WO2023065775A1 - 一种空调器的控制装置及空调器 - Google Patents

一种空调器的控制装置及空调器 Download PDF

Info

Publication number
WO2023065775A1
WO2023065775A1 PCT/CN2022/110223 CN2022110223W WO2023065775A1 WO 2023065775 A1 WO2023065775 A1 WO 2023065775A1 CN 2022110223 W CN2022110223 W CN 2022110223W WO 2023065775 A1 WO2023065775 A1 WO 2023065775A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
air conditioner
electrically connected
energy
compressor
Prior art date
Application number
PCT/CN2022/110223
Other languages
English (en)
French (fr)
Inventor
霍兆镜
徐锦清
李明
张健彬
岑长岸
曾德森
朱佰盛
Original Assignee
佛山市顺德区美的电子科技有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111235994.1A external-priority patent/CN116007082A/zh
Priority claimed from CN202111235999.4A external-priority patent/CN116007083A/zh
Priority claimed from CN202122564090.5U external-priority patent/CN216203946U/zh
Priority claimed from CN202122560447.2U external-priority patent/CN217464707U/zh
Priority claimed from CN202122560446.8U external-priority patent/CN217464706U/zh
Priority claimed from CN202111234333.7A external-priority patent/CN116007080A/zh
Application filed by 佛山市顺德区美的电子科技有限公司, 广东美的制冷设备有限公司 filed Critical 佛山市顺德区美的电子科技有限公司
Publication of WO2023065775A1 publication Critical patent/WO2023065775A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the application number is 202111234333.7 and the name is “an air conditioner”, the application number is 202122560447.2 and the name is “an air conditioner”, the application number is 202111235994.1 and the name is “a kind of air conditioner”.
  • Air conditioner the application number is 202122564090.5 and the name is “an air conditioner”
  • the application number is 202111235999.4 and the name is “a control device for an air conditioner”
  • the application number is 202122560446.8 and the name is "a control device for an air conditioner” device", the entire contents of which are hereby incorporated by reference.
  • the disclosure relates to a control device of an air conditioner and the air conditioner.
  • the existing air conditioners all use compressors, condensers and evaporators for refrigeration or heating, so that the existing air conditioners operate in a single mode, and an air conditioner that can provide more operating modes is urgently needed.
  • the disclosure provides a control device for an air conditioner and the air conditioner, which can provide more operation modes and make users experience better.
  • the present disclosure discloses a control device for an air conditioner
  • the air conditioner includes a compressor, a condenser, an evaporator, and an energy storage device, and an energy-carrying device is arranged between the energy storage device and the evaporator circuit, the energy-carrying circuit is provided with an energy-discharging driver
  • the control device includes: an air-conditioning controller; an energy-discharging control switch, electrically connected to the air-conditioning controller, for being driven by the air-conditioning controller
  • the operation of the energy-discharging driving member is controlled to transmit the energy in the energy storage device to the evaporator through the energy-carrying circuit and the energy-discharging driving member.
  • the present disclosure provides an air conditioner, the air conditioner includes the control device provided in the first aspect, wherein the air conditioner is a wireless air conditioner.
  • the air conditioner since the air conditioner is equipped with an energy storage device, after the phase change material of the energy storage device is charged, the energy of the energy storage device can be exchanged with the carrier through the carrier pump. , so that the carrier carrying the energy storage is transmitted to the evaporator through the energy-carrying circuit, and then returned to the energy storage device, so as to realize the cooling or heat release operation mode, and also realize the simultaneous operation mode of cooling and cold storage, as well as heating Simultaneous operation with heat storage enables the air conditioner to have more operation modes, which is convenient for users to choose and makes the user experience better.
  • Fig. 1 is a first structural schematic diagram of an air conditioner according to one or more embodiments of the present disclosure
  • Fig. 2 is a first circuit connection diagram between various components in the air conditioner according to one or more embodiments of the present disclosure
  • Fig. 3 is a schematic diagram of the first circuit structure of the control device in Fig. 2;
  • Fig. 4 is a schematic diagram of a second circuit structure of the control device in Fig. 2;
  • FIG. 5 is a detailed circuit diagram of a second circuit structure according to one or more embodiments of the present disclosure.
  • Fig. 6 is a second structural schematic diagram of an air conditioner according to one or more embodiments of the present disclosure.
  • Fig. 7 is a second circuit connection diagram between various components in the air conditioner according to one or more embodiments of the present disclosure.
  • Fig. 8 is a schematic diagram of the circuit structure of the control device in Fig. 7;
  • Fig. 9 is a third structural schematic diagram of an air conditioner according to one or more embodiments of the present disclosure.
  • Fig. 10 is a third circuit connection diagram between various components in the air conditioner according to one or more embodiments of the present disclosure.
  • Fig. 11 is a schematic diagram of the circuit structure of the control device in Fig. 9;
  • Fig. 12 is a fourth structural schematic diagram of an air conditioner according to one or more embodiments of the present disclosure.
  • Fig. 13 is a fourth circuit connection diagram between various components in the air conditioner according to one or more embodiments of the present disclosure.
  • FIG. 14 is a schematic diagram of the circuit structure of the control device in FIG. 12 .
  • the disclosure discloses a control device for an air conditioner.
  • the air conditioner includes a compressor, a condenser, an evaporator, and an energy storage device.
  • An energy-carrying circuit is arranged between the energy-storage device and the evaporator, and the energy-carrying circuit is provided with an energy-discharging driving member.
  • the control device includes: an air conditioner controller; an energy discharge control switch, which is electrically connected to the air conditioner controller, and the energy discharge control switch is used to control the work of the energy discharge driving part driven by the air conditioner controller, so that the energy in the energy storage device Delivered to the evaporator via the energy-carrying circuit and the energy-discharging drive.
  • the air conditioner in the present disclosure may be a refrigeration air conditioner or a heating air conditioner or a heating and cooling air conditioner, and the air conditioner may be a wireless air conditioner or a wired air conditioner, which is not specifically limited in this specification.
  • the compressor 377 communicates with the energy storage device 373, and the energy storage device 373 communicates with the evaporator 379 through the energy carrying circuit 375,
  • the condenser 378 communicates with the evaporator 379, and the energy carrying circuit 375 is provided with a carrier pump 380, and the compressor 377 and the carrier pump 380 are respectively electrically connected with the control device 310, and the control device 310 is used to control the compressor 377 and the Start and stop of the carrier pump 380 .
  • the cold-storage phase change material provided in the energy storage device 373 can be, for example, inorganic PCM, organic PCM, composite PCM, etc., and the phase-change material in the energy storage device 373 can store cold.
  • the energy-carrying circuit 375 is provided with a carrier pump 380, and the carrier pump 380 is arranged between the energy-storage device 373 and the evaporator 379, and the cool-storage passage of the energy-storage device 373 is controlled by the carrier pump 380.
  • the energy carrying circuit 375 is transmitted to the evaporator 379 , and then transmitted back to the energy storage device 373 .
  • the energy storage device 373 is provided with a cold storage phase change material.
  • control device 310 can control the start of the carrier pump 380, and after the start of the carrier pump 380, it will drive the cold storage of the energy storage device 373 to perform heat exchange with the carrier, so that it carries the cold storage
  • the agent is transmitted to the evaporator 379 through the energy-carrying circuit 375, and then returned to the energy storage device 37.
  • the cold storage of the energy storage device 373 can be exchanged with the outside air through the carrier agent pump 380 through the evaporator 379. Hot to achieve cooling.
  • the compressor 377 communicates with the energy storage device 373 through an energy storage circuit
  • the energy storage circuit is provided with a first solenoid valve 385
  • the first solenoid valve 385 is arranged between the energy storage device 373 and the condenser 378, so , so that after the refrigerant flows out from the compressor 377 , it passes through the condenser 378 of the energy storage circuit, the first electromagnetic valve 385 and the energy storage device 373 in sequence, and then returns to the compressor 377 .
  • the refrigerant may be, for example, R12, R134a, R407c, R410a, R290, and R3.
  • the control device 310 controls the compressor 377 to start
  • the refrigerant flows out from the compressor 377
  • the control device 310 controls the first solenoid valve 385 to be turned on, so that the refrigerant passes through the condenser 378 of the energy storage circuit.
  • flows through the first solenoid valve 385 to the energy storage device 373 stores cold in the energy storage device 373 , and returns to the compressor 377 after the refrigerant flows through the energy storage device 373 .
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, so that After the refrigerant flows out from the compressor 377 , it flows through the condenser 378 , the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377 .
  • the control device 310 controls the compressor 377 to start
  • the refrigerant flows out of the compressor 377, flows through the condenser 378
  • the control device 310 controls the conduction of the second solenoid valve 386, so that the refrigerant flows through
  • the condenser 378 then flows through the second solenoid valve 386 and then is transmitted to the evaporator 379 , and after the refrigerant flows through the evaporator 379 , it is transmitted back to the compressor 377 .
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigerating circuit can also be independent circuits, that is, the common pipeline 387 is not included. In this way, a throttling component 381 can be arranged in the energy storage circuit.
  • the throttling component 381 is arranged on the condensing Between the device 378 and the energy storage device 373; and a throttling part 381 is set in the refrigeration circuit, at this time, the throttling part 381 is arranged between the condenser 378 and the evaporator 379 to realize throttling through the throttling part 381 The purpose of reducing blood pressure.
  • the air conditioner 300 can also include a first fan 382, which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the condenser 378, wherein the control device 310 is electrically connected with the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 And the control of the second fan 383, for example, the gear position and wind speed of the first fan 382 can be controlled, and the gear position and wind speed of the second fan 383 can also be controlled.
  • a first fan 382 which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377, wherein the refrigerant flows through
  • the air flows through the condenser 378 through the second fan 383 to exchange heat for the refrigerant to play a cooling effect;
  • the air flows through the evaporator 379 to dissipate heat from the refrigerant.
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the first electromagnetic valve 385 and the energy storage device 373 of the energy storage circuit in sequence, and then returns to the compressor 377, wherein
  • the first fan 382 is not started, but the refrigerant is directly input into the energy storage device 373 through the throttling component 381 and the first electromagnetic valve 385, so as to control the phase in the energy storage device 373
  • the change material stores cold, and the first blower 382 can also be started, so that the phase change material in the energy storage device 373 can store cold while cooling.
  • the air conditioner 300 may also include a receiving coil Lr1 for receiving the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device; the control device 310 is electrically connected with the receiving coil Lr1 for converting the electric energy received by the receiving coil Lr1 into The electric energy supplied by the air conditioner 300 .
  • the receiving coil Lr1 may be a one-way receiving coil or a two-way receiving coil or the like.
  • the receiving coil Lr1 after the receiving coil Lr1 receives the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device, it transmits the electric energy to the control device 310, and the control device 310 converts the electric energy received by the receiving coil Lr1 into
  • the electric energy matched by the air conditioner 300 may be voltage matching and/or current matching, etc., so as to reduce the probability of damage to the air conditioner 300 due to low electric energy matching when the electric energy received by the receiving coil Lr1 directly supplies power to the air conditioner 300 .
  • the air conditioner 300 may further include a battery pack 320, and the control device 310 is electrically connected to the battery pack 320, and is used to convert the electric energy received by the receiving coil Lr1 into electric energy stored in the battery pack 320, or convert the electric energy of the battery
  • the electric energy released by the battery pack 320 is converted into electric energy for power supply to the air conditioner 300 , and the electric energy conversion is performed by the control device 310 to reduce the probability of damage to the battery pack 320 and the components of the air conditioner 300 due to low power matching.
  • the battery pack 320 includes a battery module and a battery management system (BMS), and the BMS can monitor the battery module for charging overvoltage, charging overcurrent, discharging overcurrent, discharging voltage is too low and temperature is too high, etc.
  • BMS battery management system
  • protection is performed to improve the safety of the battery pack 320, and charging information such as remaining power and how long it takes to fully charge can also be obtained.
  • the driving motors of the first fan 382 and the second fan 383 can be three-phase brushless DC motors, single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, and three-phase brushless DC motors.
  • any one of motors such as DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor and switched reluctance motor, and the drive motor of compressor 377 can be a three-phase brushless DC motor, a single-phase asynchronous motor, an induction motor , brushed DC motor, single-phase brushless DC motor, three-phase brushless DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor and switched reluctance motor, etc.
  • the carrier pump 380 Drive motors can be three-phase brushless DC motors, single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, three-phase permanent magnet synchronous motors, synchronous reluctance motors and switches Any of motors such as reluctance motors.
  • the first fan 382 is driven by the first fan motor 3821
  • the second fan 383 is driven by the second fan motor 3831
  • the fan motors 3831 are electrically connected to the control device 310, and the first fan motor 3821 and the second fan motor 3831 are controlled by the control device 310 to control the start-stop and working power of the first fan motor 3821 and the second fan motor 3831 , so as to realize the control of the gears and rotating speeds of the first fan 382 and the second fan 383 .
  • the carrier pump 380 is driven by the carrier pump motor 3801, the carrier pump motor 3801 is electrically connected with the control device 310, and the carrier pump motor 3801 is controlled by the control device 310, and the control device 310 can control The start and stop of the carrier pump motor 3801 and the working power, and then realize the control of the carrier pump 380, so that the carrier in the carrier pump 380 and the phase change material of the energy storage device 373 perform heat exchange, so that The carrier agent after heat exchange flows through the evaporator 379 and returns to the energy storage device 373 .
  • the first blower 382 and the second blower 383 may both be counter-rotating blowers or the like.
  • control device 310 can also be electrically connected with the compressor 377, the display device 390, the first solenoid valve 385, the second solenoid valve 386, the receiving coil Lr1 and the battery pack 320, so as to control the compressor 377,
  • the first solenoid valve 385, the second solenoid valve 386 and the battery pack 320 are controlled, and the control device 310 can also send information such as the charging information and temperature information obtained to the display device 390 for display, and can also respond to the user's input on the display device 390.
  • the air conditioner 300 is controlled according to the operation request.
  • the user operation request is cooling mode and cooling to 20°C
  • the control device 310 is electrically connected with the receiving coil Lr1 and the battery pack 320 respectively, and is used for converting the electric energy received by the receiving coil Lr1 into the electric energy stored in the battery pack 320, or converting the electric energy released by the battery pack 320 into the air conditioner 300 electrical energy for power supply.
  • the control device 310 includes an air conditioner controller 312; an energy discharge control switch 319 is electrically connected to the air conditioner controller 312 for controlling the work of the carrier pump 380 driven by the air conditioner controller 312 , so as to transfer the energy in the energy storage device 373 to the evaporator 379 through the energy storage circuit and the carrier pump 380 .
  • the energy discharge control switch 319 is a circuit including a switching element, one end is electrically connected to the carrier pump 380 , and the other end is electrically connected to the air conditioner controller 312 .
  • the air conditioner controller 312 may also include an energy discharge control switch 319, the input end is electrically connected to the air conditioner controller 312, and the output end is electrically connected to the energy discharge control switch 319, which is used to pass the air conditioner controller 312 and The discharge control switch 319 drives the carrier pump 380 .
  • the energy discharge control switch 319 is used for amplifying the control signal sent by the air conditioner controller 312 , so as to output the amplified control information to the energy discharge control switch 319 .
  • control device 310 may further include a first inverter module 314 for electrically connecting the compressor 377 and electrically connecting with the air conditioner controller 312, and the first inverter module 314 is used for controlling the air conditioner controller 312 Under the drive of control compressor 377 operation.
  • the air conditioner controller 312 may further include a compressor driving circuit 3771, the input end is electrically connected to the air conditioner controller 312, and the output end is electrically connected to the first inverter module 314, for the air conditioner controller 312 and first inverter module 314 to drive compressor 377 .
  • the compressor driving circuit 3771 is used for amplifying the control signal sent by the air conditioner controller 312 to output the amplified control information to the first inverter module 314 .
  • the control device 310 can also include a second inverter module 315 for electrically connecting the first fan 382, and the air conditioner control
  • the second inverter module 315 controls the operation of the first fan 382 based on the driving of the air conditioner controller 312, so that the first fan 382 flows air through the evaporator 379 to achieve heat exchange
  • the third inverter module 384 that is electrically connected to the second fan 383 is electrically connected to the air conditioner controller 312.
  • the third inverter module 384 controls the operation of the second fan 383 based on the drive of the air conditioner controller 312, so that the second fan 383 Air is passed through condenser 378 for heat exchange.
  • the first inverter module 314 can adopt IPM (Intelligent Power Module, intelligent power device) 1 power device
  • the second inverter module 315 can adopt IPM2 power device
  • the third inverter module 384 can use IMP3 power devices, or more simply, can use other types of transistors to replace, to control whether the compressor 377, the first fan motor 3821 and the second fan motor 3831 are running, without controlling the compressor 377, the first fan motor 3831 Specific operating parameters when the first fan motor 3821 and the second fan motor 3831 are running.
  • the air conditioner may further include a carrier pump switch circuit 3803, the input end is electrically connected to the air conditioner controller 312, and the output end is electrically connected to the carrier pump motor 3801, which is used to control the air conditioner controller 312 Control the start and stop of the carrier pump motor 380 under the driving.
  • the control device 310 can also include a first solenoid valve switch circuit 3851, which is electrically connected to the air conditioner controller 312 for The first solenoid valve 385 is controlled to be on and off under the drive of the air conditioner controller 312; the second solenoid valve switch circuit 3861 is electrically connected to the air conditioner controller 312 for controlling the second solenoid valve 386 under the drive of the air conditioner controller 312 on and off.
  • the first solenoid valve switch circuit 3851 is a circuit that includes a switch element
  • the second solenoid valve switch circuit 3861 is a circuit that includes a switch element, and the switch element in the first solenoid valve switch circuit 3851
  • the first solenoid valve 385 is energized, thereby controlling the conduction of the first solenoid valve 385, so that the refrigerant output from the condenser 378 can enter the energy storage device 373 through the first solenoid valve 385 and the energy storage circuit
  • the switching element of a solenoid valve switch circuit 3851 is turned on, the first solenoid valve 385 is not energized, so that the first solenoid valve 385 is controlled to be disconnected, so that the refrigerant output by the condenser 378 cannot pass through the first solenoid valve 385
  • the switching element of the second solenoid valve switch circuit 3861 is closed, the second solenoid valve 386 is energized, thereby controlling the conduction of the second solenoid valve 386
  • control device 310 may further include a wireless power receiving module 311 for electrically connecting the receiving coil Lr1, electrically connected to the air conditioner controller 312, and the wireless power receiving module 311 is used for controlling the air conditioner. Driven by the controller 312, the power for wireless transmission is processed through down-conversion.
  • the input end of the wireless power receiving module 311 is electrically connected to the receiving coil Lr1
  • the output end of the wireless power receiving module 311 is electrically connected to the compressor 377 through the first inverter module 314, and the first inverter module 314 is also electrically connected to the air conditioner controller 312, so that the first inverter module 314 controls the operation of the compressor 377 under the drive of the air conditioner controller 312 and the power supply of the wireless power receiving module 311, so that the refrigerant output of the compressor 377 To the condenser 378 or the energy storage device 373.
  • the output end of the wireless power receiving module 311 is electrically connected to the first fan motor 3821 through the second inverter module 315, and the second inverter module 315 is also electrically connected to the air conditioner controller 312, so that the second inverter module 315 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the first fan motor 3821 to drive the first fan 382 to work.
  • the output end of the wireless power receiving module 311 is electrically connected to the second fan motor 3831 through the third inverter module 384, and the third inverter module 384 is also electrically connected to the air conditioner controller 312, so that the third inverter module 384 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the second fan motor 3831 to drive the second fan 383 to work.
  • the wireless power receiving module 311 includes: a bridge rectifier circuit 3111 and a power receiving voltage regulation circuit 3112, wherein the AC input terminal of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1 sexual connection.
  • the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1, and rectifies the electric energy received by the receiving coil Lr1.
  • the input terminal of the power receiving and regulating circuit 3112 is electrically connected to the output terminal of the bridge rectifier circuit 3111, the output terminal of the power receiving and regulating circuit 3112 is connected to the input terminal of the first inverter module 314 and the input of the second inverter module 315 The terminals are electrically connected, and the power receiving and regulating circuit 3112 is used to step down the electric energy output by the bridge rectifier circuit 3111 and transmit power to the input terminal of the first inverter module 314 and the second inverter module 315 .
  • the bridge rectifier circuit 3111 is used to perform AC-DC conversion of the electric energy received by the receiving coil Lr1 into a DC bus voltage +VDC1; After conversion (boosting or bucking), it becomes the DC bus voltage +VDC2 required by the first inverter module 314 , the second inverter module 315 and the third inverter module 384 .
  • the bridge rectifier circuit 3111 may include a resonant capacitor C, a bridge rectifier, and a first filter capacitor E1.
  • One end of the resonant capacitor C is electrically connected to an AC input end of the bridge rectifier.
  • the other end of the resonant capacitor C is electrically connected to one end of the receiving coil Lr1, and the other AC input end of the bridge rectifier is electrically connected to the other end of the receiving coil Lr1.
  • the two DC output ends of the bridge rectifier are electrically connected to the positive and negative poles of the first filter capacitor E1 correspondingly, and the negative pole of the first filter capacitor E1 is grounded.
  • the bridge rectifier may be any hardware topology of a full-bridge synchronous rectifier, a half-bridge synchronous rectifier, and an uncontrolled rectifier.
  • the bridge rectifier may be a full bridge synchronous rectifier including a first power device Q1 , a second power device Q2 , a third power device Q3 and a fourth power device Q4 .
  • Q1, Q2, Q3, and Q4 can be any one of IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), MOS transistor, triode, etc.
  • the air conditioner controller 312 includes: a control chip 3121; a rectification drive circuit 3122, the input end of the rectification drive circuit 3122 is electrically connected to the control chip 3121, and the output end of the rectification drive circuit 3122 is connected to the The bridge rectifier circuit 3111 is electrically connected.
  • the gate control terminal of each power device in the bridge rectifier of the rectification drive circuit 3122 is electrically connected to control the on-off of Q1, Q2, Q3, and Q4.
  • the voltage receiving and regulating circuit 3112 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the power receiving and voltage regulating circuit 3112 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the transformer module 315 is electrically connected.
  • the power receiving and voltage regulating circuit 3112 may be composed of the fifth power device Q5, the first inductor L1, the sixth power device Q6, the seventh power device Q7, the eighth power device Q8 and the second The buck-boost multiplexing circuit formed by the filter capacitor E2, wherein the negative electrode of the second filter capacitor E2 is grounded, and is switched on and off through the fifth power device Q5, the sixth power device Q6, the seventh power device Q7 and the eighth power device Q8, Realize step-up processing or step-down processing.
  • the air conditioner controller 312 may further include: a voltage regulating driving circuit 3413, the input terminal of the voltage regulating driving circuit 3413 is electrically connected to the control chip 3121, and the output terminal of the voltage regulating driving circuit 3413 It is electrically connected to the control terminal of each power device Q5, Q6, Q7 and Q8 in the power receiving and voltage regulating circuit 3112, so as to control the on-off of the power device Q5, Q6, Q7, Q8 and the first inductor L1.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device for wireless power transmission to the air conditioner 300, so as to control the wireless power transmission to the air conditioner 300
  • the external power supply device is in standby or energy transmitting state.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • it can be electrically connected to the output end of the bridge rectifier circuit 3111 or the output end of the power receiving and voltage regulating circuit 3112, and the DC bus voltage +VDC1 or the DC bus voltage +VDC2 can be stepped down to obtain the display device 390 The required voltage supplies power to the display device 390 .
  • the air conditioner controller 312 may further include a carrier pump drive circuit 3802 , the output end of the carrier pump drive circuit 3802 is electrically connected to the energy discharge control switch 319 , and the input end is connected to the control chip 3121 Electrically connected, wherein the carrier pump drive circuit 3802 is used to amplify the control signal sent by the air conditioner controller 312 .
  • the air conditioner controller 312 may further include a first fan drive circuit 3822, the output terminal of the first fan drive circuit 3822 is electrically connected to the control terminal of the second inverter module 315, and the input terminal of the first fan drive circuit 3822 Electrically connected with the control chip 3121; the second fan drive circuit 3832, the output terminal of the second fan drive circuit 3832 is electrically connected with the control terminal of the third inverter module 384, the input terminal of the second fan drive circuit 3832 is connected with the control chip 3121 electrically connected.
  • the first fan driving circuit 3822 and the second fan driving circuit 3832 are used to amplify the control signal sent by the air conditioner controller 312 .
  • the air conditioner controller 312 may further include a first bus voltage detection circuit 3126, the input terminal of the first bus voltage detection circuit 3126 is electrically connected to the output terminal of the bridge rectifier circuit 3111, and the first bus voltage detection circuit The output end of the circuit 3126 is electrically connected to the control chip 3121; the first bus voltage detection circuit 3126 can be set at both ends of E1, to detect the voltage at both ends of E1 in real time, and transmit the real-time detected voltage at both ends of E1 to the control Chip 3121; including a second bus voltage detection circuit 3127, the input end of the second bus voltage detection circuit 3127 is electrically connected to the output end of the power receiving voltage regulation circuit 3112, and the output end of the second bus voltage detection circuit 3127 is connected to the control chip 3121 Electrically connected; wherein, the second bus voltage detection circuit 3127 can be arranged at both ends of E2 for real-time detection of the voltage at both ends of E1, and transmit the real-time detected voltage at both ends of E2 to the control chip 3121; and,
  • a resistor R1 may also be included.
  • the resistor R1 is arranged between the eighth power device Q8 and the second filter capacitor E2.
  • the input terminal of the bus current detection circuit 312B is electrically connected to the resistor R1.
  • the output terminal is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R1 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R1 exceeds the set current, the power device can be controlled Q5, Q6, Q7, Q8 and the first inductance L1 are turned on and off to reduce the current passing through the resistor R1, so that the reduced current is not greater than the set current, so as to realize the protection of the power receiving voltage regulating circuit 3112 and reduce the power receiving The probability of damage to the voltage regulating circuit 3112 due to excessive current.
  • the air conditioner 300 can also include a battery pack 320
  • the control device 310 may also include a charging and discharging voltage regulating circuit 313, one end of the charging and discharging voltage regulating circuit 313 is electrically connected to the output end of the bridge rectifier circuit 3111 and the input end of the power receiving voltage regulating circuit 3112, and the charging and discharging voltage regulating circuit The other end of 313 is electrically connected to the battery pack 320; when the battery pack 320 is required to supply power to the load of the air conditioner 300, the electric energy released by the battery pack 320 is processed by the charging and discharging voltage regulating circuit 313 for DC-DC conversion voltage regulation conversion , and then go through the electrical voltage regulation circuit 3112 to perform the voltage regulation processing of DC-DC conversion, and supply the electric energy after the voltage regulation processing to at least one load of the
  • the electric energy received by the receiving coil Lr1 is rectified by the bridge rectifier circuit 3111 for AC-DC conversion, and then by the charge-discharge voltage regulator circuit 313 for DC-DC conversion.
  • the battery pack 320 is charged.
  • the charging and discharging voltage regulation circuit 313 is used to convert the electric energy output by the bridge rectifier circuit 3111, and store the converted electric energy in the battery pack 320, or convert the electric energy released by the battery pack 320 and output it to the receiving Voltage regulation circuit 3112; power receiving and voltage regulation circuit 3112 performs boost processing on the electric energy output by charge and discharge voltage regulation circuit 313, and supplies to the input terminal of the first inverter module 314, the second inverter module 315 and the third inverter module 384 transmission.
  • the charging and discharging voltage regulating circuit 313 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the charging and discharging voltage regulating circuit 313 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the inverter module 315 is electrically connected to the third inverter module 384 .
  • the charging and discharging voltage regulating circuit 313 may be a charging and discharging voltage regulating circuit 313 composed of a ninth power device Q9, a second inductor L2, a tenth power device Q10 and a third filter capacitor E3.
  • the negative electrode of the third filter capacitor E3 is grounded, and the ninth power device Q9 and the tenth power device Q10 are switched on and off to realize boosting or stepping down processing.
  • the air conditioner controller 312 may also include a charging and discharging driving circuit 312A, the input terminal of the charging and discharging driving circuit 312A is electrically connected to the control chip 3121, and the output terminal of the charging and discharging driving circuit 312A is connected to the control chip 3121.
  • the control terminals of each power device Q9 and Q10 in the power receiving and voltage regulating circuit 3112 are electrically connected, so as to control the on-off of the power devices Q9, Q10 and the second inductor L2.
  • the air conditioner controller 312 can also include a charge and discharge current detection circuit 3128, the input end of the charge and discharge current detection circuit 3128 is electrically connected to the charge and discharge voltage regulating circuit 313, and the output end of the charge and discharge current detection circuit 3128 is connected to the The control chip 3121 is electrically connected; wherein, the charging and discharging current detection circuit 3128 can be set at both ends of E3, for real-time detection of the voltage at both ends of E3, and transmits the real-time detected voltage at both ends of E3 to the control chip 3121; battery voltage The detection circuit 3129 , the input end of the battery voltage detection circuit 3129 is electrically connected to the charging and discharging voltage regulation circuit 313 , and the output end of the battery voltage detection circuit 3129 is electrically connected to the control chip 3121 .
  • a resistor R2 may also be included.
  • the resistor R2 is arranged between the tenth power device Q10 and the third filter capacitor E3.
  • the input terminal of the battery voltage detection circuit 3129 is electrically connected to the resistor R2.
  • the output end is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R2 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R2 exceeds the set current, the power device can be controlled Q9, Q10 and the second inductance L2 are turned on and off to reduce the current passing through the resistor R2, so that the reduced current is not greater than the set current, thereby realizing the protection of the charge and discharge current detection circuit 3128 and reducing the charge and discharge current detection circuit 3128 The probability of damage due to excessive current flow.
  • the set current can be set manually or by the air conditioner 300 itself, or it can be set according to actual needs.
  • control device 310 may also include an adaptive voltage regulation circuit 388, one end of the adaptive voltage regulation circuit 388 is electrically connected to the output end of the power receiving voltage regulation circuit 3112, and the other end is connected to the output terminal of the energy discharge control circuit respectively.
  • the first solenoid valve 385, the second solenoid valve 386, the compressor 377, the first fan motor 3821 and the second fan motor 3831 supply power
  • the DC-DC conversion voltage regulation process is performed through the adaptive voltage regulation circuit 388, and the voltage regulation
  • the processed electric energy supplies power to the carrier pump 380, the first solenoid valve 385, the second solenoid valve 386, the compressor 377, the first blower motor 3821 and the second blower motor 3831, so that through the adaptive voltage regulating circuit 388
  • the voltage after the voltage adjustment process matches the voltage required by each component in the carrier pump 380 , the first solenoid valve 385 , the second solenoid valve 386 , the compressor 377 , the first fan motor 3821 and the second fan motor 3831 .
  • the adaptive voltage regulation circuit 388 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit. In practical applications, the adaptive voltage regulation circuit 388 may not be provided.
  • the adaptive voltage regulation circuit 388 may be a voltage regulation circuit composed of the eleventh power device 11, the third inductor L3 and the fourth filter capacitor E4, wherein the fourth filter capacitor The negative electrode of E4 is grounded, and the eleventh power device 11 is turned on and off, so as to realize step-down processing.
  • the air conditioner 300 may also include a display device 390, and the control device 310 may also include: an auxiliary power supply 317 electrically connected to the output terminal of the wireless power receiving module 311 for outputting to the wireless power receiving module 311. Regulate the voltage of the DC power, and provide the DC power after voltage regulation to the display device 390 of the air conditioner 300 .
  • the display device 390 is electrically connected to the control device 310, and can display the charging information of the battery pack 320, as well as fan operation information such as the gear position and wind speed of the first fan 382 and the second fan 383, and can also display the air conditioner.
  • the temperature information such as cooling temperature and indoor temperature of the 300 also displays the operation information of the air conditioner 300 such as cooling, ventilation and dehumidification.
  • the display device 390 may be a display screen such as LED and LCD.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device that wirelessly transmits power to the air conditioner 300, so as to control wireless transmission to the air conditioner 300.
  • the external power supply device for power transmission is in standby or energy transmitting state.
  • the air conditioner communication module 316 may be wireless communication modules such as Bluetooth, signal carrier, infrared transmitting and receiving modules, and the like.
  • the air conditioner 300 has multiple operation modes.
  • the first operation mode of the air conditioner 300 is the cooling operation mode, which specifically includes: After the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for the The compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve switch circuit 3861 supply power, if the converted demand voltage is higher than the compressor 377, the first fan motor 3821, the second fan motor 3831 and The operating voltage of the second solenoid valve switch circuit 3861, such as +VFM, needs to be stepped down by the adaptive voltage regulating circuit 388 to provide the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve switch circuit.
  • the second fan motor 3831 is connected with the second fan 383, and the second solenoid valve switch circuit 3861 is connected with the second solenoid valve 386, so that the first fan 382 1.
  • the second fan 383 and the compressor 377 work under the condition of power supply, and the second electromagnetic valve 386 is conducted under the condition of power supply. In this way, when the compressor 377 is working normally, after the refrigerant flows out from the compressor 377, since the second solenoid valve 386 is turned on and the first solenoid valve 385 is not powered, the refrigerant flows through the refrigeration circuit in turn.
  • the second operation mode is specifically the cold storage operation mode, including: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for the compressor 377,
  • the first fan motor 3821, the second fan motor 3831 and the first solenoid valve switch circuit 3851 supply power, if the converted demand voltage is higher than the compressor 377, the first fan motor 3821, the second fan motor 3831 and the first solenoid valve
  • the operating voltage of the 385 switch such as +VFM, needs to be stepped down by the adaptive voltage regulating circuit 388 to supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the first solenoid valve switch circuit 3851, so,
  • the compressor 377 is working normally, after the refrigerant flows out from the compressor 377, since the first solenoid valve 385 is turned on and the second solenoid valve 386 is not powered, the refrigerant flows through the energy storage
  • the third operation mode is specifically the simultaneous operation of refrigeration and cold storage, including: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 to give
  • the compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861 supply power, if the converted demand voltage is higher than that of the compressor 377 and the first fan motor 3821, the second fan motor 3831, the first solenoid valve 385 switch and the working voltage of the second solenoid valve 386, such as +VFM, then need to step down the voltage of the compressor 377 and the first fan motor 3821 after the voltage regulation circuit 388 is stepped down.
  • the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861 supply power, so that when the compressor 377 works normally, after the refrigerant flows out from the compressor 377, due to the first solenoid valve 385 It is in a conduction state, so that the refrigerant flows through the condenser 378, the throttling component 381, the first solenoid valve 385 and the energy storage device 373 of the energy storage circuit in sequence, and then returns to the compressor 377, thereby realizing the energy storage device 373.
  • the role of cold storage is the role of cold storage.
  • the second electromagnetic valve 386 is in the conduction state, the refrigerant flowing out from the compressor 377 flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the The compressor 377 is used for refrigeration, so that the simultaneous operation of cold storage and refrigeration can be realized.
  • the fourth operation mode is specifically the cooling operation mode, including: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for energy discharge control
  • the switch 319 and the first fan motor 3821 supply power.
  • the converted demand voltage is higher than the operating voltage of the energy discharge control switch 319 and the first fan motor 3821, such as +VFM, it needs to be stepped down by the adaptive voltage regulating circuit 388 Supply power to the energy discharge control switch 319 and the first fan motor 3821, so that when the carrier pump 380 is working, it will drive the cold storage of the energy storage device 373 to exchange heat with the carrier, so that the carrier carrying the cold storage passes through the
  • the energy-carrying circuit 375 is transmitted to the evaporator 379, and then returned to the energy storage device 373, wherein, when the carrier agent carrying cold storage flows through the evaporator 379, the first fan 382 makes the air flow through the evaporator 379, to The phase change material performs heat exchange to play a cooling effect.
  • the charge pump 380 can be used to exchange heat between the cold storage of the energy storage device 373 and the carrier agent, so that the cold storage is carried
  • the carrier agent is transmitted to the evaporator 379 through the energy-carrying circuit 375, and then returned to the energy storage device 373, so as to realize the cooling effect, and can also realize the simultaneous operation of refrigeration and cold storage, so that the air conditioner 300 has more operating modes, It is convenient for users to choose, making the user experience better.
  • the air conditioner 300 since the air conditioner 300 is provided with a receiving coil Lr1, it can receive the electromagnetic energy transmitted by the wireless charger, and then convert it into electrical energy for the operation of the air conditioner 300. At this time, the air conditioner 300 can work without being connected to the power grid. , can be used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is better.
  • the air conditioner 300 is provided with a battery pack 320
  • the battery pack 320 can be used to supply power to the air conditioner 300 so that the air conditioner 300 can operate normally without connecting to the power grid.
  • the battery pack 320 carried by the 300 can make the air conditioner 300 work, and can be further used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is further improved.
  • the compressor 377 communicates with the energy storage device 373, and the energy storage device 373 communicates with the evaporator 379 through the energy carrying circuit 375 , the condenser 378 is communicated with the evaporator 379, the energy carrying circuit 375 is provided with a carrier pump 380, the compressor 377 and the carrier pump 380 are respectively electrically connected with the control device 310, and the control device 310 is used to control the compressor 377 and start and stop of the carrier pump 380.
  • the phase change material installed in the energy storage device 373 can be, for example, inorganic PCM, organic PCM, composite PCM, etc., and can store heat or cold for the phase change material in the energy storage device 373, which is not specifically limited in this specification.
  • the air conditioner 300 may further include a four-way valve 389, the four-way valve 389 communicates with the compressor 377, the condenser 378, the evaporator 379 and the energy storage device 373 respectively, and the four-way valve 389 communicates with the control device 310 electrical connection.
  • the energy-carrying circuit 375 is provided with a carrier pump 380, and the carrier pump 380 is arranged between the energy storage device 373 and the evaporator 379, and the energy of the energy storage device 373 is controlled by the carrier pump 380.
  • the energy carrying circuit 375 is transmitted to the evaporator 379 , and then transmitted back to the energy storage device 373 .
  • the energy storage device 373 may be provided with a cold storage phase change material or a heat storage phase change material.
  • control device 310 can control the start of the carrier pump 380, and after the start of the carrier pump 380, it will drive the cold storage of the energy storage device 373 to perform heat exchange with the carrier, so that it carries the cold storage
  • the agent is transported to the evaporator 379 through the energy-carrying circuit 375, and then returned to the energy storage device 373.
  • the carrier agent pump 380 Through the carrier agent pump 380, the cold storage of the energy storage device 373 can flow through the evaporator 379 through the carrier agent to exchange with the outside air. Heat, thereby realizing cooling, thereby realizing cooling or releasing heat.
  • the compressor 377 communicates with the energy storage device 373 through an energy storage circuit, wherein the energy storage circuit is provided with a first solenoid valve 385, and the first solenoid valve 385 is arranged between the energy storage device 373 and the condenser 378 , when the four-way valve 389 is in the first state (the air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the first solenoid valve 385 and the The energy storage device 373 is transmitted back to the compressor 377 through the four-way valve 389 , so as to store cold in the energy storage device 373 .
  • the energy storage circuit is provided with a first solenoid valve 385
  • the first solenoid valve 385 is arranged between the energy storage device 373 and the condenser 378 , when the four-way valve 389 is in the first state (the air conditioner 300 is in cooling mode or dehum
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the energy storage device 373, the first The solenoid valve 385 and the condenser 378 are then transmitted back to the compressor 377 through the four-way valve 389 , so as to store heat in the energy storage device 373 .
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, and the four-way The valve 389 is in the first state (the air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the second solenoid valve 386 and the evaporator 379, Then it is sent back to the compressor 377 through the four-way valve 389, so as to realize refrigeration or dehumidification.
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, The second electromagnetic valve 386 and the condenser 378 are transmitted back to the compressor 377 through the four-way valve 389, thereby realizing the heating function.
  • the control device 310 controls the start of the compressor 377
  • the refrigerant flows out of the compressor 377
  • the control device 310 controls the conduction of the second solenoid valve 386, so that the refrigerant sequentially passes through the four-way valve 389 of the refrigeration circuit.
  • the evaporator 379, the second solenoid valve 386 and the condenser 378 and then return to the compressor 377 through the four-way valve 389, thereby realizing the heating function.
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigeration circuit can also be independent circuits, that is, the common pipeline 387 is not included.
  • a throttling component 381 can be set in the energy storage circuit.
  • the throttling component 381 is arranged between the condenser 378 and the second A throttling part 381 is set between the solenoid valve 385 and the refrigeration circuit.
  • the throttling part 381 is arranged between the condenser 378 and the second solenoid valve 386 to realize throttling and pressure reduction through the throttling part 381 Purpose.
  • the air conditioner 300 can also include a first fan 382, which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the condenser 378, wherein the control device 310 is electrically connected with the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 And the control of the second fan 383, for example, the gear position and wind speed of the first fan 382 can be controlled, and the gear position and wind speed of the second fan 383 can also be controlled.
  • a first fan 382 which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the
  • the air conditioner 300 is in the cooling mode or dehumidification mode at this time
  • the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, and the throttling member 381 in sequence.
  • the second electromagnetic valve 386 and the evaporator 379 and then return to the compressor 377 through the four-way valve 389, so as to realize cooling or dehumidification.
  • the air flows through the condenser 378 through the second fan 383 to dissipate heat from the refrigerant;
  • the evaporator 379 heat exchange is performed on the refrigerant to play the role of cooling or dehumidification.
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, and the second solenoid valve in sequence. 386, the throttling component 381 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heating function.
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the air conditioner 300 when the four-way valve 389 is in the first state (the air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the throttle The flow part 381 , the first solenoid valve 385 and the energy storage device 373 are transmitted back to the compressor 377 through the four-way valve 389 , so that the energy storage device 373 is stored cold.
  • the second blower 383 makes the air flow through the condenser 378 to dissipate heat from the refrigerant, and then store the phase change material in the energy storage device 373 through the dissipated refrigerant.
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the energy storage device 373, the first The solenoid valve 385 , the throttling component 381 and the condenser 378 are transmitted back to the compressor 377 through the four-way valve 389 , so as to store heat in the energy storage device 373 .
  • the refrigerant flowing out from the compressor 377 stores heat in the phase change material in the energy storage device 373, and when the refrigerant after storing heat in the phase change material flows through the condenser 378, the second fan 383 makes the air flow through the condenser 378 , heat the refrigerant, and return it to the compressor 377 through the four-way valve 389 .
  • the air conditioner 300 may also include a receiving coil Lr1 for receiving the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device; the control device 310 is electrically connected with the receiving coil Lr1 for converting the electric energy received by the receiving coil Lr1 into The electric energy supplied by the air conditioner 300 .
  • the receiving coil Lr1 may be a one-way receiving coil Lr1 or a two-way receiving coil Lr1 or the like.
  • the receiving coil Lr1 after the receiving coil Lr1 receives the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device, it transmits the electric energy to the control device 310, and the control device 310 converts the electric energy received by the receiving coil Lr1 into
  • the electric energy matched by the air conditioner 300 may be voltage matching and/or current matching, etc., so as to reduce the probability of damage to the air conditioner 300 due to low electric energy matching when the electric energy received by the receiving coil Lr1 directly supplies power to the air conditioner 300 .
  • the air conditioner 300 may further include a battery pack 320, and the control device 310 is electrically connected to the battery pack 320, and is used to convert the electric energy received by the receiving coil Lr1 into electric energy stored in the battery pack 320, or The electric energy released by the battery pack 320 is converted into electric energy for powering the air conditioner 300 , and the electric energy conversion is performed by the control device 310 to reduce the probability of damage to the battery pack 320 and the air conditioner 300 due to low power matching.
  • the control device 310 is electrically connected to the battery pack 320, and is used to convert the electric energy received by the receiving coil Lr1 into electric energy stored in the battery pack 320, or The electric energy released by the battery pack 320 is converted into electric energy for powering the air conditioner 300 , and the electric energy conversion is performed by the control device 310 to reduce the probability of damage to the battery pack 320 and the air conditioner 300 due to low power matching.
  • the driving motors of the first fan 382 and the second fan 383 can also refer to the specific description of the driving motors of the first fan 382 and the second fan 383 in Embodiment 1, and for the sake of brevity of the description, details are not repeated here.
  • the first fan 382 is driven by the first fan motor 3821
  • the second fan 383 is driven by the second fan motor 3831
  • the fan motors 3831 are electrically connected to the control device 310, and the first fan motor 3821 and the second fan motor 3831 are controlled by the control device 310 to control the start-stop and working power of the first fan motor 3821 and the second fan motor 3831 , so as to realize the control of the gears and rotating speeds of the first fan 382 and the second fan 383 .
  • the carrier pump 380 is driven by the carrier pump motor 3801, the carrier pump motor 3801 is electrically connected with the control device 310, and the carrier pump motor 3801 is controlled by the control device 310, and the control device 310 can control The start and stop of the carrier pump motor 3801 and the working power.
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • control device 310 can also be electrically connected to the compressor 377, the display device 390, the first solenoid valve 385, the second solenoid valve 386, the four-way valve 389, the receiving coil Lr1 and the battery pack 320, so that The compressor 377, the first solenoid valve 385, the second solenoid valve 386, the four-way valve 389 and the battery pack 320 are controlled, and the control device 310 can also send information such as charging information and temperature information obtained to the display device 390 for further processing. It can also respond to the user’s operation request on the display device 390, and control the air conditioner 300 according to the operation request.
  • the air conditioner 300 will be controlled in response to the user’s operation request. Heating is performed and the maximum heating temperature is set to 26°C.
  • the control device 310 is electrically connected with the receiving coil Lr1 and the battery pack 320 respectively, and is used for converting the electric energy received by the receiving coil Lr1 into the electric energy stored in the battery pack 320, or converting the electric energy released by the battery pack 320 into the air conditioner 300's power supply electric energy.
  • the control device 310 is electrically connected with the four-way valve 389 and can control the conduction pipeline in the four-way valve 389 to control the current state of the four-way valve 389 to be the first state or the second state.
  • the control device 310 includes an air conditioner controller 312; an energy discharge control switch 319 is electrically connected to the air conditioner controller 312, and is used to control the work of the carrier pump 380 under the drive of the air conditioner controller 312 to store energy
  • the energy in the device 373 is delivered to the evaporator 379 through the accumulator circuit and the carrier pump 380 .
  • the energy discharge control switch 319 is a circuit including a switching element, one end is electrically connected to the carrier pump 380 , and the other end is electrically connected to the air conditioner controller 312 .
  • the air conditioner controller 312 may also include an energy discharge control switch 319, the input end is electrically connected to the air conditioner controller 312, and the output end is electrically connected to the energy discharge control switch 319, which is used to pass the air conditioner controller 312 and The discharge control switch 319 drives the carrier pump 380 .
  • the energy discharge control switch 319 is used for amplifying the control signal sent by the air conditioner controller 312 , so as to output the amplified control information to the energy discharge control switch 319 .
  • the four-way valve 389 is electrically connected to control the conduction pipeline in the four-way valve 389 to control the current state of the four-way valve 389 to be the first state or the second state.
  • control device 310 may further include a first inverter module 314 for electrically connecting the compressor 377 and electrically connecting with the air conditioner controller 312, and the first inverter module 314 is used for Under the drive of 312, control compressor 377 operation.
  • the control device 310 can also include a second inverter module 315 for electrically connecting the first fan 382, and the air conditioner
  • the controller 312 is electrically connected, and the second inverter module 315 controls the operation of the first fan 382 based on the drive of the air conditioner controller 312, so that the first fan 382 flows air through the evaporator 379 to achieve heat exchange; and, for
  • the third inverter module 384 electrically connected to the second fan 383 is electrically connected to the air conditioner controller 312.
  • the third inverter module 384 controls the operation of the second fan 383 based on the driving of the air conditioner controller 312, so that the second fan 383 passes air through condenser 378 for heat exchange.
  • the first inverter module 314 can adopt IPM (Intelligent Power Module, intelligent power device) 1 power device
  • the second inverter module 315 can adopt IPM2 power device
  • the third inverter module 384 can use IMP3 power devices, or more simply, can use other types of transistors to replace, to control whether the compressor 377, the first fan motor 3821 and the second fan motor 3831 are running, without controlling the compressor 377, the first fan motor 3831 Specific operating parameters when the first fan motor 3821 and the second fan motor 3831 are running.
  • the control device 310 can also include a first solenoid valve switch circuit 3851, which is electrically connected to the air conditioner controller 312, and is used for controlling the air conditioner controller 312.
  • the first solenoid valve 385 is controlled to be turned on and off under driving;
  • the second solenoid valve switch circuit 3861 is electrically connected to the air conditioner controller 312 for controlling the second solenoid valve 386 to be turned on and off under the drive of the air conditioner controller 312 .
  • the first solenoid valve switch circuit 3851 is a circuit that includes a switch element
  • the second solenoid valve switch circuit 3861 is a circuit that includes a switch element, and the switch element in the first solenoid valve switch circuit 3851
  • the first solenoid valve 385 is energized, thereby controlling the conduction of the first solenoid valve 385, so that the refrigerant output from the condenser 378 can enter the energy storage device 373 through the first solenoid valve 385 and the energy storage circuit
  • the switching element of a solenoid valve switch circuit 3851 is turned on, the first solenoid valve 385 is not energized, so that the first solenoid valve 385 is controlled to be disconnected, so that the refrigerant output by the condenser 378 cannot pass through the first solenoid valve 385
  • the switching element of the second solenoid valve switch circuit 3861 is closed, the second solenoid valve 386 is energized, thereby controlling the conduction of the second solenoid valve 386
  • the control device 310 may also include a wireless power receiving module 311 for electrically connecting the receiving coil Lr1, electrically connected to the air conditioner controller 312, and the wireless power receiving module 311 is used for converting and processing wireless transmission under the drive of the air conditioner controller 312. electrical energy.
  • the input end of the wireless power receiving module 311 is electrically connected to the receiving coil Lr1
  • the output end of the wireless power receiving module 311 is electrically connected to the compressor 377 through the first inverter module 314, and the first inverter module 314 is also electrically connected to the air conditioner controller 312, so that the first inverter module 314 controls the operation of the compressor 377 under the drive of the air conditioner controller 312 and the power supply of the wireless power receiving module 311, so that the refrigerant output of the compressor 377 To the condenser 378 or the energy storage device 373.
  • the output end of the wireless power receiving module 311 is electrically connected to the first fan motor 3821 through the second inverter module 315, and the second inverter module 315 is also electrically connected to the air conditioner controller 312, so that the second inverter module 315 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the first fan motor 3821 to drive the first fan 382 to work.
  • the output end of the wireless power receiving module 311 is electrically connected to the second fan motor 3831 through the third inverter module 384, and the third inverter module 384 is also electrically connected to the air conditioner controller 312, so that the third inverter module 384 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the second fan motor 3831 to drive the second fan 383 to work.
  • the wireless power receiving module 311 includes: a bridge rectifier circuit 3111 and a power receiving voltage regulating circuit 3112, wherein the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1.
  • the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1, and rectifies the electric energy received by the receiving coil Lr1.
  • the input terminal of the power receiving and regulating circuit 3112 is electrically connected to the output terminal of the bridge rectifier circuit 3111, the output terminal of the power receiving and regulating circuit 3112 is connected to the input terminal of the first inverter module 314 and the input of the second inverter module 315
  • the terminals are electrically connected, and the power receiving and voltage regulating circuit 3112 is used to step down the electric energy output by the bridge rectifier circuit 3111 and transmit power to the input terminal 343 of the first inverter module 314 and the second inverter module 315 .
  • the bridge rectifier circuit 3111 is used to perform AC-DC conversion of the electric energy received by the receiving coil Lr1 into a DC bus voltage +VDC1; After conversion (boosting or bucking), it becomes the DC bus voltage +VDC2 required by the first inverter module 314 , the second inverter module 315 and the third inverter module 384 .
  • the bridge rectifier circuit 3111 may include a resonant capacitor C, a bridge rectifier, and a first filter capacitor E1.
  • One end of the resonant capacitor C is electrically connected to an AC input end of the bridge rectifier.
  • the other end of the resonant capacitor C is electrically connected to one end of the receiving coil Lr1, and the other AC input end of the bridge rectifier is electrically connected to the other end of the receiving coil Lr1.
  • the two DC output ends of the bridge rectifier are electrically connected to the positive and negative poles of the first filter capacitor E1 correspondingly, and the negative pole of the first filter capacitor E1 is grounded.
  • the bridge rectifier may be any hardware topology among full bridge synchronous rectifier, half bridge synchronous rectifier and uncontrolled rectifier.
  • the bridge rectifier may be a full bridge synchronous rectifier including a first power device Q1 , a second power device Q2 , a third power device Q3 and a fourth power device Q4 .
  • Q1, Q2, Q3, and Q4 can be any one of IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), MOS transistor, triode, etc.
  • the air conditioner controller 312 includes: a control chip 3121; a rectification drive circuit 3122, the input end of the rectification drive circuit 3122 is electrically connected to the control chip 3121, and the output end of the rectification drive circuit 3122 is connected to the bridge rectifier circuit 3111 is electrically connected.
  • the gate control terminal of each power device in the bridge rectifier of the rectification drive circuit 3122 is electrically connected to control the on-off of Q1, Q2, Q3, and Q4.
  • the voltage receiving and regulating circuit 3112 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the power receiving and voltage regulating circuit 3112 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the transformer module 315 is electrically connected.
  • the power receiving and voltage regulating circuit 3112 may be composed of the fifth power device Q5, the first inductor L1, the sixth power device Q6, the seventh power device Q7, the eighth power device Q8 and the second The buck-boost multiplexing circuit formed by the filter capacitor E2, wherein the negative electrode of the second filter capacitor E2 is grounded, and is switched on and off through the fifth power device Q5, the sixth power device Q6, the seventh power device Q7 and the eighth power device Q8, Realize step-up processing or step-down processing.
  • the air conditioner controller 312 may further include: a voltage regulating driving circuit 3413, the input terminal of the voltage regulating driving circuit 3413 is electrically connected to the control chip 3121, and the output terminal of the voltage regulating driving circuit 3413 It is electrically connected to the control terminal of each power device Q5, Q6, Q7 and Q8 in the power receiving and voltage regulating circuit 3112, so as to control the on-off of the power device Q5, Q6, Q7, Q8 and the first inductor L1.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device for wireless power transmission to the air conditioner 300, so as to control the wireless power transmission to the air conditioner 300
  • the external power supply device is in standby or energy transmitting state.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • it can be electrically connected to the output end of the bridge rectifier circuit 3111 or the output end of the power receiving and voltage regulating circuit 3112, and the DC bus voltage +VDC1 or the DC bus voltage +VDC2 can be stepped down to obtain the display device 390 The required voltage supplies power to the display device 390 .
  • the air conditioner controller 312 may further include a carrier pump drive circuit 3802, the output end of the charge pump drive circuit 3802 is electrically connected to the energy discharge control switch 319, and the input end is electrically connected to the control chip 3121, wherein, The carrier pump driving circuit 3802 is used to amplify the control signal sent by the air conditioner controller 312 .
  • the air conditioner controller 312 may further include a first fan drive circuit 3822, the output terminal of the first fan drive circuit 3822 is electrically connected to the control terminal of the second inverter module 315, and the input terminal of the first fan drive circuit 3822 It is electrically connected with the control chip 3121; the second fan drive circuit 3832, the output terminal of the second fan drive circuit 3832 is electrically connected with the control terminal of the third inverter module 384, and the input terminal of the second fan drive circuit 3832 is connected with the control chip 3121 electrically connected.
  • the first fan driving circuit 3822 and the second fan driving circuit 3832 are used to amplify the control signal sent by the air conditioner controller 312 .
  • the air conditioner controller 312 may also include a first bus voltage detection circuit 3126, the input end of the first bus voltage detection circuit 3126 is electrically connected to the output end of the bridge rectifier circuit 3111, and the output end of the first bus voltage detection circuit 3126 is connected to the The control chip 3121 is electrically connected; the first bus voltage detection circuit 3126 can be arranged at both ends of E1 for real-time detection of the voltage at both ends of E1, and transmits the real-time detected voltage at both ends of E1 to the control chip 3121; including the second The bus voltage detection circuit 3127, the input end of the second bus voltage detection circuit 3127 is electrically connected to the output end of the power receiving voltage regulating circuit 3112, and the output end of the second bus voltage detection circuit 3127 is electrically connected to the control chip 3121; wherein, The second bus voltage detection circuit 3127 can be arranged at both ends of E2 for real-time detection of the voltage at both ends of E1, and transmits the real-time detected voltage at both ends of E2 to the control chip 3121; and includes
  • a resistor R1 may also be included.
  • the resistor R1 is arranged between the eighth power device Q8 and the second filter capacitor E2.
  • the input terminal of the bus current detection circuit 312B is electrically connected to the resistor R1.
  • the output terminal is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R1 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R1 exceeds the set current, the power device can be controlled Q5, Q6, Q7, Q8 and the first inductance L1 are turned on and off to reduce the current passing through the resistor R1, so that the reduced current is not greater than the set current, so as to realize the protection of the power receiving voltage regulating circuit 3112 and reduce the power receiving The probability of damage to the voltage regulating circuit 3112 due to excessive current.
  • the air conditioner 300 can also include a battery pack 320
  • the control device 310 may also include a charging and discharging voltage regulating circuit 313, one end of the charging and discharging voltage regulating circuit 313 is electrically connected to the output end of the bridge rectifier circuit 3111 and the input end of the power receiving voltage regulating circuit 3112, and the charging and discharging voltage regulating circuit The other end of 313 is electrically connected to the battery pack 320; when the battery pack 320 is required to supply power to the load of the air conditioner 300, the electric energy released by the battery pack 320 is processed by the charging and discharging voltage regulating circuit 313 for DC-DC conversion voltage regulation conversion , and then go through the electrical voltage regulation circuit 3112 to perform the voltage regulation processing of DC-DC conversion, and supply the electric energy after the voltage regulation processing to at least one load of
  • the electric energy received by the receiving coil Lr1 is rectified by the bridge rectifier circuit 3111 for AC-DC conversion, and then by the charge-discharge voltage regulator circuit 313 for DC-DC conversion.
  • the battery pack 320 is charged.
  • the charging and discharging voltage regulation circuit 313 is used to convert the electric energy output by the bridge rectifier circuit 3111 and store the converted electric energy in the battery pack 320, or convert the electric energy released by the battery pack 320 and output it to the power receiving voltage regulating circuit 3112
  • the power receiving and voltage regulating circuit 3112 boosts the electric energy output by the charging and discharging voltage regulating circuit 313, and transmits power to the input terminal of the first inverter module 314, the second inverter module 315 and the third inverter module 384.
  • the charging and discharging voltage regulating circuit 313 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the charging and discharging voltage regulating circuit 313 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the inverter module 315 is electrically connected to the third inverter module 384 .
  • the charging and discharging voltage regulating circuit 313 may be a charging and discharging voltage regulating circuit 313 composed of a ninth power device Q9, a second inductor L2, a tenth power device Q10 and a third filter capacitor E3.
  • the negative electrode of the third filter capacitor E3 is grounded, and the ninth power device Q9 and the tenth power device Q10 are switched on and off to realize boosting or stepping down processing.
  • the air conditioner controller 312 may also include a charging and discharging driving circuit 312A, the input terminal of the charging and discharging driving circuit 312A is electrically connected to the control chip 3121, and the output terminal of the charging and discharging driving circuit 312A is connected to the control chip 3121.
  • the control terminals of each power device Q9 and Q10 in the power receiving and voltage regulating circuit 3112 are electrically connected, so as to control the on-off of the power devices Q9, Q10 and the second inductor L2.
  • the air conditioner controller 312 can also include a charge and discharge current detection circuit 3128, the input end of the charge and discharge current detection circuit 3128 is electrically connected to the charge and discharge voltage regulating circuit 313, and the output end of the charge and discharge current detection circuit 3128 is connected to the The control chip 3121 is electrically connected; wherein, the charging and discharging current detection circuit 3128 can be set at both ends of E3, for real-time detection of the voltage at both ends of E3, and transmits the real-time detected voltage at both ends of E3 to the control chip 3121; battery voltage The detection circuit 3129 , the input end of the battery voltage detection circuit 3129 is electrically connected to the charging and discharging voltage regulation circuit 313 , and the output end of the battery voltage detection circuit 3129 is electrically connected to the control chip 3121 .
  • a resistor R2 may also be included.
  • the resistor R2 is arranged between the tenth power device Q10 and the third filter capacitor E3.
  • the input terminal of the battery voltage detection circuit 3129 is electrically connected to the resistor R2.
  • the output end is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R2 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R2 exceeds the set current, the power device can be controlled Q9, Q10 and the second inductance L2 are turned on and off to reduce the current passing through the resistor R2, so that the reduced current is not greater than the set current, thereby realizing the protection of the charge and discharge current detection circuit 3128 and reducing the charge and discharge current detection circuit 3128 The probability of damage due to excessive current flow.
  • the set current can be set manually or by the air conditioner 300 itself, or it can be set according to actual needs.
  • control device 310 can also include an adaptive voltage regulation circuit 388, one end of the adaptive voltage regulation circuit 388 is electrically connected to the output end of the power receiving voltage regulation circuit 3112, and the other end is connected to the output end of the energy discharge control switch respectively. 319.
  • the solenoid valve 385, the second solenoid valve 386, the compressor 377, the first fan motor 3821 and the second fan motor 3831 are powered, the DC-DC conversion voltage regulation processing is performed through the adaptive voltage regulation circuit 388, and the voltage regulation processing
  • the final electric energy supplies power to the carrier pump 380, the first solenoid valve 385, the second solenoid valve 386, the compressor 377, the first blower motor 3821 and the second blower motor 3831, so that through the adaptive voltage regulating circuit 388
  • the processed voltage matches the voltage required by each component in the carrier pump 380 , the first solenoid valve 385 , the second solenoid valve 386 , the compressor 377 , the first fan motor 3821 and the second fan motor 3831 .
  • the four-way valve 389 can be electrically connected to the air conditioner controller 312 through the adaptive voltage regulating circuit 388 and/or the wireless power receiving module 311 .
  • the adaptive voltage regulation circuit 388 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit. In practical applications, the adaptive voltage regulation circuit 388 may not be provided.
  • the adaptive voltage regulation circuit 388 may be a voltage regulation circuit composed of the eleventh power device 11, the third inductor L3 and the fourth filter capacitor E4, wherein the fourth filter capacitor E4 The negative electrode is grounded, and the eleventh power device 11 is turned on and off, so as to realize step-down processing.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • the display device 390 is electrically connected to the control device 310, and can display the charging information of the battery pack 320, and fan operation information such as the gear position and wind speed of the first fan 382 and the second fan 383, and can also display the cooling temperature of the air conditioner 300. Along with temperature information such as indoor temperature, the operation information of the air conditioner 300 such as cooling, ventilation and dehumidification is also displayed.
  • the display device 390 may be a display screen such as LED and LCD.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device that wirelessly transmits power to the air conditioner 300, so as to control wireless transmission to the air conditioner 300.
  • the external power supply device for power transmission is in standby or energy transmitting state.
  • the air conditioner communication module 316 may be wireless communication modules such as Bluetooth, signal carrier, infrared transmitting and receiving modules, and the like.
  • the air conditioner 300 has multiple operation modes.
  • the first operation mode of the air conditioner 300 is the cooling or heating operation mode, which specifically includes: after receiving the electromagnetic energy transmitted by the wireless charger, the receiving coil Lr1 is regulated by the wireless power receiving module 311 and converted into a required voltage such as +VDC2 supplies power to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve switch circuit 3861.
  • the operating voltage of the motor 3831 and the second solenoid valve switching circuit 3861 needs to be stepped down by the adaptive voltage regulating circuit 388 and then supplied to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve.
  • the valve switch circuit 3861 supplies power, so that the first blower 382, the second blower 383 and the compressor 377 work when the power is supplied, and the second electromagnetic valve 386 conducts when the power is supplied.
  • the compressor 377 works normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the second solenoid valve 386 While the first electromagnetic valve 385 is not powered and is in a disconnected state, so that the refrigerant flows through the four-way valve 389, the condenser 378, the throttling member 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to Compressor 377, wherein, when the refrigerant flows through the condenser 378, the air flows through the condenser 378 through the second fan 383 to dissipate heat from the refrigerant; 382 makes the air flow through the evaporator 379 to exchange heat with the refrigerant, so as to play a cooling role.
  • the compressor 377 works normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out from the compressor 377, due to the second electromagnetic valve 386 leading
  • the first solenoid valve 385 is not powered and is in the off state
  • the refrigerant flows through the four-way valve 389, evaporator 379, second solenoid valve 386, throttling member 381 and condenser 378 of the refrigeration circuit in sequence, and then passes through Four-way valve 389 is passed back to compressor 377 .
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the second operation mode is specifically the cold storage or heat storage operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for The compressor 377, the first fan motor 3821, the second fan motor 3831 and the first solenoid valve 385 are powered on and off, if the converted demand voltage is higher than the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second fan motor 3831
  • the operating voltage of a solenoid valve 385 switch, such as +VFM needs to be stepped down by the adaptive voltage regulating circuit 388 to supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve 386.
  • the compressor 377 when the second operation mode is the cold storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the first solenoid valve 385
  • the second solenoid valve 386 is disconnected without power supply, so that the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the condenser 378, the throttling component 381, the first solenoid valve 385 and the energy storage device 373 , and then return to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the energy storage device 373.
  • the second blower 383 makes the air flow through the condenser 378 to dissipate heat from the refrigerant, and then store the phase change material in the energy storage device 373 through the dissipated refrigerant.
  • the compressor 377 when the second operation mode is the heat storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the first solenoid valve 385 While the second solenoid valve 386 is not powered and is in the disconnected state, so that the refrigerant flows through the energy storage circuit in sequence through the four-way valve 389, the energy storage device 373, the first solenoid valve 385, the throttling member 381 and the condenser. 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the energy storage device 373.
  • the refrigerant flowing out from the compressor 377 stores heat in the phase change material in the energy storage device 373, and when the refrigerant after storing heat in the phase change material flows through the condenser 378, the second fan 383 makes the air flow through the condenser 378 , heat the refrigerant, and return it to the compressor 377 through the four-way valve 389 .
  • the third operation mode is specifically the simultaneous operation mode of cooling and cold storage or the simultaneous operation mode of heating and heat storage, including: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, it is adjusted by the wireless power receiving module 311 , converted into a demand voltage such as +VDC2 to supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861, if the converted demand voltage is high
  • the first fan motor 3821, the second fan motor 3831, the first solenoid valve 385 switch and the operating voltage of the second solenoid valve 386, such as +VFM it needs to be stepped down by the adaptive voltage regulating circuit 388 to give Compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861 supply power, because the first fan motor 3821 is connected with the first fan motor 382, the second fan motor 38
  • the compressor 377 when the third operation mode is the cooling and cold storage simultaneous operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the second solenoid valve 386 conducts, so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the condenser 378, the throttling member 381, the second solenoid valve 386 and the evaporator 379, and then returns to the compressor 377, thereby playing a cooling role.
  • the refrigerant flows through the energy storage circuit in sequence through the four-way valve 389, the condenser 378, the throttling member 381, the first solenoid valve 385 and the energy storage device 373, and then Return to the compressor 377 through the four-way valve 389 , so as to realize the cold storage of the energy storage device 373 . In this way, simultaneous operation of refrigeration and cold storage can be realized.
  • the compressor 377 when the third operation mode is specifically the simultaneous operation mode of heating and heat storage, the compressor 377 is working normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out of the compressor 377, due to the second electromagnetic
  • the valve 386 conducts so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, the second solenoid valve 386, the throttling component 381 and the condenser 378, and then returns to the compressor 377 through the four-way valve 389, thereby Realize the heating function.
  • the refrigerant flows through the energy storage circuit in sequence, through the four-way valve 389, the energy storage device 373, the first solenoid valve 385, the throttling component 381 and the condenser 378, and then through the four-way The through valve 389 is transmitted back to the compressor 377 so as to store heat in the energy storage device 373 . In this way, simultaneous operation of heating and heat storage can be realized.
  • the fourth operation mode is specifically the cooling operation mode or the heat release operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, the wireless power receiving module 311 adjusts the voltage and converts it into a required voltage.
  • +VDC2 supplies power to the carrier pump 380 and the first fan motor 3821. If the converted required voltage is higher than the operating voltage of the carrier pump 380 and the first fan motor 3821, such as +VFM, it needs to be adapted and adjusted.
  • the pressure circuit 388 provides power to the carrier pump 380 and the first blower motor 3821 after reducing the voltage.
  • the carrier pump 380 works normally under the condition of power supply, it will drive the energy of the energy storage device 373 to perform heat exchange with the carrier agent, so that it carries the stored energy.
  • the carrier is transported to the evaporator 379 through the energy-carrying circuit 375, and then returned to the energy storage device 373, wherein, when the energy of the energy storage device 373 flows through the evaporator 379 through the carrier pump 380,
  • the first blower 382 makes air flow through the evaporator 379 to exchange heat for the phase change material, so as to cool or release heat.
  • phase change material in the energy storage device 373 if the phase change material in the energy storage device 373 is a cold storage phase change material, it will play a role in cooling; if the phase change material in the energy storage device 373 is a heat storage phase change material, it will play a cooling role. thermal effect.
  • the air conditioner 300 since the air conditioner 300 is provided with an energy storage device 373 , after the phase change material of the energy storage device 373 has stored energy, the carrier agent of the carrier pump 380 and the energy storage device 373 The phase change material is used for heat exchange, so that the carrier after heat exchange is transferred to the evaporator 379 through the energy-carrying loop 375, so as to realize cooling or exothermic effect, and can also realize simultaneous operation of refrigeration and cold storage, as well as heating and cooling. Heat storage operates simultaneously, of course, cooling or heating can also be realized independently, so that the air conditioner 300 has more operating modes, which is convenient for users to choose and makes the user experience better.
  • the air conditioner 300 since the air conditioner 300 is provided with a receiving coil Lr1, it can receive the electromagnetic energy transmitted by the wireless charger, and then convert it into electrical energy for the operation of the air conditioner 300. At this time, the air conditioner 300 can work without being connected to the power grid. , can be used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is better.
  • the air conditioner 300 is provided with a battery pack 320
  • the battery pack 320 can be used to supply power to the air conditioner 300 so that the air conditioner 300 can operate normally without connecting to the power grid.
  • the battery pack 320 carried by the 300 can make the air conditioner 300 work, and can be further used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is further improved.
  • the compressor 377 communicates with the energy storage device 373, and the energy storage device 373 communicates with the evaporator 379, compressor through the energy carrying circuit 375.
  • 377 communicates with the condenser 378, and the condenser 378 communicates with the evaporator 379.
  • a three-way valve 391 is arranged in the energy-carrying circuit 375.
  • the compressor 377 and the three-way valve 391 are respectively electrically connected with the control device 310.
  • the control device 310 is used to control Operation of compressor 377 and three-way valve 391.
  • control device 310 can control the operating parameters of the compressor 377 and control the on-off of each channel of the three-way valve 391 and the like.
  • the cold storage phase change material provided in the energy storage device 373 can be, for example, inorganic PCM, organic PCM, composite PCM, etc., so that the phase change material in the energy storage device 373 can store cold.
  • the energy-carrying circuit 375 is provided with a three-way valve 391, and the three-way valve 391 is arranged between the energy storage device 373 and the evaporator 379, and the energy of the energy storage device 373 is controlled to flow through the energy-carrying device sequentially through the three-way valve 391. After the evaporator 379 , the compressor 377 and the condenser 378 of the loop 375 , it is sent back to the energy storage device 373 . At this time, the energy storage device 373 is provided with a cold storage phase change material.
  • the control device 310 can control the first channel and the third channel of the three-way valve 391 to be connected, while the second channel is disconnected.
  • the through valve 391 flows through the energy storage device 373, so that the cold energy in the energy storage device 373 will flow into the refrigerant, and then flow through the three-way valve 391 of the energy discharge pipeline, the evaporator 379, the compressor 377, the condenser 378, the throttle
  • the flow part 381 and the first electromagnetic valve 385 return to the energy storage device 373; when the refrigerant carrying the cold capacity of the phase change material in the energy storage device 373 flows through the evaporator 379, the air flow is made by the first fan 382 Through the evaporator 379, the cooling effect is realized. Since the energy storage device 373 and the refrigerant of the compressor 377 are jointly refrigerated at this time, the refrigerating efficiency is higher, and it is suitable for use under high temperature or high cooling capacity output.
  • the compressor 377 communicates with the energy storage device 373 through an energy storage circuit
  • the energy storage circuit is provided with a first solenoid valve 385
  • the first solenoid valve 385 is arranged between the energy storage device 373 and the condenser 378, so , so that after the refrigerant flows out from the compressor 377 , it passes through the condenser 378 of the energy storage circuit, the first solenoid valve 385 , the energy storage device 373 and the three-way valve 391 in sequence, and then returns to the compressor 377 .
  • the refrigerant may be, for example, R12, R134a, R407c, R410a, R290, and R3.
  • the refrigerant flows out from the compressor 377, and the control device 310 controls the first solenoid valve 385 to be turned on, so that the refrigerant passes through the condenser 378 of the energy storage circuit. , flows through the first solenoid valve 385 and transmits to the energy storage device 373, and stores cold on the energy storage device 373.
  • the first channel and the second channel of the three-way valve 391 are controlled to conduct, so that the refrigerant flowing through the energy storage device 373 Pass through the first channel and the second channel in turn, and then return to the compressor 377.
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, so that After the refrigerant flows out from the compressor 377 , it flows through the condenser 378 , the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377 .
  • the control device 310 controls the compressor 377 to start
  • the refrigerant flows out of the compressor 377, flows through the condenser 378
  • the control device 310 controls the conduction of the second solenoid valve 386, so that the refrigerant flows through
  • the condenser 378 then flows through the second solenoid valve 386 and then is transmitted to the evaporator 379 , and after the refrigerant flows through the evaporator 379 , it is transmitted back to the compressor 377 .
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigerating circuit can also be independent circuits, that is, the common pipeline 387 is not included. In this way, a throttling component 381 can be arranged in the energy storage circuit.
  • the throttling component 381 is arranged on the condensing Between the device 378 and the energy storage device 373; and a throttling part 381 is set in the refrigeration circuit, at this time, the throttling part 381 is arranged between the condenser 378 and the evaporator 379 to realize throttling through the throttling part 381 The purpose of reducing blood pressure.
  • the air conditioner 300 can also include a first fan 382, which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the condenser 378, wherein the control device 310 is electrically connected with the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 And the control of the second fan 383, for example, the gear position and wind speed of the first fan 382 can be controlled, and the gear position and wind speed of the second fan 383 can also be controlled.
  • a first fan 382 which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377, wherein the refrigerant flows through
  • the condenser 378 is used, the air flows through the condenser 378 through the second fan 383 to exchange heat for the refrigerant to start the cooling effect; and when the heat-exchanged refrigerant flows through the evaporator 379, the air is made The refrigerant flows through the evaporator 379 to dissipate heat.
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the first electromagnetic valve 385 and the energy storage device 373 of the energy storage circuit in sequence, and then passes through the three-way valve 391.
  • the first channel and the second channel return to the compressor 377, wherein when the refrigerant flows through the condenser 378, the first fan 382 is not activated, but the refrigerant is directly passed through the throttling component 381 and the first solenoid valve 385 Input into the energy storage device 373 to store cold in the phase change material in the energy storage device 373; the first fan 382 can also be started to store cold in the phase change material in the energy storage device 373 while cooling.
  • the cold energy in the energy storage device 373 can be taken out by the refrigerant, and then flow through the three-way valve 391 and the evaporator 379 of the energy-carrying circuit 375 in sequence. , the compressor 377, the condenser 378, the throttling component 381 and the first solenoid valve 385, and then return to the energy storage device 373.
  • the air conditioner 300 may also include a receiving coil Lr1 for receiving the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device; the control device 310 is electrically connected with the receiving coil Lr1 for converting the electric energy received by the receiving coil Lr1 into The electric energy supplied by the air conditioner 300 .
  • the receiving coil Lr1 may be a one-way receiving coil Lr1 or a two-way receiving coil Lr1 or the like.
  • the receiving coil Lr1 after the receiving coil Lr1 receives the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device, it transmits the electric energy to the control device 310, and the control device 310 converts the electric energy received by the receiving coil Lr1 into
  • the electric energy matched by the air conditioner 300 may be voltage matching and/or current matching, etc., so as to reduce the probability of damage to the air conditioner 300 due to low electric energy matching when the electric energy received by the receiving coil Lr1 directly supplies power to the air conditioner 300 .
  • the air conditioner 300 may further include a battery pack 320, and the control device 310 is electrically connected to the battery pack 320, and is used to convert the electric energy received by the receiving coil Lr1 into electric energy stored in the battery pack 320, or convert the electric energy of the battery
  • the electric energy released by the battery pack 320 is converted into electric energy for power supply to the air conditioner 300 , and the electric energy conversion is performed by the control device 310 to reduce the probability of damage to the battery pack 320 and the components of the air conditioner 300 due to low power matching.
  • the battery pack 320 includes a battery module and a battery management system (BMS), and the BMS can monitor the battery module when there are safety risks such as charging overvoltage, charging overcurrent, discharging overcurrent, discharging voltage is too low, and temperature is too high. protection, to improve the safety of the battery pack 320, and can also obtain charging information such as remaining power and how long it takes to fully charge.
  • BMS battery management system
  • the drive motors of the first fan 382 and the second fan 383 can be three-phase brushless DC motors, single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, three-phase permanent Any one of motors such as a magnetic synchronous motor, a synchronous reluctance motor, and a switched reluctance motor, and the driving motor of the compressor 377 can be a three-phase brushless DC motor, a single-phase asynchronous motor, an induction motor, a brushed DC motor, Any one of single-phase brushless DC motor, three-phase brushless DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor and switched reluctance motor.
  • the three-way valve 391 is electrically connected to the control device 310 so as to control the opening and closing of the channel of the three-way valve 391 through the control device 310 .
  • the first fan 382 is driven by the first fan motor 3821
  • the second fan 383 is driven by the second fan motor 3831
  • the fan motors 3831 are electrically connected to the control device 310, and the first fan motor 3821 and the second fan motor 3831 are controlled by the control device 310 to control the start-stop and working power of the first fan motor 3821 and the second fan motor 3831 , so as to realize the control of the gears and rotating speeds of the first fan 382 and the second fan 383 .
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • control device 310 can also be electrically connected to the compressor 377, the display device 390, the first solenoid valve 385, the second solenoid valve 386, the three-way valve 391, the receiving coil Lr1 and the battery pack 320, so that Control the compressor 377, the first solenoid valve 385, the second solenoid valve 386, and the battery pack 320, and the control device 310 can also send information such as charging information and temperature information to the display device 390 for display, and can also respond According to the user's operation request on the display device 390, the air conditioner 300 is controlled according to the operation request. For example, the user's operation request is cooling mode and cooling to 20°C. The minimum temperature is 20°C.
  • control device 310 is electrically connected with the receiving coil Lr1 and the battery pack 320 respectively, and is used for converting the electric energy received by the receiving coil Lr1 into the electric energy stored in the battery pack 320, or converting the electric energy released by the battery pack 320 into the air conditioner 300 electrical energy for power supply. And, the control device 310 is connected with the three-way valve 391 and is used to control the opening and closing of the channel in the three-way valve 391 .
  • the control device 310 includes an air conditioner controller 312; an energy discharge control switch 319 is electrically connected to the air conditioner controller 312, and is used to control the operation of the three-way valve 391 under the drive of the air conditioner controller 312 to discharge the stored energy.
  • the energy stored in the energy device 373 is sent to the evaporator 379 through the energy storage circuit and the three-way valve 391.
  • the energy discharge control switch 319 is a circuit including switching elements, one end is electrically connected to the three-way valve 391 , and the other end is electrically connected to the air conditioner controller 312 .
  • the air conditioner controller 312 may also include a three-way valve drive circuit 3911, the input end is electrically connected to the air conditioner controller 312, and the output end is electrically connected to the energy discharge control switch 319, which is used to pass the air conditioner controller 312 And the energy discharge control switch 319 controls the on-off of the channel of the three-way valve 391 .
  • the three-way valve drive circuit 3911 is used to amplify the control signal sent by the air conditioner controller 312 , so as to output the amplified control information to the energy discharge control switch 319 .
  • control device 310 may further include a first inverter module 314 for electrically connecting the compressor 377 and electrically connecting with the air conditioner controller 312, and the first inverter module 314 is used for controlling the air conditioner controller 312 Under the drive of control compressor 377 operation.
  • the control device 310 can also include a second inverter module 315 for electrically connecting the first fan 382, and the air conditioner control
  • the second inverter module 315 controls the operation of the first fan 382 based on the driving of the air conditioner controller 312, so that the first fan 382 flows air through the evaporator 379 to achieve heat exchange
  • the third inverter module 384 that is electrically connected to the second fan 383 is electrically connected to the air conditioner controller 312.
  • the third inverter module 384 controls the operation of the second fan 383 based on the drive of the air conditioner controller 312, so that the second fan 383 Air is passed through condenser 378 for heat exchange.
  • the first inverter module 314 can adopt IPM (Intelligent Power Module, intelligent power device) 1 power device
  • the second inverter module 315 can adopt IPM2 power device
  • the third inverter module 384 can use IMP3 power devices, or more simply, can use other types of transistors to replace, to control whether the compressor 377, the first fan motor 3821 and the second fan motor 3831 are running, without controlling the compressor 377, the first fan motor 3831 Specific operating parameters when the first fan motor 3821 and the second fan motor 3831 are running.
  • the control device 310 can also include a first solenoid valve switch circuit 3851, which is electrically connected to the air conditioner controller 312, and is used for controlling the air conditioner controller 312.
  • the first solenoid valve 385 is controlled to be turned on and off under driving;
  • the second solenoid valve switch circuit 3861 is electrically connected to the air conditioner controller 312 for controlling the second solenoid valve 386 to be turned on and off under the drive of the air conditioner controller 312 .
  • the first solenoid valve switch circuit 3851 is a circuit that includes a switch element
  • the second solenoid valve switch circuit 3861 is a circuit that includes a switch element, and the switch element in the first solenoid valve switch circuit 3851
  • the first solenoid valve 385 is energized, thereby controlling the conduction of the first solenoid valve 385, so that the refrigerant output from the condenser 378 can enter the energy storage device 373 through the first solenoid valve 385 and the energy storage circuit
  • the switching element of a solenoid valve switch circuit 3851 is turned on, the first solenoid valve 385 is not energized, so that the first solenoid valve 385 is controlled to be disconnected, so that the refrigerant output by the condenser 378 cannot pass through the first solenoid valve 385
  • the switching element of the second solenoid valve switch circuit 3861 is closed, the second solenoid valve 386 is energized, thereby controlling the conduction of the second solenoid valve 386
  • control device 310 may also include a wireless power receiving module 311 for electrically connecting the receiving coil Lr1, electrically connected to the air conditioner controller 312, and the wireless power receiving module 311 is used for converting under the driving of the air conditioner controller 312 Handles the electrical energy transmitted wirelessly.
  • the input end of the wireless power receiving module 311 is electrically connected to the receiving coil Lr1
  • the output end of the wireless power receiving module 311 is electrically connected to the compressor 377 through the first inverter module 314, and the first inverter module 314 is also electrically connected to the air conditioner controller 312, so that the first inverter module 314 controls the operation of the compressor 377 under the drive of the air conditioner controller 312 and the power supply of the wireless power receiving module 311, so that the refrigerant output of the compressor 377 To the condenser 378 or the energy storage device 373.
  • the output end of the wireless power receiving module 311 is electrically connected to the first fan motor 3821 through the second inverter module 315, and the second inverter module 315 is also electrically connected to the air conditioner controller 312, so that the second inverter module 315 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the first fan motor 3821 to drive the first fan 382 to work.
  • the output end of the wireless power receiving module 311 is electrically connected to the second fan motor 3831 through the third inverter module 384, and the third inverter module 384 is also electrically connected to the air conditioner controller 312, so that the third inverter module 384 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the second fan motor 3831 to drive the second fan 383 to work.
  • the wireless power receiving module 311 includes: a bridge rectifier circuit 3111 and a power receiving voltage regulating circuit 3112 , wherein the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1.
  • the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1, and rectifies the electric energy received by the receiving coil Lr1.
  • the input terminal of the power receiving and regulating circuit 3112 is electrically connected to the output terminal of the bridge rectifier circuit 3111, the output terminal of the power receiving and regulating circuit 3112 is connected to the input terminal of the first inverter module 314 and the input of the second inverter module 315
  • the terminals are electrically connected, and the power receiving and voltage regulating circuit 3112 is used to step down the electric energy output by the bridge rectifier circuit 3111, and transmit power to the input terminal 343 of the first inverter module 314 and the second inverter module 315 .
  • the bridge rectifier circuit 3111 is used to perform AC-DC conversion of the electric energy received by the receiving coil Lr1 into a DC bus voltage +VDC1; After conversion (boosting or bucking), it becomes the DC bus voltage +VDC2 required by the first inverter module 314 , the second inverter module 315 and the third inverter module 384 .
  • the bridge rectifier circuit 3111 may include a resonant capacitor C, a bridge rectifier, and a first filter capacitor E1, and one end of the resonant capacitor C is electrically connected to an AC input of the bridge rectifier.
  • the other end of the resonant capacitor C is electrically connected to one end of the receiving coil Lr1, and the other AC input end of the bridge rectifier is electrically connected to the other end of the receiving coil Lr1.
  • the two DC output ends of the bridge rectifier are electrically connected to the positive and negative poles of the first filter capacitor E1 correspondingly, and the negative pole of the first filter capacitor E1 is grounded.
  • the bridge rectifier may be any hardware topology among full bridge synchronous rectifier, half bridge synchronous rectifier and uncontrolled rectifier.
  • the bridge rectifier may be a full bridge synchronous rectifier including a first power device Q1 , a second power device Q2 , a third power device Q3 and a fourth power device Q4 .
  • Q1, Q2, Q3, and Q4 can be any one of IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), MOS transistor, triode, etc.
  • the air conditioner controller 312 includes: a control chip 3121; a rectification drive circuit 3122, the input end of the rectification drive circuit 3122 is electrically connected to the control chip 3121, and the output end of the rectification drive circuit 3122 is connected to the The bridge rectifier circuit 3111 is electrically connected.
  • the gate control terminal of each power device in the bridge rectifier of the rectification drive circuit 3122 is electrically connected to control the on-off of Q1, Q2, Q3, and Q4.
  • the voltage receiving and regulating circuit 3112 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the power receiving and voltage regulating circuit 3112 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the transformer module 315 is electrically connected.
  • the power receiving and voltage regulating circuit 3112 may be composed of the fifth power device Q5, the first inductor L1, the sixth power device Q6, the seventh power device Q7, the eighth power device Q8 and the second The buck-boost multiplexing circuit formed by the filter capacitor E2, wherein the negative electrode of the second filter capacitor E2 is grounded, and is switched on and off through the fifth power device Q5, the sixth power device Q6, the seventh power device Q7 and the eighth power device Q8, Realize step-up processing or step-down processing.
  • the air conditioner controller 312 may further include: a voltage regulating driving circuit 3413, the input terminal of the voltage regulating driving circuit 3413 is electrically connected to the control chip 3121, and the output terminal of the voltage regulating driving circuit 3413 It is electrically connected to the control terminal of each power device Q5, Q6, Q7 and Q8 in the power receiving and voltage regulating circuit 3112, so as to control the on-off of the power device Q5, Q6, Q7, Q8 and the first inductor L1.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device for wireless power transmission to the air conditioner 300, so as to control the wireless power transmission to the air conditioner 300
  • the external power supply device is in standby or energy transmitting state.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • it can be electrically connected to the output end of the bridge rectifier circuit 3111 or the output end of the power receiving and voltage regulating circuit 3112, and the DC bus voltage +VDC1 or the DC bus voltage +VDC2 can be stepped down to obtain the display device 390 The required voltage supplies power to the display device 390 .
  • the air conditioner controller 312 may further include a first fan drive circuit 3822, the output terminal of the first fan drive circuit 3822 is electrically connected to the control terminal of the second inverter module 315, and the input terminal of the first fan drive circuit 3822 It is electrically connected with the control chip 3121; the second fan drive circuit 3832, the output terminal of the second fan drive circuit 3832 is electrically connected with the control terminal of the third inverter module 384, and the input terminal of the second fan drive circuit 3832 is connected with the control chip 3121 electrically connected.
  • the three-way valve driving circuit 3911, the first fan driving circuit 3822 and the second fan driving circuit 3832 are used to amplify the control signal sent by the air conditioner controller 312.
  • the air conditioner controller 312 may also include a first bus voltage detection circuit 3126, the input end of the first bus voltage detection circuit 3126 is electrically connected to the output end of the bridge rectifier circuit 3111, and the output end of the first bus voltage detection circuit 3126 is connected to the The control chip 3121 is electrically connected; the first bus voltage detection circuit 3126 can be arranged at both ends of E1 for real-time detection of the voltage at both ends of E1, and transmits the real-time detected voltage at both ends of E1 to the control chip 3121; including the second The bus voltage detection circuit 3127, the input end of the second bus voltage detection circuit 3127 is electrically connected to the output end of the power receiving voltage regulating circuit 3112, and the output end of the second bus voltage detection circuit 3127 is electrically connected to the control chip 3121; wherein, The second bus voltage detection circuit 3127 can be arranged at both ends of E2 for real-time detection of the voltage at both ends of E1, and transmits the real-time detected voltage at both ends of E2 to the control chip 3121; and includes
  • a resistor R1 may also be included.
  • the resistor R1 is arranged between the eighth power device Q8 and the second filter capacitor E2.
  • the input terminal of the bus current detection circuit 312B is electrically connected to the resistor R1.
  • the output terminal is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R1 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R1 exceeds the set current, the power device can be controlled Q5, Q6, Q7, Q8 and the first inductance L1 are turned on and off to reduce the current passing through the resistor R1, so that the reduced current is not greater than the set current, so as to realize the protection of the power receiving voltage regulating circuit 3112 and reduce the power receiving The probability of damage to the voltage regulating circuit 3112 due to excessive current.
  • the air conditioner 300 can also include a battery pack 320
  • the control device 310 may also include a charging and discharging voltage regulating circuit 313, one end of the charging and discharging voltage regulating circuit 313 is electrically connected to the output end of the bridge rectifier circuit 3111 and the input end of the power receiving voltage regulating circuit 3112, and the charging and discharging voltage regulating circuit The other end of 313 is electrically connected to the battery pack 320; when the battery pack 320 is required to supply power to the load of the air conditioner 300, the electric energy released by the battery pack 320 is processed by the charging and discharging voltage regulating circuit 313 for DC-DC conversion voltage regulation conversion , and then go through the electrical voltage regulation circuit 3112 to perform the voltage regulation processing of DC-DC conversion, and supply the electric energy after the voltage regulation processing to at least one load of the air
  • the electric energy received by the receiving coil Lr1 is rectified by the bridge rectifier circuit 3111 for AC-DC conversion, and then by the charge-discharge voltage regulator circuit 313 for DC-DC conversion.
  • the battery pack 320 is charged.
  • the charging and discharging voltage regulating circuit 313 is used to convert the electric energy output by the bridge rectifier circuit 3111 and store the converted electric energy in the battery pack 320, or convert the electric energy released by the battery pack 320 and output it to the receiving Voltage regulation circuit 3112; power receiving and voltage regulation circuit 3112 performs boost processing on the electric energy output by charge and discharge voltage regulation circuit 313, and supplies to the input terminal of the first inverter module 314, the second inverter module 315 and the third inverter module 384 transmission.
  • the charging and discharging voltage regulating circuit 313 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the charging and discharging voltage regulating circuit 313 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the inverter module 315 is electrically connected to the third inverter module 384 .
  • the charging and discharging voltage regulating circuit 313 may be a charging and discharging voltage regulating circuit 313 composed of a ninth power device Q9, a second inductor L2, a tenth power device Q10 and a third filter capacitor E3.
  • the negative electrode of the third filter capacitor E3 is grounded, and the ninth power device Q9 and the tenth power device Q10 are switched on and off to realize boosting or stepping down processing.
  • the air conditioner controller 312 may also include a charging and discharging driving circuit 312A, the input terminal of the charging and discharging driving circuit 312A is electrically connected to the control chip 3121, and the output terminal of the charging and discharging driving circuit 312A is connected to the control chip 3121.
  • the control terminals of each power device Q9 and Q10 in the power receiving and voltage regulating circuit 3112 are electrically connected, so as to control the on-off of the power devices Q9, Q10 and the second inductor L2.
  • the air conditioner controller 312 can also include a charge and discharge current detection circuit 3128, the input end of the charge and discharge current detection circuit 3128 is electrically connected to the charge and discharge voltage regulating circuit 313, and the output end of the charge and discharge current detection circuit 3128 is connected to the The control chip 3121 is electrically connected; wherein, the charging and discharging current detection circuit 3128 can be set at both ends of E3, for real-time detection of the voltage at both ends of E3, and transmits the real-time detected voltage at both ends of E3 to the control chip 3121; battery voltage The detection circuit 3129 , the input end of the battery voltage detection circuit 3129 is electrically connected to the charging and discharging voltage regulation circuit 313 , and the output end of the battery voltage detection circuit 3129 is electrically connected to the control chip 3121 .
  • a resistor R2 may also be included.
  • the resistor R2 is arranged between the tenth power device Q10 and the third filter capacitor E3.
  • the input terminal of the battery voltage detection circuit 3129 is electrically connected to the resistor R2.
  • the output end is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R2 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R2 exceeds the set current, the power device can be controlled Q9, Q10 and the second inductance L2 are turned on and off to reduce the current passing through the resistor R2, so that the reduced current is not greater than the set current, thereby realizing the protection of the charge and discharge current detection circuit 3128 and reducing the charge and discharge current detection circuit 3128 The probability of damage due to excessive current flow.
  • the set current can be set manually or by the air conditioner 300 itself, or it can be set according to actual needs.
  • control device 310 can also include an adaptive voltage regulation circuit 388, one end of the adaptive voltage regulation circuit 388 is electrically connected to the output end of the power receiving voltage regulation circuit 3112, and the other end is connected to the output end of the energy discharge control switch respectively.
  • the valve 385, the second solenoid valve 386, the compressor 377, the first fan motor 3821 and the second fan motor 3831 are powered, the DC-DC conversion voltage regulation processing is performed through the adaptive voltage regulation circuit 388, and the voltage regulation processing
  • the electric energy supplies power to the three-way valve 391, the first solenoid valve 385, the second solenoid valve 386, the compressor 377, the first fan motor 3821 and the second fan motor 3831, so that the voltage regulation process through the adaptive voltage regulation circuit 388
  • the final voltage matches the voltage required by each component in the three-way valve 391 , the first solenoid valve 385 , the second solenoid valve 386 , the compressor 377 , the first fan motor 3821 and the second fan motor 3831 .
  • the adaptive voltage regulation circuit 388 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit. In practical applications, the adaptive voltage regulation circuit 388 may not be provided.
  • the adaptive voltage regulation circuit 388 may be a voltage regulation circuit composed of the eleventh power device 11, the third inductor L3 and the fourth filter capacitor E4, wherein the fourth filter capacitor E4 The negative electrode is grounded, and the eleventh power device 11 is turned on and off, so as to realize step-down processing.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • the display device 390 is electrically connected to the control device 310, and can display the charging information of the battery pack 320, and fan operation information such as the gear position and wind speed of the first fan 382 and the second fan 383, and can also display the cooling temperature of the air conditioner 300. Along with temperature information such as indoor temperature, the operation information of the air conditioner 300 such as cooling, ventilation and dehumidification is also displayed.
  • the display device 390 may be a display screen such as LED and LCD.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device that wirelessly transmits power to the air conditioner 300 to The external power supply device controlling wireless power transmission to the air conditioner 300 is in a standby or energy transmitting state.
  • the air conditioner communication module 316 may be wireless communication modules such as Bluetooth, signal carrier, infrared transmitting and receiving modules, and the like.
  • the air conditioner 300 has multiple operation modes.
  • the first operation mode of the air conditioner 300 is the cooling operation mode, which specifically includes: After the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for the The compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve switch circuit 3861 supply power, if the converted demand voltage is higher than the compressor 377, the first fan motor 3821, the second fan motor 3831 and The operating voltage of the second solenoid valve switch circuit 3861, such as +VFM, needs to be stepped down by the adaptive voltage regulating circuit 388 to provide the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve switch circuit.
  • the condenser 378, throttling part 381, second electromagnetic valve 386 and evaporator 379 of the refrigeration circuit return to the compressor 377, wherein when the refrigerant flows through the condenser 378, the second fan 383 makes the air flow through the condensing
  • the evaporator 378 performs heat exchange on the refrigerant to achieve refrigeration; and when the heat-exchanged refrigerant flows through the evaporator 379, the first fan 382 makes air flow through the evaporator 379 to dissipate heat from the refrigerant.
  • the second operation mode is specifically the cold storage operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for the compressor 377 , the first blower motor 3821, the second blower motor 3831 and the first solenoid valve 385 switch for power supply, if the converted demand voltage is higher than the compressor 377, the first blower motor 3821, the second blower motor 3831 and the first solenoid valve
  • the operating voltage of the 385 switch such as +VFM, needs to be stepped down by the adaptive voltage regulating circuit 388 to supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the first solenoid valve switch circuit 3851.
  • the condenser 378, the throttling part 381, the first electromagnetic valve 385, the energy storage device 373 and the three-way valve 391 of the circuit return to the compressor 377, wherein, when the refrigerant flows through the condenser 378, it passes through the second fan 383 Make the air flow through the condenser 378 to exchange heat for the refrigerant, and then store the phase change material in the energy storage device 373 through the heat exchanged refrigerant, so as to realize the effect of cold storage for the energy storage device 373; Start the second fan 383 to directly transfer the refrigerant flowing through the condenser 378 to the energy storage device 373 through the throttling component 381 and the first solenoid valve 385 to store cold in the energy storage device 373 .
  • the third operation mode is specifically the simultaneous operation mode of refrigeration and cold storage, including: after the wireless receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, it is converted into a required voltage such as +VDC2 after being regulated by the wireless power receiving module 311 Supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861, if the converted demand voltage is higher than that of the compressor 377 and the first fan motor
  • the operating voltages of the motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861, such as +VFM, need to be stepped down by the adaptive voltage regulating circuit 388 to the compressor 377, the second solenoid valve switch circuit 3861, etc.
  • the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861 supply power.
  • the compressor 377 when the compressor 377 is working normally, after the refrigerant flows out from the compressor 377, since the first electromagnetic valve 385 is in a conduction state, the refrigerant flows through the four-way valve 389, the condenser 378, the The throttling component 381 , the first electromagnetic valve 385 , the energy storage device 373 and the three-way valve 391 return to the compressor 377 to store cold on the energy storage device 373 .
  • the second electromagnetic valve 386 is in the conduction state, the refrigerant flowing out from the compressor 377 flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the The compressor 377 realizes the refrigeration function, and then can realize the simultaneous operation of cold storage and refrigeration.
  • the fourth operation mode is specifically the cooling operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 to discharge the energy
  • the control switch 319 and the first fan motor 3821 supply power. If the converted demand voltage is higher than the operating voltage of the energy discharge control switch 319 and the first fan motor 3821, such as +VFM, it needs to be stepped down by the adaptive voltage regulation circuit 388 Finally, power is supplied to the energy-discharging control switch 319 and the first fan motor 3821.
  • the refrigerant of the compressor 377 enters the energy storage device 373 through the three-way valve 391, so that the energy storage device 373
  • the cooling capacity will flow into the refrigerant, and then flow through the three-way valve 391, evaporator 379, compressor 377, condenser 378, throttling component 381 and first electromagnetic valve 385 of the energy discharge pipeline in sequence, and then return to the energy storage device 373 , wherein, when the refrigerant carrying the cooling capacity of the phase change material in the energy storage device 373 flows through the evaporator 379, the air passes through the first fan 382 to make the air flow through the evaporator 379 to realize the cooling effect, because at this time it is passed through
  • the energy storage device 373 and the refrigerant of the compressor 377 are refrigerated together, and the refrigerating efficiency is higher, which is suitable for use under high temperature or high cooling capacity
  • the compressor 377 can be started, so that the refrigerant in the compressor 377 passes through the three-way valve 391 enters the energy storage device 373, so that the refrigerant carries the cold storage in the energy storage device 373, and then flows through the three-way valve 391, evaporator 379, compressor 377, condenser 378, and throttling component 381 of the energy discharge pipeline in sequence and the first electromagnetic valve 385, and then return to the energy storage device 373 to realize the cooling function, which is suitable for use under the condition of high temperature or high cooling capacity output; it can also realize the simultaneous operation of refrigeration and cold storage, so that the air conditioner 300 has more
  • the operating mode is convenient for users to choose, making the user experience better.
  • the air conditioner 300 since the air conditioner 300 is provided with a receiving coil Lr1, it can receive the electromagnetic energy transmitted by the wireless charger, and then convert it into electrical energy for the operation of the air conditioner 300. At this time, the air conditioner 300 can work without being connected to the power grid. , can be used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is better.
  • the air conditioner 300 is provided with a battery pack 320
  • the battery pack 320 can be used to supply power to the air conditioner 300 so that the air conditioner 300 can operate normally without connecting to the power grid.
  • the battery pack 320 carried by the 300 can make the air conditioner 300 work, and can be further used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is further improved.
  • the compressor 377 communicates with the energy storage device 373, and the energy storage device 373 communicates with the evaporator 379 through the energy carrying circuit 375,
  • the condenser 378 communicates with the evaporator 379, and the energy carrying circuit 375 is provided with a three-way valve 391, the compressor 377 and the three-way valve 391 are electrically connected with the control device 310, and the control device 310 is used to control the compressor 377 and the three-way valve 391 runs.
  • control device 310 can control the operating parameters of the compressor 377 and control the on-off of each channel of the three-way valve 391 and the like.
  • the phase change material installed in the energy storage device 373 can be, for example, inorganic PCM, organic PCM, composite PCM, etc., and can store heat or cold for the phase change material in the energy storage device 373, which is not specifically limited in this specification.
  • the air conditioner 300 may further include a four-way valve 389, the four-way valve 389 communicates with the compressor 377, the condenser 378, the evaporator 379 and the energy storage device 373 respectively, and the four-way valve 389 communicates with the control device 310 electrical connection.
  • the energy-carrying circuit 375 is provided with a three-way valve 391, and the three-way valve 391 is arranged between the energy storage device 373 and the evaporator 379, and the energy of the energy storage device 373 is controlled to flow through the energy-carrying device sequentially through the three-way valve 391.
  • the energy storage device 373 After the evaporator 379 , the four-way valve 389 , the compressor 377 and the condenser 378 of the circuit 375 , it is returned to the energy storage device 373 .
  • a cold storage phase change material or a heat storage phase change material may be provided in the energy storage device 373 .
  • control device 310 can control the first channel and the third channel of the three-way valve 391 to be connected, and the second channel to be disconnected. At this time, the phase change material of the energy storage device 373 will be driven to pass through the first channel. And the third channel is transmitted to the evaporator 379, and then flows through the four-way valve 389, the compressor 377 and the condenser 378 of the energy-carrying circuit 375, and then returns to the energy storage device 373, and the energy storage can be made by the three-way valve 391 The phase change material of the device 373 flows through the evaporator 379 to exchange heat with the outside air, thereby realizing cooling.
  • the compressor 377 communicates with the energy storage device 373 through an energy storage circuit, wherein the energy storage circuit is provided with a first solenoid valve 385, and the first solenoid valve 385 is arranged between the energy storage device 373 and the condenser 378 , when the four-way valve 389 is in the first state (the air conditioner 300 is in the cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the first solenoid valve 385, The energy storage device 373 and the three-way valve 391 are transmitted back to the compressor 377 through the four-way valve 389 , so that the energy storage device 373 can store cold.
  • the energy storage circuit is provided with a first solenoid valve 385
  • the first solenoid valve 385 is arranged between the energy storage device 373 and the condenser 378 , when the four-way valve 389 is in the first state (the air conditioner 300 is
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the three-way valve 391, the energy storage The device 373 , the first electromagnetic valve 385 and the condenser 378 are transmitted back to the compressor 377 through the four-way valve 389 , so as to store heat in the energy storage device 373 .
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, and the four-way The valve 389 is in the first state (the air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the second solenoid valve 386 and the evaporator 379, Then it is sent back to the compressor 377 through the four-way valve 389, so as to realize refrigeration or dehumidification.
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, The second electromagnetic valve 386 and the condenser 378 are transmitted back to the compressor 377 through the four-way valve 389, thereby realizing the heating function.
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigeration circuit can also be independent circuits, that is, the common pipeline 387 is not included.
  • a throttling component 381 can be set in the energy storage circuit.
  • the throttling component 381 is arranged between the condenser 378 and the second A throttling part 381 is set between the solenoid valve 385 and the refrigeration circuit.
  • the throttling part 381 is arranged between the condenser 378 and the second solenoid valve 386 to realize throttling and pressure reduction through the throttling part 381 Purpose.
  • the air conditioner 300 can also include a first fan 382, which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the condenser 378, wherein the control device 310 is electrically connected with the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 And the control of the second fan 383, for example, the gear position and wind speed of the first fan 382 can be controlled, and the gear position and wind speed of the second fan 383 can also be controlled.
  • a first fan 382 which is arranged opposite to the evaporator 379, and the operation of the first fan 382 is used to drive the air flow at the position of the evaporator 379; 378 is oppositely arranged, and the operation of the second fan 383 is used to drive the air flow at the position of the
  • the air conditioner 300 is in the cooling mode or dehumidification mode at this time
  • the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, and the throttling member 381 in sequence.
  • the second electromagnetic valve 386 and the evaporator 379 and then return to the compressor 377 through the four-way valve 389, so as to realize cooling or dehumidification.
  • the second fan 383 makes the air flow through the condenser 378 to exchange heat for the refrigerant to achieve cooling or dehumidification; and when the heat-exchanged refrigerant flows through the evaporator 379, The first blower 382 makes the air flow through the evaporator 379 to dissipate the refrigerant.
  • the air conditioner 300 when the four-way valve 389 is in the second state (the air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, and the second solenoid valve in sequence. 386, the throttling component 381 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heating function.
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the air conditioner 300 when the four-way valve 389 is in the first state (the air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the throttle The flow part 381, the first electromagnetic valve 385, the energy storage device 373 and the three-way valve 391 are transmitted back to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the energy storage device 373.
  • the first channel and the second channel of the three-way valve 391 are connected so that the refrigerant flows from the compressor 377 After flowing out, it flows through the four-way valve 389, the three-way valve 391, the energy storage device 373, the first solenoid valve 385, the throttling component 381 and the condenser 378 in sequence, and then returns to the compressor 377 through the four-way valve 389, thereby Realize heat storage to the energy storage device 373 .
  • the air conditioner 300 may also include a receiving coil Lr1 for receiving the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device; the control device 310 is electrically connected with the receiving coil Lr1 for converting the electric energy received by the receiving coil Lr1 into The electric energy supplied by the air conditioner 300 .
  • the receiving coil Lr1 may be a one-way receiving coil Lr1 or a two-way receiving coil Lr1 or the like.
  • the receiving coil Lr1 after the receiving coil Lr1 receives the electric energy wirelessly transmitted by the wireless charging device or the wireless energy storage device, it transmits the electric energy to the control device 310, and the control device 310 converts the electric energy received by the receiving coil Lr1 into
  • the electric energy matched by the air conditioner 300 may be voltage matching and/or current matching, etc., so as to reduce the probability of damage to the air conditioner 300 due to low electric energy matching when the electric energy received by the receiving coil Lr1 directly supplies power to the air conditioner 300 .
  • the air conditioner 300 may further include a battery pack 320, and the control device 310 is electrically connected to the battery pack 320, and is used to convert the electric energy received by the receiving coil Lr1 into electric energy stored in the battery pack 320, or convert the electric energy of the battery
  • the electric energy released by the battery pack 320 is converted into electric energy for power supply to the air conditioner 300 , and the electric energy conversion is performed by the control device 310 to reduce the probability of damage to the battery pack 320 and the components of the air conditioner 300 due to low power matching.
  • the driving motors of the first fan 382 and the second fan 383 can also refer to the specific description of the driving motors of the first fan 382 and the second fan 383 in Embodiment 1, and for the sake of brevity of the description, details are not repeated here.
  • the first fan 382 is driven by the first fan motor 3821
  • the second fan 383 is driven by the second fan motor 3831
  • the fan motors 3831 are electrically connected to the control device 310, and the first fan motor 3821 and the second fan motor 3831 are controlled by the control device 310 to control the start-stop and working power of the first fan motor 3821 and the second fan motor 3831 , so as to realize the control of the gears and rotating speeds of the first fan 382 and the second fan 383 .
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • control device 310 can also be connected with the compressor 377, the display device 390, the first solenoid valve 385, the second solenoid valve 386, the three-way valve 391, the four-way valve 389, the receiving coil Lr1 and the battery pack 320 respectively. Electrically connected, so as to control the compressor 377, the first solenoid valve 385, the second solenoid valve 386, the three-way valve 391, the four-way valve 389 and the battery pack 320, and the control device 310 can also obtain the charging information and Information such as temperature information is sent to the display device 390 for display. It can also respond to the user's operation request on the display device 390, and control the air conditioner 300 according to the operation request.
  • the air conditioner 300 is controlled to perform heating and the maximum heating temperature is set to 26°C.
  • the control device 310 is electrically connected with the receiving coil Lr1 and the battery pack 320 respectively, and is used for converting the electric energy received by the receiving coil Lr1 into the electric energy stored in the battery pack 320, or converting the electric energy released by the battery pack 320 into the air conditioner 300 electrical energy for power supply.
  • the control device 310 is electrically connected with the four-way valve 389 and can control the conduction pipeline in the four-way valve 389 to control the current state of the four-way valve 389 to be the first state or the second state.
  • the control device 310 is connected with the three-way valve 391 and is used to control the opening and closing of the channel in the three-way valve 391 .
  • the control device 310 includes an air conditioner controller 312; an energy discharge control switch 319, which is electrically connected to the air conditioner controller 312, is used to control the operation of the three-way valve 391 under the drive of the air conditioner controller 312, so as to discharge the energy
  • the energy stored in the energy device 373 is sent to the evaporator 379 through the energy storage circuit and the three-way valve 391.
  • the energy discharge control switch 319 is a circuit including switching elements, one end is electrically connected to the three-way valve 391 , and the other end is electrically connected to the air conditioner controller 312 .
  • the air conditioner controller 312 may also include a three-way valve drive circuit 3911, the input end is electrically connected to the air conditioner controller 312, and the output end is electrically connected to the energy discharge control switch 319, which is used to pass the air conditioner controller 312 And discharge energy control switch 319 to drive the on-off of the channel of three-way valve 391 .
  • the three-way valve drive circuit 3911 is used to amplify the control signal sent by the air conditioner controller 312 , so as to output the amplified control information to the energy discharge control switch 319 .
  • the four-way valve 389 is electrically connected to the air conditioner controller 312 for controlling the conduction pipeline in the four-way valve 389 so as to control the current state of the four-way valve 389 to be the first state or the second state.
  • control device 310 may further include a first inverter module 314 for electrically connecting the compressor 377 and electrically connecting with the air conditioner controller 312, and the first inverter module 314 is used for controlling the air conditioner controller 312 Under the drive of control compressor 377 operation.
  • the control device 310 can also include a second inverter module 315 for electrically connecting the first fan 382, and the air conditioner control
  • the second inverter module 315 controls the operation of the first fan 382 based on the driving of the air conditioner controller 312, so that the first fan 382 flows air through the evaporator 379 to achieve heat exchange
  • the third inverter module 384 that is electrically connected to the second fan 383 is electrically connected to the air conditioner controller 312.
  • the third inverter module 384 controls the operation of the second fan 383 based on the drive of the air conditioner controller 312, so that the second fan 383 Air is passed through condenser 378 for heat exchange.
  • the first inverter module 314 can adopt IPM (Intelligent Power Module, intelligent power device) 1 power device
  • the second inverter module 315 can adopt IPM2 power device
  • the third inverter module 384 can use IMP3 power devices, or more simply, can use other types of transistors to replace, to control whether the compressor 377, the first fan motor 3821 and the second fan motor 3831 are running, without controlling the compressor 377, the first fan motor 3831 Specific operating parameters when the first fan motor 3821 and the second fan motor 3831 are running.
  • the control device 310 can also include a first solenoid valve switch circuit 3851, which is electrically connected to the air conditioner controller 312, and is used for controlling the air conditioner controller 312.
  • the first solenoid valve 385 is controlled to be turned on and off under driving;
  • the second solenoid valve switch circuit 3861 is electrically connected to the air conditioner controller 312 for controlling the second solenoid valve 386 to be turned on and off under the drive of the air conditioner controller 312 .
  • the first solenoid valve switch circuit 3851 is a circuit that includes a switch element
  • the second solenoid valve switch circuit 3861 is a circuit that includes a switch element, and the switch element in the first solenoid valve switch circuit 3851
  • the first solenoid valve 385 is energized, thereby controlling the conduction of the first solenoid valve 385, so that the refrigerant output from the condenser 378 can enter the energy storage device 373 through the first solenoid valve 385 and the energy storage circuit
  • the switching element of a solenoid valve switch circuit 3851 is turned on, the first solenoid valve 385 is not energized, so that the first solenoid valve 385 is controlled to be disconnected, so that the refrigerant output by the condenser 378 cannot pass through the first solenoid valve 385
  • the switching element of the second solenoid valve switch circuit 3861 is closed, the second solenoid valve 386 is energized, thereby controlling the conduction of the second solenoid valve 386
  • the control device 310 may also include a wireless power receiving module 311 for electrically connecting the receiving coil Lr1, electrically connected to the air conditioner controller 312, and the wireless power receiving module 311 is used for converting and processing wireless transmission under the drive of the air conditioner controller 312. electrical energy.
  • the input end of the wireless power receiving module 311 is electrically connected to the receiving coil Lr1
  • the output end of the wireless power receiving module 311 is electrically connected to the compressor 377 through the first inverter module 314, and the first inverter module 314 is also electrically connected to the air conditioner controller 312, so that the first inverter module 314 controls the operation of the compressor 377 under the drive of the air conditioner controller 312 and the power supply of the wireless power receiving module 311, so that the refrigerant output of the compressor 377 To the condenser 378 or the energy storage device 373.
  • the output end of the wireless power receiving module 311 is electrically connected to the first fan motor 3821 through the second inverter module 315, and the second inverter module 315 is also electrically connected to the air conditioner controller 312, so that the second inverter module 315 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the first fan motor 3821 to drive the first fan 382 to work.
  • the output end of the wireless power receiving module 311 is electrically connected to the second fan motor 3831 through the third inverter module 384, and the third inverter module 384 is also electrically connected to the air conditioner controller 312, so that the third inverter module 384 is driven by the air conditioner controller 312 and powered by the wireless power receiving module 311 to control the second fan motor 3831 to drive the second fan 383 to work.
  • the wireless power receiving module 311 includes: a bridge rectifier circuit 3111 and a power receiving voltage regulating circuit 3112, wherein the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1.
  • the AC input end of the bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1, and rectifies the electric energy received by the receiving coil Lr1.
  • the input terminal of the power receiving and regulating circuit 3112 is electrically connected to the output terminal of the bridge rectifier circuit 3111, the output terminal of the power receiving and regulating circuit 3112 is connected to the input terminal of the first inverter module 314 and the input of the second inverter module 315
  • the terminals are electrically connected, and the power receiving and voltage regulating circuit 3112 is used to step down the electric energy output by the bridge rectifier circuit 3111, and transmit power to the input terminal 343 of the first inverter module 314 and the second inverter module 315 .
  • the bridge rectifier circuit 3111 is used to perform AC-DC conversion of the electric energy received by the receiving coil Lr1 into a DC bus voltage +VDC1; After conversion (boosting or bucking), it becomes the DC bus voltage +VDC2 required by the first inverter module 314 , the second inverter module 315 and the third inverter module 384 .
  • the bridge rectifier circuit 3111 may include a resonant capacitor C, a bridge rectifier, and a first filter capacitor E1, and one end of the resonant capacitor C is electrically connected to an AC input of the bridge rectifier.
  • the other end of the resonant capacitor C is electrically connected to one end of the receiving coil Lr1, and the other AC input end of the bridge rectifier is electrically connected to the other end of the receiving coil Lr1.
  • the two DC output ends of the bridge rectifier are electrically connected to the positive and negative poles of the first filter capacitor E1 correspondingly, and the negative pole of the first filter capacitor E1 is grounded.
  • the bridge rectifier may be any hardware topology among full bridge synchronous rectifier, half bridge synchronous rectifier and uncontrolled rectifier.
  • the bridge rectifier may be a full bridge synchronous rectifier including a first power device Q1 , a second power device Q2 , a third power device Q3 and a fourth power device Q4 .
  • Q1, Q2, Q3, and Q4 can be any one of IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), MOS transistor, triode, etc.
  • the air conditioner controller 312 includes: a control chip 3121;
  • the rectification circuit 3111 is electrically connected.
  • the gate control terminal of each power device in the bridge rectifier of the rectification drive circuit 3122 is electrically connected to control the on-off of Q1, Q2, Q3, and Q4.
  • the voltage receiving and regulating circuit 3112 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the power receiving and voltage regulating circuit 3112 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the transformer module 315 is electrically connected.
  • the power receiving and voltage regulating circuit 3112 may be composed of the fifth power device Q5, the first inductor L1, the sixth power device Q6, the seventh power device Q7, the eighth power device Q8 and the second The buck-boost multiplexing circuit formed by the filter capacitor E2, wherein the negative electrode of the second filter capacitor E2 is grounded, and is switched on and off through the fifth power device Q5, the sixth power device Q6, the seventh power device Q7 and the eighth power device Q8, Realize step-up processing or step-down processing.
  • the air conditioner controller 312 may further include: a voltage regulating driving circuit 3413, the input terminal of the voltage regulating driving circuit 3413 is electrically connected to the control chip 3121, and the output terminal of the voltage regulating driving circuit 3413 It is electrically connected to the control terminal of each power device Q5, Q6, Q7 and Q8 in the power receiving and voltage regulating circuit 3112, so as to control the on-off of the power device Q5, Q6, Q7, Q8 and the first inductor L1.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device for wireless power transmission to the air conditioner 300, so as to control the wireless power transmission to the air conditioner 300
  • the external power supply device is in standby or energy transmitting state.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • it can be electrically connected to the output end of the bridge rectifier circuit 3111 or the output end of the power receiving and voltage regulating circuit 3112, and the DC bus voltage +VDC1 or the DC bus voltage +VDC2 can be stepped down to obtain the display device 390 The required voltage supplies power to the display device 390 .
  • the air conditioner controller 312 may further include a first fan drive circuit 3822, the output terminal of the first fan drive circuit 3822 is electrically connected to the control terminal of the second inverter module 315, and the input terminal of the first fan drive circuit 3822 It is electrically connected with the control chip 3121; the second fan drive circuit 3832, the output terminal of the second fan drive circuit 3832 is electrically connected with the control terminal of the third inverter module 384, and the input terminal of the second fan drive circuit 3832 is connected with the control chip 3121 electrically connected.
  • the three-way valve driving circuit 3911 , the first fan driving circuit 3822 and the second fan driving circuit 3832 are used to amplify the control signal sent by the air conditioner controller 312 .
  • the air conditioner controller 312 may also include a first bus voltage detection circuit 3126, the input end of the first bus voltage detection circuit 3126 is electrically connected to the output end of the bridge rectifier circuit 3111, and the output end of the first bus voltage detection circuit 3126 is connected to the The control chip 3121 is electrically connected; the first bus voltage detection circuit 3126 can be arranged at both ends of E1 for real-time detection of the voltage at both ends of E1, and transmits the real-time detected voltage at both ends of E1 to the control chip 3121; including the second The bus voltage detection circuit 3127, the input end of the second bus voltage detection circuit 3127 is electrically connected to the output end of the power receiving voltage regulating circuit 3112, and the output end of the second bus voltage detection circuit 3127 is electrically connected to the control chip 3121; wherein, The second bus voltage detection circuit 3127 can be arranged at both ends of E2 for real-time detection of the voltage at both ends of E1, and transmits the real-time detected voltage at both ends of E2 to the control chip 3121; and includes
  • a resistor R1 may also be included.
  • the resistor R1 is arranged between the eighth power device Q8 and the second filter capacitor E2.
  • the input terminal of the bus current detection circuit 312B is electrically connected to the resistor R1.
  • the output terminal is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R1 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R1 exceeds the set current, the power device can be controlled Q5, Q6, Q7, Q8 and the first inductance L1 are turned on and off to reduce the current passing through the resistor R1, so that the reduced current is not greater than the set current, so as to realize the protection of the power receiving voltage regulating circuit 3112 and reduce the power receiving The probability of damage to the voltage regulating circuit 3112 due to excessive current.
  • the air conditioner 300 can also include a battery pack 320
  • the control device 310 may also include a charging and discharging voltage regulating circuit 313, one end of the charging and discharging voltage regulating circuit 313 is electrically connected to the output end of the bridge rectifier circuit 3111 and the input end of the power receiving voltage regulating circuit 3112, and the charging and discharging voltage regulating circuit The other end of 313 is electrically connected to the battery pack 320; when the battery pack 320 is required to supply power to the load of the air conditioner 300, the electric energy released by the battery pack 320 is processed by the charging and discharging voltage regulating circuit 313 for DC-DC conversion voltage regulation conversion , and then go through the electrical voltage regulation circuit 3112 to perform the voltage regulation processing of DC-DC conversion, and supply the electric energy after the voltage regulation processing to at least one load of the
  • the electric energy received by the receiving coil Lr1 is rectified by the bridge rectifier circuit 3111 for AC-DC conversion, and then by the charge-discharge voltage regulator circuit 313 for DC-DC conversion.
  • the battery pack 320 is charged.
  • the charging and discharging voltage regulation circuit 313 is used to convert the electric energy output by the bridge rectifier circuit 3111 and store the converted electric energy in the battery pack 320, or convert the electric energy released by the battery pack 320 and output it to the power receiving voltage regulating circuit 3112
  • the power receiving and voltage regulating circuit 3112 boosts the electric energy output by the charging and discharging voltage regulating circuit 313, and transmits power to the input terminal of the first inverter module 314, the second inverter module 315 and the third inverter module 384.
  • the charging and discharging voltage regulating circuit 313 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit.
  • the charging and discharging voltage regulating circuit 313 may not be provided, that is, the wireless power receiving module 311 only has a bridge rectifier circuit 3111, and the output terminal of the bridge rectifier circuit 3111 is directly connected to the first inverter module 314 and the second inverter module 311.
  • the inverter module 315 is electrically connected to the third inverter module 384 .
  • the charging and discharging voltage regulating circuit 313 may be a charging and discharging voltage regulating circuit 313 composed of a ninth power device Q9, a second inductor L2, a tenth power device Q10 and a third filter capacitor E3.
  • the negative electrode of the third filter capacitor E3 is grounded, and the ninth power device Q9 and the tenth power device Q10 are switched on and off to realize boosting or stepping down processing.
  • the air conditioner controller 312 may also include a charging and discharging driving circuit 312A, the input terminal of the charging and discharging driving circuit 312A is electrically connected to the control chip 3121, and the output terminal of the charging and discharging driving circuit 312A is connected to the control chip 3121.
  • the control terminals of each power device Q9 and Q10 in the power receiving and voltage regulating circuit 3112 are electrically connected, so as to control the on-off of the power devices Q9, Q10 and the second inductor L2.
  • the air conditioner controller 312 can also include a charge and discharge current detection circuit 3128, the input end of the charge and discharge current detection circuit 3128 is electrically connected to the charge and discharge voltage regulating circuit 313, and the output end of the charge and discharge current detection circuit 3128 is connected to the The control chip 3121 is electrically connected; wherein, the charging and discharging current detection circuit 3128 can be set at both ends of E3, for real-time detection of the voltage at both ends of E3, and transmits the real-time detected voltage at both ends of E3 to the control chip 3121; battery voltage The detection circuit 3129 , the input end of the battery voltage detection circuit 3129 is electrically connected to the charging and discharging voltage regulation circuit 313 , and the output end of the battery voltage detection circuit 3129 is electrically connected to the control chip 3121 .
  • a resistor R2 may also be included.
  • the resistor R2 is arranged between the tenth power device Q10 and the third filter capacitor E3.
  • the input terminal of the battery voltage detection circuit 3129 is electrically connected to the resistor R2.
  • the output end is electrically connected with the control chip 3121, used to obtain the current passing through the resistor R2 in real time, and transmit it to the control chip 3121, when it is detected that the current passing through the resistor R2 exceeds the set current, the power device can be controlled Q9, Q10 and the second inductance L2 are turned on and off to reduce the current passing through the resistor R2, so that the reduced current is not greater than the set current, thereby realizing the protection of the charge and discharge current detection circuit 3128 and reducing the charge and discharge current detection circuit 3128 The probability of damage due to excessive current flow.
  • the set current can be set manually or by the air conditioner 300 itself, or it can be set according to actual needs.
  • control device 310 can also include an adaptive voltage regulation circuit 388, one end of the adaptive voltage regulation circuit 388 is electrically connected to the output end of the power receiving voltage regulation circuit 3112, and the other end is connected to the output end of the energy discharge control switch respectively.
  • the valve 385, the second solenoid valve 386, the compressor 377, the first fan motor 3821 and the second fan motor 3831 are powered, the DC-DC conversion voltage regulation processing is performed through the adaptive voltage regulation circuit 388, and the voltage regulation processing
  • the electric energy supplies power to the three-way valve 391, the first solenoid valve 385, the second solenoid valve 386, the compressor 377, the first fan motor 3821 and the second fan motor 3831, so that the voltage regulation process through the adaptive voltage regulation circuit 388
  • the final voltage matches the voltage required by each component in the three-way valve 391 , the first solenoid valve 385 , the second solenoid valve 386 , the compressor 377 , the first fan motor 3821 and the second fan motor 3831 .
  • the four-way valve 389 can be electrically connected to the air conditioner controller 312 through the adaptive voltage regulating circuit 388 and/or the wireless power receiving module 311 .
  • the adaptive voltage regulation circuit 388 may be a single boost circuit, a single buck circuit, or both a buck circuit and a boost circuit, or a buck-boost multiplexing circuit. In practical applications, the adaptive voltage regulation circuit 388 may not be provided.
  • the adaptive voltage regulation circuit 388 may be a voltage regulation circuit composed of the eleventh power device 11, the third inductor L3 and the fourth filter capacitor E4, wherein the fourth filter capacitor E4 The negative electrode is grounded, and the eleventh power device 11 is turned on and off, so as to realize step-down processing.
  • the air conditioner 300 can also include a display device 390, and the control device 310 can also include: an auxiliary power supply 317, electrically connected to the output end of the wireless power receiving module 311, for The voltage of the DC power output by the wireless power receiving module 311 is regulated, and the voltage-regulated DC power is provided to the display device 390 of the air conditioner 300 .
  • the display device 390 is electrically connected to the control device 310, and can display the charging information of the battery pack 320, and fan operation information such as the gear position and wind speed of the first fan 382 and the second fan 383, and can also display the cooling temperature of the air conditioner 300. Along with temperature information such as indoor temperature, the operation information of the air conditioner 300 such as cooling, ventilation and dehumidification is also displayed.
  • the display device 390 may be a display screen such as LED and LCD.
  • the air conditioner 300 includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used to communicate with an external power supply device that wirelessly transmits power to the air conditioner 300, so as to control wireless transmission to the air conditioner 300.
  • the external power supply device for power transmission is in standby or energy transmitting state.
  • the air conditioner communication module 316 may be wireless communication modules such as Bluetooth, signal carrier, infrared transmitting and receiving modules, and the like.
  • the air conditioner 300 has multiple operation modes.
  • the first operation mode of the air conditioner 300 is the cooling or heating operation mode, which specifically includes: after receiving the electromagnetic energy transmitted by the wireless charger, the receiving coil Lr1 is regulated by the wireless power receiving module 311 and converted into a required voltage such as +VDC2 supplies power to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve switch circuit 3861.
  • the operating voltage of the motor 3831 and the second solenoid valve switching circuit 3861 such as +VFM, needs to be stepped down by the adaptive voltage regulating circuit 388 and then supplied to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second solenoid valve.
  • the valve switch circuit 3861 supplies power.
  • the first fan motor is connected to the first fan 382
  • the second fan motor is connected to the second fan 383
  • the second solenoid valve switch circuit 3861 is connected to the second solenoid valve 386, so that the first fan 382, the second fan 383 and the compressor 377 work under the condition of power supply, and the second solenoid valve 386 conducts under the condition of power supply.
  • the first operation mode is the cooling operation mode
  • the first fan 382, the second fan 383 and the compressor 377 are operated under the condition of power supply
  • the second solenoid valve 386 is operated under the condition of power supply. Conduct conduction. It can be seen from this that when the compressor 377 is working normally and the four-way valve 389 is in the first state, after the refrigerant flows out from the compressor 377, the first solenoid valve 385 is not powered due to the conduction of the second solenoid valve 386.
  • the refrigerant flows through the condenser 378 of the refrigeration circuit, the throttling component 381, the second solenoid valve 386 and the evaporator 379 in sequence, and then returns to the compressor 377.
  • the refrigerant flows through the condenser 378, it passes through The second blower 383 makes the air flow through the condenser 378 to exchange heat for the refrigerant to achieve refrigeration;
  • the refrigerant dissipates heat.
  • the compressor 377 works normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out from the compressor 377, due to the second electromagnetic valve 386 leading
  • the first solenoid valve 385 is not powered and is in the off state
  • the refrigerant flows through the four-way valve 389, evaporator 379, second solenoid valve 386, throttling member 381 and condenser 378 of the refrigeration circuit in sequence, and then passes through Four-way valve 389 is passed back to compressor 377 .
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the second operation mode is specifically the cold storage or heat storage operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage such as +VDC2 for The compressor 377, the first fan motor 3821, the second fan motor 3831 and the first solenoid valve 385 are powered on and off, if the converted demand voltage is higher than the compressor 377, the first fan motor 3821, the second fan motor 3831 and the second fan motor 3831
  • the operating voltage of a solenoid valve 385 switch, such as +VFM needs to be stepped down by the adaptive voltage regulating circuit 388 to supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831 and the first solenoid valve switch circuit 3851 .
  • the compressor 377 when the second operation mode is the cold storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the first solenoid valve 385
  • the second solenoid valve 386 is disconnected without power supply, so that the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the condenser 378, the throttling component 381, the first solenoid valve 385 and the energy storage device 373 , and then return to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the energy storage device 373.
  • the second blower 383 makes the air flow through the condenser 378 to dissipate heat from the refrigerant, and then store the phase change material in the energy storage device 373 through the dissipated refrigerant.
  • the compressor 377 when the second operation mode is the thermal storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the second state, and the first channel and the second channel of the three-way valve 391 are connected, so, After the refrigerant flows out from the compressor 377, since the first solenoid valve 385 is turned on and the second solenoid valve 386 is not powered, the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, The three-way valve 391 , the energy storage device 373 , the first electromagnetic valve 385 , the throttling component 381 and the condenser 378 are transmitted back to the compressor 377 through the four-way valve 389 , so as to store heat on the energy storage device 373 .
  • the refrigerant flowing out from the compressor 377 stores heat in the phase change material in the energy storage device 373, and when the refrigerant after storing heat in the phase change material flows through the condenser 378, the second fan 383 makes the air flow through the condenser 378 , heat the refrigerant, and return it to the compressor 377 through the four-way valve 389 .
  • the third operation mode is specifically the simultaneous operation mode of cooling and cold storage or the simultaneous operation mode of heating and heat storage, including: after the wireless receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, the voltage is regulated by the wireless power receiving module 311 After that, it is converted into a demand voltage such as +VDC2 to supply power to the compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861.
  • a demand voltage such as +VDC2
  • the converted demand voltage Higher than the operating voltage of the compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861, such as +VFM, it needs to go through the adaptive voltage regulation circuit 388 After the pressure is reduced, power is supplied to the compressor 377, the first fan motor 3821, the second fan motor 3831, the first solenoid valve switch circuit 3851 and the second solenoid valve switch circuit 3861.
  • the compressor 377 when the third operation mode is the cooling and cold storage simultaneous operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the second solenoid valve 386 conducts, so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the condenser 378, the throttling member 381, the second solenoid valve 386 and the evaporator 379, and then returns to the compressor 377, thereby playing a cooling role.
  • the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the condenser 378, the throttle member 381, the first solenoid valve 385, the energy storage device 373 and the three-way valve.
  • the one-way valve 391 is transmitted back to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the energy storage device 373; in this way, the simultaneous operation of cooling and cold storage can be realized.
  • the compressor 377 when the third operation mode is specifically the simultaneous operation mode of heating and heat storage, the compressor 377 is working normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out of the compressor 377, due to the second electromagnetic
  • the valve 386 conducts so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, the second solenoid valve 386, the throttling component 381 and the condenser 378, and then returns to the compressor 377 through the four-way valve 389, thereby Realize the heating function.
  • the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the three-way valve 391, the energy storage device 373, the first electromagnetic valve 385, the throttling component 381 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the energy storage device 373.
  • the fourth operation mode is specifically the cooling operation mode or the heat release operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by the wireless charger, the wireless power receiving module 311 adjusts the voltage and converts it into a required voltage.
  • +VDC2 supplies power to the energy discharge control switch 319 and the first fan motor 3821. If the converted demand voltage is higher than the working voltage of the energy discharge control switch 319 and the first fan motor 3821, such as +VFM, it needs to be adapted and adjusted.
  • the circuit 388 supplies power to the energy discharge control switch 319 and the first fan motor 3821 after stepping down, because the first fan motor is connected to the first fan motor 382 .
  • the fourth operation mode is the cooling operation mode
  • the energy discharge control switch 319 since the energy discharge control switch 319 is connected to the three-way valve 391, when the energy discharge control switch 319 supplies power, the first channel and the second channel of the three-way valve 391 are controlled. The channel and the third channel are connected.
  • the refrigerant of the compressor 377 will flow through the energy storage device 373 through the second channel and the first channel of the three-way valve 391, so that the energy storage device 373
  • the cooling capacity is input into the refrigerant, and then flows through the three-way valve 391, the evaporator 379, the compressor 377, the condenser 378, the throttling part 381 and the first solenoid valve 385, and then returns to the energy storage device 373, Thereby, cooling is performed under the joint action of the compressor 377 and the energy storage device 373 .
  • this mode is usually used to defrost the condenser 378, and in this mode, the opening of the throttling component 381 reaches the maximum, so that the throttling effect is invalidated, and the control
  • the first channel and the second channel of the three-way valve 391 are connected, and the third channel is disconnected.
  • the refrigerant of the compressor 377 flows through the three-way valve 391
  • the energy storage device 373 so that the heat in the energy storage device 373 is input into the refrigerant, and then flows through the first electromagnetic valve 385, the throttling component 381 and the condenser 378 in sequence, and then returns to the energy storage through the four-way valve 389 device 373, so that heating is performed under the joint action of the compressor 377 and the energy storage device 373.
  • the compressor 377 can be started, so that the refrigerant in the compressor 377 passes through the three-way
  • the valve 391 enters the energy storage device 373, so that the refrigerant carries the cold storage in the energy storage device 373, and then flows through the three-way valve 391, evaporator 379, compressor 377, condenser 378, and throttling parts of the energy discharge pipeline in sequence.
  • the air conditioner 300 has more operation modes, which is convenient for users to choose and makes the user experience better.
  • the air conditioner 300 since the air conditioner 300 is provided with a receiving coil Lr1, it can receive the electromagnetic energy transmitted by the wireless charger, and then convert it into electrical energy for the operation of the air conditioner 300. At this time, the air conditioner 300 can work without being connected to the power grid. , can be used outdoors and other scenarios where it is inconvenient to connect to the mains power, so that the application scenarios of the air conditioner 300 are wider and the user experience is better.
  • the air conditioner 300 is provided with a battery pack 320
  • the battery pack 320 can be used to supply power to the air conditioner 300 so that the air conditioner 300 can operate normally without connecting to the power grid.
  • the battery pack 320 carried by the 300 can make the air conditioner 300 work, and can be further used outdoors and other scenarios where it is inconvenient to connect to the mains power, making the application scenarios of the air conditioner 300 wider and further improving user experience.
  • each functional unit may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the disclosed technical content can be realized in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of units or modules may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component as a control device may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present invention.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器的控制装置及空调器,所述空调器包括压缩机、冷凝器、蒸发器和蓄能装置,所述蓄能装置与所述蒸发器之间设置有载能回路,所述载能回路设置有放能驱动件,所述控制装置包括:空调控制器;放能控制开关,与所述空调控制器电性连接,用于在所述空调控制器的驱动下控制所述放能驱动件工作,以将所述蓄能装置中的能量通过所述载能回路和所述放能驱动件向所述蒸发器输送。本公开内容公开的一种空调器的控制装置及空调器,能够提供更多的运行方式,使得用户的体验更好。

Description

一种空调器的控制装置及空调器
相关申请的交叉引用
本申请要求于2021年10月22日提交,申请号为202111234333.7且名称为“一种空调器”,申请号为202122560447.2且名称为“一种空调器”,申请号为202111235994.1且名称为“一种空调器”,申请号为202122564090.5且名称为“一种空调器”,申请号为202111235999.4且名称为“一种空调器的控制装置”,以及申请号为202122560446.8且名称为“一种空调器的控制装置”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容涉及一种空调器的控制装置及空调器。
背景技术
本公开内容随着空调技术的飞速发展,使得家用空调的使用越来越频繁,不仅能够制冷还能制暖,在方便用户使用的同时使得用户的体验更好。
但是,现有的空调器均是使用压缩机、冷凝器和蒸发器进行制冷或制热,使得现有空调器的运行方式较为单一,从而亟需一种能够提供更多运行方式的空调器。
发明内容
本公开内容提供了一种空调器的控制装置及空调器,能够提供更多的运行方式,使得用户的体验更好。
在第一方面,本公开内容一种空调器的控制装置,所述空调器包括压缩机、冷凝器、蒸发器和蓄能装置,所述蓄能装置与所述蒸发器之间设置有载能回路,所述载能回路设置有放能驱动件,所述控制装置包括:空调控制器;放能控制开关,与所述空调控制器电性连接,用于在所述空调控制器的驱动下控制所述放能驱动件工作,以将所述蓄能装置中的能量通过所述载能回路和所述放能驱动件向所述蒸发器输送。
在第二方面,本公开内容提供了一种空调器,所述空调器包括如第一方面提供的控制装置,其中,所述空调器为无线空调器。
在一个或多个实施方式中,由于空调器中设置有蓄能装置,在蓄能装置的相变材料蓄能之后,可以通过载流剂泵使得蓄能装置的能量与载流剂进行热交换,使得携带了蓄能的载流剂通过载能回路传输至蒸发器,再回传至蓄能装置,以实现放冷或放热运行方式,还可以实现制冷和蓄冷同时运行方式,以及制热和蓄热同时运行方式,使得空调器具有更多的运行方式,方便用户选择,使得用户的体验更好。
附图说明
图1为依据本公开内容的一个或多个实施方式的空调器的第一种结构示意图;
图2为依据本公开内容的一个或多个实施方式的空调器中各个部件之间的第一种电路连接图;
图3为图2中的控制装置的第一种电路结构示意图;
图4为图2中的控制装置的第二种电路结构示意图;
图5为依据本公开内容的一个或多个实施方式的第二种电路结构的细化电路图;
图6为依据本公开内容的一个或多个实施方式的空调器的第二种结构示意图;
图7为依据本公开内容的一个或多个实施方式的空调器中各个部件之间的第二种电路连接图;
图8为图7中的控制装置的电路结构示意图;
图9为依据本公开内容的一个或多个实施方式的空调器的第三种结构示意图;
图10为依据本公开内容的一个或多个实施方式的空调器中各个部件之间的第三种电路连接图;
图11为图9中的控制装置的电路结构示意图;
图12为依据本公开内容的一个或多个实施方式的空调器的第四种结构示意图;
图13为依据本公开内容的一个或多个实施方式的空调器中各个部件之间的第四种电路连接图;
图14为图12中的控制装置的电路结构示意图。
具体实施方式
本公开内容一种空调器的控制装置,空调器包括压缩机、冷凝器、蒸发器和蓄能装置,蓄能装置与蒸发器之间设置有载能回路,载能回路设置有放能驱动件,控制装置包括:空调控制器;放能控制开关,与空调控制器电性连接,放能控制开关用于在空调控制器的驱动下控制放能驱动件工作,以将蓄能装置中的能量通过载能回路和放能驱动件向蒸发器输送。
本公开内容的空调器可以为制冷空调或制暖空调或冷暖空调,且空调器可以是无线空调器或者有线空调器,本说明书不作具体限制。
若放能驱动件为载流剂泵,且空调器为制冷空调时,如图1所示,压缩机377与蓄能装置373连通,蓄能装置373通过载能回路375与蒸发器379连通,冷凝器378与蒸发器379连通,载能回路375中设置有载流剂泵380,压缩机377和载流剂泵380分别与控制装置310电性连接,控制装置310用于控制压缩机377和载流剂泵380的启停。
在一些实施方式中,蓄能装置373中设置蓄冷相变材料例如可以是无机PCM、有机PCM和复合PCM等,可以对蓄能装置373中的相变材料进行蓄冷。
在一些实施方式中,载能回路375设置有载流剂泵380,载流剂泵380设置在蓄能装置373和蒸发器379之间,通过载流剂泵380控制蓄能装置373的蓄冷通过载能回路375传输至蒸发器379,再回传至蓄能装置373。此时,蓄能装置373中设置有蓄冷相变材料。
在一些实施方式中,控制装置310可以控制载流剂泵380启动,而载流剂泵380启动之后,会带动蓄能装置373的蓄冷与载流剂进行热交换,使得携带了蓄冷的载流剂通过载能回路375传输 至蒸发器379,再回传至蓄能装置37,通过载流剂泵380可以使得蓄能装置373的蓄冷通过载流剂流经蒸发器379,与外部空气进行换热,从而实现放冷。
在一些实施方式中,压缩机377通过蓄能回路与蓄能装置373连通,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在蓄能装置373和冷凝器378之间,如此,使得冷媒从压缩机377流出后,依次通过蓄能回路的冷凝器378、第一电磁阀385和蓄能装置373,再回传至压缩机377。其中,冷媒例如可以是R12、R134a、R407c、R410a、R290和R3等。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,且控制装置310控制第一电磁阀385导通后,使得冷媒通过蓄能回路的冷凝器378之后,流经第一电磁阀385传输至蓄能装置373,对蓄能装置373进行蓄冷,以及冷媒流经蓄能装置373之后,再回传至压缩机377中。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,如此,使得冷媒从压缩机377流出后,依次流经冷冻回路的冷凝器378、第二电磁阀386和蒸发器379,再回传至压缩机377。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,在流经冷凝器378,且控制装置310控制第二电磁阀386导通后,使得冷媒流经冷凝器378之后流经第二电磁阀386再传输至蒸发器379,冷媒流经蒸发器379之后,再回传至压缩机377。
在一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置有一个节流部件381,此时,该节流部件381设置在冷凝器378和蓄能装置373之间;以及在冷冻回路设置一个节流部件381,此时,该节流部件381设置在冷凝器378和蒸发器379之间,以通过节流部件381实现节流降压的目的。
在一些实施方式中,空调器300还可以包括第一风机382,与蒸发器379相对设置,第一风机382的运转用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,第二风机383的运转用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,冷媒从压缩机377中流出后,依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
在一些实施方式中,冷媒从压缩机377中流出后,依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再回到压缩机377,其中,冷媒在流经冷凝器378时,不启动第一风机382,而是直接将冷媒通过节流部件381和第一电磁阀385输入到蓄能装置373中,以对蓄能装置373中的相变材料进行蓄冷,也可以启动第一风机382,使得制冷的同时对蓄能装置373中的相变材料进行蓄冷。
空调器300还可以包括接收线圈Lr1,用于接收无线充电装置或者无线储能装置无线传输的电能;控制装置310,与接收线圈Lr1电性连接,用于对接收线圈Lr1接收的电能转换为向空调器300供电的电能。其中,接收线圈Lr1可以为单向接收线圈或双向接收线圈等。
在一些实施方式中,接收线圈Lr1在接收到无线充电装置或者无线储能装置无线传输的电能之后,将电能传输至控制装置310,控制装置310对接收线圈Lr1接收的电能进行转换,转换成与空调器300匹配的电能,匹配的电能可以是电压匹配和/或电流匹配等,以降低接收线圈Lr1接收的电能直接给空调器300进行供电时由于电能匹配度低导致空调器300损坏的概率。
在一些实施方式中,空调器300还可以包括电池包320,且控制装置310与电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能,通过控制装置310进行电能转换,以降低由于电能匹配度低导致电池包320和空调器300的部件损坏的概率。
在一些实施方式中,电池包320包括电池模组和电池管理系统(BMS),BMS可以对电池模组进行充电过电压、充电过电流、放电过电流、放电电压过低和温度过高等具有安全风险情况出现进行保护,以提高电池包320的安全性,还可以获取到剩余电量和多长时间充满等充电信息。
在一些实施方式中,第一风机382和第二风机383的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种,以及,压缩机377的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种,载流剂泵380的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种。
在一些实施方式中,如图1和图2所示,第一风机382采用第一风机电机3821进行驱动,第二风机383采用第二风机电机3831进行驱动,且第一风机电机3821和第二风机电机3831均与控制装置310电性连接,通过控制装置310对第一风机电机3821和第二风机电机3831进行控制,可以控制第一风机电机3821和第二风机电机3831的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。以及,载流剂泵380采用载流剂泵电机3801进行驱动,载流剂泵电机3801与控制装置310电性连接,通过控制装置310对载流剂泵电机3801进行控制,控制装置310可以控制载流剂泵电机3801的启停以及工作功率,进而实现对载流剂泵380的控制,以使得载流剂泵380中的载流剂与蓄能装置373的相变材料进行热交换,使得热交换后的载流剂流经蒸发器379后回传至蓄能装置373。
在一些实施方式中,第一风机382和第二风机383可以均为对旋风机等。
如图2所示,控制装置310还可以分别与压缩机377、显示装置390、第一电磁阀385、第二电磁阀386、接收线圈Lr1和电池包320电性连接,从而对压缩机377、第一电磁阀385、第二电磁阀386和电池包320进行控制,以及控制装置310还可以将获取到充电信息和温度信息等信息发送给显示装置390进行显示,还可以响应用户在显示装置390的操作请求,根据操作请求对空调器300进行控制,例如用户操作请求为制冷模式且制冷至20℃,则对用户操作请求进行响应,控制空调器300进行制冷且设定制冷最低温度为20℃。以及,控制装置310分别与接收线圈Lr1 和电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能。
如图3和图4所示,控制装置310包括空调控制器312;放能控制开关319,与空调控制器312电性连接,用于在空调控制器312的驱动下控制载流剂泵380工作,以将蓄能装置373中的能量通过蓄能回路和载流剂泵380向蒸发器379输送。其中,放能控制开关319为包含开关元件的电路,一端电性连接载流剂泵380,另一端与空调控制器312电性连接。
在一些实施方式中,空调控制器312还可以包括放能控制开关319,输入端与空调控制器312电性连接,输出端与放能控制开关319电性连接,用于通过空调控制器312和放能控制开关319驱动载流剂泵380。其中,放能控制开关319用于将空调控制器312发送的控制信号进行放大处理,以将放大的控制信息输出给放能控制开关319。
在一些实施方式中,控制装置310还可以包括用于电性连接压缩机377的第一逆变模块314,与空调控制器312电性连接,第一逆变模块314用于在空调控制器312的驱动下,控制压缩机377运转。
在一些实施方式中,空调控制器312还可以包括压缩机驱动电路3771,输入端与空调控制器312电性连接,输出端与第一逆变模块314电性连接,用于通过空调控制器312和第一逆变模块314驱动压缩机377。其中,压缩机驱动电路3771用于将空调控制器312发送的控制信号进行放大处理,以将放大的控制信息输出给第一逆变模块314。
在一些实施方式中,若空调器300还可以包括第一风机382和第二风机383,则控制装置310还可以包括用于电性连接第一风机382的第二逆变模块315,与空调控制器312电性连接,第二逆变模块315基于空调控制器312的驱动,控制第一风机382运转,以使得第一风机382将空气流经蒸发器379以实现热交换;以及,用于电性连接第二风机383的第三逆变模块384,与空调控制器312电性连接,第三逆变模块384基于空调控制器312的驱动,控制第二风机383运转,以使得第二风机383将空气流经冷凝器378以实现热交换。
结合图3所示的,第一逆变模块314可以采用IPM(Intelligent Power Module,智能功率器件)1功率器件,相应地,第二逆变模块315可以采用IPM2功率器件,以及第三逆变模块384可以采用IMP3功率器件,或者更为简单的,可以采用其他类型的晶体管替代,用以控制压缩机377、第一风机电机3821和第二风机电机3831是否运行,而不控制压缩机377、第一风机电机3821和第二风机电机3831运行时的具体运行参数。
在一些实施方式中,空调器还可以包括载流剂泵开关电路3803,输入端与空调控制器312电性连接,输出端与载流剂泵电机3801电性连接,用于在空调控制器312的驱动下控制载流剂泵电机380启停。
在一些实施方式中,若空调器300还可以包括第一电磁阀385和第二电磁阀386,控制装置310还可以包括第一电磁阀开关电路3851,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第一电磁阀385通断;第二电磁阀开关电路3861,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第二电磁阀386通断。
在一些实施方式中,第一电磁阀开关电路3851为包含了开关元件的电路,相应地,第二电磁阀开关电路3861为包含了开关元件的电路,在第一电磁阀开关电路3851的开关元件闭合时, 第一电磁阀385通电,从而控制第一电磁阀385导通,从而使得从冷凝器378输出的冷媒能够通过第一电磁阀385和蓄能回路进入到蓄能装置373中;在第一电磁阀开关电路3851的开关元件打开时,第一电磁阀385不通电,从而控制第一电磁阀385断开,使得冷凝器378输出的冷媒不能通过第一电磁阀385;相应地,在第二电磁阀开关电路3861的开关元件闭合时,第二电磁阀386通电,从而控制第二电磁阀386导通,从而使得从冷凝器378输出的冷媒能够通过节流部件381和第二电磁阀386进入到蒸发器379中;在第二电磁阀开关电路3861的开关元件打开时,第二电磁阀386不通电,从而控制第二电磁阀386断开,使得冷凝器378输出的冷媒不能通过第二电磁阀386。
在一些实施方式中,参见图3,控制装置310还可以包括用于电性连接接收线圈Lr1的无线受电模块311,与空调控制器312电性连接,无线受电模块311用于在空调控制器312的驱动下变换处理无线传输的电能。
在一些实施方式中,无线受电模块311的输入端与接收线圈Lr1电性连接,无线受电模块311的输出端通过第一逆变模块314与压缩机377电性连接,第一逆变模块314还与空调控制器312电性连接,从而,第一逆变模块314在空调控制器312的驱动和无线受电模块311的供电下,控制压缩机377工作,以使得压缩机377的冷媒输出到冷凝器378或者蓄能装置373中。以及,无线受电模块311的输出端通过第二逆变模块315与第一风机电机3821电性连接,第二逆变模块315还与空调控制器312电性连接,从而,第二逆变模块315在空调控制器312的驱动和无线受电模块311的供电下,控制第一风机电机3821工作,以驱动第一风机382工作。以及,无线受电模块311的输出端通过第三逆变模块384与第二风机电机3831电性连接,第三逆变模块384还与空调控制器312电性连接,从而,第三逆变模块384在空调控制器312的驱动和无线受电模块311的供电下,控制第二风机电机3831工作,以驱动第二风机383工作。
在一些实施方式中,继续参见图3和图4,无线受电模块311包括:桥式整流电路3111和受电调压电路3112,其中,桥式整流电路3111的交流输入端与接收线圈Lr1电性连接。桥式整流电路3111的交流输入端与接收线圈Lr1电性连接,对接收线圈Lr1接收的电能进行整流处理。受电调压电路3112的输入端与桥式整流电路3111的输出端电性连接,受电调压电路3112的输出端与第一逆变模块314的输入端和第二逆变模块315的输入端电性连接,受电调压电路3112用于对桥式整流电路3111输出的电能进行降压处理,并向第一逆变模块314的输入端和第二逆变模块315进行输电。
如图4所示的,桥式整流电路3111用于将接收线圈Lr1接收到的电能进行交流-直流变换成直流母线电压+VDC1;直流母线电压+VDC1再经受电调压电路3112的直流-直流变换(升压或者降压)后,成为第一逆变模块314、第二逆变模块315和第三逆变模块384需求的直流母线电压+VDC2。
在一些实施方式中,参考图5所示的,桥式整流电路3111可以包括谐振电容C、桥式整流器以及第一滤波电容E1,谐振电容C一端电性连接桥式整流器的一个交流输入端,谐振电容C另一端与接收线圈Lr1一端电性连接,桥式整流器的另一个交流输入端电性连接接收线圈Lr1另一端。接桥式整流器的两个直流输出端对应电性连接第一滤波电容E1的正负极,第一滤波电容E1的负极接地。
在一些实施方式中,桥式整流器可以是全桥同步整流器、半桥同步整流器以及不控整流器中的任意一种硬件拓扑。举例来讲,参考图5所示,桥式整流器可以是包括第一功率器件Q1、第二功率器件Q2、第三功率器件Q3以及第四功率器件Q4的全桥同步整流器。其中,Q1、Q2、Q3、Q4可以为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),MOS管、三极管等中任意一种晶体管。
为了驱动桥式整流电路3111,空调控制器312包括:控制芯片3121;整流驱动电路3122,整流驱动电路3122的输入端与控制芯片3121电性连接,所述整流驱动电路3122的输出端与所述桥式整流电路3111电性连接,在一些实施方式中,整流驱动电路3122的桥式整流器中每个功率器件的栅极控制端电性连接,以控制Q1、Q2、Q3、Q4通断。
在一些实施方式中,受电调压电路3112可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置受电调压电路3112,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315电性连接。
举例来讲,参考图5所示,受电调压电路3112可以是由第五功率器件Q5、第一电感L1、第六功率器件Q6、第七功率器件Q7、第八功率器件Q8和第二滤波电容E2构成的升降压复用电路,其中,第二滤波电容E2的负极接地,通过第五功率器件Q5、第六功率器件Q6、第七功率器件Q7和第八功率器件Q8通断,实现升压处理或者降压处理。
对应的,为了驱动受电调压电路3112,空调控制器312还可以包括:调压驱动电路3413,调压驱动电路3413的输入端与控制芯片3121电性连接,调压驱动电路3413的输出端与受电调压电路3112中每个功率器件Q5、Q6、Q7和Q8的控制端电性连接,以此能够控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。
在一些实施方式中,参考图5所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向空调器300的显示装置390提供调压处理后的直流电能。
在一些实施方式中,可以与桥式整流电路3111输出端或者受电调压电路3112的输出端电性连接,将直流母线电压+VDC1或者直流母线电压+VDC2进行降压处理,得到显示装置390所需要的电压,给显示装置390供电。
在一些实施方式中,参见图5,空调控制器312还可以包括载流剂泵驱动电路3802,载流剂泵驱动电路3802输出端与放能控制开关319电性连接,输入端与控制芯片3121电性连接,其中,载流剂泵驱动电路3802用于将空调控制器312发送的控制信号进行放大处理。
参见图5,空调控制器312还可以包括第一风机驱动电路3822,第一风机驱动电路3822的输出端与第二逆变模块315的控制端电性连接,第一风机驱动电路3822的输入端与控制芯片3121电性连接;第二风机驱动电路3832,第二风机驱动电路3832的输出端与第三逆变模块384 的控制端电性连接,第二风机驱动电路3832的输入端与控制芯片3121电性连接。其中,第一风机驱动电路3822和第二风机驱动电路3832用于将空调控制器312发送的控制信号进行放大处理。
在一些实施方式中,空调控制器312,还可以包括第一母线电压检测电路3126,第一母线电压检测电路3126的输入端与桥式整流电路3111的输出端电性连接,第一母线电压检测电路3126的输出端与控制芯片3121电性连接;第一母线电压检测电路3126可以设置在E1的两端,用于实时检测E1两端的电压,并将实时检测到的E1两端的电压传输给控制芯片3121;包括第二母线电压检测电路3127,第二母线电压检测电路3127的输入端与受电调压电路3112的输出端电性连接,第二母线电压检测电路3127的输出端与控制芯片3121电性连接;其中,第二母线电压检测电路3127可以设置在E2的两端,用于实时检测E1两端的电压,并将实时检测到的E2两端的电压传输给控制芯片3121;以及,包括母线电流检测电路312B,母线电流检测电路312B的输入端与受电调压电路3112电性连接,母线电流检测电路312B的输出端与控制芯片3121电性连接。
相应地,为了使得母线电流检测电路312B正常工作,还可以包括电阻R1,电阻R1设置在第八功率器件Q8与第二滤波电容E2之间,母线电流检测电路312B的输入端与电阻R1电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R1的电流,并将其传输至控制芯片3121,在检测到通过电阻R1的电流超过设定电流时,可以通过控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断,以降低通过电阻R1的电流,使得降低后的电流不大于设定电流,从而实现对受电调压电路3112的保护,降低受电调压电路3112因为电流过高导致损害的概率。
在一些实施方式中,为了移动空调使用场景更加多样化,不受电源限制,可以在户外等没有电网接入端口的场景下使用,参考图5所示,空调器300还可以包括电池包320,控制装置310对应还可以包括充放电调压电路313,充放电调压电路313的一端与桥式整流电路3111的输出端以及受电调压电路3112的输入端电性连接,充放电调压电路313的另一端与电池包320电性连接;在需要电池包320向空调器300的负载进行供电时,电池包320释放的电能经充放电调压电路313进行直流-直流变换的调压变换处理,再经受电调压电路3112进行直流-直流变换的调压处理,并将调压处理后的电能向空调器300的至少一个负载供电。在需要向电池包320充电时,接收线圈Lr1接收的电能,经桥式整流电路3111进行交流-直流变换的整流处理,再经充放电调压电路313进行直流-直流变换的调压变换处理后向电池包320进行充电。
参见图5,充放电调压电路313用于将桥式整流电路3111输出的电能进行转换,并将变换后电能存储至电池包320,或者将电池包320释放的电能进行转换并输出至受电调压电路3112;受电调压电路3112对充放电调压电路313输出的电能进行升压处理,并向第一逆变模块314的输入端、第二逆变模块315和第三逆变模块384输电。
在一些实施方式中,充放电调压电路313可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置充放电调压电路313,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315和第三逆变模块384电性连接。
举例来讲,参考图5所示,充放电调压电路313可以是由第九功率器件Q9、第二电感L2、第十功率器件Q10和第三滤波电容E3构成的充放电调压电路313,其中,第三滤波电容E3的负极接地,通过第九功率器件Q9和第十功率器件Q10通断,实现升压处理或者降压处理。
对应的,为了驱动充放电调压电路313,空调控制器312还可以包括充放电驱动电路312A,充放电驱动电路312A的输入端与控制芯片3121电性连接,充放电驱动电路312A的输出端与受电调压电路3112中每个功率器Q9和Q10的控制端电性连接,以此能够控制功率器件Q9、Q10和第二电感L2的通断。
在一些实施方式中,空调控制器312还可以包括充放电流检测电路3128,充放电流检测电路3128的输入端与充放电调压电路313电性连接,充放电流检测电路3128的输出端与控制芯片3121电性连接;其中,充放电流检测电路3128可以设置在E3的两端,用于实时检测E3两端的电压,并将实时检测到的E3两端的电压传输给控制芯片3121;电池电压检测电路3129,电池电压检测电路3129的输入端与充放电调压电路313电性连接,电池电压检测电路3129的输出端与控制芯片3121电性连接。
相应地,为了使得电池电压检测电路3129正常工作,还可以包括电阻R2,电阻R2设置在第十功率器件Q10与第三滤波电容E3之间,电池电压检测电路3129的输入端与电阻R2电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R2的电流,并将其传输至控制芯片3121,在检测到通过电阻R2的电流超过设定电流时,可以通过控制功率器件Q9、Q10和第二电感L2的通断,以降低通过电阻R2的电流,使得降低后的电流不大于设定电流,从而实现对充放电流检测电路3128的保护,降低充放电流检测电路3128因为电流过高导致损害的概率。
在一些实施方式中,设定电流可以由人工或空调器300自行设定,也可以根据实际需求设备。
在另一些实施方式中,控制装置310还可以包括适配调压电路388,适配调压电路388的一端与受电调压电路3112的输出端电性连接,另一端与分别与放能控制开关319、第一电磁阀开关电路3851、第二电磁阀开关电路3861、第一逆变模块314、第二逆变模块315和第三逆变模块384;在需要向载流剂泵380、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831供电时,通过适配调压电路388进行直流-直流变换的调压处理,并将调压处理后的电能向载流剂泵380、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831进行供电,以使得通过适配调压电路388调压处理后的电压与载流剂泵380、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831中每个部件所需电压匹配。
在一些实施方式中,适配调压电路388可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置适配调压电路388。
在一些实施方式中,参考图5所示,适配调压电路388可以是由第十一功率器件11、第三电感L3和第四滤波电容E4构成的调压电路,其中,第四滤波电容E4的负极接地,第十一功率器件11通断,实现降压处理。
参考图5所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向所述空调器300的显示装置390提供调压处理后的直流电能。
在一些实施方式中,显示装置390电性连接控制装置310,可以显示电池包320的充电信息,以及第一风机382和第二风机383的档位和风速等风机运行信息,还可以显示空调器300的制冷温度与室内温度等温度信息,还也显示空调器300的操作信息例如制冷、换风和除湿等。
在一些实施方式中,显示装置390可以是LED和LCD等显示屏。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,所述空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。其中,空调通信模块316可以是蓝牙、信号载波、红外发射和接收模块等无线通信模块等。
参见图5,空调器300有多种运行方式。空调器300的第一种运行方式为制冷运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861供电,由于第一风机电机3821与第一风机382相连,第二风机电机3831与第二风机383相连,第二电磁阀开关电路3861与第二电磁阀386相连,如此,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热换热,实现制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
第二种运行方式具体为蓄冷运行方式,包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀开关电路3851进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀开关电路3851供电,如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以及再通过换热后的冷媒对蓄能装置373中的相变材料进行蓄冷,从而实现对蓄能装置373进行蓄冷的作用。也可以不启动第二风机383,直接将流经冷凝器378的冷媒通过节流部件381和第一电磁阀385传输至蓄能装置373,以对蓄能装置373进行蓄冷。
第三种运行方式具体为制冷和蓄冷同时运行方式,包括:接收线圈Lr1接收到无线充电器发射传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861 进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀385开关和第二电磁阀386的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861供电,如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385处于导通状态,从而使得冷媒依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再回到压缩机377,从而实现对蓄能装置373进行蓄冷的作用。以及,由于第二电磁阀386处于导通状态,从而使得从压缩机377流出的冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,以起到制冷作用,如此,能够实现蓄冷和制冷同时运行。
第四种运行方式具体为放冷运行方式,包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给放能控制开关319和第一风机电机3821进行供电,若转换成的需求电压高于放能控制开关319和第一风机电机3821的工作电压例如+VFM,则还需经过适配调压电路388降压后给放能控制开关319和第一风机电机3821供电,如此,在载流剂泵380工作时,会带动蓄能装置373的蓄冷与载流剂进行热交换,使得携带了蓄冷的载流剂通过载能回路375传输至蒸发器379,再回传至蓄能装置373,其中,携带了蓄冷的载流剂在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对相变材料进行换热,以起到放冷作用。
由于空调器300中设置有蓄能装置373,在蓄能装置373的相变材料蓄冷之后,可以通过载流剂泵380使得蓄能装置373的蓄冷与载流剂进行热交换,使得携带了蓄冷的载流剂通过载能回路375传输至蒸发器379,再回传至蓄能装置373,以实现放冷作用,还可以实现制冷和蓄冷同时运行,使得空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
在一些实施方式中,由于空调器300中设置有接收线圈Lr1,可以接收无线充电器传输的电磁能,再转换成电能以供空调器300运行,此时,空调器300无需连接电网即可工作,能够在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,使得用户的体验更好。
而且,由于空调器300中设置有电池包320,能够通过电池包320给空调器300供电以使得空调器300正常运行,也无需连接电网,此时,还可以无需携带无需充电器,通过空调器300自身携带的电池包320即可使得空调器300工作,能够进一步的在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,进一步提高用户的体验。
若放能驱动件为载流剂泵,且空调器为冷暖空调器时,如图6所示,压缩机377与蓄能装置373连通,蓄能装置373通过载能回路375与蒸发器379连通,冷凝器378与蒸发器379连通,载能回路375中设置有载流剂泵380,压缩机377和载流剂泵380分别与控制装置310电性连接,控制装置310用于控制压缩机377和载流剂泵380的启停。
蓄能装置373中设置相变材料例如可以是无机PCM、有机PCM和复合PCM等,可以对蓄能装置373中的相变材料进行蓄热或蓄冷,本说明书不作具体限制。
在一些实施方式中,空调器300还可以包括四通阀389,四通阀389分别与压缩机377、冷凝器378、蒸发器379和蓄能装置373连通,且四通阀389与控制装置310电性连接。
在一些实施方式中,载能回路375设置有载流剂泵380,载流剂泵380设置在蓄能装置373和蒸发器379之间,通过载流剂泵380控制蓄能装置373的能量通过载能回路375传输至蒸发器379,再回传至蓄能装置373。此时,蓄能装置373中可以设置有蓄冷相变材料或蓄热相变材料。
在一些实施方式中,控制装置310可以控制载流剂泵380启动,而载流剂泵380启动之后,会带动蓄能装置373的蓄冷与载流剂进行热交换,使得携带了蓄冷的载流剂通过载能回路375传输至蒸发器379,再回传至蓄能装置373,通过载流剂泵380可以使得蓄能装置373的蓄冷通过载流剂流经蒸发器379,与外部空气进行换热,从而实现制冷,从而实现放冷或放热。
在一些实施方式中,压缩机377通过蓄能回路与蓄能装置373连通,其中,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在蓄能装置373和冷凝器378之间,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第一电磁阀385和蓄能装置373,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。
在一些实施方式中,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经四通阀389、蓄能装置373、第一电磁阀385和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。
在一些实施方式中,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,且控制装置310控制第二电磁阀386导通后,使得冷媒依次通过冷冻回路的四通阀389、蒸发器379、第二电磁阀386和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。
在一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置一个节流部件381,此时节流部件381设置在冷凝器378和第一电磁阀385之间,以及冷冻回路设置一个节流部件381,此时,节流部件381设置在冷凝器378和第二电磁阀386之间,以通过节流部件381实现节流降压的目的。
在一些实施方式中,空调器300还可以包括第一风机382,与蒸发器379相对设置,第一风机382的运转用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,第二风机383的运转用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热;以及在散热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行换热,以起到制冷或除湿作用。
以及,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
在一些实施方式中,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热,以及再通过散热后的冷媒对蓄能装置373中的相变材料进行蓄冷。
在一些实施方式中,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经四通阀389、蓄能装置373、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。其中,从压缩机377流出的冷媒对蓄能装置373中的相变材料进行蓄热,对相变材料蓄热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行加热,再通过四通阀389回传至压缩机377。
空调器300还可以包括接收线圈Lr1,用于接收无线充电装置或者无线储能装置无线传输的电能;控制装置310,与接收线圈Lr1电性连接,用于对接收线圈Lr1接收的电能转换为向空调器300供电的电能。其中,接收线圈Lr1可以为单向接收线圈Lr1或双向接收线圈Lr1等。
在一些实施方式中,接收线圈Lr1在接收到无线充电装置或者无线储能装置无线传输的电能之后,将电能传输至控制装置310,控制装置310对接收线圈Lr1接收的电能进行转换,转换成与空调器300匹配的电能,匹配的电能可以是电压匹配和/或电流匹配等,以降低接收线圈Lr1接收的电能直接给空调器300进行供电时由于电能匹配度低导致空调器300损坏的概率。
在另一些实施方式中,空调器300还可以包括电池包320,且控制装置310与电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能,通过控制装置310进行电能转换,以降低由于电能匹配度低导致电池包320和空调器300的部件损坏的概率。
其中,电池包320可以参考实施例一中的电池包320的具体叙述,为了说明书的简洁,在此就不再赘述了。
第一风机382和第二风机383的驱动电机也可以参考实施例一中的第一风机382和第二风机383的驱动电机的具体叙述,为了说明书的简洁,在此就不再赘述了。
在一些实施方式中,如图6和图7所示,第一风机382采用第一风机电机3821进行驱动,第二风机383采用第二风机电机3831进行驱动,且第一风机电机3821和第二风机电机3831均与控制装置310电性连接,通过控制装置310对第一风机电机3821和第二风机电机3831进行控制,可以控制第一风机电机3821和第二风机电机3831的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。以及,载流剂泵380采用载流剂泵电机3801进行驱动,载流剂泵电机3801与控制装置310电性连接,通过控制装置310对载流剂泵电机3801进行控制,控制装置310可以控制载流剂泵电机3801的启停以及工作功率。
第一风机382和第二风机383可以均为对旋风机等。
如图7所示,控制装置310还可以分别与压缩机377、显示装置390、第一电磁阀385、第二电磁阀386、四通阀389、接收线圈Lr1和电池包320电性连接,从而对压缩机377、第一电磁阀385、第二电磁阀386、四通阀389和电池包320进行控制,以及控制装置310还可以将获取到充电信息和温度信息等信息发送给显示装置390进行显示,还可以响应用户在显示装置390的操作请求,根据操作请求对空调器300进行控制,例如用户操作请求为制热模式且制冷至26℃,则对用户操作请求进行响应,控制空调器300进行制热且设定制热最高温度为26℃。以及,控制装置310分别与接收线圈Lr1和电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能。以及,控制装置310与四通阀389电性连接,可以控制四通阀389中的导通管道,以控制四通阀389的当前状态为第一状态或第二状态。
参见图8,控制装置310包括空调控制器312;放能控制开关319,与空调控制器312电性连接,用于在空调控制器312的驱动下控制载流剂泵380工作,以将蓄能装置373中的能量通过蓄能回路和载流剂泵380向蒸发器379输送。其中,放能控制开关319为包含开关元件的电路,一端电性连接载流剂泵380,另一端与空调控制器312电性连接。
在一些实施方式中,空调控制器312还可以包括放能控制开关319,输入端与空调控制器312电性连接,输出端与放能控制开关319电性连接,用于通过空调控制器312和放能控制开关319驱动载流剂泵380。其中,放能控制开关319用于将空调控制器312发送的控制信号进行放大处理,以将放大的控制信息输出给放能控制开关319。
在一些实施方式中,四通阀389与电性连接,用于控制四通阀389中的导通管道,以控制四通阀389的当前状态为第一状态或第二状态。
在另一些实施方式中,控制装置310还可以包括用于电性连接压缩机377的第一逆变模块314,与空调控制器312电性连接,第一逆变模块314用于在空调控制器312的驱动下,控制压缩机377运转。
在另一些实施方式中,若空调器300还可以包括第一风机382和第二风机383,则控制装置310还可以包括用于电性连接第一风机382的第二逆变模块315,与空调控制器312电性连接,第二逆变模块315基于空调控制器312的驱动,控制第一风机382运转,以使得第一风机382将空气流经蒸发器379以实现热交换;以及,用于电性连接第二风机383的第三逆变模块384,与空调控制器312电性连接,第三逆变模块384基于空调控制器312的驱动,控制第二风机383运转,以使得第二风机383将空气流经冷凝器378以实现热交换。
结合图8所示的,第一逆变模块314可以采用IPM(Intelligent Power Module,智能功率器件)1功率器件,相应地,第二逆变模块315可以采用IPM2功率器件,以及第三逆变模块384可以采用IMP3功率器件,或者更为简单的,可以采用其他类型的晶体管替代,用以控制压缩机377、第一风机电机3821和第二风机电机3831是否运行,而不控制压缩机377、第一风机电机3821和第二风机电机3831运行时的具体运行参数。
若空调器300还可以包括第一电磁阀385和第二电磁阀386,控制装置310还可以包括第一电磁阀开关电路3851,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第一电磁阀385通断;第二电磁阀开关电路3861,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第二电磁阀386通断。
在一些实施方式中,第一电磁阀开关电路3851为包含了开关元件的电路,相应地,第二电磁阀开关电路3861为包含了开关元件的电路,在第一电磁阀开关电路3851的开关元件闭合时,第一电磁阀385通电,从而控制第一电磁阀385导通,从而使得从冷凝器378输出的冷媒能够通过第一电磁阀385和蓄能回路进入到蓄能装置373中;在第一电磁阀开关电路3851的开关元件打开时,第一电磁阀385不通电,从而控制第一电磁阀385断开,使得冷凝器378输出的冷媒不能通过第一电磁阀385;相应地,在第二电磁阀开关电路3861的开关元件闭合时,第二电磁阀386通电,从而控制第二电磁阀386导通,从而使得从冷凝器378输出的冷媒能够通过节流部件381和第二电磁阀386进入到蒸发器379中;在第二电磁阀开关电路3861的开关元件打开时,第二电磁阀386不通电,从而控制第二电磁阀386断开,使得冷凝器378输出的冷媒不能通过第二电磁阀386。
控制装置310还可以包括用于电性连接接收线圈Lr1的无线受电模块311,与空调控制器312电性连接,无线受电模块311用于在空调控制器312的驱动下变换处理无线传输的电能。
在一些实施方式中,无线受电模块311的输入端与接收线圈Lr1电性连接,无线受电模块311的输出端通过第一逆变模块314与压缩机377电性连接,第一逆变模块314还与空调控制器312电性连接,从而,第一逆变模块314在空调控制器312的驱动和无线受电模块311的供电下,控制压缩机377工作,以使得压缩机377的冷媒输出到冷凝器378或者蓄能装置373中。以及,无线受电模块311的输出端通过第二逆变模块315与第一风机电机3821电性连接,第二逆变模块315还与空调控制器312电性连接,从而,第二逆变模块315在空调控制器312的驱动和无线受电模块311的供电下,控制第一风机电机3821工作,以驱动第一风机382工作。以及,无线受电模块311的输出端通过第三逆变模块384与第二风机电机3831电性连接,第三逆变模块384还与空调控制器312电性连接,从而,第三逆变模块384在空调控制器312的驱动和无线受电模块311的供电下,控制第二风机电机3831工作,以驱动第二风机383工作。
在一些实施方式中,无线受电模块311包括:桥式整流电路3111和受电调压电路3112,其中,桥式整流电路3111的交流输入端与接收线圈Lr1电性连接。桥式整流电路3111的交流输入端与接收线圈Lr1电性连接,对接收线圈Lr1接收的电能进行整流处理。受电调压电路3112的输入端与桥式整流电路3111的输出端电性连接,受电调压电路3112的输出端与第一逆变模块314的输入端和第二逆变模块315的输入端电性连接,受电调压电路3112用于对桥式整流电路3111输出的电能进行降压处理,并向第一逆变模块314的输入端343和第二逆变模块315进行输电。
如图8所示的,桥式整流电路3111用于将接收线圈Lr1接收到的电能进行交流-直流变换成直流母线电压+VDC1;直流母线电压+VDC1再经受电调压电路3112的直流-直流变换(升压或者降压)后,成为第一逆变模块314、第二逆变模块315和第三逆变模块384需求的直流母线电压+VDC2。
在一些实施方式中,参考图8所示的,桥式整流电路3111可以包括谐振电容C、桥式整流器以及第一滤波电容E1,谐振电容C一端电性连接桥式整流器的一个交流输入端,谐振电容C另一端与接收线圈Lr1一端电性连接,桥式整流器的另一个交流输入端电性连接接收线圈Lr1另一端。接桥式整流器的两个直流输出端对应电性连接第一滤波电容E1的正负极,第一滤波电容E1的负极接地。
其中,桥式整流器可以是全桥同步整流器、半桥同步整流器以及不控整流器中的任意一种硬件拓扑。举例来讲,参考图8所示,桥式整流器可以是包括第一功率器件Q1、第二功率器件Q2、第三功率器件Q3以及第四功率器件Q4的全桥同步整流器。其中,Q1、Q2、Q3、Q4可以为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),MOS管、三极管等中任意一种晶体管。
为了驱动桥式整流电路3111,空调控制器312包括:控制芯片3121;整流驱动电路3122,整流驱动电路3122的输入端与控制芯片3121电性连接,整流驱动电路3122的输出端与桥式整流电路3111电性连接,在一些实施方式中,整流驱动电路3122的桥式整流器中每个功率器件的栅极控制端电性连接,以控制Q1、Q2、Q3、Q4通断。
在一些实施方式中,受电调压电路3112可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置受电调压电路3112,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315电性连接。
举例来讲,参考图8所示,受电调压电路3112可以是由第五功率器件Q5、第一电感L1、第六功率器件Q6、第七功率器件Q7、第八功率器件Q8和第二滤波电容E2构成的升降压复用电路,其中,第二滤波电容E2的负极接地,通过第五功率器件Q5、第六功率器件Q6、第七功率器件Q7和第八功率器件Q8通断,实现升压处理或者降压处理。
对应的,为了驱动受电调压电路3112,空调控制器312还可以包括:调压驱动电路3413,调压驱动电路3413的输入端与控制芯片3121电性连接,调压驱动电路3413的输出端与受电调压电路3112中每个功率器件Q5、Q6、Q7和Q8的控制端电性连接,以此能够控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。
在一些实施方式中,参考图8所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向空调器300的显示装置390提供调压处理后的直流电能。
在一些实施方式中,可以与桥式整流电路3111输出端或者受电调压电路3112的输出端电性连接,将直流母线电压+VDC1或者直流母线电压+VDC2进行降压处理,得到显示装置390所需要的电压,给显示装置390供电。
参见图8,空调控制器312还可以包括载流剂泵驱动电路3802,载流剂泵驱动电路3802输出端与放能控制开关319电性连接,输入端与控制芯片3121电性连接,其中,载流剂泵驱动电路3802用于将空调控制器312发送的控制信号进行放大处理。
参见图8,空调控制器312还可以包括第一风机驱动电路3822,第一风机驱动电路3822的输出端与第二逆变模块315的控制端电性连接,第一风机驱动电路3822的输入端与控制芯片3121电性连接;第二风机驱动电路3832,第二风机驱动电路3832的输出端与第三逆变模块384的控制端电性连接,第二风机驱动电路3832的输入端与控制芯片3121电性连接。其中,第一风机驱动电路3822和第二风机驱动电路3832用于将空调控制器312发送的控制信号进行放大处理。
空调控制器312,还可以包括第一母线电压检测电路3126,第一母线电压检测电路3126的输入端与桥式整流电路3111的输出端电性连接,第一母线电压检测电路3126的输出端与控制芯片3121电性连接;第一母线电压检测电路3126可以设置在E1的两端,用于实时检测E1两端的电压,并将实时检测到的E1两端的电压传输给控制芯片3121;包括第二母线电压检测电路3127,第二母线电压检测电路3127的输入端与受电调压电路3112的输出端电性连接,第二母线电压检测电路3127的输出端与控制芯片3121电性连接;其中,第二母线电压检测电路3127可以设置在E2的两端,用于实时检测E1两端的电压,并将实时检测到的E2两端的电压传输给控制芯片3121;以及,包括母线电流检测电路312B,母线电流检测电路312B的输入端与受电调压电路3112电性连接,母线电流检测电路312B的输出端与控制芯片3121电性连接。
相应地,为了使得母线电流检测电路312B正常工作,还可以包括电阻R1,电阻R1设置在第八功率器件Q8与第二滤波电容E2之间,母线电流检测电路312B的输入端与电阻R1电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R1的电流,并将其传输至控制芯片3121,在检测到通过电阻R1的电流超过设定电流时,可以通过控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断,以降低通过电阻R1的电流,使得降低后的电流不大于设定电流,从而实现对受电调压电路3112的保护,降低受电调压电路3112因为电流过高导致损害的概率。
在一些实施方式中,为了移动空调使用场景更加多样化,不受电源限制,可以在户外等没有电网接入端口的场景下使用,参考图8所示,空调器300还可以包括电池包320,控制装置310对应还可以包括充放电调压电路313,充放电调压电路313的一端与桥式整流电路3111的输出端以及受电调压电路3112的输入端电性连接,充放电调压电路313的另一端与电池包320电性连接;在需要电池包320向空调器300的负载进行供电时,电池包320释放的电能经充放电调压电路313进行直流-直流变换的调压变换处理,再经受电调压电路3112进行直流-直流变换的调压处理,并将调压处理后的电能向空调器300的至少一个负载供电。在需要向电池包320充电时,接收线圈Lr1接收的电能,经桥式整流电路3111进行交流-直流变换的整流处理,再经充放电调压电路313进行直流-直流变换的调压变换处理后向电池包320进行充电。
充放电调压电路313用于将桥式整流电路3111输出的电能进行转换,并将变换后电能存储至电池包320,或者将电池包320释放的电能进行转换并输出至受电调压电路3112;受电调压电 路3112对充放电调压电路313输出的电能进行升压处理,并向第一逆变模块314的输入端、第二逆变模块315和第三逆变模块384输电。
在一些实施方式中,充放电调压电路313可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置充放电调压电路313,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315和第三逆变模块384电性连接。
举例来讲,参考图8所示,充放电调压电路313可以是由第九功率器件Q9、第二电感L2、第十功率器件Q10和第三滤波电容E3构成的充放电调压电路313,其中,第三滤波电容E3的负极接地,通过第九功率器件Q9和第十功率器件Q10通断,实现升压处理或者降压处理。
对应的,为了驱动充放电调压电路313,空调控制器312还可以包括充放电驱动电路312A,充放电驱动电路312A的输入端与控制芯片3121电性连接,充放电驱动电路312A的输出端与受电调压电路3112中每个功率器Q9和Q10的控制端电性连接,以此能够控制功率器件Q9、Q10和第二电感L2的通断。
在一些实施方式中,空调控制器312还可以包括充放电流检测电路3128,充放电流检测电路3128的输入端与充放电调压电路313电性连接,充放电流检测电路3128的输出端与控制芯片3121电性连接;其中,充放电流检测电路3128可以设置在E3的两端,用于实时检测E3两端的电压,并将实时检测到的E3两端的电压传输给控制芯片3121;电池电压检测电路3129,电池电压检测电路3129的输入端与充放电调压电路313电性连接,电池电压检测电路3129的输出端与控制芯片3121电性连接。
相应地,为了使得电池电压检测电路3129正常工作,还可以包括电阻R2,电阻R2设置在第十功率器件Q10与第三滤波电容E3之间,电池电压检测电路3129的输入端与电阻R2电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R2的电流,并将其传输至控制芯片3121,在检测到通过电阻R2的电流超过设定电流时,可以通过控制功率器件Q9、Q10和第二电感L2的通断,以降低通过电阻R2的电流,使得降低后的电流不大于设定电流,从而实现对充放电流检测电路3128的保护,降低充放电流检测电路3128因为电流过高导致损害的概率。
在一些实施方式中,设定电流可以由人工或空调器300自行设定,也可以根据实际需求设备。
在一些实施方式中,控制装置310还可以包括适配调压电路388,适配调压电路388的一端与受电调压电路3112的输出端电性连接,另一端与分别与放能控制开关319、第一电磁阀开关电路3851、第二电磁阀开关电路3861、第一逆变模块314、第二逆变模块315和第三逆变模块384;在需要向载流剂泵380、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831供电时,通过适配调压电路388进行直流-直流变换的调压处理,并将调压处理后的电能向载流剂泵380、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831进行供电,以使得通过适配调压电路388调压处理后的电压与载流剂泵380、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831中每个部件所需电压匹配。
在一些实施方式中,四通阀389可以通过适配调压电路388和/或无线受电模块311与空调控制器312电性连接。
在一些实施方式中,适配调压电路388可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置适配调压电路388。
举例来讲,参考图8所示,适配调压电路388可以是由第十一功率器件11、第三电感L3和第四滤波电容E4构成的调压电路,其中,第四滤波电容E4的负极接地,第十一功率器件11通断,实现降压处理。
在一些实施方式中,参考图8所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向所述空调器300的显示装置390提供调压处理后的直流电能。
其中,显示装置390电性连接控制装置310,可以显示电池包320的充电信息,以及第一风机382和第二风机383的档位和风速等风机运行信息,还可以显示空调器300的制冷温度与室内温度等温度信息,还也显示空调器300的操作信息例如制冷、换风和除湿等。
在一些实施方式中,显示装置390可以是LED和LCD等显示屏。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,所述空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。其中,空调通信模块316可以是蓝牙、信号载波、红外发射和接收模块等无线通信模块等。
参见图8,空调器300有多种运行方式。空调器300的第一种运行方式为制冷或制热运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861供电,如此,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。当然,还需要对四通阀389进行供电,以使得四通阀389的通道的通断。
如此,在第一种运行方式为制冷运行方式时,此时,压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热;以及在散热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行换热,以起到制冷作用。
以及,在第一种运行方式具体为制热运行方式时,此时,压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377。其中,冷媒在流经蒸发器379 时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
第二种运行方式具体为蓄冷或蓄热运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀386供电。
如此,在第二种运行方式为蓄冷运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热,以及再通过散热后的冷媒对蓄能装置373中的相变材料进行蓄冷。
以及,在第二种运行方式为蓄热运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、蓄能装置373、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。其中,从压缩机377流出的冷媒对蓄能装置373中的相变材料进行蓄热,对相变材料蓄热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行加热,再通过四通阀389回传至压缩机377。
第三种运行方式具体为制冷和蓄冷同时运行方式或制热和蓄热同时运行方式,包括:接收线圈Lr1接收到无线充电器发射传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀385开关和第二电磁阀386的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861供电,由于第一风机电机3821与第一风机382相连,第二风机电机3831与第二风机383相连,第一电磁阀开关电路3851与第一电磁阀385相连,第二电磁阀开关电路3861与第二电磁阀386相连。
如此,在第三种运行方式具体为制冷和蓄冷同时运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通,从而使得冷媒依次流经冷冻回路的四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,从而起到制冷作用。以及,由于第一电磁阀385导通,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。如此,能够实现制冷和蓄冷同时运行。
以及,在第三种运行方式具体为制热和蓄热同时运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。以及,由于第一电磁阀385导通使得冷媒依次流经蓄能回路的依次流经四通阀389、蓄能装置373、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。如此,能够实现制热和蓄热同时运行。
第四种运行方式具体为放冷运行方式或放热运行模式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给载流剂泵380和第一风机电机3821进行供电,若转换成的需求电压高于载流剂泵380和第一风机电机3821的工作电压例如+VFM,则还需经过适配调压电路388降压后给载流剂泵380和第一风机电机3821供电。
如此,在第四种运行方式为放冷运行模式时,由于载流剂泵380在供电情况下正常工作,会带动蓄能装置373的能量与载流剂进行热交换,使得携带了蓄能的载流剂通过载能回路375传输至蒸发器379,再回传至蓄能装置373,其中,通过载流剂泵380可以使得蓄能装置373的能量通过载流剂流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对相变材料进行换热,以起到放冷作用或放热作用。在一些实施方式中,若蓄能装置373中的相变材料为蓄冷相变材料,则起到放冷作用;若蓄能装置373中的相变材料为蓄热相变材料,则起到放热作用。
在一个或多个实施方式中,由于空调器300中设置有蓄能装置373,在蓄能装置373的相变材料蓄能之后,可以通过载流剂泵380的载流剂与蓄能装置373的相变材料进行热交换,使得热交换后的载流剂通过载能回路375传输至蒸发器379,以实现放冷作用或放热作用,还可以实现制冷和蓄冷同时运行,以及制热和蓄热同时运行,当然也可以单独实现制冷或制热,使得空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
在一些实施方式中,由于空调器300中设置有接收线圈Lr1,可以接收无线充电器传输的电磁能,再转换成电能以供空调器300运行,此时,空调器300无需连接电网即可工作,能够在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,使得用户的体验更好。
而且,由于空调器300中设置有电池包320,能够通过电池包320给空调器300供电以使得空调器300正常运行,也无需连接电网,此时,还可以无需携带无需充电器,通过空调器300自身携带的电池包320即可使得空调器300工作,能够进一步的在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,进一步提高用户的体验。
若放能驱动件为三通阀,且空调器为制冷空调时,如图9所示,压缩机377与蓄能装置373连通,蓄能装置373通过载能回路375与蒸发器379、压缩机377和冷凝器378连通,冷凝器378与蒸发器379连通,载能回路375中设置有三通阀391,压缩机377和三通阀391分别与控制装置310电性连接,控制装置310用于控制压缩机377和三通阀391的运行。
其中,控制装置310可以控制压缩机377的运行参数以及控制住三通阀391的每个通道的通断等。
蓄能装置373中设置蓄冷相变材料例如可以是无机PCM、有机PCM和复合PCM等,从而可以对蓄能装置373中的相变材料进行蓄冷。
在一些实施方式中,载能回路375设置有三通阀391,三通阀391设置在蓄能装置373和蒸发器379之间,通过三通阀391控制蓄能装置373的能量依次流经载能回路375的蒸发器379、压缩机377和冷凝器378之后,再回传至蓄能装置373。此时,蓄能装置373设置有蓄冷相变材料。
在一些实施方式中,控制装置310可以控制三通阀391的第一通道和第三通道导通,而第二通道断开,此时,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391流经蓄能装置373,使得蓄能装置373中的冷量会流入冷媒中,再依次流经放能管路的三通阀391、蒸发器379,压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到蓄能装置373;使得携带蓄能装置373中的相变材料的冷量的冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,实现放冷作用,由于此时是通过蓄能装置373和压缩机377的冷媒共同制冷,其制冷效率更高,适合在高温或高冷量输出的情况下使用。
在一些实施方式中,压缩机377通过蓄能回路与蓄能装置373连通,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在蓄能装置373和冷凝器378之间,如此,使得冷媒从压缩机377流出后,依次通过蓄能回路的冷凝器378、第一电磁阀385、蓄能装置373和三通阀391,再回传至压缩机377。其中,冷媒例如可以是R12、R134a、R407c、R410a、R290和R3等。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,且控制装置310控制第一电磁阀385导通后,使得冷媒通过蓄能回路的冷凝器378之后,流经第一电磁阀385传输至蓄能装置373,对蓄能装置373进行蓄冷,此时控制三通阀391的第一通道和第二通道导通,使得流经蓄能装置373的冷媒依次通过第一通道和第二通道,再回传至压缩机377中。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,如此,使得冷媒从压缩机377流出后,依次流经冷冻回路的冷凝器378、第二电磁阀386和蒸发器379,再回传至压缩机377。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,在流经冷凝器378,且控制装置310控制第二电磁阀386导通后,使得冷媒流经冷凝器378之后流经第二电磁阀386再传输至蒸发器379,冷媒流经蒸发器379之后,再回传至压缩机377。
在一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置有一个节流部件381,此时,该节流部件381设置在冷凝器378和蓄能装置373之间;以及在冷冻回路设置一个节流部件381,此时,该节流部件381设置在冷凝器378和蒸发器379之间,以通过节流部件381实现节流降压的目的。
在一些实施方式中,空调器300还可以包括第一风机382,与蒸发器379相对设置,第一风机382的运转用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,第二风机383的运转用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,冷媒从压缩机377中流出后,依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以启动制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
在一些实施方式中,冷媒从压缩机377中流出后,依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再通过三通阀391中的第一通道和第二通道,再回传到压缩机377,其中,冷媒在流经冷凝器378时,不启动第一风机382,而是直接将冷媒通过节流部件381和第一电磁阀385输入到蓄能装置373中,以对蓄能装置373中的相变材料进行蓄冷;也可以启动第一风机382,使得制冷的同时对蓄能装置373中的相变材料进行蓄冷。
以及,在三通阀391的第一通道和第三通道导通时,蓄能装置373中的冷量可以通过冷媒带出后,依次流经载能回路375的三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385之后,再回传至蓄能装置373。
空调器300还可以包括接收线圈Lr1,用于接收无线充电装置或者无线储能装置无线传输的电能;控制装置310,与接收线圈Lr1电性连接,用于对接收线圈Lr1接收的电能转换为向空调器300供电的电能。其中,接收线圈Lr1可以为单向接收线圈Lr1或双向接收线圈Lr1等。
在一些实施方式中,接收线圈Lr1在接收到无线充电装置或者无线储能装置无线传输的电能之后,将电能传输至控制装置310,控制装置310对接收线圈Lr1接收的电能进行转换,转换成与空调器300匹配的电能,匹配的电能可以是电压匹配和/或电流匹配等,以降低接收线圈Lr1接收的电能直接给空调器300进行供电时由于电能匹配度低导致空调器300损坏的概率。
在一些实施方式中,空调器300还可以包括电池包320,且控制装置310与电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能,通过控制装置310进行电能转换,以降低由于电能匹配度低导致电池包320和空调器300的部件损坏的概率。
其中,电池包320包括电池模组和电池管理系统(BMS),BMS可以对电池模组进行充电过电压、充电过电流、放电过电流、放电电压过低和温度过高等具有安全风险情况出现进行保护,以提高电池包320的安全性,还可以获取到剩余电量和多长时间充满等充电信息。
第一风机382和第二风机383的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种,以及,压缩机377的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种。在一些实施方式中,三通阀391电性连接控制装置310,以通过控制装置310控制三通阀391的通道的通断。
在一些实施方式中,如图9和图10所示,第一风机382采用第一风机电机3821进行驱动,第二风机383采用第二风机电机3831进行驱动,且第一风机电机3821和第二风机电机3831均与控制装置310电性连接,通过控制装置310对第一风机电机3821和第二风机电机3831进行控制,可以控制第一风机电机3821和第二风机电机3831的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。
第一风机382和第二风机383可以均为对旋风机等。
如图10所示,控制装置310还可以分别与压缩机377、显示装置390、第一电磁阀385、第二电磁阀386、三通阀391、接收线圈Lr1和电池包320电性连接,从而对压缩机377、第一电磁阀385、第二电磁阀386和电池包320进行控制,以及控制装置310还可以将获取到充电信息和温度信息等信息发送给显示装置390进行显示,还可以响应用户在显示装置390的操作请求,根据操作请求对空调器300进行控制,例如用户操作请求为制冷模式且制冷至20℃,则对用户操作请求进行响应,控制空调器300进行制冷且设定制冷最低温度为20℃。以及,控制装置310分别与接收线圈Lr1和电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能。以及,控制装置310与三通阀391相连,用于控制三通阀391中通道的通断。
如图11所示,控制装置310包括空调控制器312;放能控制开关319,与空调控制器312电性连接,用于在空调控制器312的驱动下控制三通阀391工作,以将蓄能装置373中蓄积的能量通过蓄能回路和三通阀391向蒸发器379输送。其中,放能控制开关319为包含开关元件的电路,一端电性连接三通阀391,另一端与空调控制器312电性连接。
在一些实施方式中,空调控制器312还可以包括三通阀驱动电路3911,输入端与空调控制器312电性连接,输出端与放能控制开关319电性连接,用于通过空调控制器312和放能控制开关319控制三通阀391的通道的通断。其中,三通阀驱动电路3911用于将空调控制器312发送的控制信号进行放大处理,以将放大的控制信息输出给放能控制开关319。
在一些实施方式中,控制装置310还可以包括用于电性连接压缩机377的第一逆变模块314,与空调控制器312电性连接,第一逆变模块314用于在空调控制器312的驱动下,控制压缩机377运转。
在一些实施方式中,若空调器300还可以包括第一风机382和第二风机383,则控制装置310还可以包括用于电性连接第一风机382的第二逆变模块315,与空调控制器312电性连接,第二逆变模块315基于空调控制器312的驱动,控制第一风机382运转,以使得第一风机382将空气流经蒸发器379以实现热交换;以及,用于电性连接第二风机383的第三逆变模块384,与空调控制器312电性连接,第三逆变模块384基于空调控制器312的驱动,控制第二风机383运转,以使得第二风机383将空气流经冷凝器378以实现热交换。
结合图11所示的,第一逆变模块314可以采用IPM(Intelligent Power Module,智能功率器件)1功率器件,相应地,第二逆变模块315可以采用IPM2功率器件,以及第三逆变模块384可以采用IMP3功率器件,或者更为简单的,可以采用其他类型的晶体管替代,用以控制压缩机377、第一风机电机3821和第二风机电机3831是否运行,而不控制压缩机377、第一风机电机3821和第二风机电机3831运行时的具体运行参数。
若空调器300还可以包括第一电磁阀385和第二电磁阀386,控制装置310还可以包括第一电磁阀开关电路3851,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第一电磁阀385通断;第二电磁阀开关电路3861,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第二电磁阀386通断。
在一些实施方式中,第一电磁阀开关电路3851为包含了开关元件的电路,相应地,第二电磁阀开关电路3861为包含了开关元件的电路,在第一电磁阀开关电路3851的开关元件闭合时,第一电磁阀385通电,从而控制第一电磁阀385导通,从而使得从冷凝器378输出的冷媒能够通过第一电磁阀385和蓄能回路进入到蓄能装置373中;在第一电磁阀开关电路3851的开关元件打开时,第一电磁阀385不通电,从而控制第一电磁阀385断开,使得冷凝器378输出的冷媒不能通过第一电磁阀385;相应地,在第二电磁阀开关电路3861的开关元件闭合时,第二电磁阀386通电,从而控制第二电磁阀386导通,从而使得从冷凝器378输出的冷媒能够通过节流部件381和第二电磁阀386进入到蒸发器379中;在第二电磁阀开关电路3861的开关元件打开时,第二电磁阀386不通电,从而控制第二电磁阀386断开,使得冷凝器378输出的冷媒不能通过第二电磁阀386。
参见图11,控制装置310还可以包括用于电性连接接收线圈Lr1的无线受电模块311,与空调控制器312电性连接,无线受电模块311用于在空调控制器312的驱动下变换处理无线传输的电能。
在一些实施方式中,无线受电模块311的输入端与接收线圈Lr1电性连接,无线受电模块311的输出端通过第一逆变模块314与压缩机377电性连接,第一逆变模块314还与空调控制器312电性连接,从而,第一逆变模块314在空调控制器312的驱动和无线受电模块311的供电下,控制压缩机377工作,以使得压缩机377的冷媒输出到冷凝器378或者蓄能装置373中。以及,无线受电模块311的输出端通过第二逆变模块315与第一风机电机3821电性连接,第二逆变模块315还与空调控制器312电性连接,从而,第二逆变模块315在空调控制器312的驱动和无线受电模块311的供电下,控制第一风机电机3821工作,以驱动第一风机382工作。以及,无线受电模块311的输出端通过第三逆变模块384与第二风机电机3831电性连接,第三逆变模块384还与空调控制器312电性连接,从而,第三逆变模块384在空调控制器312的驱动和无线受电模块311的供电下,控制第二风机电机3831工作,以驱动第二风机383工作。
在一些实施方式中,继续参见图11,无线受电模块311包括:桥式整流电路3111和受电调压电路3112,其中,桥式整流电路3111的交流输入端与接收线圈Lr1电性连接。桥式整流电路3111的交流输入端与接收线圈Lr1电性连接,对接收线圈Lr1接收的电能进行整流处理。受电调压电路3112的输入端与桥式整流电路3111的输出端电性连接,受电调压电路3112的输出端与第一逆变模块314的输入端和第二逆变模块315的输入端电性连接,受电调压电路3112用于对桥式整流电路3111输出的电能进行降压处理,并向第一逆变模块314的输入端343和所述第二逆变模块315进行输电。
如图11所示的,桥式整流电路3111用于将接收线圈Lr1接收到的电能进行交流-直流变换成直流母线电压+VDC1;直流母线电压+VDC1再经受电调压电路3112的直流-直流变换(升压或者降压)后,成为第一逆变模块314、第二逆变模块315和第三逆变模块384需求的直流母线电压+VDC2。
其中,在一些实施方式中,参考图11所示的,桥式整流电路3111可以包括谐振电容C、桥式整流器以及第一滤波电容E1,谐振电容C一端电性连接桥式整流器的一个交流输入端,谐振电容C另一端与接收线圈Lr1一端电性连接,桥式整流器的另一个交流输入端电性连接接收线圈Lr1 另一端。接桥式整流器的两个直流输出端对应电性连接第一滤波电容E1的正负极,第一滤波电容E1的负极接地。
其中,桥式整流器可以是全桥同步整流器、半桥同步整流器以及不控整流器中的任意一种硬件拓扑。举例来讲,参考图11所示,桥式整流器可以是包括第一功率器件Q1、第二功率器件Q2、第三功率器件Q3以及第四功率器件Q4的全桥同步整流器。其中,Q1、Q2、Q3、Q4可以为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),MOS管、三极管等中任意一种晶体管。
为了驱动桥式整流电路3111,空调控制器312包括:控制芯片3121;整流驱动电路3122,整流驱动电路3122的输入端与控制芯片3121电性连接,所述整流驱动电路3122的输出端与所述桥式整流电路3111电性连接,在一些实施方式中,整流驱动电路3122的桥式整流器中每个功率器件的栅极控制端电性连接,以控制Q1、Q2、Q3、Q4通断。
在一些实施方式中,受电调压电路3112可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置受电调压电路3112,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315电性连接。
举例来讲,参考图11所示,受电调压电路3112可以是由第五功率器件Q5、第一电感L1、第六功率器件Q6、第七功率器件Q7、第八功率器件Q8和第二滤波电容E2构成的升降压复用电路,其中,第二滤波电容E2的负极接地,通过第五功率器件Q5、第六功率器件Q6、第七功率器件Q7和第八功率器件Q8通断,实现升压处理或者降压处理。
对应的,为了驱动受电调压电路3112,空调控制器312还可以包括:调压驱动电路3413,调压驱动电路3413的输入端与控制芯片3121电性连接,调压驱动电路3413的输出端与受电调压电路3112中每个功率器件Q5、Q6、Q7和Q8的控制端电性连接,以此能够控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。
在一些实施方式中,参考图11所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向空调器300的显示装置390提供调压处理后的直流电能。
在一些实施方式中,可以与桥式整流电路3111输出端或者受电调压电路3112的输出端电性连接,将直流母线电压+VDC1或者直流母线电压+VDC2进行降压处理,得到显示装置390所需要的电压,给显示装置390供电。
参见图11,空调控制器312还可以包括第一风机驱动电路3822,第一风机驱动电路3822的输出端与第二逆变模块315的控制端电性连接,第一风机驱动电路3822的输入端与控制芯片3121电性连接;第二风机驱动电路3832,第二风机驱动电路3832的输出端与第三逆变模块384的控制端电性连接,第二风机驱动电路3832的输入端与控制芯片3121电性连接。其中,三通阀驱 动电路3911、第一风机驱动电路3822和第二风机驱动电路3832用于将空调控制器312发送的控制信号进行放大处理。
空调控制器312,还可以包括第一母线电压检测电路3126,第一母线电压检测电路3126的输入端与桥式整流电路3111的输出端电性连接,第一母线电压检测电路3126的输出端与控制芯片3121电性连接;第一母线电压检测电路3126可以设置在E1的两端,用于实时检测E1两端的电压,并将实时检测到的E1两端的电压传输给控制芯片3121;包括第二母线电压检测电路3127,第二母线电压检测电路3127的输入端与受电调压电路3112的输出端电性连接,第二母线电压检测电路3127的输出端与控制芯片3121电性连接;其中,第二母线电压检测电路3127可以设置在E2的两端,用于实时检测E1两端的电压,并将实时检测到的E2两端的电压传输给控制芯片3121;以及,包括母线电流检测电路312B,母线电流检测电路312B的输入端与受电调压电路3112电性连接,母线电流检测电路312B的输出端与控制芯片3121电性连接。
相应地,为了使得母线电流检测电路312B正常工作,还可以包括电阻R1,电阻R1设置在第八功率器件Q8与第二滤波电容E2之间,母线电流检测电路312B的输入端与电阻R1电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R1的电流,并将其传输至控制芯片3121,在检测到通过电阻R1的电流超过设定电流时,可以通过控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断,以降低通过电阻R1的电流,使得降低后的电流不大于设定电流,从而实现对受电调压电路3112的保护,降低受电调压电路3112因为电流过高导致损害的概率。
在一些实施方式中,为了移动空调使用场景更加多样化,不受电源限制,可以在户外等没有电网接入端口的场景下使用,参考图11所示,空调器300还可以包括电池包320,控制装置310对应还可以包括充放电调压电路313,充放电调压电路313的一端与桥式整流电路3111的输出端以及受电调压电路3112的输入端电性连接,充放电调压电路313的另一端与电池包320电性连接;在需要电池包320向空调器300的负载进行供电时,电池包320释放的电能经充放电调压电路313进行直流-直流变换的调压变换处理,再经受电调压电路3112进行直流-直流变换的调压处理,并将调压处理后的电能向空调器300的至少一个负载供电。在需要向电池包320充电时,接收线圈Lr1接收的电能,经桥式整流电路3111进行交流-直流变换的整流处理,再经充放电调压电路313进行直流-直流变换的调压变换处理后向电池包320进行充电。
参见图11,充放电调压电路313用于将桥式整流电路3111输出的电能进行转换,并将变换后电能存储至电池包320,或者将电池包320释放的电能进行转换并输出至受电调压电路3112;受电调压电路3112对充放电调压电路313输出的电能进行升压处理,并向第一逆变模块314的输入端、第二逆变模块315和第三逆变模块384输电。
在一些实施方式中,充放电调压电路313可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置充放电调压电路313,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315和第三逆变模块384电性连接。
举例来讲,参考图11所示,充放电调压电路313可以是由第九功率器件Q9、第二电感L2、第十功率器件Q10和第三滤波电容E3构成的充放电调压电路313,其中,第三滤波电容E3的负极接地,通过第九功率器件Q9和第十功率器件Q10通断,实现升压处理或者降压处理。
对应的,为了驱动充放电调压电路313,空调控制器312还可以包括充放电驱动电路312A,充放电驱动电路312A的输入端与控制芯片3121电性连接,充放电驱动电路312A的输出端与受电调压电路3112中每个功率器Q9和Q10的控制端电性连接,以此能够控制功率器件Q9、Q10和第二电感L2的通断。
在一些实施方式中,空调控制器312还可以包括充放电流检测电路3128,充放电流检测电路3128的输入端与充放电调压电路313电性连接,充放电流检测电路3128的输出端与控制芯片3121电性连接;其中,充放电流检测电路3128可以设置在E3的两端,用于实时检测E3两端的电压,并将实时检测到的E3两端的电压传输给控制芯片3121;电池电压检测电路3129,电池电压检测电路3129的输入端与充放电调压电路313电性连接,电池电压检测电路3129的输出端与控制芯片3121电性连接。
相应地,为了使得电池电压检测电路3129正常工作,还可以包括电阻R2,电阻R2设置在第十功率器件Q10与第三滤波电容E3之间,电池电压检测电路3129的输入端与电阻R2电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R2的电流,并将其传输至控制芯片3121,在检测到通过电阻R2的电流超过设定电流时,可以通过控制功率器件Q9、Q10和第二电感L2的通断,以降低通过电阻R2的电流,使得降低后的电流不大于设定电流,从而实现对充放电流检测电路3128的保护,降低充放电流检测电路3128因为电流过高导致损害的概率。
在一些实施方式中,设定电流可以由人工或空调器300自行设定,也可以根据实际需求设备。
在一些实施方式中,控制装置310还可以包括适配调压电路388,适配调压电路388的一端与受电调压电路3112的输出端电性连接,另一端与分别与放能控制开关319、第一电磁阀开关电路3851、第二电磁阀开关电路3861、第一逆变模块314、第二逆变模块315和第三逆变模块384;在需要向三通阀391、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831供电时,通过适配调压电路388进行直流-直流变换的调压处理,并将调压处理后的电能向三通阀391、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831进行供电,以使得通过适配调压电路388调压处理后的电压与三通阀391、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831中每个部件所需电压匹配。
在一些实施方式中,适配调压电路388可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置适配调压电路388。
举例来讲,参考图11所示,适配调压电路388可以是由第十一功率器件11、第三电感L3和第四滤波电容E4构成的调压电路,其中,第四滤波电容E4的负极接地,第十一功率器件11通断,实现降压处理。
在一些实施方式中,参考图11所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向所述空调器300的显示装置390提供调压处理后的直流电能。
其中,显示装置390电性连接控制装置310,可以显示电池包320的充电信息,以及第一风机382和第二风机383的档位和风速等风机运行信息,还可以显示空调器300的制冷温度与室内温度等温度信息,还也显示空调器300的操作信息例如制冷、换风和除湿等。
在一些实施方式中,显示装置390可以是LED和LCD等显示屏。
在一些实施方式中,空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,所述空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。其中,空调通信模块316可以是蓝牙、信号载波、红外发射和接收模块等无线通信模块等。
参见图11,空调器300有多种运行方式。空调器300的第一种运行方式为制冷运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861供电,由于第一风机电机与第一风机382相连,第二风机电机与第二风机383相连,第二电磁阀开关电路3861与第二电磁阀386相连,如此,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。由此可知,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,实现制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
第二种运行方式具体为蓄冷运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀开关电路3851供电。
如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385、蓄能装置373和三通阀391,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以及再通过换热后的冷媒对蓄能装置373中的相变材料进行蓄冷,从而实现对蓄能装置373进行蓄冷的作用;也可以不启动第二风机383,直接将流经冷凝器378的冷媒通过节流部件381和第一电磁阀385传输至蓄能装置373,以对蓄能装置373进行蓄冷。
第三种运行方式具体为制冷和蓄冷同时运行方式,包括:无线接收线圈Lr1接收到无线充电器发射传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩 机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861供电。
如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385处于导通状态,从而使得冷媒依次流经蓄能回路的四通阀389、冷凝器378、节流部件381、第一电磁阀385、蓄能装置373和三通阀391,再回到压缩机377,以实现对蓄能装置373进行蓄冷。以及,由于第二电磁阀386处于导通状态,从而使得从压缩机377流出的冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,从实现制冷作用,进而能够实现蓄冷和制冷同时运行。
第四种运行方式具体为放冷运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给放能控制开关319和第一风机电机3821进行供电,若转换成的需求电压高于放能控制开关319和第一风机电机3821的工作电压例如+VFM,则还需经过适配调压电路388降压后给放能控制开关319和第一风机电机3821供电。
如此,在三通阀391的第一通道和第三通道导通时,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391进入到蓄能装置373,使得蓄能装置373中的冷量会流入冷媒中,再依次流经放能管路的三通阀391、蒸发器379,压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到蓄能装置373,其中,在携带蓄能装置373中的相变材料的冷量的冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,实现放冷作用,由于此时是通过蓄能装置373和压缩机377的冷媒共同制冷,其制冷效率更高,适合在高温或高冷量输出的情况下使用。
在一个或多个实施方式中,由于空调器300中设置有蓄能装置373,在蓄能装置373的相变材料蓄冷之后,可以启动压缩机377,使得压缩机377中的冷媒通过三通阀391进入到蓄能装置373中,从而使得冷媒携带蓄能装置373中的蓄冷,再依次流经放能管路的三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到蓄能装置373,以实现放冷作用,适合在高温或高冷量输出的情况下使用;还可以实现制冷和蓄冷同时运行,使得空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
在一些实施方式中,由于空调器300中设置有接收线圈Lr1,可以接收无线充电器传输的电磁能,再转换成电能以供空调器300运行,此时,空调器300无需连接电网即可工作,能够在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,使得用户的体验更好。
而且,由于空调器300中设置有电池包320,能够通过电池包320给空调器300供电以使得空调器300正常运行,也无需连接电网,此时,还可以无需携带无需充电器,通过空调器300自身携带的电池包320即可使得空调器300工作,能够进一步的在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,进一步提高用户的体验。
若放能驱动件为三通阀,且空调器为冷暖空调器时,如图12所示,压缩机377与蓄能装置373连通,蓄能装置373通过载能回路375与蒸发器379连通,冷凝器378与蒸发器379连通, 载能回路375中设置有三通阀391,压缩机377和三通阀391分别与控制装置310电性连接,控制装置310用于控制压缩机377和三通阀391的运行。
其中,控制装置310可以控制压缩机377的运行参数以及控制住三通阀391的每个通道的通断等。
蓄能装置373中设置相变材料例如可以是无机PCM、有机PCM和复合PCM等,可以对蓄能装置373中的相变材料进行蓄热或蓄冷,本说明书不作具体限制。
在一些实施方式中,空调器300还可以包括四通阀389,四通阀389分别与压缩机377、冷凝器378、蒸发器379和蓄能装置373连通,且四通阀389与控制装置310电性连接。
在一些实施方式中,载能回路375设置有三通阀391,三通阀391设置在蓄能装置373和蒸发器379之间,通过三通阀391控制蓄能装置373的能量依次流经载能回路375的蒸发器379、四通阀389、压缩机377和冷凝器378之后,再回传至蓄能装置373。此时,蓄能装置373中可以设置蓄冷相变材料或蓄热相变材料。
在一些实施方式中,控制装置310可以控制三通阀391的第一通道和第三通道导通,而第二通道断开,此时,会带动蓄能装置373的相变材料通过第一通道和第三通道传输至蒸发器379,再流经载能回路375的四通阀389、压缩机377和冷凝器378之后,再回传至蓄能装置373,通过三通阀391可以使得蓄能装置373的相变材料流经蒸发器379,与外部空气进行换热,从而实现放冷。
在一些实施方式中,压缩机377通过蓄能回路与蓄能装置373连通,其中,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在蓄能装置373和冷凝器378之间,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第一电磁阀385、蓄能装置373和三通阀391,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。
在一些实施方式中,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经四通阀389、三通阀391、蓄能装置373、第一电磁阀385和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。
在一些实施方式中,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。
在一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置一个节流部件381,此时节流部件381设置在冷凝器378和第一电磁阀385之 间,以及冷冻回路设置一个节流部件381,此时,节流部件381设置在冷凝器378和第二电磁阀386之间,以通过节流部件381实现节流降压的目的。
在一些实施方式中,空调器300还可以包括第一风机382,与蒸发器379相对设置,第一风机382的运转用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,第二风机383的运转用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,实现制冷或除湿作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散。
以及,在四通阀389处于第二状态(此时空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
在一些实施方式中,在四通阀389处于第一状态(此时空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385、蓄能装置373和三通阀391,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。
在一些实施方式中,在四通阀389处于第二状态(此时空调器300处于制热模式),此时三通阀391的第一通道和第二通道导通,使得冷媒从压缩机377流出后,依次流经四通阀389、三通阀391、蓄能装置373、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。
空调器300还可以包括接收线圈Lr1,用于接收无线充电装置或者无线储能装置无线传输的电能;控制装置310,与接收线圈Lr1电性连接,用于对接收线圈Lr1接收的电能转换为向空调器300供电的电能。其中,接收线圈Lr1可以为单向接收线圈Lr1或双向接收线圈Lr1等。
在一些实施方式中,接收线圈Lr1在接收到无线充电装置或者无线储能装置无线传输的电能之后,将电能传输至控制装置310,控制装置310对接收线圈Lr1接收的电能进行转换,转换成与空调器300匹配的电能,匹配的电能可以是电压匹配和/或电流匹配等,以降低接收线圈Lr1接收的电能直接给空调器300进行供电时由于电能匹配度低导致空调器300损坏的概率。
在一些实施方式中,空调器300还可以包括电池包320,且控制装置310与电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能,通过控制装置310进行电能转换,以降低由于电能匹配度低导致电池包320和空调器300的部件损坏的概率。
其中,电池包320可以参考实施例一中的电池包320的具体叙述,为了说明书的简洁,在此就不再赘述了。
第一风机382和第二风机383的驱动电机也可以参考实施例一中的第一风机382和第二风机383的驱动电机的具体叙述,为了说明书的简洁,在此就不再赘述了。
在一些实施方式中,如图12和图13所示,第一风机382采用第一风机电机3821进行驱动,第二风机383采用第二风机电机3831进行驱动,且第一风机电机3821和第二风机电机3831均与控制装置310电性连接,通过控制装置310对第一风机电机3821和第二风机电机3831进行控制,可以控制第一风机电机3821和第二风机电机3831的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。
第一风机382和第二风机383可以均为对旋风机等。
如图13所示,控制装置310还可以分别与压缩机377、显示装置390、第一电磁阀385、第二电磁阀386、三通阀391、四通阀389、接收线圈Lr1和电池包320电性连接,从而对压缩机377、第一电磁阀385、第二电磁阀386、三通阀391、四通阀389和电池包320进行控制,以及控制装置310还可以将获取到充电信息和温度信息等信息发送给显示装置390进行显示,还可以响应用户在显示装置390的操作请求,根据操作请求对空调器300进行控制,例如用户操作请求为制热模式且制冷至26℃,则对用户操作请求进行响应,控制空调器300进行制热且设定制热最高温度为26℃。以及,控制装置310分别与接收线圈Lr1和电池包320电性连接,用于将接收线圈Lr1接收的电能转换为存储至电池包320的电能,或者将电池包320释放的电能转换为向空调器300的供电的电能。以及,控制装置310与四通阀389电性连接,可以控制四通阀389中的导通管道,以控制四通阀389的当前状态为第一状态或第二状态。以及,控制装置310与三通阀391相连,用于控制三通阀391中通道的通断。
如图14所示,控制装置310包括空调控制器312;放能控制开关319,与空调控制器312电性连接,用于在空调控制器312的驱动下控制三通阀391工作,以将蓄能装置373中蓄积的能量通过蓄能回路和三通阀391向蒸发器379输送。其中,放能控制开关319为包含开关元件的电路,一端电性连接三通阀391,另一端与空调控制器312电性连接。
在一些实施方式中,空调控制器312还可以包括三通阀驱动电路3911,输入端与空调控制器312电性连接,输出端与放能控制开关319电性连接,用于通过空调控制器312和放能控制开关319驱动三通阀391的通道的通断。其中,三通阀驱动电路3911用于将空调控制器312发送的控制信号进行放大处理,以将放大的控制信息输出给放能控制开关319。
在一些实施方式中,四通阀389与空调控制器312电性连接,用于控制四通阀389中的导通管道,以控制四通阀389的当前状态为第一状态或第二状态。
在一些实施方式中,控制装置310还可以包括用于电性连接压缩机377的第一逆变模块314,与空调控制器312电性连接,第一逆变模块314用于在空调控制器312的驱动下,控制压缩机377运转。
在一些实施方式中,若空调器300还可以包括第一风机382和第二风机383,则控制装置310还可以包括用于电性连接第一风机382的第二逆变模块315,与空调控制器312电性连接,第二逆变模块315基于空调控制器312的驱动,控制第一风机382运转,以使得第一风机382将空气 流经蒸发器379以实现热交换;以及,用于电性连接第二风机383的第三逆变模块384,与空调控制器312电性连接,第三逆变模块384基于空调控制器312的驱动,控制第二风机383运转,以使得第二风机383将空气流经冷凝器378以实现热交换。
结合图14所示的,第一逆变模块314可以采用IPM(Intelligent Power Module,智能功率器件)1功率器件,相应地,第二逆变模块315可以采用IPM2功率器件,以及第三逆变模块384可以采用IMP3功率器件,或者更为简单的,可以采用其他类型的晶体管替代,用以控制压缩机377、第一风机电机3821和第二风机电机3831是否运行,而不控制压缩机377、第一风机电机3821和第二风机电机3831运行时的具体运行参数。
若空调器300还可以包括第一电磁阀385和第二电磁阀386,控制装置310还可以包括第一电磁阀开关电路3851,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第一电磁阀385通断;第二电磁阀开关电路3861,与空调控制器312电性连接,用于在空调控制器312的驱动下控制第二电磁阀386通断。
在一些实施方式中,第一电磁阀开关电路3851为包含了开关元件的电路,相应地,第二电磁阀开关电路3861为包含了开关元件的电路,在第一电磁阀开关电路3851的开关元件闭合时,第一电磁阀385通电,从而控制第一电磁阀385导通,从而使得从冷凝器378输出的冷媒能够通过第一电磁阀385和蓄能回路进入到蓄能装置373中;在第一电磁阀开关电路3851的开关元件打开时,第一电磁阀385不通电,从而控制第一电磁阀385断开,使得冷凝器378输出的冷媒不能通过第一电磁阀385;相应地,在第二电磁阀开关电路3861的开关元件闭合时,第二电磁阀386通电,从而控制第二电磁阀386导通,从而使得从冷凝器378输出的冷媒能够通过节流部件381和第二电磁阀386进入到蒸发器379中;在第二电磁阀开关电路3861的开关元件打开时,第二电磁阀386不通电,从而控制第二电磁阀386断开,使得冷凝器378输出的冷媒不能通过第二电磁阀386。
控制装置310还可以包括用于电性连接接收线圈Lr1的无线受电模块311,与空调控制器312电性连接,无线受电模块311用于在空调控制器312的驱动下变换处理无线传输的电能。
在一些实施方式中,无线受电模块311的输入端与接收线圈Lr1电性连接,无线受电模块311的输出端通过第一逆变模块314与压缩机377电性连接,第一逆变模块314还与空调控制器312电性连接,从而,第一逆变模块314在空调控制器312的驱动和无线受电模块311的供电下,控制压缩机377工作,以使得压缩机377的冷媒输出到冷凝器378或者蓄能装置373中。以及,无线受电模块311的输出端通过第二逆变模块315与第一风机电机3821电性连接,第二逆变模块315还与空调控制器312电性连接,从而,第二逆变模块315在空调控制器312的驱动和无线受电模块311的供电下,控制第一风机电机3821工作,以驱动第一风机382工作。以及,无线受电模块311的输出端通过第三逆变模块384与第二风机电机3831电性连接,第三逆变模块384还与空调控制器312电性连接,从而,第三逆变模块384在空调控制器312的驱动和无线受电模块311的供电下,控制第二风机电机3831工作,以驱动第二风机383工作。
在一些实施方式中,无线受电模块311包括:桥式整流电路3111和受电调压电路3112,其中,桥式整流电路3111的交流输入端与接收线圈Lr1电性连接。桥式整流电路3111的交流输入端与接收线圈Lr1电性连接,对接收线圈Lr1接收的电能进行整流处理。受电调压电路3112的输入端与桥式整流电路3111的输出端电性连接,受电调压电路3112的输出端与第一逆变模块314的 输入端和第二逆变模块315的输入端电性连接,受电调压电路3112用于对桥式整流电路3111输出的电能进行降压处理,并向第一逆变模块314的输入端343和所述第二逆变模块315进行输电。
如图14所示的,桥式整流电路3111用于将接收线圈Lr1接收到的电能进行交流-直流变换成直流母线电压+VDC1;直流母线电压+VDC1再经受电调压电路3112的直流-直流变换(升压或者降压)后,成为第一逆变模块314、第二逆变模块315和第三逆变模块384需求的直流母线电压+VDC2。
其中,在一些实施方式中,参考图12所示的,桥式整流电路3111可以包括谐振电容C、桥式整流器以及第一滤波电容E1,谐振电容C一端电性连接桥式整流器的一个交流输入端,谐振电容C另一端与接收线圈Lr1一端电性连接,电性连接桥式整流器的另一个交流输入端电性连接接收线圈Lr1另一端。接桥式整流器的两个直流输出端对应电性连接第一滤波电容E1的正负极,第一滤波电容E1的负极接地。
其中,桥式整流器可以是全桥同步整流器、半桥同步整流器以及不控整流器中的任意一种硬件拓扑。举例来讲,参考图11所示,桥式整流器可以是包括第一功率器件Q1、第二功率器件Q2、第三功率器件Q3以及第四功率器件Q4的全桥同步整流器。其中,Q1、Q2、Q3、Q4可以为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),MOS管、三极管等中任意一种晶体管。
为了驱动桥式整流电路3111,空调控制器312包括:控制芯片3121;整流驱动电路3122,整流驱动电路3122的输入端与控制芯片3121电性连接,整流驱动电路3122的输出端与所述桥式整流电路3111电性连接,在一些实施方式中,整流驱动电路3122的桥式整流器中每个功率器件的栅极控制端电性连接,以控制Q1、Q2、Q3、Q4通断。
在一些实施方式中,受电调压电路3112可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置受电调压电路3112,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315电性连接。
举例来讲,参考图14所示,受电调压电路3112可以是由第五功率器件Q5、第一电感L1、第六功率器件Q6、第七功率器件Q7、第八功率器件Q8和第二滤波电容E2构成的升降压复用电路,其中,第二滤波电容E2的负极接地,通过第五功率器件Q5、第六功率器件Q6、第七功率器件Q7和第八功率器件Q8通断,实现升压处理或者降压处理。
对应的,为了驱动受电调压电路3112,空调控制器312还可以包括:调压驱动电路3413,调压驱动电路3413的输入端与控制芯片3121电性连接,调压驱动电路3413的输出端与受电调压电路3112中每个功率器件Q5、Q6、Q7和Q8的控制端电性连接,以此能够控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。
在一些实施方式中,参考图14所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向空调器300的显示装置390提供调压处理后的直流电能。
在一些实施方式中,可以与桥式整流电路3111输出端或者受电调压电路3112的输出端电性连接,将直流母线电压+VDC1或者直流母线电压+VDC2进行降压处理,得到显示装置390所需要的电压,给显示装置390供电。
参见图14,空调控制器312还可以包括第一风机驱动电路3822,第一风机驱动电路3822的输出端与第二逆变模块315的控制端电性连接,第一风机驱动电路3822的输入端与控制芯片3121电性连接;第二风机驱动电路3832,第二风机驱动电路3832的输出端与第三逆变模块384的控制端电性连接,第二风机驱动电路3832的输入端与控制芯片3121电性连接。其中,三通阀驱动电路3911、第一风机驱动电路3822和第二风机驱动电路3832用于将空调控制器312发送的控制信号进行放大处理。
空调控制器312,还可以包括第一母线电压检测电路3126,第一母线电压检测电路3126的输入端与桥式整流电路3111的输出端电性连接,第一母线电压检测电路3126的输出端与控制芯片3121电性连接;第一母线电压检测电路3126可以设置在E1的两端,用于实时检测E1两端的电压,并将实时检测到的E1两端的电压传输给控制芯片3121;包括第二母线电压检测电路3127,第二母线电压检测电路3127的输入端与受电调压电路3112的输出端电性连接,第二母线电压检测电路3127的输出端与控制芯片3121电性连接;其中,第二母线电压检测电路3127可以设置在E2的两端,用于实时检测E1两端的电压,并将实时检测到的E2两端的电压传输给控制芯片3121;以及,包括母线电流检测电路312B,母线电流检测电路312B的输入端与受电调压电路3112电性连接,母线电流检测电路312B的输出端与控制芯片3121电性连接。
相应地,为了使得母线电流检测电路312B正常工作,还可以包括电阻R1,电阻R1设置在第八功率器件Q8与第二滤波电容E2之间,母线电流检测电路312B的输入端与电阻R1电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R1的电流,并将其传输至控制芯片3121,在检测到通过电阻R1的电流超过设定电流时,可以通过控制功率器件Q5、Q6、Q7、Q8和第一电感L1的通断,以降低通过电阻R1的电流,使得降低后的电流不大于设定电流,从而实现对受电调压电路3112的保护,降低受电调压电路3112因为电流过高导致损害的概率。
在一些实施方式中,为了移动空调使用场景更加多样化,不受电源限制,可以在户外等没有电网接入端口的场景下使用,参考图14所示,空调器300还可以包括电池包320,控制装置310对应还可以包括充放电调压电路313,充放电调压电路313的一端与桥式整流电路3111的输出端以及受电调压电路3112的输入端电性连接,充放电调压电路313的另一端与电池包320电性连接;在需要电池包320向空调器300的负载进行供电时,电池包320释放的电能经充放电调压电路313进行直流-直流变换的调压变换处理,再经受电调压电路3112进行直流-直流变换的调压处理,并将调压处理后的电能向空调器300的至少一个负载供电。在需要向电池包320充电时,接收线圈Lr1接收的电能,经桥式整流电路3111进行交流-直流变换的整流处理,再经充放电调压电路313进行直流-直流变换的调压变换处理后向电池包320进行充电。
充放电调压电路313用于将桥式整流电路3111输出的电能进行转换,并将变换后电能存储至电池包320,或者将电池包320释放的电能进行转换并输出至受电调压电路3112;受电调压电路3112对充放电调压电路313输出的电能进行升压处理,并向第一逆变模块314的输入端、第二逆变模块315和第三逆变模块384输电。
在一些实施方式中,充放电调压电路313可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置充放电调压电路313,即无线受电模块311仅仅有桥式整流电路3111,桥式整流电路3111的输出端直接与第一逆变模块314、第二逆变模块315和第三逆变模块384电性连接。
举例来讲,参考图14所示,充放电调压电路313可以是由第九功率器件Q9、第二电感L2、第十功率器件Q10和第三滤波电容E3构成的充放电调压电路313,其中,第三滤波电容E3的负极接地,通过第九功率器件Q9和第十功率器件Q10通断,实现升压处理或者降压处理。
对应的,为了驱动充放电调压电路313,空调控制器312还可以包括充放电驱动电路312A,充放电驱动电路312A的输入端与控制芯片3121电性连接,充放电驱动电路312A的输出端与受电调压电路3112中每个功率器Q9和Q10的控制端电性连接,以此能够控制功率器件Q9、Q10和第二电感L2的通断。
在一些实施方式中,空调控制器312还可以包括充放电流检测电路3128,充放电流检测电路3128的输入端与充放电调压电路313电性连接,充放电流检测电路3128的输出端与控制芯片3121电性连接;其中,充放电流检测电路3128可以设置在E3的两端,用于实时检测E3两端的电压,并将实时检测到的E3两端的电压传输给控制芯片3121;电池电压检测电路3129,电池电压检测电路3129的输入端与充放电调压电路313电性连接,电池电压检测电路3129的输出端与控制芯片3121电性连接。
相应地,为了使得电池电压检测电路3129正常工作,还可以包括电阻R2,电阻R2设置在第十功率器件Q10与第三滤波电容E3之间,电池电压检测电路3129的输入端与电阻R2电性连接,输出端与控制芯片3121电性连接,用于实时获取通过电阻R2的电流,并将其传输至控制芯片3121,在检测到通过电阻R2的电流超过设定电流时,可以通过控制功率器件Q9、Q10和第二电感L2的通断,以降低通过电阻R2的电流,使得降低后的电流不大于设定电流,从而实现对充放电流检测电路3128的保护,降低充放电流检测电路3128因为电流过高导致损害的概率。
在一些实施方式中,设定电流可以由人工或空调器300自行设定,也可以根据实际需求设备。
在一些实施方式中,控制装置310还可以包括适配调压电路388,适配调压电路388的一端与受电调压电路3112的输出端电性连接,另一端与分别与放能控制开关319、第一电磁阀开关电路3851、第二电磁阀开关电路3861、第一逆变模块314、第二逆变模块315和第三逆变模块384;在需要向三通阀391、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831供电时,通过适配调压电路388进行直流-直流变换的调压处理,并将调压处理后的电能向三通阀391、第一电磁阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831进行供电,以使得通过适配调压电路388调压处理后的电压与三通阀391、第一电磁 阀385、第二电磁阀386、压缩机377、第一风机电机3821和第二风机电机3831中每个部件所需电压匹配。
在一些实施方式中,四通阀389可以通过适配调压电路388和/或无线受电模块311与空调控制器312电性连接。
在一些实施方式中,适配调压电路388可以为单独的升压电路、单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置适配调压电路388。
举例来讲,参考图14所示,适配调压电路388可以是由第十一功率器件11、第三电感L3和第四滤波电容E4构成的调压电路,其中,第四滤波电容E4的负极接地,第十一功率器件11通断,实现降压处理。
在一些实施方式中,参考图14所示,空调器300还可以包括显示装置390,则控制装置310还可以包括:辅助电源317,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向所述空调器300的显示装置390提供调压处理后的直流电能。
其中,显示装置390电性连接控制装置310,可以显示电池包320的充电信息,以及第一风机382和第二风机383的档位和风速等风机运行信息,还可以显示空调器300的制冷温度与室内温度等温度信息,还也显示空调器300的操作信息例如制冷、换风和除湿等。
在一些实施方式中,显示装置390可以是LED和LCD等显示屏。
空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,所述空调通信模块316用于与向空调器300无线输电的外部供电装置进行通信,以控制向空调器300无线输电的外部供电装置处于待机或者能量发射状态。其中,空调通信模块316可以是蓝牙、信号载波、红外发射和接收模块等无线通信模块等。
参见图14,空调器300有多种运行方式。空调器300的第一种运行方式为制冷或制热运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第二电磁阀开关电路3861供电,由于第一风机电机与第一风机382相连,第二风机电机与第二风机383相连,第二电磁阀开关电路3861与第二电磁阀386相连,如此,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。
如此,在第一种运行方式为制冷运行方式时,此时,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。由此可知,在压缩机377正常工作且四通阀389处于第一状态时,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,实现制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
以及,在第一种运行方式具体为制热运行方式时,此时,压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
第二种运行方式具体为蓄冷或蓄热运行方式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀385开关的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831和第一电磁阀开关电路3851供电。
如此,在第二种运行方式为蓄冷运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和蓄能装置373,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热,以及再通过散热后的冷媒对蓄能装置373中的相变材料进行蓄冷。
以及,在第二种运行方式为蓄热运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,以及三通阀391的第一通道和第二通道导通,如此,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、三通阀391、蓄能装置373、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。其中,从压缩机377流出的冷媒对蓄能装置373中的相变材料进行蓄热,对相变材料蓄热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行加热,再通过四通阀389回传至压缩机377。
第三种运行方式具体为制冷和蓄冷同时运行方式或制热和蓄热同时运行方式,包括:无线接收线圈Lr1接收到无线充电器发射传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861进行供电,若转换成的需求电压高于压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861的工作电压例如+VFM,则还需经过适配调压电路388降压后给压缩机377、第一风机电机3821、第二风机电机3831、第一电磁阀开关电路3851和第二电磁阀开关电路3861供电。
如此,在第三种运行方式具体为制冷和蓄冷同时运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通,从而使得冷媒依次流经冷冻回路的四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,从而起到制冷作用。以及,由于第一电磁阀385导通,从而使得冷媒依次流经 蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385、蓄能装置373和三通阀391,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄冷;如此,能够实现制冷和蓄冷同时运行。
以及,在第三种运行方式具体为制热和蓄热同时运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。以及,由于第一电磁阀385导通使得冷媒依次流经蓄能回路的依次流经四通阀389、三通阀391、蓄能装置373、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对蓄能装置373进行蓄热。
第四种运行方式具体为放冷运行方式或放热运行模式,具体包括:接收线圈Lr1接收到无线充电器传输过来的电磁能后,经无线受电模块311调压后,转换成需求电压例如+VDC2给放能控制开关319第一风机电机3821进行供电,若转换成的需求电压高于放能控制开关319和第一风机电机3821的工作电压例如+VFM,则还需经过适配调压电路388降压后给放能控制开关319和第一风机电机3821供电,由于第一风机电机与第一风机382相连。
如此,在第四种运行方式为放冷运行模式时,由于放能控制开关319与三通阀391相连,在放能控制开关319供电情况下,控制三通阀391的第一通道、第二通道和第三通道导通,此时,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391的第二通道和第一通道流经蓄能装置373,从而使得蓄能装置373中的冷量输入到冷媒中,再依次流经三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385之后,再回传至蓄能装置373,从而在压缩机377和蓄能装置373的共同作用下进行放冷。
如此,在第四种运行方式为放热运行模式时,该模式通常用于对冷凝器378进行化霜操作,且在该模式下节流部件381的开度达到最大,使节流作用失效,控制三通阀391的第一通道和第二通道导通,而第三通道断开,此时,通过启动压缩机377,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391流经蓄能装置373,从而使得蓄能装置373中的热量输入到冷媒中,再依次流经第一电磁阀385、节流部件381和冷凝器378之后,再通过四通阀389回传至蓄能装置373,从而在压缩机377和蓄能装置373的共同作用下进行制热。
在一个或多个实施方式中,由于空调器300中设置有蓄能装置373,在蓄能装置373的相变材料蓄能之后,可以启动压缩机377,使得压缩机377中的冷媒通过三通阀391进入到蓄能装置373中,从而使得冷媒携带蓄能装置373中的蓄冷,再依次流经放能管路的三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到蓄能装置373,以实现放冷作用或放热作用,还可以实现制冷和蓄冷同时运行,以及制热和蓄热同时运行,当然也可以单独实现制冷或制热,使得空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
在一些实施方式中,由于空调器300中设置有接收线圈Lr1,可以接收无线充电器传输的电磁能,再转换成电能以供空调器300运行,此时,空调器300无需连接电网即可工作,能够在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,使得用户的体验更好。
而且,由于空调器300中设置有电池包320,能够通过电池包320给空调器300供电以使得空调器300正常运行,也无需连接电网,此时,还可以无需携带无需充电器,通过空调器300 自身携带的电池包320即可使得空调器300工作,能够进一步的在户外等不方便接插市电的场景下使用,使得空调器300的应用场景更广,进一步提高用户的体验。
本文中所描述的功能可在硬件、由处理器执行的软件、固件或其任何组合中实施。如果在由处理器执行的软件中实施,那么可将功能作为一或多个指令或代码存储于计算机可读媒体上或经由计算机可读媒体予以传输。其它实例及实施方案在本发明及所附权利要求书的范围及精神内。举例来说,归因于软件的性质,上文所描述的功能可使用由处理器、硬件、固件、硬连线或这些中的任何者的组合执行的软件实施。此外,各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为控制装置的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (19)

  1. 一种空调器的控制装置,其中,所述空调器包括压缩机、冷凝器、蒸发器和蓄能装置,所述蓄能装置与所述蒸发器之间设置有载能回路,所述载能回路设置有放能驱动件,所述控制装置包括:
    空调控制器;
    放能控制开关,与所述空调控制器电性连接,用于在所述空调控制器的驱动下控制所述放能驱动件工作,以将所述蓄能装置中的能量通过所述载能回路和所述放能驱动件向所述蒸发器输送。
  2. 如权利要求1所述的控制装置,其中,若所述放能驱动件为载流剂泵,所述空调控制器还包括:
    载流剂泵驱动电路,所述载流剂泵驱动电路的输入端与所述空调控制器电性连接,所述载流剂泵驱动电路的输出端与所述放能控制开关电性连接,所述载流剂泵驱动电路用于通过所述空调控制器和所述放能控制开关驱动所述载流剂泵。
  3. 如权利要求2所述的控制装置,其中,所述载流剂泵置设置在所述蓄能装置与所述蒸发器之间,通过所述载流剂泵控制所述蓄能装置的能量通过所述蓄能回路传输至蒸发器,再回传至所述蓄能装置。
  4. 如权利要求1所述的控制装置,其中,若所述放能驱动件为三通阀,所述空调控制器还包括:
    三通阀驱动电路,所述三通阀驱动电路的输入端与所述空调控制器电性连接,所述三通阀驱动电路的输出端与所述放能控制开关电性连接,所述三通阀驱动电路用于通过所述空调控制器和所述放能控制开关驱动所述三通阀。
  5. 如权利要求4所述的控制装置,其中,所述三通阀设置在所述蓄能装置与所述蒸发器之间,通过所述三通阀控制所述蓄能装置的能量依次流经所述载能回路的所述蒸发器、所述压缩机和所述冷凝器后,再回传至所述蓄能装置。
  6. 如权利要求5所述的控制装置,其中,所述空调器还包括四通阀,设置于所述蓄能回路,所述四通阀分别与所述压缩机、所述冷凝器、所述蒸发器和所述蓄能装置连通;所述控制装置电性连接所述四通阀,用于控制所述四通阀的开通通道。
  7. 如权利要求2或4所述的控制装置,其中,还包括:
    用于电性连接所述压缩机的第一逆变模块,与所述空调控制器电性连接,所述第一逆变模块用于在所述空调控制器的驱动下,控制所述压缩机运转。
  8. 如权利要求7所述的控制装置,其中,所述空调器还包括与所述蒸发器相对设置的第一风机和与所述冷凝器相对设置的第二风机,还包括:
    用于电性连接所述第一风机的第二逆变模块,与所述空调控制器电性连接,所述第二逆变模块基于所述空调控制器的驱动,控制所述第一风机运转;
    用于电性连接所述第二风机的第三逆变模块,与所述空调控制器电性连接,所述第三逆变模块基于所述空调控制器的驱动,控制所述第二风机运转。
  9. 如权利要求8所述的控制装置,其中,所述空调器包括设置在所述压缩机与所述蓄能装置的管路的第一电磁阀,以及设置在所述冷凝器与所述蒸发器的管路的第二电磁阀,还包括:
    第一电磁阀开关电路,与所述空调控制器电性连接,用于在所述空调控制器的驱动下控制所述第一电磁阀通断;
    第二电磁阀开关电路,与所述空调控制器电性连接,用于在所述空调控制器的驱动下控制所述第二电磁阀通断。
  10. 如权利要求1所述的控制装置,其中,还包括:
    用于电性连接接收线圈的无线受电模块,与所述空调控制器电性连接,所述无线受电模块用于在所述空调控制器的驱动下变换处理无线传输的电能。
  11. 如权利要求10所述的控制装置,其中,所述无线受电模块,包括:
    桥式整流电路,所述桥式整流电路的交流输入端用于电性连接所述接收线圈;
    受电调压电路,所述受电调压电路的输入端与所述桥式整流电路的直流输出端电性连接,所述受电调压电路的输出端与所述第一逆变模块的输入端和所述第二逆变模块的输入端电性连接。
  12. 如权利要求11所述的控制装置,其中,所述空调控制器,包括:
    控制芯片;
    整流驱动电路,所述整流驱动电路的输入端与所述控制芯片电性连接,所述整流驱动电路的输出端与所述桥式整流电路电性连接;
    调压驱动电路,所述调压驱动电路的输入端与所述控制芯片电性连接,所述调压驱动电路的输出端与所述受电调压电路电性连接。
  13. 如权利要求12所述的控制装置,其中,所述空调控制器,还包括:
    第一风机驱动电路,所述第一风机驱动电路的输入端与所述第二逆变模块的控制端电性连接,所述第一风机驱动电路的输出端与所述控制芯片电性连接;
    第二风机驱动电路,所述第二风机驱动电路的输入端与所述第三逆变模块的控制端电性连接,所述第二风机驱动电路的输出端与所述控制芯片电性连接。
  14. 如权利要求12所述的控制装置,其中,所述空调控制器,还包括:
    第一母线电压检测电路,第一母线电压检测电路的输入端与所述桥式整流电路的输出端电性连接,所述第一母线电压检测电路的输出端与所述控制芯片电性连接;
    第二母线电压检测电路,第二母线电压检测电路的输入端与所述受电调压电路的输出端电性连接,所述第二母线电压检测电路的输出端与所述控制芯片电性连接;
    母线电流检测电路,所述母线电流检测电路的输入端与所述受电调压电路电性连接,所述母线电流检测电路的输出端与所述控制芯片电性连接。
  15. 如权利要求12所述的控制装置,其中,所述控制装置还包括:
    充放电调压电路,所述充放电调压电路一端电性连接所述桥式整流电路,另一端用于电性连接所述空调器的电池包。
  16. 如权利要求15所述的控制装置,其中,所述空调控制器,还包括:
    充放电流检测电路,所述充放电流检测电路的输入端与所述充放电调压电路电性连接,所述充放电流检测电路的输出端与所述控制芯片电性连接;
    电池电压检测电路,所述电池电压检测电路的输入端与所述充放电调压电路电性连接,所述电池电压检测电路的输出端与所述控制芯片电性连接。
  17. 如权利要求1-6任一项所述的控制装置,其中,还包括:
    辅助电源,与所述无线受电模块的输出端电性连接,所述辅助电源用于对所述无线受电模块的输出电能进行调压,并向所述空调器的显示装置提供调压后的电能。
  18. 如权利要求1-6任一项所述的控制装置,其中,还包括:
    空调通信模块,与所述空调控制器电性连接,所述空调通信模块用于与无线充电装置或无线储能装置进行无线通信,其中,所述无线充电装置或者无线储能装置用于向所述空调器无线输电。
  19. 一种空调器,其中,所述空调器包括如权利要求1-18任一项所述的控制装置,其中,所述空调器为无线空调器。
PCT/CN2022/110223 2021-10-22 2022-08-04 一种空调器的控制装置及空调器 WO2023065775A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202122560446.8 2021-10-22
CN202111235994.1 2021-10-22
CN202122564090.5 2021-10-22
CN202111235994.1A CN116007082A (zh) 2021-10-22 2021-10-22 一种空调器
CN202111235999.4A CN116007083A (zh) 2021-10-22 2021-10-22 一种空调器的控制装置
CN202111235999.4 2021-10-22
CN202111234333.7 2021-10-22
CN202122564090.5U CN216203946U (zh) 2021-10-22 2021-10-22 一种空调器
CN202122560447.2U CN217464707U (zh) 2021-10-22 2021-10-22 一种空调器
CN202122560446.8U CN217464706U (zh) 2021-10-22 2021-10-22 一种空调器的控制装置
CN202111234333.7A CN116007080A (zh) 2021-10-22 2021-10-22 一种空调器
CN202122560447.2 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065775A1 true WO2023065775A1 (zh) 2023-04-27

Family

ID=86057905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110223 WO2023065775A1 (zh) 2021-10-22 2022-08-04 一种空调器的控制装置及空调器

Country Status (1)

Country Link
WO (1) WO2023065775A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015965A (ja) * 2004-07-05 2006-01-19 Toyota Motor Corp 車両用空調装置
CN106379133A (zh) * 2016-10-10 2017-02-08 中国科学院广州能源研究所 一种热泵型双蓄能电动汽车空调储能装置
KR20180128287A (ko) * 2017-05-23 2018-12-03 주식회사 윈드앰프 무선 충전 냉난방기
CN109579385A (zh) * 2018-11-28 2019-04-05 山东大学 一种空调自除霜装置及控制方法
CN109687600A (zh) * 2018-12-20 2019-04-26 广东美的白色家电技术创新中心有限公司 电子装置、无线输电接收电路及通信方法和无线输电系统
CN109861501A (zh) * 2019-03-25 2019-06-07 广东美的制冷设备有限公司 智能功率模块和空调器
CN216203946U (zh) * 2021-10-22 2022-04-05 佛山市顺德区美的电子科技有限公司 一种空调器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015965A (ja) * 2004-07-05 2006-01-19 Toyota Motor Corp 車両用空調装置
CN106379133A (zh) * 2016-10-10 2017-02-08 中国科学院广州能源研究所 一种热泵型双蓄能电动汽车空调储能装置
KR20180128287A (ko) * 2017-05-23 2018-12-03 주식회사 윈드앰프 무선 충전 냉난방기
CN109579385A (zh) * 2018-11-28 2019-04-05 山东大学 一种空调自除霜装置及控制方法
CN109687600A (zh) * 2018-12-20 2019-04-26 广东美的白色家电技术创新中心有限公司 电子装置、无线输电接收电路及通信方法和无线输电系统
CN109861501A (zh) * 2019-03-25 2019-06-07 广东美的制冷设备有限公司 智能功率模块和空调器
CN216203946U (zh) * 2021-10-22 2022-04-05 佛山市顺德区美的电子科技有限公司 一种空调器

Similar Documents

Publication Publication Date Title
US11807068B2 (en) Vehicle and temperature control device thereof
US9809083B2 (en) HVAC system for electric vehicle with driving range extension
CN102287891B (zh) 直流变频空调及其控制方法
CN216203946U (zh) 一种空调器
WO2023065775A1 (zh) 一种空调器的控制装置及空调器
CN216216102U (zh) 一种空调机组
CN216436892U (zh) 一种空调机组
CN217464707U (zh) 一种空调器
CN217464706U (zh) 一种空调器的控制装置
KR101677609B1 (ko) 공기 조화기 및 그의 제어 방법
CN216693934U (zh) 一种无线空调器的控制装置
CN116007083A (zh) 一种空调器的控制装置
CN116007080A (zh) 一种空调器
KR20110026304A (ko) 공기 조화기 및 그의 제어 방법
CN116007082A (zh) 一种空调器
CN216384688U (zh) 一种空调器
WO2023065777A1 (zh) 空调机组、无线供电控制方法、装置及存储介质
WO2023065776A1 (zh) 空调机组、供电控制方法、装置及存储介质
CN116007241A (zh) 一种空调器
CN216216101U (zh) 一种空调机组
CN216693841U (zh) 一种蓄能装置及空调器
CN108633223B (zh) 一种空调电池热泵的控制方法
KR20110026308A (ko) 공기 조화기 및 그의 제어 방법
CN116481093A (zh) 一种蓄能装置及空调器
JP2001224175A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE