WO2023063806A1 - 편광판 및 그의 용도 - Google Patents

편광판 및 그의 용도 Download PDF

Info

Publication number
WO2023063806A1
WO2023063806A1 PCT/KR2022/015762 KR2022015762W WO2023063806A1 WO 2023063806 A1 WO2023063806 A1 WO 2023063806A1 KR 2022015762 W KR2022015762 W KR 2022015762W WO 2023063806 A1 WO2023063806 A1 WO 2023063806A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
weight
polarizer
parts
less
Prior art date
Application number
PCT/KR2022/015762
Other languages
English (en)
French (fr)
Inventor
윤하송
권윤경
최진현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280066900.9A priority Critical patent/CN118076911A/zh
Publication of WO2023063806A1 publication Critical patent/WO2023063806A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • This application relates to a polarizing plate and its use.
  • the present application provides a polarizing plate capable of improving the problem of occurrence of rainbow stains on the appearance of an OLED display device, excellent visual sensation, excellent hardness, and excellent heat and moisture resistance durability, and an OLED display device including the polarizing plate.
  • the polarizing plate may include a polarizer and a scattering adhesive layer present on one surface of the polarizer.
  • the pressure-sensitive adhesive layer may be, for example, a layer of a pressure-sensitive adhesive composition.
  • the term "layer of a pressure-sensitive adhesive or adhesive composition” may mean a layer formed by coating or curing a pressure-sensitive adhesive or adhesive composition.
  • the term "curing of the pressure-sensitive adhesive or adhesive composition” may mean implementing a cross-linked structure in the pressure-sensitive adhesive or adhesive composition through physical or chemical action or reaction of components included in the pressure-sensitive adhesive or adhesive composition. Curing can be induced, for example, by holding at room temperature, applying moisture, applying heat, irradiating active energy rays, or by proceeding two or more of the above processes together, and depending on each case, the type of curing is induced.
  • the pressure-sensitive adhesive or adhesive composition may be referred to as, for example, a room temperature-curable pressure-sensitive adhesive or adhesive composition, a moisture-curable pressure-sensitive adhesive or adhesive composition, a heat-curable pressure-sensitive adhesive or adhesive composition, an active energy ray-curable pressure-sensitive adhesive or adhesive composition, or a hybrid curing pressure-sensitive adhesive or adhesive composition. there is.
  • the scattering pressure-sensitive adhesive layer may refer to a pressure-sensitive adhesive layer containing scattering particles that may cause haze in the pressure-sensitive adhesive layer.
  • the scattering particles may be, for example, beads described below.
  • the polarizing plate including the scattering adhesive layer may have a haze of 12% or more.
  • the haze does not mean the haze of the scattering pressure-sensitive adhesive layer itself, and may mean the haze of the polarizing plate including the scattering pressure-sensitive adhesive layer and the polarizer.
  • the polarizing plate further includes functional layers such as a protective film, a retardation layer, and a hard layer, it may mean a haze of a scattering adhesive layer, a polarizer, and a polarizing plate including the functional layers.
  • the haze is specifically 12% or more, 14% or more, 16% or more, 18% or more, 20% or more, 21% or more, 22% or more, 23% or more, 24% or more, 25% or more, 26% or more, 27 % or more 28% or more, 29% or more, 30% or more, 31% or more, 32% or more, 33% or more, 34% or more, 35% or more, 36% or more, 37% or more, 38% or more, 39% or more; or 40% or more, 50% or less, 48% or less, 46% or less, 44% or less, 42% or less, 40% or less, 38% or less, 36% or less, 34% or less, 32% or less, 30% or less, 28% or less, 26% or less, 24% or less, 22% or less or 20% or less.
  • the haze of the polarizing plate may be a value measured based on a D65 light source.
  • the haze of the polarizing plate may be a value measured based on a D65 light source.
  • the haze of the polarizer may be a value measured for light having a wavelength of about 380 nm to about 780 nm.
  • the haze may be an average haze value measured for light having a wavelength of about 380 nm to about 780 nm.
  • the scattering adhesive layer may have a storage modulus of 120,000 Pa or more at a temperature of 25° C. and a frequency of 1 rad/sec.
  • the storage modulus may be 125,000 Pa or more, 130,000 Pa or more, 135,000 Pa or more, 140,000 Pa or more, 145,000 Pa or more, 150,000 Pa or more, 151,000 Pa or more, 152,000 Pa or more, 153,000 Pa or more, or 154,000 Pa or more.
  • the upper limit of the storage modulus may be, for example, 200,000 Pa or less, 190,000 Pa or less, 180,000 Pa or less, 170,000 Pa or less, 160,000 Pa or less, 155,000 Pa or less, or 153,000 Pa or less.
  • the storage modulus of the scattering pressure-sensitive adhesive layer is within the above range, it is possible to improve the problem of rainbow stains occurring in the appearance of the OLED display device, and it may be advantageous to exhibit excellent visual sensation, excellent hardness, excellent heat resistance and moist heat resistance.
  • the scattering adhesive layer may include an adhesive resin.
  • the adhesive resin may be an acrylic resin.
  • the acrylic resin may be a polymer that includes an acrylic monomer as a main component and exhibits tackiness before or after crosslinking.
  • to include an acrylic monomer as a main component means to include 80 wt% or more, 85 wt% or more, 90 wt% or more, 95 wt% or more, or 99 wt% or more of an acrylic monomer among all monomers constituting the adhesive resin. can mean
  • the adhesive resin may have an interpenetrating network (IPN) crosslinked structure.
  • IPN cross-linked structure may mean a state in which two or more cross-linked structures are simultaneously implemented in the pressure-sensitive adhesive layer.
  • the two or more types of cross-linked structures in IPN may exist, for example, in an entanglement state, a state in which they are physically or chemically linked to each other, or a state in which they penetrate each other.
  • the IPN crosslinked structure may include a first crosslinked structure formed by a crosslinking reaction of a crosslinkable polymer and a multifunctional crosslinking agent and a second crosslinked structure formed by a polymerization reaction of a radically polymerizable compound.
  • a polymerization reaction of the radically polymerizable compound may be induced by a polymerization initiator.
  • the pressure-sensitive adhesive composition for forming the pressure-sensitive adhesive layer may include a crosslinkable polymer, a polyfunctional crosslinking agent, a radically polymerizable compound, and a polymerization initiator.
  • the multifunctional crosslinking agent may mean a crosslinking agent including two or more crosslinkable functional groups.
  • the first crosslinked structure may be a crosslinked structure formed by application of heat
  • the second crosslinked structure may be a crosslinked structure formed by irradiation of active energy rays.
  • active energy rays microwaves, infrared rays (IR), ultraviolet rays (UV), X-rays and gamma rays, as well as alpha-particle beams and proton beams are included.
  • particle beams such as neutron beams or electron beams, etc. may be included, and may typically be ultraviolet rays or electron beams.
  • crosslinkable polymer may mean a polymer endowed with a crosslinkable functional group capable of reacting with a multifunctional crosslinking agent.
  • the crosslinkable functional group and the crosslinking agent may be selected to react with each other by a reaction other than a radical reaction to realize a crosslinked structure, and may react with each other by, for example, drying or aging to form a crosslinked structure. there is.
  • the crosslinkable polymer may have, for example, a weight average molecular weight of 1,000,000 or less.
  • the weight average molecular weight means a value in terms of polystyrene as measured by gel permeation chromatography (GPC).
  • the lower limit of the weight average molecular weight of the polymer is not particularly limited, and may be adjusted in the range of 200,000 or 300,000 or more, for example.
  • the crosslinkable polymer may include polymerized units derived from (meth)acrylic acid ester monomers.
  • the term "monomer” refers to all kinds of compounds capable of forming polymers through a polymerization reaction, and a polymer including a polymerized unit derived from a certain monomer means a polymer formed by polymerization of the certain monomer.
  • alkyl (meth)acrylates can be used as the (meth)acrylic acid ester compound.
  • the alkyl (meth)acrylate includes, for example, 1 to 20 carbon atoms, 1 to 14 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 carbon atom, in consideration of cohesion, glass transition temperature, and adhesiveness control.
  • An alkyl (meth)acrylate having an alkyl group of 4 to 4 may be used.
  • the alkyl group may be, for example, a straight-chain alkyl group, a branched-chain alkyl group, or a cyclic alkyl group.
  • Examples of such monomers are methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, sec-butyl acrylate, 2-methyl hepyl acrylate, pentyl acrylate, 2-ethyl Hexyl (meth)acrylate, 2-ethylbutyl (meth)acrylate, n-octyl (meth)acrylate, isobornyl (meth)acrylate, isooctyl (meth)acrylate, isononyl (meth)acrylate and lauryl (meth)acrylate.
  • One or more of the above may be appropriately selected and used.
  • the crosslinkable polymer may further include a polymerization unit derived from a copolymerizable monomer having a crosslinkable functional group (hereinafter, it may be referred to as a crosslinkable monomer).
  • a copolymerizable monomer having a crosslinkable functional group has a site that can be copolymerized with other monomers included in the polymer, such as the (meth)acrylic acid ester monomer, and also has a crosslinkable functional group to crosslink the polymer. It may mean a compound capable of imparting a sexual functional group.
  • crosslinkable functional group examples include a hydroxyl group, a carboxyl group, an isocyanate group, a glycidyl group, an amine group, an alkoxysilyl group, a vinyl group, and the like, and generally a hydroxyl group or a carboxyl group can be used.
  • a copolymerizable monomer having a hydroxyl group may be used.
  • the copolymerizable monomer having a hydroxyl group 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, ) acrylate or hydroxyalkyl (meth)acrylates such as 8-hydroxyoctyl (meth)acrylate, or 2-hydroxyethylene glycol (meth)acrylate or 2-hydroxypropylene glycol (meth)acrylate, etc.
  • a hydroxyalkylene glycol (meth)acrylate or the like can be used.
  • hydroxyalkyl acrylate or hydroxyalkylene glycol acrylate may be used among the above-mentioned monomers in consideration of reactivity with other monomers or easy control of glass transition temperature.
  • the crosslinkable polymer may include a polymerization unit derived from 80 parts by weight to 99 parts by weight of the (meth)acrylic acid ester monomer and 1 part by weight to 20 parts by weight of the crosslinkable monomer.
  • the crosslinkable polymer may include polymer units derived from 80 to 99 parts by weight of the (meth)acrylic acid ester and 1 to 10 parts by weight of the crosslinkable monomer.
  • the crosslinkable polymer may include polymer units derived from 90 to 99 parts by weight of the (meth)acrylic acid ester and 1 to 10 parts by weight of the crosslinkable monomer.
  • the pressure-sensitive adhesive layer may implement an appropriate cross-linked structure.
  • the crosslinkable polymer may further include other optional comonomers, if necessary, for example, to adjust appropriate physical properties.
  • the comonomer include alkoxyalkylene glycol (meth)acrylic acid ester, alkoxy dialkylene glycol (meth)acrylic acid ester, alkoxy trialkylene glycol (meth)acrylic acid ester, alkoxy tetraalkylene glycol (meth)acrylic acid ester, alkoxy Polyethylene glycol (meth)acrylic acid ester, phenoxyalkylene glycol (meth)acrylic acid ester, phenoxy dialkylene glycol (meth)acrylic acid ester, phenoxy trialkylene glycol (meth)acrylic acid ester, phenoxy tetraalkylene glycol ( alkylene oxide group-containing monomers such as meth)acrylic acid ester or phenoxy polyalkylene glycol (meth)acrylic acid ester; styrenic monomers such as styrene
  • comonomers may be included in the polymer by selecting one or more types of appropriate comonomers as needed. Such a comonomer may be included in the polymer in an amount of, for example, 20 parts by weight or less, or 0.1 part by weight to 15 parts by weight based on the total weight of other compounds used as polymerized units in the polymer.
  • the cross-linkable polymer selects necessary monomers from the above-mentioned monomers and mixes the selected monomers in a desired ratio by solution polymerization, photo polymerization, bulk polymerization, or suspension. It can be prepared by applying a polymerization method such as suspension polymerization or emulsion polymerization.
  • the scattering pressure-sensitive adhesive layer may include a multifunctional crosslinking agent (curing agent) that reacts with the crosslinkable polymer to realize a crosslinked structure.
  • curing agent multifunctional crosslinking agent
  • the type of specific crosslinking agent that can be used in the present application is not particularly limited, and may be selected in consideration of the type of crosslinkable functional group included in the crosslinkable polymer.
  • the crosslinking agent general crosslinking agents such as isocyanate crosslinking agents, epoxy crosslinking agents, aziridine crosslinking agents and metal chelate crosslinking agents can be used.
  • an isocyanate crosslinking agent may be used, but is not limited thereto.
  • isocyanate crosslinking agent examples include tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, isoborone diisocyanate, tetramethylxylene diisocyanate, naphthalene diisocyanate, and any one of the above polyols (ex.
  • epoxy crosslinking agent examples include ethylene glycol diglycidyl ether, triglycidyl ether, trimethylolpropane triglycidyl ether, N,N,N',N'-tetraglycidyl ethylenediamine and glycerin diglycidyl ether.
  • aziridine crosslinking agent examples include N,N'-toluene-2,4-bis(1-aziridinecarboxamide), N,N'-diphenylmethane-4,4'-bis(1-aziridinecarboxamide), copymid), triethylene melamine, bisisoprotaloyl-1-(2-methylaziridine), and at least one selected from the group consisting of tri-1-aziridinylphosphine oxide, but is not limited thereto no.
  • metal chelate crosslinking agent compounds in which a multivalent metal such as aluminum, iron, zinc, tin, titanium, antimony, magnesium and/or vanadium are coordinated with acetyl acetone or ethyl acetoacetate, etc. , but is not limited thereto.
  • the crosslinking agent may be included in an amount of 0.01 to 10 parts by weight or 0.01 to 5 parts by weight based on 100 parts by weight of the crosslinkable polymer. If the content of the crosslinking agent is less than 0.01 parts by weight, the cohesive strength of the pressure-sensitive adhesive layer may deteriorate, and if it exceeds 10 parts by weight, durability reliability may deteriorate, such as peeling between layers or lifting.
  • the second cross-linked structure may be formed by a polymerization reaction of a radically polymerizable compound. That is, the pressure-sensitive adhesive layer may further include a polymer of a multifunctional radically polymerizable compound having two or more radically polymerizable functional groups, for example, two to six, in order to realize an IPN structure, and the radical polymerization A radical initiator for inducing polymerization of the sexual compound may also be included.
  • the type of the radically polymerizable compound is not particularly limited, but, for example, as the radically polymerizable functional group, a polyfunctional acrylate having 2 to 6 (meth)acryloyl groups may be used.
  • the type of polyfunctional acrylate is not particularly limited, and examples thereof include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and neopentylglycol di(meth)acrylate.
  • one or more of the above multifunctional acrylates may be mixed and used, and in particular, an acrylate having a molecular weight of 5,000 or less, 4,000 or less, 3,000 or less, 2,000 or less, or 1,000 or less, and having trifunctionality or more This may be advantageous in terms of durability implementation.
  • a polyfunctional acrylate containing a cyclic structure and/or a urethane bond in its molecular structure can be used.
  • the ring structure included in the above acrylate is not particularly limited, and is a carbocyclic structure or a heterocyclic structure; Or any of monocyclic or polycyclic structure may be sufficient.
  • examples of the ring structure included in the multifunctional acrylate include a cycloalkyl ring structure having 3 to 12 carbon atoms, preferably 3 to 8 carbon atoms, such as cyclopentane, cyclohexane or cycloheptane.
  • One or more ring structures, for example, 1 to 5 or 1 to 3 rings may be included in the acrylate, and one or more heteroatoms such as O, S or N may also be included.
  • polyfunctional acrylate containing a ring structure examples include monomers having an isocyanurate structure such as tris (meth) acryloxy ethyl isocyanurate, isocyanurate-modified urethane acrylate (ex. ring in the molecule isocyanate compounds (ex. isoborone diisocyanate) and acrylate compounds (ex. reactants of trimethylolpropane tri(meth)acrylate or pentaerythritol tri(meth)acrylate), etc. It is not limited.
  • the radical polymerizable compound may be included in an amount of 3 parts by weight to 25 parts by weight based on 100 parts by weight of the crosslinkable polymer.
  • An IPN structure capable of securing suitable physical properties within this range can be implemented.
  • the type of radical initiator capable of inducing polymerization of the radically polymerizable compound is not particularly limited.
  • the radical initiator at least one selected from the group consisting of a photoinitiator and a thermal initiator may be used, and if necessary, a photoinitiator and a thermal initiator may be used simultaneously.
  • the initiator may be included in an amount of, for example, 0.1 to 10 parts by weight based on 100 parts by weight of the radical polymerizable compound, but is not limited thereto.
  • any one may be used as long as it can induce a polymerization reaction of the aforementioned radically polymerizable compound during a curing process by light irradiation or the like to realize a second crosslinked structure.
  • benzoin-based, hydroxy ketone-based, amino ketone-based, or phosphine oxide-based photoinitiators may be used, and specifically, benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
  • benzoin n-butyl ether benzoin isobutyl ether, acetophenone, dimethylanino acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2 -Hydroxy-2-methyl-1-phenylpropane-1one, 1-hydroxycyclohexylphenylketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propane-1- one, 4-(2-hydroxyethoxy)phenyl-2-(hydroxy-2-propyl)ketone, benzophenone, p-phenylbenzophenone, 4,4noncydiethylaminobenzophenone, dichlorobenzophenone, 2 -Methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-aminoanthraquinone, 2-methylthio
  • the thermal initiator is also not particularly limited, and may be appropriately selected in consideration of physical properties to be implemented.
  • a thermal initiator having a 10-hour half-life temperature of 40° C. or more and less than 100° C. may be used.
  • pot-life By setting the half-life temperature of the thermal initiator as described above, pot-life can be sufficiently secured, and the drying temperature for decomposition of the thermal initiator can also be appropriately maintained.
  • the type of thermal initiator is not particularly limited as long as it has the above physical properties, and for example, a conventional initiator such as an azo-based compound, a peroxide-based compound or a redox-based compound may be used.
  • a conventional initiator such as an azo-based compound, a peroxide-based compound or a redox-based compound
  • examples of the azo-based compound in the above are 2,2-azobis (2-methylbutyronitrile), 2,2trilazobis (isobutyronitrile), 2,2trilazobis (2,4-dimethylvalero nitrile), 2,2nitazobis-2-hydroxymethylpropionitrile, dimethyl-2,2methylazobis(2-methylpropionate) and 2,2pioazobis(4-methoxy-2, 4-dimethylvaleronitrile); Or diacyl peroxide, peroxy dicarbonate, peroxy ester, tetramethylbutyl peroxy neodecanoate (ex.
  • Perocta ND, NOF bis (4-butylcyclohexyl) peroxydicarbonate (ex. Peroyl TCP, NOF Co. (product), di(2-ethylhexyl) peroxy carbonate, butyl peroxy neodecanoate (ex. Perbutyl ND, NOF Co. (product)), dipropyl peroxy dicarbonate (ex. Peroyl NPP, NOF Co. (product)), Diisopropyl Peroxy Dicarbonate (ex. Peroyl IPP, NOF Co. (product)), Diethoxyethyl Peroxy Dicarbonate (ex. Peroyl EEP, NOF Co.
  • dibutyl peroxy dicarbonate dicetyl ) Peroxy dicarbonate, dimyristyl peroxy dicarbonate, 1,1,3,3-tetramethylbutyl peroxypivalate, hexyl peroxypivalate (ex. Perhexyl PV, NOF Corporation ( )), butyl peroxy pivalate (ex. Perbutyl, NOF Co. (product)), trimethyl hexanoyl peroxide (ex. Peroyl 355, NOF Co. (product)), dimethyl hydroxybutyl peroxyneodecanoate ( ex. Luperox 610M75, Atofina (product)), amyl peroxyneodecanoate (ex.
  • organic peroxides such as lauryl peroxide, dilauroyl peroxide, didecanoyl peroxide, benzoyl peroxide, or dibenzoyl peroxide.
  • redox-based compound examples include peroxide-based compounds and reducing agents Mixtures in combination may be used, but are not limited thereto. In the present application, one type or a mixture of two or more types of azo-based, peroxide-based, or redox-based compounds may be used.
  • the scattering adhesive layer if necessary, in addition to the above-mentioned components, known antistatic agents, silane coupling agents, tackiness imparting resins, epoxy resins, UV stabilizers, antioxidants, colorants, reinforcing agents, fillers, antifoaming agents, surfactants and plasticizers consisting of may further comprise one or more additives selected from the group
  • the scattering adhesive layer may further include beads.
  • the storage modulus of the scattering pressure-sensitive adhesive layer and the haze of the polarizing plate may refer to the storage modulus of the pressure-sensitive adhesive layer including beads and the haze of the polarizing plate.
  • the refractive index of the bead may be different from that of the crosslinkable polymer and/or the polymer of the radical polymerizable compound.
  • the difference (A-B) between the refractive index (A) of the crosslinkable polymer and the refractive index (B) of the bead may be 0.05 or more. Since the greater the difference in refractive index between the crosslinkable polymer and the bead is, the more favorable it is to implement haze, so that a high haze can be implemented even with a small amount.
  • An upper limit of the refractive index difference (A-B) may be, for example, 0.1 or less.
  • the refractive index is a value measured for a light source having a wavelength of 350 nm to 1450 nm at a temperature of 25° C. using an Abbe refractometer.
  • the difference in refractive index is too small, it is difficult to express the haze at the desired level, and if the difference in refractive index is too large, optical properties may be deteriorated due to loss of light traveling straight, so it is appropriate that the difference in refractive index is within the above range.
  • the refractive index of the bead may be within the range of 1.415 to 1.425.
  • the content of beads may be appropriately selected within a range not impairing the purpose of the present application.
  • the beads may be included in the range of 1 part by weight to 3 parts by weight based on the weight of all components of the scattering adhesive as 100 parts by weight.
  • the weight of all components of the scattering pressure-sensitive adhesive may mean the total weight of all cross-linkable polymers, radical polymerizable compounds, cross-linking agents, initiators, additives, and beads included in the scattering pressure-sensitive adhesive.
  • the weight of all components of the scattering pressure-sensitive adhesive layer may mean the sum of the weights of all components except for the solvent in the pressure-sensitive adhesive composition.
  • the beads may be included in 1 part by weight or more, 1.2 parts by weight or more, 1.4 parts by weight or more, 1.5 parts by weight or more, 1.6 parts by weight or more, or 1.8 parts by weight or more based on 100 parts by weight of all components of the scattering adhesive, 3 It may be included in parts by weight or less, 2.8 parts by weight or less, 2.6 parts by weight or less, 2.4 parts by weight or less, or 2.2 parts by weight or less. In another example, beads may be included in an amount of 3 parts by weight or more based on 100 parts by weight of the adhesive resin.
  • the amount of the beads is 3.1 parts by weight or more, 3.2 parts by weight or more, 3.4 parts by weight or more, 3.6 parts by weight or more, 3.8 parts by weight or more, 4.0 parts by weight or more, 4.2 parts by weight or more, 4.4 parts by weight or more based on 100 parts by weight of the adhesive resin.
  • the content of the beads is within the above range, it may be advantageous to improve the problem of rainbow stains occurring on the exterior of the OLED display device, and to exhibit excellent visual sensation, excellent hardness, and excellent heat resistance and moist heat resistance.
  • the content of the beads is too large, it may be advantageous that the content of the beads is within the above range because the camera recognizes the beads during the attachment process and catches the reference line incorrectly, resulting in an attachment error.
  • the beads may be organic beads.
  • the organic beads may include, for example, silicone resin.
  • the silicone resin may include, for example, silsesquioxane.
  • the silicone resin may be polymethylsilsesquioxane.
  • the beads may be spherical particles.
  • the size of the beads may be appropriately selected within a range not impairing the purpose of the present application.
  • the average particle diameter (D50) of the beads may be 6 ⁇ m or less.
  • the average particle diameter (D50) of the beads is specifically, 5.8 ⁇ m or less, 5.6 ⁇ m or less, 5.4 ⁇ m or less, 5.2 ⁇ m or less, 5.0 ⁇ m or less, 4.8 ⁇ m or less, 4.6 ⁇ m or less, 4.4 ⁇ m or less, 4.2 ⁇ m or less, 4.0 ⁇ m or less or less, 3.8 ⁇ m or less, 3.6 ⁇ m or less, 3.4 ⁇ m or less, 3.2 ⁇ m or less, 3.0 ⁇ m or less, 2.9 ⁇ m or less, 2.8 ⁇ m or less, 2.7 ⁇ m or less, 2.6 ⁇ m or less, or 2.5 ⁇ m or less.
  • the average particle diameter (D50) of the beads may be, for example, 1 ⁇ m or more, 1.5 ⁇ m or more, 2.0 ⁇ m or more, or 2.2 ⁇ m or more.
  • the average particle diameter of the beads may be advantageous to improve the problem of rainbow stains occurring in the appearance of the OLED display device, and to exhibit excellent visual sensation, excellent hardness, and excellent heat resistance and moist heat resistance.
  • the average particle diameter (D50) of the beads may be 3 ⁇ m or less, 2.5 ⁇ m or less, or 2.0 ⁇ m or less.
  • the thickness of the scattering adhesive layer may be within a range of 15 ⁇ m to 25 ⁇ m. Specifically, the thickness of the scattering adhesive layer may be 16 ⁇ m or more, 17 ⁇ m or more, or 18 ⁇ m or more, and may be 24 ⁇ m or less, 23 ⁇ m or less, or 22 ⁇ m or less. When the thickness of the scattering pressure-sensitive adhesive layer is within the above range, it may be advantageous to improve the problem of rainbow stains occurring in the appearance of the OLED display device, and to exhibit excellent visual sensation, excellent hardness, and excellent heat resistance and moist heat resistance.
  • the scattering pressure-sensitive adhesive layer may have excellent hardness.
  • the scattering pressure-sensitive adhesive layer may have a glass sliding distance of 210 ⁇ m or less measured at 800 gf for 1000 seconds. Specifically, the glass sliding distance may be 205 ⁇ m or less, 200 ⁇ m or less, 195 ⁇ m or less, or 190 ⁇ m or less. The lower the glass sliding distance, the higher the hardness of the sample. When the hardness of the pressure-sensitive adhesive layer is high, deformation of the pressure-sensitive adhesive layer is minimized because resistance to external deformation is high.
  • the lower limit of the glass sliding distance may be, for example, 160 ⁇ m or more, 170 ⁇ m or more, 180 ⁇ m or more, 190 ⁇ m or more, or 195 ⁇ m or more.
  • the polarizing plate may have excellent durability.
  • the polarizing plate may have a haze change rate of ⁇ Ha after heat resistance of Equation 1 and a haze change rate of ⁇ Hb after heat resistance of Equation 2 of 2% or less, respectively.
  • the ⁇ Ha may be specifically 1.8% or less, 1.6% or less, 1.4% or less, or 1.2% or less.
  • the ⁇ Hb may be specifically 1.8% or less, 1.6% or less, 1.4% or less, 1.2% or less, 1.0% or less, 0.8% or less, 0.6% or less, or 0.4% or less.
  • H 1 is the haze of the polarizing plate at a temperature of 25 ° C
  • H 2 is the haze of the polarizing plate after storage at a temperature of 80 ° C for 500 hours.
  • H 3 is the haze of the polarizing plate at a temperature of 25 °C
  • H 4 is the haze of the polarizing plate after storage at a temperature of 60 °C and a relative humidity of 90% for 500 hours.
  • polarizer means a film, sheet, or device having a polarizing function.
  • a polarizer is a functional element capable of extracting light vibrating in one direction from incident light vibrating in several directions.
  • the polarizer may be an absorption type polarizer.
  • an absorption type polarizer refers to an element that exhibits selective transmission and absorption characteristics with respect to incident light.
  • the absorption type polarizer may transmit light vibrating in one direction from incident light vibrating in various directions and absorb light vibrating in the other direction.
  • the polarizer may be a linear polarizer.
  • a linear polarizer means a polarizer in which light selectively transmitted is linearly polarized light oscillating in one direction and light selectively absorbed is linearly polarized light oscillating in a direction orthogonal to the oscillation direction of the linearly polarized light.
  • polarizer for example, a polarizer in which iodine is dyed on a polymer stretched film such as a PVA stretched film, or a liquid crystal polymerized in an aligned state as a host and an anisotropic dye arranged according to the alignment of the liquid crystal as a guest
  • a guest-host type polarizer may be used, but is not limited thereto.
  • the type of polyvinyl alcohol resin or derivative thereof for forming the PVA-based polarizer is not particularly limited, and any PVA resin or derivative thereof known to be capable of forming the PVA-based polarizer can be used without particular limitation.
  • typical examples of the PVA-based resin derivative include polyvinyl formal resin or polyvinyl acetal resin.
  • the PVA-based polarizer can be formed using PVA-based commercially available films commonly used in the manufacture of polarizers in the art, for example, P30, PE30, PE60 from Kuraray, M2000, M3000, and M6000 from Japan Synthetic Industries Co., Ltd. may be
  • the resin included in the PVA-based polarizer may have, for example, a polymerization degree of about 1,000 to about 10,000 or about 1,500 to about 5,000. When the degree of polymerization is within the above range, it may be advantageous to allow free molecular movement and flexibly mix with iodine or dichroic dye.
  • a stretched PVA film may be used as the polarizer.
  • Transmittance or polarization degree of the polarizer may be appropriately adjusted in consideration of the purpose of the present application.
  • the transmittance of the polarizer may be 42.5% to 55%, and the degree of polarization may be 65% to 99.9997%.
  • the transmittance and polarization may be values measured for light having a wavelength of about 550 nm.
  • a polarizer protective film present on one side or both sides of the polarizer may be further included.
  • the protective film may be attached to the polarizer via an adhesive layer.
  • a triacetyl cellulose (TAC)-based film, a cyclic olefin-based polymer (COP) film, a cyclic olefin-based copolymer (COC) film, or an acrylic film may be used as the protective film for the polarizer.
  • the protective film of the polarizer preferably exhibits high transparency such that the light transmittance is 85% to 100% in consideration of excellent visibility and optical characteristics of the display device.
  • the polarizing plate may further include a surface treatment layer.
  • the surface treatment layer may be formed on one side of the protective film of the polarizer. Specifically, the surface treatment layer may be formed on one side of the protective film of the polarizer located on the opposite side on which the scattering adhesive layer of the polarizer is formed. Examples of the surface treatment layer include, but are not limited to, a hard coating layer, a low reflection layer, an anti-glare layer, and an anti-fingerprint layer.
  • the surface treatment layer may be disposed on the outermost side of the polarizing plate.
  • the thickness of the protective film of the polarizer may be within a range of 20 ⁇ m to 100 ⁇ m. When the thickness of the protective film of the polarizer satisfies the above range, there is an effect of securing mechanical strength capable of protecting the polarizer and simultaneously securing roll process workability.
  • the composition or formation method of the adhesive layer for attaching the polarizer and the protective film is not particularly limited, and the adhesive layer may be formed by applying any composition that has been previously used for bonding the polarizer and the protective film.
  • the adhesive layer may be a UV curable adhesive.
  • the thickness of the adhesive layer may be 0.5 ⁇ m to 4.0 ⁇ m, and good coating uniformity may be secured as the thickness of the adhesive layer satisfies this range.
  • the polarizing plate may further include a retardation layer between the polarizer and the scattering adhesive layer.
  • the retardation layer may be, for example, a liquid crystal layer or an elongated polymer layer.
  • the liquid crystal layer may include a polymerizable liquid crystal compound in a polymerized state.
  • the term "polymerizable liquid crystal compound” may refer to a compound that includes a site capable of exhibiting liquid crystallinity, for example, a mesogen backbone, and includes one or more polymerizable functional groups.
  • the polymerizable functional group may be, for example, an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group.
  • stretched polymer layer examples include polyolefin such as polyethylene or polypropylene, cycloolefin polymer (COP) such as polynorbornene, polyvinyl chloride, polyacrylonitrile, polysulfone, acrylic resin, poly Polymer layer containing polyesters such as carbonate, polyethylene terephthalate, polyacrylates, polyvinyl alcohol, or cellulose ester-based polymers such as TAC (Triacetyl cellulose) or copolymers of two or more monomers among the monomers forming the polymers can be used.
  • polyolefin such as polyethylene or polypropylene
  • COP cycloolefin polymer
  • COP cyclolefin polymer
  • polynorbornene polyvinyl chloride
  • polyacrylonitrile polysulfone
  • acrylic resin poly
  • Polymer layer containing polyesters such as carbonate, polyethylene terephthalate, polyacrylates, polyvinyl alcohol, or cellulose ester-based polymers
  • the retardation layer may have, for example, 1/4 wavelength phase delay characteristics.
  • n-wavelength phase retardation characteristic means a characteristic capable of delaying the phase of incident light by n times the wavelength of the incident light within at least a part of the wavelength range.
  • the 1/4 wavelength phase delay characteristic may be a characteristic of converting incident linearly polarized light into elliptically polarized light or circularly polarized light, and conversely converting incident elliptically polarized light or circularly polarized light into linearly polarized light.
  • the retardation layer may have an in-plane retardation of light having a wavelength of 550 nm within a range of 90 nm to 300 nm.
  • the in-plane retardation may be 100 nm or more, 105 nm or more, 110 nm or more, 115 nm or more, 120 nm or more, 125 nm or more, or 130 nm or more.
  • the in-plane retardation is 290 nm or less, 280 nm or less, 270 nm or less, 260 nm or less, 250 nm or less, 240 nm or less, 230 nm or less, 220 nm or less, 210 nm or less, 200 nm or less, 190 nm or less, 180 nm or less, 170 nm or less, 160 nm or less, 150 nm or less, or 145 nm or less.
  • the polarizing plate may further include a hard layer between the polarizer and the scattering adhesive layer.
  • An adhesive layer may be exemplified as the hard layer.
  • a UV curable adhesive layer may be used as the adhesive layer.
  • the thickness of the adhesive layer is within the range of 0.5 ⁇ m to 4.0 ⁇ m, and good coating uniformity can be secured as the thickness of the adhesive layer satisfies this range.
  • the polarizing plate includes a scattering adhesive layer 100, a retardation layer 200, a polarizer protective film 300, a polarizer 400, a polarizer protective film 500, and a surface treatment layer 600.
  • the polarizing plate may sequentially include a scattering adhesive layer 100, a polarizer protective film 300, a polarizer 400, a polarizer protective film 500, and a surface treatment layer 600.
  • a scattering adhesive layer 100, a hard layer 700, a polarizer 400, a protective film 500 for the polarizer, and a surface treatment layer 600 may be sequentially included.
  • the polarizing plate may be provided with a release film attached to one surface of the scattering adhesive layer, and the release film may be removed when adhered to the display panel.
  • the release film may serve to protect the scattering adhesive layer until the polarizer is attached to the display panel.
  • the release film is a release film well known in the art, for example, an acrylic film, a polyethylene terephthalate (PET) film, a triacetyl cellulose (TAC) film, a polynorbornene (PNB) film, a cycloolefin polymer (COP) film, A polycarbonate (PC) film or the like may be used, but is not limited thereto.
  • the OLED display device may include an OLED display panel and the polarizer disposed on one surface of the OLED display panel. At this time, one surface of the scattering adhesive layer of the polarizing plate may be in direct contact with the OLED display panel.
  • the polarizing plate may be disposed on a viewing side of the OLED display panel.
  • the OLED display panel may sequentially include a substrate, a lower electrode, an organic light emitting layer, and an upper electrode.
  • the organic emission layer may include an organic material capable of emitting light when a voltage is applied to the lower electrode and the upper electrode.
  • One of the lower electrode and the upper electrode may be an anode and the other may be a cathode.
  • the anode is an electrode into which holes are injected and may be made of a conductive material having a high work function
  • the cathode is an electrode into which electrons are injected and may be made of a conductive material having a low work function.
  • a transparent metal oxide layer such as ITO or IZO having a high work function may be used as the anode, and a metal electrode having a low work function may be used as the cathode. Since the organic light emitting layer is generally transparent, a transparent display can be implemented when the upper and lower electrodes are transparent. In one example, when the thickness of the metal electrode is very thin, a transparent display can be implemented.
  • the OLED display panel may further include an encapsulation substrate functioning to prevent moisture and/or oxygen from entering from the outside on the upper electrode.
  • An auxiliary layer may be further included between the lower electrode and the organic light emitting layer and between the upper electrode and the organic light emitting layer.
  • the auxiliary layer may include a hole transporting layer for balancing electrons and holes, a hole injecting layer, an electron injecting layer, and an electron transporting layer. However, it is not limited thereto.
  • the polarizer may be disposed on a light emitting side (light emitting side) of the OLED display panel.
  • a light emitting side light emitting side
  • the polarizing plate includes the retardation layer, visibility and performance of the display device can be improved by preventing external light from being reflected by a reflective layer made of metal, such as electrodes and wires of the OLED panel and coming out to the outside of the OLED panel.
  • This application relates to a polarizing plate and its use.
  • the present application provides a polarizing plate capable of improving the problem of occurrence of rainbow stains on the appearance of an OLED display device, excellent visual sensation, excellent hardness, and excellent heat and moisture resistance durability, and an OLED display device including the polarizing plate.
  • 3 exemplarily shows the structure of the polarizing plate of the present application.
  • An adhesive composition was prepared by adding 20 parts by weight to 100 parts by weight of the sex polymer (AD-705).
  • the crosslinkable polymer is a polymer of 99 parts by weight of butyl acrylate (BA) and 1 part by weight of 4-hydroxybutyl acrylate (4-HBA).
  • the trifunctional radically polymerizable compound is a trifunctional acrylate.
  • the beads are spherical particles containing a silicone resin and having an average particle diameter (D50) of about 4.5 ⁇ m.
  • the refractive index of the crosslinkable polymer is 1.47, and the refractive index of the beads is 1.42.
  • the refractive index is a value measured for a light source having a wavelength of 350 nm to 1450 nm at a temperature of 25° C. using an Abbe refractometer.
  • the first release film (MRP38, Mitsubishi Plastics) having a thickness of 38 ⁇ m was applied to a thickness of about 22 ⁇ m after drying, and held at 80° C. for 3 minutes. It was dried to form a scattering adhesive.
  • a second release film (MRP, Mitsubishi Plastics) having a thickness of 38 ⁇ m and different in peel force from the first release film was laminated. After lamination, light (about 150 mJ/250 mW) was irradiated with a mercury high-pressure lamp (light intensity: 80 W) for about 15 seconds to prepare an adhesive film.
  • a first protective film (TAC film) having a thickness of 65 ⁇ m was laminated on one side of a polarizer (iodine dyed PVA-based stretched film) having a thickness of 25 ⁇ m, and a second protective film having a thickness of 45 ⁇ m ( TAC film) was laminated.
  • a low reflection layer having an average reflectance of about 2% for a wavelength of 380 nm to 780 nm was formed on one side of the first protective film, and the surface was treated.
  • a 1/4 wave plate (liquid crystal layer) was formed on one side of the second protective film. After removing the second release film from the prepared adhesive film, the scattering adhesive was laminated to be attached to the 1/4 wave plate to prepare a polarizing plate.
  • a polarizing plate was prepared in the same manner as in Example 1, except that the content of the beads was changed to 3 parts by weight.
  • a polarizing plate was prepared in the same manner as in Example 1, except that the content of the beads was changed to 4.5 parts by weight.
  • a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705, LG Chem) 100 parts by weight, a curing agent (T-39M, Soken) 0.26 parts by weight, an initiator (AD-PI2, LG Chem) 1.76 parts by weight, silane 0.05 parts by weight of coupling agent (AD-M812, LG Chem), 1.10 parts by weight of antistatic agent (HQ115, 3M), and 3.35 parts by weight of beads (TSR 9000, Momentive) were put into the reaction vessel, and then the solvent (Ethyl acetate) was added. Thus, an adhesive composition was prepared.
  • the crosslinkable polymer is a polymer of 99 parts by weight of butyl acrylate (BA) and 1 part by weight of 4-hydroxybutyl acrylate (4-HBA).
  • the trifunctional radically polymerizable compound is a trifunctional acrylate.
  • the beads include a silicone resin and are spherical particles having an average particle diameter (D50) of about 2.2 ⁇ m to 2.5 ⁇ m.
  • the refractive index of the crosslinkable polymer is 1.47, and the refractive index of the beads is 1.42.
  • the refractive index is a value measured for a light source having a wavelength of 350 nm to 1450 nm at a temperature of 25° C. using an Abbe refractometer.
  • the first release film (MRP38, Mitsubishi Plastics) having a thickness of 38 ⁇ m was applied to a thickness of about 22 ⁇ m after drying, and held at 80° C. for 3 minutes. It was dried to form a scattering pressure-sensitive adhesive layer.
  • a second release film (MRP38, Mitsubishi Plastics) having a thickness of 38 ⁇ m and different in peel force from the first release film was laminated. After lamination, light (about 150 mJ/250 mW) was irradiated with a mercury high-pressure lamp (light intensity: 80 W) for about 15 seconds to prepare an adhesive film.
  • a first protective film (TAC film) having a thickness of 65 ⁇ m was laminated on one side of a polarizer (iodine dyed PVA-based stretched film) having a thickness of 25 ⁇ m, and a second protective film having a thickness of 45 ⁇ m ( TAC film) was laminated.
  • a low reflection layer having an average reflectance of about 2% for a wavelength of 380 nm to 780 nm was formed on one side of the first protective film, and the surface was treated.
  • a 1/4 wave plate (liquid crystal layer) was formed on one side of the second protective film. After removing the second release film from the prepared adhesive film, the scattering adhesive layer was laminated to be attached to the 1/4 wave plate to prepare a polarizing plate.
  • a polarizing plate was prepared in the same manner as in Example 4, except that the content of beads was changed to 6 parts by weight based on 100 parts by weight of a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705, LG Chem).
  • the beads were changed to spherical particles (Tospearl 145, Momentive) with an average particle diameter (D50) of about 4.5 ⁇ m, and the content of the beads was changed to a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705, LG Chem) 100
  • a polarizing plate was prepared in the same manner as in Example 4, except for changing to 4.50 parts by weight.
  • the beads were changed to spherical particles (Tospearl 145, Momentive) with an average particle diameter (D50) of about 4.5 ⁇ m, and the content of the beads was changed to a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705, LG Chem) 100
  • a polarizing plate was prepared in the same manner as in Example 4, except that the amount was changed to 6 parts by weight with respect to parts by weight.
  • a polarizing plate was prepared in the same manner as in Example 4, except that the content of beads was changed to 3 parts by weight based on 100 parts by weight of a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705, LG Chem).
  • FC4400, 3M antistatic agent
  • T-789J silane coupling agent
  • T-789J silane coupling agent
  • T-789J silane coupling agent
  • the acrylic polymer is a polymer of 94 parts by weight of butyl acrylate (BA) and 4 parts by weight of acrylic acid (AA).
  • the beads include silicone resin and are spherical particles having an average particle diameter (D50) of about 4.5 ⁇ m.
  • the refractive index of the acrylic polymer is 1.46, and the refractive index of the beads is 1.42.
  • the refractive index is a value measured for a light source having a wavelength of 350 nm to 1450 nm at a temperature of 25° C. using an Abbe refractometer.
  • the first release film (MRP38, Mitsubishi Plastics) having a thickness of 38 ⁇ m was applied to a thickness of about 22 ⁇ m after drying, and held at 80° C. for 3 minutes. It was dried to form a scattering adhesive.
  • a second release film (MRP, Mitsubishi Plastics) having a thickness of 38 ⁇ m and different in peel force from the first release film was laminated.
  • a first protective film (TAC film) having a thickness of 65 ⁇ m was laminated on one side of a polarizer (iodine dyed PVA-based stretched film) having a thickness of 25 ⁇ m, and a second protective film having a thickness of 45 ⁇ m ( TAC film) was laminated.
  • a low reflection layer having an average reflectance of about 2% for a wavelength of 380 nm to 780 nm was formed on one side of the first protective film, and the surface was treated.
  • a 1/4 wave plate (liquid crystal layer) was formed on one side of the second protective film. After removing the second release film from the prepared adhesive film, the adhesive was laminated to be attached to the 1/4 wave plate to prepare a polarizing plate.
  • a polarizing plate was prepared in the same manner as in Example 1, except that beads were not added.
  • a polarizing plate was prepared in the same manner as in Example 4, except that beads were not added.
  • the beads were changed to spherical particles (Tospearl 145, Momentive) with an average particle diameter (D50) of about 4.5 ⁇ m and a refractive index of 1.42, and the content of the beads was changed to a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705 , LG Chem)
  • a polarizing plate was prepared in the same manner as in Example 4, except that 0.60 parts by weight was changed with respect to 100 parts by weight.
  • the bead (Tospearl 145, Momentive) includes a silicone resin and has a refractive index of 1.42.
  • a polarizing plate was prepared in the same manner as in Example 4, except that the content of beads was changed to 0.5 parts by weight based on 100 parts by weight of a mixture of a crosslinkable polymer and a trifunctional radical polymerizable compound (AD-705, LG Chem).
  • the haze was measured at 25 ° C using a haze meter (HM-150, Murakami color research laboratory).
  • the haze is a value measured for light with a wavelength of 380 nm to 780 nm.
  • Example 1 Storage Modulus (Pa) Example 1 28% 152,330 Example 2 20% 154,427 Example 3 35% 151,987 Example 4 30.5% 151987 Example 5 40.0% 152023 Example 6 30.0% 152937 Example 7 34.0% 154402 Example 8 21.5% 154427 Comparative Example 1 26% 86,752 Comparative Example 2 One% 153,426 Comparative Example 3 0.5% 153422 Comparative Example 4 5.0% 156321 Comparative Example 5 5.0% 152330
  • the polarizing plate was cut into a size of 10 mm x 100 mm in width x length. After peeling the first release film from the polarizing plate, the pressure-sensitive adhesive layer of the polarizing plate is applied to an area of 10 mm ⁇ 10 mm in the center of a glass plate (soda lime glass) having a width ⁇ length ⁇ thickness of 30 mm ⁇ 40 mm ⁇ 0.8 mm.
  • a specimen was prepared by attaching it so as to come into contact with a glass plate. After degassing the specimen at 50° C. and 5 atm for 15 minutes, the pushing distance was measured. Specifically, the specimen was loaded into a texture analyzer (Stable micro system, XT plus) and the polarizer and glass plates were fixed.
  • the distance (unit: ⁇ m) by which the polarizing plate was pushed away from the glass substrate was measured. In general, it is saturated within 1000 seconds (a state in which the rolling distance does not increase more and comes out uniformly), and in this experiment, the rolling distance in the final 1000 seconds was measured and listed in Table 2 below. The lower the glass slip distance, the higher the hardness of the sample.
  • a sample was prepared by attaching it to an A4 size glass plate (soda lime glass) and degassing. After putting the sample into a chamber maintained under conditions of heat resistance reliability (temperature 80° C.) and moist heat resistance reliability (temperature 60° C., relative humidity 90%), the sample was maintained for 500 hours. After observing whether bubbles were generated in the sample, reliability was evaluated based on the following criteria.
  • Equation 1 The heat resistance change rate ( ⁇ Ha) of Equation 1 below and the moist heat resistance change rate ( ⁇ Hb) of Equation 2 below were measured, and the results are shown in Table 3 below.
  • heat resistance reliability temperature 80° C.
  • moist heat resistance reliability temperature 60° C., relative humidity 90%
  • the haze measured at 25 ° C before being introduced into the chamber is H 1 in Equation 1 and H 3 in Equation 2 below, and the haze measured after maintaining for 500 hours under the condition of heat resistance reliability (temperature 80 ° C) of the chamber is H 2 in Equation 1, , The haze measured after maintaining the chamber for 500 hours under conditions of moist heat resistance (temperature 60 ° C, relative humidity 90%) is H 4 in Equation 2.
  • Example 1 28.1% 28.6% 27.6% 27.2% 1.78% 1.45%
  • Example 2 12.2% 12.4% 12.5% 12.3% 1.64% 1.60%
  • Example 3 35.5% 36.1% 35.4% 35.3% 1.69% 0.28%
  • Example 4 30.2 30.6 30.4 30.3 1.32% 0.33%
  • Example 5 35.4 35.8 35.6 35.3 1.13% 0.84%
  • Example 6 29.7 30.2 31.2 30.7 1.68% 1.60%
  • Example 7 36.1 36.6 35.8 35.3 1.39% 1.40%
  • Example 8 21.7 22.1 21.7 21.3 1.84% 1.84% Comparative Example 1 26.2% 27% 26.5% 25.8% 3.05% 2.64% Comparative Example 2 0.2% 0.2% 0.2% 0.2% 0.2% 0.00% 4.9 5.1 5.0 0.00% 1.96% Comparative Example 5 5.1 5.2 5.1 5.0

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 출원은 편광판 및 그의 용도에 관한 것이다. 본 출원은 OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타낼 수 있는 편광판 및 상기 편광판을 포함하는 OLED 표시장치를 제공한다.

Description

편광판 및 그의 용도
본 출원은 편광판 및 그의 용도에 관한 것이다.
본 출원은 2021년 10월 15일자 한국 특허 출원 제10-2021-0137841호 및 2022년 6월 30일자 한국 특허 출원 제10-2022-0080538호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
OLED(Organic light emitting diode) 표시장치의 휘도를 개선하기 위해, OLED 표시패널의 성능을 개선하는 다양한 방법이 시도되고 있다. 그러나, OLED 표시패널의 휘도 상승 시 기존에 발생하지 않은 레인보우 얼룩 현상이 심화되어 상기 얼룩 현상으로 인해 OLED 표시장치의 외관 시감이 떨어지는 문제가 발생할 수 있다(특허문헌 1: 대한민국 특허공개공보 제10-2009-0122138호).
본 출원은 OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타낼 수 있는 편광판 및 상기 편광판을 포함하는 OLED 표시장치를 제공한다.
본 출원은 편광판에 관한 것이다. 상기 편광판은 편광자 및 상기 편광자의 일면에 존재하는 산란 점착제층을 포함할 수 있다.
본 명세서에서 점착제층은, 예를 들면, 점착제 조성물의 층일 수 있다. 본 명세서에서 용어 「점착제 또는 접착제 조성물의 층」은, 점착제 또는 접착제 조성물을 코팅하거나 경화시켜서 형성된 층을 의미할 수 있다. 용어 「점착제 또는 접착제 조성물의 경화」는, 점착제 또는 접착제 조성물에 포함되어 있는 성분의 물리적 또는 화학적 작용 내지는 반응을 통하여 점착제 또는 접착제 조성물 내에 가교 구조를 구현하는 것을 의미할 수 있다. 경화는, 예를 들면, 상온에서의 유지, 습기의 인가, 열의 인가, 활성 에너지선의 조사 또는 상기 중 2종 이상의 공정을 함께 진행시켜 유도할 수 있고, 각각의 경우에 따라서 경화가 유도되는 유형의 점착제 또는 접착제 조성물은, 예를 들면, 상온 경화형 점착제 또는 접착제 조성물, 습기 경화형 점착제 또는 접착제 조성물, 열경화형 점착제 또는 접착제 조성물, 활성 에너지선 경화형 점착제 또는 접착제 조성물 또는 혼성 경화형 점착제 또는 접착제 조성물로 호칭될 수 있다.
본 명세서에서 산란 점착제층은 점착제층에 헤이즈를 유발할 수 있는 산란 입자를 포함하는 점착제층을 의미할 수 있다. 상기 산란 입자는 예를 들어 후술하는 비드일 수 있다.
상기 산란 점착제층을 포함하는 편광판은 헤이즈가 12% 이상일 수 있다. 상기 헤이즈는 산란 점착제층 자체의 헤이즈를 의미하는 것은 아니며, 산란 점착제층 및 편광자를 포함하는 편광판의 헤이즈를 의미할 수 있다. 편광판이 후술하는 바와 같이 보호필름, 위상차층, 하드층 등의 기능층을 더 포함하는 경우에는 산란 점착제층, 편광자 및 상기 기능층들을 포함하는 편광판의 헤이즈를 의미할 수 있다. 상기 헤이즈는 구체적으로 12% 이상, 14% 이상, 16% 이상, 18% 이상, 20% 이상, 21% 이상, 22% 이상, 23% 이상, 24% 이상, 25% 이상, 26% 이상, 27% 이상 28% 이상, 29% 이상, 30% 이상, 31% 이상, 32% 이상, 33% 이상, 34% 이상, 35% 이상, 36% 이상, 37% 이상, 38% 이상, 39% 이상 또는 40% 이상일 수 있고, 50% 이하, 48% 이하, 46% 이하, 44% 이하, 42% 이하, 40% 이하, 38% 이하, 36% 이하, 34% 이하, 32% 이하, 30% 이하, 28% 이하, 26% 이하, 24% 이하, 22% 이하 또는 20% 이하일 수 있다. 상기 편광판의 헤이즈는 D65 광원을 기준으로 측정된 값일 수 있다. 상기 편광판의 헤이즈는 D65 광원을 기준으로 측정된 값일 수 있다. 상기 편광판의 헤이즈는 약 380 nm 내지 780 nm 파장의 광에 대해 측정된 값일 수 있다. 상기 헤이즈는 약 380 nm 내지 780 nm 파장의 광에 대해 측정된 평균 헤이즈 값일 수 있다. 편광판의 헤이즈가 상기 범위 내인 경우, OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타내는데 유리할 수 있다.
상기 산란 점착제층은 25℃ 온도 및 1 rad/sec 주파수에서 저장 탄성률이 120,000 Pa 이상일 수 있다. 상기 저장 탄성률은 구체적으로, 125,000 Pa 이상, 130,000 Pa 이상, 135,000 Pa 이상, 140,000 Pa 이상, 145,000 Pa 이상, 150,000 Pa 이상, 151,000 Pa 이상, 152,000 Pa 이상, 153,000 Pa 이상 또는 154,000 Pa 이상일 수 있다. 상기 저장 탄성률의 상한은 예를 들어 200,000 Pa 이하, 190,000 Pa 이하, 180,000 Pa 이하, 170,000 Pa 이하, 160,000 Pa 이하, 155,000 Pa 이하 또는 153,000 Pa 이하일 수 있다. 산란 점착제층의 저장 탄성률이 상기 범위 내인 경우 OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선할 수 있고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타내는데 유리할 수 있다.
상기 산란 점착제층은 점착성 수지를 포함할 수 있다. 하나의 예시에서, 점착성 수지는 아크릴계 수지일 수 있다. 상기 아크릴계 수지는 아크릴 단량체를 주성분으로 포함하면서, 가교 전 또는 후에 점착성을 나타낼 수 있는 고분자일 수 있다. 본 명세서에서 아크릴 단량체를 주성분으로 포함한다는 것은, 점착성 수지를 구성하는 전체 단량체 중에서 아크릴 단량체를 80 wt% 이상, 85 wt% 이상, 90 wt% 이상, 95 wt% 이상 또는 99 wt% 이상 포함하는 것을 의미할 수 있다.
상기 상기 점착성 수지는IPN(interpenetrating network) 가교 구조를 가질 수 있다. 본 명세서에서 IPN 가교 구조는 점착제층 내에서 2개 이상의 가교 구조가 동시에 구현되어 있는 상태를 의미할 수 있다. IPN 내의 상기 2종류 이상의 가교 구조는, 예를 들면, 서로 얽혀 있는 상태(entanglement), 서로 물리적 또는 화학적으로 연결(linking)되어 있는 상태 또는 서로 침투(penetrating)하고 있는 상태로 존재할 수 있다.
상기 IPN 가교 구조는 가교성 중합체와 다관능성 가교제의 가교 반응에 의해 형성된 제 1 가교 구조 및 라디칼 중합성 화합물의 중합 반응에 의해 형성된 제 2 가교 구조를 포함할 수 있다. 상기 라디칼 중합성 화합물의 중합 반응은 중합 개시제에 의해 유도될 수 있다. 상기 점착제층이 상기 IPN 가교 구조를 갖기 위해서는, 상기 점착제층을 형성하기 위한 점착제 조성물이 가교성 중합체, 다관능성 가교제, 라디칼 중합성 화합물 및 중합 개시제를 포함할 수 있다. 본 명세서에서 다관능성 가교제는 가교성 관능기를 2개 이상 포함하는 가교제를 의미할 수 있다.
하나의 예시에서, 상기 제 1 가교 구조는 열의 인가에 의해 형성된 가교 구조이고, 제 2 가교 구조는 활성 에너지선의 조사에 의해 형성된 가교 구조일 수 있다. 상기에서 「활성 에너지선」의 범주에는, 마이크로파(microwaves), 적외선(IR), 자외선(UV), X선 및 감마선은 물론, 알파-입자선(alpha-particle beam), 프로톤빔(proton beam), 뉴트론빔(neutron beam) 또는 전자선(electron beam)과 같은 입자빔 등이 포함될 수 있고, 통상적으로는 자외선 또는 전자선 등일 수 있다.
본 명세서에서「가교성 중합체」는 다관능성 가교제와 반응할 수 있는 가교성 관능기가 부여된 중합체를 의미할 수 있다. 상기에서 가교성 관능기와 가교제는 라디칼 반응 이외의 반응에 의해 서로 반응하여 가교 구조를 구현할 수 있도록 선택될 수 있고, 예를 들면, 건조 또는 숙성(aging) 과정에 의해 반응하여 가교 구조를 형성할 수 있다.
가교성 중합체는, 예를 들면, 중량평균분자량이 100만 이하일 수 있다. 상기에서 중량평균분자량은, GPC(gel permeation chromatography)에 의해 측정한, 폴리스티렌 환산값을 의미한다. 중합체의 중량평균분자량의 하한은 특별히 제한되는 것은 아니고, 예를 들면, 20만 또는 30만 이상의 범위에서 조절될 수 있다.
가교성 중합체는 (메타)아크릴산 에스테르 단량체로부터 유래된 중합 단위를 포함할 수 있다. 본 명세서에서 용어 「단량체」는 중합 반응을 통해 중합체를 형성할 수 있는 모든 종류의 화합물을 의미하고, 어떤 단량체로부터 유도된 중합된 단위를 포함하는 중합체는 상기 어떤 단량체가 중합되어 형성된 중합체를 의미할 수 있다.
상기 (메타)아크릴산 에스테르 화합물로는, 예를 들면, 알킬 (메타)아크릴레이트를 사용할 수 있다. 상기 알킬 (메타)아크릴레이트로는, 예를 들어, 응집력, 유리전이온도 및 점착성의 조절 등을 고려하여, 탄소수 1 내지 20, 탄소수 1 내지 14, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 알킬기를 가지는 알킬 (메타)아크릴레이트를 사용할 수 있다. 상기에서 알킬기는, 예를 들면, 직쇄형 알킬기, 분지쇄형 알킬기 또는 고리형 알킬기일 수 있다. 이러한 단량체의 예로는 메틸 아크릴레이트, 에틸 아크릴레이트, n-프로필 아크릴레이트, 이소프로필 아크릴레이트, n-부틸 아크릴레이트, sec-부틸 아크릴레이트, 2-메틸 헵실 아크릴레이트, 펜틸 아크릴레이트, 2-에틸헥실 (메타)아크릴레이트, 2-에틸부틸 (메타)아크릴레이트, n-옥틸 (메타)아크릴레이트, 이소보르닐 (메타)아크릴레이트, 이소옥틸 (메타)아크릴레이트, 이소노닐 (메타)아크릴레이트 및 라우릴 (메타)아크릴레이트 등을 들 수 있고, 상기 중 일종 또는 이종 이상을 적절히 선택하여 사용할 수 있다.
가교성 중합체는 가교성 관능기를 가지는 공중합성 단량체(이하, 가교성 단량체로 호칭할 수 있다.)로부터 유래된 중합 단위를 더 포함할 수 있다. 본 명세서에서 가교성 관능기를 가지는 공중합성 단량체는, 예를 들면, 상기 (메타)아크릴산 에스테르 단량체와 같이 중합체에 포함되는 다른 단량체와 공중합될 수 있는 부위를 가지고, 또한 가교성 관능기를 가져서 중합체에 가교성 관능기를 부여할 수 있는 화합물을 의미할 수 있다. 가교성 관능기로는, 히드록시기, 카복실기, 이소시아네이트기, 글리시딜기, 아민기, 알콕시 실릴기 또는 비닐기 등이 예시될 수 있고, 일반적으로는, 히드록시기 또는 카복실기 등을 사용할 수 있다.
상기 가교성 단량체로는 히드록시기를 가지는 공중합성 단량체를 사용할 수 있다. 상기 히드록시기를 가지는 공중합성 단량체로는, 2-히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 4-히드록시부틸 (메타)아크릴레이트, 6-히드록시헥실 (메타)아크릴레이트 또는 8-히드록시옥틸 (메타)아크릴레이트 등의 히드록시알킬 (메타)아크릴레이트, 또는 2-히드록시에틸렌글리콜 (메타)아크릴레이트 또는 2-히드록시프로필렌글리콜 (메타)아크릴레이트 등의 히드록시알킬렌글리콜 (메타)아크릴레이트 등을 사용할 수 있다. 본 출원의 일 실시예예 따르면, 다른 단량체와의 반응성이나 유리전이온도의 조절 용이성 등을 고려하여 상기와 같은 단량체 중에서 히드록시알킬 아크릴레이트 또는 히드록시알킬렌글리콜 아크릴레이트 등을 사용할 수 있다.
하나의 예시에서, 가교성 중합체는, 상기 (메타)아크릴산 에스테르 단량체 80 중량부 내지 99 중량부 및 상기 가교성 단량체 1 중량부 내지 20 중량부로부터 유도된 중합 단위를 포함할 수 있다. 다른 하나의 예시에서, 가교성 중합체는, 상기 (메타)아크릴산 에스테르 다량에 80 중량부 내지 99 중량부 및 상기 가교성 단량체 1 중량부 내지 10 중량부로부터 유도된 중합 단위를 포함할 수 있다. 다른 하나의 예시에서, 가교성 중합체는, 상기 (메타)아크릴산 에스테르 다량에 90 중량부 내지 99 중량부 및 상기 가교성 단량체 1 중량부 내지 10 중량부로부터 유도된 중합 단위를 포함할 수 있다. 이러한 범위에서 점착제층은 적절한 가교 구조를 구현할 수 있다.
가교성 중합체는, 필요한 경우, 예를 들면, 적절한 물성의 조절 등을 위하여 다른 임의의 공단량체를 추가로 포함할 수 있다. 상기 공단량체로는, 알콕시 알킬렌글리콜 (메타)아크릴산 에스테르, 알콕시 디알킬렌글리콜(메타)아크릴산 에스테르, 알콕시 트리알킬렌글리콜 (메타)아크릴산 에스테르, 알콕시 테트라알킬렌글리콜 (메타)아크릴산 에스테르, 알콕시 폴리에틸렌글리콜 (메타)아크릴산 에스테르, 페녹시 알킬렌글리콜 (메타)아크릴산 에스테르, 페녹시 디알킬렌글리콜 (메타)아크릴산 에스테르, 페녹시 트리알킬렌글리콜 (메타)아크릴산에스테르, 페녹시 테트라알킬렌글리콜 (메타)아크릴산 에스테르 또는 페녹시 폴리알킬렌글리콜 (메타)아크릴산 에스테르 등과 같은 알킬렌옥시드기 함유 단량체; 스티렌 또는 메틸 스티렌과 같은 스티렌계 단량체; 글리시딜 (메타)아크릴레이트와 같은 글리시딜기 함유 단량체; 또는 비닐 아세테이트와 같은 카르복실산 비닐 에스테르 등을 들 수 있으나, 이에 제한되는 것은 아니다. 이러한 공단량체들은 필요에 따라 적정한 종류가 일종 또는 이종 이상 선택되어 중합체에 포함될 수 있다. 이러한 공단량체는, 예를 들면, 중합체 내에서 중합단위로 사용되는 다른 화합물들의 전체 중량 대비 20 중량부 이하, 또는 0.1 중량부 내지 15 중량부의 비율로 중합체에 포함될 수 있다.
가교성 중합체는, 상기 기술한 단량체 중에서 필요한 단량체를 선택하고, 선택된 단량체를 목적하는 비율로 배합한 단량체의 혼합물을 용액 중합(solution polymerization), 광중합(photo polymerization), 괴상 중합(bulk polymerization), 현탁 중합(suspension polymerization) 또는 유화 중합(emulsion polymerization)과 같은 중합 방식에 적용하여 제조할 수 있다.
산란 점착제층은 상기 가교성 중합체와 반응하여 가교 구조를 구현하고 있는 다관능성 가교제(경화제)를 포함할 수 있다.
본 출원에서 사용될 수 있는 구체적인 가교제의 종류는 특별히 한정되지 않으며, 가교성 중합체에 포함되는 가교성 관능기의 종류를 고려하여 선택될 수 있다. 가교제로는, 예를 들면 이소시아네이트 가교제, 에폭시 가교제, 아지리딘 가교제 및 금속 킬레이트 가교제와 같은 일반적인 가교제를 사용할 수 있다. 예를 들면, 이소시아네이트 가교제를 사용할 수 있으나, 이에 제한되는 것은 아니다. 이소시아네이트 가교제의 구체적인 예로는 톨리렌 디이소시아네이트, 크실렌 디이소시아네이트, 디페닐메탄 디이소시아네이트, 헥사메틸렌 디이소시아네이트, 이소보론 디이소시아네이트, 테트라메틸크실렌 디이소시아네이트, 나프탈렌 디이소시아네이트 및 상기 중 어느 하나의 폴리올(ex. 트리메틸롤 프로판)과의 반응물로 이루어진 군으로부터 선택된 하나 이상을 들 수 있고; 에폭시 가교제의 구체적인 예로는 에틸렌글리콜 디글리시딜에테르, 트리글리시딜에테르, 트리메틸올프로판 트리글리시딜에테르, N,N,N',N'-테트라글리시딜 에틸렌디아민 및 글리세린 디글리시딜에테르로 이루어진 군으로부터 선택된 하나 이상을 들 수 있으며; 아지리딘 가교제의 구체적인 예로는 N,N'-톨루엔-2,4-비스(1-아지리딘카르복사미드), N,N'-디페닐메탄-4,4'-비스(1-아지리딘카르복사미드), 트리에틸렌 멜라민, 비스이소프로탈로일-1-(2-메틸아지리딘) 및 트리-1-아지리디닐포스핀옥시드로 이루어진 군으로부터 선택된 하나 이상을 들 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기에서 금속 킬레이트 가교제의 구체적인 예로는, 알루미늄, 철, 아연, 주석, 티탄, 안티몬, 마그네슘 및/또는 바나듐과 같은 다가 금속이 아세틸 아세톤 또는 아세토초산 에틸 등에 배위하고 있는 화합물 등을 들 수 있으나, 이에 제한되는 것은 아니다.
가교제는 가교성 중합체 100 중량부에 대하여 0.01 중량부 내지 10 중량부 또는 0.01 중량부 내지 5 중량부의 양으로 포함될 수 있다. 가교제의 함량이 0.01 중량부 미만이면, 점착제층의 응집력이 떨어질 우려가 있고, 10 중량부를 초과하면, 층간 박리나 들뜸 현상이 발생하는 등 내구신뢰성이 저하될 우려가 있다.
제 2 가교 구조는 라디칼 중합성 화합물의 중합 반응에 의해 형성될 수 있다. 즉, 점착제층은 IPN 구조를 구현하기 위해, 라디칼 중합성 관능기를 2개 이상, 예를 들면, 2개 내지 6개 갖는 다관능성 라디칼 중합성 화합물의 중합체를 추가로 포함할 수 있고, 상기 라디칼 중합성 화합물의 중합을 유도하기 위한 라디칼 개시제를 또한 포함할 수 있다.
상기 라디칼 중합성 화합물의 종류는 특별히 제한되는 것은 아니지만, 예를 들면, 라디칼 중합성 관능기로서, (메타)아크릴로일기를 2개 내지 6개 갖는 다관능성 아크릴레이트를 사용할 수 있다.
다관능성 아크릴레이트의 종류는 특별히 한정되지 않으며, 예를 들면, 1,4-부탄디올 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 네오펜틸글리콜 디(메타)아크릴레이트, 폴리에틸렌글리콜 디(메타)아크릴레이트, 네오펜틸글리콜아디페이트(neopentylglycol adipate) 디(메타)아크릴레이트, 히드록시피발산(hydroxyl puivalic acid) 네오펜틸글리콜 디(메타)아크릴레이트, 디시클로펜타닐(dicyclopentanyl) 디(메타)아크릴레이트, 카프로락톤 변성 디시클로펜테닐 디(메타)아크릴레이트, 에틸렌옥시드 변성 디(메타)아크릴레이트, 디(메타)아크릴록시 에틸 이소시아누레이트, 알릴(allyl)화 시클로헥실 디(메타)아크릴레이트, 트리시클로데칸디메탄올(메타)아크릴레이트, 디메틸롤 디시클로펜탄 디(메타)아크릴레이트, 에틸렌옥시드 변성 헥사히드로프탈산 디(메타)아크릴레이트, 트리시클로데칸 디메탄올(메타)아크릴레이트, 네오펜틸글리콜 변성 트리메틸프로판 디(메타)아크릴레이트, 아다만탄(adamantane) 디(메타)아크릴레이트 또는 9,9-비스[4-(2-아크릴로일옥시에톡시)페닐]플루오렌(fluorine) 등과 같은 2관능성 아크릴레이트; 트리메틸롤프로판 트리(메타)아크릴레이트, 디펜타에리쓰리톨 트리(메타)아크릴레이트, 프로피온산 변성 디펜타에리쓰리톨 트리(메타)아크릴레이트, 펜타에리쓰리톨 트리(메타)아크릴레이트, 프로필렌옥시드 변성 트리메틸롤프로판 트리(메타)아크릴레이트, 3 관능성 우레탄 (메타)아크릴레이트 또는 트리스(메타)아크릴록시에틸이소시아누레이트 등의 3관능성 아크릴레이트; 디글리세린 테트라(메타)아크릴레이트 또는 펜타에리쓰리톨 테트라(메타)아크릴레이트 등의 4관능성 아크릴레이트; 프로피온산 변성 디펜타에리쓰리톨 펜타(메타)아크릴레이트 등의 5관능성 아크릴레이트; 및 디펜타에리쓰리톨 헥사(메타)아크릴레이트, 카프로락톤 변성 디펜타에리쓰리톨 헥사(메타)아크릴레이트 또는 우레탄 (메타)아크릴레이트(ex. 이소시아네이트 단량체 및 트리메틸롤프로판 트리(메타)아크릴레이트의 반응물 등의 6관능성 아크릴레이트 등을 들 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서는 상기와 같은 다관능성 아크릴레이트 중 일종 또는 이종 이상을 혼합하여 사용할 수 있으며, 특히 분자량이 5,000 이하, 4,000 이하, 3,000 이하, 2,000 이하 또는 1,000 이하이며, 3관능성 이상인 아크릴레이트를 사용하는 것이 내구성 구현 측면에서 유리할 수 있다.
다관능성 아크릴레이트로서, 분자 구조 중 고리상 구조 및/또는 우레탄 결합을 포함하는 다관능성 아크릴레이트를 사용할 수 있다. 상기에서 아크릴레이트에 포함되는 고리 구조는 특별히 제한되지 않으며, 탄소환식 구조 또는 복소환식 구조; 또는 단환식 또는 다환식 구조의 어느 것이어도 된다. 구체적으로, 상기 다관능성 아크릴레이트에 포함되는 고리 구조의 예로는 시클로펜탄, 시클로헥산 또는 시클로헵탄 등과 같은, 탄소수 3 내지 12, 바람직하게는 탄소수 3 내지 8의 시클로알킬 고리 구조를 들 수 있고, 상기 고리 구조는 아크릴레이트 내에 하나 이상, 예를 들면, 1 내지 5 또는 1 내지 3개 포함되어 있을 수 있으며, 또한 O, S 또는 N와 같은 헤테로 원자가 하나 이상 포함되어 있을 수도 있다.
고리 구조를 포함하는 다관능성 아크릴레이트의 구체적인 예로는, 트리스(메타)아크릴록시 에틸 이소시아누레이트 등의 이소시아누레이트 구조를 갖는 단량체, 이소시아누레이트 변성 우레탄 아크릴레이트(ex. 분자 중 고리 구조를 가지는 이소시아네이트 화합물(ex. 이소보론 디이소시아네이트) 및 아크릴레이트 화합물(ex. 트리메틸롤프로판 트리(메타)아크릴레이트 또는 펜타에리스리톨 트리(메타)아크릴레이트)의 반응물 등) 등을 들 수 있으나, 이에 제한되는 것은 아니다.
산란 점착제층에서 라디칼 중합성 화합물은, 가교성 중합체 100 중량부에 대하여, 3 중량부 내지 25 중량부의 양으로 포함될 수 있다. 이러한 범위에서 적합한 물성을 확보할 수 있는 IPN 구조가 구현될 수 있다.
라디칼 중합성 화합물의 중합 반응을 유도할 수 있는 라디칼 개시제의 종류는 특별히 제한되지 않는다. 예를 들면, 라디칼 개시제로서 광개시제 및 열개시제로 이루어진 군으로부터 선택된 하나 이상을 사용할 수 있으며, 필요하다면 광개시제 및 열개시제를 동시에 사용할 수도 있다. 개시제는 예를 들면, 라디칼 중합성 화합물 100 중량부에 대하여, 0.1 중량부 내지 10 중량부의 양으로 포함될 수 있지만, 이에 제한되는 것은 아니다.
광개시제로서는, 광조사 등에 의한 경화 과정에서 전술한 라디칼 중합성 화합물의 중합 반응을 유도하여, 제 2 가교 구조를 구현할 수 있는 것이라면, 어느 것이나 사용할 수 있다. 예를 들면, 벤조인계, 히드록시 케톤계, 아미노케톤계 또는 포스핀 옥시드계 광개시제 등을 사용할 수 있고, 구체적으로는, 벤조인, 벤조인 메틸에테르, 벤조인 에틸에테르, 벤조인 이소프로필에테르, 벤조인 n-부틸에테르, 벤조인 이소부틸에테르, 아세토페논, 디메틸아니노 아세토페논, 2,2-디메톡시-2-페닐아세토페논, 2,2-디에톡시-2-페닐아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1온, 1-히드록시시클로헥실페닐케톤, 2-메틸-1-[4-(메틸티오)페닐]-2-몰포리노-프로판-1-온, 4-(2-히드록시에톡시)페닐-2-(히드록시-2-프로필)케톤, 벤조페논, p-페닐벤조페논, 4,4논시디에틸아미노벤조페논, 디클로로벤조페논, 2-메틸안트라퀴논, 2-에틸안트라퀴논, 2-t-부틸안트라퀴논, 2-아미노안트라퀴논, 2-메틸티오잔톤(thioxanthone), 2-에틸티오잔톤, 2-클로로티오잔톤, 2,4-디메틸티오잔톤, 2,4-디에틸티오잔톤, 벤질디메틸케탈, 아세토페논 디메틸케탈, p-디메틸아미노 안식향산 에스테르, 올리고[2-히드록시-2-메틸-1-[4-(1-메틸비닐)페닐]프로판논] 및 2,4,6-트리메틸벤조일-디페닐-포스핀옥시드 등을 들 수 있다. 본 출원에서는 상기 중 일종 또는 이종 이상을 사용할 수 있으나, 이에 제한되는 것은 아니다.
열개시제는 역시 특별히 제한되지 않으며, 구현하고자 하는 물성을 고려하여 적절히 선택될 수 있다. 예를 들면, 10 시간 반감기 온도가 40℃ 이상, 100℃ 미만인 열개시제를 사용할 수 있다. 열개시제의 반감기 온도를 위와 같이 설정함으로써, 가사 시간(pot-life)을 충분히 확보할 수 있고, 열개시제의 분해를 위한 건조 온도 역시 적절하게 유지할 수 있다.
열개시제의 종류는, 전술한 물성을 갖는 것이라면 특별히 한정되지 않고, 예를 들면, 아조계 화합물, 과산화물계 화합물 또는 레독스(redox)계 화합물과 같은 통상의 개시제를 사용할 수 있다. 상기에서 아조계 화합물의 예로는 2,2-아조비스(2-메틸부티로니트릴), 2,2트릴아조비스(이소부티로니트릴), 2,2트릴아조비스(2,4-디메틸발레로니트릴), 2,2니트아조비스-2-히드록시메틸프로피오니트릴, 디메틸-2,2메틸아조비스(2-메틸프로피오네이트) 및 2,2피오아조비스(4-메톡시- 2,4-디메틸발레로니트릴) 등을 들 수 있고, 과산화물계 화합물의 예로는 과유산 칼륨, 과황산 암모늄 또는 과산화수소와 같은 무기 과산화물; 또는 디아실 퍼옥시드, 퍼옥시 디카보네이트, 퍼옥시 에스테르, 테트라메틸부틸퍼옥시 네오데카노에이트(ex. Perocta ND, NOF사(제)), 비스(4-부틸시클로헥실)퍼옥시디카보네이트(ex. Peroyl TCP, NOF사(제)), 디(2-에틸헥실)퍼옥시 카보네이트, 부틸퍼옥시 네오데카노에이트(ex. Perbutyl ND, NOF사(제)), 디프로필 퍼옥시 디카보네이트(ex. Peroyl NPP, NOF사(제)), 디이소프로필 퍼옥시 디카보네이트(ex. Peroyl IPP, NOF사(제)), 디에톡시에틸 퍼옥시 디카보네이트(ex. Peroyl EEP, NOF사(제)), 디에톡시헥실 퍼옥시 디카보네이트(ex. Peroyl OEP, NOF사(제)), 헥실 퍼옥시 디카보네이트(ex. Perhexyl ND, NOF사(제)), 디메톡시부틸 퍼옥시 디카보네이트(ex. Peroyl MBP, NOF사(제)), 비스(3-메톡시-3-메톡시부틸) 퍼옥시 디카보네이트(ex. Peroyl SOP, NOF사(제)), 디부틸 퍼옥시 디카보네이트, 디세틸(dicetyl)퍼옥시 디카보네이트, 디미리스틸 (dimyristyl)퍼옥시 디카보네이트, 1,1,3,3-테트라메틸부틸 퍼옥시피발레이트(peroxypivalate), 헥실 퍼옥시 피발레이트(ex. Perhexyl PV, NOF사(제)), 부틸 퍼옥시 피발레이트(ex. Perbutyl, NOF사(제)), 트리메틸 헥사노일 퍼옥시드(ex. Peroyl 355, NOF사(제)), 디메틸 히드록시부틸 퍼옥시네오데카노에이트(ex. Luperox 610M75, Atofina(제)), 아밀 퍼옥시네오데카노에이트(ex. Luperox 546M75, Atofina(제)), 부틸 퍼옥시네오데카노에이트(ex. Luperox 10M75, Atofina(제)), t-부틸퍼옥시 네오헵타노에이트, 아밀퍼옥시 피발레이트(pivalate)(ex. Luperox 546M75, Alofina(제)), t-부틸퍼옥시 피발레이트, t-아밀 퍼옥시-2-에틸헥사노에이트, 라우릴 퍼옥시드, 디라우로일(dilauroyl) 퍼옥시드, 디데카노일 퍼옥시드, 벤조일 퍼옥시드 또는 디벤조일 퍼옥시드 등과 같은 유기 과산화물을 들 수 있고, 레독스계 화합물의 예로는 과산화물계 화합물과 환원제를 병용한 혼합물 등을 들 수 있으나, 이에 제한되는 것은 아니다. 본 출원에서는 상기와 같은 아조계, 과산화물계 또는 레독스계 화합물의 일종 또는 이종 이상의 혼합을 사용할 수 있다.
산란 점착제층은, 필요한 경우에 전술한 성분에 추가로 공지의 대전 방지제, 실란 커플링제, 점착성 부여 수지, 에폭시 수지, 자외선 안정제, 산화 방지제, 조색제, 보강제, 충진제, 소포제, 계면 활성제 및 가소제로 이루어진 군으로부터 선택된 하나 이상의 첨가제를 추가로 포함할 수 있다
상기 산란 점착제층은 비드를 더 포함할 수 있다. 상기 산란 점착제층의 저장 탄성률 및 편광판의 헤이즈는 비드를 포함한 상태의 점착제층의 저장 탄성률 및 편광판의 헤이즈를 의미할 수 있다. 상기 비드의 굴절률은 상기 가교성 중합체 및/또는 라디칼 중합성 화합물의 중합체와 굴절률이 상이할 수 있다. 상기 점착제층은 비드를 포함함으로써 점착제층에 헤이즈를 부여하여 OLED 표시장치의 제조상 발생할 수 있는 무지개 얼룩 시인성을 개선할 수 있다.
하나의 예시에서, 가교성 중합체의 굴절률(A)과 비드의 굴절률(B)의 차이(A-B)는 0.05 이상일 수 있다. 가교성 중합체와 비드의 굴절률 차이가 클수록 헤이즈를 구현하기에 상대적으로 더 유리하므로, 적은 양으로도 높은 헤이즈를 구현할 수 있다. 상기 굴절률의 차이(A-B)의 상한은 예를 들어 0.1 이하일 수 있다. 상기 굴절률은 Abbe 굴절계를 사용하여, 25℃ 온도에서 파장이 350 nm 내지 1450 nm인 광원에 대하여 측정된 값이다. 상기 굴절률의 차이가 지나치게 작은 경우 목적하는 수준의 헤이즈 발현이 어렵고, 상기 굴절률의 차이가 지나치게 큰 경우 직진하는 빛의 손실로 광학특성이 저하될 수 있으므로, 굴절률의 차이는 상기 범위 내인 것이 적절할 수 있다. 하나의 예시에서, 상기 비드의 굴절률은 1.415 내지 1.425 범위 내일 수 있다.
비드의 함량은 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 하나의 예시에서, 비드는, 산란 점착제의 전체 성분의 중량을 100 중량부로 할 때, 1 중량부 내지 3 중량부 범위 내로 포함될 수 있다. 본 명세서에서 산란 점착제의 전체 성분의 중량은 산란 점착제에 포함되는 모든 가교성 중합체, 라디칼 중합성 화합물, 가교제, 개시제, 첨가제 및 비드의 중량 총합을 의미할 수 있다. 또는, 본 명세서에서 산란 점착제층의 전체 성분의 중량은 점착제 조성물에서 용매를 제외한 모든 성분의 중량의 합을 의미할 수 있다. 보다 구체적으로, 비드는 산란 점착제의 전체 성분 100 중량부 대비 1 중량부 이상, 1.2 중량부 이상, 1.4 중량부 이상, 1.5 중량부 이상, 1.6 중량부 이상 또는 1.8 중량부 이상으로 포함될 수 있고, 3 중량부 이하, 2.8 중량부 이하, 2.6 중량부 이하, 2.4 중량부 이하 또는 2.2 중량부 이하로 포함될 수 있다. 다른 하나의 예시에서, 비드는, 점착성 수지 100 중량부에 대하여, 3 중량부 이상으로 포함될 수 있다. 구체적으로, 비드는 점착성 수지 100 중량부에 대하여 3.1 중량부 이상, 3.2 중량부 이상, 3.4 중량부 이상, 3.6 중량부 이상, 3.8 중량부 이상, 4.0 중량부 이상, 4.2 중량부 이상, 4.4 중량부 이상, 4.6 중량부 이상, 4.8 중량부 이상, 5.0 중량부 이상, 5.2 중량부 이상, 5.4 중량부 이상, 5.6 중량부 이상, 5.8 중량부 이상 또는 6.0 중량부 이상으로 포함될 수 있고, 10 중량부 이하, 9.5 중량부 이하, 9 중량부 이하, 8.5 중량부 이하, 8 중량부 이하, 7.5 중량부 이하, 7 중량부 이하, 6.5 중량부 이하, 6 중량부 이하, 5.5 중량부 이하, 5 중량부 이하, 4.5 중량부 이하, 4 중량부 이하, 또는 3.5 중량부 이하로 포함될 수 있다. 비드의 함량이 상기 범위 내인 경우 OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타내는데 유리할 수 있다. 한편, 비드의 함량이 너무 지나치게 많은 경우, 부착 공정 시 카메라가 비드를 인식하여 기준 라인을 잘못 잡아 부착 오류가 발생할 수 있으므로, 비드의 함량을 상기 범위 내인 것이 유리할 수 있다.
하나의 예시에서, 상기 비드는 유기 비드일 수 있다. 상기 유기 비드는 예를 들어 실리콘 수지를 포함할 수 있다. 상기 실리콘 수지는 예를 들어 실세스퀴옥산을 포함할 수 있다. 상기 실세스퀴옥산은 [RSiO3/2]n의 화학식을 갖는 화합물일 수 있고, R = H, 알킬, 아릴 또는 알콕시일 수 있다. 하나의 예시에서, 상기 실리콘 수지는 폴리메틸실세스퀴옥산일 수 있다.
하나의 예시에서, 상기 비드는 구형 입자일 수 있다. 비드의 크기는 본 출원의 목적을 손상시키지 않는 범위 내에서 적절히 선택될 수 있다. 하나의 예시에서, 비드의 평균 입경(D50)은 6㎛ 이하일 수 있다. 상기 비드의 평균 입경(D50)은 구체적으로, 5.8㎛ 이하, 5.6㎛ 이하, 5.4㎛ 이하, 5.2㎛ 이하, 5.0㎛ 이하, 4.8㎛ 이하, 4.6㎛ 이하, 4.4㎛ 이하, 4.2㎛ 이하, 4.0㎛ 이하, 3.8㎛ 이하, 3.6㎛ 이하, 3.4㎛ 이하, 3.2㎛ 이하, 3.0㎛ 이하, 2.9㎛ 이하, 2.8㎛ 이하, 2.7㎛ 이하, 2.6㎛ 이하 또는 2.5㎛ 이하일 수 있다. 비드의 평균 입경(D50)은 예를 들어 1 ㎛ 이상, 1.5 ㎛ 이상, 2.0 ㎛ 이상 또는 2.2 ㎛ 이상일 수 있다. 비드의 평균 입경이 상기 범위 내인 경우, OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타내는데 유리할 수 있다. 한편, 스파클링 현상 및/또는 부착 공정 시 카메라의 인식 오류를 방지한다는 측면에서 비드의 평균 입경(D50)은 3㎛ 이하, 2.5㎛ 이하 또는 2.0㎛ 이하일 수 있다.
산란 점착제층의 두께는 15㎛ 내지 25㎛ 범위 내일 수 있다. 상기 산란 점착제층의 두께는 구체적으로, 16㎛ 이상, 17㎛ 이상 또는 18㎛ 이상일 수 있고, 24㎛ 이하, 23㎛ 이하 또는 22㎛ 이하일 수 있다. 산란 점착제층의 두께가 상기 범위 내인 경우, OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타내는데 유리할 수 있다.
산란 점착제층은 우수한 경도를 가질 수 있다. 하나의 예시에서, 상기 산란 점착제층은 800 gf로 1000 초 동안 측정한 유리 밀림 거리가, 210㎛ 이하일 수 있다. 상기 유리 밀림 거리는 구체적으로, 205㎛ 이하, 200 ㎛ 이하, 195 ㎛ 이하 또는 190 ㎛ 이하일 수 있다. 유리 밀림 거리가 낮을수록 샘플의 경도가 높은 것을 의미하며, 점착제층의 경도가 높을 시 외부 변형에 대한 저항이 크기 때문에 점착제층의 변형이 최소화되는 장점이 있다. 상기 유리 밀림 거리의 하한은 예를 들어 160㎛ 이상, 170㎛ 이상, 180㎛ 이상 190㎛ 이상 또는 195 ㎛ 이상일 수 있다.
상기 편광판은 우수한 내구성을 가질 수 있다. 하나의 예시에서, 상기 편광판은 수식 1의 내열 후의 헤이즈 변화율 △Ha 및 수식 2의 내습열 후의 헤이즈 변화율 △Hb가 각각 2% 이하일 수 있다. 상기 △Ha는 구체적으로 1.8% 이하, 1.6% 이하, 1.4% 이하 또는 1.2% 이하일 수 있다. 상기 △Hb는 구체적으로 1.8% 이하, 1.6% 이하, 1.4% 이하, 1.2% 이하, 1.0% 이하, 0.8% 이하, 0.6% 이하 또는 0.4% 이하일 수 있다.
[수식 1]
△Ha = (H1-H2)/H1 × 100%
[수식 2]
△Hb= (H3-H4)/H3 × 100%
수식 1에서 H1은 온도 25℃에서의 편광판의 헤이즈이고, H2는 온도 80℃에서 500 시간 보관 후 편광판의 헤이즈이다. 수식 2에서 H3는 온도 25℃에서의 편광판의 헤이즈이고, H4는 온도 60℃ 및 상대습도 90%에서 500 시간 보관 후 편광판의 헤이즈이다.
본 명세서에서 용어 「편광자」는 편광 기능을 가지는 필름, 시트 또는 소자를 의미한다. 편광자는 여러 방향으로 진동하는 입사광으로부터 한쪽 방향으로 진동하는 광을 추출할 수 있는 기능성 소자이다.
상기 편광자는 흡수형 편광자일 수 있다. 본 명세서에서 흡수형 편광자는 입사 광에 대하여 선택적 투과 및 흡수 특성을 나타내는 소자를 의미한다. 상기 흡수형 편광자는 여러 방향으로 진동하는 입사 광으로부터 어느 한쪽 방향으로 진동하는 광은 투과하고, 나머지 방향으로 진동하는 광은 흡수할 수 있다.
상기 편광자는 선 편광자일 수 있다. 본 명세서에서 선 편광자는 선택적으로 투과하는 광이 어느 하나의 방향으로 진동하는 선 편광이고 선택적으로 흡수하는 광이 상기 선 편광의 진동 방향과 직교하는 방향으로 진동하는 선 편광인 편광자를 의미한다.
상기 편광자로는, 예를 들어, PVA 연신 필름 등과 같은 고분자 연신 필름에 요오드를 염착한 편광자 또는 배향된 상태로 중합된 액정을 호스트로 하고, 상기 액정의 배향에 따라 배열된 이방성 염료를 게스트로 하는 게스트-호스트형 편광자를 사용할 수 있으나 이에 제한되는 것은 아니다.
상기 PVA계 편광자를 형성하기 위한 폴리비닐알코올 수지 또는 그 유도체의 종류는 특히 제한되지 않으며, 이전부터 PVA계 편광자를 형성할 수 있는 것으로 알려진 임의의 PVA 수지 또는 그 유도체를 별다른 제한 없이 모두 사용할 수 있다. 다만, 상기 PVA계 수지 유도체의 대표적인 예로는, 폴리비닐포르말수지 또는 폴리비닐아세탈수지 등을 들 수 있다. 추가로, 상기 PVA계 편광자는 당해 기술분야에 있어서 편광자 제조에 일반적으로 사용되는 PVA계 시판 필름, 예컨대, 구라레社의 P30, PE30, PE60, 일본합성사의 M2000, M3000 M6000 등을 사용하여 형성할 수도 있다.
상기 PVA계 편광자에 포함되는 수지는, 예를 들어, 중합도가 1,000 내지 10,000 정도 또는 1,500 내지 5,000 범위 내일 수 있다. 중합도가 상기 범위 내인 경우, 분자 움직임이 자유롭고, 요오드 또는 이색성 염료 등과 유연하게 혼합되는데 유리할 수 있다.
본 출원의 일 실시예에 의하면 상기 편광자로는 PVA 연신 필름을 사용할 수 있다. 상기 편광자의 투과율 내지 편광도는 본 출원의 목적을 고려하여 적절히 조절될 수 있다. 예를 들어 상기 편광자의 투과율은 42.5% 내지 55%일 수 있고, 편광도는 65% 내지 99.9997% 일 수 있다. 상기 투과율 및 편광도는 약 550 nm 파장의 광에 대해 측정된 값일 수 있다.
하나의 예시에서, 상기 편광자의 일면 또는 양면에 존재하는 편광자의 보호필름을 더 포함할 수 있다. 상기 보호필름은 접착제층을 매개로 편광자에 부착될 수 있다.
상기 편광자의 보호 필름으로는 트리아세틸셀룰로오스(TAC)계 필름, 고리형 올레핀계 중합체(COP) 필름, 고리형 올레핀계 공중합체(COC) 필름 또는 아크릴계 필름을 사용할 수 있다. 이러한 편광자의 보호 필름은 표시 장치의 우수한 시인성 및 광학 특성 등을 고려하여, 광 투과율이 85% 내지 100%로 되는 높은 투명성을 나타냄이 바람직하다.
상기 편광판은 표면 처리층을 더 포함할 수 있다. 상기 표면 처리층은 편광자의 보호 필름의 일면에 형성될 수 있다. 구체적으로, 상기 표면 처리층은 편광자의 산란 점착제층이 형성된 반대 면에 위치하는 편광자의 보호필름의 일면에 형성될 수 있다. 상기 표면처리층으로는 예를 들어 하드코팅층, 저반사층, 눈부심방지층, 지문방지층 등을 예시할 수 있으나 이에 제한되는 것은 아니다. 상기 표면처리층은 편광판의 최외각에 배치될 수 있다.
상기 편광자의 보호 필름의 두께는 20㎛ 내지 100㎛ 범위 내일 수 있다. 편광자의 보호 필름의 두께가 상기 범위를 만족할 경우, 편광자를 보호할 수 있는 기계적 강도를 확보함과 동시에 롤(roll) 공정 작업성을 확보 할 수 있는 효과가 있다.
상기 편광자와 보호필름을 부착하는 접착제층의 조성이나 형성 방법은 특히 제한되지 않고, 이전부터 편광자와, 보호 필름을 접착하기 위해 사용되던 임의의 조성 등을 적용하여 접착제층을 형성할 수 있다. 하나의 예시에서 상기 접착제층은 UV 경화형 접착제일 수 있다. 또한, 상기 접착제층의 두께는 0.5㎛ 내지 4.0㎛로 될 수 있고, 상기 접착제층의 두께가 이러한 범위를 만족함에 따라 양호한 코팅 균일성을 확보할 수 있다.
상기 편광판은 편광자와 산란 점착제층 사이에 위상차층을 더 포함할 수 있다. 상기 위상차층은 예를 들어 액정층 또는 연신 고분자층일 수 있다. 액정층은 중합성 액정 화합물을 중합된 상태로 포함할 수 있다. 본 명세서에서 용어 「중합성 액정 화합물」은, 액정성을 나타낼 수 있는 부위, 예를 들면, 메소겐(mesogen) 골격 등을 포함하고, 또한 중합성 관능기를 하나 이상 포함하는 화합물을 의미할 수 있다. 중합성 관능기는 예를 들어, 아크릴로일기, 메타크릴로일기, 아크릴로일옥시기 또는 메타크릴로일옥시기일 수 있다. 연신 고분자층으로는, 예를 들면, 폴리에틸렌 또는 폴리프로필렌 등의 폴리올레핀, 폴리노르보넨 등의 고리형 올레핀 폴리머(COP: Cycloolefin polymer), 폴리염화비닐, 폴리아크릴로니트릴, 폴리설폰, 아크릴 수지, 폴리카보네이트, 폴리에틸렌테레프탈레이트 등의 폴리에스테르, 폴리아크릴레이트, 폴리비닐알코올 또는 TAC(Triacetyl cellulose) 등의 셀룰로오스 에스테르계 폴리머이나 상기 폴리머를 형성하는 단량체 중에서 2종 이상의 단량체의 공중합체 등을 포함하는 고분자층을 사용할 수 있다.
상기 위상차층은 예를 들어 1/4 파장 위상 지연 특성을 가질 수 있다. 본 명세서에서 용어 n 파장 위상 지연 특성은, 적어도 일부의 파장 범위 내에서, 입사 광을 그 입사 광의 파장의 n배 만큼 위상 지연시킬 수 있는 특성을 의미한다. 1/4 파장 위상 지연 특성은, 입사된 선편광을 타원편광 또는 원편광으로 변환시키고, 반대로 입사된 타원 편광 또는 원편광을 선편광으로 변환시키는 특성일 수 있다. 하나의 예시에서 위상차층은, 550 nm의 파장의 광에 대한 면상 위상차가 90 nm 내지 300 nm의 범위 내일 수 있다. 상기 면상 위상차는 다른 예시에서 100 nm 이상, 105 nm 이상, 110 nm 이상, 115 nm 이상, 120 nm 이상, 125 nm 이상 또는 130 nm 이상일 수 있다. 또한, 상기 면상 위상차는 290 nm 이하, 280 nm 이하, 270 nm 이하, 260 nm 이하, 250 nm 이하, 240 nm 이하, 230 nm 이하, 220 nm 이하, 210 nm 이하, 200 nm 이하, 190 nm 이하, 180 nm 이하, 170 nm 이하, 160 nm 이하, 150 nm 이하 또는 145 nm 이하일 수 있다.
상기 편광판은 편광자와 산란 점착제층 사이에 하드 층(Hard layer)을 더 포함할 수 있다. 상기 하드 층으로는 접착제층을 예시할 수 있다. 상기 접착제층으로는 UV 경화형 접착제층을 사용할 수 있다. 또한, 상기 접착제층의 두께는 0.5㎛ 내지 4.0㎛ 범위 내일 있고, 상기 접착제층의 두께가 이러한 범위를 만족함에 따라 양호한 코팅 균일성을 확보할 수 있다.
도 1 내지 도 3은 각각 본 출원의 편광판의 구조를 예시적으로 나타낸다. 도 1에 나타낸 바와 같이, 편광판은 산란 점착제층(100), 위상차층(200), 편광자의 보호필름(300), 편광자(400), 편광자의 보호필름(500) 및 표면처리층(600)을 순차로 포함할 수 있다. 또는, 도 2에 나타낸 바와 같이, 편광판은 산란 점착제층(100), 편광자의 보호필름(300), 편광자(400), 편광자의 보호필름(500) 및 표면처리층(600)을 순차로 포함할 수 있다. 또는, 도 3에 나타낸 바와 같이, 산란 점착제층(100), 하드 층(700), 편광자(400), 편광자의 보호필름(500) 및 표면처리층(600)을 순차로 포함할 수 있다.
편광판은 산란 점착제층의 일면에 이형필름이 부착된 상태로 제공될 수 있으며, 디스플레이 패널에 점착될 때 이러한 이형필름이 제거될 수 있다. 상기 이형필름은 편광판이 디스플레이 패널에 접착되기 전까지 산란 점착제층을 보호하는 역할을 할 수 있다. 이형필름은 당해 기술분야에 잘 알려진 이형필름, 예를 들면 아크릴 필름, 폴리에틸렌테레프탈레이트(PET) 필름, 트리아세틸셀룰로오스(TAC) 필름, 폴리노르보넨(PNB) 필름, 싸이클로올레핀폴리머(COP) 필름, 폴리카보네이트(PC) 필름 등이 사용될 수 있으나, 이에만 한정되는 것은 아니다.
본 출원은 또한 OLED 표시장치에 관한 것이다. 상기 OLED 표시장치는 OLED 표시패널 및 상기 OLED 표시패널의 일면에 배치된 상기 편광판을 포함할 수 있다. 이때, 편광판의 산란 점착제층의 일면은 OLED 표시패널에 직접 접하고 있을 수 있다. 상기 편광판은 OLED 표시패널의 시인 측에 배치될 수 있다. 본 출원의 편광판을 OLED 표시장치에 적용하는 경우, OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타내는데 유리할 수 있다.
상기 OLED 표시패널은 기판, 하부 전극, 유기 발광층 및 상부 전극을 순차로 포함할 수 있다. 유기 발광층은 하부 전극과 상부 전극에 전압이 인가되었을 때 빛을 낼 수 있는 유기 물질을 포함할 수 있다. 상기 하부 전극과 상부 전극 중 어느 하나는 양극(anode)이고 다른 하나는 음극(cathode)일 수 있다. 양극은 정공(hole)이 주입되는 전극으로 일 함수(work function)가 높은 도전 물질로 만들어질 수 있으며 음극은 전자가 주입되는 전극으로 일 함수가 낮은 도전 물질로 만들어질 수 있다. 통상 양극으로는 일함수가 큰 ITO 또는 IZO 와 같은 투명 금속 산화물층을 사용할 수 있으며, 음극으로는 일함수가 낮은 금속 전극을 사용할 수 있다. 일반적으로 유기 발광층은 투명하기 때문에, 상부 및 하부 전극을 투명하게 하는 경우 투명 디스플레이를 구현할 수 있다. 하나의 예시에서, 상기 금속 전극의 두께를 매우 얇게 하는 경우 투명한 디스플레이를 구현할 수 잇다.
상기 OLED 표시패널은 상부 전극 상에 외부로부터 수분 및/또는 산소가 유입되는 것을 방지하는 기능을 하는 봉지 기판을 더 포함할 수 있다. 하부 전극과 유기 발광층 사이 및 상부 전극과 유기 발광층 사이에는 부대층을 더 포함할 수 있다. 부대층은 전자와 정공의 균형을 맞추기 위한 정공 전달층(hole transporting layer), 정공 주입층(hole injecting layer), 전자 주입층(electron injecting layer) 및 전자 전달층(electron transporting layer)을 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 편광판은 OLED 표시패널에서 빛이 나오는 측(광 출사 측)에 배치될 수 있다. 예컨대 베이스 기판 측으로 빛이 나오는 배면 발광(bottom emission) 구조인 경우 베이스 기판의 외측에 배치될 수 있고, 봉지 기판 측으로 빛이 나 오는 전면 발광(top emission) 구조인 경우 봉지 기판의 외측에 배치될 수 있다. 편광판이 위상차층을 포함하는 경우 외광이 OLED 패널의 전극 및 배선 등과 같이 금속으로 만들어진 반사층에 의해 반사되어 OLED 패널의 외측으로 나오는 것을 방지함으로써 시인성과 표시장치의 성능을 개선할 수 있다.
본 출원은 편광판 및 그의 용도에 관한 것이다. 본 출원은 OLED 표시장치의 외관에서 레인보우 얼룩이 발생하는 문제를 개선하고, 우수한 시감, 우수한 경도, 우수한 내열 및 내습열 내구성을 나타낼 수 있는 편광판 및 상기 편광판을 포함하는 OLED 표시장치를 제공한다.
도 1은 본 출원의 편광판의 구조를 예시적으로 나타낸다.
도 2는 본 출원의 편광판의 구조를 예시적으로 나타낸다.
도 3은 본 출원의 편광판의 구조를 예시적으로 나타낸다.
이하, 본 출원에 따른 실시예 및 본 출원에 따르지 않는 비교예를 통하여 본 출원을 구체적으로 설명하지만, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
실시예 1
가교성 중합체와 3 관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부, 경화제(T-39M, Soken) 0.08 중량부, 개시제(AD-PI2, LG화학) 0.74 중량부, 실란커플링제(AD-M812, LG화학) 0.05 중량부, 대전방지제(HQ115, 3M) 0.28 중량부 및 비드(Tospearl 145, 모멘티브) 4 중량부를 반응 용기에 투입한 뒤, 용제(Ethyl acetate)를 가교성 중합체(AD-705) 100 중량부 대비 20 중량부 투입하여 점착제 조성물을 제조하였다. 가교성 중합체는 BA(butyl acrylate) 99 중량부 및 4-HBA(4-hydroxybutyl acrylate) 1 중량부의 중합체이다. 3 관능 라디칼 중합성 화합물은 3 관능 아크릴레이트이다. 비드는 실리콘 수지를 포함하며, 평균입경(D50)이 약 4.5㎛인 구형 입자이다. 가교성 중합체의 굴절률은 1.47이고, 비드의 굴절률은 1.42이다. 상기 굴절률은 Abbe 굴절계를 사용하여, 25℃ 온도에서 파장이 350 nm 내지 1450 nm인 광원에 대하여 측정된 값이다.
점착제 조성물을 믹서(Stirrer)로 50분 동안 배합한 후, 두께가 38㎛인 제 1 이형 필름(MRP38, 미쓰비시 플라스틱)에 건조 후 두께가 약 22㎛이 되도록 도공하고, 80℃ 온도에서 3분 동안 건조하여 산란 점착제를 형성하였다. 제 1 이형 필름에 형성된 산란 점착제 상에 제 1 이형 필름과 박리력이 상이한 두께가 38㎛인 제 2 이형 필름(MRP, 미쓰비시 플라스틱)을 적층하였다. 적층 후, 수은 고압 램프(광량 80W)로 약 15초 동안 광(약 150 mJ/250mW)을 조사하여 점착 필름을 제조하였다.
두께가 25㎛인 편광자(요오드 염착된 PVA계 연신 필름)의 일면에 두께가 65㎛인 제 1 보호필름(TAC 필름)을 적층하였고, 편광자의 다른 일면에 두께가 45㎛인 제 2 보호필름(TAC 필름)을 적층하였다. 제 1 보호필름의 일면에 380nm 내지 780nm 파장에 대한 평균 반사율이 약 2%인 저반사층을 형성하여 표면처리하였다. 제 2 보호필름의 일면에 1/4 파장판(액정층)을 형성하였다. 상기 제조된 점착 필름에서 제 2 이형 필름을 제거한 후, 산란 점착제가 1/4 파장판에 부착되도록 적층하여 편광판을 제조하였다.
실시예 2
비드의 함량을 3 중량부로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다.
실시예 3
비드의 함량을 4.5 중량부로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다.
실시예 4
가교성 중합체와 3 관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부, 경화제(T-39M, Soken) 0.26중량부, 개시제(AD-PI2, LG화학) 1.76 중량부, 실란커플링제(AD-M812, LG화학) 0.05 중량부, 대전방지제(HQ115, 3M) 1.10 중량부 및 비드(TSR 9000, 모멘티브) 3.35 중량부를 반응 용기에 투입한 뒤, 용제(Ethyl acetate)를 투입하여 점착제 조성물을 제조하였다. 가교성 중합체는 BA(butyl acrylate) 99 중량부 및 4-HBA(4-hydroxybutyl acrylate) 1 중량부의 중합체이다. 3 관능 라디칼 중합성 화합물은 3 관능 아크릴레이트이다. 비드는 실리콘 수지를 포함하며, 평균 입경(D50)이 약 2.2㎛~2.5㎛인 구형 입자이다. 가교성 중합체의 굴절률은 1.47이고, 비드의 굴절률은 1.42이다. 상기 굴절률은 Abbe 굴절계를 사용하여, 25℃ 온도에서 파장이 350 nm 내지 1450 nm인 광원에 대하여 측정된 값이다.
점착제 조성물을 믹서(Stirrer)로 50분 동안 배합한 후, 두께가 38㎛인 제 1 이형 필름(MRP38, 미쓰비시 플라스틱)에 건조 후 두께가 약 22㎛이 되도록 도공하고, 80℃ 온도에서 3분 동안 건조하여 산란 점착제층을 형성하였다. 제 1 이형 필름에 형성된 산란 점착제층 상에 제 1 이형 필름과 박리력이 상이한 두께가 38㎛인 제 2 이형 필름(MRP38, 미쓰비시 플라스틱)을 적층하였다. 적층 후, 수은 고압 램프(광량 80W)로 약 15초 동안 광(약 150 mJ/250mW)을 조사하여 점착 필름을 제조하였다.
두께가 25㎛인 편광자(요오드 염착된 PVA계 연신 필름)의 일면에 두께가 65㎛인 제 1 보호필름(TAC 필름)을 적층하였고, 편광자의 다른 일면에 두께가 45㎛인 제 2 보호필름(TAC 필름)을 적층하였다. 제 1 보호필름의 일면에 380nm 내지 780nm 파장에 대한 평균 반사율이 약 2%인 저반사층을 형성하여 표면처리하였다. 제 2 보호필름의 일면에 1/4 파장판(액정층)을 형성하였다. 상기 제조된 점착 필름에서 제 2 이형 필름을 제거한 후, 산란 점착제층이 1/4 파장판에 부착되도록 적층하여 편광판을 제조하였다.
실시예 5
가교성 중합체와 3관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부에 대하여 비드의 함량을 6 중량부로 변경한 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다.
실시예 6
비드를 평균 입경(D50)이 약 4.5㎛인 구형 입자(Tospearl 145, 모멘티브)로 변경하고, 비드의 함량을 가교성 중합체와 3관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부에 대하여, 4.50 중량부로 변경한 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다.
실시예 7
비드를 평균 입경(D50)이 약 4.5㎛인 구형 입자(Tospearl 145, 모멘티브)로 변경하고, 비드의 함량을 가교성 중합체와 3관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부에 대하여 6 중량부로 변경한 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다.
실시예 8
가교성 중합체와 3관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부에 대하여 비드의 함량을 3 중량부로 변경한 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다.
비교예 1
아크릴 중합체(LC-6BB, Soken) 100 중량부, 경화제(T-743L, Soken) 0.01 중량부, 경화제(T-706BB, Soken) 0.45 중량부, 실란커플링제(T-789J, Soken) 0.02 중량부, 대전방지제(FC4400, 3M) 0.29 중량부 및 비드(Tospearl 145, 모멘티브) 4 중량부를 반응 용기에 투입한 뒤, 용제(Ethyl acetate)를 아크릴 중합체(LC-6BB) 100 중량부 대비 20 중량부를 투입하여 점착제 조성물을 준비하였다. 아크릴 중합체는 BA(butyl acrylate) 94 중량부 및 AA(acrylic acid) 4 중량부의 중합체이다. 비드는 실리콘 수지를 포함하며, 평균입경(D50)이 약 4.5㎛인 구형 입자이다 아크릴 중합체의 굴절률은 1.46이고, 비드의 굴절률은 1.42이다. 상기 굴절률은 Abbe 굴절계를 사용하여, 25℃ 온도에서 파장이 350 nm 내지 1450 nm인 광원에 대하여 측정된 값이다.
점착제 조성물을 믹서(Stirrer)로 50분 동안 배합한 후, 두께가 38㎛인 제 1 이형 필름(MRP38, 미쓰비시 플라스틱)에 건조 후 두께가 약 22㎛이 되도록 도공하고, 80℃ 온도에서 3분 동안 건조하여 산란 점착제를 형성하였다. 제 1 이형 필름에 형성된 산란 점착제 상에 제 1 이형 필름과 박리력이 상이한 두께가 38㎛인 제 2 이형 필름(MRP, 미쓰비시 플라스틱)을 적층하였다.
두께가 25㎛인 편광자(요오드 염착된 PVA계 연신 필름)의 일면에 두께가 65㎛인 제 1 보호필름(TAC 필름)을 적층하였고, 편광자의 다른 일면에 두께가 45㎛인 제 2 보호필름(TAC 필름)을 적층하였다. 제 1 보호필름의 일면에 380nm 내지 780nm 파장에 대한 평균 반사율이 약 2%인 저반사층을 형성하여 표면처리하였다. 제 2 보호필름의 일면에 1/4 파장판(액정층)을 형성하였다. 상기 제조된 점착 필름에서 제 2 이형 필름을 제거한 후, 점착제가 1/4 파장판에 부착되도록 적층하여 편광판을 제조하였다.
비교예 2
비드를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 편광판을 제조하였다.
비교예 3
비드를 첨가하지 않은 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다.
비교예 4
비드를 평균 입경(D50)이 약 4.5㎛이고, 굴절률이 1.42인 구형 입자(Tospearl 145, 모멘티브)로 변경하고, 비드의 함량을 가교성 중합체와 3관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부에 대하여 0.60 중량부로 변경한 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다. 상기 비드(Tospearl 145, 모멘티브)는 실리콘 수지를 포함하며, 굴절률이 1.42이다.
비교예 5
가교성 중합체와 3관능 라디칼 중합성 화합물의 혼합물(AD-705, LG화학) 100 중량부에 대하여 비드의 함량을 0.5 중량부로 변경한 것을 제외하고는 실시예 4와 동일한 방법으로 편광판을 제조하였다.
실시예 1 내지 8 및 비교예 1 내지 5에 대하여 저장 탄성률 및 헤이즈를 측정한 후, 그 결과를 표 1에 기재하였다.
측정예 1. 헤이즈 측정
편광판을 가로×세로=5cm×5cm 사이즈로 재단하여 샘플을 제조한 후, 헤이즈미터(HM-150, Murakami color research laboratory)를 사용하여, 25℃에서 헤이즈를 측정하였다. 상기 헤이즈는 380 nm 내지 780 nm 파장의 광에 대해 측정된 값이다.
측정예 2. 저장 탄성률 측정
산란 점착제층을 접어 16층으로 적층하여, 가로×세로=15cm×20cm 사이즈가 되도록 샘플을 제조한 후, ARES-G2(TA Instruments) 장비를 이용하여, 25℃온도 및 스트레인 50% 조건에서 저장 탄성률을 측정하였고, 주파수 1 rad/sec의 값을 추출하였다.
헤이즈 (%) 저장 탄성률 (Pa)
실시예 1 28% 152,330
실시예 2 20% 154,427
실시예 3 35% 151,987
실시예 4 30.5% 151987
실시예 5 40.0% 152023
실시예 6 30.0% 152937
실시예 7 34.0% 154402
실시예 8 21.5% 154427
비교예 1 26% 86,752
비교예 2 1% 153,426
비교예 3 0.5% 153422
비교예 4 5.0% 156321
비교예 5 5.0% 152330
실시예 1 내지 8 및 비교예 1 내지 5에 대하여, 유리 밀림 거리, 얼룩 발생 유무, 내열 신뢰성 및 내습열 신뢰성을 평가하고 그 결과를 표 2 및 표 3에 기재하였다. 측정예 3. 유리 밀림 거리(Creep) 측정
편광판을 가로x세로가 10 mm x 100 mm인 사이즈로 재단하였다. 편광판으로부터 제 1 이형 필름을 박리한 후, 가로×세로×두께가 30mm×40mm×0.8mm인 유리판(소다라임 글래스)의 중앙의 가로×세로가 10mm×10mm의 영역에, 상기 편광판의 점착제층이 유리판에 닿도록 부착하여 시편을 제조하였다. 상기 시편을 50℃ 및 5기압에서 15분 동안 탈포한 후, 밀림 거리를 측정하였다. 구체적으로, Texture analyzer(Stable micro system, XT plus)에 시편을 로딩하여 편광판 부분과 유리판 부분을 고정하였다. 800 gf의 힘으로 1000초 동안 일 방향으로 편광판을 잡아당겼을 때 편광판이 유리 기판으로부터 밀리는 거리(단위: ㎛)를 측정하였다. 일반적으로 1000초 내에서 saturation(밀림 거리가 더 늘어나지 않고 균일하게 나오는 상태)되며, 본 실험에서는 최종 1000초에서의 밀림 거리를 측정하여 아래 표 2에 기재하였다. 유리 밀림 거리가 낮을수록 샘플의 경도가 높은 것을 의미한다.
평가예 1. 얼룩 발생 유무
편광판을 A4 사이즈로 재단한 후, 편광판에서 제 1 이형 필름을 제거한 후, OLED 패널(Micro lens array OLED, LGD)에 부착하고, OLED 패널을 작동시킨 후, 얼룩 발생 여부를 목시로 관찰하였다.
평가예 2. 내열 신뢰성 및 내습열 신뢰성 평가(A)
편광판을 가로×세로=160mm×90mm로 재단한 후, A4 사이즈의 유리판(소다라임글라스)에 부착하고 탈포함으로써 샘플을 제조하였다. 상기 샘플을 내열 신뢰성(온도 80℃) 및 내습열 신뢰성(온도 60℃, 상대습도 90%) 조건으로 유지되는 챔버에 투입한 후, 500 시간 유지하였다. 샘플에 기포 발생 여부를 관찰한 후, 아래 기준으로 신뢰성을 평가하였다.
◎: 기포 미발생
○: 기포 5개 미만
△: 기포 5개 이상
×: 편광판 들뜸 발생
유리 밀림 거리 (㎛) 얼룩 발생 유무 내열 신뢰성 내습열 신뢰성
실시예 1 185 미발생
실시예 2 189 약발생
실시예 3 201 미발생
실시예 4 201 미발생
실시예 5 192 미발생
실시예 6 200 미발생
실시예 7 202 미발생
실시예 8 189 약발생
비교예 1 230 미발생
비교예 2 190 강발생
비교예 3 194 발생
비교예 4 198 발생
비교예 5 185 발생
평가예 3. 내열 신뢰성 및 내습열 신뢰성 평가 (B)
하기 수식 1의 내열 변화율(△Ha) 및 하기 수식 2의 내습열 변화율(△Hb)을 측정하고 그 결과를 하기 표 3에 기재하였다. 구체적으로, 편광판을 가로×세로=47mm×47mm로 재단한 후, 가로×세로×두께가 50mm×50mm×0.8mm인 유리판(소다라임글라스)에 부착하고 탈포함으로써 샘플을 제조하였다. 상기 샘플을 내열 신뢰성(온도 80℃) 및 내습열 신뢰성(온도 60℃, 상대습도 90%) 조건으로 유지되는 챔버에 투입한 후, 500 시간 유지하였다. 챔버에 투입 전에 25℃에서 측정된 헤이즈는 아래 수식 1의 H1 및 수식 2의 H3이고, 챔버의 내열 신뢰성(온도 80℃)조건에서 500 시간 유지 후에 측정된 헤이즈는 수식 1의 H2이고, 챔버의 내습열 신뢰성(온도 60℃, 상대습도 90%) 조건에서 500 시간 유지 후에 측정된 헤이즈가 수식 2의 H4이다.
[수식 1]
△Ha = (H1-H2)/H1 × 100%
[수식 2]
△Hb = (H3-H4)/H3 × 100%
내열
투입전
내열
500 hrs 후
내습열
투입전
내습열
500 hrs후
내열
변화율
내습열
변화율
실시예 1 28.1% 28.6% 27.6% 27.2% 1.78% 1.45%
실시예 2 12.2% 12.4% 12.5% 12.3% 1.64% 1.60%
실시예 3 35.5% 36.1% 35.4% 35.3% 1.69% 0.28%
실시예 4 30.2 30.6 30.4 30.3 1.32% 0.33%
실시예 5 35.4 35.8 35.6 35.3 1.13% 0.84%
실시예 6 29.7 30.2 31.2 30.7 1.68% 1.60%
실시예 7 36.1 36.6 35.8 35.3 1.39% 1.40%
실시예 8 21.7 22.1 21.7 21.3 1.84% 1.84%
비교예 1 26.2% 27% 26.5% 25.8% 3.05% 2.64%
비교예 2 0.2% 0.2% 0.2% 0.2% 0.00% 0.00%
비교예 3 0.2 0.2 0.4 0.4 0.00% 0.00%
비교예 4 4.9 4.9 5.1 5.0 0.00% 1.96%
비교예 5 5.1 5.2 5.1 5.0 1.96% 1.96%
실시예 4 내지 8 및 비교예 3 내지 5에 대하여, 스파클링 현상 및 카메라 인식 평가를 하고 평가하고 그 결과를 표 4에 기재하였다.
평가예 4. 스파클링 현상 평가
편광판을 A4 사이즈로 재단한 후, 편광판에서 제 1 이형 필름을 제거한 후 녹색 바탕의 모니터에 부착한 후 상온의 암실 환경에서 스파클링(반짝임) 현상이 있는지 목시 관찰하였다. 스파클링 현상의 정도에 따라 등급을 아래와 같이 평가하였다.
Lv 0: 스파클링 현상 없음
Lv 1: 스파클링 현상 미약
Lv 2: 스파클링 현상 약
Lv 3: 스파클링 현상 중
Lv 4: 스파클링 현상 중강
Lv 5: 스파클링 현상 강
평가예 5. 카메라 인식 평가
편광판을 A4 사이즈로 재단한 후, 편광판에서 이형 필름 면에 붉은색의 임의의 선을 긋고, 광학 현미경(×50 배율)으로 상기 선을 기준으로 주변에 비드의 분포를 관찰하였다. 비드의 분포가 높은 경우, 부착 공정 시 카메라가 비드를 인식하여 기준 라인을 잘못 잡아서 부착 오류가 발생할 수 있다.
스파클링 정도 카메라 인식
실시예 4 Lv 1 미인식
실시예 5 Lv 2 미인식
실시예 6 Lv 5 인식
실시예 7 Lv 5 인식
실시예 8 Lv 1 미인식
비교예 3 Lv 0 미인식
비교예 4 Lv 4 인식
비교예 5 Lv 1 미인식
[부호의 설명]
100: 산란 점착제층, 200: 위상차층, 300: 편광자의 보호 필름, 400: 편광자, 500: 편광자의 보호 필름, 600: 표면처리층, 700: 하드 층

Claims (14)

  1. 편광자 및 상기 편광자의 일면에 존재하는 산란 점착제층을 포함하는 편광판으로서, 상기 산란 점착제층의 25℃ 온도 및 1 rad/sec 주파수에서의 저장 탄성률은 120,000 Pa 이상이고, 상기 편광판은 헤이즈가 12% 이상인 편광판.
  2. 제 1 항에 있어서, 산란 점착제층은 점착성 수지 및 비드를 포함하는 편광판.
  3. 제 2 항에 있어서, 산란 점착제층은 점착성 수지를 포함하고, 상기 점착성 수지는 IPN(interpenetrating network) 가교 구조를 갖는 편광판.
  4. 제 3 항에 있어서, IPN 가교 구조는 가교성 중합체와 다관능성 가교제의 가교 반응에 의해 형성된 제 1 가교 구조 및 라디칼 중합성 화합물의 중합 반응에 의해 형성된 제 2 가교 구조를 포함하는 편광판.
  5. 제 4 항에 있어서, 가교성 중합체의 굴절률(A)과 비드의 굴절률(B)의 차이(A-B)는 0.05 내지 0.1 범위 내인 편광판.
  6. 제 2 항에 있어서, 비드는 실리콘 수지를 포함하는 편광판.
  7. 제 2 항에 있어서, 비드는 점착성 수지 100 중량부에 대하여 2 중량부 내지 10 중량부 범위 내로 포함되는 편광판.
  8. 제 1 항에 있어서, 산란 점착제층의 두께는 15㎛ 내지 25㎛ 범위 내인 편광판.
  9. 제 1 항에 있어서, 산란 점착제층은 800 gf로 1000초 동안 측정한 유리 밀림 거리가 150㎛ 내지 210㎛ 범위 내인 편광판.
  10. 제 1 항에 있어서, 편광판은 수식 1의 내열 후의 헤이즈 변화율 △Ha 및 수식 2의 내습열 후의 헤이즈 변화율 △Hb가 각각 2% 이하인 편광판:
    [수식 1]
    △Ha = (H1-H2)/H1 × 100%
    [수식 2]
    △Hb= (H3-H4)/H3 × 100%
    수식 1에서 H1은 온도 25℃에서의 편광판의 헤이즈이고, H2는 온도 80℃에서 500 시간 보관 후 편광판의 헤이즈이다. 수식 2에서 H3는 온도 25℃에서의 편광판의 헤이즈이고, H4는 온도 60℃ 및 상대습도 90%에서 500 시간 보관 후 편광판의 헤이즈이다.
  11. 제 1 항에 있어서, 편광자의 일면 또는 양면에 존재하는 편광자의 보호필름을 더 포함하는 편광판.
  12. 제 1 항에 있어서, 편광자와 산란 점착제층 사이에 위상차층을 더 포함하는 편광판.
  13. OLED(Organic light emitting diode) 표시패널 및 상기 OLED 표시패널의 일면에 배치된 제 1 항의 편광판을 포함하는 OLED 표시장치.
  14. 제 13 항에 있어서, 편광판은 OLED 표시패널의 광 출사 측에 배치되는 OLED 표시장치.
PCT/KR2022/015762 2021-10-15 2022-10-17 편광판 및 그의 용도 WO2023063806A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280066900.9A CN118076911A (zh) 2021-10-15 2022-10-17 偏光板及其用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210137841 2021-10-15
KR10-2021-0137841 2021-10-15
KR10-2022-0080538 2022-06-30
KR20220080538 2022-06-30

Publications (1)

Publication Number Publication Date
WO2023063806A1 true WO2023063806A1 (ko) 2023-04-20

Family

ID=85988749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015762 WO2023063806A1 (ko) 2021-10-15 2022-10-17 편광판 및 그의 용도

Country Status (2)

Country Link
KR (1) KR20230054305A (ko)
WO (1) WO2023063806A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090122138A (ko) 2008-05-22 2009-11-26 주식회사 엘지화학 유기발광소자용 휘도 향상 편광판
KR20100058462A (ko) * 2007-08-22 2010-06-03 수미토모 케미칼 컴퍼니 리미티드 복합 편광판, 적층 광학 부재 및 그것들을 이용한 화상 표시 장치
KR20110098688A (ko) * 2010-02-26 2011-09-01 주식회사 엘지화학 편광판
KR20130117542A (ko) * 2012-04-18 2013-10-28 주식회사 자연과사람 반위상지연자 필름시트 및 그 제조방법
KR20160102408A (ko) * 2013-12-26 2016-08-30 닛토덴코 가부시키가이샤 적층 편광 필름, 그 제조 방법, 적층 광학 필름 및 화상 표시 장치
KR20180062950A (ko) * 2016-12-01 2018-06-11 닛토덴코 가부시키가이샤 점착제 부착 편광판 및 화상 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100058462A (ko) * 2007-08-22 2010-06-03 수미토모 케미칼 컴퍼니 리미티드 복합 편광판, 적층 광학 부재 및 그것들을 이용한 화상 표시 장치
KR20090122138A (ko) 2008-05-22 2009-11-26 주식회사 엘지화학 유기발광소자용 휘도 향상 편광판
KR20110098688A (ko) * 2010-02-26 2011-09-01 주식회사 엘지화학 편광판
KR20130117542A (ko) * 2012-04-18 2013-10-28 주식회사 자연과사람 반위상지연자 필름시트 및 그 제조방법
KR20160102408A (ko) * 2013-12-26 2016-08-30 닛토덴코 가부시키가이샤 적층 편광 필름, 그 제조 방법, 적층 광학 필름 및 화상 표시 장치
KR20180062950A (ko) * 2016-12-01 2018-06-11 닛토덴코 가부시키가이샤 점착제 부착 편광판 및 화상 표시 장치

Also Published As

Publication number Publication date
TW202330835A (zh) 2023-08-01
KR20230054305A (ko) 2023-04-24

Similar Documents

Publication Publication Date Title
US9487680B2 (en) Pressure sensitive adhesive compositions, polarizers and liquid crystal displays comprising the same
US20200407606A1 (en) Optical display comprising an adhesive film
US9816016B2 (en) Adhesive composition, polarizing plate and liquid crystal display device
WO2013028047A2 (ko) 점착제
WO2016104979A1 (ko) 점착제 조성물, 이로부터 형성된 점착필름 및 이를 포함하는 디스플레이 부재
WO2014204251A1 (ko) 점착제 조성물
WO2011105878A9 (ko) 점착제 조성물
WO2010008231A2 (ko) 점착제 조성물, 편광판 및 액정표시장치
WO2011105874A2 (ko) 편광판
WO2011105875A2 (ko) 편광판
WO2010002196A2 (ko) 점착제 조성물, 편광판 및 액정표시장치
WO2013095064A1 (ko) 점착제 조성물
WO2011065779A2 (ko) 점착제 조성물
WO2013035977A1 (ko) 위상차 점착필름, 그 제조방법 및 이를 포함하는 광학부재
WO2011105877A2 (ko) 점착제 조성물
WO2014035117A1 (ko) 편광판
WO2014204252A1 (ko) 점착제 조성물
WO2014204211A1 (ko) 점착제 조성물
KR101191116B1 (ko) 점착제 조성물
KR101687059B1 (ko) 점착제 조성물
KR101509855B1 (ko) 점착제 조성물
CN111534238A (zh) 粘合片、光学层叠体以及图像显示装置
WO2016159645A1 (ko) 편광판 및 이를 포함하는 광학표시장치
WO2023063806A1 (ko) 편광판 및 그의 용도
WO2016085072A1 (ko) 편광자 보호층 조성물, 이로부터 제조된 편광자 보호층, 이를 포함하는 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881433

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022881433

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022881433

Country of ref document: EP

Effective date: 20240403

NENP Non-entry into the national phase

Ref country code: DE