WO2023065776A1 - 空调机组、供电控制方法、装置及存储介质 - Google Patents

空调机组、供电控制方法、装置及存储介质 Download PDF

Info

Publication number
WO2023065776A1
WO2023065776A1 PCT/CN2022/110224 CN2022110224W WO2023065776A1 WO 2023065776 A1 WO2023065776 A1 WO 2023065776A1 CN 2022110224 W CN2022110224 W CN 2022110224W WO 2023065776 A1 WO2023065776 A1 WO 2023065776A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
wireless
power
energy storage
state
Prior art date
Application number
PCT/CN2022/110224
Other languages
English (en)
French (fr)
Inventor
李明
徐锦清
霍兆镜
曾德森
张健彬
岑长岸
朱佰盛
Original Assignee
佛山市顺德区美的电子科技有限公司
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111235022.2A external-priority patent/CN116014864A/zh
Priority claimed from CN202111237927.3A external-priority patent/CN116014912A/zh
Priority claimed from CN202122561909.2U external-priority patent/CN216216102U/zh
Priority claimed from CN202111236394.7A external-priority patent/CN116014911A/zh
Priority claimed from CN202111236393.2A external-priority patent/CN116014831A/zh
Priority claimed from CN202122560274.4U external-priority patent/CN216216101U/zh
Application filed by 佛山市顺德区美的电子科技有限公司, 广东美的制冷设备有限公司 filed Critical 佛山市顺德区美的电子科技有限公司
Publication of WO2023065776A1 publication Critical patent/WO2023065776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to the field of electrical appliances, and in particular to an air conditioner unit, a power supply control method, a device, and a storage medium.
  • the present disclosure provides an air conditioner unit, a power supply control method, a device, and a storage medium .
  • the present disclosure provides an air conditioner unit, including: a wireless charging device and a wireless air conditioner, the wireless charging device or the wireless air conditioner is provided with an energy storage module; the wireless charging device is used to Wirelessly supply power to the energy storage module and/or the wireless air conditioner when connected to commercial power; the energy storage module is used to power the wireless charging device to the The wireless air conditioner performs wireless power supply.
  • the present disclosure provides a power supply control method for an air conditioner, including: controlling the wireless charging device to perform wireless charging on the energy storage module and/or the wireless air conditioner when it is detected that the wireless charging device is connected to the mains power supply. Power supply: when it is detected that the wireless charging device is not connected to the mains, control the energy storage module to wirelessly supply power to the wireless air conditioner.
  • the present disclosure provides a power supply control device for an air conditioner, including: a first processing module, configured to control the wireless charging device to power the energy storage module and /or the wireless air conditioner provides wireless power supply; the second processing module is configured to control the energy storage module to provide wireless power supply to the wireless air conditioner when it is detected that the wireless charging device is not connected to the mains.
  • the present disclosure provides a power supply control device for an air conditioner, including a memory, a processor, and a computer program stored in the memory and operable on the processor.
  • the processor executes the program, the second aspect is realized Any step of the provided air conditioner power supply control method.
  • the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, any step of the method for controlling power supply of an air conditioner provided in the aforementioned second aspect is provided.
  • the air conditioner unit provided in the present disclosure includes: a wireless charging device and a wireless air conditioner, the wireless charging device or the wireless air conditioner is provided with an energy storage module; the wireless charging device is used to connect to the mains Wirelessly supply power to the energy storage module and/or the wireless air conditioner; the energy storage module is used to wirelessly supply power to the wireless air conditioner when the wireless charging device is not connected to the mains. Since the wireless air conditioner can obtain electric energy through wireless power transmission, it does not need to be powered by a power tail wire. Therefore, the wireless air conditioner can be moved freely during use, which improves user experience.
  • Fig. 1 shows a schematic diagram of an air conditioning unit in which an energy storage module is set in a wireless charging device according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic diagram of an air conditioning unit in which an energy storage module is set in a wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 3 shows a circuit block diagram of a wireless charging device according to an embodiment of the present disclosure
  • FIG. 4 shows a detailed circuit diagram of a wireless charging device according to an embodiment of the disclosure
  • Fig. 5 shows a circuit block diagram of a wireless air conditioner according to an embodiment of the disclosure
  • Fig. 6 shows a schematic structural diagram of a first type of wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 7 shows a schematic structural diagram of a second type of wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 8 shows a schematic structural diagram of a third type of wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 9 shows another schematic structural diagram of a third type of wireless air conditioner according to an embodiment of the present disclosure.
  • Fig. 10 shows a schematic structural diagram of a fourth type of wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 11 shows another schematic structural diagram of a fourth type of wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 12 shows a schematic diagram of a wireless charging device according to an embodiment of the present disclosure
  • Fig. 13 shows a circuit block diagram of a wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 14 shows a detailed circuit diagram of a wireless air conditioner according to an embodiment of the present disclosure
  • Fig. 15 shows a flow chart of an air conditioner power supply control method according to an embodiment of the present disclosure
  • Fig. 16 shows a schematic diagram of an air conditioner power supply control device according to an embodiment of the present disclosure
  • Fig. 17 shows a schematic diagram of another power supply control device for an air conditioner according to an embodiment of the present disclosure
  • FIG. 18 shows a schematic diagram of a computer-readable storage medium according to an embodiment of the disclosure.
  • the air conditioner unit provided by the present disclosure includes a wireless charging device 100 and a wireless air conditioner 300, and the wireless charging device 100 or the wireless air conditioner 300 is provided with an energy storage module 130; the wireless charging device 100 uses The energy storage module 130 is used to wirelessly supply power to the energy storage module 130 and/or the wireless air conditioner 300 when it is connected to the mains power; Perform wireless power supply.
  • the air conditioning unit can include two implementations. As shown in FIG. 1, the energy storage module 130 is set in the wireless charging device
  • FIG. 2 The schematic diagram of the air conditioner unit in 100 is shown in FIG. 2 , which is a schematic diagram of the air conditioner unit in which the energy storage module 130 is arranged in the wireless air conditioner 300 .
  • the energy storage module 130 is set in the wireless charging device 100.
  • the wireless charging device 100 and the wireless air conditioner 300 are in the state of establishing a communication connection, the wireless charging device 100 is used to charge the commercial power or The electric energy released by the energy storage module 130 is wirelessly transmitted to the outside; the wireless air conditioner 300 is used to receive the electric energy wirelessly transmitted by the wireless charging device 100 .
  • the wireless charging device 100 can directly use the electric energy converted from the mains to wirelessly power the wireless air conditioner 300; when the wireless charging device 100 is not connected to the mains, the wireless charging The device 100 can release electric energy through the energy storage module 130 to wirelessly supply power to the wireless air conditioner 300 .
  • FIG. 3 it is a schematic diagram of a wireless charging device provided in the present disclosure, including: an input power interface 110 , a rectification module 120 , an energy storage module 130 , a wireless power supply module 140 , a transmitting coil Ls1 and a charging and discharging control module 150 .
  • the input end of the rectification module 120 is electrically connected to the input power interface 110; the output end of the rectification module 120, the charging and discharging end of the energy storage module 130, and the input end of the wireless power supply module 140 are interconnected; the transmitting coil Ls1 is connected to the wireless power supply The module 140 is electrically connected; the charging and discharging control module 150 is electrically connected to the rectification module 120 , the energy storage module 130 and the wireless power supply module 140 .
  • the electric energy output by the mains is processed by the rectifier module 120 and the energy storage module 130 and then stored, so that the electric energy can be released by the energy storage module 130 when needed, and then processed by the wireless power supply module 140 and then processed by the wireless power supply module 140.
  • the transmitting coil Ls1 transmits power wirelessly; or driven by the charging and discharging control module 150, the electric energy output from the mains is directly processed by the rectifying module 120 and the wireless power supply module 140, and then wirelessly transmitting externally through the transmitting coil Ls1.
  • the wireless charging device 100 can adopt any conversion circuit topology in series-series (S-S), series-parallel (S-P), parallel-series (P-S), parallel-parallel P-P, LCC, CLC and other conversion circuits.
  • the input power interface 110 is used to connect to the mains; the input power interface 110 can be used to connect to the 220V mains.
  • the 220V mains power is transmitted to the rectifier module 120 .
  • the input power interface 110 can also be connected to other AC power sources.
  • the rectification module 120 performs AC-DC conversion of the AC power received by the input power interface 110 into the bus voltage +VDC.
  • the rectification module 120 may be any rectification circuit topology among active PFC (Power Factor Correction, power factor correction) topology, passive PFC topology, and bridgeless active PFC topology.
  • active PFC Power Factor Correction, power factor correction
  • the rectification module 120 may include: a first bridge rectification circuit 121 and an input voltage regulation circuit 122 electrically connected in sequence. Wherein, the two AC input ends of the first bridge rectifier circuit 121 are electrically connected to the input power interface 110, and the output end of the input voltage regulating circuit 122 is electrically connected to the charging and discharging end of the energy storage module 130 and the input end of the wireless power supply module 140. sexual connection.
  • the first bridge rectification circuit 121 may be any rectification topology among full bridge synchronous rectification topology, half bridge synchronous rectification topology and uncontrolled rectification topology.
  • the first bridge rectifier circuit 121 may be a full-bridge synchronous rectifier composed of four diodes: a first diode D1, a second diode D2, and a third diode D3 and the fourth diode D4.
  • the anode of the first diode D1 and the cathode of the third diode D3 are electrically connected to an input terminal of the input power interface 110
  • the anode of the second diode D2 and the cathode of the fourth diode D4 are electrically connected to each other.
  • the other input end of the input power interface 110 is connected, and the cathode of the first diode D1 and the cathode of the second diode D2 are electrically connected to the input end of the input voltage regulation circuit 122 .
  • the anode of the third diode D3 and the anode of the fourth diode D4 are also electrically connected to the input terminal of the input voltage regulation circuit 122 .
  • the input voltage regulation circuit 122 may be composed of a first inductor L1A , a fifth power device Q5A, a fifth diode D5 and a first filter capacitor E1A.
  • One end of the first inductor L1A is electrically connected to a DC output end of the first bridge rectifier circuit 121, and the other end of the first inductor L1A is electrically connected to the anode of the fifth diode D5 and the collector of the fifth power device Q5A.
  • the emitter of the fifth power device Q5A is also electrically connected to the cathode of the first filter capacitor E1A and the other DC output terminal of the first bridge rectifier circuit 121, and the cathode of the fifth diode D5 is connected to the cathode of the first filter capacitor E1A
  • the positive electrode is electrically connected, and the negative electrode of the first filter capacitor E1A is grounded.
  • the charging and discharging control module 150 includes: and a first rectification driving circuit 152 .
  • the first control chip 151 can be MCU (Microcontroller Unit, micro control unit), the input end of the first rectification drive circuit 152 is electrically connected with the first pulse signal output end of the first control chip 151, the first rectification drive circuit 152 The output end is electrically connected to the rectification module 120 .
  • the input terminal of the first rectification drive circuit 152 is electrically connected to the gate control terminal of the fifth power device Q5A in the rectification module 120 to drive the rectification module 120, so that the first rectification drive circuit 152 is based on the first control chip 151
  • the provided PWM (Pulse Width Modulation, pulse width modulation) signal drives the rectification module 120, and the rectification module 120 performs AC-DC conversion on the AC power provided by the mains to obtain the bus voltage +VDC.
  • the wireless power supply module 140 includes: a bridge inverter circuit 141, the input end of the bridge inverter circuit 141 is electrically connected to the output end of the rectification module 120 and the charging and discharging end of the energy storage module 130, and the bridge inverter circuit 141 The output end of the inverter circuit 141 is electrically connected to the transmitting coil Ls1.
  • the bridge inverter circuit 141 may adopt a full-bridge synchronous rectification topology or a half-bridge synchronous rectification topology. Wherein, the bridge inverter circuit 141 is used to perform DC-AC conversion on the DC bus voltage +VDC output by the rectifier module 120 into AC power, and then wirelessly transmit power to the outside through the transmitting coil Ls1.
  • the bridge inverter circuit 141 may be a full-bridge synchronous rectification topology composed of four power devices: the first power device Q1A, the second power device Q2A, the third power device Q3A and the first power device Q3A.
  • Four power devices Q4A wherein, the emitter of the first power device Q1A and the collector of the third power device Q3A are electrically connected to one end of the resonant capacitor CA, and the other end of the resonant capacitor C A is electrically connected to one end of the transmitting coil Ls1, and the second power device The emitter of Q2A and the collector of the fourth power device Q4A are electrically connected to the other end of the transmitting coil Ls1.
  • Both the collector of the first power device Q1A and the collector of the second power device Q2A are electrically connected to the positive electrode of the first filter capacitor E1A, and the emitter of the third power device Q3A and the emitter of the fourth power device Q4A are connected to the first The negative electrode of the filter capacitor E1A is electrically connected.
  • the charging and discharging control module 150 also includes: an inverter driving circuit 153, the input end of the inverter driving circuit 153 is electrically connected to the third pulse signal output end of the first control chip 151, and the inverter drives The output end of the circuit 153 is electrically connected to the wireless power supply module 140 . Therefore, when the power input interface 110 is connected to the mains, the inverter drive circuit 153 is used to drive the wireless power supply module 140 to convert the DC power output by the rectifier module 120 into AC power, and then transmit it to the outside through the transmitting coil Ls1.
  • the inverter driving circuit 153 drives the wireless power supply module 140 to switch the energy storage module
  • the DC power output by 130 is converted into AC power through DC-AC conversion, and then wirelessly transmitted to the outside through the transmitting coil Ls1.
  • the four output terminals of the inverter drive circuit 153 correspond to the gate control terminals of each power device electrically connected to the bridge inverter circuit 141 in the wireless power supply module 140: the gate of the first power device Q1A, the gate of the second power device The gate of Q2A, the gate of the third power device Q3A and the gate of the fourth power device Q4A are used to drive Q1A to Q4A to switch on and off.
  • the energy storage module 130 includes: a first charging and discharging voltage regulating circuit 131 and a first battery pack 132 , wherein one end of the first charging and discharging voltage regulating circuit 131 is connected to the rectifying module 120 The output end is electrically connected to the input end of the wireless power supply module 140 ; the first battery pack 132 is electrically connected to the other end of the first charge-discharge voltage regulating circuit 131 .
  • the first battery pack 132 includes a battery module 1321 and a BMS protection board (Bttery Managment system, battery management system) 1322 .
  • the BMS protection board can protect the battery module 1321 from charging overvoltage, charging overcurrent, discharging overcurrent, discharging voltage too low, temperature too high, etc., as well as power display and other functions.
  • the first charging/discharging voltage regulating circuit 131 is used for stepping down the electric energy output by the rectifying module 120 to charge the first battery pack 132, and for boosting the energy released by the first battery pack 132 to supply wireless power Module 140 is provided.
  • the first charge and discharge voltage regulation circuit 131 is a charge and discharge multiplexing circuit or includes a charge and discharge voltage regulation subcircuit that are independent of each other, wherein the charge and discharge voltage regulation subcircuit and the discharge voltage regulation subcircuit The circuits are all electrically connected to the first battery pack.
  • the first charge-discharge voltage regulating circuit 131 is a charge-discharge multiplexing circuit, it specifically includes: a sixth power device Q6A, a seventh power device Q7A, a second inductor L2A , and a second filter capacitor E2A.
  • the collector of the sixth power device Q6A is electrically connected to the positive pole of the first filter capacitor E1A in the rectifier module 120
  • the emitter of the seventh power device Q7A is electrically connected to the negative pole of the first filter capacitor E1A in the rectifier module 120
  • Both the emitter of the sixth power device Q6A and the collector of the seventh power device Q7A are electrically connected to one end of the second inductor L2A
  • the other end of the second inductor L2A is electrically connected to the positive electrode of the second filter capacitor E2A.
  • the emitter of the seven-power device Q7A is also electrically connected to the negative pole of the second filter capacitor E2A, and the negative pole of the second filter capacitor E2A is grounded, and the positive and negative poles of the second filter capacitor E2A are electrically connected to the positive pole of the first battery pack 132. negative electrode.
  • the charging and discharging control module 150 also includes a first charging and discharging driving circuit 154, the input terminal of the first charging and discharging driving circuit 154 is connected to the second pulse signal output terminal of the first control chip 151 Electrically connected, the output end of the first charging and discharging driving circuit 154 is electrically connected to the energy storage module 130 .
  • the first charging and discharging driving circuit 154 is electrically connected to the gate control terminal of the seventh power device Q7A and the gate control terminal of the sixth power device Q6A to control the on-off of Q6A and Q7A. Therefore, the first charging and discharging driving circuit 154 drives the first charging and discharging voltage regulating circuit 131 to perform charging and discharging voltage regulation.
  • the first charging and discharging voltage regulation circuit 131 When the power input interface 110 is not connected to the mains power, the first charging and discharging voltage regulation circuit 131 is driven to release the electric energy stored in the first battery pack 132, and after boosting processing, it is provided to the wireless power supply module 140.
  • the first charging and discharging voltage regulating circuit 131 When 110 is connected to the mains, if the first battery pack 132 of the energy storage module 130 is in an unsaturated state, the first charging and discharging voltage regulating circuit 131 is driven to convert the electric energy output by the rectifying module 120 from the DC bus voltage +VDC to the voltage required by the first battery pack +Vb, and charge the first battery pack 132 .
  • the transmitting coil Ls1 may be a unidirectional transmitting coil, which is only used for wireless power transmission to the wireless air conditioner 300 .
  • the charging and discharging control module 150 in order to monitor the rectification of the rectification module 120 , the charging and discharging control module 150 further includes: an AC voltage detection circuit 155 , a current detection circuit 156 and a bus voltage detection circuit 157 .
  • the two input terminals of the AC voltage detection circuit 155 are electrically connected to the two DC output terminals of the first bridge rectifier circuit 121 for detecting the output voltage of the first bridge rectifier circuit 121 .
  • the current detection circuit 156 can electrically connect the first resistor R1A between the anode of the fourth diode D4 and the emitter of the fifth power device, and the AC voltage detection circuit 155 is electrically connected to the first resistor R1A to detect The first bridge rectifier circuit 121 outputs the magnitude of the current.
  • the output end of the AC voltage detection circuit 155 and the output end of the current detection circuit are both electrically connected to the first control chip 151, and the first control chip 151 is based on the current detected by the current detection circuit 156 and the voltage detected by the AC voltage detection circuit 155. , control to output a pulse signal to the first rectification driving circuit 152 to drive the first bridge rectification circuit 121 of the rectification module 120 to work.
  • the input end of the bus voltage detection circuit 157 is electrically connected to the output end of the input voltage regulation circuit 122 , and the output end of the bus voltage detection circuit 157 is electrically connected to the first control chip 151 .
  • the two input terminals of the bus voltage detection circuit 157 can be electrically connected to the positive and negative poles of the first filter capacitor E1A to detect the magnitude of the DC bus voltage +VDC output by the input voltage regulating circuit 122 and provide it to the first control chip 151.
  • the first control chip 151 controls to output a pulse signal to the input voltage regulating circuit 122 according to the DC bus voltage +VDC, so as to drive the first bridge rectifier circuit 121 of the rectifier module 120 to work.
  • the charging and discharging control module 150 further includes: a first charging and discharging current detection circuit 158 and a first battery voltage detection circuit 159 .
  • the input end of the first charging and discharging current detection circuit 158 is electrically connected with the first charging and discharging voltage regulation circuit 131 .
  • a second resistor R2A is electrically connected between the emitter of the seventh power device Q7A and the negative electrode of the second filter capacitor E2A, and the input end of the first charging and discharging current detection circuit 158 is electrically connected to the second resistor R2A.
  • the output end of a charge and discharge current detection circuit 158 is electrically connected to the first control chip 151, and the first charge and discharge current detection circuit 158 is used to detect the charge current or discharge current processed by the first charge and discharge voltage regulating circuit 131 and provide to the first control chip 151.
  • the input end of the first battery voltage detection circuit 159 is electrically connected to the first charging and discharging voltage regulation circuit 131 , and the output end of the first battery voltage detection circuit 159 is electrically connected to the first control chip 151 .
  • the two input ends of the first charge and discharge current detection circuit 158 are electrically connected to the positive and negative electrodes of the second filter capacitor E2A.
  • the first battery voltage detection circuit 159 is used to detect when the first battery pack 132 is being charged or the first battery
  • the battery voltage when the battery pack 132 is discharged is provided to the first control chip 151 .
  • the first control chip 151 controls the output of pulse signals to the first charge and discharge driving circuit 154 according to the battery voltage and the charge and discharge current, so as to drive the operation of the first charge and discharge voltage regulating circuit 131 .
  • Each of the power devices Q1A to Q7A involved in the present disclosure may use an IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor) device, or a transistor such as a MOS tube.
  • IGBT Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • the wireless charging device 100 further includes: a communication module 160 for communicating with the wireless air conditioner 300, and the communication module 160 is electrically connected with the charge and discharge control module 150 to communicate with the wireless air conditioner 300 to Obtain the device status of the wireless air conditioner 300 and control the wireless air conditioner 300 .
  • the communication module 160 includes one or more of a Bluetooth module, a signal carrier module, and an infrared transceiver module.
  • the device status of the wireless air conditioner 300 includes, but is not limited to, a standby status and a shutdown status.
  • the standby state may be a state corresponding to when the wireless air conditioner 300 needs to receive electric energy.
  • the user can send a start-up command to the wireless air conditioner 300 through the control panel, remote control or voice control of the wireless air conditioner 300. After receiving the start-up command, the wireless air conditioner 300 needs to receive electric energy wirelessly to start up. Therefore,
  • the device state of the wireless air conditioner 300 may be a standby state. Or, during the operation of the wireless air conditioner 300, the wireless air conditioner 300 also needs to continuously receive electric power wirelessly to realize operation. Therefore, when the wireless air conditioner 300 is in operation, the equipment status of the wireless air conditioner is also waiting state.
  • the state of stopping receiving power may be a state corresponding to when the wireless air conditioner 300 does not need to work.
  • the user can send a shutdown command to the wireless air conditioner 300 through the control panel, remote control, or voice control of the wireless air conditioner 300.
  • the wireless air conditioner 300 completes the shutdown according to the shutdown command.
  • the device state of the wireless air conditioner 300 is adjusted to the state of stopping power reception.
  • the wireless air conditioner 300 can be reset by powering off. Therefore, when the wireless air conditioner 300 needs to be powered off and reset, it can stop receiving power, and the wireless air conditioner The device status of 300 is the power-off state.
  • the wireless charging device 100 can adjust the power supply mode of the wireless charging device 100 according to the device state of the wireless air conditioner 300 acquired by the communication module 160 and the state of the first battery pack of the energy storage device 130 .
  • the first battery pack state may include but not limited to a state to be charged, a saturated state, and a dischargeable state.
  • the charging operation of the first battery pack 132 can be performed.
  • the rectification module 120 will charge the energy storage module 130 after converting the mains power under the control of the charging and discharging control module 150 .
  • the energy storage module 130 can be used to release the electric energy for the wireless air conditioner 300. powered by.
  • the energy storage module 130, the wireless power supply module 140, and the transmitting coil Ls1 are connected in sequence; the energy storage module 130 is used to release electric energy; the wireless power supply module 140 is used to store energy The electric energy released by the module 130 is converted and transmitted wirelessly through the transmitting coil Ls1.
  • the wireless air conditioner 300 can be wirelessly powered by the electric energy converted from the mains.
  • the input power interface 110, the rectifier module 120, the wireless power supply module 140, and the transmitting coil Ls1 are sequentially connected; the input power interface 110 is used to connect to the mains; Under the control of the discharge control module 150, the commercial power is converted, and the converted electric energy is wirelessly transmitted to the outside through the transmitting coil Ls1.
  • the first battery pack When it is detected that the state of the first battery pack is the state to be charged, the state of the device is the state to be powered, and the input power interface 110 is connected to the mains, the first battery pack can be charged and the wireless air conditioner 130 can be wirelessly powered at the same time.
  • the input power interface 110, the rectifier module 120, the energy storage module 130, the wireless power supply module 140, and the transmitting coil Ls1 are connected in sequence; the input power interface 110 is used to connect to the mains, and the rectifier module 120 is used to Under the control of the control module 150, the commercial power is converted to charge the energy storage module 130; The converted electric energy is wirelessly transmitted to the outside through the transmitting coil Ls1.
  • the wireless air conditioner 300 includes: a receiving coil Lr1, used to receive the electric energy wirelessly transmitted by the wireless charging device 100; a control device 310 is electrically connected to the receiving coil Lr1, and the control device 310 is used to wirelessly receive The electric energy is converted to supply power to the load of the wireless air conditioner 300 .
  • the control device 310 includes a wireless power receiving module 311 for converting received electric energy and an air conditioner controller 312 .
  • the wireless power receiving module 311 may include a first bridge rectifier circuit and a power receiving and voltage regulating circuit. Wherein, the input end of the first bridge rectifier circuit is electrically connected to the receiving coil Lr1, the output end of the first bridge rectifier circuit is electrically connected to the input end of the power receiving voltage regulating circuit, and the first bridge rectifier circuit is used for Under the control of the air conditioner controller 312, the electric energy received by the receiving coil Lr1 is converted from AC to DC.
  • the power receiving voltage regulating circuit is used to step up or step down the DC power output by the first bridge rectifier circuit under the control of the air conditioner controller 312 , and use the processed current to supply power to the load.
  • the first bridge rectifier circuit and the power receiving and voltage regulating circuit in the present disclosure can be implemented based on related technologies, and the embodiments of the present disclosure will not give examples.
  • the wireless air conditioner 300 can be divided into various types according to different cooling and heating principles. Different types of wireless air conditioners have different corresponding loads. For each type of wireless air conditioner, the control device 310 is also used to drive and control the load of the type of wireless air conditioner.
  • the first energy storage device 330 is used to accommodate the energy storage material; and the injection drive device 340 is assembled on the first energy storage device 330; 330, wherein, when the injection driving device 340 applies a force to the first energy storage device 330, the first energy storage device 330 injects the energy storage material to the distribution device 350, and the injected energy storage material is scattered and ejected in the flow distribution device 350 to Release heat or cold energy.
  • the control device 310 is used to control the flow rate of the energy storage material sprayed to the flow splitting device 350 .
  • the first type of wireless air conditioner 300 does not require the compressor to participate in refrigeration and heating, the working process of the air conditioner will not generate vibration and noise, so as to solve the noise problem of the air conditioner; on the other hand, no compression
  • the mechanism facilitates the reduction of the volume of the air conditioner and improves the portability of the air conditioner.
  • the phase change energy storage material accommodated in the first energy storage device 330 is in a liquid state.
  • it is a refrigeration air conditioner.
  • What is accommodated in the first energy storage device 330 is a cold storage phase change material.
  • the first energy storage device 330 accommodates heat storage phase change materials.
  • the phase change energy storage material accommodated in the energy storage device 330 is a reactive heating or cooling material, which can be specifically: solid (nitrate, lithium bromide, etc.) Exothermic.
  • the first energy storage device 330 in order to preserve the energy storage phase change material, includes: a sealed tank body 331 and a liquid spray pipeline 332, and the sealed tank body 331 is filled with cold storage or heat storage materials in a high-pressure state.
  • Phase-change energy storage material the liquid inlet of the liquid spray pipeline 332 is docked with the sealed tank body 331, the liquid spray port of the liquid spray pipeline 332 is connected with the splitter device 350, and the spray drive device 340 is assembled on the liquid spray pipeline 332, and can
  • the liquid spraying pipeline 332 exerts force to spray the energy-storage phase change material from the sealed tank 331 through the liquid spraying pipeline 332 to the splitter device 350 .
  • the injection drive device 340 includes: an opening adjustment member 341 and a first motor 342, and the opening adjustment member 341 is assembled on the liquid injection pipeline 332 of the first energy storage device 330; the first motor 342 and the opening degree
  • the adjusting part 341 is electrically connected, and the operation of the first motor 342 is used to adjust the opening degree of the opening adjusting part 341 to change the flow rate of the energy storage material sprayed from the liquid spraying pipeline 332 to the diverting device 350 .
  • the opening adjustment member 341 can be a device that evenly adjusts the opening by pressing, and this device can be a stroke structure, a knob structure, or other structures that can adjust the opening of the spray pipe 332 by pressing. All the structures of the above-mentioned opening adjustment member 341 can be driven by the operation of the first motor 342 to realize uniform adjustment of the opening.
  • the wireless air conditioner 300 in the embodiment of the present disclosure further includes a control device 310, which is electrically connected to the first motor 342, and controls the operation of the first motor 342 through the control device 310, so as to accurately control the opening adjustment member 341
  • the opening is uniformly adjusted, and furthermore, the flow rate of the energy storage material sprayed from the first energy storage device 330 to the distribution device 350 is precisely controlled.
  • the first motor 342 in the present disclosure may be a single-phase asynchronous motor, an induction motor, a brushed DC motor, a single-phase brushless DC motor, a three-phase brushless DC motor, a three-phase permanent magnet synchronous motor, a synchronous reluctance motor, and Any one of the switched reluctance motors can be selected according to actual needs, and there is no limitation here.
  • the wireless air conditioner 300 provided by the embodiment of the present disclosure further includes a third fan 360;
  • the air flow at the location can make the cold/heat released by the energy storage material of the flow distribution device 350 spread farther.
  • the third fan 360 blows air to the flow distribution device 350, which can increase the speed of the air flowing through the flow distribution device 350, thus, the cold/heat released by the energy storage material of the flow distribution device 350 can be transmitted farther, expanding the air-conditioning effect scope.
  • control device 310 is electrically connected to the second motor of the third fan 360, and the control device 310 is used to control the operation of the second motor, thereby controlling the angle of the third fan 360 to blow out the wind And/or air volume, so as to drive the air flow at the position where the flow distribution device 350 is located, so as to improve the comfort of the air conditioner.
  • the second motor of the third fan 360 can be a single-phase asynchronous motor, an induction motor, a brushed DC motor, a single-phase brushless DC motor, a three-phase brushless DC motor, a three-phase permanent magnet synchronous motor, a synchronous reluctance motor, a switch Any type of reluctance motor.
  • the flow diversion device 350 in the implementation of the present disclosure includes a plurality of parallel flow sub-pipes 351, and each flow sub-pipe 351 communicates with the liquid injection port of the liquid injection pipeline 332, and each flow sub-pipe 351 is spaced apart. Set or contact the tube wall to disperse the energy storage material as far as possible through the flow diversion device, and increase the range of action of the sprayed energy storage material releasing cold or heat energy.
  • the energy device 373-A is arranged in the first area A of the thermoelectric assembly 370; the heat exchange device 374 is arranged in the second area B of the thermoelectric assembly 370, and the second energy storage device 373-A communicates with the heat exchange device 374 to carry energy Loop 375; the control device 310 is electrically connected to the thermoelectric assembly 370 and the energy-discharging driver 376 of the energy-carrying circuit 375, and the control device 310 is used to control the energy-discharging driver 376 and/or control the power supply to the thermoelectric assembly 370, so that the thermoelectric The energy generated by the component 370 is released to the outside through the heat exchange device 374 and/or stored in the second energy storage device 373-A.
  • the second type of wireless air conditioner 300 does not require the compressor to participate in refrigeration and heating, the working process of the air conditioner will not generate vibration and noise, so as to solve the noise problem of the air conditioner; on the other hand, no compression
  • the mechanism facilitates the reduction of the volume of the air conditioner and improves the portability of the air conditioner.
  • control device 310 is used to control the power supply to the thermoelectric assembly 370, so as to change the energy-control state of the first area A and the energy-control state of the second area B of the thermoelectric assembly 370, so that the first area A and the second area 2.
  • Region B is in any one of the following two energy-manufacturing states: 1 heating state; 2 cooling state.
  • a phase change material is accommodated in the second energy storage device 373-A. Since the second energy storage device 373-A is connected to the first area A of the thermoelectric assembly 370, by changing the direction of the power supply current to the thermoelectric assembly 370, the The first area A is in the cooling state (2), then the first area A of the thermoelectric assembly 370 generates cold energy and transmits it to the second energy storage device 373-A, so as to be accumulated in the phase change material of the second energy storage device 373-A ( This process is the cold storage operation of the wireless air conditioner 300);
  • thermoelectric assembly 370 By changing the direction of the power supply current to the thermoelectric assembly 370, the first area A can be in the heating state 1, then the first area A of the thermoelectric assembly 370 generates heat energy and transfers it to the second energy storage device 373-A, so that in the second The energy storage device 373-A is stored in the phase change material (this process is the heat storage operation of the wireless air conditioner 300).
  • the heat exchange device 374 is connected to the second area B of the thermoelectric assembly 370, and by changing the direction of the power supply current to the thermoelectric assembly 370, the second area B can be in the cooling state (2), then: the second area B of the thermoelectric assembly 370 generates cold energy And transfer to the heat exchange device 374, so as to release cold energy to the environment through the heat exchange device 374 (this process is the cooling operation of the wireless air conditioner 300).
  • the second area B can be in the heating state (1), then: the second area B of the thermoelectric assembly 370 generates heat energy and transmits it to the heat exchange device 374, so as to pass through the heat exchange device 374 to The environment releases heat energy (this process is the heating operation of the wireless air conditioner 300).
  • the energization states of the first region A and the second region B of the thermoelectric assembly 370 can be controlled synchronously.
  • the thermoelectric assembly 370 includes: an integrally formed semiconductor thermoelectric element 371, the semiconductor thermoelectric element 371 includes a first surface M1 and a second surface M2, and the first area A and the second area B correspond to the second surface M2. Different regions, thus, the second energy storage device 373 -A and the heat exchange device 374 are both disposed on the second surface M2 of the semiconductor thermoelectric element 371 .
  • the semiconductor thermoelectric element 371 works based on the same direct current, so that the energization states of the first area A and the second area B are synchronously controlled.
  • the wireless air conditioner 300 performs cooling operation and cold storage operation at the same time;
  • the semiconductor thermoelectric element 371 is fed with direct current in the second direction (opposite to the first direction), then the first area A and the second area B of the semiconductor thermoelectric element 371 are both in the cooling state, and the wireless air conditioner 300 simultaneously performs heating operation and Thermal storage operation. It can be seen that by synchronously controlling the energy-controlling states of the first area A and the second area B of the thermoelectric element 370, the wireless air conditioner 300 can be operated in any of the following working modes:
  • the control device 310 is electrically connected to the semiconductor thermoelectric element 371, and the control device 310 is used to control the power supply to the semiconductor thermoelectric element 371, so as to change the current direction of the direct current that the wireless power receiving module 311 of the wireless air conditioner supplies to the semiconductor thermoelectric element 371,
  • the second surface M2 of the semiconductor thermoelectric element 371 is in a corresponding cold surface state or a hot surface state.
  • the first area A and the second area B of the thermoelectric module 370 are both in a cooling state, and the second energy storage device 373-A stores the first area A to produce At the same time, the heat exchange device 374 releases the cold energy generated in the second area B to the outside.
  • the first area A and the second area B of the thermoelectric assembly 370 are both in the heating state, and the second energy storage device 373-A stores the first area A to generate At the same time, the heat exchange device 374 releases the heat energy generated in the second area B to the outside.
  • the thermoelectric assembly 370 further includes a heat sink 372, the heat sink 372 is arranged on the first surface M1 of the semiconductor thermoelectric element 371, and the heat dissipation device 372 is used on the first surface M1 of the semiconductor thermoelectric sheet 371.
  • the first surface M1 is dissipated to avoid overheating of the first surface M1.
  • thermoelectric component 370 In addition to synchronous control, the energy control states of the first area A and the second area B of the thermoelectric component 370 can also be controlled separately:
  • the semiconductor thermoelectric element 371 includes: a first semiconductor thermoelectric sheet 3711 and a second semiconductor thermoelectric sheet 3712, wherein the first semiconductor thermoelectric sheet 3711 is independently arranged relative to the second semiconductor thermoelectric sheet 3712; wherein the second energy storage device 373-A is arranged On the second surface M2 of the first semiconductor thermoelectric sheet 3711, the first region A is located on the second surface M2 of the first semiconductor thermoelectric sheet 3711; the heat exchange device 374 is arranged on the second surface M2 of the second semiconductor thermoelectric sheet 3712, and the second Region B is located on the second surface M2 of the second semiconductor thermoelectric sheet 3712; the control device 310 is electrically connected to the first semiconductor thermoelectric sheet 3711 and the second semiconductor thermoelectric sheet 3712 respectively, and the control device 310 is used to control the first semiconductor thermoelectric sheet 3712 respectively.
  • the power supply to the thermoelectric sheet 3711 and the power supply to the second semiconductor thermoelectric sheet 3712 by controlling the power supply to the first semiconductor thermoelectric sheet 3711 and the power supply to the second semiconductor thermoelectric sheet 3712 respectively, the wireless air conditioner 300 can perform any of the following Working mode, for each working mode, it has its own operation mode:
  • Synchronous refrigeration and cold storage mode corresponding to cooling operation mode and cold storage operation mode
  • Heat storage operation mode when the control device 310 controls the direct current in the first direction to the first semiconductor thermoelectric sheet 3711, the first surface M1 of the first semiconductor thermoelectric sheet 3711 is in a cold surface state, and the second surface of the first semiconductor thermoelectric sheet 3711 is in a cold state.
  • the surface M2 is in a hot surface state, and the first semiconductor thermoelectric sheet 3711 generates thermal energy and stores it through the second energy storage device 373-A.
  • Cooling operation mode when the direct current of the second direction is passed to the second semiconductor thermoelectric sheet 3712, the second surface M2 of the second semiconductor thermoelectric sheet 3712 is in a hot surface state, and the second surface M2 of the second semiconductor thermoelectric sheet 3712 is in a cold surface state, the second semiconductor thermoelectric sheet 3712 generates cold energy and releases it through the heat exchange device 374 .
  • Cold storage operation mode pass direct current in the second direction to the first semiconductor thermoelectric sheet 3711, the first surface M1 of the first semiconductor thermoelectric sheet 3711 is in a hot surface state, and the second surface M2 of the first semiconductor thermoelectric sheet 3711 is in a cold surface state , the first semiconductor thermoelectric sheet 3711 generates cold energy and stores it through the second energy storage device 373-A.
  • Heating operation mode pass direct current in the first direction to the second semiconductor thermoelectric sheet 3712, the first surface M1 of the second semiconductor thermoelectric sheet 3712 is in a cold state, and the second surface M2 of the second semiconductor thermoelectric sheet 3712 is in a hot surface state, the second semiconductor thermoelectric sheet 3712 generates thermal energy and releases it through the heat exchange device 374 .
  • the carrier in the energy-carrying circuit 375 circulates under the drive of the energy-discharging driver 376, and the cold energy or heat energy accumulated by the phase-change material in the second energy storage device 373-A passes through the flowing carrier After the agent is taken out, it is released in the heat exchange device 374, and the remaining cold energy or heat energy after the release returns to the second energy storage device 373-A along with the flow of the carrier agent.
  • the energy-carrying loop 375 includes an energy-discharging pipeline and an energy-carrying pipeline, wherein the energy-discharging pipeline is connected between the second energy storage device 373-A and the heat exchange device 374, and the energy-discharging driving member 376 is arranged on the energy-discharging pipeline, and the energy-discharging pipeline Driven by the driver 376, the cold energy or heat energy stored in the second energy storage device 373-A is taken out by the carrier, and then transported to the heat exchange device 374 through the energy discharge pipeline for release.
  • the energy-carrying pipeline is connected between the second energy storage device 373-A and the heat exchange device 374, and the remaining energy after the heat exchange device 374 releases cold energy or heat energy is returned to the second energy-carrying pipeline through the brine in the energy-carrying pipeline.
  • the second energy storage device 373-A is used to store energy in the second energy storage device 373-A.
  • the cold energy or heat energy returned to the second energy storage device 373-A can be generated by the second semiconductor thermoelectric sheet 3712 and released by the heat exchange device 374, or it can be the second energy storage device 373 -
  • the remaining energy after the energy in A is transported to the heat exchange device 374 through the energy release pipeline for release, so that the cold and heat energy produced by the thermoelectric component 370 can be fully utilized, and resource waste is avoided.
  • the energy discharge driver 376 provided in the energy discharge pipeline may be a carrier pump, so that cooling/heat flow through the heat exchange device 374 along with the carrier.
  • the drive motor of the carrier pump can be: single-phase asynchronous motor, induction motor, single-phase brushless DC motor, three-phase brushless DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor, switched reluctance motor any type of motor.
  • the heat dissipation device 372 includes at least a heat sink 3721 connected to the first surface M1 of the semiconductor thermoelectric element 371 for dissipating heat when the first surface M1 is in a hot surface state.
  • the cooling device 372 also includes a cooling fan 3722 opposite to the radiator 3721.
  • the control device 310 is electrically connected to the cooling fan 3722 for controlling the operation of the cooling fan 3722 to drive the radiator 3721. The air flow at the location makes the air flow through the radiator 3721, thereby increasing the cooling effect.
  • the cooling fan 3722 can be driven solely by the first fan motor. Unlike the above-mentioned embodiments, if the cooling fan 3722 is a counter-rotating fan, it needs to be driven by the first fan motor and the second fan motor together. .
  • the first fan motor and the second fan motor can be single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, three-phase permanent magnet synchronous motors, synchronous magnetic Any one of resistance motor and switched reluctance motor.
  • the semiconductor thermoelectric element 371 includes a first semiconductor thermoelectric sheet 3711 and a second semiconductor thermoelectric sheet 3712 that are independent of each other
  • the heat sink 3721 includes a first heat dissipation element 3721-A and a second heat dissipation element 3721-B, which are arranged in a one-to-one correspondence.
  • the first surface M1 of the first semiconductor thermoelectric sheet 3711 and the first surface M1 of the second semiconductor thermoelectric sheet 3712 are arranged in a one-to-one correspondence.
  • the heat exchange device 374 at least includes: a heat exchanger 3741 connected to the second surface M2 of the semiconductor thermoelectric element 371 for capturing cold energy or heat energy generated by the semiconductor thermoelectric element 371 and releasing it to the outside.
  • the heat exchange device 374 also includes a heat exchange fan 3742, which is arranged opposite to the heat exchange device 374; the control device 310 is electrically connected to the heat exchange fan 3742 connected, the control device 310 controls the operation of the heat exchange fan 3742 to drive the air flow at the position where the heat exchanger 3741 is located, so that the air flows through the heat exchanger 3741 .
  • the heat exchange fan 3742 can be driven solely by the third fan motor. Unlike the above embodiments, if the heat exchange fan 3742 is a pair of cyclones, the third fan motor and the fourth fan motor need to be used to drive the heat exchange fan 3742. drive.
  • Both the third fan motor and the fourth fan motor can be single-phase asynchronous motor, induction motor, brushed DC motor, single-phase brushless DC motor, three-phase brushless DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor , Any one of switched reluctance motors.
  • the third energy storage device 373-B communicates with the evaporator 379 through the energy carrying circuit
  • the condenser 378 communicates with the evaporator 379
  • the energy carrying circuit is provided with a carrier pump 380
  • the compressor 377 and the carrier pump 380 are electrically connected to the control device 310
  • the control device 310 is used to control the start and stop of the compressor 377 and the carrier pump 380 .
  • the wireless air conditioner 300 is a refrigeration air conditioner or a heating and cooling air conditioner as an example.
  • the wireless air conditioner is a refrigeration air conditioner.
  • the compressor 377 communicates with the third energy storage device 373-B
  • the third energy storage device 373-B communicates with the evaporator 379 through the energy carrying circuit 375
  • the condenser 378 communicates with the evaporator 379
  • a carrier pump 380 is provided in the circuit 375
  • the compressor 377 and the carrier pump 380 are electrically connected to the control device 310 for controlling the start and stop of the compressor 377 and the carrier pump 380 .
  • the cold storage phase change material installed in the third energy storage device 373-B can be, for example, inorganic PCM, organic PCM, composite PCM, etc., which can store cold in the phase change material in the third energy storage device 373-B.
  • the energy-carrying circuit 375 is provided with a carrier pump 380, and the carrier pump 380 is arranged between the third energy storage device 373-B and the evaporator 379, and the third accumulator is controlled by the carrier pump 380.
  • the cold storage of the energy storage device 373-B is transmitted to the evaporator 379 through the energy carrying circuit 375, and then returned to the third energy storage device 373-B.
  • the third energy storage device 373-B is provided with a cold storage phase change material.
  • the control device 310 can control the start of the carrier pump 380, and after the start of the carrier pump 380, it will drive the cold storage of the third energy storage device 373-B to exchange heat with the carrier, so that the carrier carrying the cold storage passes through the
  • the energy-carrying loop 375 is transmitted to the evaporator 379, and then returned to the energy storage device 37, and the carrier pump 380 can make the cold storage of the third energy storage device 373-B flow through the evaporator 379 through the carrier agent, and the external air Carry out heat exchange, thereby realize letting cool.
  • the compressor 377 communicates with the third energy storage device 373-B through an energy storage circuit, and the energy storage circuit is provided with a first electromagnetic valve 385, and the first electromagnetic valve 385 is arranged on the third energy storage device 373-B. and the condenser 378, so that after the refrigerant flows out from the compressor 377, it passes through the condenser 378 of the energy storage circuit, the first solenoid valve 385 and the third energy storage device 373-B in sequence, and then returns to the compressor 377 .
  • the refrigerant may be, for example, R12, R134a, R407c, R410a, R290, and R3.
  • the refrigerant flows out from the compressor 377, and the control device 310 controls the first solenoid valve 385 to be turned on, so that the refrigerant passes through the condenser 378 of the energy storage circuit. , flows through the first electromagnetic valve 385 and transmits to the third energy storage device 373-B, stores cold on the third energy storage device 373-B, and after the refrigerant flows through the third energy storage device 373-B, it is returned to the compressor Machine 377.
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, so that After the refrigerant flows out from the compressor 377 , it flows through the condenser 378 , the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377 .
  • the control device 310 controls the compressor 377 to start
  • the refrigerant flows out of the compressor 377, flows through the condenser 378
  • the control device 310 controls the conduction of the second solenoid valve 386, so that the refrigerant flows through
  • the condenser 378 then flows through the second solenoid valve 386 and then is transmitted to the evaporator 379 , and after the refrigerant flows through the evaporator 379 , it is transmitted back to the compressor 377 .
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigerating circuit can also be independent circuits, that is, the common pipeline 387 is not included.
  • a throttling component 381 can be arranged in the energy storage circuit.
  • the throttling component 381 is arranged on the condensing between the device 378 and the third energy storage device 373-B; 381 achieves the purpose of throttling and reducing pressure.
  • the wireless air conditioner 300 also includes a first fan 382, which is arranged opposite to the evaporator 379, and is used to drive the air flow at the position where the evaporator 379 is located; a second fan 383, which is arranged opposite to the condenser 378, for To drive the air flow at the location of the condenser 378, wherein the control device 310 is electrically connected to the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 and the second fan 383, for example, it can control The gear position and wind speed of the first fan 382 can also control the gear position and wind speed of the second fan 383 .
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377, wherein the refrigerant flows through
  • the air flows through the condenser 378 through the second fan 383 to exchange heat for the refrigerant to play a cooling effect;
  • the air flows through the evaporator 379 to dissipate heat from the refrigerant.
  • the refrigerant flows out from the compressor 377, it flows through the condenser 378, the throttling component 381, the first electromagnetic valve 385 and the third energy storage device 373-B of the energy storage circuit in sequence, and then returns to the compressor 377, wherein the refrigerant
  • the first fan 382 When flowing through the condenser 378, the first fan 382 is not started, but the refrigerant is directly input into the third energy storage device 373-B through the throttling member 381 and the first solenoid valve 385, so that the third energy storage device
  • the phase change material in 373-B stores cold, and the first fan 382 can also be started, so that the phase change material in the third energy storage device 373-B stores cold at the same time.
  • the drive motors of the first fan 382 and the second fan 383 can be three-phase brushless DC motors, single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, three-phase permanent Any one of motors such as a magnetic synchronous motor, a synchronous reluctance motor, and a switched reluctance motor, and the driving motor of the compressor 377 can be a three-phase brushless DC motor, a single-phase asynchronous motor, an induction motor, a brushed DC motor, Any one of single-phase brushless DC motor, three-phase brushless DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor and switched reluctance motor, the drive motor of the carrier pump 380 can be three-phase Brushless DC motors Single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, three-phase permanent
  • the first fan 382 is driven by a first fan motor
  • the second fan 383 is driven by a second fan motor
  • both the first fan motor and the second fan motor are connected with the control
  • the device 310 is electrically connected, and the first fan motor and the second fan motor are controlled by the control device 310, which can control the start-stop and working power of the first fan motor and the second fan motor, and then realize the control of the first fan 382 and the second fan motor.
  • the gear and the rotating speed of the second fan 383 are controlled.
  • the carrier pump 380 is driven by a carrier pump motor, the carrier pump motor is electrically connected to the control device 310, and the carrier pump motor is controlled by the control device 310, and the control device 310 can control the carrier pump motor.
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • the air conditioner provided by the present disclosure has multiple operation modes.
  • the first operation mode of the wireless air conditioner 300 is cooling operation mode, which specifically includes:
  • the first operation mode of the wireless air conditioner 300 is the cooling operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless power receiving module 311 adjusts the voltage, it converts it into a required voltage and provides it to the compressor 377,
  • the first fan 382 motor, the second fan 383 motor and the second solenoid valve 386 supply power, so that the first fan 382, the second fan 383 and the compressor 377 work under the condition of power supply, and the second solenoid valve 386 is powered conduction in case of In this way, when the compressor 377 is working normally, after the refrigerant flows out from the compressor 377, since the second solenoid valve 386 is turned on and the first solenoid valve 385 is not powered, the refrigerant flows through the refrigeration circuit in turn.
  • the second operation mode is specifically the cold storage operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage and provided to the compressor 377 and the first fan 382 The motor, the second fan 383 motor and the first electromagnetic valve 385 supply power. In this way, when the compressor 377 is working normally, after the refrigerant flows out from the compressor 377, since the first solenoid valve 385 is turned on and the second solenoid valve 386 is not powered, the refrigerant flows through the energy storage in turn.
  • the condenser 378, the throttling component 381, the first electromagnetic valve 385 and the third energy storage device 373-B of the circuit return to the compressor 377 again.
  • the air flows through the condenser 378 through the second blower 383 to exchange heat for the refrigerant, and then the refrigerant after the heat exchange passes through the phase in the third energy storage device 373-B.
  • the variable material stores cold, thereby realizing the function of storing cold for the third energy storage device 373-B.
  • the third operation mode is specifically the simultaneous operation mode of refrigeration and cold storage, including: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless power receiving module 311 adjusts the voltage, it converts it into a required voltage and provides it to the compressor 377, the first Fan 382 motor, second fan 383 motor, first solenoid valve 385 and second solenoid valve 386.
  • the second electromagnetic valve 386 is in the conduction state, the refrigerant flowing out from the compressor 377 flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the The compressor 377 is used for refrigeration, so that the simultaneous operation of cold storage and refrigeration can be realized.
  • the fourth operation mode is specifically the cooling operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless power receiving module 311 adjusts the voltage, it is converted into a required voltage and provided to the carrier pump 380 and the second A blower fan 382 motor supplies power.
  • the carrier pump 380 when the carrier pump 380 is working, it will drive the phase change material of the third energy storage device 373-B to flow through the energy-carrying pipeline evaporator 379, and then return to the third energy storage device 373-B.
  • the first blower 382 makes air flow through the evaporator 379 to exchange heat for the phase change material to cool down.
  • the wireless air conditioner 300 since the wireless air conditioner 300 is provided with a third energy storage device 373-B, after the phase-change material of the third energy storage device 373-B stores cold, it can The liquid agent pump 380 drives the phase change material of the third energy storage device 373-B to flow through the energy-carrying pipeline evaporator 379, and then returns to the third energy storage device 373-B, so as to realize cooling effect, and also realize cooling and
  • the simultaneous operation of cold storage enables the wireless air conditioner 300 to have more operation modes, which is convenient for users to choose and makes the user experience better.
  • the wireless air conditioner is a heating and cooling air conditioner.
  • the air conditioner when the air conditioner is a heating and cooling air conditioner, as shown in FIG.
  • the condenser 379 communicates
  • the condenser 378 communicates with the evaporator 379
  • the carrier pump 380 is arranged in the energy-carrying circuit 375, and the compressor 377 and the carrier pump 380 are respectively electrically connected with the control device 310 for controlling the compressor 377 and start and stop of the carrier pump 380.
  • the phase change material installed in the third energy storage device 373-B can be, for example, inorganic PCM, organic PCM, composite PCM, etc., and can store heat or cold for the phase change material in the third energy storage device 373-B, which is not described in this specification. Specific restrictions.
  • the wireless air conditioner 300 further includes a four-way valve 389, the four-way valve 389 communicates with the compressor 377, the condenser 378, the evaporator 379 and the third energy storage device 373-B respectively, and the four-way valve 389 communicates with the The control device 310 is electrically connected.
  • the energy-carrying circuit 375 is provided with a carrier pump 380, and the carrier pump 380 is arranged between the third energy storage device 373-B and the evaporator 379, and the third accumulator is controlled by the carrier pump 380.
  • the energy of the energy storage device 373-B is transmitted to the evaporator 379 through the energy carrying circuit 375, and then returned to the third energy storage device 373-B.
  • the third energy storage device 373-B may be provided with a cold storage phase change material or a heat storage phase change material.
  • control device 310 can control the start of the carrier pump 380, and after the start of the carrier pump 380, it will drive the cold storage of the third energy storage device 373-B to exchange heat with the carrier, so that it carries the cold storage
  • the carrier agent is transmitted to the evaporator 379 through the energy-carrying circuit 375, and then returned to the third energy storage device 373-B, and the cold storage of the third energy storage device 373-B can be passed through the carrier agent pump 380 It flows through the evaporator 379 and exchanges heat with the outside air to realize cooling, thereby realizing cooling or heat release.
  • the compressor 377 communicates with the third energy storage device 373-B through an energy storage circuit, wherein the energy storage circuit is provided with a first solenoid valve 385, and the first solenoid valve 385 is provided on the third energy storage device 373-B.
  • the condenser 378 when the four-way valve 389 is in the first state (the wireless air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, condensation
  • the device 378, the first solenoid valve 385 and the third energy storage device 373-B are transmitted back to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the third energy storage device 373-B.
  • the wireless air conditioner 300 when the four-way valve 389 is in the second state (the wireless air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 and the third energy storage device in sequence. 373-B, the first electromagnetic valve 385 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the third energy storage device 373-B.
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, and the four-way The valve 389 is in the first state (the wireless air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the second solenoid valve 386 and the evaporator 379 in sequence , and then return to the compressor 377 through the four-way valve 389, so as to realize refrigeration or dehumidification.
  • the wireless air conditioner 300 when the four-way valve 389 is in the second state (the wireless air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 and the evaporator of the refrigeration circuit in sequence. 379, the second electromagnetic valve 386 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heating function.
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigeration circuit can also be independent circuits, that is, the common pipeline 387 is not included.
  • a throttling component 381 can be set in the energy storage circuit.
  • the throttling component 381 is arranged between the condenser 378 and the second A throttling part 381 is set between the solenoid valve 385 and the refrigeration circuit.
  • the throttling part 381 is arranged between the condenser 378 and the second solenoid valve 386 to realize throttling and pressure reduction through the throttling part 381 Purpose.
  • the wireless air conditioner 300 also includes a first fan 382, which is arranged opposite to the evaporator 379, and is used to drive the air flow at the position where the evaporator 379 is located; a second fan 383, which is arranged opposite to the condenser 378, for To drive the air flow at the location of the condenser 378, wherein the control device 310 is electrically connected to the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 and the second fan 383, for example, it can control The gear position and wind speed of the first fan 382 can also control the gear position and wind speed of the second fan 383 .
  • the wireless air conditioner 300 is in the cooling mode or dehumidification mode at this time
  • the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, and the throttling component in sequence. 381, the second electromagnetic valve 386 and the evaporator 379, and then return to the compressor 377 through the four-way valve 389, so as to realize cooling or dehumidification.
  • the air flows through the condenser 378 through the second fan 383 to dissipate heat from the refrigerant;
  • the evaporator 379 heat exchange is performed on the refrigerant to play the role of cooling or dehumidification.
  • the wireless air conditioner 300 is in the heating mode at this time
  • the evaporator 379 the second electromagnetic The valve 386, the throttling component 381 and the condenser 378 are sent back to the compressor 377 through the four-way valve 389, thereby realizing the heating function.
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the wireless air conditioner 300 when the four-way valve 389 is in the first state (the wireless air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 and the condenser 378 in sequence. , the throttling component 381 , the first solenoid valve 385 and the third energy storage device 373-B, and then return to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the third energy storage device 373-B.
  • the second blower 383 makes the air flow through the condenser 378 to dissipate heat from the refrigerant, and the phase change material in the third energy storage device 373-B is cooled by the refrigerant after cooling. Store cold.
  • the wireless air conditioner 300 when the four-way valve 389 is in the second state (the wireless air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 and the third energy storage device in sequence. 373-B, the first electromagnetic valve 385, the throttling component 381 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the third energy storage device 373-B.
  • the refrigerant flowing out from the compressor 377 stores heat in the phase change material in the third energy storage device 373-B, and when the refrigerant after storing heat in the phase change material flows through the condenser 378, the second fan 383 makes the air The refrigerant flows through the condenser 378 to heat the refrigerant, and then returns to the compressor 377 through the four-way valve 389 .
  • the first fan 382 is driven by a first fan motor
  • the second fan 383 is driven by a second fan motor
  • both the first fan motor and the second fan motor are connected with the control device 310 is electrically connected
  • the first fan motor and the second fan motor are controlled by the control device 310, which can control the start-stop and working power of the first fan motor 3821 and the second fan motor, and then realize the control of the first fan motor 382 and the second fan motor.
  • the gear and the rotating speed of the second fan 383 are controlled.
  • the carrier pump 380 is driven by a carrier pump motor, the carrier pump motor is electrically connected to the control device 310, and the carrier pump motor is controlled by the control device 310, and the control device 310 can control the carrier pump motor.
  • the first fan 30 and the second fan 31 may both be counter-rotating fans or the like.
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • the wireless air conditioner 300 provided in the present disclosure has multiple operation modes.
  • the first operation mode of the wireless air conditioner 300 is the cooling or heating operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the voltage is regulated by the wireless power receiving module 311, it is converted into a required voltage and provided to the The compressor 377, the first fan 382, the second fan 383 and the second solenoid valve 386 supply power, so that the first fan 382, the second fan 383 and the compressor 377 work under the condition of power supply, and the second solenoid valve 386 conduction with power supplied.
  • it is also necessary to supply power to the four-way valve 389 so as to make the channels of the four-way valve 389 on and off.
  • the compressor 377 works normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the second solenoid valve 386 While the first electromagnetic valve 385 is not powered and is in a disconnected state, so that the refrigerant flows through the four-way valve 389, the condenser 378, the throttling member 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to Compressor 377, wherein, when the refrigerant flows through the condenser 378, the air flows through the condenser 378 through the second fan 383 to dissipate heat from the refrigerant; 382 makes the air flow through the evaporator 379 to exchange heat with the refrigerant, so as to play a cooling role.
  • the compressor 377 works normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out from the compressor 377, due to the second electromagnetic valve 386 leading
  • the first solenoid valve 385 is not powered and is in the off state
  • the refrigerant flows through the four-way valve 389, evaporator 379, second solenoid valve 386, throttling member 381 and condenser 378 of the refrigeration circuit in sequence, and then passes through Four-way valve 389 is passed back to compressor 377 .
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the second operation mode is specifically the cold storage or heat storage operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless receiving module 311 adjusts the voltage, it is converted into a required voltage and provided to the compressor 377, the second The first fan 382, the second fan 383 and the first solenoid valve are powered.
  • the compressor 377 when the second operation mode is the cold storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the first solenoid valve 385
  • the second solenoid valve 386 is in the disconnected state without power supply, so that the refrigerant flows through the four-way valve 389, the condenser 378, the throttling member 381, the first solenoid valve 385 and the third energy storage circuit sequentially.
  • the device 373-B is then transmitted back to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the third energy storage device 373-B.
  • the second blower 383 makes the air flow through the condenser 378 to dissipate heat from the refrigerant, and the phase change material in the third energy storage device 373-B is cooled by the refrigerant after cooling. Store cold.
  • the compressor 377 when the second operation mode is the heat storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the first solenoid valve 385 While the second electromagnetic valve 386 is not powered and is in the disconnected state, so that the refrigerant flows through the energy storage circuit in sequence through the four-way valve 389, the third energy storage device 373-B, the first electromagnetic valve 385, and the throttling component. 381 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the third energy storage device 373-B.
  • the refrigerant flowing out from the compressor 377 stores heat in the phase change material in the third energy storage device 373-B, and when the refrigerant after storing heat in the phase change material flows through the condenser 378, the second fan 383 makes the air The refrigerant flows through the condenser 378 to heat the refrigerant, and then returns to the compressor 377 through the four-way valve 389 .
  • the third operation mode is specifically the simultaneous operation mode of cooling and cold storage or the simultaneous operation mode of heating and heat storage, including: after the receiving coil Lr1 receives the electric energy transmitted wirelessly, it is converted into the required voltage after the voltage is regulated by the wireless receiving module 311 And provide power to the compressor 377, the first fan 382, the second fan 383, the first solenoid valve 385 and the second solenoid valve 386 for power supply.
  • the compressor 377 when the third operation mode is the cooling and cold storage simultaneous operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the second solenoid valve 386 conducts, so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the condenser 378, the throttling member 381, the second solenoid valve 386 and the evaporator 379, and then returns to the compressor 377, thereby playing a cooling role.
  • the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the condenser 378, the throttle member 381, the first solenoid valve 385 and the third energy storage device 373 -B, and then return to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the third energy storage device 373-B. In this way, simultaneous operation of refrigeration and cold storage can be realized.
  • the compressor 377 when the third operation mode is specifically the simultaneous operation mode of heating and heat storage, the compressor 377 is working normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out of the compressor 377, due to the second electromagnetic
  • the valve 386 conducts so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, the second solenoid valve 386, the throttling component 381 and the condenser 378, and then returns to the compressor 377 through the four-way valve 389, thereby Realize the heating function.
  • the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the third energy storage device 373-B, the first electromagnetic valve 385, the throttling component 381 and the condenser 378 , and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the third energy storage device 373-B. In this way, simultaneous operation of heating and heat storage can be realized.
  • the fourth operation mode is specifically the cooling operation mode or the heat release operation mode, which specifically includes: after the receiving coil Lr1 receives the electromagnetic energy transmitted by wireless, after the wireless receiving module 311 adjusts the voltage, it is converted into a required voltage and supplied to the current carrying The agent pump 380 and the first fan 382 are powered.
  • the carrier pump 380 works normally under the condition of power supply, it will drive the energy of the third energy storage device 373-B to exchange heat with the carrier agent, making the carrying
  • the stored carrier agent is transported to the evaporator 379 through the energy carrying circuit 375, and then returned to the third energy storage device 373-B, wherein, the carrier agent pump 380 can make the third energy storage device 373-B
  • the first blower 382 makes the air flow through the evaporator 379 to exchange heat for the phase change material, so as to play a cooling or exothermic effect.
  • phase change material in the third energy storage device 373-B if it is a cold storage phase change material, it will play a cooling role; if the phase change material in the third energy storage device 373-B is a heat storage The phase change material plays an exothermic role.
  • the wireless air conditioner 300 since the wireless air conditioner 300 is provided with a third energy storage device 373-B, after the phase change material of the third energy storage device 373-B stores energy, it can pass The carrier of the carrier pump 380 exchanges heat with the phase-change material of the third energy storage device 373-B, so that the heat-exchanged carrier is transferred to the evaporator 379 through the energy-carrying circuit 375 to realize cooling effect or heat release, it can also realize the simultaneous operation of cooling and cold storage, and the simultaneous operation of heating and heat storage. The user experience is better.
  • the fourth type of wireless air conditioner 300 includes: a compressor 377, a condenser 378, an evaporator 379, a fourth energy storage device 373-C and a control device 310; wherein, the compressor 377 and the fourth energy storage device 373 -C communicates, the fourth energy storage device 373-C communicates with the evaporator 379, the compressor 377 and the condenser 378 in sequence through the energy discharging circuit, the condenser 378 communicates with the evaporator 379, and a three-way valve 391 is arranged in the energy discharging circuit, The compressor 377 and the three-way valve 391 are electrically connected to the control device 310 for controlling the operation of the compressor 377 and the three-way valve 391 .
  • the wireless air conditioner 300 may be a refrigeration air conditioner, a heating air conditioner, or a heating and cooling air conditioner, and the air conditioner may be a wireless air conditioner or a wired air conditioner, which is not specifically limited in the present disclosure.
  • the air conditioner is a refrigerating air conditioner and a cooling and heating air conditioner respectively as examples for description.
  • the air conditioner is a refrigeration air conditioner.
  • the compressor 377 communicates with the fourth energy storage device 373-C, and the fourth energy storage device 373-C communicates with the evaporator 379, the compressor 377 and the condenser 378 through the energy carrying circuit 375, and the condenser 378 It communicates with the evaporator 379, and the energy carrying circuit 375 is provided with a three-way valve 391.
  • the compressor 377 and the three-way valve 391 are respectively electrically connected with the control device 310 for controlling the operation of the compressor 377 and the three-way valve 391.
  • the control device 310 can control the operating parameters of the compressor 377 and control the on-off of each channel of the three-way valve 391 and the like.
  • the cold-storage phase-change material provided in the fourth energy storage device 373-C can be, for example, inorganic PCM, organic PCM, composite PCM, etc., so that the phase-change material in the fourth energy storage device 373-C can store cold.
  • the energy-carrying circuit 375 is provided with a three-way valve 391, and the three-way valve 391 is arranged between the fourth energy storage device 373-C and the evaporator 379, and the fourth energy storage device 373-C is controlled by the three-way valve 391.
  • the energy of C flows through the evaporator 379, the compressor 377 and the condenser 378 of the energy-carrying circuit 375 in sequence, and then returns to the fourth energy storage device 373-C.
  • the fourth energy storage device 373-C is provided with a cold storage phase change material.
  • the control device 310 can control the first channel and the third channel of the three-way valve 391 to be connected, while the second channel is disconnected.
  • the through valve 391 flows through the fourth energy storage device 373-C, so that the cold energy in the fourth energy storage device 373-C will flow into the refrigerant, and then flow through the three-way valve 391 of the energy discharge pipeline, the evaporator 379, and compress Machine 377, condenser 378, throttling part 381 and first electromagnetic valve 385, return to the fourth energy storage device 373-C again; Make the refrigerant carrying the cooling capacity of the phase change material in the fourth energy storage device 373-C When flowing through the evaporator 379, the first blower 382 makes the air flow through the evaporator 379 to realize the cooling effect. Since the refrigerant through the fourth energy storage device 373-C and the compressor 377 is jointly refrigerated at this time, its refrigerated Higher efficiency, suitable for high temperature or high cooling output.
  • the compressor 377 communicates with the fourth energy storage device 373-C through the energy storage circuit, and the energy storage circuit is provided with a first solenoid valve 385, and the first solenoid valve 385 is arranged on the fourth energy storage device 373-C. and the condenser 378, so that after the refrigerant flows out from the compressor 377, it passes through the condenser 378 of the energy storage circuit, the first solenoid valve 385, the fourth energy storage device 373-C and the three-way valve 391 in sequence, and then returns to the to compressor 377.
  • the refrigerant may be, for example, R12, R134a, R407c, R410a, R290, and R3.
  • the refrigerant flows out from the compressor 377, and the control device 310 controls the first solenoid valve 385 to be turned on, so that the refrigerant passes through the condenser 378 of the energy storage circuit. , flows through the first solenoid valve 385 to the fourth energy storage device 373-C, and stores cold on the fourth energy storage device 373-C.
  • the first channel and the second channel of the three-way valve 391 are controlled to conduct, so that The refrigerant flowing through the fourth energy storage device 373-C passes through the first channel and the second channel in sequence, and then returns to the compressor 377 .
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, so that After the refrigerant flows out from the compressor 377 , it flows through the condenser 378 , the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377 .
  • the control device 310 controls the compressor 377 to start
  • the refrigerant flows out of the compressor 377, flows through the condenser 378
  • the control device 310 controls the conduction of the second solenoid valve 386, so that the refrigerant flows through
  • the condenser 378 then flows through the second solenoid valve 386 and then is transmitted to the evaporator 379 , and after the refrigerant flows through the evaporator 379 , it is transmitted back to the compressor 377 .
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigerating circuit can also be independent circuits, that is, the common pipeline 387 is not included.
  • a throttling component 381 can be arranged in the energy storage circuit.
  • the throttling component 381 is arranged on the condensing between the device 378 and the fourth accumulator 373-C; 381 achieves the purpose of throttling and reducing pressure.
  • the wireless air conditioner 300 also includes a first fan 382, which is arranged opposite to the evaporator 379, and is used to drive the air flow at the position where the evaporator 379 is located; a second fan 383, which is arranged opposite to the condenser 378, for To drive the air flow at the location of the condenser 378, wherein the control device 310 is electrically connected to the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 and the second fan 383, for example, it can control The gear position and wind speed of the first fan 382 can also control the gear position and wind speed of the second fan 383 .
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the compressor 377, wherein the refrigerant flows through
  • the condenser 378 is used, the air flows through the condenser 378 through the second fan 383 to exchange heat for the refrigerant to start the cooling effect; and when the heat-exchanged refrigerant flows through the evaporator 379, the air is made The refrigerant flows through the evaporator 379 to dissipate heat.
  • the refrigerant flows out of the compressor 377, it flows through the condenser 378, the throttling component 381, the first electromagnetic valve 385 and the fourth energy storage device 373-C in sequence in the energy storage circuit, and then passes through the first three-way valve 391. channel and the second channel, and then return to the compressor 377, wherein, when the refrigerant flows through the condenser 378, the first fan 382 is not started, but the refrigerant is directly input to the In the fourth energy storage device 373-C, the phase change material in the fourth energy storage device 373-C is stored cold; it is also possible to start the first fan 382, so that cooling is performed on the fourth energy storage device 373-C at the same time. phase change material for cold storage.
  • the cold energy in the fourth energy storage device 373-C can be taken out by the refrigerant, and then flow through the three-way valve 391 of the energy-carrying circuit 375 in sequence. , the evaporator 379, the compressor 377, the condenser 378, the throttling component 381 and the first solenoid valve 385, and then return to the fourth energy storage device 373-C.
  • the drive motors of the first fan 382 and the second fan 383 can be three-phase brushless DC motors, single-phase asynchronous motors, induction motors, brushed DC motors, single-phase brushless DC motors, three-phase brushless DC motors, three-phase permanent Any one of motors such as a magnetic synchronous motor, a synchronous reluctance motor, and a switched reluctance motor, and the driving motor of the compressor 377 can be a three-phase brushless DC motor, a single-phase asynchronous motor, an induction motor, a brushed DC motor, Any one of single-phase brushless DC motor, three-phase brushless DC motor, three-phase permanent magnet synchronous motor, synchronous reluctance motor and switched reluctance motor.
  • the three-way valve 391 is electrically connected to the control device 310 to control the opening and closing of the channel of the three-way valve 391 through the control device 310 .
  • the first fan 382 is driven by a first fan motor
  • the second fan 383 is driven by a second fan motor
  • both the first fan motor and the second fan motor are electrically connected to the control device 310, through
  • the control device 310 controls the first fan motor 3821 and the second fan motor, and can control the start-stop and working power of the first fan motor and the second fan motor, thereby realizing the gear position of the first fan 382 and the second fan 383 and speed control.
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • the wireless air conditioner 300 provided in the present disclosure has multiple operation modes.
  • the first operation mode of the wireless air conditioner 300 is the cooling operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless power receiving module 311 adjusts the voltage, it converts it into a required voltage and supplies it to the compressor 377,
  • the first fan 382, the second fan 383 and the second solenoid valve 386 supply power, so that the first fan 382, the second fan 383 and the compressor 377 work when the power is supplied, and the second solenoid valve 386 is powered conduction in case of It can be seen from this that when the compressor 377 is working normally, after the refrigerant flows out from the compressor 377, the refrigerant flows through the first solenoid valve 385 in turn because the second solenoid valve 386 is turned on and the first solenoid valve 385 is not powered.
  • the condenser 378, throttling part 381, second electromagnetic valve 386 and evaporator 379 of the refrigeration circuit return to the compressor 377, wherein when the refrigerant flows through the condenser 378, the second fan 383 makes the air flow through the condensing
  • the evaporator 378 performs heat exchange on the refrigerant to achieve refrigeration; and when the heat-exchanged refrigerant flows through the evaporator 379, the first fan 382 makes air flow through the evaporator 379 to dissipate heat from the refrigerant.
  • the second operation mode is specifically the cold storage operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless receiving module 311 adjusts the voltage, it is converted into a required voltage and supplied to the compressor 377, the first fan 382, The second blower fan 383 and the first electromagnetic valve 385 switch to supply power.
  • the second fan 383 makes the air flow through the condenser 378 to exchange heat for the refrigerant, and then pass through the heat-exchanged refrigerant to store cold for the phase change material in the fourth energy storage device 373-C, thereby realizing the fourth energy storage
  • the device 373-C performs cold storage; it is also possible not to start the second fan 383, and directly transfer the refrigerant flowing through the condenser 378 to the fourth energy storage device 373-C through the throttling component 381 and the first solenoid valve 385, so as to Cold storage is performed on the fourth energy storage device 373-C.
  • the third operation mode is specifically the simultaneous operation mode of refrigeration and cold storage, including: after the wireless receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless receiving module 311 adjusts the voltage, it converts it into a required voltage and supplies it to the compressor 377, the first The fan 382, the second fan 383, the first solenoid valve 385 and the second solenoid valve 386 supply power.
  • the second electromagnetic valve 386 is in the conduction state, the refrigerant flowing out from the compressor 377 flows through the condenser 378, the throttling component 381, the second electromagnetic valve 386 and the evaporator 379 of the refrigeration circuit in sequence, and then returns to the The compressor 377 realizes the refrigeration function, and then can realize the simultaneous operation of cold storage and refrigeration.
  • the fourth operation mode is specifically the cooling operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless receiving module 311 adjusts the voltage, it is converted into a required voltage and supplied to the three-way valve 391 and the first fan 382 for power supply.
  • the refrigerant of the compressor 377 enters the fourth energy storage device 373-C through the three-way valve 391, so that the fourth The cold energy in the energy storage device 373-C will flow into the refrigerant, and then flow through the three-way valve 391, the evaporator 379, the compressor 377, the condenser 378, the throttling component 381 and the first solenoid valve 385 in sequence.
  • the fourth energy storage device 373-C and the refrigerant of the compressor 377 are jointly refrigerated at this time, its refrigerating efficiency is higher, and it is suitable for high temperature or high cooling capacity output. use.
  • the wireless air conditioner 300 since the wireless air conditioner 300 is provided with the fourth energy storage device 373-C, after the phase change material of the fourth energy storage device 373-C stores cold, the compression can be started. machine 377, so that the refrigerant in the compressor 377 enters the fourth energy storage device 373-C through the three-way valve 391, so that the refrigerant carries the cold storage in the fourth energy storage device 373-C, and then flows through the energy discharge pipeline in sequence
  • the air conditioner is a heating and cooling air conditioner.
  • the compressor 377 communicates with the fourth energy storage device 373-C
  • the fourth energy storage device 373-C communicates with the evaporator 379 through the energy carrying circuit 375
  • the condenser 378 communicates with the evaporator 379
  • a three-way valve 391 is provided in the circuit 375
  • the compressor 377 and the three-way valve 391 are respectively electrically connected to the control device 310 for controlling the operation of the compressor 377 and the three-way valve 391 .
  • the control device 310 can control the operating parameters of the compressor 377 and control the on-off of each channel of the three-way valve 391 at 14 .
  • the phase change material installed in the fourth energy storage device 373-C can be, for example, inorganic PCM, organic PCM, composite PCM, etc., and can store heat or cold for the phase change material in the fourth energy storage device 373-C. Specific restrictions.
  • the wireless air conditioner 300 further includes a four-way valve 389, which communicates with the compressor 377, the condenser 378, the evaporator 379, and the fourth energy storage device 373-C respectively, and the four-way valve 389 It is electrically connected with the control device 310 .
  • the energy-carrying circuit 375 is provided with a three-way valve 391, and the three-way valve 391 is arranged between the fourth energy storage device 373-C and the evaporator 379, and the fourth energy storage device 373-C is controlled by the three-way valve 391.
  • the energy of C flows through the evaporator 379, the four-way valve 389, the compressor 377 and the condenser 378 of the energy-carrying loop 375 in sequence, and then returns to the fourth energy storage device 373-C.
  • the fourth energy storage device 373-C may be provided with a cold-storage phase-change material or a heat-storage phase-change material.
  • control device 310 can control the first channel and the third channel of the three-way valve 391 to be connected, while the second channel is disconnected.
  • the phase change material of the fourth energy storage device 373-C will be driven It is transmitted to the evaporator 379 through the first channel and the third channel, and then flows through the four-way valve 389, the compressor 377 and the condenser 378 of the energy-carrying circuit 375, and then returns to the fourth energy storage device 373-C.
  • the three-way valve 391 can make the phase change material of the fourth energy storage device 373-C flow through the evaporator 379 to exchange heat with the outside air, thereby realizing cooling.
  • the compressor 377 communicates with the fourth energy storage device 373-C through an energy storage circuit, wherein the energy storage circuit is provided with a first solenoid valve 385, and the first solenoid valve 385 is provided on the fourth energy storage device 373-C.
  • the wireless air conditioner 300 is in cooling mode or dehumidification mode at this time
  • the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, condensation 378, the first electromagnetic valve 385, the fourth energy storage device 373-C and the three-way valve 391, and then return to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the fourth energy storage device 373-C.
  • the wireless air conditioner 300 when the four-way valve 389 is in the second state (the wireless air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the three-way valve 391, The fourth energy storage device 373-C, the first solenoid valve 385 and the condenser 378 are transmitted back to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the fourth energy storage device 373-C.
  • the condenser 378 communicates with the evaporator 379 through a refrigeration circuit, wherein the refrigeration circuit is provided with a second solenoid valve 386, and the second solenoid valve 386 is arranged between the condenser 378 and the evaporator 379, and the four-way The valve 389 is in the first state (the wireless air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, the second solenoid valve 386 and the evaporator 379 in sequence , and then return to the compressor 377 through the four-way valve 389, so as to realize refrigeration or dehumidification.
  • the wireless air conditioner 300 when the four-way valve 389 is in the second state (the wireless air conditioner 300 is in the heating mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, the second electromagnetic valve 386 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heating function.
  • both the energy storage circuit and the refrigeration circuit include a common pipeline 387 , and the common pipeline 387 is provided with a throttling component 381 .
  • the energy storage circuit and the refrigeration circuit can also be independent circuits, that is, the common pipeline 387 is not included.
  • a throttling component 381 can be set in the energy storage circuit.
  • the throttling component 381 is arranged between the condenser 378 and the second A throttling part 381 is set between the solenoid valve 385 and the refrigeration circuit.
  • the throttling part 381 is arranged between the condenser 378 and the second solenoid valve 386 to realize throttling and pressure reduction through the throttling part 381 Purpose.
  • the wireless air conditioner 300 also includes a first fan 382, which is arranged opposite to the evaporator 379, and is used to drive the air flow at the position where the evaporator 379 is located; a second fan 383, which is arranged opposite to the condenser 378, for To drive the air flow at the location of the condenser 378, wherein the control device 310 is electrically connected to the first fan 382 and the second fan 383 respectively, and is used to realize the control of the first fan 382 and the second fan 383, for example, it can control The gear position and wind speed of the first fan 382 can also control the gear position and wind speed of the second fan 383 .
  • the wireless air conditioner 300 is in the cooling mode or dehumidification mode at this time
  • the refrigerant flows out from the compressor 377, it flows through the four-way valve 389, the condenser 378, and the throttling component in sequence. 381, the second electromagnetic valve 386 and the evaporator 379, and then return to the compressor 377 through the four-way valve 389, so as to realize cooling or dehumidification.
  • the second fan 383 makes the air flow through the condenser 378 to exchange heat for the refrigerant to achieve cooling or dehumidification; and when the heat-exchanged refrigerant flows through the evaporator 379, The first blower 382 makes the air flow through the evaporator 379 to dissipate the refrigerant.
  • the wireless air conditioner 300 is in the heating mode at this time
  • the evaporator 379 the second electromagnetic The valve 386, the throttling component 381 and the condenser 378 are sent back to the compressor 377 through the four-way valve 389, thereby realizing the heating function.
  • the air flows through the evaporator 379 through the first fan 382 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the air flows through the second fan 383 Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the wireless air conditioner 300 when the four-way valve 389 is in the first state (the wireless air conditioner 300 is in cooling mode or dehumidification mode at this time), after the refrigerant flows out from the compressor 377, it flows through the four-way valve 389 and the condenser 378 in sequence. , throttling component 381, first solenoid valve 385, fourth energy storage device 373-C and three-way valve 391, and then return to compressor 377 through four-way valve 389, thereby realizing the fourth energy storage device 373-C Store cold.
  • the first channel and the second channel of the three-way valve 391 are connected so that the refrigerant is compressed from After the engine 377 flows out, it flows through the four-way valve 389, the three-way valve 391, the fourth energy storage device 373-C, the first electromagnetic valve 385, the throttling part 381 and the condenser 378 in sequence, and then returns through the four-way valve 389 to the compressor 377, so as to realize the heat storage of the fourth energy storage device 373-C.
  • the driving motors of the first fan 382 and the second fan 383 can also refer to the specific description of the driving motors of the first fan 382 and the second fan 383 above, and for the sake of brevity, details are not repeated here.
  • the first fan 382 is driven by the first fan motor 3821
  • the second fan 383 is driven by the second fan motor 3831
  • the fan motors 3831 are electrically connected to the control device 310, and the first fan motor 3821 and the second fan motor 3831 are controlled by the control device 310 to control the start-stop and working power of the first fan motor 3821 and the second fan motor 3831 , so as to realize the control of the gears and rotating speeds of the first fan 382 and the second fan 383 .
  • the first fan 382 and the second fan 383 may both be counter-rotating fans or the like.
  • the wireless air conditioner 300 provided in the present disclosure has multiple operation modes.
  • the first operation mode of the wireless air conditioner 300 is the cooling or heating operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless power receiving module 311 adjusts the voltage, it converts it into a required voltage and provides it to the compressor Machine 377, the first fan 382, the second fan 383 and the second electromagnetic valve 386 supply power, so that the first fan 382, the second fan 383 and the compressor 377 work under the condition of power supply, and the second electromagnetic valve The 386 conducts when powered.
  • the first operation mode is the cooling operation mode
  • the first fan 382, the second fan 383 and the compressor 377 are operated under the condition of power supply
  • the second solenoid valve 386 is operated under the condition of power supply. Conduct conduction. It can be seen from this that when the compressor 377 is working normally and the four-way valve 389 is in the first state, after the refrigerant flows out from the compressor 377, the first solenoid valve 385 is not powered due to the conduction of the second solenoid valve 386.
  • the refrigerant flows through the condenser 378 of the refrigeration circuit, the throttling component 381, the second solenoid valve 386 and the evaporator 379 in sequence, and then returns to the compressor 377.
  • the refrigerant flows through the condenser 378, it passes through The second blower 383 makes the air flow through the condenser 378 to exchange heat for the refrigerant to achieve refrigeration;
  • the refrigerant dissipates heat.
  • the compressor 377 works normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out from the compressor 377, due to the second electromagnetic valve 386 leading
  • the first solenoid valve 385 is not powered and is in the off state
  • the refrigerant flows through the four-way valve 389, evaporator 379, second solenoid valve 386, throttling member 381 and condenser 378 of the refrigeration circuit in sequence, and then passes through Four-way valve 389 is passed back to compressor 377 .
  • the first fan 382 makes the air flow through the evaporator 379 to heat the refrigerant; and when the heated refrigerant flows through the condenser 378, the second fan 383 makes the air flow Through the condenser 378, heat exchange is performed on the refrigerant to play a role in heating.
  • the second operation mode is specifically the cold storage or heat storage operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless receiving module 311 adjusts the voltage, it converts it into a required voltage and supplies it to the compressor 377, the first The fan 382, the second fan 383 and the first electromagnetic valve 385 supply power.
  • the compressor 377 when the second operation mode is the cold storage operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the conduction of the first solenoid valve 385
  • the second electromagnetic valve 386 is in the disconnected state without power supply, so that the refrigerant flows through the four-way valve 389, the condenser 378, the throttling member 381, the first electromagnetic valve 385 and the fourth energy storage circuit sequentially.
  • the device 373-C is transmitted back to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the fourth energy storage device 373-C.
  • the second blower 383 makes the air flow through the condenser 378 to dissipate heat from the refrigerant, and the phase change material in the fourth energy storage device 373-C is cooled by the refrigerant after cooling. Store cold.
  • the compressor 377 is working normally and the four-way valve 389 is in the second state, and the first channel and the second channel of the three-way valve 391 are connected, so, After the refrigerant flows out from the compressor 377, since the first solenoid valve 385 is turned on and the second solenoid valve 386 is not powered, the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, The three-way valve 391, the fourth energy storage device 373-C, the first solenoid valve 385, the throttling component 381 and the condenser 378 are returned to the compressor 377 through the four-way valve 389, thereby achieving the fourth energy storage device 373-C for thermal storage.
  • the refrigerant flowing out from the compressor 377 stores heat in the phase change material in the fourth energy storage device 373-C, and when the refrigerant after storing heat in the phase change material flows through the condenser 378, the second fan 383 makes the air The refrigerant flows through the condenser 378 to heat the refrigerant, and then returns to the compressor 377 through the four-way valve 389 .
  • the third operation mode is specifically the simultaneous operation mode of cooling and cold storage or the simultaneous operation mode of heating and heat storage, including: after the wireless receiving coil Lr1 receives the wirelessly transmitted electric energy, it is converted into demand after the wireless receiving module 311 adjusts the voltage The voltage is provided to the compressor 377, the first fan 382, the second fan 383, the first solenoid valve 385 and the second solenoid valve 386 for power supply.
  • the compressor 377 when the third operation mode is the cooling and cold storage simultaneous operation mode, the compressor 377 is working normally and the four-way valve 389 is in the first state, so that after the refrigerant flows out from the compressor 377, due to the second solenoid valve 386 conducts, so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the condenser 378, the throttling member 381, the second solenoid valve 386 and the evaporator 379, and then returns to the compressor 377, thereby playing a cooling role.
  • the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the condenser 378, the throttle member 381, the first solenoid valve 385, and the fourth energy storage device 373 -C and the three-way valve 391, and then return to the compressor 377 through the four-way valve 389, so as to realize the cold storage of the fourth energy storage device 373-C; in this way, the simultaneous operation of cooling and cold storage can be realized.
  • the compressor 377 when the third operation mode is specifically the simultaneous operation mode of heating and heat storage, the compressor 377 is working normally and the four-way valve 389 is in the second state, so that after the refrigerant flows out of the compressor 377, due to the second electromagnetic
  • the valve 386 conducts so that the refrigerant flows through the four-way valve 389 of the refrigeration circuit, the evaporator 379, the second solenoid valve 386, the throttling component 381 and the condenser 378, and then returns to the compressor 377 through the four-way valve 389, thereby Realize the heating function.
  • the refrigerant flows through the energy storage circuit sequentially through the four-way valve 389, the three-way valve 391, the fourth energy storage device 373-C, the first electromagnetic valve 385, and the throttling component 381 and the condenser 378, and then return to the compressor 377 through the four-way valve 389, so as to realize the heat storage of the fourth energy storage device 373-C.
  • the fourth operation mode is specifically the cooling operation mode or heat release operation mode, which specifically includes: after the receiving coil Lr1 receives the wirelessly transmitted electric energy, after the wireless receiving module 311 adjusts the voltage, it is converted into a required voltage and supplied to the three-way valve 391.
  • the first fan 382 supplies power.
  • the fourth operation mode is the cooling operation mode
  • the first passage, the second passage and the third passage of the three-way valve 391 are controlled to conduct.
  • the compressor 377 the refrigerant of the compressor 377
  • the second channel and the first channel of the three-way valve 391 flow through the fourth energy storage device 373-C, so that the cold energy in the fourth energy storage device 373-C is input into the refrigerant, and then flows through the three-way valve in sequence 391, the evaporator 379, the compressor 377, the condenser 378, the throttling part 381 and the first solenoid valve 385, and then return to the fourth energy storage device 373-C, so that the compressor 377 and the fourth energy storage device Under the joint action of 373-C, let it cool down.
  • this mode is usually used to defrost the condenser 378, and in this mode, the opening of the throttling component 381 reaches the maximum, so that the throttling effect is invalidated, and the control
  • the first channel and the second channel of the three-way valve 391 are connected, and the third channel is disconnected.
  • the refrigerant of the compressor 377 flows through the three-way valve 391
  • the fourth energy storage device 373-C so that the heat in the fourth energy storage device 373-C is input into the refrigerant, and then flows through the first electromagnetic valve 385, the throttling component 381 and the condenser 378 in sequence, and then passes through the four
  • the through valve 389 is transmitted back to the fourth energy storage device 373-C, so as to perform heating under the joint action of the compressor 377 and the fourth energy storage device 373-C.
  • the wireless air conditioner 300 since the wireless air conditioner 300 is provided with a fourth energy storage device 373-C, after the phase change material of the fourth energy storage device 373-C stores energy, it can start Compressor 377, so that the refrigerant in the compressor 377 enters the fourth energy storage device 373-C through the three-way valve 391, so that the refrigerant carries the cold storage in the fourth energy storage device 373-C, and then flows through the energy discharge pipe in sequence
  • the three-way valve 391, evaporator 379, compressor 377, condenser 378, throttling part 381 and first electromagnetic valve 385 of the circuit return to the fourth energy storage device 373-C to realize cooling or heat release function, it can also realize the simultaneous operation of cooling and cold storage, and the simultaneous operation of heating and heat storage. better.
  • the energy storage module 130 is set in the wireless air conditioner 300, and the energy storage module 130 includes a second battery pack 320, and a communication connection is established between the wireless air conditioner 300 and the wireless charging device 100.
  • the wireless air conditioner 300 is used to receive the electric energy wirelessly transmitted by the wireless charging device 100 to charge the second battery pack 320 in the energy storage module 130 , and/or supply power to the load of the wireless air conditioner 300 .
  • the wireless charging device 100 can wirelessly supply power to the wireless air conditioner 300;
  • the package 320 releases electric energy to wirelessly supply power to the wireless air conditioner 300 .
  • the wireless charging device 100 may include an input power interface 110, a wireless transmission control board 170, and a transmitting coil Ls1.
  • the input power interface 110 and the transmitting coil Ls1 are connected wirelessly.
  • the launch control board 170 is connected.
  • the input power interface 110 is used to connect to the power grid.
  • the input power interface 110 can be used to connect to 220V mains.
  • the input power interface 110 transmits 220V mains power to the wireless transmission control board 170 when connected to the mains.
  • the input power interface 110 can also be connected to other AC power sources.
  • the wireless transmission control board 170 is an electronic circuit board, and the specific circuit structure of the wireless transmission control board 170 can be set according to actual needs, and can adopt series-series (S-S), series-parallel (S-P), parallel-series ( Any conversion circuit topology such as P-S), parallel-parallel P-P, LCC, CLC, etc.
  • the wireless transmission control board 170 may include a rectification module, a wireless transmission module, and MCU (Microcontroller Unit, micro control unit) control unit circuits, which can realize AC-DC conversion and DC-AC conversion functions, and input power
  • the electrical energy input by the interface 110 is converted into electromagnetic energy and transmitted to the outside through the transmitting coil Ls1 for power supply.
  • the wireless transmission control board 170 may also be provided with a communication module, and the communication module may be one or more of a Bluetooth module, a signal carrier module, and an infrared transceiver module. Through the communication module, the wireless transmission control board 170 can obtain the state of the wireless air conditioner 300, for example, obtain the device state of the wireless air conditioner 300, the state of the second battery pack, and the like.
  • the state of the second battery pack may include but not limited to a charging state, a saturated state, and a dischargeable state; the device state may include but not limited to a state of waiting for receiving power and a state of stopping receiving power.
  • the standby state may be a state corresponding to when the wireless air conditioner 300 needs to receive electric energy.
  • the user can send a start-up command to the wireless air conditioner 300 through the control panel, remote control or voice control of the wireless air conditioner 300. After receiving the start-up command, the wireless air conditioner 300 needs to start up by receiving electric energy.
  • the device state of the wireless air conditioner 300 may be a standby state. Or, during the running process of the wireless air conditioner 300, the wireless air conditioner also needs to continuously receive power to realize the operation. Therefore, when the wireless air conditioner 300 is running, the device state of the wireless air conditioner is the standby state.
  • the state of stopping receiving power may be a state corresponding to when the wireless air conditioner 300 does not need to work.
  • the user can send a shutdown command to the wireless air conditioner 300 through the control panel, remote control, or voice control of the wireless air conditioner 300.
  • the wireless air conditioner 300 completes the shutdown according to the shutdown command.
  • the device state of the wireless air conditioner 300 is adjusted to the state of stopping power reception.
  • the wireless air conditioner 300 can be reset by powering off. Therefore, when the wireless air conditioner 300 needs to be powered off and reset, it can stop receiving power, and the wireless air conditioner The device status of 300 is the power-off state.
  • the wireless charging device 100 after the wireless charging device 100 is connected to the mains, it can determine whether to transmit power wirelessly through the transmitting coil Ls1 through the state of the second battery pack and the state of the device acquired by the communication module. In some implementations, when the state of the second battery pack is saturated and the device is in the state of stopping receiving power, the wireless air conditioner 300 has a demand for receiving power. At this time, in order to save resources, the wireless charging device 100 may not need to Power transmission, such as going into standby or stopping work. When the state of the second battery pack acquired by the wireless charging device 100 is the state to be charged, and/or the state of the device obtained is the state to be powered, it indicates that the wireless air conditioner has a demand for receiving power. At this time, the wireless charging device 100 passes The transmitting coil Ls1 wirelessly transmits power to the outside.
  • the wireless air conditioner 300 may include a second battery pack 320 .
  • the wireless air conditioner 300 can receive the electric energy wirelessly transmitted by the wireless charging device 100 to supply power to the second battery pack 320 , and the second battery pack 320 can also release electric energy to provide electric energy to the load of the wireless air conditioner 300 .
  • the wireless air conditioner may further include: a receiving coil Lr1 and a control device 310 .
  • the receiving coil Lr1 is used for receiving the electric energy wirelessly transmitted by the wireless charging device 100
  • the control device 310 is electrically connected with the receiving coil Lr1 for converting the electric energy received by the receiving coil Lr1 into power supply for the wireless air conditioner 300 .
  • the second battery pack 320 can be electrically connected with the control device 310, and the control device 310 is used to convert the electric energy received by the receiving coil Lr1, store the converted electric energy in the second battery pack 320, or release the second battery pack 320 The electric energy is converted to supply power to the load of the wireless air conditioner 300 .
  • the receiving coil Lr1 does not receive the electric energy wirelessly transmitted by the wireless charging device 100
  • the electric energy is released by the second battery pack 320
  • the control device 310 converts the electric energy released by the second battery pack 320 into electric energy required by the load of the wireless air conditioner 300 After that, supply power to the corresponding load.
  • the control device 310 can convert the electric energy received by the receiving coil Lr1 into electric energy that can be stored in the second battery pack 320, and stored in the second battery pack 320; when the receiving coil Lr1 receives external power, if the wireless air conditioner 300 needs power supply, the control device 310 can also convert the power received by the receiving coil Lr1 into the wireless air conditioner 300 The electrical energy required by the load and supply power to the corresponding load.
  • the control device 310 in the embodiment of the present disclosure includes: a wireless power receiving module 311 and an air conditioner controller.
  • the wireless power receiving module 311 is electrically connected with the air conditioner controller 312 and the receiving coil Lr1, and the wireless power receiving module 311 is used to convert the electric energy received by the receiving coil Lr1 under the control of the air conditioner controller 312 .
  • the wireless power receiving module 311 includes: a second bridge rectifier circuit 3111 and a power receiving voltage regulation circuit 3112, wherein the AC input end of the second bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1.
  • the AC input end of the second bridge rectifier circuit 3111 is electrically connected to the receiving coil Lr1, and rectifies the electric energy received by the receiving coil Lr1.
  • the input terminal of the power receiving and voltage regulating circuit 3112 is electrically connected to the output terminal of the second bridge rectifier circuit 3111, and the power receiving and voltage regulating circuit 3112 is used to step up or step down the electric energy output by the second bridge rectifier circuit 3111 , so that the processed electric energy is used to supply power to the load of the wireless air conditioner 300 .
  • the second bridge rectifier circuit 3111 is used to perform AC-DC conversion of the electric energy received by the receiving coil Lr1 into a DC bus voltage +VDC1; the DC bus voltage +VDC1 is then subjected to an electrical voltage regulation circuit 3112 After the DC-DC conversion (boost or step-down), it becomes the DC bus voltage +VDC2 required by the load.
  • the second bridge rectifier circuit 3111 may include a resonant capacitor C B , a bridge rectifier, and a first filter capacitor E1B, and one end of the resonant capacitor C B is electrically connected to one of the bridge rectifiers.
  • the other end of the resonant capacitor C B is electrically connected to one end of the receiving coil Lr1
  • the other AC input end connected to the bridge rectifier is electrically connected to the other end of the receiving coil Lr1.
  • the two DC output ends of the bridge rectifier are correspondingly electrically connected to the positive and negative poles of the first filter capacitor E1B, and the negative pole of the first filter capacitor E1B is grounded.
  • the bridge rectifier can be any hardware topology among full bridge synchronous rectifier, half bridge synchronous rectifier and uncontrolled rectifier.
  • the bridge rectifier may be a full bridge synchronous rectifier including a first power device Q1B, a second power device Q2B, a third power device Q3B and a fourth power device Q4B.
  • Q1B, Q2B, Q3B, and Q4B can be any one of IGBT (Insulated Gate Bipolar Transistor, Insulated Gate Bipolar Transistor), MOS transistor, and triode.
  • the air conditioner controller 312 includes: a second control chip 3121; a second rectification drive circuit 3122, the input terminal of the second rectification drive circuit 3122 is electrically connected to the second control chip 3121, the The output terminal of the second rectification drive circuit 3122 is electrically connected to the second bridge rectifier circuit 342, and the gate control terminal of each power device in the bridge rectifier of the second rectification drive circuit 3122 is electrically connected to control the power Devices Q1B, Q2B, Q3B, and Q4B are switched on and off.
  • the voltage receiving and regulating circuit 3112 may be a single boost circuit, or a single step-down circuit, or both the step-down circuit and the boost circuit exist simultaneously, or it may be a buck-boost multiplexing circuit.
  • the power receiving and voltage regulating circuit may not be provided, that is, the wireless power receiving module 311 only has a second bridge rectifying circuit 3111, and the output terminal of the second bridge rectifying circuit 3111 is electrically connected to the load.
  • the voltage receiving and regulating circuit 3112 may be a buck-boost multiplexing circuit composed of the fifth power device Q5B, the first inductor L1B , the sixth power device Q6B, and the second filter capacitor E2B. , wherein the negative electrode of the second filter capacitor E2B is grounded, and the step-up processing or step-down processing is realized by turning on and off the fifth power device Q5B and the sixth power device Q6B.
  • the power receiving and voltage regulating circuit 3112 can also be modified on the circuit according to actual needs, as long as the purpose of stepping up and down can be achieved, and there is no limitation here.
  • the air conditioner controller 312 further includes: a voltage regulating driving circuit 3123, the input end of the voltage regulating driving circuit 3123 is electrically connected to the second control chip 3121, and the output of the voltage regulating driving circuit 3123 The terminal is electrically connected to the control terminal of each power device Q5B, Q6B in the power receiving and voltage regulating circuit, so as to control the on-off of the fifth power device Q5B, the first inductor L1 B and the sixth power device Q6B.
  • the second battery pack 320 includes a battery module 321 and a BMS protection board (Bttery Management system, battery management system) 322 .
  • the BMS protection board can protect the battery module 321 from over-charging voltage, over-charging over-current, over-discharging over-current, over-low discharge voltage, over-temperature, etc.
  • the control device 310 in the present disclosure may also include a second charge-discharge voltage regulation circuit 313, one end of the second charge-discharge voltage regulation circuit 313, the output end of the second bridge rectifier circuit 3111 and the input end of the power receiving voltage regulation circuit 3112 Electrically connected, the other end of the second charging and discharging voltage regulating circuit 313 is electrically connected to the second battery pack 320;
  • the electric energy is processed by the second charging and discharging voltage regulating circuit 313 for DC-DC conversion voltage regulation conversion, and then undergoes voltage regulation processing for DC-DC conversion by the electric voltage regulation circuit 3112, and the electric energy after voltage regulation processing is sent to the wireless air conditioner 300 for at least one load.
  • the electric energy received by the receiving coil Lr1 is rectified by the second bridge rectifier circuit 3111 for AC-DC conversion, and then by the second charge-discharge voltage regulator circuit 313 for DC-DC conversion. Charge the second battery pack 320 after the voltage regulation transformation process.
  • the second charging and discharging voltage regulating circuit 313 is used to convert the electric energy output by the second bridge rectifier circuit 3111 into electric energy of voltage Vb+, and store the converted electric energy in the second battery pack 320, or release the second battery pack 320
  • the electric energy is converted and output to the power receiving and voltage regulating circuit 3112; the power receiving and voltage regulating circuit 3112 boosts or steps down the electric energy output by the second charging and discharging voltage regulating circuit 313, and transmits power to the load.
  • the second charge-discharge voltage regulation circuit 313 is specifically a voltage-boost multiplexing circuit.
  • the second charge and discharge voltage regulation circuit 313 may be composed of a third filter capacitor E3, a third inductor L3B , a seventh power device Q7B, and an eighth power device Q8B, wherein the third filter capacitor E3
  • the positive and negative poles of B are electrically connected to the positive and negative poles of the second battery pack 320, and the negative pole of the third filter capacitor E3 is grounded.
  • the air conditioner controller 312 also includes: a second charging and discharging driving circuit 312A; the output terminal of the second charging and discharging driving circuit 312A is connected to the seventh power device Q7B and the The gate control terminal of the eight power device Q8B is electrically connected, and the output terminal of the second charge and discharge driving circuit 312A is electrically connected to the second control chip 3121, so that the second control chip 3121 drives the seventh power device Q7B and the eighth power device Q7B. On and off of device Q8B.
  • the air conditioner controller in the embodiment of the present disclosure further includes a first bus voltage detection circuit 3126 and a second bus voltage detection circuit 3126 Circuit 3127 and bus current detection circuit.
  • the input terminal of the first bus voltage detection circuit 3126 is electrically connected to the output terminal of the second bridge rectifier circuit 3111, and the first bus voltage detection circuit 3126 detects the voltage value of the electric energy after the electric energy conversion by the second bridge rectifier circuit 3111+ VDC1, and provide it to the second control chip 3121, so that the second control chip 3121 controls the second rectification drive circuit 3122 according to the voltage value +VDC1 fed back by the first bus voltage detection circuit 3126, and then controls the second bridge rectification circuit 3111
  • Each power device Q1B, Q2B, Q3B, Q4B is turned on and off, and then controls the rectification process of the second bridge rectifier circuit 3111.
  • the output end of the second bus voltage detection circuit 3127 is electrically connected to the second control chip 3121; the input end of the second bus voltage detection circuit 3127 is electrically connected to the output end of the power receiving and voltage regulating circuit 3112,
  • the output terminal of 3127 is electrically connected with the second control chip 3121, so as to detect the voltage value +VDC2 of the electric energy after the electric energy conversion by the power receiving voltage regulating circuit 3112, and provide it to the second control chip 3121, so that the second control chip 3121
  • the voltage value +VDC2 fed back by the second bus voltage detection circuit 3127 controls the voltage regulation driving circuit 3123, and then controls the on-off of each power device Q5B, Q6B in the power receiving voltage regulating circuit 3112, and then controls the voltage regulation of the power receiving voltage regulating circuit 3112 process.
  • the air conditioner controller in order to monitor the transformation process of the second charging and discharging voltage regulation circuit 313 and precisely control it to perform electric energy conversion, the air conditioner controller further includes: a second charging and discharging current detection circuit 3128 and a second battery voltage Detection circuit 3129.
  • the input end of the second charge and discharge current detection circuit 3128 is electrically connected to the second charge and discharge voltage regulation circuit 313, and the output end of the second charge and discharge voltage regulation circuit 313 is electrically connected to the control chip 3121; the second battery voltage detection circuit 3129 The input end of the second battery voltage detection circuit 3129 is electrically connected to the second charge and discharge voltage regulation circuit 313 , and the output end of the second battery voltage detection circuit 3129 is electrically connected to the second control chip 3121 .
  • the second charge and discharge current detection circuit 3128 and the second battery voltage detection circuit 3129 correspondingly detect the battery voltage and the charge and discharge current of the second charge and discharge voltage regulation circuit 313, and the second control chip 3121 controls the second charge and discharge voltage regulation circuit based on the detected value 313 the on-off of each power device Q7B, Q8B, and then control the voltage regulation processing process of the power-receiving voltage regulation circuit 3112 .
  • the wireless air conditioner 300 provided by the embodiment of the present disclosure also includes a display device
  • the control device 310 also includes: an auxiliary power supply for the air conditioner, electrically connected to the output end of the wireless power receiving module 311, and used for The voltage of the DC power output by the electrical module 311 is regulated, and the voltage-regulated DC power is provided to the display device of the wireless air conditioner 300 .
  • it can be electrically connected to the output terminal of the second bridge rectifier circuit 3111 or the output terminal of the power receiving voltage regulating circuit 3112, and the DC bus voltage +VDC1 or DC bus voltage +VDC2 is subjected to step-down processing to obtain a display
  • the voltage required by the device supplies power to the display device.
  • the wireless air conditioner 300 provided by the embodiment of the present disclosure includes: an air conditioner communication module 316 electrically connected to the air conditioner controller 312, wherein the air conditioner communication module 316 is used for wirelessly transmitting power to the wireless air conditioner 300 Communicate with the external power supply device to control the wireless charging device 100 that wirelessly transmits power to the wireless air conditioner 300 to be in a standby or energy transmitting state, and obtain the mains power access state of the wireless charging device 100 .
  • the wireless air conditioner 300 can adjust the power supply mode of the wireless air conditioner 300 according to the mains state of the wireless charging device 100 acquired by the communication module 316 , its own operating state, and the state of the second battery pack of the second battery pack 320 .
  • the second battery pack state may include but not limited to a state to be charged, a saturated state, and a dischargeable state.
  • the state of the second battery pack is the state to be charged, and the state of the device is the state of stopping receiving power (that is, no need to supply power to the load)
  • the charging operation for the second battery pack 320 can be performed.
  • the receiving coil Lr1, the second bridge rectifier circuit 3111, the second charging and discharging voltage regulating circuit 313, and the second battery pack 320 are sequentially connected; the electric energy wirelessly received by the receiving coil Lr1 passes through the second bridge
  • the conversion process of the rectification circuit 3111 and the second charge-discharge voltage regulation circuit 313 is output to the second battery pack 320 to charge the battery pack 320 .
  • the second battery pack 320 can be used to release electric energy to the user. power supply to the load.
  • the second battery pack 320, the second charge and discharge voltage regulation circuit 313, and the power receiving voltage regulation circuit 3112 are sequentially connected; the electric energy released by the second battery pack 320 passes through the second charge and discharge voltage regulation circuit 313, And the conversion process of the power receiving and voltage regulating circuit 3112 is output by the power receiving and voltage regulating circuit 3112 to supply power to the load.
  • the load can be powered by the electric energy received by the receiving coil Lr1 .
  • the receiving coil Lr1, the second bridge rectifier circuit 3111, and the power receiving and voltage regulating circuit 3112 are sequentially connected; the electric energy received wirelessly by the receiving coil Lr1 passes through the second bridge rectifying circuit 3111, the power receiving and voltage regulating circuit in turn.
  • the conversion process of the circuit 3112 is output by the power receiving and voltage regulating circuit 3112 to supply power to the load.
  • the state of the second battery pack is the state to be charged, and the state of the device is the state to be powered (that is, the load has a demand for receiving electricity), the electric energy received by the receiving coil Lr1 can be used simultaneously.
  • the second battery pack charges and supplies power to the load.
  • the receiving coil Lr1, the second bridge rectifier circuit 3111, the second charging and discharging voltage regulating circuit 313, the power receiving voltage regulating circuit 3112, and the second battery pack 320 are all connected; the receiving coil Lr1 wirelessly receives The electric energy is sequentially converted by the second bridge rectifier circuit 3111 and the second charge-discharge voltage regulating circuit 313, and output to the second battery pack 320 to charge the second battery pack 320; and the electric energy received wirelessly by the receiving coil Lr1 passes through the The conversion process of the second bridge rectifier circuit 3111 and the power receiving and voltage regulating circuit 3112 is output by the power receiving and voltage regulating circuit 3112 to supply power to the load.
  • the wireless air conditioner 300 in the present disclosure can be divided into various types according to different cooling and heating principles. Reference may be made to the several types of wireless air conditioners provided in Embodiment 1 above, which will not be repeated here.
  • the present disclosure also provides a method for controlling power supply of an air conditioner, as shown in FIG. 15 , the method includes the following steps.
  • Step S1501 Monitoring whether the wireless charging device is connected to the mains
  • Step S1502 When it is detected that the wireless charging device is connected to the mains, control the wireless charging device to wirelessly supply power to the energy storage module and/or the wireless air conditioner;
  • Step S1503 When it is detected that the wireless charging device is not connected to the mains, control the energy storage module to wirelessly supply power to the wireless air conditioner.
  • the air conditioner power supply method provided in the present disclosure can be applied to a central control device of a wirelessly powered air conditioner unit, and the air conditioner unit can include a wireless charging device and a wireless air conditioner.
  • the central control device may be any device in the wireless charging device or the wireless air conditioner, or may be a device independent of the wireless charging device and the wireless air conditioner, which is not limited here.
  • the method provided by the present disclosure can also be used in multiple devices of the air conditioner unit, and the air conditioner power supply method provided by the present disclosure is realized through data interaction between the multiple devices in the air conditioner unit. For each device in the air conditioning unit, you can refer to the above description, and will not repeat them here.
  • the air-conditioning unit includes two forms as shown in Fig. 1 and Fig. 2, that is, the energy storage module is arranged in the wireless charging device, and the air-conditioning unit is arranged in the wireless air conditioner with the energy storage module.
  • Different forms of air-conditioning units lead to differences in corresponding power supply control methods for the air conditioners. In the following, the power supply control methods for the air conditioners of the two types of air-conditioning units will be described respectively.
  • the energy storage module When the energy storage module is arranged in the wireless charging device, the energy storage module includes a first battery pack.
  • the power supply control method may include the following steps: obtaining the device status of the wireless air conditioner; when it is detected that the wireless charging device is not connected to the mains power supply and the device status is a standby state, controlling the wireless charging device
  • the charging device wirelessly transmits the electric energy released by the first battery pack to the wireless air conditioner, so as to wirelessly supply power to the wireless air conditioner.
  • the wireless charging device whether the commercial power is connected can be realized by detecting the input power interface of the wireless charging device.
  • the wireless charging device is connected to the mains, and when the input power interface is not connected to the power supply, the wireless charging device is not connected to the mains.
  • the device state of the wireless air conditioner may include a standby state and a power stop state.
  • the standby state may be a state corresponding to when the wireless air conditioner needs to receive electric energy to work.
  • the user can send a power-on command to the wireless air conditioner through the control panel, remote control or voice control of the wireless air conditioner. Therefore, when the wireless air conditioner receives a power-on instruction, the device state of the wireless air conditioner is a standby state. Or, during the running process of the wireless air conditioner, the wireless air conditioner also needs to continuously receive electric energy to realize the operation. Therefore, when the wireless air conditioner is running, the device state of the wireless air conditioner is the standby state.
  • the state of stopping receiving power may be a state corresponding to when the wireless air conditioner does not need to work.
  • the user can send a shutdown command to the wireless air conditioner through the control panel, remote control or voice control of the wireless air conditioner. After receiving the shutdown command, the wireless air conditioner completes the shutdown according to the shutdown command. At this time, There is no need to receive power anymore, and the device status of the wireless air conditioner is adjusted to stop receiving power. Or, if the wireless air conditioner breaks down during operation, the wireless air conditioner can be reset by powering off. Therefore, when the wireless air conditioner needs to be powered off and reset, it can stop receiving power, and the equipment status of the wireless air conditioner It is in the power-off state.
  • the power supply methods can be divided into the following two types: when the wireless charging device is connected to the mains, the first battery pack can be charged through the mains. Considering the stability of the mains power supply and reducing the loss of the first battery pack, when connected to the mains, the power can be transmitted wirelessly through the mains; when the wireless charging device is not connected to the mains, the wireless charging device can The first battery pack performs a discharge operation to provide wireless power to the wireless air conditioner. In the following, the cases where the wireless charging device is connected to the mains power and the cases where it is not connected to the mains power will be respectively described.
  • the power supply method of the wireless charging device not connected to the mains is introduced.
  • control the wireless charging device to wirelessly transmit the electric energy released by the first battery pack to the wireless air conditioner, In order to wirelessly supply power to the wireless air conditioner.
  • the wireless charging device since the wireless charging device is not connected to the mains, it cannot wirelessly transmit power to the outside through the mains. At this time, it is necessary to perform a discharge operation through the first battery pack installed in the wireless charging device, convert the electric energy released by the first battery pack, and wirelessly transmit the converted electric energy to the outside through the transmitting coil. That is, when the device status is the waiting state, it indicates that the wireless air conditioner needs to receive the electric energy wirelessly transmitted by the wireless charger. At this time, the wireless charging device can control the discharge of the first battery pack to realize the wireless transmission of electric energy, ensuring of normal operation.
  • the load When the load is powered by the first battery pack, it is also possible to consider whether the state of the first battery pack is a dischargeable state. When the state of the first battery pack is a dischargeable state, it indicates that the electric energy released by the first battery pack can support the wireless air conditioner At this time, the electric energy released by the first battery pack can be used by the load.
  • the state of the first battery pack of the wireless charging device may be acquired by detecting the power and voltage of the first battery pack, which is not limited here.
  • the state of the first battery pack is obtained by detecting the power of the first battery pack.
  • a first threshold it indicates that the state of the first battery pack is a saturated state.
  • the power of the first battery pack When the power of the first battery pack is less than the second threshold, it indicates that the state of the first battery pack is a state to be charged.
  • the first battery pack when used for external wireless power supply, it can also be detected whether the first battery pack is in a dischargeable state, for example, when the power of the first battery pack is greater than the third threshold, it indicates that the first battery pack
  • the state is a dischargeable state.
  • the first threshold, the second threshold, and the third threshold can be set according to actual needs, for example, the first threshold is 90%, 95%, etc., the second threshold is 70%, 60%, etc., and the third threshold is 30%. %, 50%, etc.
  • the first battery pack of the wireless charging device releases electric energy to wirelessly supply power to the wireless air conditioner.
  • the wireless air conditioner can work with the electric energy provided by the first battery pack, which greatly reduces the dependence on the mains power during the use of the wireless air conditioner and improves the wireless air conditioner's performance. Ease of use.
  • a solar conversion module can be provided on the wireless charging device for converting solar energy converted into electric energy, and powered by the electric energy converted by the solar energy, wherein the solar energy conversion module may include a solar photovoltaic panel and a corresponding control device.
  • the following power supply methods may be included: acquiring the first battery pack status of the wireless charging device;
  • the device state is a state of stopping receiving power, and the wireless charging device is controlled to charge the first battery pack with the electric energy output by the solar energy conversion module.
  • the state of the device when the state of the device is the state of stopping receiving power, it indicates that the wireless air conditioner does not need to receive power, that is, the first battery pack does not need to release power to power the wireless air conditioner. Therefore, the power converted from solar energy can be used to power the second battery pack. A battery pack is charged. If the state of the first battery pack is to be charged, then the first battery pack is charged with the electric energy converted from the solar energy; The module is in standby or stop working state.
  • the following power supply method may also be included: if it is detected that the state of the first battery pack is a state to be charged, and the device is in a state to be powered, control the wireless charging The device charges the first battery pack through the electric energy output by the solar conversion module, and wirelessly supplies power to the wireless air conditioner.
  • the device status of the wireless air conditioner is the waiting state, it indicates that the wireless air conditioner needs to receive electric energy to work. Since the solar energy conversion module can convert solar energy into electrical energy, the solar energy conversion module can be used preferentially. The electric energy wirelessly supplies power to the wireless air conditioner, so as to reduce the loss of the first battery pack. In some implementations, during the process of powering the wireless air conditioner with the electric energy converted from solar energy, the state of the first battery pack of the first battery pack can also be considered at the same time. The converted electrical energy can charge the first battery pack while supplying power to the load.
  • the power conversion efficiency of the solar module is low, it may not be able to support the operation of the wireless air conditioner. In this case, the electric energy released by the first battery pack can still be used to supply power to the load.
  • the electric energy conversion efficiency of the solar module is higher than the preset conversion rate, the electric energy converted by the solar energy can be used to supply power to the load and charge the first battery pack, wherein the preset conversion rate can be performed according to the power supply parameters of the wireless air conditioner
  • the specific setting is not limited here.
  • the following power supply method may also be included: if it is detected that the state of the first battery pack is in a saturated state and the device is in a standby state, control the wireless charging device to pass through the solar energy conversion module The output electric energy is wirelessly transmitted to the wireless air conditioner, so as to wirelessly supply power to the wireless air conditioner.
  • the state of the first battery pack when the state of the first battery pack is saturated, it indicates that there is no need to charge the first battery pack. At this time, only whether the wireless air conditioner needs to be powered by the electric energy converted from solar energy can be considered. If the device status is the waiting state, it indicates that the wireless air conditioner needs to receive electric energy. At this time, the electric energy converted by the solar module can be used to supply power to the load of the wireless air conditioner, so as to reduce the loss of the first battery pack. Similarly, if the power conversion efficiency of the solar module is low, it may not be able to support the operation of the wireless air conditioner. In this case, the electric energy released by the first battery pack can still be used to wirelessly power the wireless air conditioner. When the electric energy conversion efficiency of the solar module is higher than the preset conversion rate, the electric energy converted by the solar energy can be used to supply power to the load.
  • the conversion of solar energy by the solar energy conversion module can be used simultaneously with the mains power, or only when it is not connected to the mains power, which is not limited here.
  • the first battery pack can be charged at the same time through the electric energy converted from the mains and solar energy, or the electric energy converted from the mains and solar energy can be integrated and then wirelessly transmitted to the outside.
  • the electric energy converted from commercial power and solar energy is wirelessly supplied to the outside through the transmitting coil while charging the first battery pack.
  • the following power supply methods can be implemented: if it is detected that the wireless charging device is connected to the mains, and the state of the device is in the waiting state, control the wireless charging device to convert the mains The electric energy wirelessly transmitted to the wireless air conditioner, so as to wirelessly supply power to the wireless air conditioner.
  • the wireless charging device after the wireless charging device is connected to the commercial power, it converts the commercial power into electromagnetic energy and wirelessly transmits the power to the outside through the transmitting coil.
  • the wireless charging device rectifies the mains power input by the input power interface for AC-DC conversion, converts the DC-AC into electromagnetic energy, and transmits power to the outside through the transmitting coil.
  • the wireless air conditioner can receive the electric energy wirelessly transmitted by the wireless charging device through the receiving coil. After the wireless air conditioner receives the electric energy, it can perform conversion processing on the received electric energy, including but not limited to AC-DC conversion, rectification, buck-boost processing, so as to realize power supply to the load of the wireless air conditioner.
  • the state of the first battery pack of the wireless charging device may also be considered when determining the power supply mode.
  • the wireless charging device is controlled to convert the electric energy converted from the commercial power to the first battery pack. Charging is performed, and the electric energy converted from commercial power is wirelessly transmitted to the wireless air conditioner, so as to wirelessly supply power to the wireless air conditioner.
  • the commercial power connected to the wireless charging device is used to charge the first battery pack on the one hand
  • the commercial power is used to power the wireless air conditioner. That is, when the wireless charging device is connected to the mains, it realizes wireless power supply to the wireless air conditioner while charging the first battery pack, and ensures the power storage of the first battery pack while realizing the normal operation of the wireless air conditioner. In this way, when the electric energy released by the first battery pack is used for power supply, the problem of being unable to supply power for a long time due to insufficient battery power is avoided.
  • the wireless charging device can perform two types of processing on the connected mains power, one is to process the mains power into electric energy for charging the first battery pack, One is to process mains power into electric energy for wireless air conditioner power supply. That is, both the charging of the first battery pack and the external power supply are realized by the received electric energy, and the external power supply does not need to be discharged through the first battery pack.
  • the wireless charging device when the first battery pack is in a saturated state, there is no need to charge the first battery pack, and the wireless charging device can directly use the connected mains power to power the wireless air conditioner.
  • the wireless charging device After the wireless charging device is connected to the mains, it also includes the following power supply method: if it is detected that the state of the first battery pack is the state to be charged, and the state of the device is the state of stopping receiving power, control the wireless charging device to turn on the mains The electrically converted electric energy charges the first battery pack.
  • the wireless charging device when the device is in a state of stopping receiving power, it indicates that the wireless air conditioner does not need to receive power, that is, the wireless charging device does not need to supply power to the wireless air conditioner. It can be determined whether the first battery pack needs to be charged according to the state of the first battery pack. When the state of the first battery pack is to be charged, the wireless charging device charges the first battery pack through the connected mains power, thus ensuring the charging of the first battery pack. The timely replenishment of the power of the first battery pack ensures the power supply duration when the wireless charging device is not connected to the mains and uses the first battery pack for power supply. Conversely, when the state of the first battery pack is saturated, the wireless charging device does not need to charge the first battery pack, so the wireless charging device can enter a standby state or stop working.
  • the method provided by the present disclosure can provide stable electric energy through the mains when the wireless charging device is connected to the mains, and can provide stable power through the first wireless charging device when the wireless charging device is not connected to the mains.
  • a battery pack transmits power to the outside, ensuring that the wireless air conditioner can work both when there is a mains connection and when there is no mains connection. Because the wireless air conditioner obtains electric energy through wireless transmission, it gets rid of the traditional power tail wire, so that the wireless air conditioner can be moved arbitrarily as needed, which greatly improves the convenience of using the wireless air conditioner. Since there are various power supply methods between the wireless charging device and the wireless air conditioner, it can be applied to the use requirements of the wireless air conditioner in various scenarios. experience.
  • the energy storage module When the energy storage module is set in the wireless air conditioner, the energy storage module includes a second battery pack.
  • the power supply control method may include the following steps: acquiring the state of the second battery pack of the energy storage module; when it is detected that the wireless charging device is connected to the mains, and the state of the second battery pack is a waiting state, Controlling the wireless charging device to wirelessly charge the second battery pack.
  • the wireless charging device whether the commercial power is connected can be realized by detecting the input power interface of the wireless charging device.
  • the wireless charging device is connected to the mains, and when the input power interface is not connected to the power supply, the wireless charging device is not connected to the mains.
  • the state of the second battery pack of the wireless air conditioner may be obtained by detecting the power and voltage of the second battery pack, which is not limited here.
  • the state of the second battery pack is obtained by detecting the power of the second battery pack.
  • the power of the second battery pack is greater than the first threshold, it indicates that the state of the second battery pack is a saturated state.
  • the second battery pack When the second battery pack When the electric quantity is less than the second threshold value, it indicates that the state of the second battery pack is a state to be charged.
  • the second battery pack when using the second battery pack to provide external wireless power, it can also be detected whether the second battery pack is in a dischargeable state, for example, when the power of the second battery pack is greater than the third threshold, it indicates that the second battery pack The state is a dischargeable state.
  • the first threshold, the second threshold, and the third threshold can be set according to actual needs, for example, the first threshold is 90%, 95%, etc., the second threshold is 70%, 60%, etc., and the third threshold is 30%. %, 50%, etc.
  • the power supply methods can be divided into the following two types: When the wireless charging device is connected to the mains, considering the stability of the mains power supply and reducing the battery loss of the wireless air conditioner, the power supply can be supplied through the mains. Power supply; when the wireless charging device is not connected to the mains, the wireless charging device cannot work, and at this time, the battery of the wireless air conditioner can be discharged to make the wireless air conditioner operate normally. In the following, the cases where the wireless charging device is connected to the mains power and the cases where it is not connected to the mains power will be respectively described.
  • the wireless charging device is controlled to wirelessly charge the second battery pack of the wireless air conditioner.
  • the wireless charging device after the wireless charging device is connected to the commercial power, it converts the commercial power into electromagnetic energy and wirelessly transmits the power to the outside through the transmitting coil.
  • the wireless charging device rectifies the mains power input by the input power interface for AC-DC conversion, converts the DC-AC into electromagnetic energy, and transmits power to the outside through the transmitting coil.
  • the wireless air conditioner receives the electric energy wirelessly transmitted by the wireless charging device through the receiving coil, and converts the received electric energy, including but not limited to AC-DC conversion, rectification, and buck-boost processing.
  • the second battery pack of the wireless air conditioner is in the waiting state, in order to make the second battery pack have enough power to ensure that the wireless air conditioner works when the wireless air conditioner works alone, the second battery can be charged based on the converted electric energy. pack charging.
  • the wireless air conditioner When performing wireless power supply through a wireless charging device, it may also be considered whether the wireless air conditioner needs externally transmitted electric energy. In some embodiments, the following steps are also included: obtaining the equipment status of the wireless air conditioner; when it is detected that the wireless charging device is connected to the mains, if the status of the second battery pack is the status to be charged, and the The device state is a waiting state, and the wireless charging device is controlled to wirelessly charge the second battery pack and wirelessly supply power to the wireless air conditioner.
  • the device state of the wireless air conditioner may include a standby state and a power stop state.
  • the standby state may be a state corresponding to the need to supply power to the load of the wireless air conditioner for work.
  • the user can send a start-up command to the wireless air conditioner through the control panel of the wireless air conditioner, a remote control, or voice control. After receiving the start-up command, the wireless air conditioner needs to provide power to the load to start up. Therefore, when the wireless air conditioner receives the power-on instruction, the device state of the wireless air conditioner is the standby state. Alternatively, during the operation of the wireless air conditioner, it is also necessary to continuously provide electric energy for the load to realize normal operation. Therefore, when the wireless air conditioner is in operation, the device state of the wireless air conditioner is a standby state.
  • the state of stopping receiving power may be a state corresponding to when the wireless air conditioner does not need to work.
  • the user can send a shutdown command to the wireless air conditioner through the control panel, remote control or voice control of the wireless air conditioner. After receiving the shutdown command, the wireless air conditioner completes the shutdown according to the shutdown command. At this time, It is no longer necessary to provide power to the load, and the equipment status of the wireless air conditioner is adjusted to stop receiving power. Or, if the wireless air conditioner breaks down during operation, the wireless air conditioner can be reset by powering off. Therefore, when the wireless air conditioner needs to be powered off and reset, the power supply to the load can be stopped, and the equipment of the wireless air conditioner The state is power off state.
  • the wireless air conditioner when the state of the second battery pack is the waiting state and the equipment state of the wireless air conditioner is the waiting state, the wireless air conditioner receives the electric energy transmitted by the wireless charging device on the one hand to charge the second battery pack , on the other hand, the received electric energy is used to supply power to the load. That is, when the wireless charging device is connected to the mains, it realizes charging the second battery pack while supplying power to the load of the wireless air conditioner, ensuring the power of the second battery pack of the wireless air conditioner. In this way, when the electric energy released by the second battery pack of the wireless air conditioner is used for power supply, the problem of being unable to supply power for a long time due to insufficient battery power is avoided.
  • the wireless air conditioner can process the received electric energy in two ways, one is to process the received electric energy into electric energy for charging the second battery pack , one is to process the received electrical energy into electrical energy for load power supply. That is, both charging the second battery pack and supplying power to the load are realized by the received electric energy, and there is no need to discharge the second battery pack to realize power supply to the load.
  • the wireless charging device After the wireless charging device is connected to the mains, the following power supply method is also included: if the state of the second battery pack is in a saturated state and the state of the device is in a waiting state, then control the wireless charging device to The air conditioner is powered wirelessly.
  • the state of the second battery pack of the wireless air conditioner is a saturated state, it indicates that the wireless charging device does not need to charge the second battery pack.
  • Whether the load needs to be powered can be determined through the device status of the wireless air conditioner. When the status of the equipment is in the standby state, it indicates that the load needs to receive electric energy for operation. Since the current wireless charging device has been connected to the mains, in order to improve the power supply efficiency and reduce the loss of the second battery pack of the wireless air conditioner, it can The charging device wirelessly supplies power to the wireless air conditioner without using the second battery pack.
  • the following power supply method can be implemented: if it is detected that the wireless charging device is not connected to the mains power, and the state of the device is in the waiting state, control the second battery pack to be The wireless air conditioner is powered.
  • the wireless charging device since the wireless charging device is not connected to the mains, the wireless charging device cannot work, and therefore cannot wirelessly transmit power externally through the wireless charging device.
  • the second battery pack installed in the wireless air conditioner needs to perform a discharge operation, convert the electric energy released by the second battery pack, and supply the converted electric energy to the load. That is, when the state of the device is the standby state, the wireless air conditioner can control the discharge of the second battery pack to supply power to the load, so as to ensure the normal operation of the wireless air conditioner.
  • the load When the load is powered by the second battery pack, it is also possible to consider whether the state of the second battery pack is a dischargeable state. When the second battery pack is in a dischargeable state, it indicates that the electric energy released by the battery can support the operation of the wireless air conditioner. At this time, the electric energy can be released by the second battery pack to be used by the load.
  • the second battery pack of the wireless air conditioner releases electric energy to provide electric energy to the load of the wireless air conditioner.
  • the wireless air conditioner can work with the power provided by the second battery pack, which greatly reduces the dependence on the mains power during the use of the wireless air conditioner, and improves the wireless air conditioner's performance. Ease of use.
  • a solar conversion module can be installed on the wireless air conditioner for The solar energy is converted into electric energy, and the electric energy converted by the solar energy is used for power supply, wherein the solar energy conversion module may include a solar photovoltaic panel and a corresponding controller.
  • the following power supply methods can also be implemented: if the state of the second battery pack is the state to be charged, and the state of the device is the state of stopping receiving power, The wireless air conditioner is controlled to charge the second battery pack through the electric energy output by the solar conversion module.
  • the state of the device when the state of the device is the state of stopping receiving power, it indicates that the wireless air conditioner does not need to receive power, that is, the second battery pack does not need to release power to supply power to the load. Therefore, the power converted from solar energy can be used to power the second battery. pack to charge. If the state of the second battery pack is to be charged, the second battery pack is charged with the electric energy converted from solar energy; if the second battery pack is in a saturated state, there is no need to charge the second battery pack. The module is in standby or stop working state.
  • the following power supply method is also included: if the state of the second battery pack is the state to be charged, and the state of the device is the state to be powered, control the output of the wireless air conditioner through the solar energy conversion module The electric energy charges the second battery pack and supplies power to the wireless air conditioner.
  • the equipment status of the wireless air conditioner is the waiting state, it indicates that power needs to be supplied to the load of the wireless air conditioner. Since the solar energy conversion module can convert solar energy into electrical energy, it can be preferentially used The electric energy supplies power to the load of the wireless air conditioner, so as to reduce the loss of the second battery pack.
  • the state of the second battery pack of the second battery pack can also be considered at the same time. If the state of the second battery pack is the state to be charged, then the The electric energy can charge the second battery pack while supplying power to the load.
  • the power conversion efficiency of the solar module is low, it may not be able to support the operation of the wireless air conditioner. In this case, the electric energy released by the second battery pack can still be used to supply power to the load.
  • the electric energy conversion efficiency of the solar module is higher than the preset conversion rate, the electric energy converted by the solar energy can be used to supply power to the load and charge the second battery pack, wherein the preset conversion rate can be determined according to the power supply parameters of the wireless air conditioner The specific setting is not limited here.
  • the following power supply method is also included: if the state of the second battery pack is a saturated state, and the state of the device is a standby state, control the wireless air conditioner to use the output power of the solar energy conversion module Electric energy supplies power to the wireless air conditioner.
  • the state of the second battery pack when the state of the second battery pack is in a saturated state, it indicates that the second battery pack does not need to be charged, and at this time, only whether the electric energy converted from solar energy needs to be used to power the load may be considered. If the state of the device is the waiting state, it indicates that power needs to be supplied to the load. At this time, the electric energy converted by the solar module can be used to supply power to the load of the wireless air conditioner, so as to reduce the loss of the second battery pack. Similarly, if the power conversion efficiency of the solar module is low, it may not be able to support the work of the wireless air conditioner. In this case, the electric energy released by the second battery pack can still be used to supply power to the load. When the electric energy conversion efficiency of the solar module is higher than the preset conversion rate, the electric energy converted by the solar energy can be used to supply power to the load.
  • the conversion of solar energy by the solar energy conversion module can be used simultaneously with the mains power, or only when it is not connected to the mains power, which is not limited here.
  • the second battery pack can be charged at the same time through the electric energy converted from the mains and solar energy, or the electric energy converted from the mains and solar energy can be integrated to supply power to the load of the wireless air conditioner , it can also supply power to the load while charging the second battery pack through the electric energy converted from the commercial power and solar energy.
  • the method provided in this disclosure can provide stable power to the wireless air conditioner through the mains when the wireless charging device is connected to the mains, and can provide stable power to the wireless air conditioner through the wireless air conditioner when the wireless charging device is not connected to the mains.
  • the second battery pack in the air conditioner supplies power to the load, ensuring that the wireless air conditioner can work both with and without mains access. Because the wireless air conditioner obtains electric energy through wireless transmission or the discharge of its second battery pack, it gets rid of the traditional power tail wire, so that the wireless air conditioner can be moved arbitrarily as needed, which greatly improves the convenience of using the wireless air conditioner. Since there are various power supply methods between the wireless charging device and the wireless air conditioner, it can be applied to the use requirements of the wireless air conditioner in various scenarios. experience.
  • an embodiment of the present disclosure provides a power supply control device for an air conditioner, as shown in FIG. 16 , the device includes:
  • the first processing module 1601 is configured to control the wireless charging device to wirelessly supply power to the energy storage module and/or the wireless air conditioner when it is detected that the wireless charging device is connected to the mains;
  • the second processing module 1602 is configured to control the energy storage module to wirelessly supply power to the wireless air conditioner when it is detected that the wireless charging device is not connected to the mains.
  • an embodiment of the present disclosure provides a power supply control device for an air conditioner, as shown in FIG. Step 1702: Implement the aforementioned air conditioner power supply control method when executing Step 1702.
  • bus 1700 may include any number of interconnected buses and bridges, bus 1700 will include one or more processors represented by processor 1702 and memory represented by memory 1704 The various circuits are linked together. The bus 1700 may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and thus will not be described herein.
  • the bus interface 1705 provides an interface between the bus 1700 and the receiver 1701 and the transmitter 1703 . Receiver 1701 and transmitter 1703 may be the same element, a transceiver, providing means for communicating with various other devices over a transmission medium.
  • Processor 1702 is responsible for managing bus 1700 and general processing, while memory 1704 may be used to store data used by processor 1702 in performing operations.
  • FIG. 18 it is a schematic diagram of a computer-readable storage medium provided by the present disclosure, on which a computer program is stored, and when the program is executed by a processor, the steps of the above-mentioned wireless power supply method are implemented.
  • each functional unit may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the disclosed technical content can be realized in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units may be a logical function division.
  • multiple units or components may be combined or may be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of units or modules may be in electrical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component as a control device may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or part of the contribution to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开内容公开了一种空调机组、供电控制方法、装置及存储介质,空调机组包括:无线充电装置以及无线空调器,所述无线充电装置或所述无线空调器中设置有储能模块;所述无线充电装置,用于在接入市电的情况下对所述储能模块和/或所述无线空调器进行无线供电;所述储能模块,用于在所述无线充电装置未接入市电的情况下对所述无线空调器进行无线供电。

Description

空调机组、供电控制方法、装置及存储介质
相关申请的交叉引用
本申请要求于2021年10月22日提交、申请号为202122561909.2、202111236394.7、202122560274.4、202111237927.3且名称均为“一种空调机组”,申请号为202111236393.2、202111235022.2且名称均为“空调器供电控制方法、装置及可读存储介质”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开内容涉及电器领域,尤其涉及一种空调机组、供电控制方法、装置及存储介质。
背景技术
随着科学技术的不断发展,家用电器的种类也越来越丰富。相关技术中,对于部分家用电器来说,例如空调,在使用时均需要通过电源尾线连接市电以对空调进行直接供电,供电方式较为单一,并且空调在使用时会受到电源尾线的限制,不便于移动,导致用户使用体验较差。
发明内容
为了至少能够在一定程度上解决相关技术中空调的供电方式单一,以及空调使用受电源尾线限制,不便于移动的技术问题,本公开提供了一种空调机组、供电控制方法、装置及存储介质。
第一方面,本公开提供了一种空调机组,包括:无线充电装置以及无线空调器,所述无线充电装置或所述无线空调器中设置有储能模块;所述无线充电装置,用于在接入市电的情况下对所述储能模块和/或所述无线空调器进行无线供电;所述储能模块,用于在所述无线充电装置未接入市电的情况下对所述无线空调器进行无线供电。
第二方面,本公开提供了一种空调器供电控制方法,包括:在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电;在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电。
第三方面,本公开提供了一种空调器供电控制装置,包括:第一处理模块,用于在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电;第二处理模块,用于在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电。
第四方面,本公开提供了一种空调器供电控制装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现第二方面提供的空调器供电控制方法的任一步骤。
第五方面,本公开提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时前述第二方面提供的空调器供电控制方法的任一步骤。
本公开提供的空调机组包括:无线充电装置以及无线空调器,所述无线充电装置或所述无线空调器中设置有储能模块;所述无线充电装置,用于在接入市电的情况下对所述储能模块和/或所述无线 空调器进行无线供电;所述储能模块,用于在所述无线充电装置未接入市电的情况下对所述无线空调器进行无线供电。由于无线空调器能够通过无线输电的方式获取电能,因此不需要通过电源尾线来进行供电,因此,无线空调器在使用过程中可以随意移动,改善了用户体验。
附图说明
图1示出了依据本公开实施例的储能模块设置在无线充电装置中的空调机组的示意图;
图2示出了依据本公开实施例的储能模块设置在无线空调器中的空调机组的示意图;
图3示出了依据本公开实施例的无线充电装置的电路模块图;
图4示出了依据本公开实施例的无线充电装置的细化电路图;
图5示出了依据本公开实施例的无线空调器的电路模块图;
图6示出了依据本公开实施例的第一种类型的无线空调器的结构示意图;
图7示出了依据本公开实施例的第二种类型的无线空调器的结构示意图;
图8示出了依据本公开实施例的第三种类型的无线空调器的一种结构示意图;
图9示出了依据本公开实施例的第三种类型的无线空调器的另一种结构示意图;
图10示出了依据本公开实施例的第四种类型的无线空调器的一种结构示意图;
图11示出了依据本公开实施例的第四种类型的无线空调器的另一种结构示意图;
图12示出了依据本公开实施例的无线充电装置的示意图;
图13示出了依据本公开实施例的无线空调器的电路模块图;
图14示出了依据本公开实施例的无线空调器的细化电路图;
图15示出了依据本公开实施例的一种空调器供电控制方法的流程图;
图16示出了依据本公开实施例的一种空调器供电控制装置的示意图;
图17示出了依据本公开实施例的另一种空调器供电控制装置的示意图;
图18示出了依据本公开实施例的一种计算机可读存储介质的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开的内容,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面,将结合附图并参考具体实施例,对本公开实施例提供的空调机组进行详细描述。
如图1、图2所示,本公开提供的空调机组,包括无线充电装置100以及无线空调器300,无 线充电装置100或无线空调器300中设置有储能模块130;无线充电装置100,用于在接入市电的情况下对储能模块130和/或无线空调器300进行无线供电;储能模块130,用于在无线充电装置100未接入市电的情况下对无线空调器300进行无线供电。
由于储能模块130可以设置在无线充电装置100中,或者设置在无线空调器300中,因此,空调机组可以包括两种实现方式,如图1所示,为储能模块130设置在无线充电装置100中的空调机组示意图,如图2所示,为储能模块130设置在无线空调器300中的空调机组示意图。
下面,分别以图1和图2为例,来对空调机组的两种实现方式来进行说明。
如图1所示的空调机组,储能模块130设置在无线充电装置100中,在无线充电装置100与无线空调器300之间建立通讯连接的状态下,无线充电装置100用于将市电或储能模块130释放的电能向外无线输电;无线空调器300,用于接收无线充电装置100无线传输的电能。
本公开中的空调机组,无线充电装置100与无线空调器300之间存在多种使用形态。举例来讲,在无线充电装置100接入市电时,无线充电装置100能够直接利用市电转换的电能对无线空调器300进行无线供电;在无线充电装置100未接入市电时,无线充电装置100能够通过储能模块130释放电能,以向无线空调器300进行无线供电。
如图3所示,为本公开提供的一种无线充电装置的示意图,包括:输入电源接口110、整流模块120、储能模块130、无线供电模块140、发射线圈Ls1以及充放电控制模块150。整流模块120的输入端与输入电源接口110电性连接;而整流模块120的输出端、储能模块130的充放电端以及无线供电模块140的输入端三者互连;发射线圈Ls1与无线供电模块140电性连接;充放电控制模块150均与整流模块120、储能模块130以及无线供电模块140电性连接。
在充放电控制模块150的驱动下,市电输出的电能经整流模块120和储能模块130进行处理后存储起来,便于需要时由储能模块130释放电能,经无线供电模块140处理后再经发射线圈Ls1向外无线输电;或者在充放电控制模块150的驱动下,市电输出的电能直接经整流模块120和无线供电模块140处理后,再经发射线圈Ls1向外无线输电。
无线充电装置100可以采用串联-串联(S-S)、串联-并联(S-P)、并联-串联(P-S)、并联-并联P-P、LCC、CLC等变换电路中的任意一种变换电路拓扑。
结合图4所示,输入电源接口110用于接入市电;输入电源接口110可以用于接入220V市电。在输入电源接口110接入市电状态下向整流模块120传输220V的市电电能。当然,输入电源接口110也可以接入其他的交流电源。
整流模块120将输入电源接口110接收的交流电能进行交流-直流变换成母线电压+VDC。
整流模块120可以是有源PFC(Power Factor Correction,功率因数校正)拓扑、无源PFC拓扑、无桥有源PFC拓扑中的任意一种整流电路拓扑。
以整流模块120为无源PFC拓扑为例,可以包括:依次电性连接的第一桥式整流电路121和输入调压电路122。其中,第一桥式整流电路121的两个交流输入端与输入电源接口110电性连接,输入调压电路122的输出端与储能模块130的充放电端以及无线供电模块140的输入端电性连接。
第一桥式整流电路121可以是:全桥同步整流拓扑、半桥同步整流拓扑以及不控整流拓扑中的任意一种整流拓扑。
举例来讲,参考图4所示,第一桥式整流电路121可以是由四只二极管构成的全桥同步整流器: 第一二极管D1、第二二极管D2、第三二极管D3以及第四二极管D4。其中,第一二极管D1的阳极和第三二极管D3的阴极电性连接输入电源接口110的一个输入端,第二二极管D2的阳极和第四二极管D4的阴极电性连接输入电源接口110的另一个输入端,第一二极管D1的阴极和第二二极管D2的阴极电性连接输入调压电路122的输入端。第三二极管D3的阳极和第四二极管D4的阳极也电性连接输入调压电路122的输入端。
参考图4所示,输入调压电路122可以由第一电感L1 A和第五功率器件Q5A、第五二极管D5和第一滤波电容E1A构成。其中,第一电感L1 A的一端与第一桥式整流电路121一个直流输出端电性连接,第一电感L1 A的另一端与第五二极管D5阳极以及第五功率器件Q5A集电极电性连接,第五功率器件Q5A的发射极还与第一滤波电容E1A负极以及第一桥式整流电路121的另一个直流输出端电性连接,第五二极管D5阴极与第一滤波电容E1A正极电性连接,且第一滤波电容E1A的负极接地。
针对整流模块120,充放电控制模块150包括:和第一整流驱动电路152。第一控制芯片151可以为MCU(Microcontroller Unit,微控制单元),第一整流驱动电路152的输入端与第一控制芯片151的第一脉冲信号输出端电性连接,第一整流驱动电路152的输出端与整流模块120电性连接。
第一整流驱动电路152的输入端电性连接在整流模块120中第五功率器件Q5A的栅极控制端,以对整流模块120进行驱动,从而,第一整流驱动电路152基于第一控制芯片151提供的PWM(Pulse Width Modulation,脉冲宽度调制)信号驱动整流模块120,整流模块120以将市电提供的交流电能进行交流-直流变换,得到母线电压+VDC。
在一些实施方式下,无线供电模块140包括:桥式逆变电路141,桥式逆变电路141的输入端与整流模块120的输出端以及储能模块130的充放电端电性连接,桥式逆变电路141的输出端与发射线圈Ls1电性连接。
桥式逆变电路141可以采用全桥同步整流拓扑、也可以是半桥同步整流拓扑。其中,桥式逆变电路141用于对整流模块120输出的直流母线电压+VDC进行直流-交流变换为交流电能后,再通过发射线圈Ls1向外无线输电。
举例来讲,参考图4所示,桥式逆变电路141可以是由四只功率器件构成的全桥同步整流拓扑:第一功率器件Q1A、第二功率器件Q2A、第三功率器件Q3A以及第四功率器件Q4A。其中,第一功率器件Q1A的发射极和第三功率器件Q3A的集电极电性连接于谐振电容C A的一端,谐振电容C A的另一端与发射线圈Ls1一端电性连接,第二功率器件Q2A的发射极和第四功率器件Q4A的集电极电性连接于发射线圈Ls1的另一端。第一功率器件Q1A的集电极和第二功率器件Q2A的集电极均与第一滤波电容E1A的正极电性连接,第三功率器件Q3A的发射极、第四功率器件Q4A的发射极与第一滤波电容E1A的负极电性连接。
针对桥式逆变电路141,充放电控制模块150还包括:逆变驱动电路153,逆变驱动电路153的输入端与第一控制芯片151的第三脉冲信号输出端电性连接,逆变驱动电路153的输出端与无线供电模块140电性连接。从而,在电源输入接口110接入市电状态下,逆变驱动电路153用于驱动无线供电模块140将整流模块120输出的直流电能进行直流-交流变换为交流电能,再经发射线圈Ls1向外无线输电,在电源输入接口110未接入市电状态下,逆变驱动电路153通过第一控制芯片151输出的PWM(Pulse Width Modulation,脉冲宽度调制)信号,驱动无线供电模块140将储能模块130输出的直流电能进行直流-交流变换为交流电能,再经发射线圈Ls1向外无线输电。
逆变驱动电路153的四个输出端,对应电性连接无线供电模块140中桥式逆变电路141的每个功率器件的栅极控制端:第一功率器件Q1A的栅极、第二功率器件Q2A的栅极、第三功率器件Q3A的栅极以及第四功率器件Q4A的栅极,以驱动Q1A至Q4A通断。
在一些实施方式下,参考图4所示的,储能模块130包括:第一充放电调压电路131和第一电池包132,其中,第一充放电调压电路131一端与整流模块120的输出端以及无线供电模块140的输入端电性连接;第一电池包132与第一充放电调压电路131的另一端电性连接。
第一电池包132包括电池模组1321以及BMS保护板(Bttery Managment system,电池管理系统)1322。BMS保护板可以对电池模组1321进行充电过电压、充电过电流、放电过电流、放电电压过低、温度过高等保护功能及电量显示等功能。
第一充放电调压电路131用于将整流模块120输出的电能进行降压处理后向第一电池包132充电,以及用于将第一电池包132释放的能量进行升压处理后向无线供电模块140提供。
在一些实施方式下,第一充放电调压电路131为充放电复用电路或者包括互为独立的充电调压子电路和放电调压子电路,其中,充电调压子电路和放电调压子电路均与第一电池包电性连接。
参考图4举例来讲,如果第一充放电调压电路131为充放电复用电路,具体包括:第六功率器件Q6A、第七功率器件Q7A、第二电感L2 A以及第二滤波电容E2A。其中,第六功率器件Q6A的集电极与整流模块120中第一滤波电容E1A的正极电性连接,第七功率器件Q7A的发射极与整流模块120中第一滤波电容E1A的负极电性连接,第六功率器件Q6A的发射极和第七功率器件Q7A的集电极均与第二电感L2 A的一端电性连接,第二电感L2 A的另一端与第二滤波电容E2A正极电性连接,第七功率器件Q7A的发射极还与第二滤波电容E2A的负极电性连接,且第二滤波电容E2A的负极接地,第二滤波电容E2A的正负极对应电性连接第一电池包132的正负极。
与第一充放电调压电路131对应的,充放电控制模块150还包括第一充放电驱动电路154,第一充放电驱动电路154的输入端与第一控制芯片151的第二脉冲信号输出端电性连接,第一充放电驱动电路154的输出端与储能模块130电性连接。第一充放电驱动电路154电性连接在第七功率器件Q7A的栅极控制端以及第六功率器件Q6A的栅极控制端,以控制Q6A、Q7A的通断。从而,第一充放电驱动电路154驱动第一充放电调压电路131进行充电调压或者放电调压。
在电源输入接口110未接入市电的情况下,驱动第一充放电调压电路131进行释放第一电池包132存储的电能并进行升压处理后提供给无线供电模块140,在电源输入接口110接入市电的情况下,如果储能模块130的第一电池包132处于未饱和状态,则驱动第一充放电调压电路131将整流模块120输出的电能从直流母线电压+VDC转换至第一电池包所需的电压+Vb,并向第一电池包132充电。
发射线圈Ls1可以采用单向发射线圈,以仅用于向无线空调器300进行无线输电。
在一些实施方式下,为了对整流模块120进行整流监测,充放电控制模块150还包括:交流电压检测电路155、电流检测电路156以及母线电压检测电路157。
参考图4所示,交流电压检测电路155两个输入端对应电性连接第一桥式整流电路121的两个直流输出端,用以检测第一桥式整流电路121输出电压大小。电流检测电路156可以通过在第四二极管D4的阳极与第五功率器件的发射极之间电性连接第一电阻R1A,交流电压检测电路155电性连接于第一电阻R1A上,以检测第一桥式整流电路121输出电流大小。交流电压检测电路155的输出端和电流检测电路的输出端均与第一控制芯片151电性连接,第一控制芯片151基于电流检测电路156检测的电流 大小以及交流电压检测电路155检测的电压大小,控制向第一整流驱动电路152输出脉冲信号,以驱动整流模块120的第一桥式整流电路121工作。
母线电压检测电路157的输入端与输入调压电路122的输出端电性连接,母线电压检测电路157的输出端与第一控制芯片151电性连接。母线电压检测电路157的两个输入端可以对应电性连接第一滤波电容E1A的正负极,以检测输入调压电路122输出的直流母线电压+VDC的大小并提供给第一控制芯片151,第一控制芯片151根据直流母线电压+VDC,控制向输入调压电路122输出脉冲信号,以驱动整流模块120的第一桥式整流电路121工作。
为了对储能模块130进行监测,充放电控制模块150还包括:第一充放电流检测电路158和第一电池电压检测电路159。其中,第一充放电流检测电路158的输入端与第一充放电调压电路131电性连接。在第七功率器件Q7A的发射极与第二滤波电容E2A的负极之间电性连接有第二电阻R2A,第一充放电流检测电路158的输入端电性连接于第二电阻R2A上,第一充放电流检测电路158的输出端与第一控制芯片151电性连接,第一充放电流检测电路158用以检测经第一充放电调压电路131处理后的充电电流或者放电电流并提供给第一控制芯片151。
第一电池电压检测电路159的输入端与第一充放电调压电路131电性连接,第一电池电压检测电路159的输出端与第一控制芯片151电性连接。第一充放电流检测电路158的两个输入端对应电性连接于第二滤波电容E2A的正负极,第一电池电压检测电路159用以检测向第一电池包132充电时或者第一电池包132放电时的电池电压,并提供给第一控制芯片151。第一控制芯片151根据电池电压和充放电电流,控制向第一充放电驱动电路154输出脉冲信号,以驱动第一充放电调压电路131的工作。
本公开所涉及的各个功率器件Q1A至Q7A均可以采用IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)器件、或者MOS管等晶体管。
在一些实施方式下,无线充电装置100还包括:用于与无线空调器300进行通信的通信模块160,通信模块160与充放电控制模块150电性连接,以与无线空调器300进行通信,以获取无线空调器300的设备状态以及对无线空调器300进行控制。其中,通信模块160包括蓝牙模块、信号载波模块、红外收发模块中的一种或者多种。
需要说明的是,无线空调器300的设备状态包括但不限于待受电状态、停止受电状态。
待受电状态,可以为无线空调器300需要接收电能时所对应的状态。例如,用户可以通过无线空调器300的控制面板、遥控器或语音控制等方式向无线空调器300发送开机指令,无线空调器300接收到开机指令后,需要通过无线接收电能以进行开机,因此,在无线空调器300接收到开机指令时,无线空调器300的设备状态可以为待受电状态。或者,在无线空调器300的运行过程中,无线空调器300也需要持续无线接收电能以实现运行,因此,在无线空调器300处于运行过程中时,无线空调器的设备状态也为待受电状态。
相应的,停止受电状态,可以为无线空调器300不需要工作时所对应的状态。例如,用户可以通过无线空调器300的控制面板、遥控器或语音控制等方式向无线空调器300发送关机指令,当无线空调器300接收到关机指令后,根据关机指令完成关机,此时,不需要再接收电能,无线空调器300的设备状态调整为停止受电状态。或者,无线空调器300在运行过程中出现故障,可以通过断电来实现对无线空调器300的复位,因此,在需要对无线空调器300进行断电复位时,可以停止接收电能,无线空调器300的设备状态为停止受电状态。
无线充电装置100可以根据通信模块160获取到的无线空调器300的设备状态,以及储能装置130的第一电池包状态来调节无线充电装置100的供电方式。其中,第一电池包状态可以包括但不限于待充电状态、饱和状态、可放电状态。下面,对无线充电装置100的几种供电方式进行说明。
第一种
在检测到储能装置130的第一电池包状态为待充电状态,设备状态为停止受电状态,且输入电源接口110接入市电时,可以执行对第一电池包132的充电操作。在一些实施方式中,输入电源接口110、整流模块120以及储能模块130依次连通时,整流模块120在充放电控制模块150的控制下将市电进行转换处理后,对储能模块130进行充电。
第二种
在获取到的设备状态为待受电状态,第一电池包状态为可放电状态,且输入电源接口110未接入市电时,可以通过储能模块130释放电能以对无线空调器300的无线供电。在一些实施方式中,储能模块130、无线供电模块140以及发射线圈Ls1依次连通;储能模块130用于释放电能;无线供电模块140,用于在充放电控制模块150的控制下对储能模块130释放的电能进行转换处理,通过发射线圈Ls1向外无线输电。
第三种
在获取到设备状态为待受电状态,第一电池包状态为饱和状态,且输入电源接口110接入市电时,可以通过市电转换的电能,对无线空调器300无线供电。在一些实施方式中,输入电源接口110、整流模块120、无线供电模块140以及发射线圈Ls1依次连通;输入电源接口110用于接入市电;整流模块120以及无线供电模块140,用于在充放电控制模块150的控制下将市电进行转换处理,并将转换处理后的电能通过发射线圈Ls1向外无线输电。
第四种
在检测到第一电池包状态为待充电状态,设备状态为待受电状态,且输入电源接口110接入市电时,可以同时对第一电池包充电以及对无线空调器130无线供电。在一些实施方式中,输入电源接口110、整流模块120、储能模块130、无线供电模块140以及发射线圈Ls1依次连通;输入电源接口110用于接入市电,整流模块120用于在充放电控制模块150的控制下将市电进行转换处理以对储能模块130进行充电;以及整流模块120以及无线供电模块140,用于在充放电控制模块150的控制下将市电进行转换处理,并将转换处理后的电能通过发射线圈Ls1向外无线输电。
如图5所示,无线空调器300包括:接收线圈Lr1,用于接收无线充电装置100无线传输的电能;控制装置310与接收线圈Lr1电性连接,控制装置310用于对接收线圈Lr1无线接收的电能进行转换后向无线空调器300的负载供电。
需要说明的是,控制装置310中包含有用于对接收的电能进行转换处理的无线受电模块311、以及空调控制器312。无线受电模块311中可以包括第一桥式整流电路、以及受电调压电路。其中,第一桥式整流电路的输入端与接收线圈Lr1电性连接,第一桥式整流电路的输出端与受电调压电路的输入端电性连接,第一桥式整流电路用于在空调控制器312的控制下对接收线圈Lr1接收到的电能由交流变换成直流。受电调压电路,用于在空调控制器312的控制下,将第一桥式整流电路输出的直流电进行升压或者降压处理,并将处理后的电流用于对负载进行供电。
本公开中的第一桥式整流电路以及受电调压电路可以基于相关技术实现,本公开实施例不再举 例。
无线空调器300根据制冷制热原理的不同,可以分为多种类型。不同类型的无线空调器,其所对应的负载也不同。针对每种类型的无线空调器来说,控制装置310还用于对该类型的无线空调器的负载进行驱动和控制。
下面,给出无线空调器300的多种制冷制热类型,在实际实施过程时,可以采用如任意一种:
第一种类型
对于第一种类型的无线空调器300,请参考图6所示,无线空调器300还包括:第一蓄能装置330、喷射驱动装置340以及分流装置350。其中,如图1所示,第一蓄能装置330用于容置蓄能材料;而喷射驱动装置340装配于第一蓄能装置330;分流装置350通过喷射驱动装置340与第一蓄能装置330连通,其中,喷射驱动装置340向第一蓄能装置330施加作用力时,第一蓄能装置330向分流装置350喷射蓄能材料,而喷射出的蓄能材料在分流装置350分散出射以释放热能或冷能。控制装置310用于控制向分流装置350喷射蓄能材料的流量。由于第一种类型的无线空调器300不需要压缩机参与制冷制热,因此,空调器的工作过程不会产生振动和噪声,以解决了空调器的噪声问题;另一方面的,不需要压缩机利于空调器的体积缩小,提高了空调器的便携性。
第一蓄能装置330中容置的相变蓄能材料为液态,对于无线空调器300为制冷空调器,第一蓄能装置330中容置的是蓄冷相变材料,对于无线空调器300为热泵空调器,在第一蓄能装置330容置的是蓄热相变材料。蓄能装置330中容置的相变蓄能材料为反应式制热或制冷材料,具体可以是:固体(硝盐、溴化锂等)或者液态溶质(比如:氨)与水融合制冷,或者生石灰氧化放热。
在一些实施方式下,为了保存蓄能相变材料,第一蓄能装置330包括:密封罐体331和喷液管道332,在密封罐体331中灌装的是处于高压状态的蓄冷或蓄热相变蓄能材料,喷液管道332的进液口与密封罐体331对接,喷液管道332的喷液口与分流装置350对接,而喷射驱动装置340装配于喷液管道332,并可以对喷液管道332施加作用力,以从密封罐体331经喷液管道332向分流装置350喷射蓄能相变材料。
在一些实施方式下,喷射驱动装置340,包括:开度调节件341和第一电机342,开度调节件341装配于第一蓄能装置330的喷液管道332;第一电机342与开度调节件341电性连接,第一电机342的运转用于调节开度调节件341的开度,以改变喷液管道332向分流装置350喷射蓄能材料的流量。
开度调节件341可以是通过按压均匀调节开度的装置,此装置可以是行程式结构,也可以是旋钮式结构,或者其他可以通过按压实现喷液管道332开度调节的结构。而以上开度调节件341的结构均可以通过第一电机342的运转带动实现开度均匀调节。开度调节件341的开度越大,经喷液管道332向分流装置350喷射蓄能材料的流量越大,无线空调器的制冷或制热效果就越好,反之,经喷液管道332向分流装置350喷射蓄能材料的流量越小,从而实现调节制冷制热效果。
在一些实施方式下,本公开实施例中的无线空调器300还包括控制装置310,与第一电机342电性连接,通过控制装置310控制第一电机342运转,从而准确控制开度调节件341进行均匀调节开度,进而,精准控制第一蓄能装置330向分流装置350喷射蓄能材料的流量。
本公开中的第一电机342可以是单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机、以及开关磁阻电机中的任意一种电机,可以根据实际需求选择,在此不进行限制。
在一些实施方式下,如图1所示的,本公开实施例提供的无线空调器300还包括第三风机360;第三风机360与分流装置350相对设置,第三风机用于带动分流装置350所在位置的空气流动,可以使分流装置350的蓄能材料释放的冷量/热量传得更远。第三风机360向分流装置350出风,可以增快空气流经分流装置350的速度,由此,可以使分流装置350的蓄能材料释放的冷量/热量传得更远,扩大了空调作用范围。
为了对第三风机360的运转进行精准控制,控制装置310与第三风机360的第二电机电性连接,控制装置310用于控制第二电机的运转,从而控制第三风机360出风的角度和/或风量,以带动分流装置350所在位置的空气流动,以提高空调舒适性。
第三风机360的第二电机可以是单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机、开关磁阻电机中的任意一种。
如图1所示,本公开实施中的分流装置350包括多个并联的分流子管道351,每个分流子管道351均与喷液管道332的喷液口连通,各个分流子管道351之间间隔设置或者管壁接触,以尽量使蓄能材料通过分流装置分散开来,增大喷射蓄能材料释放冷能或热能的作用范围。
第二种类型
对于第二种类型的无线空调器300,参考图7所示,无线空调器300包括:热电组件370、第二蓄能装置373-A、热交换装置374以及控制装置310,其中,第二蓄能装置373-A设置于热电组件370的第一区域A;热交换装置374设置于热电组件370的第二区域B,第二蓄能装置373-A与热交换装置374之间连通有载能回路375;控制装置310与热电组件370以及载能回路375的放能驱动件376电性连接,控制装置310用于控制放能驱动件376和/或控制对热电组件370的供电,以使热电组件370产生的能量通过热交换装置374向外释放和/或蓄积至第二蓄能装置373-A。由于第二种类型的无线空调器300不需要压缩机参与制冷制热,因此,空调器的工作过程不会产生振动和噪声,以解决了空调器的噪声问题;另一方面的,不需要压缩机利于空调器的体积缩小,提高了空调器的便携性。
在实际应用时,控制装置310用于控制对热电组件370的供电,以改变热电组件370的第一区域A的制能状态以及第二区域B的制能状态,以使第一区域A以及第二区域B处于如下两种制能状态中的任意一种:①制热状态;②制冷状态。
在第二蓄能装置373-A中容置有相变材料,由于第二蓄能装置373-A与热电组件370的第一区域A连接,通过改变对热电组件370的供电电流方向,可以使第一区域A处于②制冷状态,则热电组件370的第一区域A产生冷能并传递至第二蓄能装置373-A,以在第二蓄能装置373-A的相变材料中蓄积(这一过程为无线空调器300的蓄冷运行);
通过改变对热电组件370的供电电流方向,可以使第一区域A处于①制热状态,则热电组件370的第一区域A产生热能并传递至第二蓄能装置373-A,以在第二蓄能装置373-A的相变材料中蓄积(这一过程为无线空调器300的蓄热运行)。
热交换装置374与热电组件370的第二区域B连接,通过改变对热电组件370的供电电流方向,可以使第二区域B处于②制冷状态,则:热电组件370的第二区域B产生冷能并传递至热交换装置374,以通过热交换装置374向环境释放冷能(这一过程为无线空调器300的制冷运行)。
通过改变对热电组件370的供电电流方向,可以使第二区域B处于①制热状态,则:热电组件370的第二区域B产生热能并传递至热交换装置374,以通过热交换装置374向环境释放热能(这一 过程为无线空调器300的制热运行)。
在一些实施方式下,热电组件370的第一区域A和第二区域B的制能状态可以同步控制。
在一些实施方式中,热电组件370包括:一体成型的半导体热电件371,半导体热电件371包括第一面M1和第二面M2,第一区域A和第二区域B对应为第二面M2的不同区域,从而,第二蓄能装置373-A和热交换装置374均设置于半导体热电件371的第二面M2。半导体热电件371基于通入的同一直流电进行工作,从而第一区域A和第二区域B的制能状态被同步控制。
如果向半导体热电件371通入第一方向的直流电,则半导体热电件371的第一区域A和第二区域B同处于制热状态,则无线空调器300同时进行制冷运行和蓄冷运行;如果向半导体热电件371通入第二方向(与第一方向相反)的直流电,则半导体热电件371的第一区域A和第二区域B同处于制冷状态,则无线空调器300同时进行制热运行和蓄热运行。可见,通过同步控制热电组件370的第一区域A和第二区域B的制能状态,可以使无线空调器300进行如下任意一种工作模式:
1、放能运行;
2、同步制冷运行与蓄能运行;
3、同步制冷运行与蓄冷运行。
而控制装置310与半导体热电件371电性连接,控制装置310用于控制对半导体热电件371的供电,以改变无线空调器的无线受电模块311向半导体热电件371通入直流电的电流方向,使半导体热电件371的第二面M2处于对应冷面状态或者热面状态。
如果半导体热电片371的第二面M2处于冷面状态,则热电组件370的第一区域A和第二区域B均同处于制冷状态,则第二蓄能装置373-A蓄积第一区域A产生的冷能,与此同时,热交换装置374向外释放第二区域B产生的冷能。
如果半导体热电片371的第二面M2处于热面状态,则热电组件370的第一区域A和第二区域B同处于制热状态,则第二蓄能装置373-A蓄积第一区域A产生的热能,与此同时,热交换装置374向外释放第二区域B产生的热能。
在一些实施方式下,为了提高电器使用安全性,热电组件370还包括散热装置372,散热装置372设置于半导体热电件371的第一面M1,散热装置372用于在半导体热电片371的第一面M1处于热面状态时对第一面M1进行散热,以避免第一面M1过热。
热电组件370的第一区域A和第二区域B的制能状态除同步控制之外,还可以分别控制:
参考图8所示,在一些实施方式下,为了分别控制热电组件370中第一区域A与第二区域B的制能状态。半导体热电件371包括:第一半导体热电片3711和第二半导体热电片3712,其中,第一半导体热电片3711相对于第二半导体热电片3712独立设置;其中,第二蓄能装置373-A设置于第一半导体热电片3711的第二面M2,第一区域A位于第一半导体热电片3711的第二面M2;热交换装置374设置于第二半导体热电片3712的第二面M2,第二区域B位于所述第二半导体热电片3712的第二面M2;控制装置310分别与第一半导体热电片3711和第二半导体热电片3712电性连接,控制装置310用于分别控制对第一半导体热电片3711的供电以及对第二半导体热电片3712的供电,通过分别控制对第一半导体热电片3711的供电以及对第二半导体热电片3712的供电,可以使无线空调器300进行如下任意一种工作模式,针对每种工作模式,都对应有各自的运行方式:
1、单独制冷模式,对应制冷运行方式;
2、单独制热模式,对应制热运行方式;
3、单独蓄冷模式,对应蓄冷运行方式;
4、单独蓄热模式,对应蓄热运行方式;
5、放能模式,对应放能运行方式;
6、同步制冷与蓄冷模式,对应制冷运行方式以及蓄冷运行方式;
7、同步制热与蓄热模式,对应制热运行方式与蓄热运行方式;
下面,分别对本公开实施例中无线空调器300的述每种运行方式进行描述:
蓄热运行方式:控制装置310控制向第一半导体热电片3711通入第一方向的直流电时,第一半导体热电片3711的第一面M1处于冷面状态,第一半导体热电片3711的第二面M2处于热面状态,第一半导体热电片3711产生热能并通过第二蓄能装置373-A蓄积。
制冷运行方式:向第二半导体热电片3712通入第二方向的直流电时,第二半导体热电片3712的第二面M2处于热面状态,第二半导体热电片3712的第二面M2处于冷面状态,第二半导体热电片3712产生冷能并通过热交换装置374向外释放。
蓄冷运行方式:向第一半导体热电片3711通入第二方向的直流电,第一半导体热电片3711的第一面M1处于热面状态,第一半导体热电片3711的第二面M2处于冷面状态,第一半导体热电片3711产生冷能并通过第二蓄能装置373-A蓄积。
制热运行方式:向第二半导体热电片3712通入第一方向的直流电,第二半导体热电片3712的第一面M1处于冷面状态,第二半导体热电片3712的第二面M2处于热面状态,第二半导体热电片3712产生热能并通过热交换装置374向外释放。
放能运行方式:载能回路375中的载流剂在放能驱动件376的驱动下进行循环流动,第二蓄能装置373-A中相变材料蓄积的冷能或者热能经流动的载流剂带出后,在热交换装置374中向外释放,释放后剩余的冷能或者热能随着载流剂的流动重新回到第二蓄能装置373-A中。
载能回路375包括放能管路和载能管路,其中,放能管路连接于第二蓄能装置373-A与热交换装置374之间,放能驱动件376设置于放能管路,在放能驱动件376的驱动下,第二蓄能装置373-A中蓄积的冷能或热能经载流剂带出后,经放能管路输送至热交换装置374处进行释放。其中,载能管路连接于第二蓄能装置373-A与热交换装置374之间,热交换装置374释放冷能或热能之后剩余的能量,经载冷剂在载能管路中回传至第二蓄能装置373-A,以在第二蓄能装置373-A中蓄积。回传至第二蓄能装置373-A中的冷能或者热能,可以是来自于第二半导体热电片3712所产生并由热交换装置374释放之后剩余的,也可以是第二蓄能装置373-A中能量通过放能管路输送至热交换装置374处进行释放之后剩余的能量,从而,可以充分利用热电组件370制造的冷热能,避免了资源浪费。
在实际应用时,在放能管路设置的放能驱动件376可以为载流剂泵,使得冷量/热量随载流剂流经热交换装置374。其中,载流剂泵的驱动电机,可以是:单相异步电机、感应电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机、开关磁阻电机中的任意一种。
在一些实施方式下,散热装置372至少包括散热器3721,与半导体热电件371的第一面M1连接,用于对第一面M1处于热面状态时进行散热。在此基础上,为了增加散热效果,散热装置372还包括与散热器3721相对设置的散热风机3722,控制装置310与散热风机3722电性连接,用于控制散热风机3722运转,以带动散热器3721所在位置的空气流动,使得空气流经散热器3721,从而增加散 热效果。
在一些实施方式下,散热风机3722可以单独采用第一风机电机进行驱动,与上述实施方式不同的是,如果散热风机3722为对旋风机、需要采用第一风机电机和第二风机电机一起进行驱动。其中,第一风机电机、第二风机电机均可以是单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机、开关磁阻电机中的任意一种。
如果半导体热电件371包括相互独立的第一半导体热电片3711和第二半导体热电片3712,则散热器3721包括第一散热件3721-A和第二散热件3721-B,一一对应的设置于第一半导体热电片3711的第一面M1和第二半导体热电片3712的第一面M1。
在一些实施方式下,热交换装置374至少包括:换热器3741,连接于半导体热电件371的第二面M2,用于捕获半导体热电件371产生的冷能或者热能并向外释放。在此基础上,为了使得空气流经换热器3741,以增加换热效果,热交换装置374还包括换热风机3742,与热交换装置374相对设置;控制装置310与换热风机3742电性连接,控制装置310控制换热风机3742运转,以带动换热器3741所在位置的空气流动,使得空气流经换热器3741。
在一些实施方式下,换热风机3742可以单独采用第三风机电机进行驱动,与上述实施方式不同的是,如果换热风机3742对旋风机、则需要采用第三风机电机和第四风机电机进行驱动。
第三风机电机、第四风机电机均可以是单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机、开关磁阻电机中的任意一种。
第三种类型
对于第三种类型的无线空调器300,参考图8所示,无线空调器300还包括:压缩机377、冷凝器378、蒸发器379以及第三蓄能装置373-B;其中,压缩机377与第三蓄能装置373-B连通,第三蓄能装置373-B通过载能回路与蒸发器379连通,冷凝器378与蒸发器379连通,载能回路中设置有载流剂泵380,压缩机377和载流剂泵380分别与控制装置310电性连接,控制装置310用于控制压缩机377和载流剂泵380的启停。
下面,分别对无线空调器300为制冷空调器或冷暖空调器为例来进行说明。
1、无线空调器为制冷空调器。
如图8所示,压缩机377与第三蓄能装置373-B连通,第三蓄能装置373-B通过载能回路375与蒸发器379连通,冷凝器378与蒸发器379连通,载能回路375中设置有载流剂泵380,压缩机377和载流剂泵380分别与控制装置310电性连接,用于控制压缩机377和载流剂泵380的启停。
第三蓄能装置373-B中设置蓄冷相变材料例如可以是无机PCM、有机PCM和复合PCM等,可以对第三蓄能装置373-B中的相变材料进行蓄冷。
在一些实施方式中,载能回路375设置有载流剂泵380,载流剂泵380设置在第三蓄能装置373-B和蒸发器379之间,通过载流剂泵380控制第三蓄能装置373-B的蓄冷通过载能回路375传输至蒸发器379,再回传至第三蓄能装置373-B。此时,第三蓄能装置373-B中设置有蓄冷相变材料。
控制装置310可以控制载流剂泵380启动,而载流剂泵380启动之后,会带动第三蓄能装置373-B的蓄冷与载流剂进行热交换,使得携带了蓄冷的载流剂通过载能回路375传输至蒸发器379,再回传至蓄能装置37,通过载流剂泵380可以使得第三蓄能装置373-B的蓄冷通过载流剂流经蒸发器379,与外部空气进行换热,从而实现放冷。
在一些实施方式中,压缩机377通过蓄能回路与第三蓄能装置373-B连通,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在第三蓄能装置373-B和冷凝器378之间,如此,使得冷媒从压缩机377流出后,依次通过蓄能回路的冷凝器378、第一电磁阀385和第三蓄能装置373-B,再回传至压缩机377。其中,冷媒例如可以是R12、R134a、R407c、R410a、R290和R3等。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,且控制装置310控制第一电磁阀385导通后,使得冷媒通过蓄能回路的冷凝器378之后,流经第一电磁阀385传输至第三蓄能装置373-B,对第三蓄能装置373-B进行蓄冷,以及冷媒流经第三蓄能装置373-B之后,再回传至压缩机377中。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,如此,使得冷媒从压缩机377流出后,依次流经冷冻回路的冷凝器378、第二电磁阀386和蒸发器379,再回传至压缩机377。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,在流经冷凝器378,且控制装置310控制第二电磁阀386导通后,使得冷媒流经冷凝器378之后流经第二电磁阀386再传输至蒸发器379,冷媒流经蒸发器379之后,再回传至压缩机377。
在另一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置有一个节流部件381,此时,该节流部件381设置在冷凝器378和第三蓄能装置373-B之间;以及在冷冻回路设置一个节流部件381,此时,该节流部件381设置在冷凝器378和蒸发器379之间,以通过节流部件381实现节流降压的目的。
在另一些实施方式中,无线空调器300还包括第一风机382,与蒸发器379相对设置,用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,冷媒从压缩机377中流出后,依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
冷媒从压缩机377中流出后,依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和第三蓄能装置373-B,再回到压缩机377,其中,冷媒在流经冷凝器378时,不启动第一风机382,而是直接将冷媒通过节流部件381和第一电磁阀385输入到第三蓄能装置373-B中,以对第三蓄能装置373-B中的相变材料进行蓄冷,也可以启动第一风机382,使得制冷的同时对第三蓄能装置373-B中的相变材料进行蓄冷。
第一风机382和第二风机383的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种,以及,压缩机377的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和 开关磁阻电机等电机中的任意一种,载流剂泵380的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种。
在一些实施方式中,如图1和所示,第一风机382采用第一风机电机进行驱动,第二风机383采用第二风机电机进行驱动,且第一风机电机和第二风机电机均与控制装置310电性连接,通过控制装置310对第一风机电机和第二风机电机进行控制,可以控制第一风机电机和第二风机电机的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。以及,载流剂泵380采用载流剂泵电机进行驱动,载流剂泵电机与控制装置310电性连接,通过控制装置310对载流剂泵电机进行控制,控制装置310可以控制载流剂泵电机的启停以及工作功率,进而实现对载流剂泵380的控制,以使得载流剂泵380中的载流剂与第三蓄能装置373-B的相变材料进行热交换,使得热交换后的载流剂流经蒸发器379后回传至第三蓄能装置373-B。
第一风机382和第二风机383可以均为对旋风机等。
本公开提供的空调器有多种运行方式。无线空调器300的第一种运行方式为制冷运行方式,具体包括:
无线空调器300的第一种运行方式为制冷运行方式,具体包括:接收线圈Lr1接收到无线传输的电能后,经无线受电模块311调压后,转换成需求电压并提供给压缩机377、第一风机382电机、第二风机383电机和第二电磁阀386进行供电,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热换热,实现制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
第二种运行方式具体为蓄冷运行方式,具体包括:接收线圈Lr1接收到无线传输的电能后,经无线受电模块311调压后,转换成需求电压并提供给压缩机377、第一风机382电机、第二风机383电机和第一电磁阀385进行供电。如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和第三蓄能装置373-B,再回到压缩机377。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以及再通过换热后的冷媒对第三蓄能装置373-B中的相变材料进行蓄冷,从而实现对第三蓄能装置373-B进行蓄冷的作用。也可以不启动第二风机383,直接将流经冷凝器378的冷媒通过节流部件381和第一电磁阀385传输至第三蓄能装置373-B,以对第三蓄能装置373-B进行蓄冷。
第三种运行方式具体为制冷和蓄冷同时运行方式,包括:接收线圈Lr1接收到无线传输的电能后,经无线受电模块311调压后,转换成需求电压并提供给压缩机377、第一风机382电机、第二风机383电机、第一电磁阀385和第二电磁阀386。如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385处于导通状态,从而使得冷媒依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和第三蓄能装置373-B,再回到压缩机377,从而实现对第三蓄能装置373-B 进行蓄冷的作用。以及,由于第二电磁阀386处于导通状态,从而使得从压缩机377流出的冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,以起到制冷作用,如此,能够实现蓄冷和制冷同时运行。
第四种运行方式具体为放冷运行方式,具体包括:接收线圈Lr1接收到无线传输的电能后,经无线受电模块311调压后,转换成需求电压并提供给载流剂泵380和第一风机382电机进行供电。如此,在载流剂泵380工作时,会带动第三蓄能装置373-B的相变材料流经载能管路蒸发器379,再回传至第三蓄能装置373-B,其中,相变材料在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对相变材料进行换热,以起到放冷作用。
本公开实施例提供的一个或者多个技术方案中,由于无线空调器300中设置有第三蓄能装置373-B,在第三蓄能装置373-B的相变材料蓄冷之后,可以通过载流剂泵380带动第三蓄能装置373-B的相变材料流经载能管路蒸发器379,再回传至第三蓄能装置373-B,以实现放冷作用,还可以实现制冷和蓄冷同时运行,使得无线空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
2、无线空调器为冷暖空调器。
在一些实施方式中,在空调器为冷暖空调器时,如图9所示,压缩机377与第三蓄能装置373-B连通,第三蓄能装置373-B通过载能回路375与蒸发器379连通,冷凝器378与蒸发器379连通,载能回路375中设置有载流剂泵380,压缩机377和载流剂泵380分别与控制装置310电性连接,用于控制压缩机377和载流剂泵380的启停。
第三蓄能装置373-B中设置相变材料例如可以是无机PCM、有机PCM和复合PCM等,可以对第三蓄能装置373-B中的相变材料进行蓄热或蓄冷,本说明书不作具体限制。
在一些实施方式中无线空调器300还包括四通阀389,四通阀389分别与压缩机377、冷凝器378、蒸发器379和第三蓄能装置373-B连通,且四通阀389与控制装置310电性连接。
在一些实施方式中,载能回路375设置有载流剂泵380,载流剂泵380设置在第三蓄能装置373-B和蒸发器379之间,通过载流剂泵380控制第三蓄能装置373-B的能量通过载能回路375传输至蒸发器379,再回传至第三蓄能装置373-B。此时,第三蓄能装置373-B中可以设置有蓄冷相变材料或蓄热相变材料。
在一些实施方式中控制装置310可以控制载流剂泵380启动,而载流剂泵380启动之后,会带动第三蓄能装置373-B的蓄冷与载流剂进行热交换,使得携带了蓄冷的载流剂通过载能回路375传输至蒸发器379,再回传至第三蓄能装置373-B,通过载流剂泵380可以使得第三蓄能装置373-B的蓄冷通过载流剂流经蒸发器379,与外部空气进行换热,从而实现制冷,从而实现放冷或放热。
在一些实施方式中,压缩机377通过蓄能回路与第三蓄能装置373-B连通,其中,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在第三蓄能装置373-B和冷凝器378之间,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第一电磁阀385和第三蓄能装置373-B,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄冷。
在另一实施例中,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷媒从压缩机377流出后,依次流经四通阀389、第三蓄能装置373-B、第一电磁阀385和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄热。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。
在另一实施例中,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。
在另一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置一个节流部件381,此时节流部件381设置在冷凝器378和第一电磁阀385之间,以及冷冻回路设置一个节流部件381,此时,节流部件381设置在冷凝器378和第二电磁阀386之间,以通过节流部件381实现节流降压的目的。
在另一些实施方式中,无线空调器300还包括第一风机382,与蒸发器379相对设置,用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热;以及在散热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行换热,以起到制冷或除湿作用。
以及,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
在另一实施例中,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和第三蓄能装置373-B,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄冷。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热,以及再通过散热后的冷媒对第三蓄能装置373-B中的相变材料进行蓄冷。
在另一实施例中,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷媒从压缩机377流出后,依次流经四通阀389、第三蓄能装置373-B、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄热。其中,从压缩机377流出的冷媒对第三蓄能装置373-B中的相变材料进行蓄热,对相变材料蓄热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行加热,再通过四通阀389回传至 压缩机377。
在一些实施方式中,如图9所示,第一风机382采用第一风机电机进行驱动,第二风机383采用第二风机电机进行驱动,且第一风机电机和第二风机电机均与控制装置310电性连接,通过控制装置310对第一风机电机和第二风机电机进行控制,可以控制第一风机电机3821和第二风机电机的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。以及,载流剂泵380采用载流剂泵电机进行驱动,载流剂泵电机与控制装置310电性连接,通过控制装置310对载流剂泵电机进行控制,控制装置310可以控制载流剂泵电机的启停以及工作功率。第一风机30和第二风机31可以均为对旋风机等。
第一风机382和第二风机383可以均为对旋风机等。
本公开提供的无线空调器300有多种运行方式。无线空调器300的第一种运行方式为制冷或制热运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线受电模块311调压后,转换成需求电压并提供给压缩机377、第一风机382、第二风机383和第二电磁阀386进行供电,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。当然,还需要对四通阀389进行供电,以使得四通阀389的通道的通断。
如此,在第一种运行方式为制冷运行方式时,此时,压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热;以及在散热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行换热,以起到制冷作用。
以及,在第一种运行方式具体为制热运行方式时,此时,压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
第二种运行方式具体为蓄冷或蓄热运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压并提供给压缩机377、第一风机382、第二风机383和第一电磁阀进行供电。
如此,在第二种运行方式为蓄冷运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和第三蓄能装置373-B,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄冷。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热,以及再通过散热后的冷媒对第三蓄能装置373-B中的相变材料进行蓄冷。
以及,在第二种运行方式为蓄热运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情 况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、第三蓄能装置373-B、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄热。其中,从压缩机377流出的冷媒对第三蓄能装置373-B中的相变材料进行蓄热,对相变材料蓄热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行加热,再通过四通阀389回传至压缩机377。
第三种运行方式具体为制冷和蓄冷同时运行方式或制热和蓄热同时运行方式,包括:接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压并提供给压缩机377、第一风机382、第二风机383、第一电磁阀385和第二电磁阀386进行供电。
如此,在第三种运行方式具体为制冷和蓄冷同时运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通,从而使得冷媒依次流经冷冻回路的四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,从而起到制冷作用。以及,由于第一电磁阀385导通,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和第三蓄能装置373-B,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄冷。如此,能够实现制冷和蓄冷同时运行。
以及,在第三种运行方式具体为制热和蓄热同时运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。以及,由于第一电磁阀385导通使得冷媒依次流经蓄能回路的依次流经四通阀389、第三蓄能装置373-B、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第三蓄能装置373-B进行蓄热。如此,能够实现制热和蓄热同时运行。
第四种运行方式具体为放冷运行方式或放热运行模式,具体包括:接收线圈Lr1接收到无线传输过来的电磁能后,经无线接收模块311调压后,转换成需求电压提供给载流剂泵380和第一风机382进行供电。
如此,在第四种运行方式为放冷运行模式时,由于载流剂泵380在供电情况下正常工作,会带动第三蓄能装置373-B的能量与载流剂进行热交换,使得携带了蓄能的载流剂通过载能回路375传输至蒸发器379,再回传至第三蓄能装置373-B,其中,通过载流剂泵380可以使得第三蓄能装置373-B的能量通过载流剂流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对相变材料进行换热,以起到放冷作用或放热作用。在一些实施方式中,若第三蓄能装置373-B中的相变材料为蓄冷相变材料,则起到放冷作用;若第三蓄能装置373-B中的相变材料为蓄热相变材料,则起到放热作用。
本公开实施例提供的一个或者多个技术方案中,由于无线空调器300中设置有第三蓄能装置373-B,在第三蓄能装置373-B的相变材料蓄能之后,可以通过载流剂泵380的载流剂与第三蓄能装置373-B的相变材料进行热交换,使得热交换后的载流剂通过载能回路375传输至蒸发器379,以实现放冷作用或放热作用,还可以实现制冷和蓄冷同时运行,以及制热和蓄热同时运行,当然也可以单独实现制冷或制热,使得无线空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
第四种类型
对于第四种类型的无线空调器300,包括:压缩机377、冷凝器378、蒸发器379、第四蓄能装 置373-C和控制装置310;其中,压缩机377与第四蓄能装置373-C连通,第四蓄能装置373-C通过放能电路依次与蒸发器379、压缩机377和冷凝器378连通,冷凝器378与蒸发器379连通,放能电路中设置有三通阀391,压缩机377和三通阀391分别与控制装置310电性连接,用于控制压缩机377和三通阀391的运行。
在一些实施方式中,无线空调器300可以为制冷空调器或制暖空调器或冷暖空调器,且空调器可以是无线空调器或者有线空调器,本公开不作具体限制。下面,分别对空调器为制冷空调器以及冷暖空调器为例来进行说明。
1、空调器为制冷空调器。
如图10所示,压缩机377与第四蓄能装置373-C连通,第四蓄能装置373-C通过载能回路375与蒸发器379、压缩机377和冷凝器378连通,冷凝器378与蒸发器379连通,载能回路375中设置有三通阀391,压缩机377和三通阀391分别与控制装置310电性连接,用于控制压缩机377和三通阀391的运行。
控制装置310可以控制压缩机377的运行参数以及控制住三通阀391的每个通道的通断等。
第四蓄能装置373-C中设置蓄冷相变材料例如可以是无机PCM、有机PCM和复合PCM等,从而可以对第四蓄能装置373-C中的相变材料进行蓄冷。
在一些实施方式中,载能回路375设置有三通阀391,三通阀391设置在第四蓄能装置373-C和蒸发器379之间,通过三通阀391控制第四蓄能装置373-C的能量依次流经载能回路375的蒸发器379、压缩机377和冷凝器378之后,再回传至第四蓄能装置373-C。此时,第四蓄能装置373-C设置有蓄冷相变材料。
在一些实施方式中,控制装置310可以控制三通阀391的第一通道和第三通道导通,而第二通道断开,此时,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391流经第四蓄能装置373-C,使得第四蓄能装置373-C中的冷量会流入冷媒中,再依次流经放能管路的三通阀391、蒸发器379,压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到第四蓄能装置373-C;使得携带第四蓄能装置373-C中的相变材料的冷量的冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,实现放冷作用,由于此时是通过第四蓄能装置373-C和压缩机377的冷媒共同制冷,其制冷效率更高,适合在高温或高冷量输出的情况下使用。
在一些实施方式中,压缩机377通过蓄能回路与第四蓄能装置373-C连通,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在第四蓄能装置373-C和冷凝器378之间,如此,使得冷媒从压缩机377流出后,依次通过蓄能回路的冷凝器378、第一电磁阀385、第四蓄能装置373-C和三通阀391,再回传至压缩机377。其中,冷媒例如可以是R12、R134a、R407c、R410a、R290和R3等。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,且控制装置310控制第一电磁阀385导通后,使得冷媒通过蓄能回路的冷凝器378之后,流经第一电磁阀385传输至第四蓄能装置373-C,对第四蓄能装置373-C进行蓄冷,此时控制三通阀391的第一通道和第二通道导通,使得流经第四蓄能装置373-C的冷媒依次通过第一通道和第二通道,再回传至压缩机377中。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,如此,使得冷媒从压缩机377流出 后,依次流经冷冻回路的冷凝器378、第二电磁阀386和蒸发器379,再回传至压缩机377。
在一些实施方式中,控制装置310控制压缩机377启动之后,冷媒从压缩机377从流出后,在流经冷凝器378,且控制装置310控制第二电磁阀386导通后,使得冷媒流经冷凝器378之后流经第二电磁阀386再传输至蒸发器379,冷媒流经蒸发器379之后,再回传至压缩机377。
在另一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置有一个节流部件381,此时,该节流部件381设置在冷凝器378和第四蓄能装置373-C之间;以及在冷冻回路设置一个节流部件381,此时,该节流部件381设置在冷凝器378和蒸发器379之间,以通过节流部件381实现节流降压的目的。
在另一些实施方式中,无线空调器300还包括第一风机382,与蒸发器379相对设置,用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,冷媒从压缩机377中流出后,依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以启动制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
冷媒从压缩机377中流出后,依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385和第四蓄能装置373-C,再通过三通阀391中的第一通道和第二通道,再回传到压缩机377,其中,冷媒在流经冷凝器378时,不启动第一风机382,而是直接将冷媒通过节流部件381和第一电磁阀385输入到第四蓄能装置373-C中,以对第四蓄能装置373-C中的相变材料进行蓄冷;也可以启动第一风机382,使得制冷的同时对第四蓄能装置373-C中的相变材料进行蓄冷。
以及,在三通阀391的第一通道和第三通道导通时,第四蓄能装置373-C中的冷量可以通过冷媒带出后,依次流经载能回路375的三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385之后,再回传至第四蓄能装置373-C。
第一风机382和第二风机383的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种,以及,压缩机377的驱动电机可以采用三相无刷直流电机单相异步电机、感应电机、有刷直流电机、单相无刷直流电机、三相无刷直流电机、三相永磁同步电机、同步磁阻电机和开关磁阻电机等电机中的任意一种。三通阀391电性连接控制装置310,以通过控制装置310控制三通阀391的通道的通断。
在一些实施方式中,第一风机382采用第一风机电机进行驱动,第二风机383采用第二风机电机进行驱动,且第一风机电机和第二风机电机均与控制装置310电性连接,通过控制装置310对第一风机电机3821和第二风机电机进行控制,可以控制第一风机电机和第二风机电机的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。
第一风机382和第二风机383可以均为对旋风机等。
本公开提供的无线空调器300有多种运行方式。无线空调器300的第一种运行方式为制冷运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线受电模块311调压后,转换成需求电压提供给压缩机377、第一风机382、第二风机383和第二电磁阀386进行供电,如此,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。由此可知,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,实现制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
第二种运行方式具体为蓄冷运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压提供给压缩机377、第一风机382、第二风机383和第一电磁阀385开关进行供电。
如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的冷凝器378、节流部件381、第一电磁阀385、第四蓄能装置373-C和三通阀391,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以及再通过换热后的冷媒对第四蓄能装置373-C中的相变材料进行蓄冷,从而实现对第四蓄能装置373-C进行蓄冷的作用;也可以不启动第二风机383,直接将流经冷凝器378的冷媒通过节流部件381和第一电磁阀385传输至第四蓄能装置373-C,以对第四蓄能装置373-C进行蓄冷。
第三种运行方式具体为制冷和蓄冷同时运行方式,包括:无线接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压提供给压缩机377、第一风机382、第二风机383、第一电磁阀385和第二电磁阀386进行供电。
如此,在压缩机377正常工作时,使得冷媒从压缩机377从流出后,由于第一电磁阀385处于导通状态,从而使得冷媒依次流经蓄能回路的四通阀389、冷凝器378、节流部件381、第一电磁阀385、第四蓄能装置373-C和三通阀391,再回到压缩机377,以实现对第四蓄能装置373-C进行蓄冷。以及,由于第二电磁阀386处于导通状态,从而使得从压缩机377流出的冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,从实现制冷作用,进而能够实现蓄冷和制冷同时运行。
第四种运行方式具体为放冷运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压提供给三通阀391和第一风机382进行供电。
如此,在三通阀391的第一通道和第三通道导通时,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391进入到第四蓄能装置373-C,使得第四蓄能装置373-C中的冷量会流入冷媒中,再依次流经放能管路的三通阀391、蒸发器379,压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到第四蓄能装置373-C,其中,在携带第四蓄能装置373-C中的相变材料的冷量的冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,实现放冷作用,由于此时是通过第四蓄能装置373-C和压缩机377的冷媒共同制冷,其制冷效率更高,适合在高温或高冷量输出的情况下使用。
本公开实施例提供的一个或者多个技术方案中,由于无线空调器300中设置有第四蓄能装置 373-C,在第四蓄能装置373-C的相变材料蓄冷之后,可以启动压缩机377,使得压缩机377中的冷媒通过三通阀391进入到第四蓄能装置373-C中,从而使得冷媒携带第四蓄能装置373-C中的蓄冷,再依次流经放能管路的三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到第四蓄能装置373-C,以实现放冷作用,适合在高温或高冷量输出的情况下使用;还可以实现制冷和蓄冷同时运行,使得无线空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
2、空调器为冷暖空调器。
如图11所示,压缩机377与第四蓄能装置373-C连通,第四蓄能装置373-C通过载能回路375与蒸发器379连通,冷凝器378与蒸发器379连通,载能回路375中设置有三通阀391,压缩机377和三通阀391分别与控制装置310电性连接,用于控制压缩机377和三通阀391的运行。
控制装置310在14可以控制压缩机377的运行参数以及控制住三通阀391的每个通道的通断等。
第四蓄能装置373-C中设置相变材料例如可以是无机PCM、有机PCM和复合PCM等,可以对第四蓄能装置373-C中的相变材料进行蓄热或蓄冷,本公开不作具体限制。
在一些实施方式中,无线空调器300还包括四通阀389,四通阀389分别与压缩机377、冷凝器378、蒸发器379和第四蓄能装置373-C连通,且四通阀389与控制装置310电性连接。
在一些实施方式中,载能回路375设置有三通阀391,三通阀391设置在第四蓄能装置373-C和蒸发器379之间,通过三通阀391控制第四蓄能装置373-C的能量依次流经载能回路375的蒸发器379、四通阀389、压缩机377和冷凝器378之后,再回传至第四蓄能装置373-C。此时,第四蓄能装置373-C中可以设置蓄冷相变材料或蓄热相变材料。
在一些实施方式中,控制装置310可以控制三通阀391的第一通道和第三通道导通,而第二通道断开,此时,会带动第四蓄能装置373-C的相变材料通过第一通道和第三通道传输至蒸发器379,再流经载能回路375的四通阀389、压缩机377和冷凝器378之后,再回传至第四蓄能装置373-C,通过三通阀391可以使得第四蓄能装置373-C的相变材料流经蒸发器379,与外部空气进行换热,从而实现放冷。
在一些实施方式中,压缩机377通过蓄能回路与第四蓄能装置373-C连通,其中,蓄能回路设置有第一电磁阀385,第一电磁阀385设置在第四蓄能装置373-C和冷凝器378之间,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第一电磁阀385、第四蓄能装置373-C和三通阀391,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄冷。
在另一些实施例中,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷媒从压缩机377流出后,依次流经四通阀389、三通阀391、第四蓄能装置373-C、第一电磁阀385和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄热。
在一些实施方式中,冷凝器378通过冷冻回路与蒸发器379连通,其中,冷冻回路设置有第二电磁阀386,第二电磁阀386设置在冷凝器378和蒸发器379之间,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。
在另一些实施方式中,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷 媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。
在另一些实施方式中,蓄能回路和冷冻回路均包括共有管路387,共有管路387设置有节流部件381。当然,蓄能回路和冷冻回路也可以是各自独立的回路,即未包含共有管路387,如此,可以在蓄能回路设置一个节流部件381,此时节流部件381设置在冷凝器378和第一电磁阀385之间,以及冷冻回路设置一个节流部件381,此时,节流部件381设置在冷凝器378和第二电磁阀386之间,以通过节流部件381实现节流降压的目的。
在另一些实施方式中,无线空调器300还包括第一风机382,与蒸发器379相对设置,用于带动蒸发器379所在位置的空气流动;第二风机383,与冷凝器378相对设置,用于带动冷凝器378所在位置的空气流动,其中,控制装置310分别与第一风机382和第二风机383电性连接,用于实现对第一风机382和第二风机383的控制,例如可以控制第一风机382的档位和风速等,也可以控制第二风机383的档位和风速等。
此时,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再通过四通阀389回传至压缩机377,从而实现制冷或除湿。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,实现制冷或除湿作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散。
以及,在四通阀389处于第二状态(此时无线空调器300处于制热模式),冷媒从压缩机377流出后,依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
在另一实施例中,在四通阀389处于第一状态(此时无线空调器300处于制冷模式或除湿模式),冷媒从压缩机377流出后,依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385、第四蓄能装置373-C和三通阀391,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄冷。
在另一实施例中,在四通阀389处于第二状态(此时无线空调器300处于制热模式),此时三通阀391的第一通道和第二通道导通,使得冷媒从压缩机377流出后,依次流经四通阀389、三通阀391、第四蓄能装置373-C、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄热。
第一风机382和第二风机383的驱动电机也可以参考上述第一风机382和第二风机383的驱动电机的具体叙述,为了说明书的简洁,在此就不再赘述了。
在一些实施方式中,如图5和图6所示,第一风机382采用第一风机电机3821进行驱动,第二风机383采用第二风机电机3831进行驱动,且第一风机电机3821和第二风机电机3831均与控制装置310电性连接,通过控制装置310对第一风机电机3821和第二风机电机3831进行控制,可以控制第一风机电机3821和第二风机电机3831的启停以及工作功率,进而实现对第一风机382和第二风机383的档位和转速进行控制。
第一风机382和第二风机383可以均为对旋风机等。
本公开提供的无线空调器300有多种运行方式。无线空调器300的第一种运行方式为制冷或制热运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线受电模块311调压后,转换成需求电压提供给压缩机377、第一风机382、第二风机383和第二电磁阀386进行供电,如此,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。
如此,在第一种运行方式为制冷运行方式时,此时,使得第一风机382、第二风机383和压缩机377在供电的情况下进行工作,且第二电磁阀386在供电的情况下进行导通。由此可知,在压缩机377正常工作且四通阀389处于第一状态时,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,实现制冷作用;以及在换热后的冷媒流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行散热。
以及,在第一种运行方式具体为制热运行方式时,此时,压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通而第一电磁阀385未供电处于断开情况下,从而使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377。其中,冷媒在流经蒸发器379时,通过第一风机382使得空气流经蒸发器379,对冷媒进行加热;以及在加热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行换热,以起到制热作用。
第二种运行方式具体为蓄冷或蓄热运行方式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压提供给压缩机377、第一风机382、第二风机383和第一电磁阀385进行供电。
如此,在第二种运行方式为蓄冷运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385和第四蓄能装置373-C,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄冷。其中,冷媒在流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行散热,以及再通过散热后的冷媒对第四蓄能装置373-C中的相变材料进行蓄冷。
以及,在第二种运行方式为蓄热运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,以及三通阀391的第一通道和第二通道导通,如此,使得冷媒从压缩机377从流出后,由于第一电磁阀385导通而第二电磁阀386未供电处于断开情况下,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、三通阀391、第四蓄能装置373-C、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄热。其中,从压缩机377流出的冷媒对第四蓄能装置373-C中的相变材料进行蓄热,对相变材料蓄热后的冷媒流经冷凝器378时,通过第二风机383使得空气流经冷凝器378,对冷媒进行加热,再通过四通阀389回传至压缩机377。
第三种运行方式具体为制冷和蓄冷同时运行方式或制热和蓄热同时运行方式,包括:无线接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压提供给压缩机 377、第一风机382、第二风机383、第一电磁阀385和第二电磁阀386进行供电。
如此,在第三种运行方式具体为制冷和蓄冷同时运行方式时,此时压缩机377正常工作且四通阀389处于第一状态,使得冷媒从压缩机377从流出后,由于第二电磁阀386导通,从而使得冷媒依次流经冷冻回路的四通阀389、冷凝器378、节流部件381、第二电磁阀386和蒸发器379,再回到压缩机377,从而起到制冷作用。以及,由于第一电磁阀385导通,从而使得冷媒依次流经蓄能回路的依次流经四通阀389、冷凝器378、节流部件381、第一电磁阀385、第四蓄能装置373-C和三通阀391,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄冷;如此,能够实现制冷和蓄冷同时运行。
以及,在第三种运行方式具体为制热和蓄热同时运行方式时,此时压缩机377正常工作且四通阀389处于第二状态,使得冷媒从压缩机377流出后,由于第二电磁阀386导通使得冷媒依次流经冷冻回路的四通阀389、蒸发器379、第二电磁阀386、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现制热功能。以及,由于第一电磁阀385导通使得冷媒依次流经蓄能回路的依次流经四通阀389、三通阀391、第四蓄能装置373-C、第一电磁阀385、节流部件381和冷凝器378,再通过四通阀389回传至压缩机377,从而实现对第四蓄能装置373-C进行蓄热。
第四种运行方式具体为放冷运行方式或放热运行模式,具体包括:接收线圈Lr1接收到无线传输过来的电能后,经无线接收模块311调压后,转换成需求电压提供给三通阀391、第一风机382进行供电。
如此,在第四种运行方式为放冷运行模式时,控制三通阀391的第一通道、第二通道和第三通道导通,此时,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391的第二通道和第一通道流经第四蓄能装置373-C,从而使得第四蓄能装置373-C中的冷量输入到冷媒中,再依次流经三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385之后,再回传至第四蓄能装置373-C,从而在压缩机377和第四蓄能装置373-C的共同作用下进行放冷。
如此,在第四种运行方式为放热运行模式时,该模式通常用于对冷凝器378进行化霜操作,且在该模式下节流部件381的开度达到最大,使节流作用失效,控制三通阀391的第一通道和第二通道导通,而第三通道断开,此时,通过启动压缩机377,通过启动压缩机377,使得压缩机377的冷媒通过三通阀391流经第四蓄能装置373-C,从而使得第四蓄能装置373-C中的热量输入到冷媒中,再依次流经第一电磁阀385、节流部件381和冷凝器378之后,再通过四通阀389回传至第四蓄能装置373-C,从而在压缩机377和第四蓄能装置373-C的共同作用下进行制热。
本公开实施例提供的一个或者多个技术方案中,由于无线空调器300中设置有第四蓄能装置373-C,在第四蓄能装置373-C的相变材料蓄能之后,可以启动压缩机377,使得压缩机377中的冷媒通过三通阀391进入到第四蓄能装置373-C中,从而使得冷媒携带第四蓄能装置373-C中的蓄冷,再依次流经放能管路的三通阀391、蒸发器379、压缩机377、冷凝器378、节流部件381和第一电磁阀385,再回到第四蓄能装置373-C,以实现放冷作用或放热作用,还可以实现制冷和蓄冷同时运行,以及制热和蓄热同时运行,当然也可以单独实现制冷或制热,使得无线空调器300具有更多的运行方式,方便用户选择,使得用户的体验更好。
如图2所示的空调机组,储能模块130设置在无线空调器300中,储能模块130中包括第二电 池包320,在无线空调器300与无线充电装置100之间建立通讯连接的状态下,无线空调器300用于接收无线充电装置100无线传输的电能对储能模块130中的第二电池包320充电,和/或对无线空调器300的负载进行供电。
本公开中的空调机组,无线充电装置100与无线空调器300之间存在多种使用形态。举例来讲,在无线充电装置100接入市电时,无线充电装置100能够对无线空调器300进行无线供电;在无线充电装置100未接入市电时,无线空调器300能够通过第二电池包320释放电能,以向无线空调器300进行无线供电。
如图12所示,为本公开提供的一种无线充电装置的示意图,无线充电装置100可以包括输入电源接口110、无线发射控制板170、发射线圈Ls1,输入电源接口110与发射线圈Ls1通过无线发射控制板170相连。
输入电源接口110用于接入电网,输入电源接口110可以用于接入220V市电,输入电源接口110在接入市电状态下向无线发射控制板170传输220V的市电电能。当然,输入电源接口110也可以接入其他的交流电源。
无线发射控制板170,为一种电子电路板,无线发射控制板170的具体电路结构可以根据实际需要进行设定,可以采用串联-串联(S-S)、串联-并联(S-P)、并联-串联(P-S)、并联-并联P-P、LCC、CLC等任意一种变换电路拓扑。在一个实施例中,无线发射控制板170可以包括整流模块、无线发射模块、MCU(Microcontroller Unit,微控制单元)控制单元各回路,能够实现交流-直流变换、直流-交流变换功能,将输入电源接口110输入的电能转换成电磁能并通过发射线圈Ls1向外传输供电。
无线发射控制板170上还可以设置有通信模块,通信模块可以是蓝牙模块、信号载波模块、红外收发模块中的一种或者多种。通过通信模块,无线发射控制板170可以获取无线空调器300的状态,例如获取无线空调器300的设备状态、第二电池包状态等。在一些实施方式中,第二电池包状态可以包括但不限于待充电状态、饱和状态、可放电状态;设备状态可以包括但不限于待受电状态、停止受电状态。
待受电状态,可以为无线空调器300需要接收电能时所对应的状态。例如,用户可以通过无线空调器300的控制面板、遥控器或语音控制等方式向无线空调器300发送开机指令,无线空调器300接收到开机指令后,需要通过接收电能以进行开机,因此,在无线空调器300接收到开机指令时,无线空调器300的设备状态可以为待受电状态。或者,在无线空调器300的运行过程中,无线空调器也需要持续接收电能以实现运行,因此,在无线空调器300处于运行过程中时,无线空调器的设备状态为待受电状态。
相应的,停止受电状态,可以为无线空调器300不需要工作时所对应的状态。例如,用户可以通过无线空调器300的控制面板、遥控器或语音控制等方式向无线空调器300发送关机指令,当无线空调器300接收到关机指令后,根据关机指令完成关机,此时,不需要再接收电能,无线空调器300的设备状态调整为停止受电状态。或者,无线空调器300在运行过程中出现故障,可以通过断电来实现对无线空调器300的复位,因此,在需要对无线空调器300进行断电复位时,可以停止接收电能,无线空调器300的设备状态为停止受电状态。
在一些实施方式中,无线充电装置100在接入市电后,可以通过通信模块获取到的第二电池包状态以及设备状态来确定是否通过发射线圈Ls1向外无线输电。在一些实施方式中,当第二电池包状态 为饱和状态、设备状态为停止受电状态时,无线空调器300均有受电需求,此时,为了节约资源,无线充电装置100可以无需向外输电,如进入待机状态或停止工作。当无线充电装置100获取到的第二电池包状态为待充电状态,和/或获取到的设备状态为待受电状态,则表明无线空调器存在受电需求,此时,无线充电装置100通过发射线圈Ls1向外无线输电。
为了提高无线空调器300的便携性,以使无线空调器300不会受应用场景的限制,脱离电网且便携移动使用,例如在户内厨房或者阳台使用,或者在户外帐篷或钓鱼等场景使用。本公开实施例提供的无线空调器300可以包括第二电池包320。无线空调器300可以接收无线充电装置100无线传输的电能对第二电池包320进行供电,第二电池包320也可以释放电能对无线空调器300的负载提供电能。
如图13所示,无线空调器还可以包括:接收线圈Lr1以及控制装置310。其中,接收线圈Lr1用于接收无线充电装置100无线传输的电能,控制装置310,与接收线圈Lr1电性连接,用于将接收线圈Lr1接收的电能转换为向无线空调器300供电。
第二电池包320可以与控制装置310电性连接,控制装置310用于将接收线圈Lr1接收的电能进行转换,将转换后电能并存储至第二电池包320,或者将第二电池包320释放的电能进行转换后向无线空调器300的负载供电。
在接收线圈Lr1没有接收到无线充电装置100无线传输的电能时,由第二电池包320释放电能,控制装置310将第二电池包320释放的电能转换为无线空调器300的负载所需的电能后,向对应的负载供电。
在接收线圈Lr1接收到无线充电装置100无线传输的电能时,如果第二电池包320需要充电,控制装置310可以将接收线圈Lr1接收到的电能转换为可以存储至第二电池包320的电能,并存储至第二电池包320;在接收线圈Lr1接收到外部电能的情况下,如果无线空调器300需要供电,则控制装置310还可以将接收线圈Lr1接收到的电能转换为无线空调器300的负载所需的电能,并向对应的负载供电。
参考图13所示,在一些实施方式下,本公开实施例中的控制装置310包括:无线受电模块311以及空调控制器。其中,无线受电模块311与空调控制器312、接收线圈Lr1均电性连接,无线受电模块311用于在空调控制器312的控制下对接收线圈Lr1接收到的电能进行转换处理。
无线受电模块311包括:第二桥式整流电路3111和受电调压电路3112,其中,第二桥式整流电路3111的交流输入端与接收线圈Lr1电性连接。第二桥式整流电路3111的交流输入端与接收线圈Lr1电性连接,对接收线圈Lr1接收的电能进行整流处理。受电调压电路3112的输入端与第二桥式整流电路3111的输出端电性连接,受电调压电路3112用于对第二桥式整流电路3111输出的电能进行升压或降压处理,以使处理后的电能用于对无线空调器300的负载进行供电。
如图13、图14所示,第二桥式整流电路3111用于将接收线圈Lr1接收到的电能进行交流-直流变换成直流母线电压+VDC1;直流母线电压+VDC1再经受电调压电路3112的直流-直流变换(升压或者降压)后,成为负载所需的直流母线电压+VDC2。
在一些实施方式下,参考图14所示的,第二桥式整流电路3111可以包括谐振电容C B、桥式整流器以及第一滤波电容E1B,谐振电容C B一端电性连接桥式整流器的一个交流输入端,谐振电容C B另一端与接收线圈Lr1一端电性连接,连接桥式整流器的另一个交流输入端电性连接接收线圈Lr1另一端。接桥式整流器的两个直流输出端对应电性连接第一滤波电容E1B的正负极,第一滤波电容E1B的 负极接地。
桥式整流器可以是全桥同步整流器、半桥同步整流器以及不控整流器中的任意一种硬件拓扑。举例来讲,参考图14所示,桥式整流器可以是包括第一功率器件Q1B、第二功率器件Q2B、第三功率器件Q3B以及第四功率器件Q4B的全桥同步整流器。其中,Q1B、Q2B、Q3B、Q4B可以为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),MOS管、三极管等中任意一种晶体管。
为了驱动第二桥式整流电路3111,空调控制器312包括:第二控制芯片3121;第二整流驱动电路3122,第二整流驱动电路3122的输入端与第二控制芯片3121电性连接,所述第二整流驱动电路3122的输出端与所述第二桥式整流电路342电性连接,第二整流驱动电路3122的桥式整流器中每个功率器件的栅极控制端电性连接,以控制功率器件Q1B、Q2B、Q3B以及Q4B通断。
受电调压电路3112可以为单独的升压电路、或者单独的降压电路,或者降压电路和升压电路两者同时存在,或者是升降压复用电路。在实际应用时,也可以不设置受电调压电路,即无线受电模块311仅仅有第二桥式整流电路3111,第二桥式整流电路3111的输出端与负载电性连接。
举例来讲,参考图14所示,受电调压电路3112可以是由第五功率器件Q5B、第一电感L1 B、第六功率器件Q6B、第二滤波电容E2B构成的升降压复用电路,其中,第二滤波电容E2B的负极接地,通过第五功率器件Q5B、第六功率器件Q6B的通断,实现升压处理或者降压处理。当然,受电调压电路3112还可以根据实际需要进行电路上的变形,只要能实现升降压的目的即可,这里不做限定。
对应的,为了驱动受电调压电路3112,空调控制器312还包括:调压驱动电路3123,调压驱动电路3123的输入端与第二控制芯片3121电性连接,调压驱动电路3123的输出端与受电调压电路中每个功率器件Q5B、Q6B的控制端电性连接,以此能够控制第五功率器件Q5B、第一电感L1 B、第六功率器件Q6B的通断。
参考图13、图14所示,针对第二电池包320,包括电池模组321以及BMS保护板(Bttery Managment system,电池管理系统)322。BMS保护板可以对电池模组321进行充电过电压、充电过电流、放电过电流、放电电压过低、温度过高等保护功能及电量显示等功能。本公开中的控制装置310还可以包括第二充放电调压电路313,第二充放电调压电路313的一端与第二桥式整流电路3111的输出端以及受电调压电路3112的输入端电性连接,第二充放电调压电路313的另一端与第二电池包320电性连接;在需要第二电池包320向无线空调器300的负载进行供电时,第二电池包320释放的电能经第二充放电调压电路313进行直流-直流变换的调压变换处理,再经受电调压电路3112进行直流-直流变换的调压处理,并将调压处理后的电能向无线空调器300的至少一个负载供电。在需要向第二电池包320充电时,接收线圈Lr1接收的电能,经第二桥式整流电路3111进行交流-直流变换的整流处理,再经第二充放电调压电路313进行直流-直流变换的调压变换处理后向第二电池包320进行充电。
第二充放电调压电路313用于将第二桥式整流电路3111输出的电能进行转换为电压Vb+的电能,并将变换后电能存储至第二电池包320,或者将第二电池包320释放的电能进行转换并输出至受电调压电路3112;受电调压电路3112对第二充放电调压电路313输出的电能进行升压或降压处理,并向负载进行输电。
第二充放电调压电路313具体为升降压复用电路。举例来讲,参考图14,第二充放电调压电路313可以由第三滤波电容E3、第三电感L3 B、第七功率器件Q7B和第八功率器件Q8B构成,其中,第三滤波电容E3 B的正负极对应电性连接第二电池包320的正负极,且第三滤波电容E3的负极接地, 通过改变第七功率器件Q7B和第八功率器件Q8B的通断,以实现升压处理与降压处理中的一种方式。
为了控制第七功率器件Q7B和第八功率器件Q8B的通断,空调控制器312还包括:第二充放电驱动电路312A;第二充放电驱动电路312A的输出端与第七功率器件Q7B和第八功率器件Q8B的栅极控制端电性连接,第二充放电驱动电路312A的输出端与第二控制芯片3121电性连接,以使第二控制芯片3121驱动第七功率器件Q7B和第八功率器件Q8B的通断。
在一些实施方式下,为了监测无线受电模块311的变换处理过程,以精准控制其进行电能变换,本公开实施例中的空调控制器还包括第一母线电压检测电路3126和第二母线电压检测电路3127以及母线电流检测电路。
第一母线电压检测电路3126的输入端与第二桥式整流电路3111的输出端电性连接,第一母线电压检测电路3126以检测第二桥式整流电路3111进行电能变换后电能的电压值+VDC1,并提供给第二控制芯片3121,以使第二控制芯片3121根据第一母线电压检测电路3126反馈的电压值+VDC1,控制第二整流驱动电路3122,进而控制第二桥式整流电路3111中各个功率器件Q1B、Q2B、Q3B、Q4B的通断,进而控制第二桥式整流电路3111的整流处理过程。
第二母线电压检测电路3127的输出端与第二控制芯片3121电性连接;第二母线电压检测电路3127的输入端与受电调压电路3112的输出端电性连接,第二母线电压检测电路3127的输出端与第二控制芯片3121电性连接,以检测受电调压电路3112进行电能变换后电能的电压值+VDC2,并提供给第二控制芯片3121,以使第二控制芯片3121根据第二母线电压检测电路3127反馈的电压值+VDC2控制调压驱动电路3123,进而控制受电调压电路3112中各个功率器件Q5B、Q6B的通断,进而控制受电调压电路3112的调压处理过程。
在一些实施方式下,为了监测第二充放电调压电路313的变换处理过程,以精准控制其进行电能变换,所述空调控制器还包括:第二充放电流检测电路3128和第二电池电压检测电路3129。
第二充放电流检测电路3128的输入端与第二充放电调压电路313电性连接,第二充放电调压电路313的输出端与控制芯片电性连接3121;第二电池电压检测电路3129的输入端与第二充放电调压电路313电性连接,第二电池电压检测电路3129的输出端与第二控制芯片3121电性连接。第二充放电流检测电路3128和第二电池电压检测电路3129对应检测电池电压以及第二充放电调压电路313的充放电电流,第二控制芯片3121基于检测值控制第二充放电调压电路313各个功率器件Q7B、Q8B的通断,进而控制受电调压电路3112的调压处理过程。
在一些实施方式下,本公开实施例提供的无线空调器300还包括显示装置,则控制装置310还包括:空调辅助电源,与无线受电模块311的输出端电性连接,用于对无线受电模块311输出的直流电能进行调压,并向无线空调器300的显示装置提供调压处理后的直流电能。
在一些实施方式中,可以与第二桥式整流电路3111输出端或者受电调压电路3112的输出端电性连接,将直流母线电压+VDC1或者直流母线电压+VDC2进行降压处理,得到显示装置所需要的电压,给显示装置供电。
在一些实施方式下,本公开实施例提供的无线空调器300包括:空调通信模块316,与空调控制器312电性连接,其中,所述空调通信模块316用于与向无线空调器300无线输电的外部供电装置进行通信,以控制向无线空调器300无线输电的无线充电装置100处于待机或者能量发射状态、以及获取无线充电装置100的市电接入状态。
无线空调器300可以根据通信模块316获取到的无线充电装置100的市电状态,以及自身的运行状态、第二电池包320的第二电池包状态来调节无线空调器300的供电方式。其中,第二电池包状态可以包括但不限于待充电状态、饱和状态、可放电状态。下面,对无线充电装置100的几种供电方式进行说明。
第一种
在获取到无线充电装置100接入市电,第二电池包状态为待充电状态,且设备状态为停止受电状态(即无需给负载供电),可以执行对第二电池包320的充电操作。在一些实施方式中,接收线圈Lr1、第二桥式整流电路3111、第二充放电调压电路313、以及第二电池包320依次连通;接收线圈Lr1无线接收到的电能依次经过第二桥式整流电路3111、第二充放电调压电路313的转换处理,输出至第二电池包320以对电池320包充电。
第二种
在获取到无线充电装置100未接入市电,第二电池包状态为可放电状态,且设备状态为待受电状态(即负载存在受电需求),可以通过第二电池包320释放电能对负载供电。在一些实施方式中,第二电池包320、第二充放电调压电路313、以及受电调压电路3112依次连通;第二电池包320释放的电能依次经过第二充放电调压电路313、以及受电调压电路3112的转换处理,由受电调压电路3112输出以对负载供电。
第三种
在获取到无线充电装置100接入市电,第二电池包状态为饱和状态,且设备状态为待受电状态(即负载存在受电需求),可以通过接收线圈Lr1接收到的电能对负载供电。在一些实施方式中,接收线圈Lr1、第二桥式整流电路3111、以及受电调压电路3112依次连通;接收线圈Lr1无线接收到的电能依次经过第二桥式整流电路3111、受电调压电路3112的转换处理,由受电调压电路3112输出以对负载供电。
第四种
在获取到无线充电装置100接入市电,第二电池包状态为待充电状态,且设备状态为待受电状态(即负载存在受电需求),可以通过接收线圈Lr1接收到的电能同时对第二电池包充电以及对负载供电。在一些实施方式中,接收线圈Lr1、第二桥式整流电路3111、第二充放电调压电路313、受电调压电路3112、以及第二电池包320均连通;接收线圈Lr1无线接收到的电能依次经过第二桥式整流电路3111、第二充放电调压电路313的转换处理,输出至第二电池包320以对第二电池包320充电;以及接收线圈Lr1无线接收到的电能依次经过第二桥式整流电路3111、受电调压电路3112的转换处理,由受电调压电路3112输出以对负载供电。
本公开中的无线空调器300根据制冷制热原理的不同,可以分为多种类型,可以参考上述实施例一提供的几种类型的无线空调器,这里就不再赘述了。
基于同一发明构思,本公开还提供一种空调器供电控制方法,如图15所示,该方法包括以下步骤。
步骤S1501:监测到无线充电装置是否接入市电;
步骤S1502:在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电;
步骤S1503:在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电。
本公开提供的空调器供电方法,可以应用于无线供电的空调机组的中控设备中,空调机组可以包括无线充电装置以及无线空调器。其中,中控设备可以是无线充电装置或无线空调器中的任一设备,也可以是独立于无线充电装置以及无线空调器的设备,这里不做限定。本公开提供的方法还可以用于空调机组的多个设备中,通过空调机组中多个设备之间的数据交互来实现本公开提供的空调器供电方法。空调机组中各个装置可以参考上面的说明,这里就不再赘述了。
空调机组包括图1和图2两种形式,即储能模块设置在无线充电装置中,以及储能模块设置在无线空调器中的空调机组。空调机组的形式不同,对应的空调器供电控制方法也存在差别,下面,针对这两种形式的空调机组的空调器供电控制方法分别进行说明。
在储能模块设置在无线充电装置中时,储能模块包括第一电池包。供电控制方法可以包括以下步骤:获取所述无线空调器的设备状态;在监测到所述无线充电装置未接入市电,且所述设备状态为待受电状态的情况下,控制所述无线充电装置将所述第一电池包释放的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
对于无线充电装置来说,市电是否接入可以通过检测无线充电装置的输入电源接口来实现。在输入电源接口接入电源时,则无线充电装置接入市电,在输入电源接口未接入电源时,则无线充电装置未接入市电。
无线空调器的设备状态可以包括待受电状态以及停止受电状态。待受电状态,可以为无线空调器需要接收电能进行工作时所对应的状态。在一些实施方式中,用户可以通过无线空调器的控制面板、遥控器或语音控制等方式向无线空调器发送开机指令,无线空调器接收到开机指令后,需要通过接收无线充电装置无线传输的电能以进行开机,因此,在无线空调器接收到开机指令时,无线空调器的设备状态为待受电状态。或者,在无线空调器的运行过程中,无线空调器也需要持续接收电能以实现运行,因此,在无线空调器处于运行过程中时,无线空调器的设备状态为待受电状态。
相应的,停止受电状态,可以为无线空调器不需要工作时所对应的状态。在一些实施方式中,用户可以通过无线空调器的控制面板、遥控器或语音控制等方式向无线空调器发送关机指令,当无线空调器接收到关机指令后,根据关机指令完成关机,此时,不需要再接收电能,无线空调器的设备状态调整为停止受电状态。或者,无线空调器在运行过程中出现故障,可以通过断电来实现对无线空调器的复位,因此,在需要对无线空调器进行断电复位时,可以停止接收电能,无线空调器的设备状态为停止受电状态。
根据无线充电装置是否接入市电可以将供电方法分为以下两种:在无线充电装置接入市电时,可以通过市电对第一电池包进行充电。考虑到市电供电的稳定性以及降低第一电池包的损耗,在接入市电时,可以通过市电向外无线输电;在无线充电装置未接入市电时,可以通过无线充电装置的第一电池包进行放电操作以对无线空调器进行无线供电。下面,分别对无线充电装置接入市电以及未接入市电的情况分别进行说明。
首先,对于无线充电装置未接入市电的供电方式进行介绍。
若监测到所述无线充电装置未接入市电,且所述设备状态为待受电状态,控制所述无线充电装 置将所述第一电池包释放的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
在一些实施方式中,由于无线充电装置未接入市电,无法通过市电向外无线输电。此时,需要通过无线充电装置内设置的第一电池包进行放电操作,对第一电池包释放的电能进行转换处理,并将转换处理后的电能通过发射线圈向外无线输电。即,在设备状态为待受电状态时,表明无线空调器需要接收无线充电器无线传输的电能,此时,无线充电装置可以控制第一电池包放电以实现电能的无线传输,确保无线空调器的正常运行。
在通过第一电池包进行负载供电时,还可以考虑第一电池包状态是否为可放电状态,在第一电池包状态为可放电状态时,表明第一电池包释放的电能能够支撑无线空调器的运行,此时,可以通过第一电池包释放电能来供负载使用。
无线充电装置的第一电池包状态可以通过检测第一电池包的电量、电压等来获取,这里不做限定。在一个实施例中,通过检测第一电池包的电量来获取第一电池包状态,当第一电池包的电量大于第一阈值时,表明第一电池包状态为饱和状态,当第一电池包的电量小于第二阈值时,表明第一电池包状态为待充电状态。在一些实施方式中,在使用第一电池包对外无线供电时,还可以检测第一电池包是否处于可放电状态,例如,当第一电池包的电量大于第三阈值时,表明第一电池包状态为可放电状态。其中,第一阈值、第二阈值、第三阈值可以根据实际需要进行设定,例如,第一阈值为90%、95%等,第二阈值为70%、60%等、第三阈值为30%、50%等。
可见,在无线充电装置未接入市电时,通过无线充电装置的第一电池包释放电能,向无线空调器的进行无线供电。对于在室外或者不方便接入市电的场景中,无线空调器能够通过第一电池包提供的电能进行工作,大大降低了无线空调器使用过程中对市电的依赖,提高了无线空调器的使用便捷性。
考虑到无线空调器在使用第一电池包进行供电时,第一电池包的电量是有限的,为了增强无线充电装置的供电能力,可以在无线充电装置上设置有太阳能转换模块,用于将太阳能转换为电能,通过太阳能转换的电能进行供电,其中,太阳能转换模块可以包括太阳能光伏电池板以及对应的控制装置。
在一些实施方式中,在使用太阳能转换模块时,可以包括以下供电方式:获取所述无线充电装置的第一电池包状态;若监测到所述第一电池包状态为待充电状态,且所述设备状态为停止受电状态,控制所述无线充电装置通过所述太阳能转换模块输出的电能对所述第一电池包进行充电。
在一些实施方式中,在设备状态为停止受电状态时,表明无线空调器不需要接收电能,即第一电池包无需释放电能对无线空调器供电,因此,太阳能转换的电能可以用于对第一电池包进行充电。若第一电池包状态为待充电状态,则利用太阳能转换的电能对第一电池包进行充电;若第一电池包为饱和状态,则无需对第一电池包充电,此时,可以控制太阳能转换模块进行待机或停止工作状态。
在一些实施方式中,在使用太阳能转换模块时,还可以包括以下供电方式:若监测到所述第一电池包状态为待充电状态,且所述设备为待受电状态,控制所述无线充电装置通过所述太阳能转换模块输出的电能对所述第一电池包进行充电,以及对所述无线空调器进行无线供电。
在一些实施方式中,若无线空调器的设备状态为待受电状态时,表明无线空调器需要接收电能以进行工作,由于太阳能转换模块能够将太阳能转换为电能,因此,可以优先使用太阳能转换的电能对无线空调器进行无线供电,以降低对第一电池包的损耗。在一些实施方式中,在通过太阳能转换的电能对无线空调器进行供电的过程中,还可以同时考虑第一电池包的第一电池包状态,若第一电池包状态为待充电状态,那么太阳能转换的电能可以在向负载供电的同时,对第一电池包进行充电。
需要说明的是,若太阳能模块的电能转换效率较低时,有可能无法支持无线空调器的工作,这种情况下,仍可以使用第一电池包释放的电能对负载进行供电。在太阳能模块的电能转换效率高于预设转换率时,则可以采用太阳能转换的电能对负载供电以及对第一电池包进行充电,其中,预设转换率可以根据无线空调器的供电参数来进行具体设置,这里不做限定。
在使用太阳能转换模块时,还可以包括以下供电方式:若监测到所述第一电池包状态为饱和状态,且所述设备为待受电状态,控制所述无线充电装置通过所述太阳能转换模块输出的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
在一些实施方式中,在第一电池包状态为饱和状态时,表明无需对第一电池包进行充电,此时,可以仅考虑是否需要使用太阳能转换的电能为无线空调器进行供电。若设备状态为待受电状态,表明无线空调器需要接收电能,此时,可以使用太阳能模块转换的电能对无线空调器的负载进行供电,以降低对第一电池包的损耗。同样的,若太阳能模块的电能转换效率较低时,有可能无法支持无线空调器的工作,这种情况下,仍可以使用第一电池包释放的电能对无线空调器进行无线供电。在太阳能模块的电能转换效率高于预设转换率时,则可以采用太阳能转换的电能对负载供电。
需要说明的是,采用太阳能转换模块对太阳能进行转换可以和市电同时使用,也可以仅在未接入市电时使用,这里不做限定。在接入市电的同时使用太阳能转换模块时,可以通过市电以及太阳能转换的电能同时为第一电池包充电,或者将市电以及太阳能转换的电能进行整合后向外无线输电,还可以通过市电以及太阳能转换的电能边对第一电池包充电边通过发射线圈向外无线供电。
下面,对无线充电装置接入市电的供电方式进行说明。
在无线充电装置接入市电后,可以执行以下供电方式:若监测到所述无线充电装置接入市电,且所述设备状态为待受电状态,控制所述无线充电装置将市电转换的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
在一些实施方式中,无线充电装置在接入市电后,将市电转换为电磁能并通过发射线圈向外无线输电。在一个实施例中,无线充电装置将输入电源接口输入的市电通过整流进行交流-直流转换,在通过直流-交流转换成电磁能,通过发射线圈向外传输供电。
在无线空调器的设备状态为待受电状态时,无线空调器可以通过接收线圈接收无线充电装置无线传输的电能。在无线空调器接收到电能后,可以对接收到的电能进行转换处理,包括但不限于交直流转换、整流、升降压处理,以实现对无线空调器负载的供电。
在无线充电装置市电后,在确定供电方式时还可以考虑无线充电装置的第一电池包状态。在一些实施方式中,若监测到所述第一电池包状态为待充电状态、且所述设备状态为受电状态,控制所述无线充电装置将市电转换的电能对所述第一电池包进行充电,以及将市电转换的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
在一些实施方式中,在第一电池包状态为待充电状态、无线空调器的设备状态为待受电状态时,无线充电装置接入的市电一方面用于对第一电池包进行充电,另一方面将市电用于对无线空调器进行供电。即,在无线充电装置接入市电时,实现了边对第一电池包充电边对无线空调器无线供电,在实现无线空调器正常运行的同时,保证了第一电池包的电量存储。这样,当使用第一电池包释放的电能进行供电时,避免了由于电池电量不足而导致无法长时间供电的问题。
在同时对第一电池包充电以及对无线空调器无线供电时,无线充电装置可以将接入的市电进行 两种处理,一种为将市电处理为用于第一电池包充电的电能,一种为将市电处理为用于无线空调器供电的电能。即,对第一电池包充电以及向外供电均是由接收到的电能来实现的,无需通过第一电池包放电来实现对外供电。
在一些实施方式中,在第一电池包状态为饱和状态时,则无需给第一电池包充电,无线充电装置可以将接入的市电直接用于对无线空调器进行供电。
在无线充电装置接入市电后,还包括以下供电方式:若监测到所述第一电池包状态为待充电状态、且所述设备状态为停止受电状态,控制所述无线充电装置将市电转换的电能对所述第一电池包进行充电。
在一些实施方式中,在设备装置为停止受电状态时,表明无线空调器不需要接收电能,即无线充电装置无需给无线空调器进行供电。可以通过第一电池包状态确定是否需要对第一电池包充电,在第一电池包状态为待充电状态时,无线充电装置通过接入的市电对第一电池包进行充电,从而保证了对第一电池包电量的及时补充,确保无线充电装置在未接入市电,使用第一电池包进行供电时的供电时长。相反的,在第一电池包状态为饱和状态时,无线充电装置也无需对第一电池包进行充电,那么无线充电装置可以进入待机状态或停止工作状态。
综上所述,本公开提供的方法,在无线充电装置接入市电时,可以通过市电向外提供稳定的电能,在无线充电装置未接入市电时,可以通过无线充电装置的第一电池包向外输电,确保了无线空调器在有市电接入以及无市电接入时均能够进行工作。由于无线空调器通过无线传输获取电能,摆脱了传统的电源尾线,使得无线空调器能够根据需要进行任意移动,大大提高了使用无线空调器的便捷性。由于无线充电装置以及无线空调器之间的供电方式存在多种,能够适用于各种场景下的无线空调器的使用需求,通过丰富的供电方式,降低了无线空调器的使用限制,提高了用户体验。
在储能模块设置在无线空调器中时,储能模块包括第二电池包。供电控制方法可以包括以下步骤:获取所述储能模块的第二电池包状态;在监测到所述无线充电装置接入市电,且所述第二电池包状态为待充电状态的情况下,控制所述无线充电装置对所述第二电池包进行无线充电。
对于无线充电装置来说,市电是否接入可以通过检测无线充电装置的输入电源接口来实现。在输入电源接口接入电源时,则无线充电装置接入市电,在输入电源接口未接入电源时,则无线充电装置未接入市电。
无线空调器的第二电池包状态可以通过检测第二电池包的电量、电压等来获取,这里不做限定。在一个实施例中,通过检测第二电池包的电量来获取第二电池包状态,当第二电池包的电量大于第一阈值时,表明第二电池包状态为饱和状态,当第二电池包的电量小于第二阈值时,表明第二电池包状态为待充电状态。在一些实施方式中,在使用第二电池包对外无线供电时,还可以检测第二电池包是否处于可放电状态,例如,当第二电池包的电量大于第三阈值时,表明第二电池包状态为可放电状态。其中,第一阈值、第二阈值、第三阈值可以根据实际需要进行设定,例如,第一阈值为90%、95%等,第二阈值为70%、60%等、第三阈值为30%、50%等。
根据无线充电装置是否接入市电可以将供电方法分为以下两种:在无线充电装置接入市电时,考虑到市电供电的稳定性以及降低无线空调器的电池损耗,可以通过市电进行供电;在无线充电装置未接入市电时,无线充电装置无法进行工作,此时可以通过无线空调器的电池进行放电以使无线空调器正 常运行。下面,分别对无线充电装置接入市电以及未接入市电的情况分别进行说明。
首先,对于无线充电装置接入市电的供电方式进行介绍。
若监测到所述无线充电装置接入市电,且所述第二电池包状态为待充电状态,则控制所述无线充电装置对所述无线空调器的第二电池包进行无线充电。
在一些实施方式中,无线充电装置在接入市电后,将市电转换为电磁能并通过发射线圈向外无线输电。在一个实施例中,无线充电装置将输入电源接口输入的市电通过整流进行交流-直流转换,在通过直流-交流转换成电磁能,通过发射线圈向外传输供电。
无线空调器通过接收线圈接收无线充电装置无线传输的电能,并将接收到的电能进行转换处理,包括但不限于交直流转换、整流、升降压处理。当无线空调器的第二电池包处于待充电状态时,为了使无线空调器单独工作时第二电池包有足够的电量来确保无线空调器进行工作,可以基于转换处理后的电能对第二电池包充电。
在通过无线充电装置进行无线供电时,还可以考虑无线空调器是否需要外部传输的电能。在一些实施方式中,还包括以下步骤:获取所述无线空调器的设备状态;在监测到所述无线充电装置接入市电时,若所述第二电池包状态为待充电状态,且所述设备状态为待受电状态,控制所述无线充电装置对所述第二电池包进行无线充电,以及对所述无线空调器进行无线供电。
无线空调器的设备状态可以包括待受电状态以及停止受电状态。待受电状态,可以为需要对无线空调器负载进行供电以进行工作所对应的状态。在一些实施方式中,用户可以通过无线空调器的控制面板、遥控器或语音控制等方式向无线空调器发送开机指令,无线空调器接收到开机指令后,需要通过向负载提供电能以进行开机,因此,在无线空调器接收到开机指令时,无线空调器的设备状态为待受电状态。或者,在无线空调器的运行过程中,也需要持续为负载提供电能以实现正常运行,因此,在无线空调器处于运行过程中时,无线空调器的设备状态为待受电状态。
相应的,停止受电状态,可以为无线空调器不需要工作时所对应的状态。在一些实施方式中,用户可以通过无线空调器的控制面板、遥控器或语音控制等方式向无线空调器发送关机指令,当无线空调器接收到关机指令后,根据关机指令完成关机,此时,不需要再向负载提供电能,无线空调器的设备状态调整为停止受电状态。或者,无线空调器在运行过程中出现故障,可以通过断电来实现对无线空调器的复位,因此,在需要对无线空调器进行断电复位时,可以停止向负载供电,无线空调器的设备状态为停止受电状态。
在一些实施方式中,在第二电池包状态为待充电状态、无线空调器的设备状态为待受电状态时,无线空调器一方面接收无线充电装置传输的电能实现对第二电池包的充电,另一方面将接收到的电能用于对负载进行供电。即,在无线充电装置接入市电时,实现了边对第二电池包充电边对无线空调器的负载供电,保证了无线空调器的第二电池包电量。这样,当使用无线空调器的第二电池包释放的电能进行供电时,避免了由于电池电量不足而导致无法长时间供电的问题。
在同时对第二电池包充电以及对无线空调器负载供电时,无线空调器可以将接收到的电能进行两种处理,一种为将接收到的电能处理为用于第二电池包充电的电能,一种为将接收到的电能处理为用于负载供电的电能。即,对第二电池包充电以及对负载供电均是由接收到的电能来实现的,无需通过第二电池包放电来实现对负载的供电。
在无线充电装置接入市电后,还包括以下供电方式:若所述第二电池包状态为饱和状态,且所 述设备状态为待受电状态,则控制所述无线充电装置对所述无线空调器进行无线供电。
在一些实施方式中,若无线空调器的第二电池包状态为饱和状态,表明无线充电装置无需给第二电池包进行充电。可以通过无线空调器的设备状态来确定是否需要对负载进行供电。在设备状态为待受电状态时,表明负载需要接收电能来进行运行,由于当前无线充电装置已经接入市电,为了提高供电效率以及降低无线空调器的第二电池包损耗,可以直接通过无线充电装置对无线空调器进行无线供电,而无需使用第二电池包。
下面,对无线充电装置未接入市电的供电方式进行说明。
在无线充电装置未接入市电时,可以执行以下供电方式:若监测到所述无线充电装置未接入市电,且所述设备状态为待受电状态,控制所述第二电池包为所述无线空调器进行供电。
在一些实施方式中,由于无线充电装置未接入市电,无线充电装置无法进行工作,因此无法通过无线充电装置向外无线输电。此时,需要通过无线空调内设置的第二电池包进行放电操作,对第二电池包释放的电能进行转换处理,并将转换处理后的电能进行负载供电。即,在设备状态为待受电状态时,无线空调器可以控制第二电池包放电以实现对负载供电,确保无线空调器的正常运行。
在通过第二电池包进行负载供电时,还可以考虑第二电池包状态是否为可放电状态,在第二电池包状态为可放电状态时,表明电池释放的电能能够支撑无线空调器的运行,此时,可以通过第二电池包释放电能来供负载使用。
可见,在无线充电装置未接入市电时,通过无线空调器的第二电池包释放电能,向无线空调器的负载提供电能。对于在室外或者不方便接入市电的场景中,无线空调器能够通过第二电池包提供的电能进行工作,大大降低了无线空调器使用过程中对市电的依赖,提高了无线空调器的使用便捷性。
考虑到无线空调器在使用第二电池包进行供电时,第二电池包的电量是有限的,为了增强无线空调器自身的供电能力,可以在无线空调器上设置有太阳能转换模块,用于将太阳能转换为电能,通过太阳能转换的电能进行供电,其中,太阳能转换模块可以包括太阳能光伏电池板以及对应的控制器。
在一些实施方式中,若监测到所述无线充电装置未接入市电,还可以执行以下供电方式:若所述第二电池包状态为待充电状态,所述设备状态为停止受电状态,控制所述无线空调器通过所述太阳能转换模块输出的电能对所述第二电池包进行充电。
在一些实施方式中,在设备状态为停止受电状态时,表明无线空调器不需要接收电能,即第二电池包无需释放电能向负载供电,因此,太阳能转换的电能可以用于对第二电池包进行充电。若第二电池包状态为待充电状态,则利用太阳能转换的电能对第二电池包进行充电;若第二电池包为饱和状态,则无需对第二电池包充电,此时,可以控制太阳能转换模块进行待机或停止工作状态。
在使用太阳能转换模块时,还包括以下供电方式:若所述第二电池包状态为待充电状态,所述设备状态为待受电状态,控制所述无线空调器通过所述太阳能转换模块输出的电能对所述第二电池包充电,以及对所述无线空调器供电。
在一些实施方式中,若无线空调器的设备状态为待受电状态时,表明需要向无线空调器的负载进行供电,由于太阳能转换模块能够将太阳能转换为电能,因此,可以优先使用太阳能转换的电能对无线空调器负载进行供电,以降低对第二电池包的损耗。在一些实施方式中,在通过太阳能转换的电能对负载进行供电的过程中,还可以同时考虑第二电池包的第二电池包状态,若第二电池包状态为待充电状态,那么太阳能转换的电能可以在向负载供电的同时,对第二电池包进行充电。
需要说明的是,若太阳能模块的电能转换效率较低时,有可能无法支持无线空调器的工作,这种情况下,仍可以使用第二电池包释放的电能对负载进行供电。在太阳能模块的电能转换效率高于预设转换率时,则可以采用太阳能转换的电能对负载供电以及对第二电池包进行充电,其中,预设转换率可以根据无线空调器的供电参数来进行具体设置,这里不做限定。
在使用太阳能转换模块时,还包括以下供电方式:若所述第二电池包状态为饱和状态,且所述设备状态为待受电状态,控制所述无线空调器利用所述太阳能转换模块输出的电能对所述无线空调器供电。
在一些实施方式中,在第二电池包状态为饱和状态时,表明无需对第二电池包进行充电,此时,可以仅考虑是否需要使用太阳能转换的电能为负载供电。若设备状态为待受电状态,表明需要向负载供电,此时,可以使用太阳能模块转换的电能对无线空调器的负载进行供电,以降低对第二电池包的损耗。同样的,若太阳能模块的电能转换效率较低时,有可能无法支持无线空调器的工作,这种情况下,仍可以使用第二电池包释放的电能对负载进行供电。在太阳能模块的电能转换效率高于预设转换率时,则可以采用太阳能转换的电能对负载供电。
需要说明的是,采用太阳能转换模块对太阳能进行转换可以和市电同时使用,也可以仅在未接入市电时使用,这里不做限定。在接入市电的同时使用太阳能转换模块时,可以通过市电以及太阳能转换的电能同时为第二电池包充电,或者将市电以及太阳能转换的电能进行整合后对无线空调器的负载进行供电,还可以通过市电以及太阳能转换的电能边对第二电池包充电边对负载进行供电。
综上所述,本公开所提供的方法,在无线充电装置接入市电时,可以通过市电向无线空调器提供稳定的电能,在无线充电装置未接入市电时,可以通过无线空调器内的第二电池包对负载进行供电,确保了无线空调器在有市电接入以及无市电接入时均能够进行工作。由于无线空调器通过无线传输或自身第二电池包放电来获取电能,摆脱了传统的电源尾线,使得无线空调器能够根据需要进行任意移动,大大提高了使用无线空调器的便捷性。由于无线充电装置以及无线空调器之间的供电方式存在多种,能够适用于各种场景下的无线空调器的使用需求,通过丰富的供电方式,降低了无线空调器的使用限制,提高了用户体验。
基于同一构思,本公开实施例提供了一种空调器供电控制装置,如图16所示,该装置包括:
监测模块1601,用于监测无线充电装置是否接入市电;
第一处理模块1601,用于在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电;
第二处理模块1602,用于在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电。
关于上述装置,其中各个模块的具体功能已经在上述实施例中进行了详细描述,此处将不做详细阐述说明。
基于同一构思,本公开实施例提供一种空调器供电控制装置,如图17所示,包括存储器1704、处理器1702及存储在存储器1704上并可在处理器1702上运行的计算机程序,处理器1702执行所述1702时实现前述空调器供电控制方法。
在图17中,总线架构(用总线500来代表),总线1700可以包括任意数量的互联的总线和桥,总线1700将包括由处理器1702代表的一个或多个处理器和存储器1704代表的存储器的各种电路链接 在一起。总线1700还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行描述。总线接口1705在总线1700和接收器1701和发送器1703之间提供接口。接收器1701和发送器1703可以是同一个元件,即收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1702负责管理总线1700和通常的处理,而存储器1704可以被用于存储处理器1702在执行操作时所使用的数据。
如图18所示,为本公开提供的一种计算机可读存储介质的示意图,其上存储有计算机程序,该程序被处理器执行时实现上述无线供电方法的步骤。
本公开中所描述的功能可在硬件、由处理器执行的软件、固件或其任何组合中实施。如果在由处理器执行的软件中实施,那么可将功能作为一或多个指令或代码存储于计算机可读媒体上或经由计算机可读媒体予以传输。其它实例及实施方案在本公开及所附权利要求书的范围及精神内。举例来说,归因于软件的性质,上文所描述的功能可使用由处理器、硬件、固件、硬连线或这些中的任何者的组合执行的软件实施。此外,各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为控制装置的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (41)

  1. 一种空调机组,包括:
    无线充电装置以及无线空调器,所述无线充电装置或所述无线空调器中设置有储能模块;
    所述无线充电装置,用于在接入市电的情况下对所述储能模块和/或所述无线空调器进行无线供电;
    所述储能模块,用于在所述无线充电装置未接入市电的情况下对所述无线空调器进行无线供电。
  2. 如权利要求1所述的空调机组,其中,在所述储能模块设置在所述无线充电装置中,且在所述无线充电装置与所述无线空调器之间建立了通讯连接的情况下,所述无线充电装置用于将市电或所述储能模块释放的电能向外无线输电;所述无线空调器,用于接收所述无线充电装置无线传输的电能。
  3. 如权利要求1所述的空调机组,其中,在所述储能模块设置在所述无线空调器中,且在所述无线空调器与所述无线充电装置之间建立了通讯连接的情况下,所述无线空调器用于接收所述无线充电装置无线传输的电能对所述储能模块充电,和/或对所述无线空调器的负载进行供电。
  4. 如权利要求2所述的空调机组,其中,所述储能模块设置在所述无线充电装置中,所述无线充电装置还包括:
    输入电源接口;
    整流模块,所述整流模块的输入端与所述输入电源接口电性连接;
    无线供电模块,所述无线供电模块的输入端、所述储能模块的充放电端、以及所述整流模块的输出端互连;
    发射线圈,与所述无线供电模块电性连接;
    充放电控制模块,与所述整流模块、所述储能模块以及所述无线供电模块电性连接。
  5. 如权利要求4所述的空调机组,其中,所述输入电源接口、所述整流模块以及所述储能模块依次连通;
    所述输入电源接口用于接入市电;
    所述整流模块,用于在所述充放电控制模块的控制下将市电进行转换处理,以对所述储能模块进行充电。
  6. 如权利要求4所述的空调机组,其中,所述储能模块、所述无线供电模块以及所述发射线圈依次连通;
    所述储能模块用于释放电能;
    所述无线供电模块,用于在所述充放电控制模块的控制下对所述储能模块释放的电能进行转换处理,通过所述发射线圈向外无线输电。
  7. 如权利要求4所述的空调机组,其中,所述输入电源接口、所述整流模块、所述无线供电模块以及所述发射线圈依次连通;
    所述输入电源接口用于接入市电;
    所述整流模块以及所述无线供电模块,用于在所述充放电控制模块的控制下将市电进行转换处理,并将转换处理后的电能通过所述发射线圈向外无线输电。
  8. 如权利要求4所述的空调机组,其中,所述输入电源接口、所述整流模块、所述储能模块、所述无线供电模块以及所述发射线圈依次连通;
    所述输入电源接口用于接入市电,所述整流模块用于在所述充放电控制模块的控制下将市电进行转换处理以对所述储能模块进行充电;以及
    所述整流模块以及所述无线供电模块,用于在所述充放电控制模块的控制下将市电进行转换处理,并将转换处理后的电能通过所述发射线圈向外无线输电。
  9. 如权利要求4所述的空调机组,其中,所述整流模块包括:
    第一桥式整流电路,所述第一桥式整流电路的输入端与所述输入电源接口电性连接,所述第一桥式整流电路用于将市电由交流电转换为直流电。
  10. 如权利要求4所述的空调机组,其中,所述无线供电模块包括:
    桥式逆变电路,所述桥式逆变电路的输入端与所述整流模块的输出端、以及所述储能模块的充放电端电性连接,所述桥式逆变电路的输出端与所述发射线圈电性连接;
    其中,所述桥式逆变电路用于将所述整流模块或所述储能模块输出的直流电转换成交流电。
  11. 如权利要求4所述的空调机组,其中,所述储能模块包括:
    第一电池包;
    第一充放电调压电路,所述第一充放电调压电路分别与所述整流模块、所述无线供电模块以及所述电池包电性连接。
  12. 如权利要求2或3所述的空调机组,其中,所述无线空调器包括:
    接收线圈,用于接收所述无线充电装置无线传输的电能;
    控制装置,与所述接收线圈电性连接,用于对所述接收线圈接收的电能转换为向所述无线空调器供电。
  13. 如权利要求12所述的空调机组,其中,在所述储能模块设置在所述无线空调器中时,所述控制装置包括:
    空调控制器;
    无线受电模块,与所述空调控制器和所述接收线圈电性连接,所述无线受电模块在所述空调控制器的驱动下,变换处理所述接收线圈所接收到的电能。
  14. 如权利要求13所述的空调机组,其中,所述无线受电模块包括:
    第二桥式整流电路,所述第二桥式整流电路的交流输入端与所述接收线圈电性连接,对所述接收线圈接收的电能进行整流处理;
    受电调压电路,所述受电调压电路的输入端与所述第二桥式整流电路的输出端电性连接。
  15. 如权利要求14所述的空调机组,其中,所述储能模块包括第二电池包;所述控制装置包括:第二充放电调压电路;
    所述第二充放电调压电路的一端与所述第二桥式整流电路的输出端以及所述受电调压电路的输入端电性连接,所述第二充放电调压电路的另一端与所述第二电池包电性连接;
    所述第二充放电调压电路,用于将所述第二桥式整流电路输出的电能进行转换,并存储至所述第二电池包,或者将所述第二电池包释放的电能进行转换并输出至所述受电调压电路;所述受电调压电路对所述第二充放电调压电路输出的电能进行升压处理,并向所述负载供电。
  16. 如权利要求15所述的空调机组,其中,所述接收线圈、所述第二桥式整流电路、所述第二充放电调压电路、以及所述第二电池包依次连通;
    所述接收线圈无线接收到的电能依次经过所述第二桥式整流电路、所述第二充放电调压电路的转换处理,输出至所述第二电池包以对所述第二电池包充电。
  17. 如权利要求15所述的空调机组,所述第二电池包、所述第二充放电调压电路、以及所述受电调压电路依次连通;
    所述第二电池包释放的电能依次经过所述第二充放电调压电路、以及所述受电调压电路的转换处理,由所述受电调压电路输出以对所述负载供电。
  18. 如权利要求15所述的空调机组,其中,所述接收线圈、所述第二桥式整流电路、以及所述受电调压电路依次连通;
    所述接收线圈无线接收到的电能依次经过所述第二桥式整流电路、所述受电调压电路的转换处理,由所述受电调压电路输出以对所述负载供电。
  19. 如权利要求15所述的空调机组,其中,所述接收线圈、所述第二桥式整流电路、所述第二充放电调压电路、所述受电调压电路、以及所述第二电池包均连通;
    所述接收线圈无线接收到的电能依次经过所述第二桥式整流电路、所述第二充放电调压电路的转换处理,输出至所述第二电池包以对所述第二电池包充电;以及
    所述接收线圈无线接收到的电能依次经过所述第二桥式整流电路、所述受电调压电路的转换处理,由所述受电调压电路输出以对所述负载供电。
  20. 如权利要求12所述的空调机组,其中,所述无线空调器包括:
    用于容置蓄能材料的第一蓄能装置;
    喷射驱动装置,装配于所述第一蓄能装置;
    分流装置,通过所述喷射驱动装置与所述第一蓄能装置连通,其中,所述喷射驱动装置作用于所述第一蓄能装置时,所述第一蓄能装置向所述分流装置喷射蓄能材料,喷射出的蓄能材料在所述分流装置分散出射以释放热能或冷能;
    所述控制装置,用于控制向所述分流装置喷射蓄能材料的流量。
  21. 如权利要求12所述的空调机组,其中,所述无线空调器包括:
    热电组件;
    第二蓄能装置,设置于所述热电组件的第一区域;
    热交换装置,设置于所述热电组件的第二区域,所述第二蓄能装置与所述热交换装置之间连通有载能回路;
    控制装置,与所述热电组件以及所述载能回路的放能驱动件电性连接,所述控制装置用于控制所述放能驱动件和/或控制对所述热电组件的供电,以使所述热电组件产生的能量通过所述热交换装置向外释放和/或蓄积至所述第二蓄能装置。
  22. 如权利要求12所述的空调机组,其中,所述无线空调器包括:
    压缩机、冷凝器、蒸发器以及第三蓄能装置;
    其中,所述压缩机与所述第三蓄能装置连通,所述第三蓄能装置通过载能电路与所述蒸发器连通,所述冷凝器与所述蒸发器连通,所述载能电路中设置有载流剂泵,所述压缩机和所述载流剂泵分别与所述控制装置电性连接,所述控制装置用于控制所述压缩机和所述载流剂泵的启停。
  23. 如权利要求12所述的空调机组,其中,所述无线空调器包括:
    压缩机、冷凝器、蒸发器以及第四蓄能装置;
    其中,所述压缩机与所述第四蓄能装置连通,所述第四蓄能装置通过放能电路依次与所述蒸发器、所述压缩机和所述冷凝器连通,所述冷凝器与所述蒸发器连通,所述放能电路中设置有三通阀,所述压缩机和所述三通阀分别与所述控制装置电性连接,所述控制装置用于控制所述压缩机和所述三通阀的运行。
  24. 一种空调器供电控制方法,应用于如权利要求1-23任一项所述的空调机组中,该方法包括:
    监测无线充电装置是否接入市电;
    在监测到所述无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电;
    在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电。
  25. 如权利要求24所述的方法,其中,所述储能模块设置在所述无线充电装置中,所述储能模块包括第一电池包,所述方法还包括:
    获取所述无线空调器的设备状态;
    所述在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电,包括:
    在监测到所述无线充电装置未接入市电,且所述设备状态为待受电状态的情况下,控制所述无线充电装置将所述第一电池包释放的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
  26. 如权利要求25所述的方法,其中,所述在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电,包括:
    在监测到所述无线充电装置接入市电,且所述设备状态为待受电状态的情况下,控制所述无线充电装置将市电转换的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
  27. 如权利要求25所述的方法,还包括:
    获取所述无线充电装置的第一电池包状态;
    所述在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电,包括:
    在监测到所述第一电池包状态为待充电状态、且所述设备状态为待受电状态的情况下,控制所述无线充电装置将市电转换的电能对所述第一电池包进行充电,以及将市电转换的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
  28. 如权利要求27所述的方法,其中,所述在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电,包括:
    在监测到所述第一电池包状态为待充电状态、且所述设备状态为停止受电状态的情况下,控制所述无线充电装置将市电转换的电能对所述第一电池包进行充电。
  29. 如权利要求25所述的方法,其中,所述无线充电装置上设置有太阳能转换模块,用于将太阳能转换为电能,所述方法还包括:
    获取所述无线充电装置的第一电池包状态;
    在监测到所述第一电池包状态为待充电状态,且所述设备状态为停止受电状态的情况下,控制所述 无线充电装置通过所述太阳能转换模块输出的电能对所述第一电池包进行充电。
  30. 如权利要求29所述的方法,还包括:
    若监测到所述第一电池包状态为待充电状态,且所述设备状态为待受电状态,控制所述无线充电装置通过所述太阳能转换模块输出的电能对所述第一电池包进行充电,以及对所述无线空调器进行无线供电。
  31. [根据细则91更正 07.09.2022]
    如权利要求29所述的方法,还包括:
    若监测到所述第一电池包状态为饱和状态,且所述设备状态为待受电状态,控制所述无线充电装置通过所述太阳能转换模块输出的电能无线传输给所述无线空调器,以对所述无线空调器进行无线供电。
  32. [根据细则91更正 07.09.2022]
    如权利要求24所述的方法,其中,所述储能模块设置在所述无线空调器中,所述储能模块包括第二电池包,所述方法还包括:
    获取所述储能模块的第二电池包状态;
    所述在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电,包括:
    在监测到所述无线充电装置接入市电,且所述第二电池包状态为待充电状态的情况下,控制所述无线充电装置对所述第二电池包进行无线充电。
  33. [根据细则91更正 07.09.2022]
    如权利要求31所述的方法,还包括:
    获取所述无线空调器的设备状态;
    所述在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电,包括:
    在所述第二电池包状态为待充电状态,且所述设备状态为待受电状态,控制所述无线充电装置对所述第二电池包进行无线充电,以及对所述无线空调器进行无线供电。
  34. [根据细则91更正 07.09.2022]
    如权利要求32所述的方法,其中,所述在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电,包括:
    在所述第二电池包状态为饱和状态,且所述设备状态为待受电状态的情况下,则控制所述无线充电装置对所述无线空调器进行无线供电。
  35. [根据细则91更正 07.09.2022]
    如权利要求32所述的方法,其中,所述在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电,包括:
    在监测到所述无线充电装置未接入市电,且所述设备状态为待受电状态的情况下,控制所述第二电池包为所述无线空调器进行供电。
  36. [根据细则91更正 07.09.2022]
    如权利要求31所述的方法,其中,所述无线空调器上设置有太阳能转换模块,用于将太阳能转换为电能,所述方法还包括:
    获取所述无线空调器的设备状态;
    在所述第二电池包状态为待充电状态,所述设备状态为停止受电状态的情况下,控制所述无线空调器通过所述太阳能转换模块输出的电能对所述第二电池包进行充电。
  37. [根据细则91更正 07.09.2022]
    如权利要求35所述的方法,还包括:
    在所述第二电池包状态为待充电状态,所述设备状态为待受电状态,控制所述无线空调器通过所述太阳能转换模块输出的电能对所述第二电池包充电,以及对所述无线空调器供电。
  38. [根据细则91更正 07.09.2022]
    如权利要求35所述的方法,还包括:
    在所述第二电池包状态为饱和状态,且所述设备状态为待受电状态的情况下,控制所述无线空调器通过所述太阳能转换模块输出的电能对所述无线空调器供电。
  39. [根据细则91更正 07.09.2022]
    一种空调器供电控制装置,应用于如权利要求1-23任一项所述的空调机组中,包括:
    第一处理模块,用于在监测到无线充电装置接入市电的情况下,控制所述无线充电装置对储能模块和/或无线空调器进行无线供电;
    第二处理模块,用于在监测到所述无线充电装置未接入市电的情况下,控制所述储能模块对所述无线空调器进行无线供电。
  40. [根据细则91更正 07.09.2022] 
    一种空调器供电控制装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求24-37中任一权利要求所述的方法。
  41. [根据细则91更正 07.09.2022] 
    一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求24-37任一项所述方法的步骤。
PCT/CN2022/110224 2021-10-22 2022-08-04 空调机组、供电控制方法、装置及存储介质 WO2023065776A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202111236393.2 2021-10-22
CN202111235022.2A CN116014864A (zh) 2021-10-22 2021-10-22 空调器供电控制方法、装置及可读存储介质
CN202111237927.3A CN116014912A (zh) 2021-10-22 2021-10-22 一种空调机组
CN202122561909.2U CN216216102U (zh) 2021-10-22 2021-10-22 一种空调机组
CN202111235022.2 2021-10-22
CN202122561909.2 2021-10-22
CN202122560274.4 2021-10-22
CN202111236394.7 2021-10-22
CN202111236394.7A CN116014911A (zh) 2021-10-22 2021-10-22 一种空调机组
CN202111236393.2A CN116014831A (zh) 2021-10-22 2021-10-22 空调器供电控制方法、装置及可读存储介质
CN202122560274.4U CN216216101U (zh) 2021-10-22 2021-10-22 一种空调机组
CN202111237927.3 2021-10-22

Publications (1)

Publication Number Publication Date
WO2023065776A1 true WO2023065776A1 (zh) 2023-04-27

Family

ID=86058783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110224 WO2023065776A1 (zh) 2021-10-22 2022-08-04 空调机组、供电控制方法、装置及存储介质

Country Status (1)

Country Link
WO (1) WO2023065776A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051070A (zh) * 2013-01-07 2013-04-17 广东美的电器股份有限公司 立式空调、立式空调室内机及其无线供电装置
CN103563212A (zh) * 2011-01-14 2014-02-05 海尔集团公司 无线供电系统及其控制方法
CN106054642A (zh) * 2016-06-29 2016-10-26 广东美的制冷设备有限公司 智能配件及家电设备
JP2016201888A (ja) * 2015-04-09 2016-12-01 東芝キヤリア株式会社 空調システム、およびこれに用いるスマートデバイス、データ通信方法
CN108336770A (zh) * 2017-01-19 2018-07-27 北京中诺电力工程有限公司 一种远距离无线充电系统
CN109301945A (zh) * 2018-08-27 2019-02-01 珠海格力电器股份有限公司 空调输电方法、装置和空调
CN216216102U (zh) * 2021-10-22 2022-04-05 佛山市顺德区美的电子科技有限公司 一种空调机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563212A (zh) * 2011-01-14 2014-02-05 海尔集团公司 无线供电系统及其控制方法
CN103051070A (zh) * 2013-01-07 2013-04-17 广东美的电器股份有限公司 立式空调、立式空调室内机及其无线供电装置
JP2016201888A (ja) * 2015-04-09 2016-12-01 東芝キヤリア株式会社 空調システム、およびこれに用いるスマートデバイス、データ通信方法
CN106054642A (zh) * 2016-06-29 2016-10-26 广东美的制冷设备有限公司 智能配件及家电设备
CN108336770A (zh) * 2017-01-19 2018-07-27 北京中诺电力工程有限公司 一种远距离无线充电系统
CN109301945A (zh) * 2018-08-27 2019-02-01 珠海格力电器股份有限公司 空调输电方法、装置和空调
CN216216102U (zh) * 2021-10-22 2022-04-05 佛山市顺德区美的电子科技有限公司 一种空调机组

Similar Documents

Publication Publication Date Title
US11807068B2 (en) Vehicle and temperature control device thereof
US9628003B2 (en) Direct current power supply device, motor driving device, air conditioner, and refrigerator
CN102287891B (zh) 直流变频空调及其控制方法
CN216216102U (zh) 一种空调机组
CN216436892U (zh) 一种空调机组
CN216203946U (zh) 一种空调器
WO2023065776A1 (zh) 空调机组、供电控制方法、装置及存储介质
WO2023065777A1 (zh) 空调机组、无线供电控制方法、装置及存储介质
JP2012172913A (ja) 空気調和機
CN216216101U (zh) 一种空调机组
CN203744433U (zh) 光伏空调系统
CN216384688U (zh) 一种空调器
WO2023065775A1 (zh) 一种空调器的控制装置及空调器
CN216693934U (zh) 一种无线空调器的控制装置
CN217464707U (zh) 一种空调器
CN116014911A (zh) 一种空调机组
CN217464706U (zh) 一种空调器的控制装置
CN116014912A (zh) 一种空调机组
CN216693841U (zh) 一种蓄能装置及空调器
CN116014905A (zh) 一种空调机组
CN116007241A (zh) 一种空调器
CN116007080A (zh) 一种空调器
CN216204177U (zh) 一种无线空调器及其控制装置
CN116007083A (zh) 一种空调器的控制装置
CN116007082A (zh) 一种空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE