WO2023065652A1 - 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用 - Google Patents

一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用 Download PDF

Info

Publication number
WO2023065652A1
WO2023065652A1 PCT/CN2022/093008 CN2022093008W WO2023065652A1 WO 2023065652 A1 WO2023065652 A1 WO 2023065652A1 CN 2022093008 W CN2022093008 W CN 2022093008W WO 2023065652 A1 WO2023065652 A1 WO 2023065652A1
Authority
WO
WIPO (PCT)
Prior art keywords
sphalerite
aminated surface
surface defect
aminated
perfluorinated
Prior art date
Application number
PCT/CN2022/093008
Other languages
English (en)
French (fr)
Inventor
谷成
陈张浩
滕影
米娜
李晨
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2023065652A1 publication Critical patent/WO2023065652A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Definitions

  • the invention belongs to the field of persistent pollutant degradation, and more specifically relates to an aminated surface defect sphalerite material, a preparation method and its application in degrading perfluorinated compounds.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctane sulfonic acid
  • PFASs perfluorooctane sulfonic acid
  • the invention provides an aminated surface defect sphalerite material, a preparation method and its application in degrading perfluorinated compounds.
  • a cationic surfactant in the synthesis process of sphalerite, the surface of sphalerite is aminated and induced to form surface crystal defects, so as to obtain an aminated surface defect sphalerite material, which shows the resistance to perfluorinated sphalerite.
  • the compound has strong adsorption and strong photoreducibility.
  • the application of this material in perfluorinated water can greatly improve the utilization rate of photogenerated electrons in the degradation process, reduce the side reactions caused by oxygen and protons, and effectively improve the degradation efficiency of perfluorinated compounds.
  • An aminated surface-defect sphalerite material of the present invention is characterized in that it contains primary or secondary amine groups and has surface zinc defects.
  • a kind of preparation method of sphalerite material of aminated surface defects of the present invention comprises respectively disposing zinc sulfate solution A, the mixed solution B of sodium sulfide and cationic surfactant; Then zinc sulfate solution A and mixed solution B are mixed, stirred , carry out the hydrothermal reaction, and obtain the aminated surface defect sphalerite material.
  • the amount ratio of sodium sulfide to cationic surfactant is 82:1-82:5.
  • the mass ratio of zinc sulfate, sodium sulfide and cationic surfactant is 74:82:1 ⁇ 74:82:5.
  • the cationic surfactant is a quaternary ammonium salt cationic surfactant, including dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide and cetyltrimethylammonium bromide One or more of ammonium.
  • the zinc sulfate solution A and the mixed solution B are mixed, and stirred at 50-70°C for 2-4 hours, and then hydrothermally reacted at 140-160°C for 15-17 hours, Aminated surface defect sphalerite materials are obtained.
  • a method for preparing an aminated surface defect sphalerite material of the present invention comprises the following specific steps:
  • step S30 Washing and freeze-drying the aminated surface-defect sphalerite material obtained in step S20.
  • the application of an aminated surface-defect sphalerite material in the degradation of perfluorinated compounds of the present invention comprises mixing the above-mentioned aminated surface-defect sphalerite material with a perfluorinated compound, and then aminating the aminated surface-defect sphalerite material
  • the mixed system with perfluorinated compounds is illuminated to realize photoreaction to degrade perfluorinated compounds.
  • the mass ratio between the aminated surface defect sphalerite material and the perfluorinated compound is 10:1 ⁇ 10:10.
  • the pH of the mixed system is adjusted to 4-10.
  • the reaction time of the photoreaction is 2-4 hours, and the reaction temperature is 20-30°C.
  • a high-pressure mercury lamp is used to illuminate the mixed system of the aminated surface-defect sphalerite material and the perfluorinated compound, and the high-pressure mercury lamp is a mercury lamp with a power of 500W.
  • the preparation method of a kind of aminated surface defect sphalerite material of the present invention is based on the wide bandgap semiconductor sphalerite, and uses cetyltrimethylammonium bromide (CTAB) to amine the sphalerite surface
  • CTAB cetyltrimethylammonium bromide
  • An aminated surface defect sphalerite material of the present invention can achieve rapid enrichment of perfluorinated pollutants by electron rearrangement with the anion head on the perfluorinated pollutants, and the aminated surface
  • the strong photoreducible photogenerated electrons generated by defective sphalerite will degrade and defluorinate the perfluorinated pollutants adsorbed on its surface, and realize the rapid degradation and defluorination of pollutants under aerobic and weakly acidic conditions;
  • the application of the aminated surface defect sphalerite material of the present invention in the degradation of perfluorinated compounds does not need to add any cocatalysts and electron donors, and the perfluorinated sphalerite adsorbed on the aminated surface defect sphalerite
  • the pollutant acts as an oxidizing agent and a reducing agent at the same time, and the application method does not cause secondary pollution to the environment, and realizes a green environment.
  • Fig. 1 is a schematic diagram of the synthetic route of a kind of aminated surface defect sphalerite material of the present invention
  • Fig. 2 is a schematic diagram of the principle of degrading perfluorinated compounds by an aminated surface defect sphalerite material of the present invention
  • Fig. 3 is a transmission electron microscope and a surface micro-area analysis diagram of an aminated surface defect sphalerite material of the present invention
  • Fig. 4 is the electron paramagnetic resonance figure of a kind of aminated surface defect sphalerite material of the present invention
  • Fig. 5 is the infrared spectrogram of a kind of aminated surface defect sphalerite material of the present invention
  • Fig. 6 is the chloranil test figure of a kind of aminated surface defect sphalerite material of the present invention.
  • Fig. 7 is an X-ray photoelectron energy spectrum diagram of an aminated surface defect sphalerite material of the present invention.
  • Fig. 8 is the ultraviolet absorption figure of a kind of aminated surface defect sphalerite material of the present invention.
  • Fig. 9 is a fluorescence diagram of an aminated surface defect sphalerite material of the present invention.
  • Fig. 10 is the adsorption thermodynamic diagram of a kind of aminated surface defect sphalerite material of the present invention to PFOA;
  • Fig. 11 is the adsorption kinetics figure of a kind of aminated surface defect sphalerite material of the present invention to PFOA;
  • Fig. 12 is a degradation kinetics diagram of PFOA by an aminated surface defect sphalerite material of the present invention
  • Fig. 13 is a kinetic diagram of the influence of pH on the degradation of PFOA system of a kind of aminated surface defect sphalerite material of the present invention
  • Fig. 14 is a multiple recycling diagram of the degradation of PFOA by an aminated surface defect sphalerite material of the present invention
  • Fig. 15 is a diagram of the degradation kinetics of PFOS by an aminated surface defect zinc blende material of the present invention.
  • a kind of preparation method of aminated surface defect sphalerite material of the present invention comprises the following steps:
  • S10 respectively configure zinc sulfate solution A, mixed solution B of sodium sulfide and cationic surfactant; wherein, the cationic surfactant is a quaternary ammonium salt cationic surfactant, including dodecyltrimethylammonium bromide, One or more in tetradecyltrimethylammonium bromide and cetyltrimethylammonium bromide; And in the mixed solution B, the amount of substance between sodium sulfide and cationic surfactant The ratio is 82:1 ⁇ 82:5;
  • the aminated surface-defect sphalerite material exhibits two advantages: on the one hand, this aminated surface-defect sphalerite can recombine with the anion head on the perfluorinated compound On the other hand, the photogenerated electrons generated by this aminated surface defect sphalerite exhibit stronger photoreduction and stronger carrier separation efficiency , which greatly improves the utilization efficiency of photogenerated electrons and enables rapid degradation and defluorination of PFASs under aerobic and weakly acidic conditions.
  • the basic content of this comparative example is the same as that of Example 1, except that no cetyltrimethylammonium bromide cationic surfactant is added during the synthesis of sphalerite.
  • the preparation method of the common sphalerite of this comparative example comprises the following steps:
  • aminated surface defect sphalerite is characterized by transmission electron microscopy, and the steps are:
  • Example 1 Disperse the aminated surface-defect sphalerite material of Example 1 into ethanol at a concentration of 100 mg L -1 , after ultrasonic dispersion, 10 ⁇ L was dropped onto the carbon mesh, and dried naturally for use.
  • the common sphalerite sample of Comparative Example 1 was prepared by the same method.
  • FIG. 3 (2) Put the sample prepared in the step (1) into a transmission electron microscope and take pictures, as shown in FIG. 3 .
  • Figure 3a and Figure 3c show the transmission electron microscope image and surface micro-area analysis image of ordinary sphalerite material, respectively
  • Figure 3b and Figure 3d show the transmission electron microscope image and surface micro-area analysis image of aminated surface defect zinc blende material .
  • aminated surface defect sphalerite is characterized by electron paramagnetic resonance, and the steps are as follows:
  • step (1) The two samples obtained in step (1) were tested by electron paramagnetic resonance, as shown in FIG. 4 .
  • aminated surface defect sphalerite is characterized by infrared spectroscopy, and the steps are:
  • step (1) The two samples obtained in step (1) were pressed into tablets and detected by infrared spectroscopy, and the test results are shown in Figure 5.
  • CTAB in the aminated surface defect sphalerite synthesized by the self-assembly method is converted into primary or secondary amines.
  • aminated surface defect sphalerite is characterized by the chloranil test, and the steps are:
  • step (1) pour the two samples in step (1) into 10mL of the mixed solution containing 3mM acetaldehyde and 3mM chloroaniline respectively, take pictures after shaking, the results are shown in Figure 6, the left test tube is CTAB solution, and the right test tube is Amination-deficient sphalerite dispersion.
  • CTAB in the aminated surface defect sphalerite synthesized by the self-assembly method is converted into primary or secondary amines.
  • aminated surface defect sphalerite is characterized by X-ray photoelectron spectroscopy, and the steps are:
  • the optical absorption performance of the aminated surface defect sphalerite is tested by a solid ultraviolet spectrophotometer, and the steps are:
  • step (2) The two samples obtained in step (1) were tested by a solid-state ultraviolet spectrophotometer, as shown in FIG. 8 .
  • aminated surface defect sphalerite has stronger ultraviolet absorption than ordinary sphalerite, and the light absorption range is also shifted to red light.
  • the fluorescence emission intensity of the aminated surface defect sphalerite is tested by solid fluorescence, and the steps are as follows:
  • This embodiment mainly investigates the adsorption thermodynamics of aminated surface defect sphalerite to PFOA, and its steps are;
  • This embodiment mainly investigates the adsorption efficiency of aminated surface defect sphalerite to PFOA, and its steps are;
  • This embodiment mainly investigates the degradation kinetics of aminated surface defect sphalerite to PFOA, and its steps are:
  • the reaction temperature is controlled at 25 ⁇ 2° C., and the reaction time is 3 hours.
  • the sampling time is set to 0h, 0.5h, 1h, 1.5h, 2h, 3h respectively.
  • three photoreaction tubes were taken out to measure the degradation rate and defluorination rate of PFOA, as shown in Figure 12.
  • aminated surface defect sphalerite significantly promotes the degradation and defluorination of PFOA.
  • This embodiment mainly investigates the influence of pH on the degradation of PFOA by aminated surface defect sphalerite, and the steps are:
  • the reaction temperature is controlled at 25 ⁇ 2° C., and the reaction time is 3 hours.
  • the sampling time is set to 0h, 0.5h, 1h, 1.5h, 2h, 3h respectively.
  • three photoreaction tubes were taken out to measure the degradation rate and defluorination rate of PFOA, as shown in Figure 13.
  • This embodiment mainly investigates the multiple recycling efficiency of aminated surface defect sphalerite degrading PFOA, and its steps are:
  • the reaction temperature was controlled at 25 ⁇ 2°C, and after 3 hours of reaction, three photoreaction tubes were taken out to measure the degradation rate and defluorination rate of PFOA;
  • aminated surface defect sphalerite has strong stability, and it still shows strong degradation and defluorination efficiency for PFOA after five cycles.
  • This embodiment mainly investigates the degradation kinetics of aminated surface defect sphalerite to PFOS, and its steps are:
  • the reaction temperature is controlled at 25 ⁇ 2° C., and the reaction time is 3 hours.
  • the sampling time is set to 0h, 0.5h, 1h, 1.5h, 2h, 3h respectively.
  • three photoreaction tubes were taken out to measure the degradation rate and defluorination rate of PFOS, as shown in FIG. 15 .
  • aminated surface defect sphalerite significantly promotes the degradation and defluorination of PFOS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用,属于持久性污染物降解领域。本发明通过在闪锌矿的合成过程中加入阳离子表面活性剂而对闪锌矿进行表面胺化并诱导形成表面晶体缺陷,得到一种新型的胺化表面缺陷闪锌矿材料,该材料表现出对全氟化合物(PFCs)极强的吸附性和极强的光还原性,应用在全氟污染水体中,能够大大促进PFCs降解和脱氟,解决现有降解全氟化合物技术存在的降解效率低、反应条件苛刻等问题。

Description

一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用 技术领域
本发明属于持久性污染物降解领域,更具体地说,涉及一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用。
背景技术
作为一类新兴污染物,全氟化合物因其较强的稳定性,潜在的毒性近年来引起了广泛的关注(Giesy,J.P.;Kannan,K.,Perfluorochemical surfactants in the environment.Environmental science&technology 2002,36,(7),146A-152A.Giesy,J.P.;Kannan,K.,Global distribution of perfluorooctane sulfonate in wildlife.Environmental Science&Technology 2001,35,(7),1339-1342.Paul,A.G.;Jones,K.C.;Sweetman,A.J.,AFirst Global Production,Emission,And Environmental Inventory For Perfluorooctane Sulfonate.Environmental science&technology 2009,43,(2),386-392.)。这其中,全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)是在环境中最为广泛检出的两种物质(Poothong,S.;Thomsen,C.;Padilla-Sanchez,J.A.;Papadopoulou,E.;Haug,L.S.,Distribution of Novel and Well-Known Poly-and Perfluoroalkyl Substances(PFASs)in Human Serum,Plasma,and Whole Blood.Environmental science&technology 2017,51,(22),13388-13396.Lorber,M.;Egeghy,P.P.,Simple intake and pharmacokinetic modeling to characterize exposure of Americans to perfluoroctanoic acid,PFOA.Environmental science&technology 2011,45,(19),8006-8014.)。最近,为了消除这类物质对生态环境以及人体的不良影响,国际社会已经将PFOA和PFOS分别列入到斯德哥尔摩公约的污染物优先控制名单。美国国家环保署也建立了PFOA和PFOS的饮用水健康风险指标为70ngL -1(Xiao,L.;Ling,Y.;Alsbaiee,A.;Li,C.;Helbling,D.E.;Dichtel,W.R.,beta-Cyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations.J Am Chem Soc 2017,139,(23),7689-7692.)。尽管多方面都在努力减少该类污染物造成的环境影响,但是这类污染物造成的环境问题仍然层出不穷。
为了有效控制该类污染物,先前的研究发明了多种去除水体中全氟污染物的技术,包括基于碳材料的吸附技术,基于电化学的氧化还原技术,基于硫酸根自由基和水合电子的自由基的去除技术(McCleaf,P.;Englund,S.;Ostlund,A.;Lindegren,K.;Wiberg,K.;Ahrens,L.,Removal efficiency of multiple poly-and perfluoroalkyl substances(PFASs)in drinking water  using granular activated carbon(GAC)and anion exchange(AE)column tests.Water Research 2017,120,77-87.Li,X.;Chen,S.;Quan,X.;Zhang,Y.,Enhanced Adsorption of PFOA and PFOS on Multiwalled Carbon Nanotubes under Electrochemical Assistance.Environmental Science&Technology 2011,45,(19),8498-8505.Niu,J.;Lin,H.;Xu,J.;Wu,H.;Li,Y.Electrochemical mineralization of perfluorocarboxylic acids(PFCAs)by ce-doped modified porous nanocrystalline PbO2 film electrode.Environmental Science&Technology 2012,46,10191-10198.Trojanowicz,M.;Bojanowska-Czajka,A.;Bartosiewicz,I.;Kulisa,K.Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate(PFOA)and perfluorooctanesulfonate(PFOS)-A review of recent advances.Chemical Engineering Journal 2018,336,170-199.Gu,Y.;Dong,W.;Luo,C.;Liu,T.Efficient Reductive Decomposition of Perfluorooctanesulfonate in a High Photon Flux UV/Sulfite System.Environmental Science&Technology 2016,50,10554.Qu,Y.;Zhang,C.;Li,F.;Chen,J.;Zhou,Q.Photo-reductive defluorination of perfluorooctanoic acid in water.Water Research 2010,44,2939.)。但是,由于全氟化合物的疏水疏脂性质及其结构稳定性,一般的活性碳材料对该类污染物的去除效率较低,生物化学技术对该类污染物几乎无效,而电化学氧化技术和硫酸根自由基对该类污染物的去除不彻底。
此外,虽然基于水合电子的高级还原技术被认为可以完全将全氟污染物降解破坏,是一种潜在的应用技术。但是,较强的还原性也使得基于水合电子的反应在有氧、中性条件下效率极低,创造有利于水合电子的化学反应环境(碱性、厌氧)也会大大提高该类技术的使用成本和应用难度。
发明内容
1.要解决的问题
针对现有全氟化合物降解技术存在降解效率低的问题,本发明提供一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用。本发明通过在闪锌矿的合成过程中加入阳离子表面活性剂而对闪锌矿进行表面胺化并诱导形成表面晶体缺陷,得到胺化的表面缺陷闪锌矿材料,该材料表现出对全氟化合物极强的吸附性和极强的光还原性。将该材料应用在全氟污染水体中,能够极大地提高降解过程中的光生电子利用率,同时降低氧气和质子带来的副反应,实现有效提高全氟化合物的降解效率。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
本发明的一种胺化表面缺陷闪锌矿材料,其特征在于:包含伯胺或仲胺基团,同时具有表面锌缺陷。
本发明的一种胺化表面缺陷闪锌矿材料的制备方法,包括分别配置硫酸锌溶液A,硫化钠与阳离子表面活性剂的混合溶液B;而后将硫酸锌溶液A与混合溶液B混合,搅拌,进行水热反应,得到胺化表面缺陷闪锌矿材料。
优选地,所述混合溶液B中,硫化钠与阳离子表面活性剂之间的物质的量比为82:1~82:5。
优选地,将硫酸锌溶液A与混合溶液B混合后,所述硫酸锌、硫化钠与阳离子表面活性剂之间的物质的量比为74:82:1~74:82:5。
优选地,所述阳离子表面活性剂为季铵盐阳离子表面活性剂,包括十二烷基三甲基溴化铵、十四烷基三甲基溴化铵和十六烷基三甲基溴化铵中的一种或多种。
优选地,在搅拌的条件下,将硫酸锌溶液A和混合溶液B进行混合,并在50~70℃下搅拌2~4小时,而后在140~160℃下进行水热反应15~17小时,得到胺化表面缺陷闪锌矿材料。
优选地,本发明的一种胺化表面缺陷闪锌矿材料的制备方法,包括以下具体步骤:
S10、分别配置10.8g L -1的七水合硫酸锌溶液35mL作为硫酸锌溶液A,以及9.9g L -1的九水合硫化钠和1.5mM十六烷基三甲基溴化铵的混合溶液35mL作为混合溶液B;
S20、在搅拌的条件下,将硫酸锌溶液A与混合溶液B混合,并在50~70℃下搅拌2~4小时,而后在140~160℃下进行水热反应15~17小时,得到胺化表面缺陷闪锌矿材料;
S30、对步骤S20中得到的胺化表面缺陷闪锌矿材料进行洗涤,冻干。
本发明的一种胺化表面缺陷闪锌矿材料在降解全氟化合物中的应用,包括将上述的胺化表面缺陷闪锌矿材料与全氟化合物混合,而后对胺化表面缺陷闪锌矿材料与全氟化合物的混合体系进行光照,实现光反应以降解全氟化合物。
优选地,所述胺化表面缺陷闪锌矿材料与全氟化合物之间的质量比为10:1~10:10。
优选地,在对胺化表面缺陷闪锌矿材料与全氟化合物的混合体系进行光照之前,调节所述混合体系的pH值为4~10。
优选地,所述光反应的反应时间为2~4小时,反应温度为20~30℃。
优选地,采用高压汞灯对胺化表面缺陷闪锌矿材料与全氟化合物的混合体系进行光照,所述高压汞灯是功率为500W的汞灯。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明的一种胺化表面缺陷闪锌矿材料的制备方法,基于宽禁带半导体闪锌矿,使用十六烷基三甲基溴化铵(CTAB)对闪锌矿表面进行胺化,胺化后的闪锌矿能够大大促进其对全氟污染物的吸附;
(2)本发明的一种胺化表面缺陷闪锌矿材料的制备方法,使用CTAB胺化闪锌矿的同时,所引入的溴离子能够使闪锌矿表面形成缺陷,这种胺化的表面缺陷闪锌矿具有更强的光还原性和光生载流子分离效率,大大促进了其对吸附在表面的全氟污染物的降解效率;
(3)本发明的一种胺化表面缺陷闪锌矿材料,可以通过与全氟污染物上的阴离子头部通过电子重排,从而实现全氟污染物的快速富集,并且胺化的表面缺陷闪锌矿产生的强光还原性的光生电子会把吸附在其表面的全氟污染物降解脱氟,实现了在好氧和弱酸性条件下对污染物的快速降解和脱氟;
(4)本发明的一种胺化表面缺陷闪锌矿材料在降解全氟化合物中的应用,不需要添加任何的助催化剂和电子供体,吸附在胺化表面缺陷闪锌矿上的全氟污染物同时充当了氧化剂和还原剂,该应用方法不会对环境造成二次污染,实现了绿色环境友好。
附图说明
图1为本发明的一种胺化表面缺陷闪锌矿材料的合成路径示意图;
图2为本发明的一种胺化表面缺陷闪锌矿材料降解全氟化合物的原理示意图;
图3为本发明的一种胺化表面缺陷闪锌矿材料的透射电镜和表面微区分析图;
图4为本发明的一种胺化表面缺陷闪锌矿材料的电子顺磁共振图;
图5为本发明的一种胺化表面缺陷闪锌矿材料的红外光谱图;
图6为本发明的一种胺化表面缺陷闪锌矿材料的氯醌测试图;
图7为本发明的一种胺化表面缺陷闪锌矿材料的X射线光电子能谱图;
图8为本发明的一种胺化表面缺陷闪锌矿材料的紫外吸收图;
图9为本发明的一种胺化表面缺陷闪锌矿材料的荧光图;
图10为本发明的一种胺化表面缺陷闪锌矿材料对PFOA的吸附热力学图;
图11为本发明的一种胺化表面缺陷闪锌矿材料对PFOA的吸附动力学图;
图12为本发明的一种胺化表面缺陷闪锌矿材料对PFOA的降解动力学图;
图13为pH对本发明的一种胺化表面缺陷闪锌矿材料降解PFOA体系影响的动力学图;
图14为本发明的一种胺化表面缺陷闪锌矿材料降解PFOA的多次循环利用图;
图15为本发明的一种胺化表面缺陷闪锌矿材料对PFOS的降解动力学图。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
如图1所示,本发明的一种胺化表面缺陷闪锌矿材料的制备方法,包括以下步骤:
S10、分别配置硫酸锌溶液A,硫化钠与阳离子表面活性剂的混合溶液B;其中,所述阳离子表面活性剂为季铵盐阳离子表面活性剂,包括十二烷基三甲基溴化铵、十四烷基三甲基 溴化铵和十六烷基三甲基溴化铵中的一种或多种;并且所述混合溶液B中,硫化钠与阳离子表面活性剂之间的物质的量比为82:1~82:5;
S20、在搅拌的条件下,将硫酸锌溶液A与混合溶液B混合,所述硫酸锌、硫化钠与阳离子表面活性剂之间的物质的量比为74:82:1~74:82:5;并且在50~70℃下水热搅拌2~4小时,控制搅拌速度范围为50~100rmp;而后将反应物转移到100mL的特氟龙反应釜中进行水热反应,水热反应的反应温度为140~160℃,水热反应的反应时间为15~17小时,反应后得到固体沉淀物;
S30、对固体沉淀物进行离心分离,使用100mL的甲醇和超纯水分别洗涤八次,得到胺化表面缺陷闪锌矿材料,收集冻干备用。
采用本发明的一种胺化表面缺陷闪锌矿材料降解全氟化合物的方法,包括将上述的胺化表面缺陷闪锌矿材料与全氟化合物混合,其中所述胺化表面缺陷闪锌矿材料与全氟化合物之间的质量比为10:1~10:10,并且调节胺化表面缺陷闪锌矿材料与全氟化合物的混合体系的pH值为4~10;而后将所述混合体系装入圆柱形石英光反应管(具体地d=1cm,h=15cm)中,使用配有500W高压汞灯的光反应仪对所述混合体系进行光照,实现光反应以降解全氟化合物,其中光反应的反应时间控制为2~4小时,反应温度为20~30℃。
需要说明的是,本发明在闪锌矿的合成过程中,由于加入一定量的季铵盐阳离子表面活性剂,使得阳离子表面活性剂对闪锌矿进行表面胺化,并诱导形成表面晶体缺陷,得到胺化的表面缺陷闪锌矿材料。如图2所示,该胺化的表面缺陷闪锌矿材料表现出两方面的优势:一方面,这种胺化的表面缺陷闪锌矿可以通过与全氟化合物上的阴离子头部通过电子重排,从而实现对水溶液中的全氟污染物快速富集;另一方面,这种胺化的表面缺陷闪锌矿产生的光生电子表现出更强光还原性和更强的载流子分离效率,这大大提高了光生电子的利用效率,能够实现在好氧和弱酸性条件下对PFASs的快速降解和脱氟。
利用胺化表面缺陷闪锌矿对全氟污染物极强的吸附性以及极强的光还原性,对全氟化合物污染水体进行处理,有效提高PFASs在环境状态下的降解效率,简化现有应用技术体系,实现绿色环境友好的处理,本发明的胺化表面缺陷闪锌矿具有较高的全氟化合物降解的应用价值。
实施例1
本实施例的一种胺化表面缺陷闪锌矿材料的制备方法,包括以下步骤:
S10、分别配置10.8g L -1的七水合硫酸锌溶液35mL为硫酸锌溶液A,9.9g L -1和1.5mM的九水合硫化钠与十六烷基三甲基溴化铵(CTAB)的混合溶液35mL为混合溶液B,其中所 述混合溶液B中,硫化钠与阳离子表面活性剂之间的物质的量比为82:3;
S20、在搅拌的条件下,将硫酸锌溶液A与混合溶液B混合,所述硫酸锌、硫化钠与阳离子表面活性剂之间的物质的量比为74:82:3;并且在60℃下水热搅拌3小时,控制搅拌速度范围为50~100rmp;而后将反应物转移到100mL的特氟龙反应釜中进行水热反应,水热反应的反应温度为150℃,水热反应的反应时间为16小时,反应后得到固体沉淀物;
S30、对固体沉淀物进行离心分离,使用100mL的甲醇和超纯水分别洗涤八次,得到胺化表面缺陷闪锌矿材料,收集冻干备用。
对比例1
本对比例的基本内容同实施例1,不同之处在于:在闪锌矿的合成过程中,不添加十六烷基三甲基溴化铵阳离子表面活性剂。
本对比例的普通闪锌矿的制备方法,包括以下步骤:
S10、分别配置10.8g L -1的七水合硫酸锌溶液35mL为硫酸锌溶液A,9.9g L -1的九水合硫化钠溶液35mL为溶液B;
S20、在搅拌的条件下,将硫酸锌溶液A与溶液B混合,并且在60℃下水热搅拌3小时,控制搅拌速度范围为50~100rmp;而后将反应物转移到100mL的特氟龙反应釜中进行水热反应,水热反应的反应温度为150℃,水热反应的反应时间为16小时,反应后得到固体沉淀物;
S30、对固体沉淀物进行离心分离,使用100mL的甲醇和超纯水分别洗涤八次,得到普通闪锌矿材料,收集冻干备用。
实施例2
本实施例通过透射电镜表征胺化表面缺陷闪锌矿,其步骤为:
(1)将实施例1的胺化表面缺陷闪锌矿材料分散到乙醇中,分散浓度为100mg L -1,超声分散之后取10μL滴加在碳网上,自然干燥后备用。同样的方法制备对比例1的普通闪锌矿样品。
(2)将步骤(1)中制得的样品放入透射电镜中进行拍摄,拍摄图片如图3所示。图3a和图3c分别示出普通闪锌矿材料的透射电镜图和表面微区分析图,图3b和图3d分别示出胺化表面缺陷闪锌矿材料的透射电镜图和表面微区分析图。
由此可以得出结论:普通闪锌矿具有较强的团聚性,而胺化的表面缺陷闪锌矿具有较好的分散性。此外,表面结构分析发现,这种胺化的表面缺陷闪锌矿表面具有缺陷性质。
实施例3
本实施例通过电子顺磁共振表征胺化表面缺陷闪锌矿,其步骤为:
(1)分别称取0.1g的对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿至于内径为0.5mm的石英管中;
(2)将步骤(1)中得到的两种样品分别通过电子顺磁共振测试,具体如图4所示。
由此可以得出结论:普通闪锌矿没有形成缺陷,而胺化的表面缺陷闪锌矿有明显的锌缺陷信号。
实施例4
本实施例通过红外光谱表征胺化表面缺陷闪锌矿,其步骤为:
(1)分别称取10mg的CTAB和实施例1的胺化表面缺陷闪锌矿与KBr混合,压片;
(2)将步骤(1)中得到的两种样品压片使用红外光谱检测,测试结果具体如图5所示。
由此可以得出结论:自组装方法合成的胺化表面缺陷闪锌矿中CTAB转化为伯胺或仲胺。
实施例5
本实施例通过氯醌测试表征胺化表面缺陷闪锌矿,其步骤为:
(1)分别称取10mg的CTAB和实施例1的胺化表面缺陷闪锌矿;
(2)将步骤(1)中的两种样品分别倒入10mL的含有3mM乙醛和3mM氯苯胺的混合溶液,摇晃后拍照,结果如图6所示,左试管为CTAB溶液,右试管为胺化缺陷闪锌矿分散液。
由此可以得出结论:自组装方法合成的胺化表面缺陷闪锌矿中CTAB转化为伯胺或仲胺。
实施例6
本实施例通过X射线光电子能谱表征胺化表面缺陷闪锌矿,其步骤为:
(1)分别称取少量的对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿,将样品在铟箔上压制样品;
(2)然后使用X射线光电子能谱仪采集步骤(1)中样品的谱图,将收集的谱图利用C 1s峰矫正,测试结果如图7。
由此可以得出结论:自组装方法合成的胺化表面缺陷闪锌矿中形成伯胺或仲胺官能团。
实施例7
本实施例通过固体紫外分光光度计测试胺化表面缺陷闪锌矿的光学吸收性能,其步骤为:
(1)分别取少量的对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿,抹在填满硫酸钡作为参考背景的样品池中;
(2)将步骤(1)中得到的两种样品通过固体紫外分光光度计测试,具体如图8所示。
由此可以得出结论:胺化的表面缺陷闪锌矿相比普通闪锌矿具有了更强的紫外吸收,光吸收范围也向红光偏移。
实施例8
本实施例通过固体荧光测试胺化表面缺陷闪锌矿的荧光发射强度,其步骤为:
(1)分别取少量的对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿,抹在荧光测试样品池中;
(2)将步骤(1)中得到的两种样品通过固体荧光测试仪测试,具体如图9所示。
由此可以得出结论:胺化的荧光发射强度减弱,表明胺化的表面缺陷的闪锌矿光生载流子分离效率提升。
实施例9
本实施例主要考察胺化的表面缺陷闪锌矿对PFOA的吸附热力学,其步骤为;
(1)准备初始浓度0到600mg L -1的PFOA溶液各10mL,分别加入7.5mg的两种不同闪锌矿(对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿),密封后室温下震荡12h,离心取上清液测定PFOA浓度;
(2)使用langmuir模型拟合对PFOA的吸附等温线,模型为q e=(K L×C max×C e)/(1+K L×C e),得到PFOA在普通闪锌矿上的最大吸附量为Ce(mmol/kg)=0.0502,PFOA在胺化的表面缺陷闪锌矿上的最大吸附量Ce(mmol/kg)=0.201,具体如图10所示。
由此可以得出结论:胺化的表面缺陷闪锌矿对PFOA的吸附能力显著提升。
实施例10
本实施例主要考察胺化的表面缺陷闪锌矿对PFOA的吸附效率,其步骤为;
准备一系列初始浓度为10mg L -1的PFOA溶液各10mL,分别加入7.5mg的两种不同闪锌矿(对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿),密封后室温下震荡,在10min后分别取出两份作为平行样品离心取上清液测定PFOA浓度,具体如图11所示。
由此可以得出结论:胺化的表面缺陷闪锌矿对PFOA的吸附速率显著增强。
实施例11
本实施例主要考察胺化的表面缺陷闪锌矿对PFOA的降解动力学,其步骤为:
(1)分别配制含有10mg L -1的PFOA和0.75g L -1的不同闪锌矿混合溶液(所述闪锌矿分别为对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿),用不同浓度的NaOH调节反应液pH到6;
(2)将步骤(1)中得到的反应液装入圆柱形石英光反应管(d=1cm,h=15cm),使用配有500W高压汞灯的XPA-7光反应仪作为触发器进行光反应。反应温度控制在25±2℃,反应时间为3小时。取样时间分别设置为0h,0.5h,1h,1.5h,2h,3h。每个时间点取出三根光反应管测定PFOA的降解率和脱氟率,如图12所示。
由此可以得出结论:胺化的表面缺陷闪锌矿显著促进了PFOA的降解和脱氟。
实施例12
本实施例主要考察pH对胺化表面缺陷闪锌矿降解PFOA的影响,其步骤为:
(1)配制含有10mg L -1的PFOA和0.75g L -1的实施例1的胺化表面缺陷闪锌矿混合溶液,用不同浓度的NaOH调节反应液初始pH到4,6,8,10;
(2)将步骤(1)中得到的反应液装入圆柱形石英光反应管(d=1cm,h=15cm),使用配有500W高压汞灯的XPA-7光反应仪进行光反应。反应温度控制在25±2℃,反应时间为3小时。取样时间分别设置为0h,0.5h,1h,1.5h,2h,3h。每个时间点取出三根光反应管测定PFOA的降解率和脱氟率,如图13所示。
由此可以得出结论:酸性条件下,胺化表面缺陷闪锌矿中PFOA的降解和脱氟率略有降低,这可能是由于高浓度的质子猝灭了胺化表面缺陷闪锌矿上产生的光生电子,降低了光生电子的利用效率。
实施例13
本实施例主要考察胺化的表面缺陷闪锌矿降解PFOA的多次循环利用效率,其步骤为:
(1)配制含有10mg L -1的PFOA和0.75g L -1的实施例1的胺化表面缺陷闪锌矿混合溶液,用不同浓度的NaOH调节反应液初始pH到6;
(2)将步骤(1)中得到的反应液装入圆柱形石英光反应管(d=1cm,h=15cm),使用配有500W高压汞灯的XPA-7光反应仪进行光反应。反应温度控制在25±2℃,反应3小时后取取出三根光反应管测定PFOA的降解率和脱氟率;
(3)将步骤(2)中反应后液体离心收集沉淀物,分别用甲醇和水交替洗涤后再按照步骤(1)和(2)重复上述反应并监测体系中PFOA的母体浓度和氟离子浓度,结果如图14所示。
由此可以得出结论:胺化的表面缺陷闪锌矿具有较强的稳定性,五次循环利用依然表现出对PFOA较强的降解和脱氟效率。
实施例14
本实施例主要考察胺化的表面缺陷闪锌矿对PFOS的降解动力学,其步骤为:
(1)分别配制含有10mg L -1的PFOS和0.75g L -1的不同闪锌矿混合溶液(所述闪锌矿分别为对比例1的普通闪锌矿和实施例1的胺化表面缺陷闪锌矿),用不同浓度的NaOH调节反应液pH到6;
(2)将步骤(1)中得到的反应液装入圆柱形石英光反应管(d=1cm,h=15cm),使用配有500W高压汞灯的XPA-7光反应仪作为触发器进行光反应。反应温度控制在25±2℃, 反应时间为3小时。取样时间分别设置为0h,0.5h,1h,1.5h,2h,3h。每个时间点取出三根光反应管测定PFOS的降解率和脱氟率,如图15所示。
由此可以得出结论:胺化的表面缺陷闪锌矿显著促进了PFOS的降解和脱氟。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,所用的数据也只是本发明的实施方式之一,实际的数据组合并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出于该技术方案相似的实施方式及实施例,均应属于本发明的保护范围。

Claims (10)

  1. 一种胺化表面缺陷闪锌矿材料,其特征在于:包含伯胺或仲胺基团,同时具有表面锌缺陷。
  2. 一种胺化表面缺陷闪锌矿材料的制备方法,其特征在于:包括分别配置硫酸锌溶液A,硫化钠与阳离子表面活性剂的混合溶液B;而后将硫酸锌溶液A与混合溶液B混合,搅拌,进行水热反应,得到胺化表面缺陷闪锌矿材料。
  3. 根据权利要求2所述的一种胺化表面缺陷闪锌矿材料的制备方法,其特征在于:所述混合溶液B中,硫化钠与阳离子表面活性剂之间的物质的量浓度比为82:1~82:5。
  4. 根据权利要求2所述的一种胺化表面缺陷闪锌矿材料的制备方法,其特征在于:将硫酸锌溶液A与混合溶液B混合后,所述硫酸锌、硫化钠与阳离子表面活性剂之间的物质的量浓度比为74:82:1~74:82:5。
  5. 根据权利要求2所述的一种胺化表面缺陷闪锌矿材料的制备方法,其特征在于:所述阳离子表面活性剂为季铵盐阳离子表面活性剂,包括十二烷基三甲基溴化铵、十四烷基三甲基溴化铵和十六烷基三甲基溴化铵中的一种或多种。
  6. 根据权利要求2所述的一种胺化表面缺陷闪锌矿材料的制备方法,其特征在于:在搅拌的条件下,将硫酸锌溶液A和混合溶液B进行混合,并在50~70℃下搅拌2~4小时,而后在140~160℃下进行水热反应15~17小时,得到胺化表面缺陷闪锌矿材料。
  7. 一种胺化表面缺陷闪锌矿材料在降解全氟化合物中的应用,其特征在于:包括将权利要求1所述的胺化表面缺陷闪锌矿材料或权利要求2-6中任一项所述的胺化表面缺陷闪锌矿材料与全氟化合物混合,而后对胺化表面缺陷闪锌矿材料与全氟化合物的混合体系进行光照,实现光反应以降解全氟化合物。
  8. 根据权利要求7所述的一种胺化表面缺陷闪锌矿材料在降解全氟化合物中的应用,其特征在于:所述胺化表面缺陷闪锌矿材料与全氟化合物之间的质量浓度比为10:1~10:10。
  9. 根据权利要求7所述的一种胺化表面缺陷闪锌矿材料在降解全氟化合物中的应用,其特征在于:在对胺化表面缺陷闪锌矿材料与全氟化合物的混合体系进行光照之前,调节所述混合体系的pH值为4~10。
  10. 根据权利要求7所述的一种胺化表面缺陷闪锌矿材料在降解全氟化合物中的应用,其特征在于:所述光反应的反应时间为2~4小时,反应温度为20~30℃。
PCT/CN2022/093008 2021-10-18 2022-05-16 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用 WO2023065652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111208776.9 2021-10-18
CN202111208776.9A CN114307941B (zh) 2021-10-18 2021-10-18 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用

Publications (1)

Publication Number Publication Date
WO2023065652A1 true WO2023065652A1 (zh) 2023-04-27

Family

ID=81044962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093008 WO2023065652A1 (zh) 2021-10-18 2022-05-16 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用

Country Status (2)

Country Link
CN (1) CN114307941B (zh)
WO (1) WO2023065652A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307941B (zh) * 2021-10-18 2023-05-05 南京大学 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用
CN115554999B (zh) * 2022-09-27 2024-03-19 南京大学 胺化聚氨酯海绵吸附剂的合成方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249982A (zh) * 2008-03-27 2008-08-27 中国建筑材料科学研究总院 硫化锌纳米粒子的制备方法及该方法制备得到的硫化锌纳米粒子
WO2018172813A2 (en) * 2017-03-21 2018-09-27 The Petroleum Institute Mechano-thermal preparation of zinc sulfide nanoparticles
CN111569856A (zh) * 2020-04-03 2020-08-25 清华-伯克利深圳学院筹备办公室 In-Ga2O3复合光催化剂及其制备方法和应用
CN114307941A (zh) * 2021-10-18 2022-04-12 南京大学 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101005561B1 (ko) * 2008-06-21 2011-01-05 한국생명공학연구원 광학특성 나노입자 및 퍼플루오로카본으로 구성된 나노에멀젼을 이용한 다중모드 조영 방법
CN105536198B (zh) * 2015-12-23 2018-10-30 南京大学 一种高效降解全氟化合物的方法
CN107416943B (zh) * 2017-03-03 2020-10-27 华南理工大学 一种光催化降解全氟化合物的方法
CN107754824A (zh) * 2017-10-12 2018-03-06 王玉红 一种全氟有机化合物催化降解剂及其制备方法
JP2022534672A (ja) * 2019-05-22 2022-08-03 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド 改質粘土吸着剤、およびそれを使用してpfasを吸着する方法
US11420150B2 (en) * 2020-02-21 2022-08-23 King Fahd University Of Petroleum And Minerals Aminated magnesium oxide adsorbent and a method of capturing carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101249982A (zh) * 2008-03-27 2008-08-27 中国建筑材料科学研究总院 硫化锌纳米粒子的制备方法及该方法制备得到的硫化锌纳米粒子
WO2018172813A2 (en) * 2017-03-21 2018-09-27 The Petroleum Institute Mechano-thermal preparation of zinc sulfide nanoparticles
CN111569856A (zh) * 2020-04-03 2020-08-25 清华-伯克利深圳学院筹备办公室 In-Ga2O3复合光催化剂及其制备方法和应用
CN114307941A (zh) * 2021-10-18 2022-04-12 南京大学 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEI XIANRU, HUANG ZHENXU; XU WENJIAN: "Synthesis, Characterization and Photocatalytic Properties of Spherical Nano-ZnS", [HENAN-KEJI-DAXUE-XUEBAO / ZIRAN-KEXUE-BAN] HENAN-KEJI-DAXUE-XUEBAO = JOURNAL OF HENAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, HENAN-KEJI-DAXUE <LUOYANG>, CN, vol. 37, no. 2, 30 April 2016 (2016-04-30), CN , pages 100 - 104, XP093057698, ISSN: 1672-6871, DOI: 10.15926/j.cnki.issn1672-6871.2016.02.021 *

Also Published As

Publication number Publication date
CN114307941A (zh) 2022-04-12
CN114307941B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2023065652A1 (zh) 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用
Chen et al. Polyaniline modified MIL-100 (Fe) for enhanced photocatalytic Cr (VI) reduction and tetracycline degradation under white light
Yu et al. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application
US20200024162A1 (en) Method and device for sewage treatment
Gao et al. An electrochemically-switched BPEI-CQD/PPy/PSS membrane for selective separation of dilute copper ions from wastewater
Chen et al. Studies on the photocatalytic performance of cuprous oxide/chitosan nanocomposites activated by visible light
Liu et al. Synergistic improvement of Cr (VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation
CN106000130A (zh) 一种PVDF/碳纤维基MFe2O4型光催化导电过滤膜耦合MBR/MFC的方法
Meng et al. Rapid and selective adsorption of organic dyes with ultrahigh adsorption capacity using Na and Fe co-doped g-C3N4
Sayed et al. Photocatalytic hydrogen generation from raw water using zeolite/polyaniline@ Ni2O3 nanocomposite as a novel photo-electrode
Wu et al. Construction of 3D porous BiOBr/MIL-101 (Cr) Z-scheme heterostructure for boosted photocatalytic degradation of tetracycline hydrochloride
Harikumar et al. Robust visible light active CoNiO2–BiFeO3–NiS ternary nanocomposite for photo-fenton degradation of rhodamine B and methyl orange: Kinetics, degradation pathway and toxicity assessment
CN104258857A (zh) 一种铬酸银-氧化石墨烯复合光催化材料及其制备方法
Fan et al. Low-cost and resource-efficient monolithic photocatalyst with enhanced solar light utilization for the photocatalytic treatment of organic wastewater
Feng et al. Novel dual-heterojunction photocatalytic membrane reactor based on Ag2S/NH2-MIL-88B (Fe)/poly (aryl ether nitrile) composite with enhanced photocatalytic performance for wastewater purification
Gong et al. Enhanced electrochemical removal of sulfadiazine using stainless steel electrode coated with activated algal biochar
Huang et al. Anion-/cationic compounds enhance the dispersion of flow electrodes to obtain high capacitive deionization performance
Xu et al. Photocatalysis coupling hydrogen peroxide synthesis and in-situ radical transform for tetracycline degradation
Yuan et al. A three-dimensional electrochemical oxidation system with α-Fe 2 O 3/PAC as the particle electrode for ammonium nitrogen wastewater treatment
Liu et al. Adsorption and catalytic removal of methyl orange from water by PIL-GO/TiO2/Fe3O4 composites
CN109354138B (zh) 电吸附装置、其制备方法和应用
Li et al. Tuning the lanthanum hydrolysis induced assembly process using long linear chains with–N+ (CH3) 3 groups for efficient phosphate removal
Song et al. Enhanced antifouling performance for modified carbon nanotubes filtration cathode by the electric field
Zhang et al. A new high-yield fabrication approach for porous red phosphorus nanosheets using N-methyl-2-pyrrolidone with multiple photocatalytic reduction applications
CN103301886B (zh) 一种导电聚合物印迹金属离子负载型光催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882277

Country of ref document: EP

Kind code of ref document: A1