WO2023065611A1 - 一种基于混凝土收缩理论的楼地面抗裂做法 - Google Patents

一种基于混凝土收缩理论的楼地面抗裂做法 Download PDF

Info

Publication number
WO2023065611A1
WO2023065611A1 PCT/CN2022/086309 CN2022086309W WO2023065611A1 WO 2023065611 A1 WO2023065611 A1 WO 2023065611A1 CN 2022086309 W CN2022086309 W CN 2022086309W WO 2023065611 A1 WO2023065611 A1 WO 2023065611A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
shrinkage
unit
torsion
nut
Prior art date
Application number
PCT/CN2022/086309
Other languages
English (en)
French (fr)
Inventor
徐大为
张志敏
Original Assignee
上海建工五建集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海建工五建集团有限公司 filed Critical 上海建工五建集团有限公司
Publication of WO2023065611A1 publication Critical patent/WO2023065611A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors

Definitions

  • the invention relates to the technical field of concrete structure construction, in particular to a floor surface crack resistance method based on the concrete shrinkage theory.
  • Fine stone concrete floor is one of the main forms of ground engineering for civil buildings such as residential buildings in my country. It has the advantages of low cost, good technical performance, long service life, and convenient construction and maintenance.
  • the traditional fine stone concrete floor is as follows:
  • the base layer should be treated first, then the elevation and surface level should be adjusted, the leveling mark should be done, and a layer of cement slurry (with construction adhesive mixed inside) should be applied on the top, and then 25 thick cement-based inorganic thermal insulation should be applied.
  • cement slurry with construction adhesive mixed inside
  • the purpose of the present invention is to provide a floor surface crack resistance method based on the concrete shrinkage theory, calculate the shrinkage value of the concrete at any time through the relevant theoretical calculation formula combined with the actual engineering situation, and use the torsion device to apply a certain amount to the concrete during the concrete curing period.
  • the deformation compensation can fully meet the shrinkage conditions and reduce the possibility of concrete cracking from the source.
  • a method of anti-cracking of floors based on the theory of concrete shrinkage comprising the following steps:
  • Step S1 complete the construction of the base layer consisting of cast-in-place concrete floor slabs, plain cement slurry, and fine stone concrete slope-finding and leveling layers from bottom to top, and reserve construction operation space as a post-cast belt, and carry out reinforcement on the base layer
  • the mesh is arranged, and the two sides of the steel mesh away from the wall and the base layer are arranged with square steel through the connecting screw, and the connecting screw is matched with a single-line nut, and the single-line nut is arranged on the side of the square steel away from the reinforcing bar;
  • Step S2 after the steel mesh laying in the step S1 is completed, pouring concrete to form a fine stone concrete surface layer;
  • Step S3 after the concrete final setting of the fine stone concrete surface layer in the step S2 is completed, twist the single thread nut to perform shrinkage compensation operation.
  • step S3 includes:
  • Step S31 calculate the unit concrete shrinkage according to the concrete shrinkage formula, the concrete shrinkage formula is:
  • Step S32 providing a torsion device, the torsion device includes a horizontal torsion member and a vertical torsion member fixedly connected, the vertical torsion member is an L-shaped member, and the upper end of the vertical torsion member is fixed to set the horizontal torsion part; the lower end of the vertical torsion part is matched with the single wire nut in the step S1, and the single wire nut is twisted by pushing the horizontal torsion part;
  • Step S33 calculate the driving length of the lateral torsion member according to the formula 2, so as to realize the compensation of the concrete compression amount, the formula 2 is: Among them: X is the displacement value of the horizontal torsion member, unit: mm; L is the length of the vertical torsion member, unit: mm; ⁇ is the daily concrete shrinkage increment, that is, the difference between the concrete shrinkage of two adjacent days; P is Single wire nut pitch, unit: mm;
  • Step S4 after the concrete curing is completed, the square steel and the torsion device are dismantled and recycled, and the post-casting belt construction and curing of the construction operation space in the step S1 is completed, thereby completing the construction of the thermal insulation fine stone concrete floor.
  • the construction operation space in the step S1 is a rectangular area enclosed by the surface of the base layer with a length of 20 cm in both horizontal and vertical directions.
  • one end of the connecting screw is welded to the steel bar, and the other end of the connecting screw passes through the reserved hole on the square steel, and is locked and fixed by using the single wire nut to rotate to a predetermined position.
  • the connecting screw and nut should be reasonably adopted according to the size of the steel bar, due to the need for fine adjustment operations, it is best to use a grade A or B fine-pitch nut.
  • the single wire nut is M8 Single thread grade A fine pitch nuts.
  • the anti-cracking method of the floor surface based on the concrete shrinkage theory provided by the present invention can effectively prevent the expansion of micro-cracks and the formation of macro-cracks in the concrete, improve the crack resistance of fine stone concrete, and significantly improve the performance of fine stone concrete. Excellent construction quality further improves the service life.
  • the anti-crack method of the floor surface based on the concrete shrinkage theory provided by the present invention starts from the crack theory, calculates the amount of concrete shrinkage in detail, provides accurate data on the control of concrete shrinkage, and amplifies the data through a twisting device to become It can be seen that the operable value has guiding significance for similar concrete crack control projects.
  • the square steel and the torsion device can be prefabricated according to the reinforcement situation of the floor surface and the nut specification adopted, and the device can be recycled and reused after the construction is completed. It will cause pollution and waste, be green and environmentally friendly, and save construction costs.
  • the anti-crack method of the floor surface based on the concrete shrinkage theory provided by the present invention can be constructed together with other anti-crack measures to further improve the anti-crack performance of concrete.
  • Fig. 1 is the structural representation of thermal insulation fine stone concrete floor in an embodiment of the present invention
  • Fig. 2 is the layout diagram of the reinforcement mesh in the thermal insulation fine stone concrete floor in an embodiment of the present invention
  • Fig. 3 is the front view of the twisting device of the thermal insulation fine stone concrete floor in an embodiment of the present invention
  • Fig. 4 is an enlarged view of part A of Fig. 3;
  • Fig. 5 is a side view of the twisting device for the thermal insulation fine stone concrete floor in an embodiment of the present invention.
  • 1-cast-in-place reinforced concrete floor 2-plain cement slurry; 3-fine stone concrete slope finding leveling layer; 4-fine stone concrete surface layer; 7-rebar; 8-square steel; 9-connecting screw; 10-single line Nut; 11-horizontal torsion piece; 12-vertical torsion piece.
  • This embodiment provides a floor crack resistance method based on the concrete shrinkage theory to carry out thermal insulation fine stone concrete floor construction.
  • the specific implementation steps are as follows:
  • Step 1 Cleaning of the base layer: Clean and rinse the soil, floating slurry blocks and other sundries on the surface of the base layer. Water and moisten the surface layer 1 day before laying the surface layer to remove the surface water.
  • Step 2 Play the elevation and surface level line: Measure the level line of the ground surface according to the existing +500mm horizontal elevation line on the wall, and bounce it on the surrounding walls, and make sure it is consistent with the corridors, stair platforms, and steps outside the room. elevations are consistent with each other.
  • Step 3 Control the concrete pouring area: from bottom to top, construct the cast-in-place reinforced concrete floor 1, a plain cement slurry 2, and fine stone concrete slope finding and leveling layer 3 to form the base layer; then divide the concrete pouring area and reserve
  • the construction operation space is used as a post-cast belt, and the placement position of the square steel 8 is measured at the same time, and all areas are marked by elastic lines.
  • the construction operation space is a rectangular area enclosed by the surface of the base layer with a length of 20 cm in both horizontal and vertical directions.
  • Step 4 Place the square steel 8 and lay the steel bar 7: Weld one end of the steel bar 7 to the connecting screw 9 in advance, fix the other end to the wall, and the end welded with the connecting screw 9 passes through the square steel 8, and tighten the single wire nut 10 to the corresponding position.
  • the steel bars 7 when laying out the steel bar mesh, first lay out along one direction and then lay out the steel bars in the other direction.
  • Step 5 Concrete pouring: After laying the steel bars 7 in both horizontal and vertical directions, start pouring concrete, and perform rough leveling, and then evenly sprinkle 1:1 cement sand on the upper surface of the fine stone concrete surface layer 4, and wait for the gray surface After absorbing water, smooth it with a wooden trowel for the second time. Finally, when the surface layer begins to condense 2 to 3 hours after pouring, and footprints can be formed on the ground but not subsidence, use an iron trowel for final smearing and sweeping with a broom.
  • Step 6 Calculation: According to the data such as the length of the concrete section and the pouring conditions, calculate the daily concrete shrinkage increment through the corresponding formula, and calculate the daily amount of the horizontal torsion member 11 according to the relationship between the size of the single thread nut 10 and the torsion device. displacement value.
  • the dimensions of the connecting screw 9 and the single wire nut 10 should be reasonably adopted according to the size of the steel bar 7, due to the need for fine adjustment operations, it is best to use A-grade or B-grade fine-pitch nuts.
  • the diameter of the steel bar 7 For the single wire nut 10, choose M8 single wire grade A fine thread nut.
  • Step 7 Maintenance and shrinkage control: After the final setting of the upper surface of the fine stone concrete surface layer 4 is completed, use a torsion device to control the amount of concrete shrinkage. Displacement operation to achieve the purpose of controlling the shrinkage of concrete.
  • Step 8 Remove the device and pour the post-pouring belt: After the maintenance is completed, remove the recycled concrete shrinkage control device, pour high-grade micro-expansion concrete in the post-casting belt, and carry out corresponding leveling and maintenance measures. The entire construction completes the construction of the thermal insulation fine stone concrete floor.
  • Step six specifically includes:
  • ⁇ y (t) ⁇ y 0 M 1 M 2 ... M n (1-e -bt ),
  • ⁇ y is the amount of concrete shrinkage per unit length at any time, unit: mm/mm, t is time , unit: day;
  • b is the empirical coefficient, generally 0.01, and 0.03 when the maintenance is poor;
  • ⁇ y 0 is the limit shrinkage under standard conditions, and the value is 3.24 ⁇ 10 -4 ;
  • M1, M2...Mn are based on "Engineering Structure Cracks Corresponding value table in "Control" book, according to the actual situation of the project, the present embodiment takes the horizontal and vertical as 3m and 6m respectively as an example, see the Mn value table (Table 1) for the value, and calculate the horizontal 3m by the above formula
  • Table 2 The shrinkage of the section along the axial direction
  • Formula 1 is the amount of shrinkage of concrete along the shrinkage direction.
  • the daily axial shrinkage of a concrete with a section length of 3 meters is about 0.015mm, that is, the daily control amount of concrete shrinkage control is 0.015mm.
  • the square steel should be controlled daily along the concrete. The direction moves 0.015mm.
  • Step seven includes:
  • a torsion device which includes a fixedly connected horizontal torsion piece 11 and a vertical torsion piece 12, the vertical torsion piece 12 is an L-shaped member, and the upper end of the vertical torsion piece 12 is fixedly provided with the horizontal torsion piece 11; The lower end of the torsion piece 12 cooperates with the single wire nut 10, and the single wire nut is twisted by pushing the transverse torsion piece 11.
  • the pitch is equal to the lead, which is 1.25mm, that is, the axial displacement is 1.25mm for one rotation. Calculating that the daily single wire nut 10 should twist the arc to be 4.32°.
  • this embodiment uses a torsion device to convert the radian into a horizontal displacement.
  • the trigonometric function formula if the length of the vertical torsion member is 93mm, then you only need to translate to rotate the nut by 4.32° The lateral torsion piece is about 7mm. In this way, it is possible to convert radians into lengths and small deformations into visible deformations.
  • the daily shrinkage of 3m concrete in the axial direction is about 0.015mm
  • the present invention compensates the concrete compression by tightening the nut to promote the displacement of the square steel.
  • the daily tightening degree of the nut is about 4.32°.
  • the small deformation is amplified into an operable and visible displacement through the vertical torsion member and the lateral torsion member 11. To achieve the rotation effect of the corresponding degree, it is only necessary to push the lateral torsion member 11 to a corresponding length.
  • the above calculation process, according to the relational formula and trigonometric function can be deduced formula two: according to the formula two to calculate the driving length of the transverse torsion member, so as to realize the concrete compression compensation, the formula two is: Among them: X is the displacement value of the horizontal torsion member, unit: mm; L is the length of the vertical torsion member, unit: mm; ⁇ is the daily concrete shrinkage increment, that is, the difference between the concrete shrinkage of two adjacent days; P is Single wire nut pitch, unit: mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

本发明涉及一种基于混凝土收缩理论的楼地面抗裂做法,属于混凝土结构施工技术领域,用于解决混凝土收缩裂缝的问题。该方法,首先,由下至上依次完成现浇混凝土楼板、一道素水泥浆、细石混凝土找坡打平层组成的基底层施工,其次,划分混凝土浇筑区域和后浇带,在混凝土浇筑区域铺设钢筋网,钢筋网远离墙体和基底层的两个侧面布置方钢,连接螺杆配套设置单线螺母,单线螺母设置于方钢远离钢筋的一侧;然后,浇筑混凝土形成细石混凝土面层;接着,根据混凝土收缩公式计算单位混凝土收缩量,并计算混凝土在沿收缩方向上的收缩量,依据计算的横向扭转件的位移值推动扭转装置进行收缩补偿操作;最后,拆除回收方钢和扭转装置,浇筑后浇带并养护。

Description

一种基于混凝土收缩理论的楼地面抗裂做法 技术领域
本发明涉及混凝土结构施工技术领域,特别涉及一种基于混凝土收缩理论的楼地面抗裂做法。
背景技术
细石混凝土地面是我国目前住宅等民用建筑物楼地面工程的主要形式之一,它具有造价低、技术性能好、使用年限长、施工及维修方便的优点。传统的细石混凝土地面做法如下:
如某建筑地面采用钢筋混凝土楼板或预制板,先进行基层处理,再弹标高和面层水平线,做好找平标志,上涂水泥浆一道(内掺建筑胶),再涂25厚水泥基无机保温砂浆III型,最后布设40厚C25细石混凝土面层,振捣密实抹平压光后进行养护。
然而,传统的细石混凝土楼地面在日常使用过程中极易产生裂缝,根据裂缝产生原因分类主要可以分为由荷载作用引起的裂缝、由变形作用引起的裂缝以及混合作用引起的裂缝,其中由于混凝土变形变化引起的裂缝占80%。可以说混凝土大部分裂缝都是由混凝土本身变形引起的。
因此,亟需开发一种基于混凝土收缩理论的楼地面抗裂做法以解决前述技术问题。
发明内容
本发明的目的在于提供一种基于混凝土收缩理论的楼地面抗裂做法,通过相关理论计算公式结合实际工程情况计算了混凝土在任意时间的收缩值,利用扭转装置,在混凝土养护期间给混凝土施加一定的变形补偿,使其收缩条件得到充分满足,从源头上减小混凝土开裂的可能性。
为解决上述技术问题,本发明的技术方案如下:
一种基于混凝土收缩理论的楼地面抗裂做法,包括如下步骤:
步骤S1、由下至上依次完成现浇混凝土楼板、素水泥浆、细石混凝土找坡打平层组成的基底层施工,并预留施工操作空间作为后浇带,在所述基底层上进行钢筋网布设,所述钢筋网远离墙体和基底层的两个侧面通过连接螺杆布置方钢,所述连接螺杆配套设置单线螺母,所述单线螺母设置于所述方钢远离钢筋的一侧;
步骤S2、待所述步骤S1的钢筋网布设完成后,浇筑混凝土,形成细石混凝土面层;
步骤S3、待所述步骤S2中细石混凝土面层的混凝土终凝完成后,扭动所述单线螺母,进行 收缩补偿操作。
进一步地,所述步骤S3中收缩补偿操作,包括:
步骤S31、根据混凝土收缩公式计算单位混凝土收缩量,所述混凝土收缩公式为:
ε y(t)=ε y 0·M 1·M 2...M n(1-e -bt),其中,ε y为单位长度任意时间混凝土收缩量,单位:mm/mm;t为时间,单位:天;b为经验系数一般取0.01,养护较差时取0.03;ε y 0为标准状态下的极限收缩量,取值3.24×10 -4,单位:mm/mm;M1、M2…Mn为依据《工程结构裂缝控制》书中相应取值表进行工程实际修正值;公式一为混凝土在沿收缩方向上的收缩量,公式一为:ε(t)=Dε y(t),其中,D为沿收缩方向混凝土长度,单位:mm,ε(t)为任意时间混凝土收缩量,单位:mm;
步骤S32、提供一扭转装置,所述扭转装置包括固定连接的横向扭转件和竖向扭转件,所述竖向扭转件为L型构件,所述竖向扭转件的上端固定设置所述横向扭转件;所述竖向扭转件的下端与所述步骤S1中的单线螺母相配合,通过推动所述横向扭转件从而扭动所述单线螺母;
步骤S33、根据公式二计算横向扭转件的推动长度,从而实现混凝土压缩量补偿,所述公式二为:
Figure PCTCN2022086309-appb-000001
其中:X为横向扭转件的位移值,单位:mm;L为竖向扭转件的长度,单位:mm;△为每日混凝土收缩增量,即相邻两日混凝土收缩量的差;P为单线螺母螺距,单位:mm;
步骤S4、混凝土养护结束后,拆除并回收方钢和扭转装置,完成所述步骤S1中施工操作空间的后浇带施工并养护,从而完成保温细石混凝土楼面的施工。
进一步地,所述步骤S1中施工操作空间为所述基底层表面横向和纵向两个方向各20公分长度围合形成的矩形区域。
进一步地,所述连接螺杆的一端与所述钢筋焊接连接,所述连接螺杆的另一端穿过所述方钢上的预留孔,采用所述单线螺母旋转至预定位置后锁紧固定。
进一步地,为防止钢筋布设时造成踩踏干扰,布设所述钢筋网时,先沿着一个方向布设完毕后再布设另一个方向的钢筋。
进一步地,考虑到连接螺杆和螺母尺寸规格应按照钢筋尺寸来合理采用,由于需进行精细调节操作,最好采用A级或B级细牙螺母,此处根据钢筋直径,所述单线螺母为M8 单线A级细牙螺母。
与现有技术相比,本发明有益的技术效果在于:
(1)本发明提供的基于混凝土收缩理论的楼地面抗裂做法,可有效的阻止混凝土内部微裂缝的扩展及宏观裂缝的形成,改善细石混凝土的抗裂性能,显著地提高了细石混凝土的施工质量,进一步提升了使用寿命。
(2)本发明提供的基于混凝土收缩理论的楼地面抗裂做法,从裂缝理论出发,详细计算了混凝土收缩量,提供了混凝土收缩控制的精确数据,并将该数据通过扭转装置进行放大,成为可见可操作数值,对同类混凝土裂缝控制工程有指导意义。
(3)本发明提供的基于混凝土收缩理论的楼地面抗裂做法,方钢和扭转装置可根据楼地面配筋情况和采用的螺母规格进行预制,施工结束后该装置还可回收重复使用,不会造成污染和浪费,绿色环保,节省施工成本。
(4)本发明提供的基于混凝土收缩理论的楼地面抗裂做法,可搭配其他抗裂措施一起施工,进一步提高混凝土抗裂性能。
附图说明
图1为本发明一实施例中保温细石混凝土楼面的结构示意图;
图2为本发明一实施例中保温细石混凝土楼面中钢筋网的布置图;
图3为本发明一实施例中保温细石混凝土楼面的扭转装置正视图;
图4为图3的A部放大图;
图5为本发明一实施例中保温细石混凝土楼面的扭转装置侧视图。
图中:
1-现浇钢筋混凝土楼板;2-素水泥浆;3-细石混凝土找坡打平层;4-细石混凝土面层;7-钢筋;8-方钢;9-连接螺杆;10-单线螺母;11-横向扭转件;12-竖向扭转件。
具体实施方式
以下结合附图和具体实施例对本发明提出的基于混凝土收缩理论的楼地面抗裂做法作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。为叙述方便,下文中所述的“上”、“下”与附图的上、下的方向一致,但这不能成为本发明技术方案的限制。
从裂缝产生理论来看,混凝土的裂缝产生自变形,而变形情况受到各种外部和内部条件的影响,如温度、湿度、表面气流速度等。在混凝土浇筑硬化以及后续使用的整个过程 中混凝土收缩是其最大的变形,在设计使用荷载内,混凝土收缩量是关乎其是否产生裂缝的最主要因素。因此,可以通过相关理论计算公式结合实际工程情况计算了混凝土在任意时间的收缩值,利用扭转装置,在混凝土养护期间给混凝土施加一定的变形补偿,使其收缩条件得到充分满足,从源头上减小混凝土开裂的可能性。
下面结合图1至图5详细说明本发明的基于混凝土收缩理论的楼地面抗裂做法。
实施例一
本实施例提供了一种基于混凝土收缩理论的楼地面抗裂做法,进行保温细石混凝土楼面施工,具体实施步骤如下:
步骤一、基层清理:将基层表面的泥土、浮浆块等杂物清理冲洗干净,铺设面层前1天浇水湿润,扫除表面积水。
步骤二、弹标高和面层水平线:根据墙面已有的+500mm水平标高线,测量出地面面层的水平线,弹在四周的墙面上,并要与房间以外的楼道、楼梯平台、踏步的标高相互一致。
步骤三、控制混凝土浇筑区域:由下至上依次施工现浇钢筋混凝土楼板1、一道素水泥浆2、细石混凝土找坡打平层3,形成基底层;然后划分出混凝土浇筑区域,预留出施工操作空间作为后浇带,同时测量出方钢8放置位置,所有区域通过弹线进行标记。施工操作空间为基底层表面横向和纵向两个方向各20公分长度围合形成的矩形区域。
步骤四、放置方钢8铺设钢筋7:预先将钢筋7一端全部焊接上连接螺杆9,将其另一端与墙体固定,焊有连接螺杆9的一端穿过方钢8,旋紧单线螺母10至相应位置。特别地,为防止钢筋7布设时造成踩踏干扰,布设钢筋网时,先沿着一个方向布设完毕后再布设另一个方向的钢筋。
步骤五、浇混凝土:横纵两个方向的钢筋7都铺设好后开始浇筑混凝土,并进行粗找平,随后在细石混凝土面层4的上表面均匀地撒1:1水泥砂子,待灰面吸水后用木抹子二次抹平。最后在浇筑后2~3小时面层开始凝结、地面上可形成脚印但不下陷时,用铁抹子进行最后抹压,并用扫帚进行扫毛。
步骤六、计算:根据混凝土截面长度和浇筑条件等数据,通过相应公式计算出每日混凝土收缩增量,依据单线螺母10和扭转装置尺寸关系,通过公式计算出横向扭转件11每日应给予的位移值。特别地,考虑到连接螺杆9和单线螺母10尺寸规格应按照钢筋7尺寸来合理采用,由于需进行精细调节操作,最好采用A级或B级细牙螺母,此处根据钢筋7的直径,单线螺母10选择M8单线A级细牙螺母。
步骤七、养护与收缩控制:待细石混凝土面层4的上表面终凝完成后采用扭转装置 进行混凝土收缩量控制,在养护期间内,按照计算得出的数据对横向扭转件11进行每日位移操作,以到达控制混凝土收缩的目的。
步骤八、拆除装置及浇筑后浇带:养护完成后拆除回收混凝土收缩控制装置,后浇带浇筑高标号微膨胀混凝土,并进行相应找平、养护措施整个施工完成保温细石混凝土楼面的施工。
步骤六具体包括:
根据混凝土收缩公式计算单位混凝土收缩量,所述混凝土收缩公式为:
ε y(t)=ε y 0·M 1·M 2...M n(1-e -bt),其中,ε y为单位长度任意时间混凝土收缩量,单位:mm/mm,t为时间,单位:天;b为经验系数一般取0.01,养护较差时取0.03;ε y 0为标准状态下的极限收缩,取值3.24×10 -4;M1、M2…Mn为依据《工程结构裂缝控制》书中相应取值表,根据工程实际情况取值,本实施例取横向纵向分别为3m、6m为例,取值参见Mn取值表(表一),并由上式计算得横向3m截面沿轴向的收缩量(表二)。公式一为混凝土在沿收缩方向上的收缩量,公式一为:ε(t)=Dε y(t),其中,D为沿收缩方向混凝土长度,单位:mm,ε(t)为任意时间混凝土收缩量,单位:mm。
表一 Mn取值表
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 ΣMn
1.00 1.13 1.00 1.21 1.20 1.11 0.88 1.00 1.00 1.00 1.00 1.00 1.60
表二 3m长混凝土任意时间收缩量(mm)
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
ε(t) 0.015 0.031 0.046 0.061 0.076 0.090 0.105 0.119 0.134 0.148 0.162 0.176 0.189 0.203
由上表可知,一截面为3米长的混凝土每日沿轴向收缩量约为0.015mm,即进行混凝土收缩控制时每日控制量为0.015mm,按此数据应当每日控制方钢沿混凝土方向移动0.015mm。
步骤七包括:
首先,提供扭转装置,该扭转装置包括固定连接的横向扭转件11和竖向扭转件12,竖向扭转件12为L型构件,竖向扭转件12的上端固定设置横向扭转件11;竖向扭转件12的下端与单线螺母10相配合,通过推动横向扭转件11从而扭动单线螺母。
对于单线螺母其螺距等于导程,为1.25mm,即旋转一圈沿轴向位移为1.25mm。由此计算每日单线螺母10应拧动弧度为4.32°。
其次,参考图4,由于度数过于微小难以控制,本实施例采用扭转装置将弧度转为水 平位移,根据三角函数公式,若竖向扭转件长度为93mm,则想将螺母转动4.32°只需平移横向扭转件约7mm。由此实现了将弧度转换为长度,将微小变形转换为可见变形。
根据以上计算结果,3m混凝土沿轴向每日收缩量约为0.015mm,本发明通过螺母旋紧推动方钢位移给与混凝土压缩量补偿。每日螺母旋紧度数约为4.32°,通过竖向扭转件和横向扭转件11将微小变形放大为可操作可见位移,为达到相应度数转动效果只需将横向扭转件11推动相应长度即可。以上计算过程,根据关系式及三角函数可推得公式二:根据公式二计算横向扭转件的推动长度,从而实现混凝土压缩量补偿,所述公式二为:
Figure PCTCN2022086309-appb-000002
其中:X为横向扭转件的位移值,单位:mm;L为竖向扭转件的长度,单位:mm;△为每日混凝土收缩增量,即相邻两日混凝土收缩量的差;P为单线螺母螺距,单位:mm。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (5)

  1. 一种基于混凝土收缩理论的楼地面抗裂方法,其特征在于,包括如下步骤:步骤S1、由下至上依次完成现浇混凝土楼板、一道素水泥浆、细石混凝土找坡打平层组成的基底层施工,并预留施工操作空间作为后浇带,在所述基底层上进行钢筋网布设,钢筋网的各个钢筋的一端焊接连接螺杆,另一端与墙体固定,所述连接螺杆远离钢筋的一端穿过方钢上的预留孔,所述连接螺杆配套设置单线螺母,所述单线螺母设置于所述方钢远离钢筋的一侧,所述连接螺杆采用所述单线螺母旋转至预定位置后锁紧固定;
    步骤S2、待所述步骤S1的钢筋网布设完成后,浇筑混凝土,形成细石混凝土面层;
    步骤S3、待所述步骤S2中细石混凝土面层的混凝土终凝完成后,扭动所述单线螺母,进行收缩补偿操作;
    所述步骤S3中收缩补偿操作,包括:
    步骤S31、根据混凝土收缩公式计算单位混凝土收缩量,所述混凝土收缩公式为:
    ε y(t)=ε y 0·M 1·M 2…M a(1-e -bt),其中,ε y为单位长度任意时间混凝土收缩量,单位:mm/mm;t为时间,单位:天;b为经验系数,一般取0.01,养护较差时取0.03;ε y 0为标准状态下的极限收缩量,取值3.24×10 -4,单位:mm/mm;M1、M2…Mn为依据《工程结构裂缝控制》书中相应取值表进行工程实际修正值;公式一为混凝土在沿收缩方向上的收缩量,公式一为:ε(t)=Dε y(t),其中,D为沿收缩方向混凝土长度,单位:mm,ε(t)为任意时间混凝土收缩量,单位:mm;
    步骤S32、提供一扭转装置,所述扭转装置包括固定连接的横向扭转件和竖向扭转件,所述竖向扭转件为L型构件,所述竖向扭转件的上端固定设置所述横向扭转件;所述竖向扭转件的下端与所述步骤S1中的单线螺母相配合,通过推动所述横向扭转件从而扭动所述单线螺母;
    步骤S33、根据公式二计算横向扭转件的推动长度,从而实现混凝土压缩量补偿,所述公式二为:
    Figure PCTCN2022086309-appb-100001
    其中:X为横向扭转件的位移值, 单位:mm;L为竖向扭转件的长度,单位:mm;△为每日混凝土收缩增量,即相邻两日混凝土收缩量的差;P为单线螺母螺距,单位:mm。
  2. 根据权利要求1所述的抗裂方法,其特征在于,还包括步骤S4,混凝土养护结束后,拆除并回收方钢和扭转装置,完成所述步骤S1中施工操作空间的后浇带施工并养护,从而完成保温细石混凝土楼面的施工。
  3. 根据权利要求1所述的抗裂方法,其特征在于,所述步骤S1中施工操作空间为所述基底层表面横向和纵向两个方向各20公分长度围合形成的矩形区域。
  4. 根据权利要求1所述的抗裂方法,其特征在于,布设所述钢筋网时,先沿着一个方向布设完毕后再布设另一个方向的钢筋。
  5. 根据权利要求1所述的抗裂方法,其特征在于,所述单线螺母为M8单线A级细牙螺母。
PCT/CN2022/086309 2021-10-21 2022-04-12 一种基于混凝土收缩理论的楼地面抗裂做法 WO2023065611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111223674.4A CN113653289B (zh) 2021-10-21 2021-10-21 一种基于混凝土收缩理论的楼地面抗裂做法
CN202111223674.4 2021-10-21

Publications (1)

Publication Number Publication Date
WO2023065611A1 true WO2023065611A1 (zh) 2023-04-27

Family

ID=78484331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086309 WO2023065611A1 (zh) 2021-10-21 2022-04-12 一种基于混凝土收缩理论的楼地面抗裂做法

Country Status (2)

Country Link
CN (1) CN113653289B (zh)
WO (1) WO2023065611A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463906A (zh) * 2023-05-22 2023-07-21 河北交投路桥建设开发有限公司 无切缝水泥混凝土路面施工工艺和质量控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113653289B (zh) * 2021-10-21 2021-12-24 上海建工五建集团有限公司 一种基于混凝土收缩理论的楼地面抗裂做法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006287A (ja) * 2009-06-26 2011-01-13 Taiheiyo Cement Corp コンクリート硬化体の乾燥収縮予測方法、製造方法及び乾燥収縮抑制方法
US20120272600A1 (en) * 2011-04-29 2012-11-01 Ytterberg Donald G W Elastic restraint system for shrinkage compensating concrete slab
CN103604409A (zh) * 2013-12-03 2014-02-26 中国建筑第八工程局有限公司 新浇筑混凝土楼板整体收缩约束变形测量方法
CN104947916A (zh) * 2015-06-17 2015-09-30 重庆建工住宅建设有限公司 超大面积混凝土地面结构收缩控制施工工艺
CN112195979A (zh) * 2020-09-18 2021-01-08 中铁十四局集团第二工程有限公司 一种地下侧墙结构混凝土抗裂防水施工方法
CN112211372A (zh) * 2020-02-28 2021-01-12 上海二十冶建设有限公司 整体式室内保温隔声地面的防开裂结构及其施工方法
CN113075391A (zh) * 2021-04-14 2021-07-06 中南大学 一种混凝土约束收缩试验装置及其试验方法
CN113653289A (zh) * 2021-10-21 2021-11-16 上海建工五建集团有限公司 一种基于混凝土收缩理论的楼地面抗裂做法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000018103A (ko) * 2000-01-12 2000-04-06 이상혁 콘크리트의 수축 균열 억제용 보강재
CN101498131B (zh) * 2009-01-21 2010-12-08 浙江中成建工集团有限公司 深大基坑钢筋混凝土支撑的收缩补偿方法
CN102116092A (zh) * 2009-12-30 2011-07-06 中冶成工上海五冶建设有限公司 用于补偿混凝土收缩防止裂缝的加强带施工方法
CN104631664A (zh) * 2014-07-14 2015-05-20 中冶交通(沈阳)建设工程有限公司 一种控制混凝土墙体裂缝的施工方法
CN107816044B (zh) * 2017-10-13 2019-10-25 武汉市市政建设集团有限公司 一种哑铃型结构大体积承台混凝土施工裂缝控制方法
CN112031374A (zh) * 2020-08-31 2020-12-04 上海宝冶集团有限公司 地下室大面积地坪的施工方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006287A (ja) * 2009-06-26 2011-01-13 Taiheiyo Cement Corp コンクリート硬化体の乾燥収縮予測方法、製造方法及び乾燥収縮抑制方法
US20120272600A1 (en) * 2011-04-29 2012-11-01 Ytterberg Donald G W Elastic restraint system for shrinkage compensating concrete slab
CN103604409A (zh) * 2013-12-03 2014-02-26 中国建筑第八工程局有限公司 新浇筑混凝土楼板整体收缩约束变形测量方法
CN104947916A (zh) * 2015-06-17 2015-09-30 重庆建工住宅建设有限公司 超大面积混凝土地面结构收缩控制施工工艺
CN112211372A (zh) * 2020-02-28 2021-01-12 上海二十冶建设有限公司 整体式室内保温隔声地面的防开裂结构及其施工方法
CN112195979A (zh) * 2020-09-18 2021-01-08 中铁十四局集团第二工程有限公司 一种地下侧墙结构混凝土抗裂防水施工方法
CN113075391A (zh) * 2021-04-14 2021-07-06 中南大学 一种混凝土约束收缩试验装置及其试验方法
CN113653289A (zh) * 2021-10-21 2021-11-16 上海建工五建集团有限公司 一种基于混凝土收缩理论的楼地面抗裂做法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463906A (zh) * 2023-05-22 2023-07-21 河北交投路桥建设开发有限公司 无切缝水泥混凝土路面施工工艺和质量控制方法
CN116463906B (zh) * 2023-05-22 2023-10-13 河北交投路桥建设开发有限公司 无切缝水泥混凝土路面施工工艺和质量控制方法

Also Published As

Publication number Publication date
CN113653289B (zh) 2021-12-24
CN113653289A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2023065611A1 (zh) 一种基于混凝土收缩理论的楼地面抗裂做法
CN104358341A (zh) 一种建筑砌体及施工砌筑方法
CN107152147A (zh) 一种混凝土耐磨地坪施工工艺
CN103410173A (zh) 一种地下结构外墙竖向后浇带封堵的施工方法
CN211037802U (zh) 一种全钢支撑加固模板体系
CN110607905A (zh) 一种全钢支撑加固模板体系及施工方法
CN107574952A (zh) 一种防潮墙及其施工工艺
CN206245560U (zh) 一种现浇混凝土板厚控制预制构件
CN111042310A (zh) 一种地下室底板构造及其施工方法
CN109778916A (zh) 一种基于抗水板的地下室外墙后浇带防渗漏方法
CN115324349A (zh) 一种直线加速器大体积混凝土施工方法
CN107842170A (zh) 轻集料隔声地面及其施工方法
CN109441190B (zh) 一种仓底堆坡结构及其施工方法
CN207376876U (zh) 一种防潮墙
CN111894294A (zh) 一种地下室外墙后浇带的保护结构
Singh et al. Concrete in Residential Construction
CN111851939A (zh) 一种防油渗地面结构以及其施工方法
CN114277962B (zh) 一种夯土墙预埋件、制造方法及夯土墙施工方法
CN115095092B (zh) 斜坡面台阶的施工方法
CN210917891U (zh) 一种楼面混凝土反沿防腐蚀结构
WO2024114836A1 (zh) 一种铺砌路面逆作法装配式施工方法
CN213868722U (zh) 一种木混地台节点结构
CN218234069U (zh) 一种出屋面门的门槛泛水结构
CN110118004B (zh) 一种钢筋马凳
CN203361011U (zh) 混凝土栈桥楼面的可变形衔接结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882236

Country of ref document: EP

Kind code of ref document: A1