WO2023065735A1 - 一种从空气中直接捕集二氧化碳的装置和方法 - Google Patents

一种从空气中直接捕集二氧化碳的装置和方法 Download PDF

Info

Publication number
WO2023065735A1
WO2023065735A1 PCT/CN2022/105875 CN2022105875W WO2023065735A1 WO 2023065735 A1 WO2023065735 A1 WO 2023065735A1 CN 2022105875 W CN2022105875 W CN 2022105875W WO 2023065735 A1 WO2023065735 A1 WO 2023065735A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
air
grating
adsorbent
thin
Prior art date
Application number
PCT/CN2022/105875
Other languages
English (en)
French (fr)
Inventor
邱峰
刘英聚
杨天磊
Original Assignee
北京德润晨环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京德润晨环保科技有限公司 filed Critical 北京德润晨环保科技有限公司
Publication of WO2023065735A1 publication Critical patent/WO2023065735A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/4009Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to the technical fields of environmental protection, atmospheric treatment and resource utilization, and more specifically relates to a device and method for directly capturing carbon dioxide from the air.
  • the patent document with the publication number CN102527191A discloses a carbon dioxide recovery device and a carbon dioxide recovery method, which mainly uses a solution to absorb carbon dioxide; however, this technical solution requires a large area of land for equipment and is not practically operable.
  • Carbon Engineering in Canada uses potassium hydroxide solution to absorb carbon dioxide in the air; however, its regeneration process consumes a lot of heat energy, that is, the regeneration process needs to heat the material to 900°C.
  • the purpose of the present invention is to provide a device and method for directly capturing carbon dioxide from the air, which can realize the direct capture of carbon dioxide from the air and continuous production of high-purity carbon dioxide products, and the capture rate is high, while the device
  • the equipment layout is compact, the floor area is small, and there is no waste solid or waste liquid discharge, which can reduce equipment investment and carbon dioxide capture cost.
  • the invention provides a device for directly capturing carbon dioxide from the air, comprising:
  • a thin-layer moving bed is composed of a grating shell and a grating inner cylinder, an annular gap is formed between the grating shell and the grating inner cylinder, and a spherical solid amine adsorbent is filled in the annular gap;
  • the high-level tank and several induced draft fans arranged on the top of the thin-layer moving bed the lower part of the high-level tank is provided with a feeding pipe, which communicates with the upper part of the annular gap, and the top is provided with an air outlet, through which the several induced draft fans and the filter
  • the inner cylinder of the grid is connected, and the upper part is equipped with a quick splitter;
  • a desorber in which the feeding port communicates with the tapered feeding port is equipped with a heating coil, a CO2 distribution pipe and a filter cartridge, the top is provided with a CO2 outlet, and the bottom is provided with an adsorbent outlet ;
  • the diameter of the grating casing is 2.1m-10.6m, and the grating gap is 30 ⁇ m-250 ⁇ m;
  • the diameter of the inner cylinder of the grating is 2m-10m, and the gap of the grating is 30 ⁇ m-250 ⁇ m;
  • the width of the annular gap formed between the grating shell and the grating inner cylinder is 50mm-300mm.
  • the spherical solid amine adsorbent is a resin pellet solid amine adsorbent; the particle size of the spherical solid amine adsorbent is 200 ⁇ m ⁇ 1000 ⁇ m.
  • the height of the thin-bed moving bed is 10m-25m.
  • the air outlet is provided with a filter cartridge.
  • a discharge pipe is provided at the bottom of the tapered feed opening, which communicates with the feed inlet of the desorber through a spiral conveying pipe.
  • the CO 2 distribution pipe communicates with the CO 2 outlet through the filter cartridge.
  • the outlet of the adsorbent communicates with the inlet of the cooler through a spiral conveying pipe.
  • the present invention also provides a method for directly capturing carbon dioxide from the air, using the device described in the above technical solution, comprising the following steps:
  • the air containing CO2 passes through the shell of the screen horizontally and enters the thin-layer moving bed, and is in contact with the spherical solid amine adsorbent for CO2 adsorption. After capturing CO2 , the purified air passes through the inner cylinder of the screen horizontally , and is discharged from the air outlet by the induced draft fan.
  • the spherical solid amine adsorbent after adsorbing CO2 moves from top to bottom, enters the desorber through the conical discharge port, and after being heated by the heating coil, CO2 is desorbed from the spherical solid amine adsorbent by CO 2 It is discharged from the outlet; the spherical solid amine adsorbent after desorbing CO2 enters the cooler for cooling, then goes through the riser to the high-level tank, and then is transported to the upper part of the annular gap through the lowering pipe for recycling.
  • the heating temperature through the heating coil is 100°C-120°C; the cooling temperature entering the cooler is 30°C-50°C.
  • the invention provides a device and method for directly capturing carbon dioxide from the air;
  • the device includes: a thin-layer moving bed;
  • the thin-layer moving bed is composed of a grating shell and a grating inner cylinder, and the grating shell and An annular gap is formed between the inner cylinders of the grating, and the spherical solid amine adsorbent is filled in the annular gap;
  • the high-level tank and several induced draft fans are arranged on the top of the thin-layer moving bed;
  • the lower part of the high-level tank is provided with a feeding pipe, It communicates with the upper part of the annular gap, and the top is provided with an air outlet, which communicates with the inner cylinder of the grating through the several induced draft fans, and the upper part is provided with a quick splitter;
  • the tapered feeding port is arranged at the bottom of the thin-layer moving bed;
  • a desorber in which the feed opening communicates with the tapered feed opening;
  • the device provided by the present invention adopts a specific structure and connection relationship, uses a spherical solid amine thin-layer moving bed to directly capture carbon dioxide from the air, realizes high-efficiency, large-scale carbon dioxide capture, and can continuously Produce high-purity carbon dioxide products; at the same time, the device has a compact layout, a small footprint, no waste solids, and waste liquid discharge, which can reduce equipment investment and carbon dioxide capture costs.
  • Experimental results show that the device and method for directly capturing carbon dioxide from the air provided by the present invention have a CO 2 capture rate of 70%-90%, and can produce CO 2 products with a purity of 95%-99%.
  • the invention adopts a special heat exchange process, which greatly improves the energy utilization rate; it can adopt an axial flow induced fan with a large flow rate and a low wind pressure head, and it can be applied to large-scale CO2 capture, which has broad application prospects.
  • Fig. 1 is a schematic structural diagram of a device for directly capturing carbon dioxide from the air provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the working process of the device for directly capturing carbon dioxide from the air provided by the embodiment of the present invention.
  • the invention provides a device for directly capturing carbon dioxide from the air, comprising:
  • a thin-layer moving bed is composed of a grating shell and a grating inner cylinder, an annular gap is formed between the grating shell and the grating inner cylinder, and a spherical solid amine adsorbent is filled in the annular gap;
  • the high-level tank and several induced draft fans arranged on the top of the thin-layer moving bed the lower part of the high-level tank is provided with a feeding pipe, which communicates with the upper part of the annular gap, and the top is provided with an air outlet, through which the several induced draft fans and the filter
  • the inner cylinder of the grid is connected, and the upper part is equipped with a quick splitter;
  • a desorber in which the feeding port communicates with the tapered feeding port is equipped with a heating coil, a CO2 distribution pipe and a filter cartridge, the top is provided with a CO2 outlet, and the bottom is provided with an adsorbent outlet ;
  • Fig. 1 is a schematic structural diagram of a device for directly capturing carbon dioxide from the air provided by an embodiment of the present invention; wherein, 1 is a high-level tank, 2 is an induced draft fan, 3 is a distribution pipe of a high-level tank, and 4 is a blanking Pipe, 5 is the grating inner cylinder, 6 is the grating shell, 7 is the thin-layer moving bed, 8 is the discharge pipe, 9 is the screw conveying pipe, 10 is the desorber, 11 is the heating coil, 12 is the CO2 distribution Pipe, 13 is the adsorbent outlet, 14 is the screw conveying pipe, 15 is the air outlet, 16 is the filter cartridge, 17 is the quick separation head, 18 is the riser, 19 is the filter cartridge, 20 is the cooler, 21 is the cooling pipe , 22 is the air distribution pipe.
  • 1 is a high-level tank
  • 2 is an induced draft fan
  • 3 is a distribution pipe of a high-level tank
  • 4 is a blanking Pipe
  • 5 is the
  • the thin-layer moving bed is the main equipment for capturing carbon dioxide;
  • the thin-layer moving bed is composed of a grating shell and a grating inner cylinder, specifically, the grating inner cylinder is nested in the grating shell;
  • an annular gap is formed between the grating shell and the grating inner cylinder, and the annular gap is filled with a spherical solid amine adsorbent.
  • the diameter of the grating shell is preferably 2.1m to 10.6m, and the grating gap is preferably 30 ⁇ m to 250 ⁇ m; the diameter of the grating inner cylinder is preferably 2 m to 10 m, and the grating gap is preferably 30 ⁇ m to 250 ⁇ m. 250 ⁇ m; so as to ensure the free flow of air on the basis of ensuring that the spherical solid amine adsorbent particles placed in the annular gap formed between the two do not leak from the gap of the grating.
  • the width of the annular gap formed between the grating outer shell and the grating inner cylinder is preferably 50mm-300mm.
  • the spherical solid amine adsorbent is preferably a resin bead solid amine adsorbent, more preferably a pellet (DRC adsorbent) synthesized by polystyrene and solid amine; the spherical solid amine adsorbent
  • the particle size is preferably 200 ⁇ m to 1000 ⁇ m, more preferably 300 ⁇ m to 600 ⁇ m.
  • there is no special limitation on the source of the spherical solid amine adsorbent and commercially available products well known to those skilled in the art can be used.
  • every kilogram of spherical solid amine adsorbent particles can capture 30g-60g of CO 2 .
  • the height of the thin-bed moving bed is preferably 10m-25m.
  • the top of the thin-bed moving bed is provided with a high-level tank and several induced draft fans, wherein the high-level tank is located at the center of the top, and several induced draft fans are arranged around the high-level tank along the circumference.
  • the lower part of the high-level tank is provided with a feeding pipe, which communicates with the upper part of the annular gap; on this basis, the spherical solid amine adsorbent in the high-level tank can enter the annular gap through the feeding pipe.
  • the number of the feeding pipes is not unique, and the number of the spherical solid amine adsorbents that are well known to those skilled in the art can be used to fill the annular gap.
  • the top of the high-level tank is provided with an air outlet, through which the plurality of induced draft fans communicate with the inner cylinder of the grating, so that the air in the inner cylinder of the grating can be discharged from the air outlet under the action of the induced draft fan; the air
  • the outlet is preferably provided with a filter cartridge.
  • the upper part of the high-level tank is provided with a quick separation head, which is used to return the spherical solid amine adsorbent in the riser to the high-level tank.
  • the high-level tank is preferably further provided with a high-level tank distribution pipe.
  • the bottom of the thin-layer moving bed is provided with a tapered feeding port;
  • the tapered feeding port is formed by a tapered head connected to the lower end of the grating inner cylinder and a tapered funnel connected to the lower end of the grating shell.
  • Composition; the bottom of the tapered feeding port is preferably provided with a discharge pipe, which communicates with the feed port of the desorber through a spiral conveying pipe.
  • the invention designs a thin-layer moving bed that moves from top to bottom, and the air passes through the thin-layer moving bed vertically to absorb CO 2 , which realizes the capture of CO 2 under the condition of ultra-low pressure drop of 0.3kPa to 1kPa, and can adopt large flow and low wind
  • the axial-flow induced fan with pressure head can be applied to large-scale CO 2 capture, which can reduce equipment investment and CO 2 capture cost.
  • the desorber is the main equipment for desorbing the spherical solid amine adsorbent that captures carbon dioxide; the inside of the desorber is provided with heating coils, CO distribution pipes and filter cartridges; wherein the heating The coil is preferably a serpentine steam heating coil.
  • the heat source steam enters the heating coil from one end and the condensed water is discharged from the other end after heat exchange.
  • a CO 2 outlet is provided at the top of the desorber, and the CO 2 distribution pipe communicates with the CO 2 outlet preferably through a filter cartridge.
  • an adsorbent discharge port is provided at the bottom of the desorber, and the adsorbent discharge port is preferably communicated with the feed port of the cooler through a spiral conveying pipe.
  • the cooler is the main equipment for cooling the desorbed spherical solid amine adsorbent; the inside of the cooler is provided with a cooling pipe, and the cooling pipe is preferably a serpentine cooling pipe, and the cooling water flows from one end After entering the heat exchange, it is discharged from the other end.
  • an air distribution pipe is also provided inside the cooler.
