WO2023065586A1 - 加热泵及洗碗机 - Google Patents

加热泵及洗碗机 Download PDF

Info

Publication number
WO2023065586A1
WO2023065586A1 PCT/CN2022/079378 CN2022079378W WO2023065586A1 WO 2023065586 A1 WO2023065586 A1 WO 2023065586A1 CN 2022079378 W CN2022079378 W CN 2022079378W WO 2023065586 A1 WO2023065586 A1 WO 2023065586A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
heat pump
pump according
heating element
casing
Prior art date
Application number
PCT/CN2022/079378
Other languages
English (en)
French (fr)
Inventor
顾文海
袁彬彬
王松
Original Assignee
佛山市威灵洗涤电机制造有限公司
淮安威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111209493.6A external-priority patent/CN113768444A/zh
Priority claimed from CN202122511444.XU external-priority patent/CN216090395U/zh
Application filed by 佛山市威灵洗涤电机制造有限公司, 淮安威灵电机制造有限公司 filed Critical 佛山市威灵洗涤电机制造有限公司
Publication of WO2023065586A1 publication Critical patent/WO2023065586A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer

Definitions

  • the disclosure relates to the technical field of electrical appliances, in particular to a heat pump and a dishwasher.
  • the traditional processing method is generally to install a heating device and a fluid device, which results in a complicated device mechanism and a large volume; especially for household appliances, the excessively large volume occupies a large area, which is not conducive to home use.
  • the present disclosure aims to solve one of the technical problems existing in the prior art at least to a certain extent. For this reason, the embodiment of the present disclosure proposes a heat pump, which integrates the heating element with at least part of the housing, and uses the existing space of the housing to accommodate the heating body, which can reduce the overall space ratio, reduce the assembly process, and improve assembly efficiency. .
  • Embodiments of the present disclosure also provide a dishwasher with the above heat pump.
  • the heat pump according to the embodiment of the first aspect of the present disclosure includes: a housing with a cavity inside, and the cavity has a water inlet and a water outlet; a heating element integrally formed with the housing; an impeller assembly that is rotatable ground mounted on the casing, and the impeller assembly part is located in the cavity.
  • the heat pump according to the embodiment of the present disclosure has at least the following beneficial effects: the above-mentioned heat pump integrates the heating element with at least part of the casing, and uses the existing space of the casing to accommodate the heating element, which can reduce the overall space ratio and improve space utilization. , which is beneficial to the miniaturization of the product; at the same time, the assembly process of assembling the heating element on the shell is reduced, and the assembly efficiency is improved.
  • the heating element is integrally formed with at least part of the housing by die casting or squeeze casting.
  • the heating element includes a working part for heating and a wiring part for connecting electricity, the working part is at least partially wrapped in the side wall of the housing, and the wiring part at least partially outside the housing.
  • all of the working parts are wrapped in the side walls of the housing.
  • the housing includes an upper pump housing and a lower pump housing detachably connected, the cavity is disposed on the upper pump housing, and the impeller assembly is installed on the lower pump housing,
  • the heating element is integrally formed with the upper pump casing.
  • the upper pump casing is made of metal.
  • the lower pump casing is made of plastic material.
  • the depth of the cavity gradually increases from the maximum outer diameter of the impeller assembly to the side wall of the cavity.
  • the cavity is in the shape of a barrel, the bottom of the cavity is sunken inward, and the middle part of the bottom of the cavity is planar.
  • the heating element is in an inverted triangular spiral shape.
  • the depth of the cavity gradually decreases from the maximum outer diameter of the impeller assembly to the side wall of the cavity.
  • the cavity is in the shape of a barrel, the bottom of the cavity protrudes outward, and the middle part of the bottom surface of the cavity is planar.
  • the heating element is in the shape of a triangular helix.
  • the depth of the cavity is uniform from the maximum outer diameter of the impeller assembly to the side wall of the cavity.
  • the shape of the cavity is cylindrical.
  • the heating element is disc-shaped.
  • a baffle protrudes from the lower pump casing, the baffle is located in the cavity, and the baffle is involutely helical toward the inner surface of the impeller assembly.
  • the distance from the outer side of the baffle away from the impeller assembly to the inner side wall of the cavity and the distance from the baffle to the heating element are inversely correlated.
  • the inner sidewall of the cavity is provided with a coating.
  • the impeller assembly includes a semi-open impeller.
  • the dishwasher according to the embodiment of the second aspect of the present disclosure includes the heat pump of the embodiment of the first aspect.
  • the dishwasher according to the embodiment of the present disclosure has at least the following beneficial effects: the heating pump in the above-mentioned dishwasher integrates the heating element with at least part of the casing, and uses the existing space of the casing to accommodate the heating element, which can reduce the overall space occupation. Ratio, improve space utilization, and facilitate product miniaturization; at the same time, reduce the assembly process of assembling the heating element to the shell, and improve assembly efficiency. Since the volume of the heat pump can be reduced, the required installation space on the dishwasher is correspondingly reduced, thereby increasing the effective capacity of the dishwasher.
  • FIG. 1 is a schematic diagram of a first embodiment of a heat pump of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of the first embodiment of the heat pump of the present disclosure
  • Fig. 3 is a first schematic diagram of the lower pump casing and impeller assembly in the first embodiment of the heat pump of the present disclosure
  • Fig. 4 is a second schematic diagram of the lower pump casing and impeller assembly in the first embodiment of the heat pump of the present disclosure
  • Fig. 5 is a schematic diagram of the heating element in the first embodiment of the heat pump of the present disclosure
  • FIG. 6 is a schematic cross-sectional view of a second embodiment of the heat pump of the present disclosure.
  • FIG. 7 is a schematic diagram of a heating element in a second embodiment of the heat pump of the present disclosure.
  • FIG. 8 is a schematic cross-sectional view of a third embodiment of the heat pump of the present disclosure.
  • FIG. 9 is a schematic diagram of a heating element in a third embodiment of the heat pump of the present disclosure.
  • Housing 100 housing 100; cavity 110; water inlet 120; water outlet 130; upper pump casing 140; lower pump casing 150; through hole 160; pipe 170;
  • heating element 200 working part 210; wiring part 220;
  • Baffle 400 inner side 410 ; outer side 420 ; gap S.
  • orientation descriptions such as the orientation or positional relationship indicated by up, down, etc., are based on the orientation or positional relationship shown in the drawings, and are only for the convenience of describing the present disclosure and simplifying the description. , rather than indicating or implying that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and thus should not be construed as limiting the present disclosure.
  • a plurality refers to two or more. If the description of the first and second is only for the purpose of distinguishing the technical features, it cannot be understood as indicating or implying the relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the order of the indicated technical features relation.
  • Heat pumps are often used to heat and pump fluids.
  • Existing heat pumps generally reserve installation positions for heating components on the pump casing. After the casing is manufactured, install the heating components to the casing. On the body, the two are independently manufactured and then assembled, and there are relatively many installation procedures; in order to install the heating element, there must be an operating space, which needs to be considered when designing the shell, which is not conducive to the miniaturization design of the shell; and the shell and The heating components occupy space independently, and the overall space occupied is relatively large.
  • the heat pump includes a casing 100 , a heating element 200 , and an impeller assembly 300 .
  • the housing 100 is provided with a cavity 110 inside, the cavity 110 has a water inlet 120 and a water outlet 130, both the water inlet 120 and the water outlet 130 communicate with the cavity 110, so that the fluid flows in and out;
  • the heating element 200 is integrated with the housing 100 Die-casting molding to form an integrated structure.
  • Die-casting is to use high pressure to press molten metal into a precision metal mold cavity at high speed, and the molten metal is cooled and solidified under pressure to form a casting; the impeller assembly 300 is rotatably installed in the housing 100 , and part of the impeller assembly 300 is located in the cavity 110 for driving the fluid in the cavity 110 to flow from the water inlet 120 to the water outlet 130 , specifically, the output part of the impeller assembly 300 is located in the cavity 110 .
  • the heating element 200 can also be integrally formed with the housing 100 in other ways, for example, the heating element 200 can be integrally formed with the housing 100 by extrusion casting; extrusion casting is to make the liquid Or the method of solidifying and flowing forming of semi-solid metal under high pressure to directly obtain parts or blanks. It has the advantages of high utilization rate of liquid metal, simplified process and stable quality.
  • the above-mentioned heat pump integrates the heating element 200 and the casing 100, and uses the existing space of the casing 100 to accommodate the heating element, which can reduce the proportion of the overall space, improve the space utilization rate, and facilitate the miniaturization design of the product; 200 is assembled on the housing 100 to improve assembly efficiency.
  • the heating element 200 may be partially wrapped by the side wall of the casing 100 , or completely wrapped by the casing 100 .
  • the heating element 200 includes a working part 210 for generating heat and a connecting part 220 for connecting electricity.
  • the working part 210 is completely wrapped in the side wall of the casing 100. A part is located outside the casing 100 so as to connect with the power cord.
  • the working part 210 is completely located in the side wall of the housing 100, and all the heat emitted by the working part 210 is transferred to the housing 100, and then the housing 100 heats the fluid in the cavity 110, which can heat the cavity
  • the fluid in the body 110 is evenly heated; the working part 210 does not need to directly contact the fluid to be heated, which can effectively guarantee the service life of the working part 210 .
  • the working part 210 is not limited to the above-mentioned embodiment, and it can also be implemented in a way that it is partially wrapped by the side wall of the housing 100.
  • the working part 210 has at least one surface exposed to the side wall of the housing 100, and the rest is wrapped by the side wall of the housing 100.
  • a part of the working part 210 can directly contact the fluid to be heated, directly Perform heat exchange to achieve the purpose of rapidly heating the fluid.
  • the heating element 200 heats the liquid and the upper pump casing 140 synchronously; after the embodiment in which the heating element 200 is completely wrapped by the side wall of the upper pump casing 140 starts, the heating element 200 first heats the upper pump casing 140 , and then the liquid is heated through the upper pump casing 140, and all the heat emitted by the heating element 200 needs to pass through the upper pump casing 140 before it can be transferred to the liquid; Embodiments of the wall wrap can reduce the response time from the start of operation to reach the set temperature.
  • the heating element 200 adopts the electric heating tube in the existing mature technology.
  • the electric heating tube is placed in the mold first, and then metal is injected into the mold, and the metal and the electric heating tube are integrally die-casted in the mold.
  • the casing 100 includes an upper pump casing 140 and a lower pump casing 150, the upper pump casing 140 and the lower pump casing 150 are detachably connected, whereby the upper The pump casing 140 and the lower pump casing 150 are manufactured independently and then assembled together.
  • the upper pump casing 140 and the lower pump casing 150 can be connected together by threaded structures or bolts or screws; the cavity 110 is arranged on the upper pump casing.
  • the casing 140, the water inlet 120 and the water outlet 130 are all arranged on the upper pump casing 140, and the impeller assembly 300 is installed on the lower pump casing 150.
  • the part of the impeller assembly 300 protrudes upwards relative to the lower pump casing 150, and is located in the cavity 110.
  • the member 200 is die-cast integrally with the upper pump casing 140 to form a one-piece structure.
  • the casing 100 is divided into two parts, which can reduce processing difficulty, improve processing efficiency, and reduce processing cost.
  • the upper pump casing 140 and the lower pump casing 150 can be made of suitable materials according to actual needs, which is beneficial to reduce the overall cost.
  • the upper pump casing 140 can be made of metal material, which is beneficial to quickly transfer the heat on the working part 210 to the fluid, and will not be caused by the working part 210 at the same time.
  • the upper pump casing 140 is deformed due to high temperature; the lower pump casing 150 needs to undertake the role of installing the impeller assembly 300 and the closed cavity 110, and does not need to withstand high temperature, so the lower pump casing 150 can be made of plastic material, for example , the lower pump casing 150 can be made of polyurethane plastic or epoxy plastic, etc.; the lower pump casing 150 made of plastic is easy to process, and the cost is low.
  • the upper pump casing 140 can be made of aluminum, and aluminum die-casting can produce complex shapes relatively easily, so that the structure on the upper pump casing 140 can be integrally formed, and has good thermal conductivity. When making, place the heating element 200
  • the upper pump casing 140 can also be made of copper or other metal materials, which can play the role of rapid heat conduction and high temperature resistance.
  • the installation of the cavity 110 and the impeller assembly 300 is not limited to the above-mentioned embodiment, and the installation positions of the cavity 110 and the impeller assembly 300 can be reversed, that is, the cavity 110 can be set in the lower pump casing 150, The water inlet 120 and the water outlet 130 are both arranged in the lower pump casing 150, the impeller assembly 300 can be installed in the upper pump casing 140, the lower pump casing 150 is molded integrally with the metal material and the heating element 200, and the upper pump casing 140 is made of plastic material, so that Reduce processing difficulty and material cost, etc., this embodiment can also achieve the same function.
  • the housing 100 is not limited to being made in two parts, and in some embodiments of the present disclosure, the housing 100 can also be manufactured as a whole, so as to reduce the assembly process and improve the overall structural strength. .
  • the cavity 110 in the upper pump housing 140 is roughly in the shape of a barrel, the depth of the cavity 110 varies, and the bottom of the cavity 110 Concave towards the inside, specifically, the middle part of the bottom surface of the cavity is flat, the rest of the bottom surface of the cavity is conical, the impeller assembly 300 is a centrifugal structure, and the part of the impeller assembly located in the cavity 110 From the maximum outer diameter of 300 to the side wall of the cavity 110, the depth of the cavity 110 gradually increases.
  • the cross section for liquid flow gradually becomes larger , can slow down the flow rate of the liquid so that the liquid can transition stably, which is more in line with the principle of fluid design, reduces the generation of turbulent flow, and is conducive to improving hydraulic efficiency.
  • a through hole 160 is provided in the middle part of the bottom surface of the cavity 110, and the water inlet 120 is connected to the through hole 160 through a section of curved pipe, so as to communicate with the cavity 110, and the water inlet 120 and the water outlet 130 are arranged parallel to each other.
  • the heating element 200 has an inverted triangular spiral structure, and the heating element 200 is located in the conical part of the bottom surface of the cavity.
  • the upper pump housing 140 is heated. It should be noted that the number of turns of the heating tube is set according to the diameter of the cavity 110. The larger the cavity 110, the more the number of turns of the heating tube and the larger the contact area with the upper pump casing 140, so that Heating is more uniform and efficient.
  • the cavity 110 in the upper pump housing 140 is roughly in the shape of a barrel, the depth of the cavity 110 varies, and the bottom of the cavity 110 protrudes outwards, specifically
  • the middle part of the bottom surface of the cavity 110 is flat, the rest of the bottom surface of the cavity 110 is conical, and the impeller assembly 300 is a centrifugal structure.
  • the depth of the cavity 110 gradually decreases. In the case that the height of the edge of the cavity 110 remains unchanged, this embodiment can increase the space inside the cavity 110 , so that the effective accommodating space of the cavity 110 increases.
  • a through hole 160 is provided in the middle part of the bottom surface of the cavity 110, and the water inlet 120 is connected to the through hole 160 through a section of curved pipe 170 to realize communication with the cavity 110.
  • the water inlet 120 and the water outlet 130 are oriented parallel It is convenient for the staff to connect the pipes at the same station, reducing the staff's walking back and forth and improving work efficiency.
  • the heating element 200 has a triangular spiral structure, the heating element 200 is located in the conical part of the bottom surface of the cavity 110, the heating element 200 is formed by coiling a heating tube, and has at least Two turns, so that the upper pump casing 140 can be heated evenly. It should be noted that the number of turns of the heating tube is set according to the diameter of the cavity 110. The larger the cavity 110, the more the number of turns of the heating tube and the larger the contact area with the upper pump casing 140, so that Heating is more uniform and efficient.
  • the cavity 110 in the upper pump casing 140 is cylindrical, and the cavity 110 has a uniform depth. This embodiment can take into account the flow performance of the fluid and the space utilization of the cavity 110, which is very practical.
  • a through hole 160 is provided in the middle of the bottom surface of the cavity 110, and the water inlet 120 is connected to the through hole 160 through a curved pipe 170, so as to communicate with the cavity 110.
  • the water inlet 120 and the water outlet 130 are oriented parallel It is convenient for the staff to connect the pipes at the same station, reducing the staff's walking back and forth and improving work efficiency.
  • the heating element 200 has a disc-shaped structure, the heating element 200 is located in the bottom surface of the cavity 110, and the heating element 200 is formed by coiling a heating tube with at least two turns, so as to be able to uniformly
  • the upper pump housing 140 is heated.
  • the number of turns of the heating tube is set according to the diameter of the cavity 110. The larger the cavity 110, the more the number of turns of the heating tube and the larger the contact area with the upper pump casing 140, so that Heating is more uniform and efficient.
  • a baffle 400 protrudes from the lower pump casing 150, and after the upper pump casing 140 and the lower pump casing 150 are assembled, the baffle 400 is located in the chamber.
  • the inner surface 410 of the baffle plate 400 facing the impeller assembly 300 has an involute helical shape to guide the flow of fluid driven by the impeller, reduce turbulent flow, and improve hydraulic efficiency.
  • the baffle plate 400 can be manufactured integrally with the lower pump casing 150 , or can be independently manufactured and then assembled.
  • the baffle 400 since the baffle 400 is located in the cavity 110 and is relatively close to the heating element 200 , when the baffle 400 is made of plastic, the influence of the heating element 200 on the temperature of the baffle 400 needs to be considered. For this reason, in some embodiments of the present disclosure, there is a gap S between the outer side 420 of the baffle 400 away from the impeller assembly 300 and the inner side wall of the cavity 110 , the closer the baffle 400 is to the heating element 200 , the larger the gap S , the farther the baffle plate 400 is from the heating element 200, the smaller the gap S is. Deformation ensures the service life of the baffle 400. When the baffle 400 is far away from the heating element 200, the heat dissipation requirements here are not high, and thus a large flow is not required, so a large gap is not required.
  • slopes are provided at both ends of the baffle plate 400, through which the liquid is guided into the gap S, which can effectively reduce the turbulent flow generated when the liquid enters and exits the gap S. phenomenon and improve the overall hydraulic efficiency.
  • the top of the baffle plate 400 also adopts a smooth transition of a curved surface, which reduces turbulent flow when the liquid flows through it, and can further improve the overall hydraulic efficiency.
  • the fluid flowing through the cavity 110 is corrosive to a certain extent.
  • a coating is provided on the inner wall of the cavity 110 to prevent the fluid from directly contacting the housing. 100 contacts.
  • the coating can be made of polytetrafluoroethylene material (Teflon). Polytetrafluoroethylene has the characteristics of anti-acid, anti-alkali and resistance to various organic solvents, and can effectively protect the upper pump casing 140 from being corroded by fluid.
  • the specific implementation of the coating is not limited to the above-mentioned polytetrafluoroethylene material, and other embodiments can also be used, for example, the coating can also use epoxy resin materials, etc. wait.
  • the impeller assembly 300 includes a semi-open impeller and a motor 310 , the semi-open impeller is located in the cavity 110 , and the motor 310 is installed in the lower pump casing 150 , the semi-open impeller includes a bottom plate 320 and a plurality of blades 330, the lower side of the bottom plate 320 is provided with a threaded hole, the threaded hole is threadedly connected with the rotating shaft of the motor 310, the blades 330 are installed on the upper side of the bottom plate 320, and the plurality of blades 330 are distributed in a ring shape , the through hole 160 is aligned with the rotating shaft of the motor 310, the water inlet communicates with the through hole 160 through a pipe 170 with a rotation angle of 90°, the center line of the water outlet 130 is perpendicular to the rotating shaft of the motor, and the water entering from the water inlet 120
  • the specific working principle of the above-mentioned heat pump is as follows: after the heat pump is started, the liquid enters from the water inlet 120 and flows through the pipeline 170. 160 enters the cavity 110, the heating element 200 heats the water in the cavity 110, the heated water is driven by the blade 330, leaves the range of the blade 330 in a centrifugal manner, and is guided by the baffle 400, It is discharged from the water outlet 130.
  • the present disclosure also provides a dishwasher, including the heat pump of any one of the above embodiments.
  • the heat pump in the above-mentioned dishwasher is integrally die-casted with the heating element 200 and the housing 100, and uses the existing space of the housing 100 to accommodate the heating body, which can reduce the overall space ratio, improve space utilization, and facilitate product miniaturization;
  • the assembling process of assembling the heating element 200 on the housing 100 is reduced, and the assembling efficiency is improved. Since the volume of the heat pump can be reduced, the required installation space on the dishwasher is correspondingly reduced, thereby increasing the effective capacity of the dishwasher.

Abstract

一种加热泵和采用此加热泵的洗碗机,加热泵包括:壳体(100),内部设置有腔体(110),腔体(110)具有进水口(120)和出水口(130);加热件(200),与至少部分壳体(100)一体成型;叶轮组件(300),可转动地安装于壳体(100),且叶轮组件(300)部分位于腔体(110)内。

Description

加热泵及洗碗机
相关申请的交叉引用
本公开要求于2021年10月18日提交的申请号为202111209493.6、名称为“加热泵及洗碗机”,以及于2021年10月18日提交的申请号为202122511444.X、名称为“加热泵及洗碗机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电器技术领域,特别涉及一种加热泵及洗碗机。
背景技术
在产品开发中,经常会有既要求对流体加热,又要对所加热的流体进行泵送的要求。传统的处理方法一般是设置一个加热装置和一个流体装置,这样的结果是导致设备机构复杂,体积庞大;特别是对家电产品来说,过大的体积占用面积大,不利于家庭使用。
发明内容
本公开旨在至少在一定程度上解决现有技术中存在的技术问题之一。为此,本公开实施例提出一种加热泵,其通过将加热件与至少部分壳体一体成型,利用壳体现有空间容纳加热体,可以减少整体空间占比,同时减少装配工序,提高装配效率。
本公开实施例还提出一种具有上述加热泵的洗碗机。
根据本公开第一方面实施例的加热泵,包括:壳体,内部设置有腔体,所述腔体具有进水口和出水口;加热件,与所述壳体一体成型;叶轮组件,可转动地安装于所述壳体,且所述叶轮组件部分位于所述腔体内。
根据本公开实施例的加热泵,至少具有如下有益效果:上述加热泵通过将加热件与至少部分壳体一体成型,利用壳体现有空间容纳加热体,可以减少整体空间占比,提高空间利用率,利于产品小型化;同时减少将加热件装配到壳体上的装配工序,提高装配效率。
根据本公开的一些实施例,所述加热件与至少部分所述壳体通过压铸或者挤压铸造的方式一体成型。
根据本公开的一些实施例,所述加热件包括用于发热的工作部和用于接电的接线部,所述工作部至少部分被包裹于所述壳体的侧壁内,所述接线部至少部分位于所述壳体外。
根据本公开的一些实施例,所述工作部全部被包裹于所述壳体的侧壁内。
根据本公开的一些实施例,所述壳体包括可拆卸地连接的上泵壳和下泵壳,所述腔体设置于所述上泵壳,所述叶轮组件安装于所述下泵壳,所述加热件与所述上泵壳一体成型。
根据本公开的一些实施例,所述上泵壳采用金属制作。
根据本公开的一些实施例,所述下泵壳采用塑料材质。
根据本公开的一些实施例,从所述叶轮组件最大外径处到所述腔体的侧壁,所述腔体的深度逐渐增加。
根据本公开的一些实施例,所述腔体呈圆桶状,所述腔体的底部朝内凹陷,所述腔体的底面的中间部分呈平面状。
根据本公开的一些实施例,所述加热件呈倒三角螺旋状。
根据本公开的一些实施例,从所述叶轮组件最大外径处到所述腔体的侧壁,所述腔体的深度逐渐减少。
根据本公开的一些实施例,所述腔体呈圆桶状,所述腔体的底部朝外部凸出,所述腔体的底面的中间部分呈平面状。
根据本公开的一些实施例,所述加热件呈三角螺旋状。
根据本公开的一些实施例,从所述叶轮组件最大外径处到所述腔体的侧壁,所述腔体的深度一致。
根据本公开的一些实施例,所述腔体的形状呈圆柱体状。
根据本公开的一些实施例,所述加热件呈圆盘状。
根据本公开的一些实施例,所述下泵壳上凸出设置有挡板,所述挡板位于所述腔体内,所述挡板朝向所述叶轮组件的内侧面呈渐开螺旋状。
根据本公开的一些实施例,所述挡板远离所述叶轮组件的外侧面到所述腔体的内侧壁的距离和所述挡板到所述加热件的距离呈反向关联关系。
根据本公开的一些实施例,所述腔体的内侧壁设置有涂层。
根据本公开的一些实施例,所述叶轮组件包括半开式叶轮。
根据本公开第二方面实施例的洗碗机,包括第一方面实施例的加热泵。
根据本公开实施例的洗碗机,至少具有如下有益效果:上述洗碗机中的加热泵通过将加热件与至少部分壳体一体成型,利用壳体现有空间容纳加热体,可以减少整体空间占比,提高空间利用率,利于产品小型化;同时减少将加热件装配到壳体上的装配工序,提高装配效率。由于加热泵的体积可以减少,故而其在洗碗机上所需的安装空间也相应减少,进而可以提高洗碗机的有效容量。
附图说明
图1是本公开之加热泵的第一种实施例的示意图;
图2是本公开之加热泵的第一种实施例的剖面示意图;
图3是本公开之加热泵的第一种实施例中的下泵壳及叶轮组件示意图一;
图4是本公开之加热泵的第一种实施例中的下泵壳及叶轮组件示意图二;
图5是本公开之加热泵的第一种实施例中加热件的示意图;
图6是本公开之加热泵的第二种实施例的剖面示意图;
图7是本公开之加热泵的第二种实施例中加热件的示意图;
图8是本公开之加热泵的第三种实施例的剖面示意图;
图9是本公开之加热泵的第三种实施例中加热件的示意图。
附图标号:
壳体100;腔体110;进水口120;出水口130;上泵壳140;下泵壳150;通孔160;管道170;
加热件200;工作部210;接线部220;
叶轮组件300;电机310;底板320;叶片330;
挡板400;内侧面410;外侧面420;间隙S。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,涉及到方位描述,例如上、下等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的描述中,多个指的是两个以上。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本公开的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本公开中的具体含义。
加热泵常用于需要对流体进行加热和泵送,现有的加热泵一般是在泵的壳体上预留供加热组件安装的安装位置,在壳体制造好以后,再将加热组件安装到壳体上,二者独立制造后再组装,安装工序相对较多;为了安装加热组件,必然需要有操作空间,在设计壳体时需要考虑该因素,不利于壳体小型化设计;且壳体和加热组件各自独立占据空间,整体占据的空间较大。
如图1至图5所示,其为加热泵的第一种实施例的示意图,加热泵包括壳体100、加热件200、叶轮组件300。壳体100内部设置有腔体110,腔体110具有进水口120及出水口130,进水口120及出水口130皆与腔体110连通,以便流体流入和流出;加热件200与壳体100一体压铸成型,以形成一体式结构,压铸是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件;叶轮组件300可转动地安装于壳体100,且叶轮组件300部分位于腔体110内,用于驱动腔体110内的流体从进水口120流动至出水口130,具体而言,叶轮组件300的输出部分位于腔体110内。本领域技术人员可以理解的是,其中加热件200还可以采用其它方式与壳体100一体成型,例如,加热件200可以采用挤压铸造的方式与壳体100一体成型;挤压铸造是使液态或半固态金属在高压下凝固、流动成形,直接获得制件或毛坯的方法,它具有液态金属利用率高、工序简化和质量稳定等优点。
上述的加热泵通过将加热件200与壳体100一体成型,利用壳体100现有空间容纳加热体,可以减少整体空间占比,提高空间利用率,利于产品小型化设计;同时减少将加热件200装配到壳体100上的装配工序,提高装配效率。
需要说明的是,加热件200可以部分被壳体100的侧壁包裹,或者全部被壳体100包裹。
具体而言,如图2所示,加热件200包括用于发热的工作部210和用于接电的接线部220,工作部210全部被包裹于壳体100的侧壁内,接线部220至少部分位于壳体100外,以便和电源线对接。在本实施例中,工作部210完全位于壳体100的侧壁内,工作部210发出的热量全部传递给壳体100,再由壳体100对腔体110内的流体进行加热,可以对腔体110内的流体进行均匀加热;工作部210也不需要直接接触待加热的流体,可以有效保障工作部210的使用寿命。
当然,本领域技术人员可以理解的是,工作部210并不局限于上述的实施例,其还可以采用部分被壳体100的侧壁包裹的方式实施,例如,在某些需要对流体进行快速加热的使用场景下,工作部210具有至少一个面外露于壳体100的侧壁,其余部分被壳体100的侧壁包裹,此时工作部210有一部分可以直接与待加热的流体接触,直接进行热交换,实现快速加热流体的目的。本实施例启动后,加热件200同步对液体和上泵壳140进行加热;加热件200全部被上泵壳140的侧壁包裹的实施例启动后,加热件200先对上泵壳140进行加热,然后通过上泵壳140对液体进行加热,加热件200发出的所有热量需要经过上泵壳140后才能传递给液体;由上可见,本实施例相对加热件200全部被上泵壳140的侧壁包裹的实施例可以减少从开始工作后到达设定温度的响应时间。
举例来讲,加热件200采用现有成熟技术中的电发热管,压铸时,先将电发热管放置于模具,然后往模具中注入金属,金属与电发热管在模具中一体压铸成型。
如图1和图2所示,在本公开的一些实施例中,壳体100包括上泵壳140及下泵壳150,上泵壳140及下泵壳150可拆卸地连接,藉此,上泵壳140和下泵壳150分别独立制造,然后再组装在一起,具体而言,上泵壳140和下泵壳150可以通过螺纹结构或者螺栓或者螺钉连接在一起;腔体110设置于上泵壳140,进水口120和出水口130均设置在上泵壳140,叶轮组件300安装于下泵壳150,叶轮组件300部分相对下泵壳150向上凸出设置,且位于腔体110内,加热件200与上泵壳140一体压铸成型,以形成一体式结构。
壳体100分成两部分,可以降低加工难度,提高加工效率,降低加工成本,同时也使得上泵壳140和下泵壳150可以根据实际需求选择合适的材料制作,利于降低整体成本。例如,由于上泵壳140需要承担高温以及起到快速传递热量的作用,故而上泵壳140可以采用金属材质制作,利于将工作部210上的热量快速传递给流体,同时不会由于工作部210温度过高而导致上泵壳140变形;下泵壳150需要承担安装叶轮组件300和封闭腔体110的作用,不需要承受很高温度,故而下泵壳150可以采用塑料材质制作,举例来讲,下泵壳150可以采用聚氨酯塑料或者环氧塑料,等等;塑料材质的下泵壳150利于加工,且成本低廉。
具体而言,上泵壳140可以采用铝材制作,铝材压铸可以相对容易生产出复杂形状,以便将上泵壳140上的结构一体成型,且导热性能佳,制作时,将加热件200放置于模具,然后与铝材一体压铸成型;当然,上泵壳140还可以采用铜或者别的金属材料制作,均可以起到快速导热和耐高温的作用。
需要说明的是,腔体110和叶轮组件300的安装实施方式并不局限于上述的实施例,腔体110和叶轮组件300的设置位置可以对调,即腔体110可以设置在下泵壳150内,进水口120和出水口130均设置在下泵壳150,叶轮组件300可以安装在上泵壳140内,下泵壳150采用金属材料与加热件200一体压铸成型,上泵壳140采用塑料材质,以便降低加工难度和材料成本,等等,此实施方式亦可以实现同样功能。
此外,本领域技术人员可以理解的是,壳体100并不局限于分成两部分制作,在本公开一些实施例中,壳体100也可以整体一体式制造,以便减少装配工序,提高整体结构强度。
如图1、图2和图5所示,在本公开的一些实施例中,上泵壳140内的腔体110大致呈圆桶状,腔体110的深度呈变化状态,腔体110的底部朝内部凹陷,具体而言,腔体的底面的中间部分呈平面状,腔体的底面的其余部分呈圆锥面状,叶轮组件300为离心式结构,从位于腔体110内的那部分叶轮组件300的最大外径处到腔体110的侧壁,腔体110的深度逐渐增加,此实施例中,被叶轮组件300驱动的液体在离开叶轮组件300后,供液体流通的横截面逐渐变大,可以减缓液体流动速度,以便液体稳定过渡,更加符合流体设计原理,减少紊流的产生,有利于提高水力效率。
具体而言,腔体110的底面的中间部分设置有通孔160,进水口120通过一段弯曲的管道与通孔160连接,进而实现与腔体110连通,进水口120和出水口130朝向平行设置,方便工作人员在同一工位进行管路连接,减少工作人员来回走动,提高工作效率。
为了贴近腔体110,加热件200呈倒三角螺旋结构,加热件200位于腔体的底面中呈圆锥面状的部分内,加热件200为加热管盘绕而成,至少具有两圈,以便能够均匀加热上泵壳140。需要说明的是,加热管绕圈的圈数根据腔体110的直径大小设置,越大的腔体110,加热管绕圈的圈数越多,与上泵壳140接触面积也越多,使得加热更为均匀、高效。
如图6所示,在本公开的一些实施例中,上泵壳140内的腔体110大致呈圆桶状,腔体110的深度呈变化状态,腔体110的底部朝外凸起,具体而言,腔体110的底面的中间部分呈平面状,腔体110的底面的其余部分呈圆锥面状,叶轮组件300为离心式结构,从位于腔体110内的那部分叶轮组件300的最大外径处到腔体110的侧壁,腔体110的深度逐渐减少。在腔体110的边缘高度不变的情况下,此实施例可以增大腔体110内部的空间,使得腔体110的有效容纳空间增大。
具体而言,腔体110的底面的中间部分设置有通孔160,进水口120通过一段弯曲的管道170与通孔160连接,进而实现与腔体110连通,进水口120和出水口130朝向平行设置,方便工作人员在同一工位进行管路连接,减少工作人员来回走动,提高工作效率。
如图7所示,为了贴近腔体110,加热件200呈三角螺旋结构,加热件200位于腔体110的底面中呈圆锥面状的部分内,加热件200为加热管盘绕而成,至少具有两圈,以便能够均匀加热上泵壳140。需要说明的是,加热管绕圈的圈数根据腔体110的直径大小设置,越大的腔体110,加热管绕圈的圈数越多,与上泵壳140接触面积也越多,使得加热更为均匀、高效。
如图8所示,在本公开的一些实施例中,上泵壳140内的腔体110呈圆柱体状,腔体110的深度一致。此实施例可以兼顾流体的流动性能和腔体110的空间利用率,非常实用。
举例来讲,腔体110的底面的中间位置设置有通孔160,进水口120通过一段弯曲的管道170与通孔160连接,进而实现与腔体110连通,进水口120和出水口130朝向平行设置,方便工作人员在同一工位进行管路连接,减少工作人员来回走动,提高工作效率。
如图9所示,为了贴近腔体110,加热件200呈圆盘状结构,加热件200位于腔体110的底面内,加热件200为加热管盘绕而成,至少具有两圈,以便能够均匀加热上泵壳140。需要说明的是,加热管绕圈的圈数根据腔体110的直径大小设置,越大的腔体110,加热管绕圈的圈数越多,与上泵壳140接触面积也越多,使得加热更为均匀、高效。
如图2至图4所示,在本公开的一些实施例中,下泵壳150上凸出设置有挡板400,在 上泵壳140和下泵壳150组装好以后,挡板400位于腔体110内,挡板400朝向叶轮组件300的内侧面410呈渐开螺旋状,以引导被叶轮驱动的流体的流动,减少紊流的产生,有利于提高水力效率。
其中,挡板400可以与下泵壳150一体成型制造,也可以分别独立制造以后再组装。
如图2至图4所示,由于挡板400位于腔体110内,距离加热件200相对较近,当挡板400采用塑料材质时,需要考虑加热件200对挡板400的温度影响。为此,在本公开的一些实施例中,挡板400远离叶轮组件300的外侧面420与腔体110的内侧壁之间具有间隙S,挡板400距离加热件200越近,间隙S越大,挡板400距离加热件200越远,间隙S越小,当间隙S很大时,从间隙S处流经的流体越多,可以带走更多的热量,防止挡板400温度过高而变形,保障挡板400的使用寿命,当挡板400距离加热件200很远时,此处的散热需求不高,进而不需要很大流量,故而不需要很大间隙。
此外,为了避免液体在进出到间隙S时产生紊流,在挡板400的两端均设置有斜面,通过斜面引导液体进入到间隙S内,可以有效减少液体在进出间隙S时产生紊流的现象,提高整体的水力效率。挡板400的顶部也采用曲面圆滑过渡,减少液体在流经此处时产生紊流的现象,可以进一步提高整体的水力效率。
在某些使用场景中,腔体110内流经的流体具有一定的腐蚀性,为了保障壳体100的使用寿命,在腔体110的内侧壁上设置有涂层,以防止流体直接与壳体100接触。具体而言,上泵壳140采用金属材料制作时,需要在上泵壳140的腔体110的内侧壁上设置涂层。涂层具体可以采用聚四氟乙烯材料(特氟龙),聚四氟乙烯具有抗酸抗碱、抗各种有机溶剂的特点,可以有效保护上泵壳140不被流体腐蚀。
当然,本领域技术人员可以理解的是,涂层的具体实施方式并不局限于上述的聚四氟乙烯材料,其还可以采用其它实施例,例如,涂层还可以采用环氧树脂材料,等等。
如图2、图6、图8所示,在本公开的一些实施例中,叶轮组件300包括半开式叶轮及电机310,半开式叶轮位于腔体110,电机310安装在下泵壳150内,半开式叶轮包括底板320和多个叶片330,底板320下侧设置有螺纹孔,螺纹孔与电机310的转轴螺纹连接,叶片330安装在底板320上侧,多个叶片330呈环状分布,通孔160与电机310的转轴对齐,进水口通过转角为90°的管道170与通孔160连通,出水口130的中心线垂直于电机的转轴,从进水口120进入的水通过管道170引导转向后,沿电机转轴方向进入到叶片330之间,被底板320阻挡,然后被转动的叶片330带动转动,在离心力的作用下往外移动,经过挡板400的引导,从出水口130中排出;如此设置可以较大程度的将从进水口120进来的流体快速驱动到出水口130,提高整体的水力效率。
上述的加热泵具体工作原理如下:加热泵启动后,液体从进水口120进入,流经管道170,在管道170的引导下,液体流动方向改变为与电机310的转轴同向,液体从通孔160进入到腔体110内,加热件200对腔体110内的水进行加热,经过加热的水在叶片330的驱动下,以离心式的方式离开叶片330的范围,经过挡板400的引导,从出水口130中排出。
本公开还提供一种洗碗机,包括上述任一实施例的加热泵。上述洗碗机中的加热泵通过将加热件200与壳体100一体压铸成型,利用壳体100现有空间容纳加热体,可以减少整体空间占比,提高空间利用率,利于产品小型化;同时减少将加热件200装配到壳体100上的装配工序,提高装配效率。由于加热泵的体积可以减少,故而其在洗碗机上所需的安装空间也相应减少,进而可以提高洗碗机的有效容量。
上面结合附图对本公开实施例作了详细说明,但是本公开不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本公开宗旨的前提下作出各种变化。

Claims (21)

  1. 一种加热泵,包括:
    壳体,内部设置有腔体,所述腔体具有进水口和出水口;
    加热件,与至少部分所述壳体一体成型;
    叶轮组件,可转动地安装于所述壳体,且所述叶轮组件部分位于所述腔体内。
  2. 根据权利要求1所述的加热泵,其中,所述加热件与至少部分所述壳体通过压铸或者挤压铸造的方式一体成型。
  3. 根据权利要求1所述的加热泵,其中,所述加热件包括用于发热的工作部和用于接电的接线部,所述工作部至少部分被包裹于所述壳体的侧壁内,所述接线部至少部分位于所述壳体外。
  4. 根据权利要求3所述的加热泵,其中,所述工作部全部被包裹于所述壳体的侧壁内。
  5. 根据权利要求1所述的加热泵,其中,所述壳体包括可拆卸地连接的上泵壳和下泵壳,所述腔体设置于所述上泵壳,所述叶轮组件安装于所述下泵壳,所述加热件与所述上泵壳一体成型。
  6. 根据权利要求5所述的加热泵,其中,所述上泵壳采用金属制作。
  7. 根据权利要求5所述的加热泵,其中,所述下泵壳采用塑料材质。
  8. 根据权利要求5所述的加热泵,其中,从所述叶轮组件最大外径处到所述腔体的侧壁,所述腔体的深度逐渐增加。
  9. 根据权利要求8所述的加热泵,其中,所述腔体呈圆桶状,所述腔体的底部朝内凹陷,所述腔体的底面的中间部分呈平面状。
  10. 根据权利要求9所述的加热泵,其中,所述加热件呈倒三角螺旋状。
  11. 根据权利要求5所述的加热泵,其中,从所述叶轮组件最大外径处到所述腔体的侧壁,所述腔体的深度逐渐减小。
  12. 根据权利要求11所述的加热泵,其中,所述腔体呈圆桶状,所述腔体的底部朝外部凸出,所述腔体的底面的中间部分呈平面状。
  13. 根据权利要求12所述的加热泵,其中,所述加热件呈三角螺旋状。
  14. 根据权利要求5所述的加热泵,其中,从所述叶轮组件最大外径处到所述腔体的侧壁,所述腔体的深度一致。
  15. 根据权利要求14所述的加热泵,其中,所述腔体的形状呈圆柱体状。
  16. 根据权利要求15所述的加热泵,其中,所述加热件呈圆盘状。
  17. 根据权利要求5所述的加热泵,其中,所述下泵壳上凸出设置有挡板,所述挡板位于 所述腔体内,所述挡板朝向所述叶轮组件的内侧面呈渐开螺旋状。
  18. 根据权利要求17所述的加热泵,其中,所述挡板远离所述叶轮组件的外侧面到所述腔体的内侧壁的距离和所述挡板到所述加热件的距离呈反向关联关系。
  19. 根据权利要求1所述的加热泵,其中,所述腔体的内侧壁设置有涂层。
  20. 根据权利要求1所述的加热泵,其中,所述叶轮组件包括半开式叶轮。
  21. 一种洗碗机,包括权利要求1至20任一项所述的加热泵。
PCT/CN2022/079378 2021-10-18 2022-03-04 加热泵及洗碗机 WO2023065586A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111209493.6A CN113768444A (zh) 2021-10-18 2021-10-18 加热泵及洗碗机
CN202111209493.6 2021-10-18
CN202122511444.X 2021-10-18
CN202122511444.XU CN216090395U (zh) 2021-10-18 2021-10-18 加热泵及洗碗机

Publications (1)

Publication Number Publication Date
WO2023065586A1 true WO2023065586A1 (zh) 2023-04-27

Family

ID=86058752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079378 WO2023065586A1 (zh) 2021-10-18 2022-03-04 加热泵及洗碗机

Country Status (1)

Country Link
WO (1) WO2023065586A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127484A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp ポンプ及びヒートポンプ式給湯装置及びポンプの製造方法
CN106821264A (zh) * 2017-04-01 2017-06-13 蒲杰 洗涤排水一体泵
CN209856049U (zh) * 2019-04-12 2019-12-27 石狮市通达电机有限公司 一种洗碗机的集成加热泵
CN110966218A (zh) * 2018-09-30 2020-04-07 青岛海尔洗碗机有限公司 一种洗涤装置的泵
CN112780573A (zh) * 2021-02-01 2021-05-11 德清三星机电科技有限公司 一种洗碗机一体化循环热泵动力模块
CN113499011A (zh) * 2021-08-19 2021-10-15 广东威灵电机制造有限公司 加热泵和洗涤电器
CN113768444A (zh) * 2021-10-18 2021-12-10 佛山市威灵洗涤电机制造有限公司 加热泵及洗碗机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127484A (ja) * 2009-12-16 2011-06-30 Mitsubishi Electric Corp ポンプ及びヒートポンプ式給湯装置及びポンプの製造方法
CN106821264A (zh) * 2017-04-01 2017-06-13 蒲杰 洗涤排水一体泵
CN110966218A (zh) * 2018-09-30 2020-04-07 青岛海尔洗碗机有限公司 一种洗涤装置的泵
CN209856049U (zh) * 2019-04-12 2019-12-27 石狮市通达电机有限公司 一种洗碗机的集成加热泵
CN112780573A (zh) * 2021-02-01 2021-05-11 德清三星机电科技有限公司 一种洗碗机一体化循环热泵动力模块
CN113499011A (zh) * 2021-08-19 2021-10-15 广东威灵电机制造有限公司 加热泵和洗涤电器
CN113768444A (zh) * 2021-10-18 2021-12-10 佛山市威灵洗涤电机制造有限公司 加热泵及洗碗机

Similar Documents

Publication Publication Date Title
CN105545756A (zh) 离心泵
WO2023065586A1 (zh) 加热泵及洗碗机
CN113768444A (zh) 加热泵及洗碗机
CN105471131B (zh) 一种用于油浸式电机中的定子的冷却机构
CN216090395U (zh) 加热泵及洗碗机
CN108591080A (zh) 一种智能变频调速的高效恒功率低比速潜水泵
CN208885540U (zh) 一种具有散热结构的电泵
WO2021093830A1 (zh) 集热泵
CN108634893A (zh) 一种洗碗机用集成加热泵
CN110195706A (zh) 一种利用自身介质散热的电子水泵
CN219733735U (zh) 水泵和具有其的洗碗机
CN208876438U (zh) 一种洗碗机用集成加热泵
CN211288238U (zh)
CN208885544U (zh) 一种智能变频调速的高效恒功率低比速潜水泵
CN220045832U (zh) 加热泵和具有其的洗碗机
CN107514390B (zh) 流体泵
CN217159439U (zh) 一种步进电机的散热装置
CN111503054B (zh) 一种泵
CN220037065U (zh) 一种具有电热组件的小型离心泵
CN218894761U (zh) 增压装置和燃气热水器
CN219895658U (zh) 加热泵和具有其的洗碗机
CN209458192U (zh) 电子水泵的电路板冷却结构
CN215498558U (zh) 一种电机水道结构
CN218118128U (zh) 一种新能源卡车密封水冷式水泵
CN220122705U (zh) 一种电机散热水道的结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22882211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022882211

Country of ref document: EP

Effective date: 20240429