处理得到第二电磁波信号,并向第二邻节点发送第二电磁波信号。第一节点、至少一个第三节点和第二节点依次设置在线缆上,这些节点中,目标第三节点与第一邻节点和第二邻节点相邻;目标处理包括用于使电磁波信号的频谱发生共轭反转的处理。本申请能够解决节点之间无法有效通信的问题,本申请用于对线缆上传输的电磁波信号进行处理。

Description

通信方法、装置及系统
本申请要求于2021年10月20日提交的申请号为202111223482.3、发明名称为“通信方法、装置及系统”的中国专利申请,以及于2021年12月07日提交的申请号为202111486631.5、发明名称为“通信方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种通信方法、装置及系统。
背景技术
在通信系统中,节点之间可以通过线缆连接,并且,节点之间可以通过在该线缆上传输电磁波信号的方式进行通信。
以通信系统中的第一节点和第二节点为例。第一节点可以将需要发送给第二节点的数据加载到电磁波信号上,并通过线缆将电磁波信号发送给第二节点。第二节点在接收到电磁波信号后,可以恢复出该电磁波信号携带的数据。这样一来,便实现了第一节点与第二节点的通信。
但是,电磁波信号在线缆上传输时会受到线缆的影响,导致第二节点接收到的电磁波信号失真,第二节点恢复出的该电磁波信号携带的数据的准确度较低,影响节点之间的有效通信。
发明内容
本申请提供了一种通信方法、装置及系统,可以解决节点之间无法有效通信的问题,所述技术方案如下:
第一方面,提供了一种通信方法,所述方法由第一节点和第二节点之间的目标第三节点执行;所述第一节点和所述第二节点通过线缆连接,所述线缆上设置有至少一个第三节点,所述目标第三节点为所述至少一个第三节点中的一个第三节点;在所述第一节点、所述第二节点和所述至少一个第三节点中,所述目标第三节点与第一邻节点和第二邻节点相邻;
所述方法包括:目标第三节点在接收第一邻节点发送的第一电磁波信号之后,对所述第一电磁波信号进行目标处理,得到第二电磁波信号,并向所述第二邻节点发送所述第二电磁波信号;其中,目标处理包括用于使电磁波信号的频谱发生共轭反转的处理。
可选地,频谱发生所述共轭反转前后的所述第一电磁波信号的幅频曲线关于目标直线轴对称;频谱发生所述共轭反转前后的所述第一电磁波信号的相频曲线关于目标点中心对称;其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点。
可选地,目标第三节点在对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转 的处理时,一方面,对于第一电磁波信号的频谱中的幅频曲线,目标第三节点会以上述目标直线为对称轴,将目标直线左右两侧的频率对应的幅度进行对称的交换,以使频谱发生共轭反转前后的第一电磁波信号的幅频曲线关于目标直线轴对称。另一方面,对于第一电磁波信号的频谱中的相频曲线,目标第三节点将相频曲线中每个频率对应的相位乘以-1,同时,还将相频曲线中各个频率对应的相位以上述目标直线为对称轴,将目标直线左右两侧的频率对应的相位进行对称的交换,以使频谱发生共轭反转前后的第一电磁波信号的相频曲线关于目标点中心对称。当然,目标第三节点也可以通过其他方式实现对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理,比如,对第一电磁波信号进行滤波的方式,本申请对此不作限定。
根据以上内容可知,电磁波信号在从第一邻节点传输至目标第三节点的过程中会发生第一失真,电磁波信号在从目标第三节点传输至第二邻节点的过程中又会发生与第三失真,且第三失真与第一失真相似。目标第二节点对接收到的第一电磁波信号进行的目标处理包括用于使电磁波信号的频谱发生共轭反转的处理,所以,目标第三节点对第一电磁波进行目标处理得到的第二电磁波信号会相对第一邻节点发出的信号发生与第一失真相反的第二失真。在电磁波信号从目标第三节点传输至第二邻节点的过程中,电磁波信号发生第三失真。在第二失真和第三失真的作用下,能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真,保证第一邻节点和第二邻节点之间的通信质量,进而保证了第一节点和第二节点之间的通信质量。
另外,目标第三节点对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理时,目标第三节点无需还原第一节点发出的原始的电磁波信号,所以,目标第三节点的复杂度较低。
进一步地,假设共轭反转信号的幅频曲线与第一电磁波信号的幅频曲线关于目标直线轴对称;共轭反转信号的相频曲线与第一电磁波信号的相频曲线关于目标点中心对称;其中,目标直线垂直于幅频曲线所在坐标系的横坐标轴,且与横坐标轴的交点对应的频率为第一电磁波信号的中心频率;目标点为相频曲线所在坐标系的横坐标轴上对应中心频率的点。
目标第三节点最终得到的第二电磁波信号可以与共轭反转信号相同,也可以不同,本申请对此不作限定。在目标第三节点最终得到的第二电磁波信号与共轭反转信号不同时,可以是第二电磁波信号与共轭反转信号的中心频率、幅频曲线和相频曲线中的至少一种信息不同。
在目标第三节点最终得到的第二电磁波信号可以与共轭反转信号不同时,第二电磁波信号与共轭反转信号可以满足以下至少一种条件。
条件1.1:共轭反转信号的幅频曲线中,第一幅度之和与第二幅度之和具有目标大小关系;第二电磁波信号的幅频曲线中,第三幅度之和与第四幅度之和也具有该目标大小关系。
第一幅度为第一频率对应的幅度,第二幅度为第二频率对应的幅度;第一频率小于共轭反转信号的中心频率,第二频率大于共轭反转信号的中心频率;第三幅度为第三频率对应的幅度,第四幅度为第四频率对应的幅度;第三频率小于第二电磁波信号的中心频率,第四频率大于第二电磁波信号的中心频率。
条件1.2:附加相频曲线中任一频率对应的相位的波动率小于40%(或者20%、30%等)。其中,波动率为波动相位与任一频率对应的相位之比,该波动相位为归一化后的附加相频曲线中该任一频率对应的相位。
附加相频曲线为第二电磁波信号的相频曲线减去参考相频曲线所得到的曲线;参考相频曲线的中心频率与第二电磁波信号的中心频率相同;当共轭反转信号的中心频率与第二电磁波信号的中心频率相同时,参考相频曲线为共轭反转信号的相频曲线;当共轭反转信号的中心频率与第二电磁波信号的中心频率不同时,参考相频曲线为共轭反转信号的相频曲线沿相频曲线的横坐标轴移动后的相频曲线。
波动率为波动相位与任一频率对应的相位之比,波动相位为归一化后的附加相频曲线中任一频率对应的相位;需要说明的是,上述归一化用于将附加相频曲线进行旋转和移动,使附加相频曲线的两个端点和目标交点均移动至附加相频曲线的横坐标轴上,且目标交点对应第一电磁波信号的中心频率;目标交点为两个端点的连线与参考直线的交点,参考直线垂直于横坐标轴,且与横坐标轴的交点对应的频率为第一电磁波信号的中心频率。
当第二电磁波信号与共轭反转信号满足条件1.1时,第二电磁波信号的幅频曲线与共轭反转信号的幅频曲线的差异较小;当第二电磁波信号与共轭反转信号满足条件1.2时,第二电磁波信号的相频曲线与共轭反转信号的相频曲线的差异较小。此时,第二电磁波信号与共轭反转信号的差异较小,从而也能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真。
根据以上内容可知,第二电磁波信号与共轭反转信号可以相同,也可以不同。当第二电磁波信号与共轭反转信号不同时,可以是目标第三节点中器件本身的因素所导致的;或者,当第二电磁波信号与共轭反转信号不同时,也可以是目标处理中还包括了与上述用于使电磁波信号的频谱发生共轭反转的处理不同的其他处理(如称为辅助处理)所导致的;又或者,当第二电磁波信号与共轭反转信号不同时,可以是目标第三节点中器件本身的因素,以及目标处理中还包括了与上述其他处理所导致的。
当第二电磁波信号与共轭反转信号相同时,相当于第一电磁波信号的频谱发生了理想情况下的共轭反转后,能够得到第二电磁波信号。当第二电磁波信号与共轭反转信号不同时,相当于第一电磁波信号的频谱发生了非理想情况下的共轭反转后,能够得到第二电磁波信号。
进一步地,目标第三节点对第一电磁波信号进行目标处理的方式多种多样,以下将以其中的几种方式为例进行讲解。以下几种方式中,第一电磁波信号的频谱发生的共轭反转可以是理想情况下的共轭反转,也可以是非理想情况下的共轭反转,并且,在共轭反转是非理想情况下的共轭反转时,是由目标第三节点中器件本身的因素导致的第二电磁波信号与共轭反转信号不同。
方式1:目标第三节点在对第一电磁波信号进行目标处理时,可以首先对第一电磁波信号进行下变频,得到第一基带信号;之后,再根据第一基带信号得到第二基带信号,第二基带信号与第一基带信号共轭;最后,对第二基带信号进行上变频,得到第二电磁波信号。
当目标第三节点采用方式1对第一电磁波信号进行目标处理时,所述目标第三节点可以包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元、反向单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元通过所 述反向单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
目标第三节点在对所述第一电磁波信号进行下变频,得到第一基带信号时,所述第一混频单元将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;所述第一移相单元将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;所述第二混频单元将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述第一基带信号的虚部信号;
目标第三节点在根据所述第一基带信号得到第二基带信号时,所述反向单元对所述虚部信号进行取反,得到所述虚部信号的反向信号,所述第二基带信号包括:所述实部信号和所述反向信号;
目标第三节点在对所述第二基带信号进行上变频,得到所述第二电磁波信号时,所述第三混频单元将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;所述第二移相单元将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;所述第四混频单元将所述反向信号与所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;所述合路单元组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
方式2:目标第三节点在对第一电磁波信号进行目标处理时,可以首先对第一电磁波信号进行下变频,得到第一基带信号;之后,目标第三节点对第一基带信号进行共轭上变频,便得到第二电磁波信号。
需要说明的是,当目标第三节点采用方式2对第一电磁波信号进行目标处理时,目标第三节点的处理方式多种多样。
在方式2的第一种可选地处理方式中,所述目标第三节点包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
目标第三节点在对所述第一电磁波信号进行下变频,得到第一基带信号时,所述第一混频单元将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;所述第一移相单元将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;所述第二混频单元将所述第一电磁波信号和所述第一移相信号混频,得到所述第一基带信号的虚部信号;
目标第三节点在对所述第一基带信号进行共轭上变频,得到所述第二电磁波信号时,所述第三混频单元将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;所述第二移相单元将所述本振电磁波信号的相位移动-π/2,得到第二移相信号;所述第四混频单元将所述虚部信号与所述第二移相信号混频,得到第二混频信号;所述合路单元组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
在方式2的第一种可选地处理方式中,由于第二移相单元将本振电磁波信号的相位移动-π/2,得到第二移相信号,因此,第四混频单元将虚部信号与第二移相信号混频,相当于方 式1中将虚部信号的反向信号与方式1中的第二移相信号混频。所以,方式2的第一种可选地处理方式中第四混频单元将虚部信号与第二移相信号混频得到的第二混频信号相当于方式1中的第二混频信号,进而方式2的第一种可选地处理方式中合路单元得到的第二电磁波信号相当于方式1中的第二电磁波信号。
在方式2的第二种可选地处理方式中,所述目标第三节点包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第四混频单元连接,所述第二混频单元和所述第三混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
目标第三节点在对所述第一电磁波信号进行下变频,得到第一基带信号时,所述第一混频单元将所述第一电磁波信号和所述本振电磁波信号混频,得到所述实部信号;所述第一移相单元将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;所述第二混频单元将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述虚部信号;
目标第三节点在对所述第一基带信号进行共轭上变频,得到所述第二电磁波信号时,所述第三混频单元将所述虚部信号与所述本振电磁波信号混频,得到第一混频信号;所述第二移相单元将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;所述第四混频单元将所述实部信号和所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;所述合路单元组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
可以看出,在方式2的第二种可选地处理方式中,通过将上混频单元的输入信号中的实部信号和虚部信号交叉,以实现对第一基带信号的共轭。此时,上混频单元等效于对第一基带信号进行共轭后,额外增加了90°的相位旋转。而90°的相位旋转不影响目标处理的效果。
方式3:目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号进行频谱搬移,得到第三电磁波信号;之后,再对第三电磁波信号进行滤波,得到第二电磁波信号。
需要说明的是,第一电磁波信号为带通实信号,第一电磁波信号的频谱具有共轭对称性,也即第一电磁波信号的频谱关于频谱所在坐标系的纵坐标轴(经过0频率的点)共轭对称。此时,第一电磁波信号的基带信号的频谱在的正半轴一侧,且以第一电磁波信号的中心频率为中心频率。根据第一电磁波信号的频谱的共轭对称性,在第一电磁波信号的频谱的负半轴一侧的区间上,存在一个与第一电磁波信号的基带信号频谱共轭对称的频谱。因此,只需将第一电磁波信号的频谱在负半轴一侧的区间上的频谱搬移到正半轴,即可等效实现原正半轴信号频谱的共轭对称。
当目标第三节点采用方式3对第一电磁波信号进行目标处理时,所述目标第三节点包括:信号源单元、倍频单元、混频单元和滤波单元;所述信号源单元、所述倍频单元、所述混频单元和所述滤波单元依次连接;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;
目标第三节点在对所述第一电磁波信号进行频谱搬移,得到第三电磁波信号时,所述倍频单元获取所述本振电磁波信号的倍频信号,所述倍频信号的中心频率为所述第一电磁波信号的中心频率的两倍;所述混频单元将所述第一电磁波信号与所述倍频信号混频,得到所述第三电磁波信号;
目标第三节点在对所述第三电磁波信号进行滤波,得到所述第二电磁波信号时,所述滤波单元对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
方式4:目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号依次进行变频、频谱搬移、滤波和变频,得到第二电磁波信号。
当目标第三节点采用方式4对第一电磁波信号进行目标处理时,所述目标第三节点包括:第一信号源单元、第二信号源单元、倍频单元、第一混频单元、第二混频单元、第三混频单元、第一滤波单元和第二滤波单元;所述第一混频单元、所述第一滤波单元、所述第二混频单元、所述第二滤波单元和所述第三混频单元依次连接;所述第一信号源单元与所述第一混频单元连接,所述第二信号源单元通过所述倍频单元与所述第二混频单元连接;所述第一信号源单元用于生成第一本振电磁波信号,所述第二信号源单元用于生成第二本振电磁波信号;所述第一本振电磁波信号的中心频率为f 1,所述第二本振电磁波信号的中心频率为f 2,所述第一电磁波信号的中心频率为f 0,f 1+f 2=f 0,f 1<f 0-F/2,F表示所述第一电磁波信号的带宽;
目标第三节点在对所述第一电磁波信号进行目标处理,得到第二电磁波信号时,所述第一混频单元将所述第一电磁波信号与所述第一本振电磁波信号进行混频,得到第一混频信号;所述第一滤波单元对所述第一混频信号进行滤波,得到所述第一混频信号中的第一子信号,所述第一子信号的中心频率为f 2;所述倍频单元获取所述第二本振电磁波信号的倍频信号,所述倍频信号的中心频率为f 2的两倍;所述第二混频单元将所述第一子信号与所述倍频信号进行混频,得到第二混频信号;所述第二滤波单元对所述第二混频信号进行滤波,得到所述第二混频信号中的第二子信号,所述第二子信号的中心频率为f 2;所述第三混频单元将所述第二子信号与所述第一本振电磁波信号进行混频,得到所述第二电磁波信号。
方式5:目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号进行参量放大,得到第二电磁波信号。需要说明的是,当目标第三节点采用方式5对第一电磁波信号进行目标处理时,目标第三节点的处理方式多种多样。
在方式5的第一种可选地处理方式中,所述目标第三节点包括:信号源单元、第一滤波单元、第二滤波单元、第三滤波单元和非线性单元;所述信号源单元用于提供本振电磁波信号;所述信号源单元与所述第二滤波单元连接,所述第一滤波单元、所述第二滤波单元和所述第三滤波单元均与所述非线性单元连接;
目标第三节点在对所述第一电磁波信号进行参量放大,得到所述第二电磁波信号时,所述第一滤波单元对所述第一电磁波信号进行滤波,得到第一滤波信号,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;所述第二滤波单元对所述本振电磁波信号进行滤波,得到第二滤波信号;所述非线性单元根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;所述第三滤波单元对所述参量放大信号进行滤波,得到所述第二电磁波信号;其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
需要说明的是,信号源单元产生的本振电磁波信号经过第二滤波单元滤波得到的第二滤波信号作为泵浦信号,与输入目标第三节点的第一电磁波信号经过第一滤波单元滤波后得到的第一滤波信号一起作用在非线性单元上。非线性单元在泵浦信号的作用下存在非线性效应,非线性单元会将泵浦信号中的能量转移到输出的参量放大信号中,实现参量放大。非线性单元可以在任意Af p+Bf 0(A和B均为非零整数)的频点处产生参量放大信号,此时,第三滤波单元可以对非线性单元输出的参量放大信号进行滤波,以得到中心频率为Mf p+Nf 0的第二电磁波信号。并且,为了实现第二电磁波信号的频谱相对第一电磁波信号的频谱共轭对称,N需要选择小于零的整数。比如,M=2,N=-1,此时,第二电磁波信号的中心频率为2f p-f 0,f p可以是一个与f 0相近的频率;当f p是一个与2f 0相似的频率时,也可以选择M=1,N=-1,此时,第二电磁波信号的中心频率为f p-f 0=f 0
并且,由于目标第三节点在对第一电磁波信号进行目标处理的过程中,对第一电磁波信号进行了参量放大,因此,第二电磁波信号的功率也能够得到提升,从而减少了电磁波信号在线缆上的传输损耗。
在方式5的第二种可选地处理方式中,所述目标第三节点包括:信号源单元、连接单元、第一滤波单元、第二滤波单元和非线性单元;所述连接单元具有第一端、第二端和第三端,所述第一端连接所述第一邻节点,所述第二端连接所述第二邻节点,所述第三端与所述第一滤波单元的一端连接;所述连接单元用于将从所述第一端输入的信号输送至所述第三端,以及将从所述第三端输入的信号输送至所述第二端;所述第一滤波单元的另一端和所述第二滤波单元均与所述非线性单元连接;所述信号源单元与所述第二滤波单元连接,所述信号源单元用于提供本振电磁波信号;
目标第三节点在对所述第一电磁波信号进行参量放大,得到所述第二电磁波信号时,所述第一滤波单元对从所述第一滤波单元的一端输入的所述第一电磁波信号进行滤波,得到第一滤波信号,并将所述第一滤波信号从所述第一滤波单元的另一端输出,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;所述第二滤波单元对所述本振电磁波信号进行滤波,得到第二滤波信号;所述非线性单元根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;所述第一滤波单元对来自所述非线性单元的所述参量放大信号进行滤波,得到所述第二电磁波信号,并将所述第二电磁波信号从所述第一滤波单元的一端输出;其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,Mf p+Nf 0=f 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
在该第二种可选地处理方式中,对参量放大信号滤波得到第二电磁波信号,以及对第一电磁波信号进行滤波得到第一滤波信号,均在第一滤波单元上实现,并且,通过信号走向的不同,利用连接单元(如环形器等器件)将第二电磁波信号和第一滤波信号分离开。
可选地,目标第三节点在对第一电磁波信号进行目标处理之前,还可以对第一电磁波信号进行低噪声放大,以提升第一电磁波信号的质量。
可选地,目标第三节点在对第一电磁波信号进行目标处理,得到第二电磁波信号之后,以及在向第二邻节点发送第二电磁波信号之前,还可以对第二电磁波信号进行功率放大,以提升第二电磁波信号的功率,从而减少了电磁波信号在线缆上的传输损耗。
可选地,所述第一电磁波信号为太赫兹信号或光信号等。
第二方面,提供了一种通信装置,所述通信装置为第一节点和第二节点之间的目标第三节点;所述第一节点和所述第二节点通过线缆连接,所述线缆上设置有至少一个第三节点,所述目标第三节点为所述至少一个第三节点中的一个第三节点,在所述第一节点、所述第二节点和所述至少一个第三节点中,所述目标第三节点与第一邻节点和第二邻节点相邻;所述通信装置包括:接收模块、目标处理模块和发送模块。接收模块,用于接收第一邻节点发送的第一电磁波信号;目标处理模块,用于对所述第一电磁波信号进行目标处理,得到第二电磁波信号,所述目标处理包括:用于使电磁波信号的频谱发生共轭反转的处理;发送模块,用于向所述第二邻节点发送所述第二电磁波信号。
可选地,频谱发生所述共轭反转前后的所述第一电磁波信号的幅频曲线关于目标直线轴对称;频谱发生所述共轭反转前后的所述第一电磁波信号的相频曲线关于目标点中心对称;其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点。
可选地,目标处理模块在对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理时,一方面,对于第一电磁波信号的频谱中的幅频曲线,目标处理模块会以上述目标直线为对称轴,将目标直线左右两侧的频率对应的幅度进行对称的交换,以使频谱发生共轭反转前后的第一电磁波信号的幅频曲线关于目标直线轴对称。另一方面,对于第一电磁波信号的频谱中的相频曲线,目标处理模块将相频曲线中每个频率对应的相位乘以-1,同时,还将相频曲线中各个频率对应的相位以上述目标直线为对称轴,将目标直线左右两侧的频率对应的相位进行对称的交换,以使频谱发生共轭反转前后的第一电磁波信号的相频曲线关于目标点中心对称。当然,目标处理模块也可以通过其他方式实现对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理,比如,对第一电磁波信号进行滤波的方式。
根据以上内容可知,电磁波信号在从第一邻节点传输至目标第三节点的过程中会发生第一失真,电磁波信号在从目标第三节点传输至第二邻节点的过程中又会发生与第三失真,且第三失真与第一失真相似。目标第二节点对接收到的第一电磁波信号进行的目标处理包括用于使电磁波信号的频谱发生共轭反转的处理,所以,目标第三节点对第一电磁波进行目标处理得到的第二电磁波信号会相对第一邻节点发出的信号发生与第一失真相反的第二失真。在电磁波信号从目标第三节点传输至第二邻节点的过程中,电磁波信号发生第三失真。在第二失真和第三失真的作用下,能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真,保证第一邻节点和第二邻节点之间的通信质量,进而保证了第一节点和第二节点之间的通信质量。
另外,目标处理模块对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理时,无需还原第一节点发出的原始的电磁波信号,所以,目标处理模块的复杂度较低。
进一步地,假设共轭反转信号的幅频曲线与第一电磁波信号的幅频曲线关于目标直线轴对称;共轭反转信号的相频曲线与第一电磁波信号的相频曲线关于目标点中心对称;其中,目标直线垂直于幅频曲线所在坐标系的横坐标轴,且与横坐标轴的交点对应的频率为第一电磁波信号的中心频率;目标点为相频曲线所在坐标系的横坐标轴上对应中心频率的点。
目标第三节点最终得到的第二电磁波信号可以与共轭反转信号相同,也可以不同,本申请对此不作限定。在目标第三节点最终得到的第二电磁波信号与共轭反转信号不同时,可以 是第二电磁波信号与共轭反转信号的中心频率、幅频曲线和相频曲线中的至少一种信息不同。
在目标第三节点最终得到的第二电磁波信号可以与共轭反转信号不同时,第二电磁波信号与共轭反转信号可以满足以下至少一种条件。
条件1.1:共轭反转信号的幅频曲线中,第一幅度之和与第二幅度之和具有目标大小关系;第二电磁波信号的幅频曲线中,第三幅度之和与第四幅度之和也具有该目标大小关系。
第一幅度为第一频率对应的幅度,第二幅度为第二频率对应的幅度;第一频率小于共轭反转信号的中心频率,第二频率大于共轭反转信号的中心频率;第三幅度为第三频率对应的幅度,第四幅度为第四频率对应的幅度;第三频率小于第二电磁波信号的中心频率,第四频率大于第二电磁波信号的中心频率。
条件1.2:附加相频曲线中任一频率对应的相位的波动率小于40%(或者20%、30%等)。其中,波动率为波动相位与任一频率对应的相位之比,该波动相位为归一化后的附加相频曲线中该任一频率对应的相位。
附加相频曲线为第二电磁波信号的相频曲线减去参考相频曲线所得到的曲线;参考相频曲线的中心频率与第二电磁波信号的中心频率相同;当共轭反转信号的中心频率与第二电磁波信号的中心频率相同时,参考相频曲线为共轭反转信号的相频曲线;当共轭反转信号的中心频率与第二电磁波信号的中心频率不同时,参考相频曲线为共轭反转信号的相频曲线沿相频曲线的横坐标轴移动后的相频曲线。
波动率为波动相位与任一频率对应的相位之比,波动相位为归一化后的附加相频曲线中任一频率对应的相位;需要说明的是,上述归一化用于将附加相频曲线进行旋转和移动,使附加相频曲线的两个端点和目标交点均移动至附加相频曲线的横坐标轴上,且目标交点对应第一电磁波信号的中心频率;目标交点为两个端点的连线与参考直线的交点,参考直线垂直于横坐标轴,且与横坐标轴的交点对应的频率为第一电磁波信号的中心频率。
当第二电磁波信号与共轭反转信号满足条件1.1时,第二电磁波信号的幅频曲线与共轭反转信号的幅频曲线的差异较小;当第二电磁波信号与共轭反转信号满足条件1.2时,第二电磁波信号的相频曲线与共轭反转信号的相频曲线的差异较小。此时,第二电磁波信号与共轭反转信号的差异较小,从而也能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真。
根据以上内容可知,第二电磁波信号与共轭反转信号可以相同,也可以不同。当第二电磁波信号与共轭反转信号不同时,可以是目标第三节点中器件本身的因素所导致的;或者,当第二电磁波信号与共轭反转信号不同时,也可以是目标处理中还包括了与上述用于使电磁波信号的频谱发生共轭反转的处理不同的其他处理(如称为辅助处理)所导致的;又或者,当第二电磁波信号与共轭反转信号不同时,可以是目标第三节点中器件本身的因素,以及目标处理中还包括了与上述其他处理所导致的。
当第二电磁波信号与共轭反转信号相同时,相当于第一电磁波信号的频谱发生了理想情况下的共轭反转后,能够得到第二电磁波信号。当第二电磁波信号与共轭反转信号不同时,相当于第一电磁波信号的频谱发生了非理想情况下的共轭反转后,能够得到第二电磁波信号。
进一步地,目标处理模块对第一电磁波信号进行目标处理的方式多种多样,以下将以其中的几种方式为例进行讲解。以下几种方式中,第一电磁波信号的频谱发生的共轭反转可以是理想情况下的共轭反转,也可以是非理想情况下的共轭反转,并且,在共轭反转是非理想 情况下的共轭反转时,是由目标第三节点中器件本身的因素导致的第二电磁波信号与共轭反转信号不同。
方式1:目标处理模块用于:对所述第一电磁波信号进行下变频,得到第一基带信号;根据所述第一基带信号得到第二基带信号,所述第二基带信号与所述第一基带信号共轭;以及,对所述第二基带信号进行上变频,得到所述第二电磁波信号。
可选地,当目标处理模块采用方式1对第一电磁波信号进行目标处理时,所述目标处理模块包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元、反向单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元通过所述反向单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
所述第一混频单元用于将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;所述第一移相单元用于将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;所述第二混频单元用于将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述第一基带信号的虚部信号;所述反向单元用于对所述虚部信号进行取反,得到所述虚部信号的反向信号,所述第二基带信号包括:所述实部信号和所述反向信号;所述第三混频单元用于将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;所述第二移相单元用于将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;所述第四混频单元用于将所述反向信号与所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;所述合路单元用于组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
方式2:目标处理模块用于:首先对第一电磁波信号进行下变频,得到第一基带信号;之后,目标第三节点对第一基带信号进行共轭上变频,便得到第二电磁波信号。
需要说明的是,当目标处理模块采用方式2对第一电磁波信号进行目标处理时,目标处理模块的处理方式多种多样。
(2.1)在第一种可选地处理方式中,所述目标处理模块包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
所述第一混频单元用于将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;所述第一移相单元用于将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;所述第二混频单元用于将所述第一电磁波信号和所述第一移相信号混频,得到所述第一基带信号的虚部信号;所述第三混频单元用于将所述实部信号 和所述本振电磁波信号混频,得到第一混频信号;所述第二移相单元用于将所述本振电磁波信号的相位移动-π/2,得到第二移相信号;所述第四混频单元用于将所述虚部信号与所述第二移相信号混频,得到第二混频信号;所述合路单元用于组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
在方式2的第二种可选地处理方式中,所述目标处理模块包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第四混频单元连接,所述第二混频单元和所述第三混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
所述第一混频单元用于将所述第一电磁波信号和所述本振电磁波信号混频,得到所述实部信号;所述第一移相单元用于将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;所述第二混频单元用于将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述虚部信号;所述第三混频单元用于将所述虚部信号与所述本振电磁波信号混频,得到第一混频信号;所述第二移相单元用于将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;所述第四混频单元用于将所述实部信号和所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;所述合路单元用于组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
方式3:所述目标处理模块用于:对所述第一电磁波信号进行频谱搬移,得到第三电磁波信号;对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
当目标第三节点采用方式3对第一电磁波信号进行目标处理时,所述目标处理模块包括:信号源单元、倍频单元、混频单元和滤波单元;所述信号源单元、所述倍频单元、所述混频单元和所述滤波单元依次连接;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;
所述倍频单元用于获取所述本振电磁波信号的倍频信号,所述倍频信号的中心频率为所述第一电磁波信号的中心频率的两倍;所述混频单元用于将所述第一电磁波信号与所述倍频信号混频,得到所述第三电磁波信号;所述滤波单元用于对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
方式4:目标处理模块在对第一电磁波信号进行目标处理时,可以对第一电磁波信号依次进行变频、频谱搬移、滤波和变频,得到第二电磁波信号。
当目标第三节点采用方式4对第一电磁波信号进行目标处理时,所述目标处理模块包括:第一信号源单元、第二信号源单元、倍频单元、第一混频单元、第二混频单元、第三混频单元、第一滤波单元和第二滤波单元;所述第一混频单元、所述第一滤波单元、所述第二混频单元、所述第二滤波单元和所述第三混频单元依次连接;所述第一信号源单元与所述第一混频单元连接,所述第二信号源单元通过所述倍频单元与所述第二混频单元连接;所述第一信号源单元用于生成第一本振电磁波信号,所述第二信号源单元用于生成第二本振电磁波信号;所述第一本振电磁波信号的中心频率为f 1,所述第二本振电磁波信号的中心频率为f 2,所述 第一电磁波信号的中心频率为f 0,f 1+f 2=f 0,f 1<f 0-F/2,F表示所述第一电磁波信号的带宽;
所述第一混频单元用于将所述第一电磁波信号与所述第一本振电磁波信号进行混频,得到第一混频信号;所述第一滤波单元用于对所述第一混频信号进行滤波,得到所述第一混频信号中的第一子信号,所述第一子信号的中心频率为f 2;所述倍频单元用于获取所述第二本振电磁波信号的倍频信号,所述倍频信号的中心频率为f 2的两倍;所述第二混频单元用于将所述第一子信号与所述倍频信号进行混频,得到第二混频信号;所述第二滤波单元用于对所述第二混频信号进行滤波,得到所述第二混频信号中的第二子信号,所述第二子信号的中心频率为f 2;所述第三混频单元用于将所述第二子信号与所述第一本振电磁波信号进行混频,得到所述第二电磁波信号。
方式5:目标处理模块在对第一电磁波信号进行目标处理时,可以对第一电磁波信号进行参量放大,得到第二电磁波信号。需要说明的是,当目标处理模块采用方式5对第一电磁波信号进行目标处理时,目标第三节点的处理方式多种多样。
在方式5的第一种可选地处理方式中,所述目标处理模块包括:信号源单元、第一滤波单元、第二滤波单元、第三滤波单元和非线性单元;所述信号源单元用于提供本振电磁波信号;所述信号源单元与所述第二滤波单元连接,所述第一滤波单元、所述第二滤波单元和所述第三滤波单元均与所述非线性单元连接;
所述第一滤波单元用于对所述第一电磁波信号进行滤波,得到第一滤波信号,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;所述第二滤波单元用于对所述本振电磁波信号进行滤波,得到第二滤波信号;所述非线性单元用于根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;所述第三滤波单元用于对所述参量放大信号进行滤波,得到所述第二电磁波信号;其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
在方式5的第二种可选地处理方式中,所述目标处理模块包括:信号源单元、连接单元、第一滤波单元、第二滤波单元和非线性单元;所述连接单元具有第一端、第二端和第三端,所述第一端连接所述第一邻节点,所述第二端连接所述第二邻节点,所述第三端与所述第一滤波单元的一端连接;所述连接单元用于将从所述第一端输入的信号输送至所述第三端,以及将从所述第三端输入的信号输送至所述第二端;所述第一滤波单元的另一端和所述第二滤波单元均与所述非线性单元连接;所述信号源单元与所述第二滤波单元连接,所述信号源单元用于提供本振电磁波信号;
所述第一滤波单元用于对从所述第一滤波单元的一端输入的所述第一电磁波信号进行滤波,得到第一滤波信号,并将所述第一滤波信号从所述第一滤波单元的另一端输出,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;所述第二滤波单元用于对所述本振电磁波信号进行滤波,得到第二滤波信号;所述非线性单元用于根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;所述第一滤波单元用于对来自所述非线性单元的所述参量放大信号进行滤波,得到所述第二电磁波信号,并将所述第二电磁波信号从所述第一滤波单元的一端输出;其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,Mf p+Nf 0=f 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
可选地,目标处理模块还可以用于在对第一电磁波信号进行目标处理之前,对第一电磁波信号进行低噪声放大,以提升第一电磁波信号的质量。
可选地,目标处理模块还可以用于在对第一电磁波信号进行目标处理,得到第二电磁波信号之后,以及在向第二邻节点发送第二电磁波信号之前,对第二电磁波信号进行功率放大,以提升第二电磁波信号的功率,从而减少了电磁波信号在线缆上的传输损耗。
可选地,所述第一电磁波信号为太赫兹信号或光信号等。
第三方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令;当所述芯片运行时用于实现如第一方面中任一设计所述的通信方法。
第四方面,提供了一种通信方法,所述方法由第二节点执行,所述第二节点和第一节点之间通过线缆连接,所述线缆上设置有至少一个第三节点;所述方法包括:第二节点在接收到相邻的第三节点发送的电磁波信号之后,可以根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据。
进一步地,在本申请中,每个第三节点均可以为目标第三节点,每个第三节点在对接收到的第一电磁波信号进行目标处理的过程中,对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理。因此,在线缆上设置有偶数个第三节点时,偶数个第三节点可以分为在第一节点到第二节点的方向上依次排布的多组第三节点,每组第三节点包括两个第三节点。电磁波信号在经过这两个第三节点的目标处理后,电磁波信号的频谱不会出现共轭反转的情况,因此,第二节点接收到的电磁波信号不会相对于第一节点发出的电磁波信号的频谱共轭反转。
但是,在线缆上设置有奇数个第三节点时,奇数个第三节点可以分为在第一节点到第二节点的方向上依次排布的多组第三节点,以及一个第三节点,每组第三节点包括两个第三节点。电磁波信号在经过这两个第三节点的目标处理后,电磁波信号的频谱不会出现共轭反转的情况。但是,电磁波信号在经过最后这一个第三节点的处理后,电磁波信号的频谱会出现共轭反转的情况,因此,第二节点接收到的电磁波信号会相对于第一节点发出的电磁波信号的频谱共轭反转。所以,当线缆上设置有奇数个第三节点时,第二节点需要对接收到的电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理。
示例地,当线缆上设置有奇数个第三节点时,第二节点在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据时,可以先对第二节点接收到的电磁波信号进行处理,得到第一节点发出的电磁波信号,再获取该电磁波信号的基带信号,以及根据基带信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。其中,第二节点对接收到的电磁波信号进行处理得到第一节点发出的电磁波信号的过程,与上述目标第三节点对第一电磁波信号进行目标处理得到第二电磁波信号的过程相同,本申请在此不做赘述。
又示例地,当线缆上设置有奇数个第三节点时,第二节点在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据时,第二节点也可以先获取接收到的电磁波信号的第二基带信号,该第二基带信号包括实部信号和虚部信号;之后,第二节点可以根据第二基带信号得到第一基带信号,该第一基带信号与第二基带信号共轭;最后,第二节点可以根据第一基带信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。
当线缆上设置有偶数个第三节点时,第二节点可以直接获取接收到的电磁波信号的基带信号,并根据该基带信号中的实部信号和虚部信号进行星座映射,得到第一节点发出的电磁 波信号携带的数据。
另外,如果第二电磁波信号与共轭反转信号不同,那么第二节点可以在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据之前,还可以对该不同进行补偿。
第五方面,提供了一种通信装置,所述通信装置为第二节点,所述第二节点和第一节点之间通过线缆连接,所述线缆上设置有至少一个第三节点;所述通信装置包括:接收模块和确定模块。其中,接收模块用于接收相邻的第三节点发送的电磁波信号;确定模块用于根据接收到的电磁波信号,确定所述第一节点发出的电磁波信号携带的数据。
进一步地,在本申请中,每个第三节点均可以为目标第三节点,每个第三节点在对接收到的第一电磁波信号进行目标处理的过程中,对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理。因此,在线缆上设置有偶数个第三节点时,偶数个第三节点可以分为在第一节点到第二节点的方向上依次排布的多组第三节点,每组第三节点包括两个第三节点。电磁波信号在经过这两个第三节点的目标处理后,电磁波信号的频谱不会出现共轭反转的情况,因此,第二节点接收到的电磁波信号不会相对于第一节点发出的电磁波信号的频谱共轭反转。
但是,在线缆上设置有奇数个第三节点时,奇数个第三节点可以分为在第一节点到第二节点的方向上依次排布的多组第三节点,以及一个第三节点,每组第三节点包括两个第三节点。电磁波信号在经过这两个第三节点的目标处理后,电磁波信号的频谱不会出现共轭反转的情况。但是,电磁波信号在经过最后这一个第三节点的处理后,电磁波信号的频谱会出现共轭反转的情况,因此,第二节点接收到的电磁波信号会相对于第一节点发出的电磁波信号的频谱共轭反转。所以,当线缆上设置有奇数个第三节点时,第二节点中的确定模块需要对接收到的电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理。
示例地,当线缆上设置有奇数个第三节点时,确定模块在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据时,可以先对第二节点接收到的电磁波信号进行处理,得到第一节点发出的电磁波信号,再获取该电磁波信号的基带信号,以及根据基带信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。其中,第二节点对接收到的电磁波信号进行处理得到第一节点发出的电磁波信号的过程,与上述目标第三节点对第一电磁波信号进行目标处理得到第二电磁波信号的过程相同,本申请在此不做赘述。
又示例地,当线缆上设置有奇数个第三节点时,确定模块在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据时,确定模块也可以先获取接收到的电磁波信号的第二基带信号,该第二基带信号包括实部信号和虚部信号;之后,确定模块可以根据第二基带信号得到第一基带信号,该第一基带信号与第二基带信号共轭;最后,确定模块可以根据第一基带信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。
当线缆上设置有偶数个第三节点时,确定模块可以直接获取接收到的电磁波信号的基带信号,并根据该基带信号中的实部信号和虚部信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。
另外,如果第二电磁波信号与共轭反转信号不同,那么第二节点可以在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据之前,还可以对该不同进行补偿。
第六方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令;当所述芯片运行时用于实现如第四方面中任一设计所述的通信方法。
第七方面,提供了一种通信系统,所述通信系统包括:第一节点、第二节点和至少一个第三节点,所述第一节点和所述第二节点通过线缆连接,所述至少一个第三节点设置在所述线缆上;目标第三节点为所述至少一个第三节点中的一个第三节点,所述目标第三节点为第二方面中任一设计所述的通信装置,或者,所述目标第三节点包括第三方面所述的芯片;第二节点为第五方面中任一设计所述的通信装置,或者,第二节点包括第六方面所述的芯片。
进一步地,线缆被第一节点、至少一个第三节点和第二节点分割为多个线缆段。位于第一节点、至少一个第三节点和第二节点中,第2n+1个节点与第2n+2个节点之间的线缆段称为第一线缆段,n≥0;位于第一节点、至少一个第三节点和第二节点中,第2n+2个节点与第2n+3个节点之间的线缆段称为第二线缆段。
线缆中各个线缆段的长度满足一定的约束条件。
比如,线缆中各个线缆段的长度满足第一约束条件:线缆中第一线缆段的长度之和与第二线缆段的长度之和的差值的绝对值小于第一长度。
该第一长度为:频选衰落传输长度和色散传输长度的最小值。其中,在所述线缆中传输所述频选衰落传输长度后,所述第一节点发出的电磁波信号中各个频率的衰落幅度中的最大衰落幅度为所述第二节点能够处理的最大衰落幅度。该频选衰落传输长度可以是该最大衰落幅度与线缆中的单位衰落幅度的商,单位衰落幅度为在线缆中单位长度的线缆段中传输时,第一节点发出的电磁波信号中各个频率的衰落幅度中的最大衰落幅度。在所述线缆中传输所述色散传输长度后,所述第一节点发出的电磁波信号的色散为所述第二节点能够处理的最大色散。色散传输长度可以是该最大色散和线缆中单位长度的线缆段的色散量的商。
当第一长度为频选衰落传输长度和色散传输长度的最小值时,线缆中第一线缆段的长度之和与第二线缆段的长度之和的差值的绝对值小于该最小值,能够保证第二节点接收到的电磁波信号的频率选择性衰落和群时延色散均较小。
又比如,线缆中各个线缆段的长度满足第二约束条件:线缆中任意两个相邻的节点之间的线缆段的长度小于或等于第二长度,该第二长度为第一节点发出的电磁波信号能够传输的最大长度。
第一节点发出的电磁波信号能够传输的最大长度也即:在第一节点和第二节点之间不存在任一节点时,第一节点发出的电磁波信号能够被第二节点有效接收到的情况下,该电磁波信号传输的最大长度。其中,该最大长度由电磁波信号在线缆中传输的传输损耗,第一节点发射电磁波信号的功率,以及第二节点接收电磁波信号的灵敏度等设备参数确定。当上述任意两个相邻的节点之间的线缆段的长度小于或等于第一节点发出的电磁波信号能够传输的最大长度时,能够保证电磁波信号能够有效在线缆段之间传输。
进一步地,线缆上还可以设置有至少一个第四节点;第四节点用于对线缆上传输的电磁波信号进行功率放大。当第一节点和第二节点之间的传输长度较长,第三节点数量较多时,本申请还可以在一个或多个线缆段上设置第四节点,以使得第四节点对线缆上传输的电磁波信号进行功率放大,保证第二节点接收到的电磁波信号的功率较高,减少电磁波信号的传输损耗。
上述第一方面至第七方面中任意两方面中相应设计方式所带来的技术效果可以相互参考,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的另一种通信系统的结构示意图;
图3为本申请实施例提供的另一种通信系统的结构示意图;
图4为本申请实施例提供的另一种通信系统的结构示意图;
图5为本申请实施例提供的另一种通信系统的结构示意图;
图6为本申请实施例提供的一种群时延色散的示意图;
图7为本申请实施例提供的一种频率选择性衰落的示意图;
图8为本申请实施例提供的一种第四节点的结构示意图;
图9为本申请实施例提供的另一种第四节点的结构示意图;
图10为本申请实施例提供的另一种通信系统的结构示意图;
图11为本申请实施例提供的一种幅频曲线的变化示意图;
图12为本申请实施例提供的一种相频曲线的变化示意图;
图13为本申请实施例提供的另一种幅频曲线的变化示意图;
图14为本申请实施例提供的另一种相频曲线的变化示意图;
图15为本申请实施例提供的一种幅频曲线和相频曲线的变化示意图;
图16为本申请实施例提供的另一种幅频曲线和相频曲线的变化示意图;
图17为本申请实施例提供的另一种幅频曲线和相频曲线的变化示意图;
图18为本申请实施例提供的一种附加相频曲线的归一化示意图;
图19为本申请实施例提供的另一种幅频曲线和相频曲线的变化示意图;
图20为本申请实施例提供的另一种幅频曲线的变化示意图;
图21为本申请实施例提供的另一种相频曲线的变化示意图;
图22为本申请实施例提供的另一种幅频曲线的变化示意图;
图23为本申请实施例提供的另一种相频曲线的变化示意图;
图24为本申请实施例提供的另一种幅频曲线的变化示意图;
图25为本申请实施例提供的另一种幅频曲线的变化示意图;
图26为本申请实施例提供的另一种相频曲线的变化示意图;
图27为本申请实施例提供的另一种相频曲线的变化示意图;
图28为本申请实施例提供的一种相频曲线的折叠示意图;
图29为本申请实施例提供的一种目标第三节点的结构示意图;
图30为本申请实施例提供的另一种幅频曲线和相频曲线的变化示意图;
图31为本申请实施例提供的另一种幅频曲线和相频曲线的变化示意图;
图32为本申请实施例提供的另一种幅频曲线和相频曲线的变化示意图;
图33为本申请实施例提供的另一种目标第三节点的结构示意图;
图34为本申请实施例提供的另一种目标第三节点的结构示意图;
图35为本申请实施例提供的另一种目标第三节点的结构示意图;
图36为本申请实施例提供的另一种目标第三节点的结构示意图;
图37为本申请实施例提供的另一种目标第三节点的结构示意图;
图38为本申请实施例提供的另一种目标第三节点的结构示意图;
图39为本申请实施例提供的另一种目标第三节点的结构示意图;
图40为本申请实施例提供的一种线缆段的示意图;
图41为本申请实施例提供的一种线缆段的长度示意图;
图42为本申请实施例提供的另一种线缆段的长度示意图;
图43为本申请实施例提供的另一种线缆段的长度示意图;
图44为本申请实施例提供的另一种通信系统的结构示意图;
图45为本申请实施例提供的一种通信方法的流程图。
具体实施方式
为使本申请的原理和技术方案更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例提供了一种通信系统,如图1所示,该通信系统包括:第一节点和第二节点,通信系统中第一节点和第二节点的数量不作限定。第一节点和第二节点通过线缆连接。线缆可以是聚合物线缆,线缆能够传输电磁波信号,如太赫兹信号(太赫兹频率的电磁波信号)、光信号等。
例如,如图2所示,本申请实施例提供的通信系统可以是数据中心,该通信系统中的第一节点可以是机柜中的交换机或服务器,第二节点可以是汇聚交换机。第一节点和第二节点中的通信接口可以是四通道小型可插拔(quad small form-factor pluggable,QSFP)接口、小型可插拔(small form-factor pluggable,SFP)接口、CXP接口(一种传输速率为12×10千兆比特每秒的接口)、CX4接口(一种传输速率为10千兆比特每秒的接口)等标准接口。图2所示的通信系统中包括两个第一节点和两个第二节点,每个第一节点均通过线缆与每个第二节点连接。
又例如,如图3所示,本申请实施例提供的通信系统可以是音视频数据传输系统,该通信系统中的第一节点可以是多媒体中心中的音视频数据源设备,第二节点可以是会议室(或娱乐场所)中的显示器或投影仪。第一节点和第二节点中的通信接口可以是高清多媒体接口(high definition multimedia interface,HDMI)、显示接口(display port,DP)等标准的多媒体显示接口。图3所示的通信系统包括一个第一节点和两个第二节点,第一节点通过线缆与每个第二节点连接。
再例如,如图4所示,本申请实施例提供的通信系统可以是车载有线网络系统,车载有线网络系统包括:车体、至少一个分布式网关节点(gateway,GW)(图4中以两个GW为例)、集中式车辆控制中心和至少一个传感器(图4中以一个传感器为例)。其中,集中式车辆控制中心包括至少一个电子控制单元(electronic control unit,ECU)(图4中以两个ECU为例)。图4所示的系统中通过线缆连接的每两个部分中,一个部分为第一节点,另一个部分为第二节点,并通过线缆通信。比如,ECU1可以作为第一节点,传感器可以作为第二节点;或者,两个GW中,一个GW为第一节点,另一个GW为第二节点。
在本申请实施例提供的通信系统中,第一节点和第二节点之间可以通过线缆传输电磁波信号以进行通信。比如,第一节点可以根据需要传输的数据调制电磁波信号,并将该电磁波信号送入线缆,电磁波信号在经过线缆传输之后,被第二节点接收解调,恢复出第一节点需要传输的数据。
示例地,请参考图5,第一节点可以包括:发射机。其中,发射机包括:用于根据需要发送给第二节点的数据调制电磁波信号的调制器。可选地,发射机还可以包括功率放大器(PowerAmplifier,PA)和耦合器。其中,PA与调制器连接,用于对调制器调制的电磁波信号进行功率放大;耦合器的一端连接PA,另一端连接线缆,用于将PA功率放大后的电磁波信号传输至线缆。
请继续参考图5,第二节点包括:接收机。其中,接收机包括用于将电磁波信号解调为数据的解调器等。可选地,接收机还包括:低噪声放大器(low noise amplifier,LNA)和耦合器。耦合器的一端与线缆连接,另一端与LNA连接,耦合器用于接收线缆上传输的电磁波信号;LNA用于来自耦合器的电磁波信号进行低噪声放大。解调器用于对低噪声放大后的电磁波信号进行解调。
可选地,第二节点还可以包括其他器件,比如,第二节点还包括时钟恢复器和均衡器(图5中未示出)。其中,时钟恢复器用于从基带信号(解调器解调电磁波信号得到的基带信号)中提取时钟信号;均衡器用于根据该时钟信号对该基带信号进行均衡,得到基带信号携带的数据。
需要说明的是,本申请实施例中以第一节点向第二节点发送电磁波信号为例,可选地,第二节点也可以向第一节点发送电磁波信号,此时,第一节点包括图5中的接收机,第二节点包括图5中的发射机。
根据以上内容可知,第一节点和第二节点之间可以通过线缆传输电磁波信号以进行通信。但是,由于线缆本身的材料特性和结构特性,导致电磁波信号在线缆中传输时会受到较大的影响,以下将对其中的三方面影响进行讲解。
第一方面,电磁波信号在线缆中传输时会有传输损耗,传输损耗导致电磁波信号的能量损失。并且,电磁波信号在线缆中传输的长度越长,电磁波信号的能量损失越大。当第二节点接收到的电磁波信号的能量低于第二节点的灵敏度时,第二节点将无法解调恢复出第一节点需要发送的数据。其中,第二节点接收到的信号能量低于第二节点的灵敏度是指:第二节点接收到的电磁波信号的传输损耗大于第二节点能够解调恢复的电磁波信号的最大传输损耗。
第二方面,电磁波信号在线缆中传输时会有群时延色散。其中,群时延色散是指电磁波信号中不同频率的信号在线缆中传输时具有不同的传播速度。当电磁波信号是太赫兹信号时,由于太赫兹信号的带宽较大,带内信号频率差异大,因此群时延色散会导致太赫兹信号严重的波形失真。并且,电磁波信号在线缆中的传输长度越长,群时延色散越严重,电磁波信号的波形失真越大。示例地,如图6所示,如果线缆的信道传输函数为H(f),f表示电磁波信号的频率,那么,电磁波信号的群时延色散的图像(表示为ang{H(f)}随频率变化的图像)会出现二次曲线的变化特性;并且群时延色散越严重,二次曲线的曲率越大。ang{H(f)}表示H(f)的相位。
第三方面,电磁波信号在线缆中传输时会有频率选择性衰落。频率选择性衰落是指:电磁波信号中不同频率的信号的衰落(能量损失)不同。并且,在电磁波信号是太赫兹信号时,通常太赫兹信号中高频信号的衰落比低频信号的衰落更大,这种信号频谱的不平坦衰落也会导致信号波形产生畸变。并且,电磁波信号在线缆中的传输长度越长,频率选择性衰落越严重,电磁波信号中高低频信号的衰落差异越大,因而电磁波信号的带内不平坦程度越大,电磁波信号畸变越严重。示例地,如图7所示,如果线缆的信道传输函数为H(f),f表示电磁波 信号的频率,那么电磁波信号的频率选择性衰落的图像(表示为|H(f)|随频率变化的图像)出现了向高频方向的倾斜,并且频率选择性衰落的幅度越严重,频率选择性衰落曲线的倾斜程度越大。|H(f)|表示H(f)的绝对值。
可见,线缆对电磁波信号的传输的影响较大,导致第二节点接收到的电磁波信号存在失真,影响第一节点和第二节点之间的有效通信。
相关技术中,为了降低电磁波信号在线缆中传输时受到的影响,可以在第一节点和第二节点之间的线缆上设置第四节点。
示例地,如图8所示,第四节点用于提升线缆上传输的电磁波信号的功率。第四节点包括:两个耦合器,以及串联在这两个耦合器之间的PA。其中,耦合器与线缆连接,PA用于对经过的电磁波信号进行功率放大。但是,图8所示的第四节点无法避免电磁波信号受到群时延色散和频率选择性衰落的影响。
又示例地,如图9所示,第四节点包括:两个耦合器,以及依次串联在这两个耦合器之间的LNA、解调器、均衡器、调制器和PA,以及与解调器和均衡器均连接的时钟恢复器。其中,耦合器与线缆连接,LNA用于对来自一个耦合器的电磁波信号进行低噪声放大;解调器用于解调该电磁波信号得到携带数据的基带信号;时钟恢复器用于从该基带信号中提取时钟信号;均衡器用于根据该时钟信号对该基带信号进行均衡,得到基带信号携带的数据;调制器用于根据该数据调制电磁波信号;PA用于对调制器调制的电磁波信号进行功率放大,并将功率放大后的电磁波信号通过另一耦合器传输至线缆。
可见,图9所示的第四节点用于将接收到的电磁波信号解调恢复得到电磁波信号携带的数据,再对该数据进行调制得到新的电磁波信号,以补偿电磁波信号在第一节点和第四节点之间的线缆上传输所受到的影响。但是,图9所示的第四节点对电磁波信号的处理过程较为复杂,影响电磁波信号的传输效率,并且,也无法补偿电磁波信号在第四节点到第二节点之间传输所受到的影响。
为了降低电磁波信号在线缆中传输时受到的影响,本申请实施例提供了一种通信系统,如图10所示,在图1所示的通信系统的基础上,在第一节点和第二节点之间的线缆上可以设置至少一个第三节点。其中,第三节点的个数可以是一个也可以是多个,图10中以一个第三节点为例。第三节点可以是网关、路由器等设备。
目标第三节点为上述至少一个第三节点中的一个第三节点,且在第一节点、第二节点和至少一个第三节点中,目标第三节点与第一邻节点和第二邻节点相邻。该第一邻节点可以是第一节点也可以是第一节点和目标第三节点之间的另一第三节点,第二邻节点可以是第二节点也可以是目标第三节点和第二节点之间的又一第三节点。
目标第三节点用于在接收到第一邻节点发送的第一电磁波信号之后,对该第一电磁波信号进行目标处理,得到第二电磁波信号,并向第二邻节点发送该第二电磁波信号。其中,目标处理包括:用于使电磁波信号的频谱发生共轭反转的处理。
可选地,频谱发生共轭反转前后的第一电磁波信号的幅频曲线关于目标直线轴对称;频谱发生共轭反转前后的第一电磁波信号的相频曲线关于目标点中心对称;其中,目标直线垂直于幅频曲线所在坐标系的横坐标轴,且与横坐标轴的交点对应的频率为该第一电磁波信号的中心频率;目标点为相频曲线所在坐标系的横坐标轴上对应该中心频率的点。
示例地,第一电磁波信号的幅频曲线和第二电磁波信号的幅频曲线如图11所示,第一电 磁波信号的相频曲线和第二电磁波信号的相频曲线可以如图12所示。
又示例地,第一电磁波信号的幅频曲线和第二电磁波信号的幅频曲线如图13所示,第一电磁波信号的相频曲线和第二电磁波信号的相频曲线可以如图14所示。图13和图14中均以第一电磁波信号为双音信号为例,且第一电磁波信号包括信号A和信号B。
可选地,目标第三节点在对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理时,一方面,对于频谱中的幅频曲线,目标第三节点会以上述目标直线为对称轴,将目标直线左右两侧的频率对应的幅度进行对称的交换,以使频谱发生共轭反转前后的电磁波信号的幅频曲线关于目标直线轴对称。另一方面,对于频谱中的相频曲线,目标第三节点将相频曲线中每个频率对应的相位乘以-1,例如将相位从10°(度)变为-10°,同时,还将相频曲线中各个频率对应的相位以上述目标直线为对称轴,将目标直线左右两侧的频率对应的相位进行对称的交换,以使频谱发生共轭反转前后的电磁波信号的相频曲线关于目标点中心对称。
当然,目标第三节点也可以通过其他方式实现对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理,比如,对第一电磁波信号进行滤波的方式,本申请实施例对此不作限定。
以下将对上述用于使电磁波信号的频谱发生共轭反转的处理的效果进行分析:
以图10所示的场景为例,第一电磁波信号在经过第一线缆段的传输后,第一电磁波信号受到群时延色散和频率选择性衰落的影响而出现第一失真,如图15所示,目标第三节点接收到的第一电磁波信号的幅频曲线中高频段的部分凹陷,第一电磁波信号的相频曲线向上弯曲。
目标第三节点在接收到该第一电磁波信号后,可以对该第一电磁波信号进行目标处理。示例地,目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理,得到第二电磁波信号。第二电磁波信号的幅频曲线与第一电磁波信号的幅频曲线关于目标直线轴对称,第二电磁波信号的相频曲线与第一电磁波信号的相频曲线关于目标点中心对称。第二电磁波信号的幅频曲线和相频曲线分别如图16所示。从图16可以看出,第一电磁波信号的幅频曲线中高频段的部分凹陷,第二电磁波信号的幅频曲线中低频段的部分凹陷,这两个幅频曲线中凹陷的频段正好不同;第一电磁波信号的相频曲线向上弯曲,第二电磁波信号的相频曲线向下弯曲,这两个相频曲线的弯曲方向正好相反。比较第一邻节点发出的第一电磁波信号,目标第三节点接收到的第一电磁波信号,以及目标节点得到的第二电磁波信号,可以看出,目标第三节点接收到的第一电磁波信号相对第一邻节点发出的第一电磁波信号存在第一失真,第二电磁波信号相对第一邻节点发出的第一电磁波信号存在第二失真,且第一失真与第二失真相反。
目标第三节点在得到第二电磁波信号后,如图17所示,目标第三节点可以将第二电磁波信号通过第二线缆段发送给第二邻节点。该第二电磁波信号在经过第二线缆段传输的过程中,受到频率选择性衰落和群时延色散的影响而出现第三失真(类似第一失真),导致第二邻节点接收到的第二电磁波信号的幅频曲线和相频曲线均发生变化。第二邻节点接收到的第二电磁波信号的幅频曲线和相频曲线均如图17所示,可见,第二电磁波信号的幅频曲线中高频段的部分凹陷,第一电磁波信号的相频曲线向上弯曲。
根据图15至图17所示的过程可知,电磁波信号在经过第一线缆段或第二线缆段的传输后,电磁波信号会发生失真(如上述第一失真或第三失真),此时,电磁波信号的幅频曲线中 高频段的部分会凹陷,电磁波信号的相频曲线会向上弯曲。但由于目标第三节点对第一电磁波信号进行了目标处理(包括用于使电磁波信号的频谱发生共轭反转的处理),该目标处理使得电磁波信号的幅频曲线中低频段的部分凹陷,电磁波信号的相频曲线向下弯曲,使得第二电磁波信号相对第一邻节点发出的第一电磁波信号发生与第一失真相反的第二失真。这样一来,第二电磁波信号在经过第二线缆的传输后,虽然会受到第二线缆的影响而发生第三失真,但是,在第二失真和第三失真的作用下,能够降低第二邻节点接收到的第二电磁波信号相对第一邻节点发出的第一电磁波信号的失真。
综上所述,本申请实施例提供的通信系统中,电磁波信号在从第一邻节点传输至目标第三节点的过程中会发生第一失真,电磁波信号在从目标第三节点传输至第二邻节点的过程中又会发生与第三失真,且第三失真与第一失真相似。目标第二节点对接收到的第一电磁波信号进行的目标处理包括用于使电磁波信号的频谱发生共轭反转的处理,所以,目标第三节点对第一电磁波进行目标处理得到的第二电磁波信号会相对第一邻节点发出的信号发生与第一失真相反的第二失真。在电磁波信号从目标第三节点传输至第二邻节点的过程中,电磁波信号发生第三失真。在第二失真和第三失真的作用下,能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真,保证第一邻节点和第二邻节点之间的通信质量,进而保证了第一节点和第二节点之间的通信质量。
另外,目标第三节点对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理时,目标第三节点无需还原第一节点发出的原始的电磁波信号,所以,目标第三节点的复杂度较低。
以下将通过公式对目标处理的效果进行进一步地分析。
假设一段线缆的信道传递函数H(f)=exp{k(f-f 0)+c}·exp{i*(β(f-f 0) 2+αf)},其中,exp{k(f-f 0)+c}表示e的k(f-f 0)+c次方,e表示自然常数,k表示线缆段的频率选择性衰落图像在线缆段上传输的电磁波信号的中心频率f 0处的斜率(与频率选择性衰落相关),f表示该电磁波信号的频段中的任一频率,c为线缆段在频率f 0处的平均传输损耗系数(与传输损耗相关);exp{i*(β(f-f 0) 2+αf)}表示e的i*(β(f-f 0) 2+αf)次方,i为虚数单位,β表示线缆段在该电磁波信号的带宽内的群时延色散系数(与群时延色散);α是一个与线缆段的传输延迟对应的常系数,不影响电磁波信号的能量损耗和波形失真。
如果第一线缆段的信道参数为k 1、c 1、β 1、α 1,则该第一线缆段的信号传递函数表示为H 1(f)。
H 1(f)=exp{k 1(f-f 0)+c 1}·exp{i*(β 1(f-f 0) 21f)};
第一电磁波信号在经过第一线缆段的传输后,第一电磁波信号的频谱S(f)将变为S 1(f)。
S 1(f)=S(f)H 1(f)=S(f)exp{k 1(f-f 0)+c 1}·exp{i*(β 1(f-f 0) 21f)}。
目标第三节点对接收到的第一电磁波信号进行目标处理,得到的第二电磁波信号的频谱可以表示为S 2(f)。S 2(f)=S *(-f)exp{k 1(-f+f 0)+c 1}·exp{i*(-β 1(f-f 0) 21f)}。
S *(-f)表示S(f)的共轭对称;
exp{k 1(-f+f 0)+c 1}表示e的k 1(-f+f 0)+c 1次方;
exp{i*(-β 1(f-f 0) 21f)表示e的i*(-β 1(f-f 0) 21f)次方。
目标第三节点在得到第二电磁波信号后,可以将第二电磁波信号通过第二线缆段发送给第二邻节点。该第二电磁波信号在经过第二线缆段传输的过程中,受到频率选择性衰落和群时延色散的影响,导致第二邻节点接收到的第二电磁波信号的幅频曲线和相频曲线均发生变化。
设第二线缆段的信道参数为k 2、c 2、β 2、α 2,该第二线缆段的信号传递函数表示为H 2(f)。H 2(f)=exp{k 2(f-f 0)+c 2}·exp{i*(β 2(f-f 0) 22f)}。
第二邻节点接收到的第二电磁波信号的频谱S 3(f)=S 2(f)H 2(f)=S *(-f)exp{(k 2-k 1)(f-f 0)+c 1+c 2}·exp{i*((β 21)(f-f 0) 2+(α 21)f)}。
exp{(k 2-k 1)(f-f 0)+c 1+c 2}表示e的(k 2-k 1)(f-f 0)+c 1+c 2次方。
exp{i*((β 21)(f-f 0) 2+(α 21)f)}表示e的i*((β 21)(f-f 0) 2+(α 21)f)次方。
如果第一线缆段和第二线缆段的长度相近,那么第一线缆段的信道参数(k 1、c 1、β 1、α 1)与第二线缆段的信道参数(k 2、c 2、β 2、α 2)近似相同。
此时,对于S 3(f)=S *(-f)exp{(k 2-k 1)(f-f o)+c 1+c 2}·exp{i*((β 21)(f-f o) 2+(α 21)f)},其中的(k 2-k 1)(f-f o)趋近于零,(β 21)(f-f o) 2也趋近于零。
S 3(f)≈S *(-f)exp{c 1+c 2}·exp{i*((α 21)f)}。
可见,S 3(f)与k和β均无关,k与频率选择性衰落相关,β与群时延色散相关,因此,S 3(f)与频率选择性衰落以及群时延色散的关联度较低,S 3(f)中由频率选择性衰落和群时延色散引起的电磁波信号的失真大大降低。
进一步地,假设频谱发生共轭反转前后的第一电磁波信号的幅频曲线关于目标直线轴对称;频谱发生共轭反转前后的第一电磁波信号的相频曲线关于目标点中心对称。并且,频谱发生这样的共轭反转后的第一电磁波信号称为共轭反转信号。那么,根据以上内容可知,共轭反转信号的幅频曲线与第一电磁波信号的幅频曲线关于目标直线轴对称;共轭反转信号的相频曲线与第一电磁波信号的相频曲线关于目标点中心对称;其中,目标直线垂直于幅频曲线所在坐标系的横坐标轴,且与横坐标轴的交点对应的频率为第一电磁波信号的中心频率;目标点为相频曲线所在坐标系的横坐标轴上对应中心频率的点。
目标第三节点最终得到的第二电磁波信号可以与共轭反转信号相同,也可以不同,本申请实施例对此不作限定。在目标第三节点最终得到的第二电磁波信号与共轭反转信号不同时,可以是第二电磁波信号与共轭反转信号的中心频率、幅频曲线和相频曲线中的至少一种信息不同。
在目标第三节点最终得到的第二电磁波信号可以与共轭反转信号不同时,第二电磁波信 号与共轭反转信号可以满足以下至少一种条件。
条件1.1:共轭反转信号的幅频曲线中,第一幅度之和与第二幅度之和具有目标大小关系;第二电磁波信号的幅频曲线中,第三幅度之和与第四幅度之和也具有该目标大小关系。
第一幅度为第一频率对应的幅度,第二幅度为第二频率对应的幅度;第一频率小于共轭反转信号的中心频率,第二频率大于共轭反转信号的中心频率;第三幅度为第三频率对应的幅度,第四幅度为第四频率对应的幅度;第三频率小于第二电磁波信号的中心频率,第四频率大于第二电磁波信号的中心频率。
条件1.2:附加相频曲线中任一频率对应的相位的波动率小于40%(或者20%、30%等)。其中,波动率为波动相位与任一频率对应的相位之比,该波动相位为归一化后的附加相频曲线中该任一频率对应的相位。
附加相频曲线为第二电磁波信号的相频曲线减去参考相频曲线所得到的曲线;参考相频曲线的中心频率与第二电磁波信号的中心频率相同;当共轭反转信号的中心频率与第二电磁波信号的中心频率相同时,参考相频曲线为共轭反转信号的相频曲线;当共轭反转信号的中心频率与第二电磁波信号的中心频率不同时,参考相频曲线为共轭反转信号的相频曲线沿相频曲线的横坐标轴移动后的相频曲线。
波动率为波动相位与任一频率对应的相位之比,波动相位为归一化后的附加相频曲线中任一频率对应的相位;需要说明的是,请参考图18,上述归一化用于将附加相频曲线进行旋转和移动,使附加相频曲线的两个端点和目标交点均移动至附加相频曲线的横坐标轴上,且目标交点对应第一电磁波信号的中心频率;目标交点为两个端点的连线与参考直线(图18中未标出)的交点,参考直线垂直于横坐标轴,且与横坐标轴的交点对应的频率为第一电磁波信号的中心频率。
当第二电磁波信号与共轭反转信号满足条件1.1时,第二电磁波信号的幅频曲线与共轭反转信号的幅频曲线的差异较小;当第二电磁波信号与共轭反转信号满足条件1.2时,第二电磁波信号的相频曲线与共轭反转信号的相频曲线的差异较小。此时,第二电磁波信号与共轭反转信号的差异较小,从而也能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真。
根据以上内容可知,第二电磁波信号与共轭反转信号可以相同,也可以不同。当第二电磁波信号与共轭反转信号不同时,可以是目标第三节点中器件本身的因素所导致的;或者,当第二电磁波信号与共轭反转信号不同时,也可以是目标处理中还包括了与上述用于使电磁波信号的频谱发生共轭反转的处理不同的其他处理(如称为辅助处理)所导致的;又或者,当第二电磁波信号与共轭反转信号不同时,可以是目标第三节点中器件本身的因素,以及目标处理中还包括了与上述其他处理所导致的。其中,该辅助处理是与上述不同相关的处理。
示例地,目标第三节点中器件本身的因素可以是:本振电路频率不稳定、器件带宽受限、带内平坦度有限、非线性的群时延等因素。在目标第三节点中器件本身的因素的影响下,目标第三节点虽然对第一电磁波信号进行了用于使电磁波信号的频谱发生共轭反转的处理,但得到的电磁波信号与共轭反转信号难以完全相同。共轭反转得到的信号的频谱通常还会额外出现如下变化1至变化3中的至少一种变化。
变化1:由于目标第三节点中用于执行用于使电磁波信号的频谱发生共轭反转的处理的器件通常存在客观不可控的频率抖动,因此频谱发生共轭反转后的第一电磁波信号的中心频 率可能会与第一电磁波信号的中心频率不同。示例地,如图19所示,频谱发生共轭反转后的第一电磁波信号的中心频率为fd,fd不等于第一电磁波信号的中心频率fc。
变化2:由于目标第三节点中用于执行用于使电磁波信号的频谱发生共轭反转的处理的器件的幅频响应会改变信号的幅频曲线,因此,频谱发生共轭反转后的第一电磁波信号的幅频曲线可能会与共轭反转信号的幅频曲线不同。
示例地,如图20所示,频谱发生共轭反转后的第一电磁波信号的幅频曲线会在输入的第一电磁波信号的幅频曲线的镜像对称曲线(共轭反转信号的幅频曲线)上,进一步叠加目标第三节点中用于执行用于使电磁波信号的频谱发生共轭反转的处理的器件的幅频响应曲线。
又示例地,若第一电磁波信号的幅频曲线如图13所示时,频谱发生共轭反转后的第一电磁波信号的幅频曲线中信号A的幅度和信号B的幅度都会发生改变。比如,频谱发生共轭反转后的第一电磁波信号的幅频曲线中信号A的幅度,与图13中第二电磁波信号的幅频曲线中信号A的幅度不同。频谱发生共轭反转后的第一电磁波信号的幅频曲线中信号B的幅度,与图13中第二电磁波信号的幅频曲线中信号B的幅度不同。
变化3:由于目标第三节点中器件的相频响应会改变信号的相频曲线,因此,频谱发生共轭反转后的第一电磁波信号的相频曲线可能会与共轭反转信号的相频曲线不同。频谱发生共轭反转后的第一电磁波信号的相频曲线还会额外叠加目标第三节点中用于执行用于使电磁波信号的频谱发生共轭反转的处理的器件的相频响应。
示例地,如图21所示,频谱发生共轭反转后的第一电磁波信号的相频曲线会在输入的第一电磁波信号的相频曲线的中心对称曲线(共轭反转信号的相频曲线)上,进一步叠加目标第三节点中用于执行用于使电磁波信号的频谱发生共轭反转的处理的器件的相频响应曲线。
又示例地,若第一电磁波信号的相频曲线如图14所示时,频谱发生共轭反转后的第一电磁波信号的相频曲线中信号A的相位与第一电磁波信号中信号A原本的相位之和不为零,频谱发生共轭反转后的第一电磁波信号的相频曲线中信号B的相位与第一电磁波信号中信号B原本的相位之和不为零。
进一步地,当第二电磁波信号与共轭反转信号相同时,相当于对第一电磁波信号的频谱发生了理想情况下的共轭反转后,能够得到第二电磁波信号。当第二电磁波信号与共轭反转信号不同时,相当于第一电磁波信号的频谱发生非理想情况下的共轭反转后,能够得到第二电磁波信号。
在上述理想情况下的共轭反转的基础上,该非理想情况下的共轭反转可以满足以下条件2.1至2.4中的至少一个条件。
条件2.1:频谱发生非理想情况下的共轭反转前后的电磁波信号的幅频曲线不是关于目标直线轴对称,而是关于目标直线近似对称。
条件2.2:频谱发生非理想情况下的共轭反转前后的电磁波信号的相频曲线不是关于目标点中心对称,而是关于目标点近似中心对称。
条件2.3:目标直线与横坐标轴的交点对应的频率不是电磁波信号的中心频率,而是与该中心频率存在偏差的频率。
条件2.4:目标点不是相频曲线所在坐标系的横坐标轴上对应电磁波信号的中心频率的点,而是相频曲线所在坐标系的横坐标轴上对应与上述中心频率存在偏差的频率的点。
示例地,当非理想情况下的共轭反转满足上述条件2.1至2.4时,频谱发生非理想情况下 的共轭反转前后的电磁波信号的幅频曲线关于目标直线近似对称,频谱发生非理想情况下的共轭反转前后的电磁波信号的相频曲线关于目标点近似中心对称。其中,目标直线垂直于幅频曲线所在坐标系的横坐标轴,且与横坐标轴的交点对应的频率与电磁波信号的中心频率存在偏差;目标点为相频曲线所在坐标系的横坐标轴上与该中心频率存在偏差的频率对应的点。
比如,假设在对第一电磁波信号发生理想情况下的共轭反转后,得到的第二电磁波信号的幅频曲线可以如图22所示,第二电磁波信号的相频曲线可以如图23所示。在第一电磁波信号发生非理想情况下的共轭反转后,得到的第二电磁波信号的幅频曲线可以如图24或图25所示,第二电磁波信号的相频曲线可以如图26或图27所示。其中,图24满足上述条件2.1,图25满足上述条件2.3,图26满足上述条件2.2,图27满足是上述条件2.4。
进一步地,上述非理想情况下的共轭反转与理想情况下的共轭反转存在一定的关系,以下将对该关系进行说明。
比如,对于同一电磁波信号,假设电磁波信号的频谱发生理想情况下的共轭反转后,电磁波信号的幅频曲线称为第一幅频曲线,电磁波信号的相频曲线称为第一相频曲线。电磁波信号的频谱发生非理想情况下的共轭反转后,电磁波信号对应第二幅频曲线和第二相频曲线。
需要说明的是,假设在电磁波信号的频谱发生非理想情况下的共轭反转后,该电磁波信号的幅频曲线为目标幅频曲线,该电磁波信号的相频曲线为目标相频曲线。若频谱发生非理想情况下的共轭反转后,该电磁波信号在中心频率并未发生改变,那么,第二幅频曲线为上述目标幅频曲线,第二相频曲线为上述目标相频曲线。若频谱发生非理想情况下的共轭反转后,该电磁波信号在中心频率发生了改变,那么,第二幅频曲线为上述目标幅频曲线沿目标幅频曲线所在的横坐标轴移动后的曲线,第二相频曲线为上述目标相频曲线沿目标相频曲线所在的横坐标轴移动后的曲线。并且,第二幅频曲线的中心频率和第二相频曲线的中心频率相同,这些中心频率均为频谱发生非理想情况下的共轭反转前的该电磁波信号的中心频率。
假设第一幅频曲线表示为y=f 1(x),第二幅频曲线表示为y=f 2(x),其中,x表示频率,y表示幅度。那么,第一幅频曲线和第二幅频曲线满足公式(1):∑ x|f 2n(x)-f 1(x)| 2<∑ x|f 1(x)| 2,x的取值范围在电磁波信号的带宽范围内。
其中,
Figure PCTCN2022114699-appb-000001
y=f 2n(x)表示将第二幅频曲线的能量归一化到第一幅频曲线的能量所得到的归一化后的第二幅频曲线。
非理想情况下的共轭反转与理想情况下的共轭反转和非理想因素均相关。在公式(1)中,∑ x|f 2n(x)-f 1(x)| 2表示非理想因素对第二幅频曲线的幅度的影响值,∑ x|f 1(x)| 2表示理想情况下的共轭反转对第二幅频曲线的幅度的影响值。由于∑ x|f 2n(x)-f 1(x)| 2<∑ x|f 1(x)| 2,因此,非理想因素对第二幅频曲线的幅度的影响值不会超过理想情况下的共轭反转对第二幅频曲线的幅度的影响值,非理想情况下的共轭反转也能够具有上述理想情况下的共轭反转的效果。从而也能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真。
假设第一相频曲线表示为y=f 3(x),第二相频曲线表示为y=f 4(x),其中,x表示频率,y表示相位。那么,第一相频曲线和第二相频曲线满足公式(2):∑ x|f dn(x)|<∑ x|f 3(x)|。其中,
Figure PCTCN2022114699-appb-000002
y=f dn(x)表示归一化后的误差曲线,误差曲线为y=f d(x)=f 4(x)-f 3(x),x U和x D表示误差曲线的两个端点对应的频率,归一化后的误差曲线中该两个端点对应的相位均变为0。
非理想情况下的共轭反转与理想情况下的共轭反转和非理想因素均相关。在公式(2)中,∑ x|f dn(x)|表示非理想因素对第二相频曲线的相位的影响值,∑ x|f 3(x)|表示理想情况下的共轭反转对第二相频曲线的相位的影响值。由于∑ x|f dn(x)|<∑ x|f 3(x)|,因此,非理想因素对第二相频曲线的相位的影响值不会超过理想情况下的共轭反转对第二相频曲线的相位的影响值,非理想情况下的共轭反转也能够具有上述理想情况下的共轭反转的效果。从而也能够降低第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真。
需要说明的是,上述电磁波信号(如第一电磁波信号、第二电磁波信号等)的相频曲线与采用设备(如示波器)采集到的该电磁波信号的相频曲线可以相同也可以不同。
示例地,由于电磁波信号是复数信号,而复数信号的相位可以是β+2*N*π中的任意一个(β表示复数信号的相位中位于-π到π之间的相位,π表示圆周率,N为整数),因此在采用设备测量电磁波信号的相频曲线时,相频曲线中相位的取值经常被限制在[-π,π]的区间中。此时,电磁波信号的相频曲线与采用设备采集到的相频曲线不同。
比如,假设第一电磁波信号和第二电磁波信号的相频曲线如图23所示,则采用设备采集到的第一电磁波信号和第二电磁波信号的相频曲线会变为图28所示的曲线,可以看出,这些相频曲线被折叠(wrap)到了[-π,π]的相位区间中。此时,若以示波器中采集到的电磁波信号的相频曲线中上述中心频率对应的相位取值点作为参考点,对该相频曲线进行解折叠(unwrap),便可以得到如图23所示电磁波信号的相频曲线。
需要说明的是,第一节点和第二节点之间的线缆上可以设置有至少一个第三节点。当该线缆上设置有多个第三节点时,每个第三节点均可以为目标第三节点,本申请实施例在此不做赘述。
进一步地,在本申请实施例中,目标第三节点对第一电磁波信号进行目标处理的方式多种多样,以下将以其中的几种方式为例进行讲解。需要说明的是,以下几种方式中,第一电磁波信号发生的共轭反转可以是理想情况下的共轭反转,也可以是非理想情况下的共轭反转,并且,在共轭反转是非理想情况下的共轭反转时,是由目标第三节点中器件本身的因素导致的第二电磁波信号与共轭反转信号不同。
(1)方式1:目标第三节点在对第一电磁波信号进行目标处理时,可以首先对第一电磁波信号进行下变频,得到第一基带信号;之后,再根据第一基带信号得到第二基带信号,第二基带信号与第一基带信号共轭;最后,对第二基带信号进行上变频,得到第二电磁波信号。
需要说明的是,假设第一电磁波信号表示为s i(t),t表示时间。如果第一电磁波信号的中心频率为f 0,那么第一电磁波信号的频谱表示为B i(f-f 0),B i(f)表示该第一电磁波信号的基带 信号(第一基带信号)b i(t)的频谱,该频谱以0频率为中心频率。
第二电磁波信号表示为s o(t),由于第一电磁波信号的频谱与第二电磁波信号的频谱共轭对称,因此,第二电磁波信号的频谱为B i*(-f-f 0),其中*表示取复数值的共轭。第二电磁波信号的基带信号(第二基带信号)表示为b o(t),第二基带信号的频谱表示为B o(f)。在第一电磁波信号的频谱与第二电磁波信号的频谱共轭对称时,第一电磁波信号的基带信号的频谱与第二电磁波信号的基带信号的频谱也共轭对称,因此,第二电磁波信号的基带信号b o(t)的频谱B o(f)=B i*(-f)。
由时域信号的傅里叶变换性质可知,当b o(t)=b i*(t)时,B o(f)=B i*(-f),此时,第二电磁波信号的频谱为B i*(-f-f 0)。基带信号为时域信号,因此,目标第三节点可以将第一电磁波信号的基带信号b o(t)(第一基带信号)共轭,得到第二基带信号b i*(t),再将第二基带信号上变频,便得到了第二电磁波信号s o(t)。该第二电磁波信号的频谱B i*(-f-f 0)与第一电磁波信号的频谱B i(f-f 0)共轭对称。
当目标第三节点采用方式1对第一电磁波信号进行目标处理时,如图29所示,目标第三节点可以包括:信号源单元01、第一移相单元02、第二移相单元03、第一混频单元04、第二混频单元05、第三混频单元06、第四混频单元07、反向单元08和合路单元09。其中,信号源单元01用于提供本振电磁波信号,本振电磁波信号的中心频率与第一电磁波信号的中心频率相同;第一移相单元02、第二移相单元02、第一混频单元04和第三混频单元06均与信号源单元01连接,第一移相单元02还与第二混频单元05连接,第二移相单元03还与第四混频单元07连接,第一混频单元04与第三混频单元06连接,第二混频单元05和第四混频单元07通过反向单元08连接,第三混频单元06和第四混频单元07均与合路单元09连接。第一混频单元04、第二混频单元05和第一移相单元02可以组成下变频模块,第三混频单元06、第四混频单元07、第二移相单元03和合路单元09组成上变频模块。
需要说明的是,对于本申请提供的各个实施例中的单元(如信号源单元01、第一移相单元02、第二移相单元03、第一混频单元04、第二混频单元05、第三混频单元06、第四混频单元07、反向单元08和合路单元09),单元可以是独立的器件,也可以是多个单元集成在一起,每个单元是其中的一个逻辑单元,本申请对此不作限定。
目标第三节点在对第一电磁波信号进行下变频时,第一混频单元04将第一电磁波信号和信号源单元01提供的本振电磁波信号混频,得到第一基带信号的实部信号I;第一移相单元02将信号源单元01提供的本振电磁波信号的相位移动π/2,得到第一移相信号,第一移相信号与本振电磁波信号正交,π表示圆周率;第二混频单元05将第一电磁波信号和第一移相单元02得到的第一移相信号混频,得到第一基带信号的虚部信号Q。这样一来,便得到了包括实部信号I和虚部信号Q的第一基带信号。第一基带信号b i(t)=I+Q。
以图22所示的第一电磁波信号的幅频曲线和图23所示的第一电磁波信号的相频曲线为例。第一电磁波信号经过下变频之后,第一电磁波信号的信号频谱(包括幅频分量和相频分量)从原本的中心频率fc处整体搬移到了0频率处,如图30所示,下变频后的第一电磁波信号(第一基带信号)的幅频曲线和相频曲线的中心频率都从fc变为了0。
目标第三节点在根据第一基带信号得到第二基带信号时,反向单元08对第二混频单元05得到的虚部信号Q进行取反,得到虚部信号Q的反向信号-Q。此时,第二基带信号包括:第一基带信号的实部信号I,以及第一基带信号的虚部信号的反向信号-Q。第二基带信号 b o(t)=I-Q=(I+Q)*=b i*(t)。以图30所示的第一基带信号的幅频曲线和相频曲线为例。经过反向单元之后的第一基带信号频谱发生了共轭反转,得到的第二基带信号的频谱如图31所示。
目标第三节点在对第二基带信号进行上变频时,第三混频单元07将第一混频单元04得到的实部信号I和信号源单元01提供的本振电磁波信号混频,得到第一混频信号;第二移相单元03将信号源单元01提供的本振电磁波信号的相位移动π/2,得到第一移相信号;第四混频单元07将上述反向单元08得到的反向信号-Q与第二移相单元03得到的第一移相信号混频,得到第二混频信号;最后,合路单元09组合第三混频单元07得到的第一混频信号,以及第四混频单元08得到的第二混频信号,得到第二电磁波信号。
以图31所示的第二基带信号的幅频曲线和相频曲线为例。第二基带信号经过上变频之后,第二基带信号的信号频谱(包括幅频分量和相频分量)从原本的中心频率0处整体搬移到了fc频率处,如图32所示,上变频后的第二基带信号(第二电磁波信号)的幅频曲线和相频曲线的中心频率都从0变为了fc。
需要说明的是,图30、图31和图32以第一电磁波信号发生了理想情况下的共轭反转为例,可以理解的是,在方式1中,也可能由于目标第三节点中器件本身的因素,第一电磁波信号也可以发生非理想情况下的共轭反转,本申请实施例对此不作限定。
(2)方式2:目标第三节点在对第一电磁波信号进行目标处理时,可以首先对第一电磁波信号进行下变频,得到第一基带信号;之后,目标第三节点对第一基带信号进行共轭上变频,便得到第二电磁波信号。
需要说明的是,当目标第三节点采用方式2对第一电磁波信号进行目标处理时,目标第三节点的处理方式多种多样。
(2.1)在第一种可选地处理方式中,如图33所示,目标第三节点可以包括:信号源单元11、第一移相单元12、第二移相单元13、第一混频单元14、第二混频单元15、第三混频单元16、第四混频单元17和合路单元18;信号源单元11用于提供本振电磁波信号,本振电磁波信号的中心频率与第一电磁波信号的中心频率相同;第一移相单元12、第二移相单元13、第一混频单元14和第三混频单元16均与信号源单元11连接,第一移相单元12还与第二混频单元15连接,第二移相单元13还与第四混频单元17连接,第一混频单元14与第三混频单元16连接,第二混频单元15和第四混频单元17连接,第三混频单元16和第四混频单元17均与合路单元18连接。第一混频单元14、第二混频单元15和第一移相单元12可以组成下变频模块,第三混频单元16、第四混频单元17、第二移相单元13和合路单元18组成共轭上变频模块。
目标第三节点在对第一电磁波信号进行下变频时,第一混频单元14将第一电磁波信号和信号源单元11提供的本振电磁波信号混频,得到第一基带信号的实部信号I;第一移相单元12将信号源单元11提供的本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;第二混频单元15将第一电磁波信号和第一移相信号混频,得到第一基带信号的虚部信号Q。这样一来,便得到了包括实部信号I和虚部信号Q的第一基带信号。第一基带信号b i(t)=I+Q。
目标第三节点在对第一基带信号进行共轭上变频时,第三混频单元16将第一混频单元14得到的实部信号I和信号源单元11提供的本振电磁波信号混频,得到第一混频信号;第二移相单元13将信号源单元11提供的本振电磁波信号的相位移动-π/2,得到第二移相信号。第四混频单元17将第二混频单元15得到的虚部信号Q与第二移相单元13得到的第二移相 信号混频,得到第二混频信号;最后,合路单元18组合第三混频单元16得到的第一混频信号和第四混频单元17得到的第二混频信号,得到第二电磁波信号。
在方式2的第一种可选地处理方式中,由于第二移相单元13将本振电磁波信号的相位移动-π/2,得到第二移相信号,因此,第四混频单元17将虚部信号与第二移相信号混频,相当于方式1中将虚部信号的反向信号与方式1中的第二移相信号混频。所以,方式2的第一种可选地处理方式中第四混频单元17将虚部信号与第二移相信号混频得到的第二混频信号相当于方式1中的第二混频信号,进而方式2的第一种可选地处理方式中合路单元得到的第二电磁波信号相当于方式1中的第二电磁波信号。
(2.2)在方式2的第二种可选地处理方式中,如图34所示,目标第三节点包括:信号源单元21、第一移相单元22、第二移相单元23、第一混频单元24、第二混频单元25、第三混频单元26、第四混频单元27和合路单元28;信号源单元21用于提供本振电磁波信号,本振电磁波信号的中心频率与第一电磁波信号的中心频率相同;第一移相单元22、第二移相单元23、第一混频单元24和第三混频单元26均与信号源单元21连接,第一移相单元22还与第二混频单元25连接,第二移相单元23还与第四混频单元27连接,第一混频单元24与第四混频单元27连接,第二混频单元25和第三混频单元26连接,第三混频单元26和第四混频单元27均与合路单元28连接。第一混频单元24、第二混频单元25和第一移相单元22可以组成下变频模块,第三混频单元26、第四混频单元27、第二移相单元23和合路单元28组成共轭上变频模块。
目标第三节点在对第一电磁波信号进行下变频时,第一混频单元24将第一电磁波信号和信号源单元21提供的本振电磁波信号混频,得到第一基带信号的实部信号I;第一移相单元22将信号源单元21提供的本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;第二混频单元25将第一电磁波信号和第一移相信号混频,得到第一基带信号的虚部信号Q。这样一来,便得到了包括实部信号I和虚部信号Q的第一基带信号。第一基带信号b i(t)=I+Q。
目标第三节点在对第一基带信号进行共轭上变频时,第三混频单元26将虚部信号Q与信号源单元21提供的本振电磁波信号混频,得到第一混频信号;第二移相单元23将信号源单元21提供的本振电磁波信号的相位移动π/2,得到第一移相信号;第四混频单元27将实部信号I和第二移相单元23得到的第一移相信号混频,得到第二混频信号;合路单元28组合第一混频信号和第二混频信号,得到第二电磁波信号。
可以看出,在方式2的第二种可选地处理方式中,通过将上混频单元的输入信号中的实部信号和虚部信号交叉,以实现对第一基带信号的共轭。此时,上混频单元等效于对第一基带信号进行共轭后,额外增加了90°的相位旋转。而90°的相位旋转不影响目标处理的效果。
(3)方式3:目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号进行频谱搬移,得到第三电磁波信号;之后,再对第三电磁波信号进行滤波,得到第二电磁波信号。
需要说明的是,第一电磁波信号S i(t)为带通实信号,第一电磁波信号的频谱具有共轭对称性,也即第一电磁波信号的频谱S i(f)关于频谱所在坐标系的纵坐标轴(经过0频率的点)共轭对称,即S i(f)=S i*(-f)。此时,第一电磁波信号的基带信号b i(t)的频谱B i(f)在S i(f)的正半轴一侧,且以第一电磁波信号的中心频率f 0为中心频率,即B i(f)=S i(f+f 0),-F/2<f<F/2,F为第一电磁波信号的带宽。
根据S i(f)的共轭对称性,在S i(f)负半轴一侧的区间
Figure PCTCN2022114699-appb-000003
上,存在一个与B i(f)共轭对称的频谱,即,
Figure PCTCN2022114699-appb-000004
因此,只需将S i(f)在负半轴-f 0处的频谱
Figure PCTCN2022114699-appb-000005
搬移到正半轴的f 0处,即可等效实现原正半轴信号频谱的共轭对称。
当目标第三节点采用方式3对第一电磁波信号进行目标处理时,如图35所示,目标第三节点可以包括:信号源单元31、倍频单元32、混频单元33和滤波单元34;信号源单元31、倍频单元32、混频单元33和滤波单元34依次连接;信号源单元31用于提供本振电磁波信号,本振电磁波信号的中心频率与第一电磁波信号的中心频率相同。滤波单元34可以为带通滤波单元(Band-Pass Filter,BPF)。
目标第三节点在对第一电磁波信号进行频谱搬移时,倍频单元32获取信号源单元31生成的本振电磁波信号的倍频信号。
该倍频信号的中心频率2f 0为第一电磁波信号的中心频率f 0的两倍;之后,混频单元33将第一电磁波信号与倍频信号混频,得到第三电磁波信号。
第三电磁波信号的频谱包括:2f 0+f 0=3f 0附近的频谱,f 0-2f 0=-f 0附近的频谱,-f 0+2f 0=f 0附近的频谱,以及-f 0-2f 0=-3f 0附近的频谱。
此时,相当于第一电磁波信号的频谱中在-f 0附近的频谱被搬移到了f 0附近和-3f 0附近,原f 0附近的频谱被搬移到了-f 0附近和3f 0附近。
目标第三节点在对第三电磁波信号进行滤波时,滤波单元34对第三电磁波信号进行滤波,得到第二电磁波信号。滤波单元34的中心频率为f 0,因此,滤波单元34在将第三电磁波信号进行滤波后,第三电磁波信号的频谱中3f 0和-3f 0附近的频谱被滤除,且得到的第二电磁波信号的频谱包括f 0和-f 0附近的频谱。并且,该第二电磁波信号的频谱中f 0附近的频谱与第一电磁波信号的频谱中f 0附近的频谱共轭对称。
(4)方式4:目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号依次进行变频、频谱搬移、滤波和变频,得到第二电磁波信号。
当目标第三节点采用方式4对第一电磁波信号进行目标处理时,如图36所示,目标第三节点可以包括:第一信号源单元41、第二信号源单元42、倍频单元43、第一混频单元44、第二混频单元45、第三混频单元46、第一滤波单元47和第二滤波单元48;第一混频单元44、第一滤波单元47、第二混频单元45、第二滤波单元48和第三混频单元46依次连接;第一信号源单元41与第一混频单元44连接,第二信号源单元42通过倍频单元43与第二混频单元45连接;第一信号源单元41用于生成第一本振电磁波信号,第二信号源单元42用于生成第二本振电磁波信号;第一本振电磁波信号的中心频率为f 1,第二本振电磁波信号的中心频率为f 2,第一电磁波信号的中心频率为f 0,f 1+f 2=f 0,f 1<f 0-F/2,F表示第一电磁波信号的带宽。第一滤波单元47和第二滤波单元48均可以为低通滤波单元(low-pass filter,LPF)。
目标第三节点在对第一电磁波信号进行目标处理时,第一混频单元44将第一电磁波信号与第一本振电磁波信号进行混频,得到第一混频信号。经过第一混频单元44的混频,将第一电磁波信号的频谱中,f 0附近的频谱搬移到了f 0-f 1=f 2附近和f 0+f 1附近,-f 0附近的频谱搬移到了-f 0-f 1附近和-f 0+f 1=-f 2附近。之后,第一滤波单元47对第一混频信号进行滤波,得到第一混频信号中的第一子信号,第一子信号的中心频率为f 2。经过第一滤波单元47的滤波后,第一 混频信号中f 0+f 1附近和-f 0-f 1附近的频谱被滤除,此时,滤波得到的第一子信号的频谱包括f 2附近的频谱和-f 2附近的频谱,且f 2附近的频谱与第一电磁波信号的频谱中f 2附近的频谱保持一致,并未出现共轭对称。可选地,为了避免第一子信号的频谱中f 2附近的频谱与-f 2附近的频谱混叠,本申请实施例中可以设置f 1<f 0-F/2,也即f 2<F/2。
目标第三节点在对第一电磁波信号进行目标处理时,倍频单元43可以获取第二本振电磁波信号的倍频信号,倍频信号的中心频率为f 2的两倍(也即2f 2);之后,第二混频单元45将前述第一滤波单元47得到的第一子信号与该倍频信号进行混频,得到第二混频信号。第二混频信号的频谱包括:2f 2+f 2=3f 2附近的频谱,f 2-2f 2=-f 2附近的频谱,-f 2+2f 2=f 2附近的频谱,以及-f 2-2f 2=-3f 2附近的频谱。此时,相当于是第一子信号的频谱中负半轴的部分由-f 2附近被搬移到了正半轴的f 2附近,以及负半轴的-3f 2附近,第一子信号的频谱中正半轴的部分由中心频率f 2附近搬移到了3f 2附近,以及负半轴的-f 2附近。之后,第二滤波单元48对第二混频信号进行滤波,滤除第二混频信号中频谱位于3f 2和-3f 2附近的频谱,得到第二混频信号中的第二子信号,第二子信号的频谱包括f 2附近的频谱,以及-f 2附近的频谱;最后,第三混频单元48将第二子信号与第一本振电磁波信号进行混频,得到第二电磁波信号。
(5)方式5:目标第三节点在对第一电磁波信号进行目标处理时,可以对第一电磁波信号进行参量放大,得到第二电磁波信号。需要说明的是,当目标第三节点采用方式5对第一电磁波信号进行目标处理时,目标第三节点的处理方式多种多样。
(5.1)在第一种可选地处理方式中,如图37所示,目标第三节点可以包括:信号源单元51、第一滤波单元52、第二滤波单元53、第三滤波单元54和非线性单元55;信号源单元51用于提供本振电磁波信号;信号源单元51与第二滤波单元53连接,第一滤波单元52、第二滤波单元53和第三滤波单元54均与非线性单元55连接。非线性单元55可以是变容二极管或约瑟夫森结。
目标第三节点在对第一电磁波信号进行参量放大时,第一滤波单元52对第一电磁波信号进行滤波,得到第一滤波信号,第一滤波信号的中心频率为第一电磁波信号的中心频率f 0;同时,第二滤波单元53对本振电磁波信号进行滤波,得到第二滤波信号,第二滤波信号的中心频率为f p;之后,非线性单元55可以根据第二滤波信号对第一滤波信号进行参量放大,得到参量放大信号。第三滤波单元54可以对参量放大信号进行滤波,得到第二电磁波信号;其中,第二电磁波信号的中心频率为Mf p+Nf 0,M和N均为非零的整数,且N小于零,Mf p+Nf 0=f 0
需要说明的是,信号源单元51产生的本振电磁波信号经过第二滤波单元53滤波得到的第二滤波信号作为泵浦信号,与输入目标第三节点的第一电磁波信号(中心频率为f 0)经过第一滤波单元52滤波后得到的第一滤波信号一起作用在非线性单元55上。非线性单元55在泵浦信号的作用下存在非线性效应,非线性单元55会将泵浦信号中的能量转移到输出的参量放大信号中,实现参量放大。非线性单元55可以在任意Af p+Bf 0(A和B均为非零整数)的频点处产生参量放大信号,此时,第三滤波单元54可以对非线性单元55输出的参量放大信号进行滤波,以得到中心频率为Mf p+Nf 0的第二电磁波信号。并且,为了实现第二电磁波信号的频谱相对第一电磁波信号的频谱共轭对称,N需要选择小于零的整数。比如,M=2,N=-1,此时,第二电磁波信号的中心频率为2f p-f 0,f p可以是一个与f 0相近的频率;当f p是一个与2f 0相似的频率时,也可以选择M=1,N=-1,此时,第二电磁波信号的中心频率为f p-f 0=f 0
并且,由于目标第三节点在对第一电磁波信号进行目标处理的过程中,对第一电磁波信 号进行了参量放大,因此,第二电磁波信号的功率也能够得到提升,从而减少了电磁波信号在线缆上的传输损耗。
(5.2)在第二种可选地处理方式中,如图38所示,目标第三节点包括:信号源单元61、连接单元62、第一滤波单元63、第二滤波单元64和非线性单元65;连接单元62具有第一端621、第二端622和第三端623,第一端621连接第一邻节点,第二端622连接第二邻节点,第三端623与第一滤波单元63的一端连接;连接单元62用于将从第一端621输入的信号输送至第三端623,以及将从第三端623输入的信号输送至第二端622;第一滤波单元63的另一端和第二滤波单元64均与非线性单元65连接;信号源单元61与第二滤波单元64连接,信号源单元61用于提供本振电磁波信号;
目标第三节点在对第一电磁波信号进行参量放大时,来自第一邻节点的第一电磁波信号输入连接单元62的第一端621,连接单元62将该第一电磁波信号输送至第三端623,进而输入第一滤波单元63的一端。第一滤波单元63对从其一端输入的第一电磁波信号进行滤波,得到第一滤波信号,并将第一滤波信号从第一滤波单元63的另一端输出,第一滤波信号的中心频率为第一电磁波信号的中心频率f 0;同时,第二滤波单元64对本振电磁波信号进行滤波,得到第二滤波信号,第二滤波信号的中心频率为f p;之后,非线性单元65根据第二滤波信号对第一滤波信号进行参量放大,得到参量放大信号。该参量放大信号会输送至第一滤波单元63的另一端,第一滤波单元63会对该参量放大信号进行滤波,得到第二电磁波信号,并将第二电磁波信号从第一滤波单元63的一端输出;从第一滤波单元63的一端输出的第二电磁波信号会输入连接单元62的第三端623,并被连接单元62输送至第二端622,进而输送至第二邻节点。其中,第二电磁波信号的中心频率为Mf p+Nf 0,Mf p+Nf 0=f 0,M和N均为非零的整数,且N小于零。
在该第二种可选地处理方式中,对参量放大信号滤波得到第二电磁波信号,以及对第一电磁波信号进行滤波得到第一滤波信号,均在第一滤波单元上实现,并且,通过信号走向的不同,利用连接单元(如环形器等器件)将第二电磁波信号和第一滤波信号分离开。
可选地,在本申请实施例中,目标第三节点在对第一电磁波信号进行目标处理之前,还可以对第一电磁波信号进行低噪声放大,以提升第一电磁波信号的质量。示例地,请参考图29、图33至图36中的任一幅图,目标第三节点还可以包括低噪声放大器(low noise amplifier,LNA),LNA用于对第一电磁波信号进行低噪声放大。示例地,在图29中,LNA与下变频模块中的第一混频单元04和第二混频单元05连接,LNA在将第一电磁波信号进行低噪声放大之后,将低噪声放大后的第一电磁波信号输入下变频模块中,以便于下变频模块对该低噪声放大后的第一电磁波信号进行下变频。
可选地,在本申请实施例中,目标第三节点在对第一电磁波信号进行目标处理,得到第二电磁波信号之后,以及在向第二邻节点发送第二电磁波信号之前,还可以对第二电磁波信号进行功率放大,以提升第二电磁波信号的功率,从而减少了电磁波信号在线缆上的传输损耗。示例地,请参考图29、图33至图36中的任一幅图,目标第三节点还可以包括功率放大器(PowerAmplifier,PA),PA用于对第二电磁波信号进行功率放大。
另外,目标第三节点中用于执行上述目标处理的部分可以为频谱处理单元。在目标第三节点包括上述PA和LNA时,如图39所示,LNA、频谱处理单元和PA可以依次连接。
根据本申请实施例提供的目标第三节点的功能可知,目标第三节点无需进行如图9所示 的第四节点所执行的复杂的信号处理,因此,目标第三节点的功耗、延迟和实现复杂度都很低,适合在第一节点和第二节点之间进行高速通信的情况下大量部署,可极大扩展通信系统中第一节点和第二节点的传输长度。
目标第三节点中用于执行上述目标处理的模块可以称为目标处理模块,此时,上述方式1至方式5中用于实现目标处理的各个单元均属于该目标处理模块。目标第三节点还可以包括其他模块,如用于接收第一邻节点发送的第一电磁波信号的接收模块,以及用于向第二邻节点发送第二电磁波信号的发送模块,本申请实施例在此不做赘述。
进一步地,本申请实施例提供的通信系统中,第一节点和第二节点之间的线缆上可以设置有至少一个第三节点(一个第三节点或多个第三节点),每个第三节点均可以具有上述目标第三节点的功能。线缆被第一节点、至少一个第三节点和第二节点分割为多个线缆段。位于第一节点、至少一个第三节点和第二节点中,第2n+1个节点与第2n+2个节点之间的线缆段称为第一线缆段,n≥0;位于第一节点、至少一个第三节点和第二节点中,第2n+2个节点与第2n+3个节点之间的线缆段称为第二线缆段。比如,如图40所示,假设线缆上共设置有三个第三节点,则第一节点与第一个第三节点之间的线缆段为第一线缆段,第一个第三节点与第二个第三节点之间的线缆段为第二线缆段,第二个第三节点与第三个第三节点之间的线缆段为第一线缆段,第三个第三节点与第四个第三节点之间的线缆段为第二线缆段。
线缆中各个线缆段的长度满足一定的约束条件。
比如,线缆中各个线缆段的长度满足第一约束条件:线缆中第一线缆段的长度之和与第二线缆段的长度之和的差值的绝对值小于第一长度。
该第一长度为:频选衰落传输长度和色散传输长度的最小值。其中,在线缆中传输频选衰落传输长度后,第一节点发出的电磁波信号中各个频率的衰落幅度中的最大衰落幅度为第二节点能够处理的最大衰落幅度。该频选衰落传输长度可以是该最大衰落幅度与线缆中的单位衰落幅度的商,其中,单位衰落幅度为在线缆中单位长度的线缆段中传输时,第一节点发出的电磁波信号中各个频率的衰落幅度中的最大衰落幅度。在线缆中传输色散传输长度后,第一节点发出的电磁波信号的色散为第二节点能够处理的最大色散。色散传输长度可以是该最大色散和线缆中单位长度的线缆段的色散量的商。
当第一长度为频选衰落传输长度和色散传输长度的最小值时,线缆中第一线缆段的长度之和与第二线缆段的长度之和的差值的绝对值小于该最小值,能够保证第二节点接收到的电磁波信号的频率选择性衰落和群时延色散均较小。
又比如,线缆中各个线缆段的长度满足第二约束条件:线缆中任意两个相邻的节点之间的线缆段的长度小于或等于第二长度,该第二长度为第一节点发出的电磁波信号能够传输的最大长度。
第一节点发出的电磁波信号能够传输的最大长度也即:在第一节点和第二节点之间不存在任一节点时,第一节点发出的电磁波信号能够被第二节点有效接收到的情况下,该第一节点发出的电磁波信号传输的最大长度。其中,该最大长度由电磁波信号在线缆中传输的传输损耗,第一节点发射电磁波信号的功率,以及第二节点接收电磁波信号的灵敏度等设备参数确定。当上述任意两个相邻的节点之间的线缆段的长度小于或等于第一节点发出的电磁波信号能够传输的最大长度时,能够保证电磁波信号能够有效在线缆段之间传输。
例如,如图41所示,假设第一节点和第二节点之间的传输长度(也即线缆的长度)是 30米(m),第二长度为8m。第二节点采用自混频解调架构,频选衰落传输长度为3m,色散传输长度为2m,第一长度为2m。因此,线缆总长度为30m,线缆中第一线缆段的长度为8m,第二线缆段的长度为6m。第一线缆段的长度和第二线缆段的长度均小于或等于第二长度8m。并且,第一线缆段的长度之和(16m)与第二线缆段的长度之和(14m)的差值的绝对值(2m)小于或等于第一长度(2m)。可见,第一约束条件和第二约束条件都满足。
另外,在上述第一约束条件和第二约束条件的基础上,线缆上设置的第三节点的数量应尽量的少。但是,在第一节点和第二节点之间的传输长度为某些传输长度时,简单的第三节点的布置方式(如将线缆段的长度尽量平均分配)会使得第一线缆段的长度之和与第二线缆段的长度之和的差值的绝对值较大,导致第一约束条件不满足。此时可通过增加第三节点的方式以使得第一约束条件满足。
例如,如图42所示,假设第一节点和第二节点之间的传输长度是23m,第二长度为8m。第二节点采用自混频解调架构,频选衰落传输长度为3m,色散传输长度为2m,第一长度为2m。因此,线缆总长度为23m。如果线缆中第一线缆段的长度为8m,第二线缆段的长度为7m。第一线缆段的长度和第二线缆段的长度均小于或等于第二长度8m,第二约束条件满足。但是,第一线缆段的长度之和(15m)与第二线缆段的长度之和(8m)的差值的绝对值(7m)无法满足小于或等于第一长度(2m)的要求,第一约束条件不满足。并且,由于每个线缆段的长度均接近第二长度8m,因此第三节点的位置难以进行大范围的调整。
此时,可以在线缆中增加一个第三节点,然后将线缆段的长度尽量平均分配即可,如图43所示,线缆总长度为23m。线缆中第一线缆段的长度为6m,一个第二线缆段的长度为7m,另一个第二线缆段的长度为5m。此时,第一线缆段的长度和第二线缆段的长度均小于或等于第二长度8m。并且,第一线缆段的长度之和(12m)与第二线缆段的长度之和(11m)的差值的绝对值(1m)小于或等于第一长度(2m)。可见,第一约束条件和第二约束条件都满足。
进一步地,线缆上还可以设置有至少一个第四节点;第四节点用于对线缆上传输的电磁波信号进行功率放大。当第一节点和第二节点之间的传输长度较长,第三节点数量较多时,本申请实施例还可以在一个或多个线缆段上设置第四节点,以使得第四节点对线缆上传输的电磁波信号进行功率放大,保证第二节点接收到的电磁波信号的功率较高,减少电磁波信号的传输损耗。
例如,如图44所示,假设第一节点和第二节点之间的传输长度是36m,第二长度为8m。第二节点采用相干解调架构,频选衰落传输长度为5m,色散传输长度为4m,第一长度为4m。因此,线缆总长度为36m。线缆上共设置有两个第三节点,第一节点和第一个第三节点之间的线缆段为第一个第一线缆段,第二个第三节点和第二节点之间的线缆段为第二个第一线缆段,这两个第三节点之间的线缆段为第二线缆段。第一个第一线缆段上可以设置有一个第四节点,第二线缆段上可以设置有一个第四节点。第一个线缆段包括:第三线缆段和第四线缆段,第二线缆段包括:第五线缆段和第六线缆段。
第一个第一线缆段的长度为16m,第二个第一线缆段的长度为4m,第二线缆段的长度为16m。此时,第一线缆段的长度之和(20m)与第二线缆段的长度之和(16m)的差值的绝对值(4m)小于或等于第一长度(4m),满足第一约束条件。并且,线缆中每个线缆段的长度均小于或等于第二长度(8m),满足第二约束条件。
本申请实施例以第四节点具有图8所示的第四节点的功能为例。可选地,该第四节点也 可以具有图9所示的第四节点的功能;或者,一部分第四节点具有图8所示的第四节点的功能,另一部分第四节点具有图9所示的第四节点的功能,本申请实施例对此不作限定。
本申请实施例还提供了一种第二节点,该第二节点可以是上述通信系统中的第二节点。该第二节点用于接收相邻的第三节点发送的电磁波信号,并根据该电磁波信号,确定第一节点发出的电磁波信号携带的数据。第二节点接收到的电磁波信号可以是该相邻的第三节点经过目标处理得到的第二电磁波信号。
进一步地,在本申请实施例中,目标第三节点在对接收到的第一电磁波信号进行目标处理的过程中,会对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理。因此,在线缆上设置有偶数个第三节点,且每个第三节点均具有目标第三节点的功能时,偶数个第三节点可以分为在第一节点到第二节点的方向上依次排布的多组第三节点,每组第三节点包括两个第三节点。电磁波信号在经过这两个第三节点的目标处理后,电磁波信号的频谱不会出现共轭反转的情况,因此,第二节点接收到的电磁波信号不会相对于第一节点发出的电磁波信号的频谱共轭反转。
但是,在线缆上设置有奇数个第三节点,且每个第三节点均具有目标第三节点的功能时,奇数个第三节点可以分为在第一节点到第二节点的方向上依次排布的多组第三节点,以及一个第三节点,每组第三节点包括两个第三节点。电磁波信号在经过这两个第三节点的目标处理后,电磁波信号的频谱不会出现共轭反转的情况。但是,电磁波信号在经过最后这一个第三节点的处理后,电磁波信号的频谱会出现共轭反转的情况,因此,第二节点接收到的电磁波信号会相对于第一节点发出的电磁波信号的频谱共轭反转。所以,当线缆上设置有奇数个第三节点时,第二节点需要对接收到的电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理。
示例地,当线缆上设置有奇数个第三节点时,第二节点在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据时,可以先对接收到的电磁波信号进行处理,得到第一节点发出的电磁波信号,再获取第一节点发出的电磁波信号的基带信号,以及根据基带信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。其中,第二节点对接收到的电磁波信号进行处理得到第一节点发出的电磁波信号的过程,与目标第三节点对第一电磁波信号进行处理得到第二电磁波信号的过程相同,本申请实施例在此不做赘述。
又示例地,当线缆上设置有奇数个第三节点时,第二节点在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据时,第二节点也可以先获取接收到电磁波信号的第二基带信号,该第二基带信号包括实部信号和虚部信号;之后,第二节点可以根据第二基带信号得到第一基带信号,该第一基带信号与第二基带信号共轭;最后,第二节点可以根据第一基带信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。
当线缆上设置有偶数个第三节点时,第二节点可以直接获取接收到的电磁波信号的基带信号,并根据该基带信号中的实部信号和虚部信号进行星座映射,得到第一节点发出的电磁波信号携带的数据。
另外,如果第二电磁波信号与共轭反转信号不同,那么第二节点可以在根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据之前,还可以对该不同进行补偿,以减小该不同。
比如,如果第二电磁波信号的幅频曲线相对共轭反转信号的幅频曲线沿幅频坐标系的横坐标轴向左移动x个单位,且线缆上设置有y个第三节点,那么该不同的补偿使得第二节点接收到的电磁波信号的幅频曲线沿该幅频坐标系的横坐标轴向右移动x*y个单位,x和y均大于或等于1。
又比如,如果第二电磁波信号的相频曲线相对共轭反转信号的相频曲线沿相频坐标系的横坐标轴向左移动x个单位,且线缆上设置有y个第三节点,那么该不同的补偿使得第二节点接收到的电磁波信号的相频曲线沿相频坐标系的横坐标轴向右移动x*y个单位。
又比如,如果第二电磁波信号的相频曲线相对共轭反转信号的相频曲线沿相频坐标系的纵坐标轴向上移动x个单位,且线缆上设置有y个第三节点,那么该不同的补偿使得第二节点接收到的电磁波信号的相频曲线沿相频坐标系的纵坐标轴向下移动x*y个单位。
又比如,如果第二电磁波信号的相频曲线的左端点相对共轭反转信号的相频曲线的左端点沿相频坐标系的纵坐标轴方向向上移动x个单位,且第二电磁波信号的相频曲线的右端点相对共轭反转信号的相频曲线的右端点沿相频坐标系的纵坐标轴方向向下移动z个单位,且线缆上设置有y个第三节点。那么该不同的补偿使得第二节点接收到的电磁波信号的相频曲线的左端点沿纵坐标轴方向向下移动x*y个单位,以及右端点沿纵坐标轴方向向上移动z*y个单位。
第二节点中用于根据接收到电磁波信号,确定第一节点发出的电磁波信号携带的数据的模块可以称为确定模块。第二节点还可以包括其他模块,如用于接收相邻的第三节点发送的电磁波信号的接收模块。第二节点还可以包括:用于对上述不同进行补偿的补偿模块。
以下将结合本申请实施例提供的通信方法,对本申请实施例提供的通信系统的功能进行进一步说明。
示例地,图45为本申请实施例提供的一种通信方法的流程图,该方法可以用于本申请实施例提供的通信系统。如图45所示,该通信方法包括:
S101、第一邻节点向目标第三节点发送第一电磁波信号。
第一邻节点可以是第一节点。第一节点可以根据需要发送给第二节点的数据,调制第一电磁波信号,并将第一电磁波信号输送至第一节点和第二节点之间的线缆。这样一来,线缆上的目标第三节点便能够接收到第一电磁波信号,且第一电磁波信号携带有第一节点需要发送给第二节点的数据。
第一邻节点也可以是第一节点和目标第三节点之间的其他第三节点,此时,第一邻节点发出的第一电磁波信号可以是第一邻节点对接收到的电磁波信号进行目标处理得到的第二电磁波信号。
S102、目标第三节点对第一电磁波信号进行低噪声放大。
目标第三节点对第一电磁波信号进行低噪声放大的解释,可以参考前述实施例中的相关解释,本申请实施例在此不做赘述。
S103、目标第三节点对第一电磁波信号进行目标处理,得到第二电磁波信号;其中,目标处理包括用于使电磁波信号的频谱发生共轭反转的处理。
目标第三节点对第一电磁波信号进行的目标处理的解释,请参考前述实施例中的相关解释,本申请实施例在此不做赘述。
S104、目标第三节点对第二电磁波信号进行功率放大。
目标第三节点对第二电磁波信号进行功率放大的解释,可以参考前述实施例中的相关解释,本申请实施例在此不做赘述。
S105、目标第三节点向第二邻节点发送第二电磁波信号。
目标第三节点可以将第二电磁波信号输送至线缆上,以向第二邻节点发送该第二电磁波信号。
当第二邻节点是第二节点时,第二节点还可以根据接收到的电磁波信号,确定第一节点发出的电磁波信号携带的数据。
第二节点根据接收到的电磁波信号确定第一节点发出的电磁波信号携带的数据的过程,可以参考前述实施例中的相关过程,本申请实施例在此不做赘述。
可选地,目标第三节点在接收到第一电磁波信号后,也可以无需对第一电磁波信号进行低噪声放大。目标第三节点在发送第二电磁波信号之前,也可以无需对第二电磁波信号进行功率放大。
可选地,第一节点和第二节点之间的线缆上还可以设置有至少一个第四节点;第四节点用于对线缆上传输的电磁波信号进行功率放大。
综上所述,本申请实施例提供的通信方法中,电磁波信号在从第一邻节点传输至目标第三节点的过程中会发生第一失真,电磁波信号在从目标第三节点传输至第二邻节点的过程中又会发生与第三失真,且第三失真与第一失真相似。目标第二节点对接收到的第一电磁波信号进行的目标处理包括用于使电磁波信号的频谱发生共轭反转的处理,所以,目标第三节点对第一电磁波进行目标处理得到的第二电磁波信号会相对第一邻节点发出的信号发生与第一失真相反的第二失真。在电磁波信号从目标第三节点传输至第二邻节点的过程中,电磁波信号发生第三失真。在第二失真和第三失真的作用下,能够降低了第二邻节点接收到的电磁波信号相对第一邻节点发出的电磁波信号的失真,保证第一邻节点和第二邻节点之间的通信质量,进而保证了第一节点和第二节点之间的通信质量。
另外,目标第三节点对第一电磁波信号进行用于使电磁波信号的频谱发生共轭反转的处理时,目标第三节点无需还原第一节点发出的原始的电磁波信号,所以,目标第三节点的复杂度较低。
本申请实施例提供的方法实施例操作的先后顺序能够进行适当调整,操作也能够根据情况进行相应增减,比如,上述S102和S104中的至少一个可以不执行。任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
在本申请中,术语“第一”和“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”指一个或多个,“多个”指两个或两个以上,除非另有明确的限定。
本申请实施例提供的方法实施例和装置实施例等不同类型的实施例均可以相互参考,本申请实施例对此不做限定。
在本申请提供的相应实施例中,应该理解到,所揭露的系统和装置等可以通过其它的构成方式实现。例如,以上所描述的装置实施例仅仅是示意性的。作为分离部件说明的部分可 以是或者也可以不是物理上分开的。可以根据实际的需要选择其中的部分或者全部来实现本实施例方案的目的。
以上所述,仅为本申请的可选实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (43)

  1. 一种通信方法,其特征在于,所述方法由第一节点和第二节点之间的目标第三节点执行;所述第一节点和所述第二节点通过线缆连接,所述线缆上设置有至少一个第三节点,所述目标第三节点为所述至少一个第三节点中的一个第三节点;所述方法包括:
    接收第一邻节点发送的第一电磁波信号,在所述第一节点、所述第二节点和所述至少一个第三节点中,所述目标第三节点与所述第一邻节点和第二邻节点相邻;
    对所述第一电磁波信号进行目标处理,得到第二电磁波信号,所述目标处理包括:用于使电磁波信号的频谱发生共轭反转的处理;
    向所述第二邻节点发送所述第二电磁波信号。
  2. 根据权利要求1所述的方法,其特征在于,频谱发生所述共轭反转前后的所述第一电磁波信号的幅频曲线关于目标直线轴对称;频谱发生所述共轭反转前后的所述第一电磁波信号的相频曲线关于目标点中心对称;
    其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二电磁波信号与共轭反转信号不同;
    所述共轭反转信号的幅频曲线与所述第一电磁波信号的幅频曲线关于目标直线轴对称;
    所述共轭反转信号的相频曲线与所述第一电磁波信号的相频曲线关于目标点中心对称;
    其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点。
  4. 根据权利要求3所述的方法,其特征在于,所述共轭反转信号的幅频曲线中,第一幅度之和与第二幅度之和具有目标大小关系;其中,所述第一幅度为第一频率对应的幅度,所述第二幅度为第二频率对应的幅度;所述第一频率小于所述共轭反转信号的中心频率,所述第二频率大于所述共轭反转信号的中心频率;
    所述第二电磁波信号的幅频曲线中,第三幅度之和与第四幅度之和具有所述目标大小关系;其中,所述第三幅度为第三频率对应的幅度,所述第四幅度为第四频率对应的幅度;所述第三频率小于所述第二电磁波信号的中心频率,所述第四频率大于所述第二电磁波信号的中心频率。
  5. 根据权利要求3或4所述的方法,其特征在于,附加相频曲线中任一频率对应的相位的波动率小于40%;
    所述附加相频曲线为所述第二电磁波信号的相频曲线减去参考相频曲线所得到的曲线;所述参考相频曲线的中心频率与所述第二电磁波信号的中心频率相同;当所述共轭反转信号 的中心频率与所述第二电磁波信号的中心频率相同时,所述参考相频曲线为所述共轭反转信号的相频曲线;当所述共轭反转信号的中心频率与所述第二电磁波信号的中心频率不同时,所述参考相频曲线为所述共轭反转信号的相频曲线沿所述相频曲线的横坐标轴移动后的相频曲线;
    所述波动率为波动相位与所述任一频率对应的相位之比,所述波动相位为归一化后的所述附加相频曲线中所述任一频率对应的相位;
    所述归一化用于将所述附加相频曲线进行旋转和移动,使所述附加相频曲线的两个端点和目标交点均移动至所述附加相频曲线的横坐标轴上,且所述目标交点对应所述第一电磁波信号的中心频率;所述目标交点为所述两个端点的连线与参考直线的交点,所述参考直线垂直于所述横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率。
  6. 根据权利要求3至5任一所述的方法,其特征在于,所述第二电磁波信号与所述共轭反转信号的中心频率、幅频曲线和相频曲线中的至少一种信息不同。
  7. 根据权利要求3至6任一所述的方法,其特征在于,所述目标处理还包括:与所述不同相关的辅助处理。
  8. 根据权利要求1至6任一所述的方法,其特征在于,所述对所述第一电磁波信号进行目标处理,得到第二电磁波信号,包括:
    对所述第一电磁波信号进行下变频,得到第一基带信号;
    根据所述第一基带信号得到第二基带信号,所述第二基带信号与所述第一基带信号共轭;
    对所述第二基带信号进行上变频,得到所述第二电磁波信号。
  9. 根据权利要求8所述的方法,其特征在于,所述目标第三节点包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元、反向单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元通过所述反向单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
    对所述第一电磁波信号进行下变频,得到第一基带信号,包括:
    所述第一混频单元将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;
    所述第一移相单元将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;
    所述第二混频单元将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述第一基带信号的虚部信号;
    根据所述第一基带信号得到第二基带信号,包括:
    所述反向单元对所述虚部信号进行取反,得到所述虚部信号的反向信号,所述第二基带信号包括:所述实部信号和所述反向信号;
    对所述第二基带信号进行上变频,得到所述第二电磁波信号,包括:
    所述第三混频单元将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;
    所述第二移相单元将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;
    所述第四混频单元将所述反向信号与所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;
    所述合路单元组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
  10. 根据权利要求1至6任一所述的方法,其特征在于,所述对所述第一电磁波信号进行目标处理,得到第二电磁波信号,包括:
    对所述第一电磁波信号进行下变频,得到第一基带信号;
    对所述第一基带信号进行共轭上变频,得到所述第二电磁波信号。
  11. 根据权利要求10所述的方法,其特征在于,所述目标第三节点包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
    对所述第一电磁波信号进行下变频,得到第一基带信号,包括:
    所述第一混频单元将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;
    所述第一移相单元将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;
    所述第二混频单元将所述第一电磁波信号和所述第一移相信号混频,得到所述第一基带信号的虚部信号;
    对所述第一基带信号进行共轭上变频,得到所述第二电磁波信号,包括:
    所述第三混频单元将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;
    所述第二移相单元将所述本振电磁波信号的相位移动-π/2,得到第二移相信号;
    所述第四混频单元将所述虚部信号与所述第二移相信号混频,得到第二混频信号;
    所述合路单元组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
  12. 根据权利要求10所述的方法,其特征在于,所述目标第三节点包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一 混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第四混频单元连接,所述第二混频单元和所述第三混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
    对所述第一电磁波信号进行下变频,得到第一基带信号,包括:
    所述第一混频单元将所述第一电磁波信号和所述本振电磁波信号混频,得到所述实部信号;
    所述第一移相单元将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;
    所述第二混频单元将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述虚部信号;
    对所述第一基带信号进行共轭上变频,得到所述第二电磁波信号,包括:
    所述第三混频单元将所述虚部信号与所述本振电磁波信号混频,得到第一混频信号;
    所述第二移相单元将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;
    所述第四混频单元将所述实部信号和所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;
    所述合路单元组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
  13. 根据权利要求1至6任一所述的方法,其特征在于,所述对所述第一电磁波信号进行目标处理,得到第二电磁波信号,包括:
    对所述第一电磁波信号进行频谱搬移,得到第三电磁波信号;
    对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
  14. 根据权利要求13所述的方法,其特征在于,所述目标第三节点包括:信号源单元、倍频单元、混频单元和滤波单元;所述信号源单元、所述倍频单元、所述混频单元和所述滤波单元依次连接;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;
    所述对所述第一电磁波信号进行频谱搬移,得到第三电磁波信号,包括:
    所述倍频单元获取所述本振电磁波信号的倍频信号,所述倍频信号的中心频率为所述第一电磁波信号的中心频率的两倍;
    所述混频单元将所述第一电磁波信号与所述倍频信号混频,得到所述第三电磁波信号;
    对所述第三电磁波信号进行滤波,得到所述第二电磁波信号,包括:
    所述滤波单元对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
  15. 根据权利要求1至6任一所述的方法,其特征在于,所述目标第三节点包括:第一信号源单元、第二信号源单元、倍频单元、第一混频单元、第二混频单元、第三混频单元、第一滤波单元和第二滤波单元;所述第一混频单元、所述第一滤波单元、所述第二混频单元、所述第二滤波单元和所述第三混频单元依次连接;所述第一信号源单元与所述第一混频单元连接,所述第二信号源单元通过所述倍频单元与所述第二混频单元连接;所述第一信号源单 元用于生成第一本振电磁波信号,所述第二信号源单元用于生成第二本振电磁波信号;所述第一本振电磁波信号的中心频率为f 1,所述第二本振电磁波信号的中心频率为f 2,所述第一电磁波信号的中心频率为f 0,f 1+f 2=f 0,f 1<f 0-F/2,F表示所述第一电磁波信号的带宽;
    所述对所述第一电磁波信号进行目标处理,得到第二电磁波信号,包括:
    所述第一混频单元将所述第一电磁波信号与所述第一本振电磁波信号进行混频,得到第一混频信号;
    所述第一滤波单元对所述第一混频信号进行滤波,得到所述第一混频信号中的第一子信号,所述第一子信号的中心频率为f 2
    所述倍频单元获取所述第二本振电磁波信号的倍频信号,所述倍频信号的中心频率为f 2的两倍;
    所述第二混频单元将所述第一子信号与所述倍频信号进行混频,得到第二混频信号;
    所述第二滤波单元对所述第二混频信号进行滤波,得到所述第二混频信号中的第二子信号,所述第二子信号的中心频率为f 2
    所述第三混频单元将所述第二子信号与所述第一本振电磁波信号进行混频,得到所述第二电磁波信号。
  16. 根据权利要求1至6任一所述的方法,其特征在于,所述对所述第一电磁波信号进行目标处理,得到第二电磁波信号,包括:
    对所述第一电磁波信号进行参量放大,得到所述第二电磁波信号。
  17. 根据权利要求16所述的方法,其特征在于,所述目标第三节点包括:信号源单元、第一滤波单元、第二滤波单元、第三滤波单元和非线性单元;所述信号源单元用于提供本振电磁波信号;所述信号源单元与所述第二滤波单元连接,所述第一滤波单元、所述第二滤波单元和所述第三滤波单元均与所述非线性单元连接;
    所述对所述第一电磁波信号进行参量放大,得到所述第二电磁波信号,包括:
    所述第一滤波单元对所述第一电磁波信号进行滤波,得到第一滤波信号,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;
    所述第二滤波单元对所述本振电磁波信号进行滤波,得到第二滤波信号;
    所述非线性单元根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;
    所述第三滤波单元对所述参量放大信号进行滤波,得到所述第二电磁波信号;
    其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
  18. 根据权利要求16所述的方法,其特征在于,所述目标第三节点包括:信号源单元、连接单元、第一滤波单元、第二滤波单元和非线性单元;所述连接单元具有第一端、第二端和第三端,所述第一端连接所述第一邻节点,所述第二端连接所述第二邻节点,所述第三端与所述第一滤波单元的一端连接;所述连接单元用于将从所述第一端输入的信号输送至所述第三端,以及将从所述第三端输入的信号输送至所述第二端;所述第一滤波单元的另一端和 所述第二滤波单元均与所述非线性单元连接;所述信号源单元与所述第二滤波单元连接,所述信号源单元用于提供本振电磁波信号;
    所述对所述第一电磁波信号进行参量放大,得到所述第二电磁波信号,包括:
    所述第一滤波单元对从所述第一滤波单元的一端输入的所述第一电磁波信号进行滤波,得到第一滤波信号,并将所述第一滤波信号从所述第一滤波单元的另一端输出,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;
    所述第二滤波单元对所述本振电磁波信号进行滤波,得到第二滤波信号;
    所述非线性单元根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;
    所述第一滤波单元对来自所述非线性单元的所述参量放大信号进行滤波,得到所述第二电磁波信号,并将所述第二电磁波信号从所述第一滤波单元的一端输出;
    其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,Mf p+Nf 0=f 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
  19. 一种通信装置,其特征在于,所述通信装置为第一节点和第二节点之间的目标第三节点;所述第一节点和所述第二节点通过线缆连接,所述线缆上设置有至少一个第三节点,所述目标第三节点为所述至少一个第三节点中的一个第三节点;所述通信装置包括:
    接收模块,用于接收第一邻节点发送的第一电磁波信号,在所述第一节点、所述第二节点和所述至少一个第三节点中,所述目标第三节点与所述第一邻节点和第二邻节点相邻;
    目标处理模块,用于对所述第一电磁波信号进行目标处理,得到第二电磁波信号,所述目标处理包括:用于使电磁波信号的频谱发生共轭反转的处理;
    发送模块,用于向所述第二邻节点发送所述第二电磁波信号。
  20. 根据权利要求19所述的通信装置,其特征在于,频谱发生所述共轭反转前后的所述第一电磁波信号的幅频曲线关于目标直线轴对称;频谱发生所述共轭反转前后的所述第一电磁波信号的相频曲线关于目标点中心对称;
    其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点。
  21. 根据权利要求19或20所述的通信装置,其特征在于,所述第二电磁波信号与共轭反转信号不同;
    所述共轭反转信号的幅频曲线与所述第一电磁波信号的幅频曲线关于目标直线轴对称;
    所述共轭反转信号的相频曲线与所述第一电磁波信号的相频曲线关于目标点中心对称;
    其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点。
  22. 根据权利要求21所述的通信装置,其特征在于,所述共轭反转信号的幅频曲线中,第一幅度之和与第二幅度之和具有目标大小关系;其中,所述第一幅度为第一频率对应的幅度,所述第二幅度为第二频率对应的幅度;所述第一频率小于所述共轭反转信号的中心频率,所述第二频率大于所述共轭反转信号的中心频率;
    所述第二电磁波信号的幅频曲线中,第三幅度之和与第四幅度之和具有所述目标大小关系;其中,所述第三幅度为第三频率对应的幅度,所述第四幅度为第四频率对应的幅度;所述第三频率小于所述第二电磁波信号的中心频率,所述第四频率大于所述第二电磁波信号的中心频率。
  23. 根据权利要求21或22所述的通信装置,其特征在于,附加相频曲线中任一频率对应的相位的波动率小于40%;
    所述附加相频曲线为所述第二电磁波信号的相频曲线减去参考相频曲线所得到的曲线;所述参考相频曲线的中心频率与所述第二电磁波信号的中心频率相同;当所述共轭反转信号的中心频率与所述第二电磁波信号的中心频率相同时,所述参考相频曲线为所述共轭反转信号的相频曲线;当所述共轭反转信号的中心频率与所述第二电磁波信号的中心频率不同时,所述参考相频曲线为所述共轭反转信号的相频曲线沿所述相频曲线的横坐标轴移动后的相频曲线;
    所述波动率为波动相位与所述任一频率对应的相位之比,所述波动相位为归一化后的所述附加相频曲线中所述任一频率对应的相位;
    所述归一化用于将所述附加相频曲线进行旋转和移动,使所述附加相频曲线的两个端点和目标交点均移动至所述附加相频曲线的横坐标轴上,且所述目标交点对应所述第一电磁波信号的中心频率;所述目标交点为所述两个端点的连线与参考直线的交点,所述参考直线垂直于所述横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率。
  24. 根据权利要求21至23任一所述的通信装置,其特征在于,所述第二电磁波信号与所述共轭反转信号的中心频率、幅频曲线和相频曲线中的至少一种信息不同。
  25. 根据权利要求21至24任一所述的通信装置,其特征在于,所述目标处理还包括:与所述不同相关的辅助处理。
  26. 根据权利要求19至24任一所述的通信装置,其特征在于,所述目标处理模块用于:
    对所述第一电磁波信号进行下变频,得到第一基带信号;
    根据所述第一基带信号得到第二基带信号,所述第二基带信号与所述第一基带信号共轭;
    对所述第二基带信号进行上变频,得到所述第二电磁波信号。
  27. 根据权利要求26所述的通信装置,其特征在于,所述目标处理模块包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元、反向单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相 单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元通过所述反向单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
    所述第一混频单元用于将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;
    所述第一移相单元用于将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;
    所述第二混频单元用于将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述第一基带信号的虚部信号;
    所述反向单元用于对所述虚部信号进行取反,得到所述虚部信号的反向信号,所述第二基带信号包括:所述实部信号和所述反向信号;
    所述第三混频单元用于将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;
    所述第二移相单元用于将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;
    所述第四混频单元用于将所述反向信号与所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;
    所述合路单元用于组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
  28. 根据权利要求19至24任一所述的通信装置,其特征在于,所述目标处理模块用于:
    对所述第一电磁波信号进行下变频,得到第一基带信号;
    对所述第一基带信号进行共轭上变频,得到所述第二电磁波信号。
  29. 根据权利要求28所述的通信装置,其特征在于,所述目标处理模块包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第三混频单元连接,所述第二混频单元和所述第四混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
    所述第一混频单元用于将所述第一电磁波信号和所述本振电磁波信号混频,得到所述第一基带信号的实部信号;
    所述第一移相单元用于将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;
    所述第二混频单元用于将所述第一电磁波信号和所述第一移相信号混频,得到所述第一基带信号的虚部信号;
    所述第三混频单元用于将所述实部信号和所述本振电磁波信号混频,得到第一混频信号;
    所述第二移相单元用于将所述本振电磁波信号的相位移动-π/2,得到第二移相信号;
    所述第四混频单元用于将所述虚部信号与所述第二移相信号混频,得到第二混频信号;
    所述合路单元用于组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
  30. 根据权利要求28所述的通信装置,其特征在于,所述目标处理模块包括:信号源单元、第一移相单元、第二移相单元、第一混频单元、第二混频单元、第三混频单元、第四混频单元和合路单元;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;所述第一移相单元、所述第二移相单元、所述第一混频单元和所述第三混频单元均与所述信号源单元连接,所述第一移相单元还与所述第二混频单元连接,所述第二移相单元还与所述第四混频单元连接,所述第一混频单元与所述第四混频单元连接,所述第二混频单元和所述第三混频单元连接,所述第三混频单元和所述第四混频单元均与所述合路单元连接;
    所述第一混频单元用于将所述第一电磁波信号和所述本振电磁波信号混频,得到所述实部信号;
    所述第一移相单元用于将所述本振电磁波信号的相位移动π/2,得到第一移相信号,π表示圆周率;
    所述第二混频单元用于将所述第一电磁波信号和所述第一移相单元得到的所述第一移相信号混频,得到所述虚部信号;
    所述第三混频单元用于将所述虚部信号与所述本振电磁波信号混频,得到第一混频信号;
    所述第二移相单元用于将所述本振电磁波信号的相位移动π/2,得到所述第一移相信号;
    所述第四混频单元用于将所述实部信号和所述第二移相单元得到的所述第一移相信号混频,得到第二混频信号;
    所述合路单元用于组合所述第一混频信号和所述第二混频信号,得到所述第二电磁波信号。
  31. 根据权利要求19至24任一所述的通信装置,其特征在于,所述目标处理模块用于:
    对所述第一电磁波信号进行频谱搬移,得到第三电磁波信号;
    对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
  32. 根据权利要求31所述的通信装置,其特征在于,所述目标处理模块包括:信号源单元、倍频单元、混频单元和滤波单元;所述信号源单元、所述倍频单元、所述混频单元和所述滤波单元依次连接;所述信号源单元用于提供本振电磁波信号,所述本振电磁波信号的中心频率与所述第一电磁波信号的中心频率相同;
    所述倍频单元用于获取所述本振电磁波信号的倍频信号,所述倍频信号的中心频率为所述第一电磁波信号的中心频率的两倍;
    所述混频单元用于将所述第一电磁波信号与所述倍频信号混频,得到所述第三电磁波信号;
    所述滤波单元用于对所述第三电磁波信号进行滤波,得到所述第二电磁波信号。
  33. 根据权利要求19至24任一所述的通信装置,其特征在于,所述目标处理模块包括:第一信号源单元、第二信号源单元、倍频单元、第一混频单元、第二混频单元、第三混频单元、第一滤波单元和第二滤波单元;所述第一混频单元、所述第一滤波单元、所述第二混频单元、所述第二滤波单元和所述第三混频单元依次连接;所述第一信号源单元与所述第一混频单元连接,所述第二信号源单元通过所述倍频单元与所述第二混频单元连接;所述第一信号源单元用于生成第一本振电磁波信号,所述第二信号源单元用于生成第二本振电磁波信号;所述第一本振电磁波信号的中心频率为f 1,所述第二本振电磁波信号的中心频率为f 2,所述第一电磁波信号的中心频率为f 0,f 1+f 2=f 0,f 1<f 0-F/2,F表示所述第一电磁波信号的带宽;
    所述第一混频单元用于将所述第一电磁波信号与所述第一本振电磁波信号进行混频,得到第一混频信号;
    所述第一滤波单元用于对所述第一混频信号进行滤波,得到所述第一混频信号中的第一子信号,所述第一子信号的中心频率为f 2
    所述倍频单元用于获取所述第二本振电磁波信号的倍频信号,所述倍频信号的中心频率为f 2的两倍;
    所述第二混频单元用于将所述第一子信号与所述倍频信号进行混频,得到第二混频信号;
    所述第二滤波单元用于对所述第二混频信号进行滤波,得到所述第二混频信号中的第二子信号,所述第二子信号的中心频率为f 2
    所述第三混频单元用于将所述第二子信号与所述第一本振电磁波信号进行混频,得到所述第二电磁波信号。
  34. 根据权利要求19至24任一所述的通信装置,其特征在于,所述目标处理模块用于:
    对所述第一电磁波信号进行参量放大,得到所述第二电磁波信号。
  35. 根据权利要求34所述的通信装置,其特征在于,所述目标处理模块包括:信号源单元、第一滤波单元、第二滤波单元、第三滤波单元和非线性单元;所述信号源单元用于提供本振电磁波信号;所述信号源单元与所述第二滤波单元连接,所述第一滤波单元、所述第二滤波单元和所述第三滤波单元均与所述非线性单元连接;
    所述第一滤波单元用于对所述第一电磁波信号进行滤波,得到第一滤波信号,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;
    所述第二滤波单元用于对所述本振电磁波信号进行滤波,得到第二滤波信号;
    所述非线性单元用于根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;
    所述第三滤波单元用于对所述参量放大信号进行滤波,得到所述第二电磁波信号;
    其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
  36. 根据权利要求34所述的通信装置,其特征在于,所述目标处理模块包括:信号源单元、连接单元、第一滤波单元、第二滤波单元和非线性单元;所述连接单元具有第一端、第二端和第三端,所述第一端连接所述第一邻节点,所述第二端连接所述第二邻节点,所述第 三端与所述第一滤波单元的一端连接;所述连接单元用于将从所述第一端输入的信号输送至所述第三端,以及将从所述第三端输入的信号输送至所述第二端;所述第一滤波单元的另一端和所述第二滤波单元均与所述非线性单元连接;所述信号源单元与所述第二滤波单元连接,所述信号源单元用于提供本振电磁波信号;
    所述第一滤波单元用于对从所述第一滤波单元的一端输入的所述第一电磁波信号进行滤波,得到第一滤波信号,并将所述第一滤波信号从所述第一滤波单元的另一端输出,所述第一滤波信号的中心频率为所述第一电磁波信号的中心频率;
    所述第二滤波单元用于对所述本振电磁波信号进行滤波,得到第二滤波信号;
    所述非线性单元用于根据所述第二滤波信号对所述第一滤波信号进行参量放大,得到参量放大信号;
    所述第一滤波单元用于对来自所述非线性单元的所述参量放大信号进行滤波,得到所述第二电磁波信号,并将所述第二电磁波信号从所述第一滤波单元的一端输出;
    其中,所述第二电磁波信号的中心频率为Mf p+Nf 0,Mf p+Nf 0=f 0,M和N均为非零的整数,且N小于零,f 0表示所述第一电磁波信号的中心频率,f p表示所述第二滤波信号的中心频率。
  37. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令;当所述芯片运行时用于实现如权利要求1至18任一所述的通信方法。
  38. 一种通信系统,其特征在于,所述通信系统包括:第一节点、第二节点和至少一个第三节点,所述第一节点和所述第二节点通过线缆连接,所述至少一个第三节点设置在所述线缆上;
    目标第三节点为所述至少一个第三节点中的一个第三节点,所述目标第三节点为权利要求19至36任一所述的通信装置,或者,所述目标第三节点包括权利要求37所述的芯片;
    所述第一节点用于向相邻的第三节点发送电磁波信号;
    所述第二节点用于接收相邻的第三节点发送的电磁波信号,以及根据接收到的电磁波信号,得到所述第一节点发出的电磁波信号携带的数据。
  39. 根据权利要求38所述的通信系统,其特征在于,所述线缆中第一线缆段的长度之和与第二线缆段的长度之和的差值的绝对值小于第一长度;
    所述第一线缆段位于:所述第一节点、所述至少一个第三节点和所述第二节点中,第2n+1个节点与第2n+2个节点之间,n≥0;
    所述第二线缆段位于:所述第一节点、所述至少一个第三节点和所述第二节点中,第2n+2个节点与第2n+3个节点之间;
    所述第一长度为:频选衰落传输长度和色散传输长度的最小值;在所述线缆中传输所述频选衰落传输长度后,所述第一节点发出的电磁波信号中各个频率的衰落幅度中的最大衰落幅度为所述第二节点能够处理的最大衰落幅度;在所述线缆中传输所述色散传输长度后,所述第一节点发出的电磁波信号的色散为所述第二节点能够处理的最大色散。
  40. 根据权利要求38或39所述的通信系统,其特征在于,所述线缆上设置有奇数个所述第三节点,所述第二节点用于:
    对接收到的电磁波信号进行处理,得到所述第一节点发出的电磁波信号;
    获取所述第一节点发出的电磁波信号的基带信号;
    根据所述基带信号进行星座映射,得到所述第一节点发出的电磁波信号携带的数据。
  41. 根据权利要求38或39所述的通信系统,其特征在于,所述线缆上设置有奇数个第三节点,所述第二节点用于:
    获取接收到的电磁波信号的第二基带信号,所述第二基带信号包括实部信号和虚部信号;
    根据所述第二基带信号得到第一基带信号,所述第一基带信号与所述第二基带信号共轭;
    根据所述第一基带信号进行星座映射,得到所述第一节点发出的电磁波信号携带的数据。
  42. 根据权利要求38至41任一所述的通信系统,其特征在于,所述第二电磁波信号与共轭反转信号不同,所述共轭反转信号的幅频曲线与所述第一电磁波信号的幅频曲线关于目标直线轴对称;所述共轭反转信号的相频曲线与所述第一电磁波信号的相频曲线关于目标点中心对称;其中,所述目标直线垂直于所述幅频曲线所在坐标系的横坐标轴,且与所述横坐标轴的交点对应的频率为所述第一电磁波信号的中心频率;所述目标点为所述相频曲线所在坐标系的横坐标轴上对应所述中心频率的点;
    所述第二节点还用于:在根据接收到的电磁波信号得到所述第一节点发出的电磁波信号携带的数据之前,对所述不同进行补偿。
  43. 根据权利要求38至42任一所述的通信系统,其特征在于,所述线缆上还设置有至少一个第四节点;所述第四节点用于对所述线缆上传输的电磁波信号进行功率放大。
PCT/CN2022/114699 2021-10-20 2022-08-25 通信方法、装置及系统 WO2023065816A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111223482 2021-10-20
CN202111223482.3 2021-10-20
CN202111486631.5A CN116017746A (zh) 2021-10-20 2021-12-07 通信方法、装置及系统
CN202111486631.5 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023065816A1 true WO2023065816A1 (zh) 2023-04-27

Family

ID=86025466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114699 WO2023065816A1 (zh) 2021-10-20 2022-08-25 通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116017746A (zh)
WO (1) WO2023065816A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238612A (zh) * 1999-06-02 1999-12-15 北京邮电大学 利用虚波长路由的全光通信网的色散补偿方法
CN102404061A (zh) * 2011-11-29 2012-04-04 中国人民解放军总参谋部第六十三研究所 适用于无线传感网的基于互相关的分布式信号检测实现方法
CN107204792A (zh) * 2017-05-19 2017-09-26 华为技术有限公司 一种检测方法以及装置
JP2019047341A (ja) * 2017-09-01 2019-03-22 石川 容平 伝送システム
CN110612673A (zh) * 2017-05-17 2019-12-24 索尼公司 电子设备和通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238612A (zh) * 1999-06-02 1999-12-15 北京邮电大学 利用虚波长路由的全光通信网的色散补偿方法
CN102404061A (zh) * 2011-11-29 2012-04-04 中国人民解放军总参谋部第六十三研究所 适用于无线传感网的基于互相关的分布式信号检测实现方法
CN110612673A (zh) * 2017-05-17 2019-12-24 索尼公司 电子设备和通信方法
CN107204792A (zh) * 2017-05-19 2017-09-26 华为技术有限公司 一种检测方法以及装置
JP2019047341A (ja) * 2017-09-01 2019-03-22 石川 容平 伝送システム

Also Published As

Publication number Publication date
CN116017746A (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
JP5601205B2 (ja) 光受信器および光通信システム
JP5287521B2 (ja) 通信装置
US20120093244A1 (en) Apparatus and methods for compensating for signal imbalance in a receiver
CN1835489B (zh) 一种可补偿同相/正交相不平衡的装置及其方法
CN101388729A (zh) 相位失衡监测装置、振幅失衡监测装置及使用它们的装置
CN107346993A (zh) 光信号相干检测方法和装置
JP4579831B2 (ja) 変調装置、復調装置、変調方法および復調方法
CN113169869A (zh) 连续变量量子密钥分发(cv-qkd)系统中的后接收同步
JP2008113411A (ja) 直接変換構造のデジタルクワドラチャ送受信器で不整合を補償する方法及び装置
WO2023065816A1 (zh) 通信方法、装置及系统
EP0113571B1 (en) Linear distortion canceller circuit
JPH08511929A (ja) 低中間周波数を有するヘテロダイン受信機
CN106850497B (zh) 一种相干光ofdm通信系统中级联补偿的方法
US11108433B2 (en) Single side band transmission over a waveguide
Arend et al. Implementing polarization shift keying over satellite–system design and measurement results
JP4410760B2 (ja) 光信号受信機、光信号受信装置及び光信号伝送システム
TWI481234B (zh) 具有同相-正交不平衡補償的接收機及其同相-正交不平衡補償方法
US20070147486A1 (en) Signal processing within a wireless modem
CN108199996B (zh) 基于fpga的独立边带调制信号解调方法
WO2018157798A1 (zh) 一种矢量毫米波的产生方法及装置、计算机存储介质
JP6200234B2 (ja) 信号評価装置
CN102215191B (zh) Eoc多模式、多频段组合传输设备
EP4175189A9 (en) System for and method of digital to analog conversion frequency distortion compensation
TWI406513B (zh) 訊號傳送系統及方法
KR100813399B1 (ko) Zero-if 수신기의 i/q부정합 보상 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022882435

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022882435

Country of ref document: EP

Effective date: 20240404