  • the top of the cooler communicates with the quick separation head of the high-level tank through a riser, so that the cooled spherical solid amine adsorbent can return to the high-level tank for recycling.
  • the above-mentioned device provided by the present invention realizes the continuous operation of the production process of directly capturing CO2 from the air, the CO2 capture rate is 70% to 90%, and can produce CO2 products with a purity of 95% to 99%; at the same time, the The equipment of the device is compactly arranged, occupies a small area, and has no waste products and waste liquid discharge.
  • the present invention also provides a method for directly capturing carbon dioxide from the air, using the device described in the above technical solution, comprising the following steps:
  • the air containing CO2 passes through the shell of the screen horizontally and enters the thin-layer moving bed, and is in contact with the spherical solid amine adsorbent for CO2 adsorption. After capturing CO2 , the purified air passes through the inner cylinder of the screen horizontally , and is discharged from the air outlet by the induced draft fan.
  • the spherical solid amine adsorbent after adsorbing CO2 moves from top to bottom, enters the desorber through the conical discharge port, and after being heated by the heating coil, CO2 is desorbed from the spherical solid amine adsorbent by CO 2 It is discharged from the outlet; the spherical solid amine adsorbent after desorbing CO2 enters the cooler for cooling, then goes through the riser to the high-level tank, and then is transported to the upper part of the annular gap through the lowering pipe for recycling.
  • the method for directly capturing carbon dioxide from the air is generally divided into three processes:
  • Adsorption process Utilize the induced draft fan (such as the oblique flow fan well known to those skilled in the art) to introduce the air into the capture device with a high air volume, and carry out gas-solid contact with the downward flowing spherical solid amine adsorbent, so that the spherical The solid amine adsorbent is in full contact with the air and can absorb carbon dioxide efficiently;
  • the induced draft fan such as the oblique flow fan well known to those skilled in the art
  • Cooling process The desorbed spherical solid amine adsorbent continues to be transported to the cooler, and the temperature is lowered by cooling water; the cooled spherical solid amine adsorbent is lifted to a high level for recycling.
  • the air containing CO 2 is preferably air containing 200ppm-600ppm CO 2 , and the present invention has no special limitation on its source.
  • the purified air containing 10ppm-100ppm CO2 passes through the inner cylinder of the screen horizontally, and is discharged from the top through the induced draft fan.
  • the heating temperature through the heating coil is preferably 100°C-120°C; the cooling temperature entering the cooler is preferably 30°C-50°C.
  • the present invention focuses on large-scale direct air capture, forms fluidized process capture, realizes scale through fluidized bed process, greatly reduces investment cost and capture cost, and realizes high-efficiency, large-scale air capture ;
  • the special heat exchange process is adopted, which greatly improves the energy utilization rate; and the axial flow fan with large flow rate and low wind pressure head can be used for large-scale CO 2 capture, which has broad application prospects.
  • the invention provides a device and method for directly capturing carbon dioxide from the air;
  • the device includes: a thin-layer moving bed;
  • the thin-layer moving bed is composed of a grating shell and a grating inner cylinder, and the grating shell and An annular gap is formed between the inner cylinders of the grating, and the spherical solid amine adsorbent is filled in the annular gap;
  • the high-level tank and several induced draft fans are arranged on the top of the thin-layer moving bed;
  • the lower part of the high-level tank is provided with a feeding pipe, It communicates with the upper part of the annular gap, and the top is provided with an air outlet, which communicates with the inner cylinder of the grating through the several induced draft fans, and the upper part is provided with a quick splitter;
  • the tapered feeding port is arranged at the bottom of the thin-layer moving bed;
  • a desorber in which the feed opening communicates with the tapered feed opening;
  • the device provided by the present invention adopts a specific structure and connection relationship, uses a spherical solid amine thin-layer moving bed to directly capture carbon dioxide from the air, realizes high-efficiency, large-scale carbon dioxide capture, and can continuously Produce high-purity carbon dioxide products; at the same time, the device has a compact layout, a small footprint, no waste solids, and waste liquid discharge, which can reduce equipment investment and carbon dioxide capture costs.
  • Experimental results show that the device and method for directly capturing carbon dioxide from the air provided by the present invention have a CO 2 capture rate of 70%-90%, and can produce CO 2 products with a purity of 95%-99%.
  • the invention adopts a special heat exchange process, which greatly improves the energy utilization rate; it can adopt an axial flow induced fan with a large flow rate and a low wind pressure head, and it can be applied to large-scale CO2 capture, which has broad application prospects.
  • the present invention adopts the device for directly capturing carbon dioxide from the air described in the above technical solution, as shown in Figure 1 for details; wherein, 1 is a high-level tank, 2 is a diagonal flow fan, 3 is a distribution pipe of a high-level tank, and 4 is a blanking Tube (the number is 20), 5 is the grating inner tube (diameter is 10m, the grating gap is preferably 200 ⁇ m), 6 is the grating shell (diameter is 10.2m, the grating gap is preferably 200 ⁇ m), the filter
  • the width of the annular gap formed between the grid shell and the grid inner cylinder is 100 mm
  • 7 is a thin layer moving bed (height is 20 m, filled with spherical solid amine adsorbent, specifically DRC adsorbent, particle size is 300 ⁇ m ⁇ 600 ⁇ m)
  • 8 is the discharge pipe
  • 9 is the spiral conveying pipe
  • 10 is the desorber
  • 11 is the serpentine heating coil
  • the air containing 400ppm CO2 is horizontally passed through the shell of the screen into the thin layer moving bed, and the gas-solid contact with the downward flowing spherical solid amine adsorbent is carried out for CO2 adsorption, and the CO2 after capture Purified air (including 10ppm CO 2 ) passes through the inner cylinder of the screen horizontally, and is discharged from the air outlet on the top; the spherical solid amine adsorbent after absorbing CO 2 moves from top to bottom, and passes through the conical discharge port, discharge pipe, spiral
  • the delivery pipe enters the desorber, and is heated by a serpentine heating coil (using saturated water vapor for heat exchange) to 110°C to desorb CO 2 from the spherical solid amine adsorbent to achieve desorption, while CO 2 is converted from CO 2 It is discharged from the outlet to obtain a CO2 product with a purity of 95%; the spherical solid amine adsorbent after de

Abstract

一种从空气中直接捕集二氧化碳的装置,包括:由滤栅外壳和滤栅内筒组成的薄层移动床,二者之间形成环形间隙,环形间隙内填充球形固态胺吸附剂;设置在薄层移动床顶部的高位罐和若干引风机;高位罐下部设有下料管,顶部设有空气出口,上部设有快分头;设置在薄层移动床底部的锥形下料口;进料口与锥形下料口相通的解吸器;解吸器内部设有加热盘管、CO 2分布管和过滤筒,顶部设有CO 2出口,底部设有吸附剂出料口;进料口与吸附剂出料口相通的冷却器;冷却器内部设有冷却管,顶部通过提升管与高位罐的快分头相通。该装置利用球形固态胺薄层移动床从空气中直接捕集二氧化碳,实现了高效率、大规模的二氧化碳捕集,并且能够连续生产高纯度二氧化碳产品。

Description

一种从空气中直接捕集二氧化碳的装置和方法
本申请要求于2021年10月22日提交中国专利局、申请号为202111233307.2、发明名称为“一种从空气中直接捕集二氧化碳的装置和方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及环境保护、大气治理、资源利用技术领域,更具体地说,是涉及一种从空气中直接捕集二氧化碳的装置和方法。
背景技术
过去一百年来气候发生了显著的变化,根据联合国政府间气候变化专门委员会(IPCC)第五次报告(AR5)指出:全球地表温度1880-2012年间温度升高了0.85℃,过去3个十年比1850年以来的任何一个十年都暖;全球海平面1901-2010年间上升了0.19米,1979-2012年北极海冰的面积每十年减少3.5%-4.1%。
近年来,为应对全球化的气候变暖,各国政府加强了国际间合作,纷纷出台了一系列的政策法规,抑制诸如二氧化碳等温室气体的排放。如《巴黎协定》明确提出要将全球平均气温较前工业化时期上升幅度控制在2℃之内,并努力将温度上升幅度限制在1.5℃之内。IPCC表示:要想在本世纪末成功逆转全球气温上升的趋势,需要将大气中的二氧化碳全部抽离出来。
作为应对全球气候变化的有效对策,对于捕集、回收、利用空气中的二氧化碳人们做了大量研究和开发工作。如,公开号为CN102527191A专利文献公开了一种二氧化碳回收设备和二氧化碳回收方法,主要利用溶液吸收二氧化碳;但该技术方案需要大面积的设备用地,不具备现实可操作性。再如,加拿大的Carbon Engineering公司利用氢氧化钾溶液对空气中的二氧化碳进行吸附;但其再生过程需要消耗的大量的热能,即再生过程需将材料加热到900℃。
发明内容
有鉴于此,本发明的目的在于提供一种从空气中直接捕集二氧化碳的装置和方法,能够实现从空气中直接捕集二氧化碳并连续生产高纯度二氧化碳产 品,且捕集率高,同时该装置设备布置紧凑、占地面积小、无废固、废液排放,能够降低设备投资及二氧化碳的捕集成本。
本发明提供了一种从空气中直接捕集二氧化碳的装置,包括:
薄层移动床;所述薄层移动床由滤栅外壳和滤栅内筒组成,所述滤栅外壳和滤栅内筒之间形成环形间隙,所述环形间隙内填充球形固态胺吸附剂;
设置在所述薄层移动床顶部的高位罐和若干引风机;所述高位罐下部设有下料管,与所述环形间隙上部相通,顶部设有空气出口,通过所述若干引风机与滤栅内筒相通,上部设有快分头;
设置在所述薄层移动床底部的锥形下料口;
进料口与所述锥形下料口相通的解吸器;所述解吸器内部设有加热盘管、CO 2分布管和过滤筒,顶部设有CO 2出口,底部设有吸附剂出料口;
进料口与所述吸附剂出料口相通的冷却器;所述冷却器内部设有冷却管,顶部通过提升管与所述高位罐的快分头相通。
优选的,所述滤栅外壳的直径为2.1m~10.6m,滤栅缝隙为30μm~250μm;
所述滤栅内筒的直径为2m~10m,滤栅缝隙为30μm~250μm;
所述滤栅外壳和滤栅内筒之间形成环形间隙的宽度为50mm~300mm。
优选的,所述球形固态胺吸附剂为树脂小球固态胺吸附剂;所述球形固态胺吸附剂的粒径为200μm~1000μm。
优选的,所述薄层移动床的高度为10m~25m。
优选的,所述空气出口设有过滤筒。
优选的,所述锥形下料口底部设有出料管,通过螺旋输送管与所述解吸器的进料口相通。
优选的,所述CO 2分布管经过滤筒与CO 2出口相通。
优选的,所述吸附剂出料口通过螺旋输送管与所述冷却器的进料口相通。
本发明还提供了一种从空气中直接捕集二氧化碳的方法,采用上述技术方案所述的装置,包括以下步骤:
将含CO 2的空气水平穿过滤栅外壳进入薄层移动床,与球形固态胺吸附剂接触进行CO 2吸附,捕集CO 2后的净化空气水平穿过滤栅内筒,经引风机从空气出口排出;吸附CO 2后的球形固态胺吸附剂自上而下移动,经锥形下料口进入解吸器,通过加热盘管加热后,使CO 2从球形固态胺吸附剂中解吸出来由CO 2 出口排出;解吸CO 2后的球形固态胺吸附剂再进入冷却器冷却后,经提升管至高位罐,再经下料管输送到环形间隙上部循环使用。
优选的,所述通过加热盘管加热的温度为100℃~120℃;所述进入冷却器冷却的温度为30℃~50℃。
本发明提供了一种从空气中直接捕集二氧化碳的装置和方法;该装置包括:薄层移动床;所述薄层移动床由滤栅外壳和滤栅内筒组成,所述滤栅外壳和滤栅内筒之间形成环形间隙,所述环形间隙内填充球形固态胺吸附剂;设置在所述薄层移动床顶部的高位罐和若干引风机;所述高位罐下部设有下料管,与所述环形间隙上部相通,顶部设有空气出口,通过所述若干引风机与滤栅内筒相通,上部设有快分头;设置在所述薄层移动床底部的锥形下料口;进料口与所述锥形下料口相通的解吸器;所述解吸器内部设有加热盘管、CO 2分布管和过滤筒,顶部设有CO 2出口,底部设有吸附剂出料口;进料口与所述吸附剂出料口相通的冷却器;所述冷却器内部设有冷却管,顶部通过提升管与所述高位罐的快分头相通。与现有技术相比,本发明提供的装置采用特定结构及连接关系,利用球形固态胺薄层移动床从空气中直接捕集二氧化碳,实现了高效率、大规模的二氧化碳捕集,并且能够连续生产高纯度二氧化碳产品;同时该装置设备布置紧凑、占地面积小、无废固、废液排放,能够降低设备投资及二氧化碳的捕集成本。实验结果表明,本发明提供的从空气中直接捕集二氧化碳的装置和方法的CO 2捕集率为70%~90%,可生产纯度95%~99%的CO 2产品。
此外,本发明采用特殊的换热工艺,大大提高了能源利用率;可采用大流量、低风压头的轴流引风机,应用于大规模CO 2捕集,具有广阔的应用前景。
附图说明
图1为本发明实施例提供的从空气中直接捕集二氧化碳的装置的结构示意图;
图2为本发明实施例提供的从空气中直接捕集二氧化碳的装置的工作过程示意图。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种从空气中直接捕集二氧化碳的装置,包括:
薄层移动床;所述薄层移动床由滤栅外壳和滤栅内筒组成,所述滤栅外壳和滤栅内筒之间形成环形间隙,所述环形间隙内填充球形固态胺吸附剂;
设置在所述薄层移动床顶部的高位罐和若干引风机;所述高位罐下部设有下料管,与所述环形间隙上部相通,顶部设有空气出口,通过所述若干引风机与滤栅内筒相通,上部设有快分头;
设置在所述薄层移动床底部的锥形下料口;
进料口与所述锥形下料口相通的解吸器;所述解吸器内部设有加热盘管、CO 2分布管和过滤筒,顶部设有CO 2出口,底部设有吸附剂出料口;
进料口与所述吸附剂出料口相通的冷却器;所述冷却器内部设有冷却管,顶部通过提升管与所述高位罐的快分头相通。
请参阅图1,图1为本发明实施例提供的从空气中直接捕集二氧化碳的装置的结构示意图;其中,1为高位罐,2为引风机,3为高位罐分布管,4为下料管,5为滤栅内筒,6为滤栅外壳,7为薄层移动床,8为出料管,9为螺旋输送管,10为解吸器,11为加热盘管,12为CO 2分布管,13为吸附剂出料口,14为螺旋输送管,15为空气出口,16为过滤筒,17为快分头,18为提升管,19为过滤筒,20为冷却器,21为冷却管,22为空气分布管。
在本发明中,所述薄层移动床为捕集二氧化碳的主要设备;所述薄层移动床由滤栅外壳和滤栅内筒组成,具体将滤栅内筒嵌套在滤栅外壳内;在此基础上,所述滤栅外壳和滤栅内筒之间形成环形间隙,所述环形间隙内填充球形固态胺吸附剂。
在本发明中,所述滤栅外壳的直径优选为2.1m~10.6m,滤栅缝隙优选为30μm~250μm;所述滤栅内筒的直径优选为2m~10m,滤栅缝隙优选为30μm~250μm;从而在确保放置在二者之间形成的环形间隙内的球形固态胺吸附剂颗粒不从滤栅缝隙中漏出的基础上,实现空气的自由流动。
在本发明中,所述滤栅外壳和滤栅内筒之间形成环形间隙的宽度优选为 50mm~300mm。
在本发明中,所述球形固态胺吸附剂优选为树脂小球固态胺吸附剂,更优选为聚苯乙烯与固态胺合成的小球吸附剂(DRC吸附剂);所述球形固态胺吸附剂的粒径优选为200μm~1000μm,更优选为300μm~600μm。本发明对所述球形固态胺吸附剂的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。在本发明中,每公斤球形固态胺吸附剂颗粒能够捕集30g~60g的CO 2
在本发明中,所述薄层移动床的高度优选为10m~25m。
在本发明中,所述薄层移动床的顶部设置有高位罐和若干引风机,其中,所述高位罐位于顶部中心位置,若干引风机沿圆周布置在高位罐周围。
在本发明中,所述高位罐下部设有下料管,与所述环形间隙上部相通;在此基础上,高位罐中的球形固态胺吸附剂能够经下料管进入环形间隙中。在本发明中,所述下料管的个数不唯一,采用本领域技术人员熟知的方便在环形间隙中填充球形固态胺吸附剂的设置个数均可。
在本发明中,所述高位罐顶部设有空气出口,通过所述若干引风机与滤栅内筒相通,使滤栅内筒中的空气能够在引风机的作用下由空气出口排出;所述空气出口优选设有过滤筒。
在本发明中,所述高位罐上部设有快分头,用于将提升管中的球形固态胺吸附剂重新回到高位罐中。
在本发明中,所述高位罐内部优选还设有高位罐分布管。
在本发明中,所述薄层移动床的底部设有锥形下料口;所述锥形下料口由滤栅内筒下端连接的锥形封头和滤栅外壳下端连接的锥形漏斗组成;所述锥形下料口底部优选设有出料管,通过螺旋输送管与所述解吸器的进料口相通。
本发明设计了自上向下移动薄层移动床,空气垂直穿过薄层移动床吸附CO 2,实现了在0.3kPa~1kPa超低压降条件下捕集CO 2,可采用大流量、低风压头的轴流引风机,可应用于大规模CO 2捕集,可降低设备投资、降低CO 2捕集成本。
在本发明中,所述解吸器为捕集二氧化碳的球形固态胺吸附剂进行脱附的主要设备;所述解吸器内部设有加热盘管、CO 2分布管和过滤筒;其中,所述加热盘管优选为蛇形蒸汽加热盘管,热源(水蒸汽)由一端进入加热盘管经换热后冷凝水由另一端排出。
在本发明中,所述解吸器顶部设有CO 2出口,所述CO 2分布管优选经过滤筒与CO 2出口相通。
在本发明中,所述解吸器底部设有吸附剂出料口,所述吸附剂出料口优选通过螺旋输送管与所述冷却器的进料口相通。
在本发明中,所述冷却器为脱附后的球形固态胺吸附剂进行冷却的主要设备;所述冷却器内部设有冷却管,所述冷却管优选为蛇形冷却管,冷却水由一端进入经换热后由另一端排出。
在本发明中,所述冷却器内部还设有空气分布管。
在本发明中,所述冷却器顶部通过提升管与所述高位罐的快分头相通,从而使冷却后的球形固态胺吸附剂能够重新回到高位罐中循环使用。
本发明提供的上述装置实现了从空气中直接捕集CO 2生产过程的连续操作,CO 2捕集率为70%~90%,可生产纯度95%~99%的CO 2产品;同时,该装置的设备布置紧凑、占地面积小、无废品、废液排放。
本发明还提供了一种从空气中直接捕集二氧化碳的方法,采用上述技术方案所述的装置,包括以下步骤:
将含CO 2的空气水平穿过滤栅外壳进入薄层移动床,与球形固态胺吸附剂接触进行CO 2吸附,捕集CO 2后的净化空气水平穿过滤栅内筒,经引风机从空气出口排出;吸附CO 2后的球形固态胺吸附剂自上而下移动,经锥形下料口进入解吸器,通过加热盘管加热后,使CO 2从球形固态胺吸附剂中解吸出来由CO 2出口排出;解吸CO 2后的球形固态胺吸附剂再进入冷却器冷却后,经提升管至高位罐,再经下料管输送到环形间隙上部循环使用。
在本发明中,所述从空气中直接捕集二氧化碳的方法整体分为三个过程:
(1)吸附过程:利用引风机(如本领域技术人员熟知的斜流风机)高风量的将空气引入捕集设备,与向下流动的球形固态胺吸附剂进行气-固接触,从而使球形固态胺吸附剂与空气充分接触,高效率吸附二氧化碳;
(2)脱附过程:吸附饱和后的球形固态胺吸附剂输送至解吸器中,通过加热实现脱附;
(3)冷却过程:完成脱附的球形固态胺吸附剂继续输送至冷却器,通过冷却水实现降温;降温后的球形固态胺吸附剂提升至高位循环使用。
在本发明中,所述含CO 2的空气优选为含200ppm~600ppm CO 2的空气,本 发明对其来源没有特殊限制。在本发明中,经过上述吸附过程,含10ppm~100ppm CO 2的净化空气水平穿过滤栅内筒,经引风机从顶部排出。
在本发明中,所述通过加热盘管加热的温度优选为100℃~120℃;所述进入冷却器冷却的温度优选为30℃~50℃。
本发明着眼于大规模的空气直捕工作,形成流化工艺捕集,通过流化床工艺实现了规模化,大幅降低了投资成本与捕集成本,实现了高效率、大规模的空气捕集;同时采用特殊的换热工艺,大大提高了能源利用率;而且可采用大流量、低风压头的轴流引风机,应用于大规模CO 2捕集,具有广阔的应用前景。
本发明提供了一种从空气中直接捕集二氧化碳的装置和方法;该装置包括:薄层移动床;所述薄层移动床由滤栅外壳和滤栅内筒组成,所述滤栅外壳和滤栅内筒之间形成环形间隙,所述环形间隙内填充球形固态胺吸附剂;设置在所述薄层移动床顶部的高位罐和若干引风机;所述高位罐下部设有下料管,与所述环形间隙上部相通,顶部设有空气出口,通过所述若干引风机与滤栅内筒相通,上部设有快分头;设置在所述薄层移动床底部的锥形下料口;进料口与所述锥形下料口相通的解吸器;所述解吸器内部设有加热盘管、CO 2分布管和过滤筒,顶部设有CO 2出口,底部设有吸附剂出料口;进料口与所述吸附剂出料口相通的冷却器;所述冷却器内部设有冷却管,顶部通过提升管与所述高位罐的快分头相通。与现有技术相比,本发明提供的装置采用特定结构及连接关系,利用球形固态胺薄层移动床从空气中直接捕集二氧化碳,实现了高效率、大规模的二氧化碳捕集,并且能够连续生产高纯度二氧化碳产品;同时该装置设备布置紧凑、占地面积小、无废固、废液排放,能够降低设备投资及二氧化碳的捕集成本。实验结果表明,本发明提供的从空气中直接捕集二氧化碳的装置和方法的CO 2捕集率为70%~90%,可生产纯度95%~99%的CO 2产品。
此外,本发明采用特殊的换热工艺,大大提高了能源利用率;可采用大流量、低风压头的轴流引风机,应用于大规模CO 2捕集,具有广阔的应用前景。
为了进一步说明本发明,下面通过以下实施例进行详细说明。
实施例
本发明采用上述技术方案所述的从空气中直接捕集二氧化碳的装置,具体参见图1所示;其中,1为高位罐,2为斜流风机,3为高位罐分布管,4为下料管(个数为20个),5为滤栅内筒(直径为10m,滤栅缝隙优选为200μm),6为 滤栅外壳(直径为10.2m,滤栅缝隙优选为200μm),所述滤栅外壳和滤栅内筒之间形成环形间隙的宽度为100mm,7为薄层移动床(高度为20m,填充球形固态胺吸附剂,具体为DRC吸附剂,粒径为300μm~600μm),8为出料管,9为螺旋输送管,10为解吸器,11为蛇形加热盘管,12为CO2分布管,13为吸附剂出料口,14为螺旋输送管,15为空气出口,16为过滤筒,17为快分头,18为提升管,19为过滤筒,20为冷却器,21为蛇形冷却管,22为空气分布管。
上述从空气中直接捕集二氧化碳的装置的工作过程示意图参见图2所示,具体工作过程如下:
在斜流风机作用下,将含400ppm CO 2的空气水平穿过滤栅外壳进入薄层移动床,与向下流动的球形固态胺吸附剂气-固接触进行CO 2吸附,捕集CO 2后的净化空气(含10ppm CO 2)水平穿过滤栅内筒,从顶部的空气出口排出;吸附CO 2后的球形固态胺吸附剂自上而下移动,经锥形下料口、出料管、螺旋输送管,进入解吸器,通过蛇形加热盘管加热(利用饱和水蒸气换热)至110℃后,使CO 2从球形固态胺吸附剂中解吸出来,实现脱附,同时CO 2由CO 2出口排出,得到纯度为95%的CO 2产品;解吸CO 2后的球形固态胺吸附剂再由吸附剂出料口、螺旋输送管,进入冷却器冷却(利用冷却水换热)至40℃后,经提升管至高位罐,再经下料管输送到环形间隙上部循环使用;该从空气中直接捕集二氧化碳的装置的CO 2捕集率为97.5%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种从空气中直接捕集二氧化碳的装置,包括:
    薄层移动床;所述薄层移动床由滤栅外壳和滤栅内筒组成,所述滤栅外壳和滤栅内筒之间形成环形间隙,所述环形间隙内填充球形固态胺吸附剂;
    设置在所述薄层移动床顶部的高位罐和若干引风机;所述高位罐下部设有下料管,与所述环形间隙上部相通,顶部设有空气出口,通过所述若干引风机与滤栅内筒相通,上部设有快分头;
    设置在所述薄层移动床底部的锥形下料口;
    进料口与所述锥形下料口相通的解吸器;所述解吸器内部设有加热盘管、CO 2分布管和过滤筒,顶部设有CO 2出口,底部设有吸附剂出料口;
    进料口与所述吸附剂出料口相通的冷却器;所述冷却器内部设有冷却管,顶部通过提升管与所述高位罐的快分头相通。
  2. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在于,所述滤栅外壳的直径为2.1m~10.6m,滤栅缝隙为30μm~250μm;
    所述滤栅内筒的直径为2m~10m,滤栅缝隙为30μm~250μm;
    所述滤栅外壳和滤栅内筒之间形成环形间隙的宽度为50mm~300mm。
  3. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在于,所述球形固态胺吸附剂为树脂小球固态胺吸附剂;所述球形固态胺吸附剂的粒径为200μm~1000μm。
  4. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在于,所述薄层移动床的高度为10m~25m。
  5. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在于,所述空气出口设有过滤筒。
  6. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在于,所述锥形下料口底部设有出料管,通过螺旋输送管与所述解吸器的进料口相通。
  7. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在于,所述CO 2分布管经过滤筒与CO 2出口相通。
  8. 根据权利要求1所述的从空气中直接捕集二氧化碳的装置,其特征在 于,所述吸附剂出料口通过螺旋输送管与所述冷却器的进料口相通。
  9. 一种从空气中直接捕集二氧化碳的方法,其特征在于,采用权利要求1~8任一项所述的装置,包括以下步骤:
    将含CO 2的空气水平穿过滤栅外壳进入薄层移动床,与球形固态胺吸附剂接触进行CO 2吸附,捕集CO 2后的净化空气水平穿过滤栅内筒,经引风机从空气出口排出;吸附CO 2后的球形固态胺吸附剂自上而下移动,经锥形下料口进入解吸器,通过加热盘管加热后,使CO 2从球形固态胺吸附剂中解吸出来由CO 2出口排出;解吸CO 2后的球形固态胺吸附剂再进入冷却器冷却后,经提升管至高位罐,再经下料管输送到环形间隙上部循环使用。
  10. 根据权利要求9所述的从空气中直接捕集二氧化碳的方法,其特征在于,所述通过加热盘管加热的温度为100℃~120℃;所述进入冷却器冷却的温度为30℃~50℃。
PCT/CN2022/105875 2021-10-22 2022-07-15 一种从空气中直接捕集二氧化碳的装置和方法 WO2023065735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111233307.2 2021-10-22
CN202111233307.2A CN113813746A (zh) 2021-10-22 2021-10-22 一种从空气中直接捕集二氧化碳的装置和方法

Publications (1)

Publication Number Publication Date
WO2023065735A1 true WO2023065735A1 (zh) 2023-04-27

Family

ID=78917193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105875 WO2023065735A1 (zh) 2021-10-22 2022-07-15 一种从空气中直接捕集二氧化碳的装置和方法

Country Status (2)

Country Link
CN (1) CN113813746A (zh)
WO (1) WO2023065735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230353A1 (en) * 2022-05-27 2023-11-30 Zero Carbon Production, Llc High throughput moving panel direct air capture system
CN117732195A (zh) * 2024-02-20 2024-03-22 太原理工大学 一种煤热解的焦油与含氮物质收集装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813746A (zh) * 2021-10-22 2021-12-21 北京德润晨环保科技有限公司 一种从空气中直接捕集二氧化碳的装置和方法
CN114307535A (zh) * 2022-02-09 2022-04-12 西安热工研究院有限公司 一种连续空气直接捕集二氧化碳系统及方法
CN114939323A (zh) * 2022-04-20 2022-08-26 西安热工研究院有限公司 一种低能耗空气直接碳捕集系统
CN115228263A (zh) * 2022-08-05 2022-10-25 北京德润晨环保科技有限公司 两级薄层床二氧化碳捕集装置
CN115193246A (zh) * 2022-08-16 2022-10-18 北京德润晨环保科技有限公司 胺系吸附剂解吸二氧化碳捕集装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117672A (en) * 1998-12-22 2000-09-12 Breckenridge; Leon Moving bed biofilter and condenser for flue gas pollutant removal and collection
CN101274193A (zh) * 2008-04-18 2008-10-01 清华大学 一种烟气净化与硫回收系统及工艺
CN103079671A (zh) * 2010-04-30 2013-05-01 彼得·艾森伯格尔 捕集和封存二氧化碳的系统和方法
CN104162341A (zh) * 2014-08-14 2014-11-26 清华大学 一种固态胺吸附剂脱除烟气中co2的装置及方法
CN113332851A (zh) * 2021-02-24 2021-09-03 薛援 一种移动床干法烟气脱硫方法
CN113813746A (zh) * 2021-10-22 2021-12-21 北京德润晨环保科技有限公司 一种从空气中直接捕集二氧化碳的装置和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH557690A (de) * 1972-04-13 1975-01-15 Delbag Luftfilter Gmbh Mit riesel- oder schuettfaehigem kontaktmaterial beschicktes stehendes kesselfilter zur reinigung von gasen, insbesondere radioaktiver luft.
DE2755314A1 (de) * 1977-12-12 1979-08-09 Babcock Ag Verfahren zur absorptiven entfernung von schwefeldioxid, chlor und fluor aus abgasen
JP3225082B2 (ja) * 1992-03-19 2001-11-05 三井鉱山株式会社 排ガス処理方法
JP5820254B2 (ja) * 2011-12-09 2015-11-24 川崎重工業株式会社 二酸化炭素分離装置
AU2014300385B2 (en) * 2013-06-25 2016-12-22 Kawasaki Jukogyo Kabushiki Kaisha Carbon Dioxide Separation and Recovery System and Method
CN107661681A (zh) * 2017-11-08 2018-02-06 中国科学院过程工程研究所 一种烟气污染物净化塔
CN108854448A (zh) * 2018-07-06 2018-11-23 江苏中科睿赛污染控制工程有限公司 一种VOCs移动吸脱附-催化燃烧联动运行装置
DE102019113905A1 (de) * 2019-02-14 2020-08-20 Primarine GmbH Verfahren und Vorrichtung zur Reinigung schwefeloxidhaltiger Abgase aus Brennkraftmaschinen mittels eines mehrstufigen Adsorbtionsverfahrens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6117672A (en) * 1998-12-22 2000-09-12 Breckenridge; Leon Moving bed biofilter and condenser for flue gas pollutant removal and collection
CN101274193A (zh) * 2008-04-18 2008-10-01 清华大学 一种烟气净化与硫回收系统及工艺
CN103079671A (zh) * 2010-04-30 2013-05-01 彼得·艾森伯格尔 捕集和封存二氧化碳的系统和方法
CN104162341A (zh) * 2014-08-14 2014-11-26 清华大学 一种固态胺吸附剂脱除烟气中co2的装置及方法
CN113332851A (zh) * 2021-02-24 2021-09-03 薛援 一种移动床干法烟气脱硫方法
CN113813746A (zh) * 2021-10-22 2021-12-21 北京德润晨环保科技有限公司 一种从空气中直接捕集二氧化碳的装置和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023230353A1 (en) * 2022-05-27 2023-11-30 Zero Carbon Production, Llc High throughput moving panel direct air capture system
CN117732195A (zh) * 2024-02-20 2024-03-22 太原理工大学 一种煤热解的焦油与含氮物质收集装置

Also Published As

Publication number Publication date
CN113813746A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2023065735A1 (zh) 一种从空气中直接捕集二氧化碳的装置和方法
WO2023061507A1 (zh) 一种化学法和psa法同步回收烟道气中二氧化碳和氮气的系统及方法
WO2023029827A1 (zh) 一种固态胺吸收捕集及解吸二氧化碳的装置和方法
CN104740973A (zh) 一种高浓度有机废气中有机溶剂的回收装置
WO2014026641A1 (zh) 一种以CaO为载体循环捕集二氧化碳的设备及工艺
CN106902617A (zh) 一种高浓度voc气体净化回收装置及方法
CN108355462A (zh) Co2吸附系统和co2连续吸附的方法
CN102302888A (zh) 节能并延长吸附剂使用寿命的有机废气回收装置
CN106914104B (zh) 一种适应于连续捕集烟气中二氧化碳的吸收-再生器
CN112844033A (zh) 一种捕获co2鼓泡输送流化床反应装置和工艺
CN102527186B (zh) 丁烯氧化脱氢制丁二烯油气中溶剂油回收工艺及系统
CN102029100A (zh) 有机废气活性炭吸附的干法脱附工艺
CN202173868U (zh) 节能并延长吸附剂使用寿命的有机废气回收装置
TW201511816A (zh) 一種低耗能之二氧化碳吸附濃縮與轉化能源系統
CN214389500U (zh) 流化床有机废气浓缩装置
CN108329208A (zh) 一种采用高效低损溶剂对乙酸乙酯进行吸收处理的方法
CN103505985A (zh) 采用动力波吸收器捕集烟道气co2的方法
CN110756011B (zh) 一种循环流化床强化氨法碳捕集装置
CN218421925U (zh) 一种用于燃烧后co2捕集系统的含内置冷却器的解吸装置
CN217829454U (zh) 一种二氯甲烷尾气处理装置
CN218653714U (zh) 一种化工有机废气预处理环保设备
CN216171201U (zh) 一种变压吸附解析气回收利用装置
CN201880466U (zh) 一种二氧化碳气动吸收装置
CN209549044U (zh) 一种用于锅炉除尘的多管水箱
CN204337984U (zh) 一种吸收分离装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882357

Country of ref document: EP

Kind code of ref document: A1