CN115554999B - 胺化聚氨酯海绵吸附剂的合成方法与应用 - Google Patents

胺化聚氨酯海绵吸附剂的合成方法与应用 Download PDF

Info

Publication number
CN115554999B
CN115554999B CN202211179263.4A CN202211179263A CN115554999B CN 115554999 B CN115554999 B CN 115554999B CN 202211179263 A CN202211179263 A CN 202211179263A CN 115554999 B CN115554999 B CN 115554999B
Authority
CN
China
Prior art keywords
polyurethane
polyurethane sponge
sponge
aminated
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211179263.4A
Other languages
English (en)
Other versions
CN115554999A (zh
Inventor
陈张浩
王雯冉
谷成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202211179263.4A priority Critical patent/CN115554999B/zh
Publication of CN115554999A publication Critical patent/CN115554999A/zh
Application granted granted Critical
Publication of CN115554999B publication Critical patent/CN115554999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开了一种胺化聚氨酯海绵吸附剂的合成与应用。本发明首先将聚氨酯海绵置于缓冲溶液中,加入多巴胺搅拌,使多巴胺通过氧化自聚合沉积在聚氨酯海绵表面,生成聚多巴胺,形成聚氨酯‑聚多巴胺复合材料,其表面具有大量酚羟基以及胺基基团;接着加入盐酸、苯胺以及过硫酸铵,使聚苯胺和聚多巴胺共同复合在聚氨酯材料表面,最终合成了胺化聚氨酯海绵吸附材料。本发明合成的材料通过增强静电吸附以及表面和内部形成的胶束和半胶束,实现对水中全氟化合物的快速富集,并且由于材料保持了海绵的吸水性以及可压缩性,可多次重复使用,且操作简单实用,适用于生活饮用水以及工业废水中全氟化合物污染去除,具有较高的应用前景。

Description

胺化聚氨酯海绵吸附剂的合成方法与应用
技术领域
本发明属于持久性污染物降解领域,具体涉及用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂的合成方法及其应用。
背景技术
全氟化合物(PFCs)是一类具有重要应用价值的含氟有机化合物,其生产和使用可追溯到60年前,其结构由疏水性全氟烷基链和亲水离子头部组成(Lindstrom A B,StrynarM J,Libelo E L,et al.Polyfluorinated compounds:past,present,andfuture.Environmental Science&Technology,2011,45(19):7954-7961.Liu Y,Zhang Y,Li J,et al.Distribution,partitioning behavior and positive matrixfactorization-based source analysis of legacy and emerging polyfluorinatedalkyl substances in the dissolved phase,surface sediment and suspendedparticulate matter around coastal areas of Bohai Bay,China.EnvironmentalPollution,2019,246:34-44.Key BD,Howell R D,Criddle C S,et al.Fluorinatedorganics in the biosphere.Environmental science&technology,2007,31,2445-2454.)。由于其特殊的化学结构造就其高稳定性,自成功合成以来就被广泛应用于各行各业,比如造纸、纺织、包装、半导体制造、泡沫灭火以及金属加工等领域,造成了严重的环境污染(Zhao Z,Xie Z Y,Moller A,et al.Distribution and long-range transport ofpolyfluoroalkyl substances in the Arctic,Atlantic Ocean and Antarcticcoast.Environmental Pollution,2012,70(20):71-77.Lindstrom A B,Strynar M J,Delinsky A D,et al.Application of WWTP biosolids and resulting perfluorinatedcompound contamination of surface and well water in Decatur,Alabama,USA.Environmental Science&Technology,2011,45(19):8015-8021.Wang Z Y,DeWitt JC,Higgins C P,et al.A never-ending story of per-and polyfluoroalkylsubstances(PFASs).Environmental Science&Technology,2017,51(5):2508-2518.)。近年来一些研究表明,PFCs对哺乳动物导致多系统的毒性效应,包括生殖发育毒性、神经毒性以及肝脏毒性等,甚至可以引发癌变(Lau C,Anitole K,Hodes C,et al.Perfluoroalkylacids:A review of monitoring and toxicological findings.Toxico logicalSciences,2007,99(2):366-394.Yang Q,Xie Y,Depierre J W,et al.Effects ofperoxisome proliferators on the thymus and spleen of mice.Clinical andExperimental Immunology,2000,122(2):219-226.)。2009年5月,全氟化合物中的一种主要化合物——全氟辛磺酸(PFOS)被列入《斯德哥尔摩公约》持久性有机污染物优先控制名录,在缔约国内限制生产使用。(Wang T,Wang Y W,Liao C Y,et al.Perspectives on theinclusion of perfluorooctane sulfonate into the stockholm convention onpersistent organic pollutants.Environmental Science&Technology,2009,43:5171-5175.Boone J S,Vigo C,Boone T,et al.Per-and polyfluoroalkyl substances insource and treated drinking waters of the United States.Science of the TotalEnvironment,2019,653:359-369.)。尽管如此,由于PFCs具有高热稳定性和化学稳定性,可在环境中持久存在,并且几乎不被生物降解,导致环境中PFCs的浓度仍然居高不下(Liu Y,Zhang Y,Li J,et al.Distribution,partitioning behavior and positive matrixfactorization-based source analysis of legacy and emerging polyfluorinatedalkyl substances in the dissolved phase,surface sediment and suspendedparticulate matter around coastal areas of Bohai Bay,China.EnvironmentalPollution,2019,246:34-44.)。其中,全氟辛酸(PFOA)等水溶性较高的PFCs的生产以及广泛使用导致水环境中的PFCs污染形式最严峻,从而使饮用水成为人体摄入PFCs的最主要的途径之一(Yamashita N,Taniyasu S,Petrick G,et al.Perluorinated acids as novelchemical tracers of global circulation of ocean waters.Chemosphere,2008,70(7):1247-1255.Buck R C,Franklin J,Berger U,et al.Perfluoroalkyl andpolyfluoroalkyl substances in the environment:terminology,classification,andorigins.Integrated Environmental Assessment and Management,2011,7(4):513-541.)。采用物理法去除水中的PFCs类物质是当前研究的重要手段之一。相对于其他去除技术,物理法操作简单,效率较高,因此具有较强的实用性。现有研究以吸附和膜分离为主。吸附技术由于具有操作简便、能耗低等优点被广泛应用于水中PFCs的去除,目前常用的吸附剂主要包括活性炭和离子交换树脂。但是在实际应用的构成中,活性炭对于疏水疏脂的PFCs的吸附效果比较差,并且对容易受到环境因素的影响,比如Yu等人对比研究了颗粒活性炭和粉末活性炭对全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)P的吸附效果,结果发现粉末活性炭对PFOA和PFOS的吸附量可达0.67和1.04mmol/g,但吸附平衡时间需要4h之久;颗粒活性炭对PFOA和PFOS的吸附量为0.39和0.37mmol/g,平衡时间需要168h。(Yu Q.,ZhangR.Q.,Deng S.B.,et al.Sorption of perfluorooctane sulfonate andperfluorooctanoate on activated carbons and resin:Kinetic and isothermstudy.Water Research,2009,43(4):1150-1158.)。而离子交换树脂也存在着价格高、选择性差、平衡时间长且重复利用性差等缺点(Chen X,Xia X H,Wang X L,etal.Acomparative study on sorption of perfluorooctane sulfonate(PFOS)by chars,ash and carbon nanotubes.Chemosphere,2011,83(10):1313-1319.Deng S B,Nie Y,DuZ W,et al.Enhanced adsorption of perfluorooctane sulfonate andperfluorooctanoate by bamboo-derived granular activated carbon.Journal ofHazardous Materials,2015,282(1):150-157.Competitive adsorption ofperfluoroalkyl substances on anion exchange resins in simulated AFFF-impactedgroundwater.Chemical Engineering Journal,2018,348:494-502.)。所以开发出价格低廉、重复利用性高并且可高效选择性去除PFCs的新型吸附剂是处理PFCs污染水体的关键。
发明内容
发明目的:针对现有吸附剂对全氟化合物实用性不强、操作复杂、重复利用性低、成本高以及选择性吸附效果差的问题,为处理生活饮用水以及工业废水中的全氟化合物污染。本发明提供一种高效选择性吸附去除水中全氟化合物的胺化聚氨酯海绵吸附剂的合成方法,本发明通过多巴胺在聚氨酯海绵上的自聚合反应得到聚氨酯-聚多巴胺复合材料,接着通过苯胺的聚合以及和聚多巴胺的复合反应,合成了对全氟化合物高效吸附并可通过简单地挤压、洗脱实现重复利用的海绵吸附材料。
本发明还提供所述胺化聚氨酯海绵吸附剂及其应用。
技术方案:为了实现上述目的,本发明提供了一种用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂的合成方法,包括以下步骤:
将聚氨酯海绵(PU)置于缓冲溶液中,加入多巴胺(Dopamine),形成聚氨酯-聚多巴胺(PU-PDA)复合材料,向溶液中接着加入盐酸(HCl)、苯胺(AN)以及过硫酸铵(APS)溶液,合成了胺化聚氨酯海绵吸附材料(PU-PDA-PANI)。
其中,所述将聚氨酯海绵置于缓冲溶液中,加入多巴胺,使多巴胺通过氧化自聚合沉积在聚氨酯海绵表面,生成聚多巴胺(PDA),形成聚氨酯-聚多巴胺复合材料。
其中,所述加入盐酸、苯胺以及过硫酸铵溶液,使聚苯胺和聚多巴胺共同复合在聚氨酯材料表面,合成了胺化聚氨酯海绵吸附材料。
其中,所述缓冲溶液为Tris-HCl缓冲液;pH=8.5±0.1。
其中,所述将聚氨酯海绵置于缓冲溶液中,加入多巴胺进行反应,按终浓度聚氨酯海绵投加量为1±0.1g/L,多巴胺为2±0.1g/L,反应条件为温室下搅拌24±1h,转速为150r/min。
其中,所述加入盐酸使其浓度为1±0.1mol/L,加入苯胺使其质量分数为10±0.1%,过硫酸铵溶液的质量分数为10±0.1%(按每30mL溶液加入1±0.1mL计算),反应条件为室温下搅拌10±1h,转速为150r/min。
进一步地,最后用纯水洗涤生成的胺化聚氨酯海绵吸附材料(PU-PDA-PANI),并在烘箱中烘干,烘箱烘干材料温度为50±1℃。
其中,所述通过多巴胺的自聚合反应,形成聚氨酯-聚多巴胺复合材料,其表面具有大量酚羟基以及胺基官能基团,上述官能团使材料表面很容易发生反应;通过聚苯胺的生成进一步引入胺基基团,增强材料对全氟化合物的选择性吸附。
本发明所述的合成方法所合成得到胺化聚氨酯海绵吸附剂。
本发明所述的胺化聚氨酯海绵吸附剂在吸附处理水中全氟化合物中的应用。
其中,所述胺化聚氨酯海绵材料和含有全氟化合物的水溶液混合进行吸附,使海绵充分吸水膨胀,吸附温度为25±1℃,吸附平衡时间为5±1min,材料的投加量为1±0.1g/L,全氟化合物浓度为10±1mg/L。
将反应平衡后的海绵取出,挤出水分或者洗涤,重复应用。
本发明旨在通过多巴胺自聚合过程将聚苯胺复合在聚氨酯海绵材料表面,利用聚氨酯本身的多孔、高比表面积的特性并引入胺基基团,开发出一种对全氟化合物选择性高效富集的吸附材料。本发明使用固体聚氨酯海绵,多巴胺会在固体表面聚合生成聚多巴胺,附着在聚氨酯海绵固体表面,形成复合材料使其具有粘性,在界面上容易复合其他物质。接着加入的盐酸,苯胺,过硫酸铵,在复合材料基础上再次反应,形成了最终的聚氨酯海绵吸附材料。
本发明在合成过程中引入大量带有正电荷的胺基,合成了具有胺化结构的多孔海绵材料,材料通过增强静电吸附以及表面和内部形成的胶束和半胶束,将本身对于PFOA污染物几乎没有吸附的聚氨酯海绵,通过特定的改性复合以后,对PFOA实现了快速富集(实施例3),并且具有很好的重复利用性(实施例7)以及对于环境干扰因素(实施例6和8)影响比较小。同时本发明使用“海绵材料”,相比其他比如活性炭等吸附剂,可以通过挤压把水挤出去,污染物留在材料表面,这样可以非常方便的进行材料回收重复利用。本发明使用粘合剂“聚多巴胺”将“聚苯胺”复合在了海绵材料表面。得到一种高效、可重复使用的针对全氟化合物的吸附剂。
有益效果:与现有技术相比,本发明具有如下显著优点:
(1)本发明合成的用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂,通过将多巴胺自聚合在聚氨酯海绵上,表面具有大量酚羟基以及胺基基团,这些官能团使材料表面很容易成为反应界面,从而使材料容易黏着复合其他物质。而后通过氧化反应复合聚苯胺,引入大量带有正电荷的胺基,合成了具有胺化结构的多孔海绵材料,材料通过增强静电吸附以及表面和内部形成的胶束和半胶束,可以实现对水中全氟化合物的快速富集(5min可以达到PFOA吸附率为99.6%)。
(2)本发明合成的用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂,可以通过挤压、洗脱等简单操作实现重复利用,并且由于表面胺化结构使其吸附具有选择性,解决了传统吸附材料,比如离子交换树脂的吸附平衡时间极长,选择性和重复利用性较差;活性炭对全氟化合物吸附作用力弱等缺点,且合成操作简单、材料本身无毒无害、绿色经济。在比较宽泛的pH以及多种盐类、有机物等环境因素影响下仍能保持较好的吸附效果,在工业废水以及生活饮用水等领域均具有较好的应用前景。
附图说明
图1为本发明的用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂合成过程示意图;
图2为本发明的胺化聚氨酯海绵重复使用去除水中全氟化合物的流程图;
图3为本发明的胺化聚氨酯海绵(PU-PDA-PANI)以及对照组聚氨酯海绵(PU)、聚氨酯-聚多巴胺海绵(PU-PDA)、聚氨酯-聚苯胺海绵(PU-PANI)的吸附动力学曲线;
图4中的a、b、c、d分别为对照组聚氨酯海绵(PU)、聚氨酯-聚多巴胺海绵(PU-PDA)、聚氨酯-聚苯胺海绵(PU-PANI)以及胺化聚氨酯海绵(PU-PDA-PANI)的扫描电子显微镜图;
图5本发明的胺化聚氨酯海绵的自动压汞仪平均孔径分布图;
图6为本发明的胺化聚氨酯海绵在小分子酸、天然有机质以及盐类影响下的对水中全氟化合物的去除率图;
图7为本发明的胺化聚氨酯海绵吸附水中全氟化合物的重复利用性图;
图8为本发明的胺化聚氨酯海绵在不同pH影响下对水中全氟化合物去除率图。
具体实施方式
以下结合附图和实施例对本发明作进一步说明。
实施例中所述实验方法,如无特殊说明,均为常规方法。药品和试剂如无特殊说明,均为常规药品。
实施例1
如图1所示,用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂的合成方法,包括以下步骤:
首先将终浓度1g/L聚氨酯海绵(PU)(密度0.03g/cm3,平均孔径100μm,深圳市世源海绵制品有限公司提供)置于pH=8.5的Tris-HCl缓冲溶液中,加入终浓度2g/L的多巴胺(dopamine)室温下150r/min搅拌24h,使多巴胺通过氧化自聚合沉积在聚氨酯海绵表面,生成聚多巴胺(PDA),形成聚氨酯-聚多巴胺(PU-PDA)复合材料,其表面具有大量酚羟基以及胺基基团,这些官能团使它们很容易成为反应界面,接着向上述复合材料溶液中加入盐酸(HCl)使其终浓度达到1mol/L,并加入苯胺(AN)使其最终质量分数为10%,以及质量分数为10%的过硫酸铵(APS)(每30mL溶液加入1mL),室温下150r/min搅拌10h,使苯胺和聚多巴胺共同复合在聚氨酯材料表面,最终合成了胺化聚氨酯海绵吸附材料(PU-PDA-PANI)。最后用纯水洗涤生成的胺化聚氨酯海绵吸附材料(PU-PDA-PANI),并在烘箱中烘干,烘箱烘干材料温度为50℃,时间5-6h,备用。
实施例2
将实施例1合成的胺化聚氨酯海绵材料和含有全氟化合物的水溶液放置到玻璃瓶中,其中胺化聚氨酯海绵材料为1g/L,全氟化合物(如PFOA)为10mg/L,使海绵充分吸水膨胀,实验温度为25℃,静置等待5min吸附达到平衡。
将反应平衡后的海绵取出,挤出水分,重复上述步骤。
通过本发明的用于处理水中全氟化合物的胺化聚氨酯海绵吸附剂,实现了对水中微量全氟化合物的快速选择性吸附富集,并可以通过简单的挤干、洗脱重复使用。其使用流程图如图2所示,将海绵置于含全氟化合物的水溶液中,吸附饱和后,取出并压缩挤干,挤干后的海绵可以通过NaCl和NaOH混合溶液洗脱材料所吸附的全氟化合物,而后烘干便可重新利用。材料本身具有多孔结构、高比表面积,并且表面胺化基团可以增加对全氟化合物的静电吸附作用,从而达到选择性快速吸附水中的全氟化合物,并且材料合成简单,成本较低,吸附效果强于传统吸附材料且重复利用性好,不会造成二次污染。
实施例3
本实施例主要考察所合成的胺化聚氨酯海绵(PU-PDA-PANI)以及对照组聚氨酯海绵(PU)、聚氨酯-聚多巴胺海绵(PU-PDA)、聚氨酯-聚苯胺海绵(PU-PANI)对水中全氟辛酸(PFOA)吸附平衡时间以及吸附率,其中:聚氨酯海绵(PU)为空白材料;聚氨酯-聚多巴胺海绵(PU-PDA)按实施例1方法,不加入苯胺、盐酸以及过硫酸铵合成得到;聚氨酯-聚苯胺海绵(PU-PANI)按实施例1的方法,不加入多巴胺合成得到。
其具体步骤为:
1、向20mL带盖玻璃瓶中加入胺化聚氨酯海绵以及对照组聚氨酯海绵、聚氨酯-聚多巴胺海绵、聚氨酯-聚苯胺海绵材料,再加入PFOA溶液,吸附材料的浓度为1g/L,PFOA浓度为10mg/L,使用1M NaOH/HCl将各反应溶液的pH值调节至6±0.1,并将玻璃瓶置于温度为25℃的温室环境下。
2、在实验开始的0、0.5、1、2、3、5、10、15、20、30min分别进行取样1mL,用LC-MS/MS测量水样中PFOA含量,使用配有Agilent Eclipse Plus C18色谱柱(4.6mm×150mm,5μm)的超高液相色谱仪PerkinElmer Altus A-30UPLC分离样品中的PFOA,进样量为10μL,流动相为5mM乙酸铵(A相)和MeOH(B相),流速为0.4mL min-1。通过以下公式(1)计算溶液中PFOA所剩比例。
其中,η为反应时间为t时PFOA的吸附比,C0和Ct分别表示反应时间为0和t时的PFOA的浓度。
由图3可知,相比对照组和空白组,合成的胺化聚氨酯海绵吸附剂对水中10mg/LPFOA可在5min内达到吸附平衡,吸附率为99.6%;对照组(聚氨酯海绵、聚氨酯-聚多巴胺海绵、聚氨酯-聚苯胺海绵)几乎不吸附PFOA。
实施例4
本实施例主要考察聚氨酯海绵在复合聚多巴胺以及聚苯胺得到胺化聚氨酯海绵吸附剂前后,表面形貌和微观结构的变化。其具体步骤为:
将实施例1合成得到的胺化聚氨酯海绵(PU-PDA-PANI)以及对照组聚氨酯海绵(PU)、聚氨酯-聚多巴胺海绵(PU-PDA)、聚氨酯-聚苯胺海绵(PU-PANI)切成薄片,然后在扫描电子显微镜(SEM)QUANTA FEG 250上观察。
由图4a、4b、4c、4d可知,多巴胺可以成功粘合聚苯胺,在材料表面复合,有效负载胺基基团,可以增强材料对于PFOA的静电吸附作用,提高吸附效果。
实施例5
本实施例主要考察胺化聚氨酯海绵吸附剂表面孔径情况。其具体步骤为:
取少量实施例1合成得到胺化聚氨酯海绵吸附剂,使用Autopore IV 9510自动压汞仪,测量样品的平均孔径。
由图5可知,胺化聚氨酯海绵吸附剂的孔径分布比较均匀,大概在150-200μm之间,属于大孔材料。
实施例6
本实施例主要考察胺化聚氨酯海绵吸附剂在小分子酸、盐类以及有机质存在下对水中PFOA的吸附平衡时间以及吸附率的影响。其具体步骤为:
1、向20mL带盖玻璃瓶中加入胺化聚氨酯海绵吸附剂和PFOA溶液,吸附剂的浓度为1g/L,PFOA浓度为10mg/L,分别向玻璃瓶中加入草酸(H2C2O4)或甲酸(HCOOH)使其浓度为5mg/L和10mg/L,加入NaCl使浓度为5mM和10mM,以及天然有机质(NOM)使其浓度为1mg/L和5mg/L,使用1M NaOH/HCl将各反应溶液的pH值调节至6±0.1,并将玻璃瓶置于温度为25℃的温室环境下。
2、在实验开始的0、0.5、1、2、3、5、10、15、20、30min分别进行取样1mL,用LC-MS/MS测量水样中PFOA含量,计算溶液中PFOA所剩比例,比较分别在H2C2O4(5mg/L,10mg/L),HCOOH(5mg/L,10mg/L),NaCl(5mM,10mM)和NOM(1mg/L,5mg/L)存在下材料对水中PFOA的吸附动力学。
由图6可知,在环境因素的影响下,胺化聚氨酯海绵对于10mg/L的PFOA仍然有着很好的去除效果,去除百分率达到95%以上。
实施例7
本实施例主要考察胺化聚氨酯海绵吸附剂的重复利用效果。其具体步骤为:
1、向20mL带盖玻璃瓶中加入实施例1合成的胺化聚氨酯海绵吸附剂和PFOA溶液,吸附剂的终浓度为1g/L,PFOA中浓度为10mg/L,使用1M NaOH/HCl将各反应溶液的pH值调节至6±0.1,并将玻璃瓶置于温度为25℃的环境中,10min(饱和吸附)以后进行取样1mL,用LC-MS/MS测量水样中PFOA含量。
2、将吸附饱和后的胺化聚氨酯海绵材料置10mL 0.5mol/L NaCl和0.5mol/L Na混合溶液中,并于恒温震荡器中以150r/min的转速振荡2h,取出解吸后的胺化聚氨酯海绵并按照步骤(1)重新吸附10mg/L PFOA,重复上述解吸过程5次。
由图7可知,5次循环利用后,胺化聚氨酯海绵吸附剂对10mg/L PFOA的去除率仍然在95%以上,胺化聚氨酯海绵吸附剂有着很好的重复利用性。
实施例8
本实施例主要考察胺化聚氨酯海绵吸附剂在不同pH值的溶液中,对PFOA的吸附率的影响。其具体步骤为:
向20mL带盖玻璃瓶中加入终浓度1g/L实施例1合成的胺化聚氨酯海绵吸附剂,以及终浓度10mg/L的PFOA溶液,使用1M NaOH/HCl将各反应溶液的pH值分别调节至2、4、6、8、10,并将玻璃瓶置于恒温震荡器中,设定反应转速150r/min,实验温度为25℃,10min以后进行取样1mL,用LC-MS/MS测量水样中PFOA含量。由图8可知,胺化聚氨酯海绵吸附剂在广泛的pH下对PFOA均有较好去除效果,PFOA的去除率保持在93%以上。

Claims (6)

1.一种胺化聚氨酯海绵吸附剂在吸附处理水中全氟化合物PFOA中的应用,所述用于处理水中全氟化合物PFOA的胺化聚氨酯海绵吸附剂的合成方法,包括以下步骤:
将聚氨酯海绵置于缓冲溶液中,加入多巴胺,聚合反应后形成聚氨酯-聚多巴胺复合材料,向溶液中接着加入盐酸、苯胺以及过硫酸铵溶液,合成了胺化聚氨酯海绵吸附材料;
所述将聚氨酯海绵置于缓冲溶液中,加入多巴胺进行反应,聚氨酯海绵投加量为1±0.1g/L,多巴胺为2±0.1g/L,反应条件为温室下搅拌24±1h;所述加入盐酸使其终浓度为1±0.1mol/L,加入苯胺使其最终的质量分数为10±0.1%,所述过硫酸铵溶液的质量分数为10±0.1%,按每30mL溶液加入1±0.1mL计算投加。
2.根据权利要求1所述的应用,其特征在于,所述将聚氨酯海绵置于缓冲溶液中,加入多巴胺,使多巴胺通过氧化自聚合沉积在聚氨酯海绵表面,生成聚多巴胺,形成聚氨酯-聚多巴胺复合材料。
3.根据权利要求1所述的应用,其特征在于,所述加入盐酸、苯胺以及过硫酸铵溶液,使聚苯胺和聚多巴胺共同复合在聚氨酯材料表面,合成了胺化聚氨酯海绵吸附材料。
4.根据权利要求1所述的应用,其特征在于,所述缓冲溶液为Tris-HCl缓冲液;pH=8.5±0.1。
5.根据权利要求1所述的应用,其特征在于,通过多巴胺的自聚合反应,形成聚氨酯-聚多巴胺复合材料,其表面具有大量酚羟基以及胺基官能基团,上述官能基团使材料表面很容易发生反应;通过聚苯胺的生成进一步引入胺基基团,增强材料对全氟化合物的选择性吸附。
6.根据权利要求1所述的应用,其特征在于,所述胺化聚氨酯海绵材料和含有全氟化合物的水溶液混合进行吸附,使海绵充分吸水膨胀,吸附温度为25±1℃,吸附平衡时间为5±1min,材料的投加量为1±0.1g/L,全氟化合物浓度为10±1mg/L;将反应平衡后的海绵取出,挤出水分或者洗涤,重复应用。
CN202211179263.4A 2022-09-27 2022-09-27 胺化聚氨酯海绵吸附剂的合成方法与应用 Active CN115554999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211179263.4A CN115554999B (zh) 2022-09-27 2022-09-27 胺化聚氨酯海绵吸附剂的合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211179263.4A CN115554999B (zh) 2022-09-27 2022-09-27 胺化聚氨酯海绵吸附剂的合成方法与应用

Publications (2)

Publication Number Publication Date
CN115554999A CN115554999A (zh) 2023-01-03
CN115554999B true CN115554999B (zh) 2024-03-19

Family

ID=84743010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211179263.4A Active CN115554999B (zh) 2022-09-27 2022-09-27 胺化聚氨酯海绵吸附剂的合成方法与应用

Country Status (1)

Country Link
CN (1) CN115554999B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116835744A (zh) * 2023-08-30 2023-10-03 湘潭电化科技股份有限公司 一种含锰工业废水的处理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071467A (zh) * 2013-01-30 2013-05-01 南京大学 一种利用废旧聚氨酯海绵制备的重金属捕集材料及制备方法
CN105148875A (zh) * 2015-09-01 2015-12-16 哈尔滨工业大学 一种易回收可循环使用的聚苯胺负载聚氨酯海绵吸附材料的制备方法
CN106700547A (zh) * 2016-12-26 2017-05-24 厦门大学附属中山医院 一种聚苯胺‑聚多巴胺复合材料的制备方法
CN109364528A (zh) * 2018-12-11 2019-02-22 哈尔滨工程大学 具有pH响应性的多级结构油水分离材料及其制备方法
CN110816009A (zh) * 2019-10-25 2020-02-21 武汉理工大学 一种光热转化材料及其制备方法与应用
CN113698661A (zh) * 2021-10-13 2021-11-26 哈尔滨工程大学 一种全天候热响应的快速自修复超疏水海绵的制备方法及其自修复方法
CN113694904A (zh) * 2021-09-03 2021-11-26 中国科学技术大学 一种新型吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用
CN113980347A (zh) * 2021-09-09 2022-01-28 盐城工学院 一种超疏水超亲油高分子海绵材料的制备方法
CN114307941A (zh) * 2021-10-18 2022-04-12 南京大学 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用
CN114751478A (zh) * 2022-04-11 2022-07-15 扬州大学 用于太阳能界面蒸发的纳米纤维膜及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613479B2 (en) * 2019-07-24 2023-03-28 King Fahd University Of Petroleum And Minerals Graphene reinforced polystyrene composite for separation of nonpolar compounds from water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071467A (zh) * 2013-01-30 2013-05-01 南京大学 一种利用废旧聚氨酯海绵制备的重金属捕集材料及制备方法
CN105148875A (zh) * 2015-09-01 2015-12-16 哈尔滨工业大学 一种易回收可循环使用的聚苯胺负载聚氨酯海绵吸附材料的制备方法
CN106700547A (zh) * 2016-12-26 2017-05-24 厦门大学附属中山医院 一种聚苯胺‑聚多巴胺复合材料的制备方法
CN109364528A (zh) * 2018-12-11 2019-02-22 哈尔滨工程大学 具有pH响应性的多级结构油水分离材料及其制备方法
CN110816009A (zh) * 2019-10-25 2020-02-21 武汉理工大学 一种光热转化材料及其制备方法与应用
CN113694904A (zh) * 2021-09-03 2021-11-26 中国科学技术大学 一种新型吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用
CN113980347A (zh) * 2021-09-09 2022-01-28 盐城工学院 一种超疏水超亲油高分子海绵材料的制备方法
CN113698661A (zh) * 2021-10-13 2021-11-26 哈尔滨工程大学 一种全天候热响应的快速自修复超疏水海绵的制备方法及其自修复方法
CN114307941A (zh) * 2021-10-18 2022-04-12 南京大学 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用
CN114751478A (zh) * 2022-04-11 2022-07-15 扬州大学 用于太阳能界面蒸发的纳米纤维膜及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Facile in-situ polymerization of polyaniline-functionalized melamine sponge preparation for mass spectrometric monitoring of perfluorooctanoic acid and perfluorooctane sulfonate from biological samples;Liang Qi等;《Journal of Chromatography A》;第1-9页 *
Synthesis of Superhydrophobic/Superoleophilic stearic acid and Polymer-modified magnetic polyurethane for Oil-Water Separation: Effect of polymeric nature;Mauliady Satria等;《Journal of Colloid and Interface Science》;第522–534页 *
徐志康.《中国战略新兴产业.新材料.高性能分离膜材料》.中国铁道出版社,2017,第93-94页. *
聚苯胺改性多孔材料的制备及其粘性油吸附性能研究;张国立;《中国优秀硕士学位论文数据库 工程科技Ⅰ辑》;摘要 *

Also Published As

Publication number Publication date
CN115554999A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
Lei et al. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities
Yan et al. Interior multi-cavity/surface engineering of alginate hydrogels with polyethylenimine for highly efficient chromium removal in batch and continuous aqueous systems
Cheng et al. Fabrication of fungus/attapulgite composites and their removal of U (VI) from aqueous solution
Zhu et al. Highly efficient and selective removal of Cr (VI) by covalent organic frameworks: Structure, performance and mechanism
Dou et al. High efficiency removal of triclosan by structure-directing agent modified mesoporous MIL-53 (Al)
Xu et al. Molecularly imprinted TiO 2 hybridized magnetic Fe 3 O 4 nanoparticles for selective photocatalytic degradation and removal of estrone
Wu et al. A novel chitosan based adsorbent for boron separation
Li et al. Preparation of PEI/CS aerogel beads with a high density of reactive sites for efficient Cr (VI) sorption: batch and column studies
Huang et al. Polyethylenimine and dithiocarbamate decorated melamine sponges for fast copper (II) ions removal from aqueous solution
Li et al. A recent overview of per-and polyfluoroalkyl substances (PFAS) removal by functional framework materials
Ravi et al. Facile synthesis of a mesoporous organic polymer grafted with 2-aminoethanethiol for Hg2+ removal
CN115554999B (zh) 胺化聚氨酯海绵吸附剂的合成方法与应用
Bui et al. Performance analysis of hydrated Zr (IV) oxide nanoparticle-impregnated anion exchange resin for selective phosphate removal
Su et al. Preparation of a surface molecular‐imprinted adsorbent for Ni2+ based on Penicillium chrysogenum
Chang et al. Synthesis and characterization of PCN-222 metal organic framework and its application for removing perfluorooctane sulfonate from water
Wang et al. Ammonium molybdophosphate/metal-organic framework composite as an effective adsorbent for capture of Rb+ and Cs+ from aqueous solution
Lei et al. Removal of perfluorooctanoic acid via polyethyleneimine modified graphene oxide: Effects of water matrices and understanding mechanisms
Lei et al. A novel composite (ZIF-8@ PEI-CC) with enhanced adsorption capacity and kinetics of methyl orange
Bai et al. Processable amidoxime functionalized porous hyper-crosslinked polymer with highly efficient regeneration for uranium extraction
Zhu et al. Synthesis of amidoximated polyacrylonitrile/sodium alginate composite hydrogel beed and its use in selective and recyclable removal of U (VI)
Yu et al. In situ self-sacrificial synthesis of polypyrrole/biochar composites for efficiently removing short-and long-chain perfluoroalkyl acid from contaminated water
Kang et al. Removal of short-and long-chain PFAS from aquatic systems using electrostatic attraction of polyethylenimine-polyvinyl chloride electrospun nanofiber adsorbent
Liu et al. Adsorption of amphetamine on deep eutectic solvents functionalized graphene oxide/metal-organic framework nanocomposite: Elucidation of hydrogen bonding and DFT studies
Zhang et al. Synthesis of polyethyleneimine modified polyurethane foam for removal of Pb (II) ion from aqueous solution
CN105111413B (zh) 一种具有磁性的有机共轭聚合物微球的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant